1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27
28 /*
29 * dnet -- DEC 21x4x
30 *
31 * Currently supports:
32 * 21040, 21041, 21140, 21142, 21143
33 * SROM versions 1, 3, 3.03, 4
34 * TP, AUI, BNC, 100BASETX, 100BASET4
35 *
36 * XXX NEEDSWORK
37 * All media SHOULD work, FX is untested
38 *
39 * Depends on the Generic LAN Driver utility functions in /kernel/misc/mac
40 */
41
42 #define BUG_4010796 /* See 4007871, 4010796 */
43
44 #include <sys/types.h>
45 #include <sys/errno.h>
46 #include <sys/param.h>
47 #include <sys/stropts.h>
48 #include <sys/stream.h>
49 #include <sys/kmem.h>
50 #include <sys/conf.h>
51 #include <sys/devops.h>
52 #include <sys/ksynch.h>
53 #include <sys/stat.h>
54 #include <sys/modctl.h>
55 #include <sys/debug.h>
56 #include <sys/dlpi.h>
57 #include <sys/ethernet.h>
58 #include <sys/vlan.h>
59 #include <sys/mac.h>
60 #include <sys/mac_ether.h>
61 #include <sys/mac_provider.h>
62 #include <sys/pci.h>
63 #include <sys/ddi.h>
64 #include <sys/sunddi.h>
65 #include <sys/strsun.h>
66
67 #include "dnet_mii.h"
68 #include "dnet.h"
69
70 /*
71 * Declarations and Module Linkage
72 */
73
74 #define IDENT "DNET 21x4x"
75
76 /*
77 * #define DNET_NOISY
78 * #define SROMDEBUG
79 * #define SROMDUMPSTRUCTURES
80 */
81
82 #ifdef DNETDEBUG
83 #ifdef DNET_NOISY
84 int dnetdebug = -1;
85 #else
86 int dnetdebug = 0;
87 #endif
88 #endif
89
90 /* used for message allocated using desballoc() */
91 struct free_ptr {
92 struct free_rtn free_rtn;
93 caddr_t buf;
94 };
95
96 struct rbuf_list {
97 struct rbuf_list *rbuf_next; /* next in the list */
98 caddr_t rbuf_vaddr; /* virual addr of the buf */
99 uint32_t rbuf_paddr; /* physical addr of the buf */
100 uint32_t rbuf_endpaddr; /* physical addr at the end */
101 ddi_dma_handle_t rbuf_dmahdl; /* dma handle */
102 ddi_acc_handle_t rbuf_acchdl; /* handle for DDI functions */
103 };
104
105 /* Required system entry points */
106 static int dnet_probe(dev_info_t *);
107 static int dnet_attach(dev_info_t *, ddi_attach_cmd_t);
108 static int dnet_detach(dev_info_t *, ddi_detach_cmd_t);
109 static int dnet_quiesce(dev_info_t *);
110
111 /* Required driver entry points for GLDv3 */
112 static int dnet_m_start(void *);
113 static void dnet_m_stop(void *);
114 static int dnet_m_getstat(void *, uint_t, uint64_t *);
115 static int dnet_m_setpromisc(void *, boolean_t);
116 static int dnet_m_multicst(void *, boolean_t, const uint8_t *);
117 static int dnet_m_unicst(void *, const uint8_t *);
118 static mblk_t *dnet_m_tx(void *, mblk_t *);
119
120 static uint_t dnet_intr(caddr_t);
121
122 /* Internal functions used by the above entry points */
123 static void write_gpr(struct dnetinstance *dnetp, uint32_t val);
124 static void dnet_reset_board(struct dnetinstance *);
125 static void dnet_init_board(struct dnetinstance *);
126 static void dnet_chip_init(struct dnetinstance *);
127 static uint32_t hashindex(const uint8_t *);
128 static int dnet_start(struct dnetinstance *);
129 static int dnet_set_addr(struct dnetinstance *);
130
131 static boolean_t dnet_send(struct dnetinstance *, mblk_t *);
132
133 static void dnet_getp(struct dnetinstance *);
134 static void update_rx_stats(struct dnetinstance *, int);
135 static void update_tx_stats(struct dnetinstance *, int);
136
137 /* Media Selection Setup Routines */
138 static void set_gpr(struct dnetinstance *);
139 static void set_opr(struct dnetinstance *);
140 static void set_sia(struct dnetinstance *);
141
142 /* Buffer Management Routines */
143 static int dnet_alloc_bufs(struct dnetinstance *);
144 static void dnet_free_bufs(struct dnetinstance *);
145 static void dnet_init_txrx_bufs(struct dnetinstance *);
146 static int alloc_descriptor(struct dnetinstance *);
147 static void dnet_reclaim_Tx_desc(struct dnetinstance *);
148 static int dnet_rbuf_init(dev_info_t *, int);
149 static int dnet_rbuf_destroy();
150 static struct rbuf_list *dnet_rbuf_alloc(dev_info_t *, int);
151 static void dnet_rbuf_free(caddr_t);
152 static void dnet_freemsg_buf(struct free_ptr *);
153
154 static void setup_block(struct dnetinstance *);
155
156 /* SROM read functions */
157 static int dnet_read_srom(dev_info_t *, int, ddi_acc_handle_t, caddr_t,
158 uchar_t *, int);
159 static void dnet_read21040addr(dev_info_t *, ddi_acc_handle_t, caddr_t,
160 uchar_t *, int *);
161 static void dnet_read21140srom(ddi_acc_handle_t, caddr_t, uchar_t *, int);
162 static int get_alternative_srom_image(dev_info_t *, uchar_t *, int);
163 static void dnet_print_srom(SROM_FORMAT *sr);
164 static void dnet_dump_leaf(LEAF_FORMAT *leaf);
165 static void dnet_dump_block(media_block_t *block);
166 #ifdef BUG_4010796
167 static void set_alternative_srom_image(dev_info_t *, uchar_t *, int);
168 static int dnet_hack(dev_info_t *);
169 #endif
170
171 static int dnet_hack_interrupts(struct dnetinstance *, int);
172 static int dnet_detach_hacked_interrupt(dev_info_t *devinfo);
173 static void enable_interrupts(struct dnetinstance *);
174
175 /* SROM parsing functions */
176 static void dnet_parse_srom(struct dnetinstance *dnetp, SROM_FORMAT *sr,
177 uchar_t *vi);
178 static void parse_controller_leaf(struct dnetinstance *dnetp, LEAF_FORMAT *leaf,
179 uchar_t *vi);
180 static uchar_t *parse_media_block(struct dnetinstance *dnetp,
181 media_block_t *block, uchar_t *vi);
182 static int check_srom_valid(uchar_t *);
183 static void dnet_dumpbin(char *msg, uchar_t *, int size, int len);
184 static void setup_legacy_blocks();
185 /* Active Media Determination Routines */
186 static void find_active_media(struct dnetinstance *);
187 static int send_test_packet(struct dnetinstance *);
188 static int dnet_link_sense(struct dnetinstance *);
189
190 /* PHY MII Routines */
191 static ushort_t dnet_mii_read(dev_info_t *dip, int phy_addr, int reg_num);
192 static void dnet_mii_write(dev_info_t *dip, int phy_addr, int reg_num,
193 int reg_dat);
194 static void write_mii(struct dnetinstance *, uint32_t, int);
195 static void mii_tristate(struct dnetinstance *);
196 static void do_phy(struct dnetinstance *);
197 static void dnet_mii_link_cb(dev_info_t *, int, enum mii_phy_state);
198 static void set_leaf(SROM_FORMAT *sr, LEAF_FORMAT *leaf);
199
200 #ifdef DNETDEBUG
201 uint32_t dnet_usecelapsed(struct dnetinstance *dnetp);
202 void dnet_timestamp(struct dnetinstance *, char *);
203 void dnet_usectimeout(struct dnetinstance *, uint32_t, int, timercb_t);
204 #endif
205 static char *media_str[] = {
206 "10BaseT",
207 "10Base2",
208 "10Base5",
209 "100BaseTX",
210 "10BaseT FD",
211 "100BaseTX FD",
212 "100BaseT4",
213 "100BaseFX",
214 "100BaseFX FD",
215 "MII"
216 };
217
218 /* default SROM info for cards with no SROMs */
219 static LEAF_FORMAT leaf_default_100;
220 static LEAF_FORMAT leaf_asante;
221 static LEAF_FORMAT leaf_phylegacy;
222 static LEAF_FORMAT leaf_cogent_100;
223 static LEAF_FORMAT leaf_21041;
224 static LEAF_FORMAT leaf_21040;
225
226 /* rx buffer size (rounded up to 4) */
227 int rx_buf_size = (ETHERMAX + ETHERFCSL + VLAN_TAGSZ + 3) & ~3;
228
229 int max_rx_desc_21040 = MAX_RX_DESC_21040;
230 int max_rx_desc_21140 = MAX_RX_DESC_21140;
231 int max_tx_desc = MAX_TX_DESC;
232 int dnet_xmit_threshold = MAX_TX_DESC >> 2; /* XXX need tuning? */
233
234 static kmutex_t dnet_rbuf_lock; /* mutex to protect rbuf_list data */
235
236 /* used for buffers allocated by ddi_dma_mem_alloc() */
237 static ddi_dma_attr_t dma_attr = {
238 DMA_ATTR_V0, /* dma_attr version */
239 0, /* dma_attr_addr_lo */
240 (uint64_t)0xFFFFFFFF, /* dma_attr_addr_hi */
241 0x7FFFFFFF, /* dma_attr_count_max */
242 4, /* dma_attr_align */
243 0x3F, /* dma_attr_burstsizes */
244 1, /* dma_attr_minxfer */
245 (uint64_t)0xFFFFFFFF, /* dma_attr_maxxfer */
246 (uint64_t)0xFFFFFFFF, /* dma_attr_seg */
247 1, /* dma_attr_sgllen */
248 1, /* dma_attr_granular */
249 0, /* dma_attr_flags */
250 };
251
252 /* used for buffers allocated for rbuf, allow 2 cookies */
253 static ddi_dma_attr_t dma_attr_rb = {
254 DMA_ATTR_V0, /* dma_attr version */
255 0, /* dma_attr_addr_lo */
256 (uint64_t)0xFFFFFFFF, /* dma_attr_addr_hi */
257 0x7FFFFFFF, /* dma_attr_count_max */
258 4, /* dma_attr_align */
259 0x3F, /* dma_attr_burstsizes */
260 1, /* dma_attr_minxfer */
261 (uint64_t)0xFFFFFFFF, /* dma_attr_maxxfer */
262 (uint64_t)0xFFFFFFFF, /* dma_attr_seg */
263 2, /* dma_attr_sgllen */
264 1, /* dma_attr_granular */
265 0, /* dma_attr_flags */
266 };
267 /* used for buffers which are NOT from ddi_dma_mem_alloc() - xmit side */
268 static ddi_dma_attr_t dma_attr_tx = {
269 DMA_ATTR_V0, /* dma_attr version */
270 0, /* dma_attr_addr_lo */
271 (uint64_t)0xFFFFFFFF, /* dma_attr_addr_hi */
272 0x7FFFFFFF, /* dma_attr_count_max */
273 1, /* dma_attr_align */
274 0x3F, /* dma_attr_burstsizes */
275 1, /* dma_attr_minxfer */
276 (uint64_t)0xFFFFFFFF, /* dma_attr_maxxfer */
277 (uint64_t)0xFFFFFFFF, /* dma_attr_seg */
278 0x7FFF, /* dma_attr_sgllen */
279 1, /* dma_attr_granular */
280 0, /* dma_attr_flags */
281 };
282
283 static ddi_device_acc_attr_t accattr = {
284 DDI_DEVICE_ATTR_V0,
285 DDI_NEVERSWAP_ACC,
286 DDI_STRICTORDER_ACC,
287 };
288
289 uchar_t dnet_broadcastaddr[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
290
291 /* Standard Module linkage initialization for a Streams driver */
292 extern struct mod_ops mod_driverops;
293
294 DDI_DEFINE_STREAM_OPS(dnet_devops, nulldev, dnet_probe, dnet_attach,
295 dnet_detach, nodev, NULL, D_MP, NULL, dnet_quiesce);
296
297 static struct modldrv dnet_modldrv = {
298 &mod_driverops, /* Type of module. This one is a driver */
299 IDENT, /* short description */
300 &dnet_devops /* driver specific ops */
301 };
302
303 static struct modlinkage dnet_modlinkage = {
304 MODREV_1, /* ml_rev */
305 { &dnet_modldrv, NULL } /* ml_linkage */
306 };
307
308 static mac_callbacks_t dnet_m_callbacks = {
309 0, /* mc_callbacks */
310 dnet_m_getstat, /* mc_getstat */
311 dnet_m_start, /* mc_start */
312 dnet_m_stop, /* mc_stop */
313 dnet_m_setpromisc, /* mc_setpromisc */
314 dnet_m_multicst, /* mc_multicst */
315 dnet_m_unicst, /* mc_unicst */
316 dnet_m_tx, /* mc_tx */
317 NULL,
318 NULL, /* mc_ioctl */
319 NULL, /* mc_getcapab */
320 NULL, /* mc_open */
321 NULL /* mc_close */
322 };
323
324 /*
325 * Passed to the hacked interrupt for multiport Cogent and ZNYX cards with
326 * dodgy interrupt routing
327 */
328 #define MAX_INST 8 /* Maximum instances on a multiport adapter. */
329 struct hackintr_inf
330 {
331 struct dnetinstance *dnetps[MAX_INST]; /* dnetps for each port */
332 dev_info_t *devinfo; /* Devinfo of the primary device */
333 kmutex_t lock;
334 /* Ensures the interrupt doesn't get called while detaching */
335 };
336 static char hackintr_propname[] = "InterruptData";
337 static char macoffset_propname[] = "MAC_offset";
338 static char speed_propname[] = "speed";
339 static char ofloprob_propname[] = "dmaworkaround";
340 static char duplex_propname[] = "full-duplex"; /* Must agree with MII */
341 static char printsrom_propname[] = "print-srom";
342
343 static uint_t dnet_hack_intr(struct hackintr_inf *);
344
345 int
_init(void)346 _init(void)
347 {
348 int i;
349
350 /* Configure fake sroms for legacy cards */
351 mutex_init(&dnet_rbuf_lock, NULL, MUTEX_DRIVER, NULL);
352 setup_legacy_blocks();
353
354 mac_init_ops(&dnet_devops, "dnet");
355
356 if ((i = mod_install(&dnet_modlinkage)) != 0) {
357 mac_fini_ops(&dnet_devops);
358 mutex_destroy(&dnet_rbuf_lock);
359 }
360 return (i);
361 }
362
363 int
_fini(void)364 _fini(void)
365 {
366 int i;
367
368 if ((i = mod_remove(&dnet_modlinkage)) == 0) {
369 mac_fini_ops(&dnet_devops);
370
371 /* loop until all the receive buffers are freed */
372 while (dnet_rbuf_destroy() != 0) {
373 delay(drv_usectohz(100000));
374 #ifdef DNETDEBUG
375 if (dnetdebug & DNETDDI)
376 cmn_err(CE_WARN, "dnet _fini delay");
377 #endif
378 }
379 mutex_destroy(&dnet_rbuf_lock);
380 }
381 return (i);
382 }
383
384 int
_info(struct modinfo * modinfop)385 _info(struct modinfo *modinfop)
386 {
387 return (mod_info(&dnet_modlinkage, modinfop));
388 }
389
390 /*
391 * probe(9E) -- Determine if a device is present
392 */
393 static int
dnet_probe(dev_info_t * devinfo)394 dnet_probe(dev_info_t *devinfo)
395 {
396 ddi_acc_handle_t handle;
397 uint16_t vendorid;
398 uint16_t deviceid;
399
400 if (pci_config_setup(devinfo, &handle) != DDI_SUCCESS)
401 return (DDI_PROBE_FAILURE);
402
403 vendorid = pci_config_get16(handle, PCI_CONF_VENID);
404
405 if (vendorid != DEC_VENDOR_ID) {
406 pci_config_teardown(&handle);
407 return (DDI_PROBE_FAILURE);
408 }
409
410 deviceid = pci_config_get16(handle, PCI_CONF_DEVID);
411 switch (deviceid) {
412 case DEVICE_ID_21040:
413 case DEVICE_ID_21041:
414 case DEVICE_ID_21140:
415 case DEVICE_ID_21143: /* And 142 */
416 break;
417 default:
418 pci_config_teardown(&handle);
419 return (DDI_PROBE_FAILURE);
420 }
421
422 pci_config_teardown(&handle);
423 #ifndef BUG_4010796
424 return (DDI_PROBE_SUCCESS);
425 #else
426 return (dnet_hack(devinfo));
427 #endif
428 }
429
430 #ifdef BUG_4010796
431 /*
432 * If we have a device, but we cannot presently access its SROM data,
433 * then we return DDI_PROBE_PARTIAL and hope that sometime later we
434 * will be able to get at the SROM data. This can only happen if we
435 * are a secondary port with no SROM, and the bootstrap failed to set
436 * our DNET_SROM property, and our primary sibling has not yet probed.
437 */
438 static int
dnet_hack(dev_info_t * devinfo)439 dnet_hack(dev_info_t *devinfo)
440 {
441 uchar_t vendor_info[SROM_SIZE];
442 uint32_t csr;
443 uint16_t deviceid;
444 ddi_acc_handle_t handle;
445 uint32_t retval;
446 int secondary;
447 ddi_acc_handle_t io_handle;
448 caddr_t io_reg;
449
450 #define DNET_PCI_RNUMBER 1
451
452 if (pci_config_setup(devinfo, &handle) != DDI_SUCCESS)
453 return (DDI_PROBE_FAILURE);
454
455 deviceid = pci_config_get16(handle, PCI_CONF_DEVID);
456
457 /*
458 * Turn on Master Enable and IO Enable bits.
459 */
460 csr = pci_config_get32(handle, PCI_CONF_COMM);
461 pci_config_put32(handle, PCI_CONF_COMM, (csr |PCI_COMM_ME|PCI_COMM_IO));
462
463 pci_config_teardown(&handle);
464
465 /* Now map I/O register */
466 if (ddi_regs_map_setup(devinfo, DNET_PCI_RNUMBER,
467 &io_reg, 0, 0, &accattr, &io_handle) != DDI_SUCCESS) {
468 return (DDI_PROBE_FAILURE);
469 }
470
471 /*
472 * Reset the chip
473 */
474 ddi_put32(io_handle, REG32(io_reg, BUS_MODE_REG), SW_RESET);
475 drv_usecwait(3);
476 ddi_put32(io_handle, REG32(io_reg, BUS_MODE_REG), 0);
477 drv_usecwait(8);
478
479 secondary = dnet_read_srom(devinfo, deviceid, io_handle,
480 io_reg, vendor_info, sizeof (vendor_info));
481
482 switch (secondary) {
483 case -1:
484 /* We can't access our SROM data! */
485 retval = DDI_PROBE_PARTIAL;
486 break;
487 case 0:
488 retval = DDI_PROBE_SUCCESS;
489 break;
490 default:
491 retval = DDI_PROBE_SUCCESS;
492 }
493
494 ddi_regs_map_free(&io_handle);
495 return (retval);
496 }
497 #endif /* BUG_4010796 */
498
499 /*
500 * attach(9E) -- Attach a device to the system
501 *
502 * Called once for each board successfully probed.
503 */
504 static int
dnet_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)505 dnet_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
506 {
507 uint16_t revid;
508 struct dnetinstance *dnetp; /* Our private device info */
509 mac_register_t *macp;
510 uchar_t vendor_info[SROM_SIZE];
511 uint32_t csr;
512 uint16_t deviceid;
513 ddi_acc_handle_t handle;
514 int secondary;
515
516 #define DNET_PCI_RNUMBER 1
517
518 switch (cmd) {
519 case DDI_ATTACH:
520 break;
521
522 case DDI_RESUME:
523 /* Get the driver private (dnetinstance) structure */
524 dnetp = ddi_get_driver_private(devinfo);
525
526 mutex_enter(&dnetp->intrlock);
527 mutex_enter(&dnetp->txlock);
528 dnet_reset_board(dnetp);
529 dnet_init_board(dnetp);
530 dnetp->suspended = B_FALSE;
531
532 if (dnetp->running) {
533 dnetp->need_tx_update = B_FALSE;
534 mutex_exit(&dnetp->txlock);
535 (void) dnet_start(dnetp);
536 mutex_exit(&dnetp->intrlock);
537 mac_tx_update(dnetp->mac_handle);
538 } else {
539 mutex_exit(&dnetp->txlock);
540 mutex_exit(&dnetp->intrlock);
541 }
542 return (DDI_SUCCESS);
543 default:
544 return (DDI_FAILURE);
545 }
546
547 if (pci_config_setup(devinfo, &handle) != DDI_SUCCESS)
548 return (DDI_FAILURE);
549
550 deviceid = pci_config_get16(handle, PCI_CONF_DEVID);
551 switch (deviceid) {
552 case DEVICE_ID_21040:
553 case DEVICE_ID_21041:
554 case DEVICE_ID_21140:
555 case DEVICE_ID_21143: /* And 142 */
556 break;
557 default:
558 pci_config_teardown(&handle);
559 return (DDI_FAILURE);
560 }
561
562 /*
563 * Turn on Master Enable and IO Enable bits.
564 */
565 csr = pci_config_get32(handle, PCI_CONF_COMM);
566 pci_config_put32(handle, PCI_CONF_COMM, (csr |PCI_COMM_ME|PCI_COMM_IO));
567
568 /* Make sure the device is not asleep */
569 csr = pci_config_get32(handle, PCI_DNET_CONF_CFDD);
570 pci_config_put32(handle, PCI_DNET_CONF_CFDD,
571 csr & ~(CFDD_SLEEP|CFDD_SNOOZE));
572
573 revid = pci_config_get8(handle, PCI_CONF_REVID);
574 pci_config_teardown(&handle);
575
576 dnetp = kmem_zalloc(sizeof (struct dnetinstance), KM_SLEEP);
577 ddi_set_driver_private(devinfo, dnetp);
578
579 /* Now map I/O register */
580 if (ddi_regs_map_setup(devinfo, DNET_PCI_RNUMBER, &dnetp->io_reg,
581 0, 0, &accattr, &dnetp->io_handle) != DDI_SUCCESS) {
582 kmem_free(dnetp, sizeof (struct dnetinstance));
583 return (DDI_FAILURE);
584 }
585
586 dnetp->devinfo = devinfo;
587 dnetp->board_type = deviceid;
588
589 /*
590 * Get the iblock cookie with which to initialize the mutexes.
591 */
592 if (ddi_get_iblock_cookie(devinfo, 0, &dnetp->icookie)
593 != DDI_SUCCESS)
594 goto fail;
595
596 /*
597 * Initialize mutex's for this device.
598 * Do this before registering the interrupt handler to avoid
599 * condition where interrupt handler can try using uninitialized
600 * mutex.
601 * Lock ordering rules: always lock intrlock first before
602 * txlock if both are required.
603 */
604 mutex_init(&dnetp->txlock, NULL, MUTEX_DRIVER, dnetp->icookie);
605 mutex_init(&dnetp->intrlock, NULL, MUTEX_DRIVER, dnetp->icookie);
606
607 /*
608 * Get the BNC/TP indicator from the conf file for 21040
609 */
610 dnetp->bnc_indicator =
611 ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
612 "bncaui", -1);
613
614 /*
615 * For 21140 check the data rate set in the conf file. Default is
616 * 100Mb/s. Disallow connections at settings that would conflict
617 * with what's in the conf file
618 */
619 dnetp->speed =
620 ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
621 speed_propname, 0);
622 dnetp->full_duplex =
623 ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
624 duplex_propname, -1);
625
626 if (dnetp->speed == 100) {
627 dnetp->disallowed_media |= (1UL<<MEDIA_TP) | (1UL<<MEDIA_TP_FD);
628 } else if (dnetp->speed == 10) {
629 dnetp->disallowed_media |=
630 (1UL<<MEDIA_SYM_SCR) | (1UL<<MEDIA_SYM_SCR_FD);
631 }
632
633 if (dnetp->full_duplex == 1) {
634 dnetp->disallowed_media |=
635 (1UL<<MEDIA_TP) | (1UL<<MEDIA_SYM_SCR);
636 } else if (dnetp->full_duplex == 0) {
637 dnetp->disallowed_media |=
638 (1UL<<MEDIA_TP_FD) | (1UL<<MEDIA_SYM_SCR_FD);
639 }
640
641 if (dnetp->bnc_indicator == 0) /* Disable BNC and AUI media */
642 dnetp->disallowed_media |= (1UL<<MEDIA_BNC) | (1UL<<MEDIA_AUI);
643 else if (dnetp->bnc_indicator == 1) /* Force BNC only */
644 dnetp->disallowed_media = (uint32_t)~(1U<<MEDIA_BNC);
645 else if (dnetp->bnc_indicator == 2) /* Force AUI only */
646 dnetp->disallowed_media = (uint32_t)~(1U<<MEDIA_AUI);
647
648 dnet_reset_board(dnetp);
649
650 secondary = dnet_read_srom(devinfo, dnetp->board_type, dnetp->io_handle,
651 dnetp->io_reg, vendor_info, sizeof (vendor_info));
652
653 if (secondary == -1) /* ASSERT (vendor_info not big enough) */
654 goto fail1;
655
656 dnet_parse_srom(dnetp, &dnetp->sr, vendor_info);
657
658 if (ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
659 printsrom_propname, 0))
660 dnet_print_srom(&dnetp->sr);
661
662 dnetp->sr.netaddr[ETHERADDRL-1] += secondary; /* unique ether addr */
663
664 BCOPY((caddr_t)dnetp->sr.netaddr,
665 (caddr_t)dnetp->vendor_addr, ETHERADDRL);
666
667 BCOPY((caddr_t)dnetp->sr.netaddr,
668 (caddr_t)dnetp->curr_macaddr, ETHERADDRL);
669
670 /*
671 * determine whether to implement workaround from DEC
672 * for DMA overrun errata.
673 */
674 dnetp->overrun_workaround =
675 ((dnetp->board_type == DEVICE_ID_21140 && revid >= 0x20) ||
676 (dnetp->board_type == DEVICE_ID_21143 && revid <= 0x30)) ? 1 : 0;
677
678 dnetp->overrun_workaround =
679 ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
680 ofloprob_propname, dnetp->overrun_workaround);
681
682 /*
683 * Add the interrupt handler if dnet_hack_interrupts() returns 0.
684 * Otherwise dnet_hack_interrupts() itself adds the handler.
685 */
686 if (!dnet_hack_interrupts(dnetp, secondary)) {
687 (void) ddi_add_intr(devinfo, 0, NULL,
688 NULL, dnet_intr, (caddr_t)dnetp);
689 }
690
691 dnetp->max_tx_desc = max_tx_desc;
692 dnetp->max_rx_desc = max_rx_desc_21040;
693 if (dnetp->board_type != DEVICE_ID_21040 &&
694 dnetp->board_type != DEVICE_ID_21041 &&
695 dnetp->speed != 10)
696 dnetp->max_rx_desc = max_rx_desc_21140;
697
698 /* Allocate the TX and RX descriptors/buffers. */
699 if (dnet_alloc_bufs(dnetp) == FAILURE) {
700 cmn_err(CE_WARN, "DNET: Not enough DMA memory for buffers.");
701 goto fail2;
702 }
703
704 /*
705 * Register ourselves with the GLDv3 interface
706 */
707 if ((macp = mac_alloc(MAC_VERSION)) == NULL)
708 goto fail2;
709
710 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
711 macp->m_driver = dnetp;
712 macp->m_dip = devinfo;
713 macp->m_src_addr = dnetp->curr_macaddr;
714 macp->m_callbacks = &dnet_m_callbacks;
715 macp->m_min_sdu = 0;
716 macp->m_max_sdu = ETHERMTU;
717 macp->m_margin = VLAN_TAGSZ;
718
719 if (mac_register(macp, &dnetp->mac_handle) == 0) {
720 mac_free(macp);
721
722 mutex_enter(&dnetp->intrlock);
723
724 dnetp->phyaddr = -1;
725 if (dnetp->board_type == DEVICE_ID_21140 ||
726 dnetp->board_type == DEVICE_ID_21143)
727 do_phy(dnetp); /* Initialize the PHY, if any */
728 find_active_media(dnetp);
729
730 /* if the chosen media is non-MII, stop the port monitor */
731 if (dnetp->selected_media_block->media_code != MEDIA_MII &&
732 dnetp->mii != NULL) {
733 mii_destroy(dnetp->mii);
734 dnetp->mii = NULL;
735 dnetp->phyaddr = -1;
736 }
737
738 #ifdef DNETDEBUG
739 if (dnetdebug & DNETSENSE)
740 cmn_err(CE_NOTE, "dnet: link configured : %s",
741 media_str[dnetp->selected_media_block->media_code]);
742 #endif
743 bzero(dnetp->setup_buf_vaddr, SETUPBUF_SIZE);
744
745 dnet_reset_board(dnetp);
746 dnet_init_board(dnetp);
747
748 mutex_exit(&dnetp->intrlock);
749
750 (void) dnet_m_unicst(dnetp, dnetp->curr_macaddr);
751 (void) dnet_m_multicst(dnetp, B_TRUE, dnet_broadcastaddr);
752
753 return (DDI_SUCCESS);
754 }
755
756 mac_free(macp);
757 fail2:
758 /* XXX function return value ignored */
759 /*
760 * dnet_detach_hacked_interrupt() will remove
761 * interrupt for the non-hacked case also.
762 */
763 (void) dnet_detach_hacked_interrupt(devinfo);
764 dnet_free_bufs(dnetp);
765 fail1:
766 mutex_destroy(&dnetp->txlock);
767 mutex_destroy(&dnetp->intrlock);
768 fail:
769 ddi_regs_map_free(&dnetp->io_handle);
770 kmem_free(dnetp, sizeof (struct dnetinstance));
771 return (DDI_FAILURE);
772 }
773
774 /*
775 * detach(9E) -- Detach a device from the system
776 */
777 static int
dnet_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)778 dnet_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
779 {
780 int32_t rc;
781 struct dnetinstance *dnetp; /* Our private device info */
782 int32_t proplen;
783
784 /* Get the driver private (dnetinstance) structure */
785 dnetp = ddi_get_driver_private(devinfo);
786
787 switch (cmd) {
788 case DDI_DETACH:
789 break;
790
791 case DDI_SUSPEND:
792 /*
793 * NB: dnetp->suspended can only be modified (marked true)
794 * if both intrlock and txlock are held. This keeps both
795 * tx and rx code paths excluded.
796 */
797 mutex_enter(&dnetp->intrlock);
798 mutex_enter(&dnetp->txlock);
799 dnetp->suspended = B_TRUE;
800 dnet_reset_board(dnetp);
801 mutex_exit(&dnetp->txlock);
802 mutex_exit(&dnetp->intrlock);
803 return (DDI_SUCCESS);
804
805 default:
806 return (DDI_FAILURE);
807 }
808
809 /*
810 * Unregister ourselves from the GLDv3 interface
811 */
812 if (mac_unregister(dnetp->mac_handle) != 0)
813 return (DDI_FAILURE);
814
815 /* stop the board if it is running */
816 dnet_reset_board(dnetp);
817
818 if ((rc = dnet_detach_hacked_interrupt(devinfo)) != DDI_SUCCESS)
819 return (rc);
820
821 if (dnetp->mii != NULL)
822 mii_destroy(dnetp->mii);
823
824 /* Free leaf information */
825 set_leaf(&dnetp->sr, NULL);
826
827 ddi_regs_map_free(&dnetp->io_handle);
828 dnet_free_bufs(dnetp);
829 mutex_destroy(&dnetp->txlock);
830 mutex_destroy(&dnetp->intrlock);
831 kmem_free(dnetp, sizeof (struct dnetinstance));
832
833 #ifdef BUG_4010796
834 if (ddi_getproplen(DDI_DEV_T_ANY, devinfo, 0,
835 "DNET_HACK", &proplen) != DDI_PROP_SUCCESS)
836 return (DDI_SUCCESS);
837
838 /*
839 * We must remove the properties we added, because if we leave
840 * them in the devinfo nodes and the driver is unloaded, when
841 * the driver is reloaded the info will still be there, causing
842 * nodes which had returned PROBE_PARTIAL the first time to
843 * instead return PROBE_SUCCESS, in turn causing the nodes to be
844 * attached in a different order, causing their PPA numbers to
845 * be different the second time around, which is undesirable.
846 */
847 (void) ddi_prop_remove(DDI_DEV_T_NONE, devinfo, "DNET_HACK");
848 (void) ddi_prop_remove(DDI_DEV_T_NONE, ddi_get_parent(devinfo),
849 "DNET_SROM");
850 (void) ddi_prop_remove(DDI_DEV_T_NONE, ddi_get_parent(devinfo),
851 "DNET_DEVNUM");
852 #endif
853
854 return (DDI_SUCCESS);
855 }
856
857 int
dnet_quiesce(dev_info_t * dip)858 dnet_quiesce(dev_info_t *dip)
859 {
860 struct dnetinstance *dnetp = ddi_get_driver_private(dip);
861
862 /*
863 * Reset chip (disables interrupts).
864 */
865 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, INT_MASK_REG), 0);
866 ddi_put32(dnetp->io_handle,
867 REG32(dnetp->io_reg, BUS_MODE_REG), SW_RESET);
868
869 return (DDI_SUCCESS);
870 }
871
872 static void
dnet_reset_board(struct dnetinstance * dnetp)873 dnet_reset_board(struct dnetinstance *dnetp)
874 {
875 uint32_t val;
876
877 /*
878 * before initializing the dnet should be in STOP state
879 */
880 val = ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG));
881 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG),
882 val & ~(START_TRANSMIT | START_RECEIVE));
883
884 /*
885 * Reset the chip
886 */
887 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, INT_MASK_REG), 0);
888 ddi_put32(dnetp->io_handle,
889 REG32(dnetp->io_reg, BUS_MODE_REG), SW_RESET);
890 drv_usecwait(5);
891 }
892
893 /*
894 * dnet_init_board() -- initialize the specified network board short of
895 * actually starting the board. Call after dnet_reset_board().
896 * called with intrlock held.
897 */
898 static void
dnet_init_board(struct dnetinstance * dnetp)899 dnet_init_board(struct dnetinstance *dnetp)
900 {
901 set_opr(dnetp);
902 set_gpr(dnetp);
903 set_sia(dnetp);
904 dnet_chip_init(dnetp);
905 }
906
907 /* dnet_chip_init() - called with intrlock held */
908 static void
dnet_chip_init(struct dnetinstance * dnetp)909 dnet_chip_init(struct dnetinstance *dnetp)
910 {
911 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, BUS_MODE_REG),
912 CACHE_ALIGN | BURST_SIZE); /* CSR0 */
913
914 /*
915 * Initialize the TX and RX descriptors/buffers
916 */
917 dnet_init_txrx_bufs(dnetp);
918
919 /*
920 * Set the base address of the Rx descriptor list in CSR3
921 */
922 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, RX_BASE_ADDR_REG),
923 dnetp->rx_desc_paddr);
924
925 /*
926 * Set the base address of the Tx descrptor list in CSR4
927 */
928 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, TX_BASE_ADDR_REG),
929 dnetp->tx_desc_paddr);
930
931 dnetp->tx_current_desc = dnetp->rx_current_desc = 0;
932 dnetp->transmitted_desc = 0;
933 dnetp->free_desc = dnetp->max_tx_desc;
934 enable_interrupts(dnetp);
935 }
936
937 /*
938 * dnet_start() -- start the board receiving and allow transmits.
939 * Called with intrlock held.
940 */
941 static int
dnet_start(struct dnetinstance * dnetp)942 dnet_start(struct dnetinstance *dnetp)
943 {
944 uint32_t val;
945
946 ASSERT(MUTEX_HELD(&dnetp->intrlock));
947 /*
948 * start the board and enable receiving
949 */
950 val = ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG));
951 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG),
952 val | START_TRANSMIT);
953 (void) dnet_set_addr(dnetp);
954 val = ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG));
955 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG),
956 val | START_RECEIVE);
957 enable_interrupts(dnetp);
958 return (0);
959 }
960
961 static int
dnet_m_start(void * arg)962 dnet_m_start(void *arg)
963 {
964 struct dnetinstance *dnetp = arg;
965
966 mutex_enter(&dnetp->intrlock);
967 dnetp->running = B_TRUE;
968 /*
969 * start the board and enable receiving
970 */
971 if (!dnetp->suspended)
972 (void) dnet_start(dnetp);
973 mutex_exit(&dnetp->intrlock);
974 return (0);
975 }
976
977 static void
dnet_m_stop(void * arg)978 dnet_m_stop(void *arg)
979 {
980 struct dnetinstance *dnetp = arg;
981 uint32_t val;
982
983 /*
984 * stop the board and disable transmit/receive
985 */
986 mutex_enter(&dnetp->intrlock);
987 if (!dnetp->suspended) {
988 val = ddi_get32(dnetp->io_handle,
989 REG32(dnetp->io_reg, OPN_MODE_REG));
990 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG),
991 val & ~(START_TRANSMIT | START_RECEIVE));
992 }
993 mac_link_update(dnetp->mac_handle, LINK_STATE_UNKNOWN);
994 dnetp->running = B_FALSE;
995 mutex_exit(&dnetp->intrlock);
996 }
997
998 /*
999 * dnet_set_addr() -- set the physical network address on the board
1000 * Called with intrlock held.
1001 */
1002 static int
dnet_set_addr(struct dnetinstance * dnetp)1003 dnet_set_addr(struct dnetinstance *dnetp)
1004 {
1005 struct tx_desc_type *desc;
1006 int current_desc;
1007 uint32_t val;
1008
1009 ASSERT(MUTEX_HELD(&dnetp->intrlock));
1010
1011 val = ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG));
1012 if (!(val & START_TRANSMIT))
1013 return (0);
1014
1015 current_desc = dnetp->tx_current_desc;
1016 desc = &dnetp->tx_desc[current_desc];
1017
1018 mutex_enter(&dnetp->txlock);
1019 dnetp->need_saddr = 0;
1020 mutex_exit(&dnetp->txlock);
1021
1022 if ((alloc_descriptor(dnetp)) == FAILURE) {
1023 mutex_enter(&dnetp->txlock);
1024 dnetp->need_saddr = 1;
1025 mutex_exit(&dnetp->txlock);
1026 #ifdef DNETDEBUG
1027 if (dnetdebug & DNETTRACE)
1028 cmn_err(CE_WARN, "DNET saddr:alloc descriptor failure");
1029 #endif
1030 return (0);
1031 }
1032
1033 desc->buffer1 = dnetp->setup_buf_paddr;
1034 desc->buffer2 = 0;
1035 desc->desc1.buffer_size1 = SETUPBUF_SIZE;
1036 desc->desc1.buffer_size2 = 0;
1037 desc->desc1.setup_packet = 1;
1038 desc->desc1.first_desc = 0;
1039 desc->desc1.last_desc = 0;
1040 desc->desc1.filter_type0 = 1;
1041 desc->desc1.filter_type1 = 1;
1042 desc->desc1.int_on_comp = 1;
1043
1044 desc->desc0.own = 1;
1045 ddi_put8(dnetp->io_handle, REG8(dnetp->io_reg, TX_POLL_REG),
1046 TX_POLL_DEMAND);
1047 return (0);
1048 }
1049
1050 static int
dnet_m_unicst(void * arg,const uint8_t * macaddr)1051 dnet_m_unicst(void *arg, const uint8_t *macaddr)
1052 {
1053 struct dnetinstance *dnetp = arg;
1054 uint32_t index;
1055 uint32_t *hashp;
1056
1057 mutex_enter(&dnetp->intrlock);
1058
1059 bcopy(macaddr, dnetp->curr_macaddr, ETHERADDRL);
1060
1061 /*
1062 * As we are using Imperfect filtering, the broadcast address has to
1063 * be set explicitly in the 512 bit hash table. Hence the index into
1064 * the hash table is calculated and the bit set to enable reception
1065 * of broadcast packets.
1066 *
1067 * We also use HASH_ONLY mode, without using the perfect filter for
1068 * our station address, because there appears to be a bug in the
1069 * 21140 where it fails to receive the specified perfect filter
1070 * address.
1071 *
1072 * Since dlsdmult comes through here, it doesn't matter that the count
1073 * is wrong for the two bits that correspond to the cases below. The
1074 * worst that could happen is that we'd leave on a bit for an old
1075 * macaddr, in the case where the macaddr gets changed, which is rare.
1076 * Since filtering is imperfect, it is OK if that happens.
1077 */
1078 hashp = (uint32_t *)dnetp->setup_buf_vaddr;
1079 index = hashindex((uint8_t *)dnet_broadcastaddr);
1080 hashp[ index / 16 ] |= 1 << (index % 16);
1081
1082 index = hashindex((uint8_t *)dnetp->curr_macaddr);
1083 hashp[ index / 16 ] |= 1 << (index % 16);
1084
1085 if (!dnetp->suspended)
1086 (void) dnet_set_addr(dnetp);
1087 mutex_exit(&dnetp->intrlock);
1088 return (0);
1089 }
1090
1091 static int
dnet_m_multicst(void * arg,boolean_t add,const uint8_t * macaddr)1092 dnet_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
1093 {
1094 struct dnetinstance *dnetp = arg;
1095 uint32_t index;
1096 uint32_t *hashp;
1097 uint32_t retval;
1098
1099 mutex_enter(&dnetp->intrlock);
1100 index = hashindex(macaddr);
1101 hashp = (uint32_t *)dnetp->setup_buf_vaddr;
1102 if (add) {
1103 if (dnetp->multicast_cnt[index]++) {
1104 mutex_exit(&dnetp->intrlock);
1105 return (0);
1106 }
1107 hashp[ index / 16 ] |= 1 << (index % 16);
1108 } else {
1109 if (--dnetp->multicast_cnt[index]) {
1110 mutex_exit(&dnetp->intrlock);
1111 return (0);
1112 }
1113 hashp[ index / 16 ] &= ~ (1 << (index % 16));
1114 }
1115 if (!dnetp->suspended)
1116 retval = dnet_set_addr(dnetp);
1117 else
1118 retval = 0;
1119 mutex_exit(&dnetp->intrlock);
1120 return (retval);
1121 }
1122
1123 /*
1124 * A hashing function used for setting the
1125 * node address or a multicast address
1126 */
1127 static uint32_t
hashindex(const uint8_t * address)1128 hashindex(const uint8_t *address)
1129 {
1130 uint32_t crc = (uint32_t)HASH_CRC;
1131 uint32_t const POLY = HASH_POLY;
1132 uint32_t msb;
1133 int32_t byteslength;
1134 uint8_t currentbyte;
1135 uint32_t index;
1136 int32_t bit;
1137 int32_t shift;
1138
1139 for (byteslength = 0; byteslength < ETHERADDRL; byteslength++) {
1140 currentbyte = address[byteslength];
1141 for (bit = 0; bit < 8; bit++) {
1142 msb = crc >> 31;
1143 crc <<= 1;
1144 if (msb ^ (currentbyte & 1)) {
1145 crc ^= POLY;
1146 crc |= 0x00000001;
1147 }
1148 currentbyte >>= 1;
1149 }
1150 }
1151
1152 for (index = 0, bit = 23, shift = 8; shift >= 0; bit++, shift--) {
1153 index |= (((crc >> bit) & 1) << shift);
1154 }
1155 return (index);
1156 }
1157
1158 static int
dnet_m_setpromisc(void * arg,boolean_t on)1159 dnet_m_setpromisc(void *arg, boolean_t on)
1160 {
1161 struct dnetinstance *dnetp = arg;
1162 uint32_t val;
1163
1164 mutex_enter(&dnetp->intrlock);
1165 if (dnetp->promisc == on) {
1166 mutex_exit(&dnetp->intrlock);
1167 return (0);
1168 }
1169 dnetp->promisc = on;
1170
1171 if (!dnetp->suspended) {
1172 val = ddi_get32(dnetp->io_handle,
1173 REG32(dnetp->io_reg, OPN_MODE_REG));
1174 if (on)
1175 ddi_put32(dnetp->io_handle,
1176 REG32(dnetp->io_reg, OPN_MODE_REG),
1177 val | PROM_MODE);
1178 else
1179 ddi_put32(dnetp->io_handle,
1180 REG32(dnetp->io_reg, OPN_MODE_REG),
1181 val & (~PROM_MODE));
1182 }
1183 mutex_exit(&dnetp->intrlock);
1184 return (0);
1185 }
1186
1187 static int
dnet_m_getstat(void * arg,uint_t stat,uint64_t * val)1188 dnet_m_getstat(void *arg, uint_t stat, uint64_t *val)
1189 {
1190 struct dnetinstance *dnetp = arg;
1191
1192 switch (stat) {
1193 case MAC_STAT_IFSPEED:
1194 if (!dnetp->running) {
1195 *val = 0;
1196 } else {
1197 *val = (dnetp->mii_up ?
1198 dnetp->mii_speed : dnetp->speed) * 1000000;
1199 }
1200 break;
1201
1202 case MAC_STAT_NORCVBUF:
1203 *val = dnetp->stat_norcvbuf;
1204 break;
1205
1206 case MAC_STAT_IERRORS:
1207 *val = dnetp->stat_errrcv;
1208 break;
1209
1210 case MAC_STAT_OERRORS:
1211 *val = dnetp->stat_errxmt;
1212 break;
1213
1214 case MAC_STAT_COLLISIONS:
1215 *val = dnetp->stat_collisions;
1216 break;
1217
1218 case ETHER_STAT_DEFER_XMTS:
1219 *val = dnetp->stat_defer;
1220 break;
1221
1222 case ETHER_STAT_CARRIER_ERRORS:
1223 *val = dnetp->stat_nocarrier;
1224 break;
1225
1226 case ETHER_STAT_TOOSHORT_ERRORS:
1227 *val = dnetp->stat_short;
1228 break;
1229
1230 case ETHER_STAT_LINK_DUPLEX:
1231 if (!dnetp->running) {
1232 *val = LINK_DUPLEX_UNKNOWN;
1233
1234 } else if (dnetp->mii_up) {
1235 *val = dnetp->mii_duplex ?
1236 LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1237 } else {
1238 *val = dnetp->full_duplex ?
1239 LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1240 }
1241 break;
1242
1243 case ETHER_STAT_TX_LATE_COLLISIONS:
1244 *val = dnetp->stat_xmtlatecoll;
1245 break;
1246
1247 case ETHER_STAT_EX_COLLISIONS:
1248 *val = dnetp->stat_excoll;
1249 break;
1250
1251 case MAC_STAT_OVERFLOWS:
1252 *val = dnetp->stat_overflow;
1253 break;
1254
1255 case MAC_STAT_UNDERFLOWS:
1256 *val = dnetp->stat_underflow;
1257 break;
1258
1259 default:
1260 return (ENOTSUP);
1261 }
1262
1263 return (0);
1264 }
1265
1266 #define NextTXIndex(index) (((index)+1) % dnetp->max_tx_desc)
1267 #define PrevTXIndex(index) (((index)-1) < 0 ? dnetp->max_tx_desc - 1: (index)-1)
1268
1269 static mblk_t *
dnet_m_tx(void * arg,mblk_t * mp)1270 dnet_m_tx(void *arg, mblk_t *mp)
1271 {
1272 struct dnetinstance *dnetp = arg;
1273
1274 mutex_enter(&dnetp->txlock);
1275
1276 /* if suspended, drop the packet on the floor, we missed it */
1277 if (dnetp->suspended) {
1278 mutex_exit(&dnetp->txlock);
1279 freemsg(mp);
1280 return (NULL);
1281 }
1282
1283 if (dnetp->need_saddr) {
1284 /* XXX function return value ignored */
1285 mutex_exit(&dnetp->txlock);
1286 mutex_enter(&dnetp->intrlock);
1287 (void) dnet_set_addr(dnetp);
1288 mutex_exit(&dnetp->intrlock);
1289 mutex_enter(&dnetp->txlock);
1290 }
1291
1292 while (mp != NULL) {
1293 if (!dnet_send(dnetp, mp)) {
1294 mutex_exit(&dnetp->txlock);
1295 return (mp);
1296 }
1297 mp = mp->b_next;
1298 }
1299
1300 mutex_exit(&dnetp->txlock);
1301
1302 /*
1303 * Enable xmit interrupt in case we are running out of xmit descriptors
1304 * or there are more packets on the queue waiting to be transmitted.
1305 */
1306 mutex_enter(&dnetp->intrlock);
1307
1308 enable_interrupts(dnetp);
1309
1310 /*
1311 * Kick the transmitter
1312 */
1313 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, TX_POLL_REG),
1314 TX_POLL_DEMAND);
1315
1316 mutex_exit(&dnetp->intrlock);
1317
1318 return (NULL);
1319 }
1320
1321 static boolean_t
dnet_send(struct dnetinstance * dnetp,mblk_t * mp)1322 dnet_send(struct dnetinstance *dnetp, mblk_t *mp)
1323 {
1324 struct tx_desc_type *ring = dnetp->tx_desc;
1325 int mblen, totlen;
1326 int index, end_index, start_index;
1327 int avail;
1328 int error;
1329 int bufn;
1330 int retval;
1331 mblk_t *bp;
1332
1333 ASSERT(MUTEX_HELD(&dnetp->txlock));
1334
1335 /* reclaim any xmit descriptors completed */
1336 dnet_reclaim_Tx_desc(dnetp);
1337
1338 /*
1339 * Use the data buffers from the message and construct the
1340 * scatter/gather list by calling ddi_dma_addr_bind_handle().
1341 */
1342 error = 0;
1343 totlen = 0;
1344 bp = mp;
1345 bufn = 0;
1346 index = start_index = dnetp->tx_current_desc;
1347 avail = dnetp->free_desc;
1348 while (bp != NULL) {
1349 uint_t ncookies;
1350 ddi_dma_cookie_t dma_cookie;
1351
1352 mblen = MBLKL(bp);
1353
1354 if (!mblen) { /* skip zero-length message blocks */
1355 bp = bp->b_cont;
1356 continue;
1357 }
1358
1359 retval = ddi_dma_addr_bind_handle(dnetp->dma_handle_tx, NULL,
1360 (caddr_t)bp->b_rptr, mblen,
1361 DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, 0,
1362 &dma_cookie, &ncookies);
1363
1364 switch (retval) {
1365 case DDI_DMA_MAPPED:
1366 break; /* everything's fine */
1367
1368 case DDI_DMA_NORESOURCES:
1369 error = 1; /* allow retry by gld */
1370 break;
1371
1372 case DDI_DMA_NOMAPPING:
1373 case DDI_DMA_INUSE:
1374 case DDI_DMA_TOOBIG:
1375 default:
1376 error = 2; /* error, no retry */
1377 break;
1378 }
1379
1380 /*
1381 * we can use two cookies per descriptor (i.e buffer1 and
1382 * buffer2) so we need at least (ncookies+1)/2 descriptors.
1383 */
1384 if (((ncookies + 1) >> 1) > dnetp->free_desc) {
1385 (void) ddi_dma_unbind_handle(dnetp->dma_handle_tx);
1386 error = 1;
1387 break;
1388 }
1389
1390 /* setup the descriptors for this data buffer */
1391 while (ncookies) {
1392 end_index = index;
1393 if (bufn % 2) {
1394 ring[index].buffer2 =
1395 (uint32_t)dma_cookie.dmac_address;
1396 ring[index].desc1.buffer_size2 =
1397 dma_cookie.dmac_size;
1398 index = NextTXIndex(index); /* goto next desc */
1399 } else {
1400 /* initialize the descriptor */
1401 ASSERT(ring[index].desc0.own == 0);
1402 *(uint32_t *)&ring[index].desc0 = 0;
1403 *(uint32_t *)&ring[index].desc1 &=
1404 DNET_END_OF_RING;
1405 ring[index].buffer1 =
1406 (uint32_t)dma_cookie.dmac_address;
1407 ring[index].desc1.buffer_size1 =
1408 dma_cookie.dmac_size;
1409 ring[index].buffer2 = (uint32_t)(0);
1410 dnetp->free_desc--;
1411 ASSERT(dnetp->free_desc >= 0);
1412 }
1413 totlen += dma_cookie.dmac_size;
1414 bufn++;
1415 if (--ncookies)
1416 ddi_dma_nextcookie(dnetp->dma_handle_tx,
1417 &dma_cookie);
1418 }
1419 (void) ddi_dma_unbind_handle(dnetp->dma_handle_tx);
1420 bp = bp->b_cont;
1421 }
1422
1423 if (error == 1) {
1424 dnetp->stat_defer++;
1425 dnetp->free_desc = avail;
1426 dnetp->need_tx_update = B_TRUE;
1427 return (B_FALSE);
1428 } else if (error) {
1429 dnetp->free_desc = avail;
1430 freemsg(mp);
1431 return (B_TRUE); /* Drop packet, don't retry */
1432 }
1433
1434 if (totlen > ETHERMAX + VLAN_TAGSZ) {
1435 cmn_err(CE_WARN, "DNET: tried to send large %d packet", totlen);
1436 dnetp->free_desc = avail;
1437 freemsg(mp);
1438 return (B_TRUE); /* Don't repeat this attempt */
1439 }
1440
1441 /*
1442 * Remeber the message buffer pointer to do freemsg() at xmit
1443 * interrupt time.
1444 */
1445 dnetp->tx_msgbufp[end_index] = mp;
1446
1447 /*
1448 * Now set the first/last buffer and own bits
1449 * Since the 21040 looks for these bits set in the
1450 * first buffer, work backwards in multiple buffers.
1451 */
1452 ring[end_index].desc1.last_desc = 1;
1453 ring[end_index].desc1.int_on_comp = 1;
1454 for (index = end_index; index != start_index;
1455 index = PrevTXIndex(index))
1456 ring[index].desc0.own = 1;
1457 ring[start_index].desc1.first_desc = 1;
1458 ring[start_index].desc0.own = 1;
1459
1460 dnetp->tx_current_desc = NextTXIndex(end_index);
1461
1462 /*
1463 * Safety check: make sure end-of-ring is set in last desc.
1464 */
1465 ASSERT(ring[dnetp->max_tx_desc-1].desc1.end_of_ring != 0);
1466
1467 return (B_TRUE);
1468 }
1469
1470 /*
1471 * dnet_intr() -- interrupt from board to inform us that a receive or
1472 * transmit has completed.
1473 */
1474 static uint_t
dnet_intr(caddr_t arg)1475 dnet_intr(caddr_t arg)
1476 {
1477 struct dnetinstance *dnetp = (struct dnetinstance *)arg;
1478 uint32_t int_status;
1479
1480 mutex_enter(&dnetp->intrlock);
1481
1482 if (dnetp->suspended) {
1483 mutex_exit(&dnetp->intrlock);
1484 return (DDI_INTR_UNCLAIMED);
1485 }
1486
1487 int_status = ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg,
1488 STATUS_REG));
1489
1490 /*
1491 * If interrupt was not from this board
1492 */
1493 if (!(int_status & (NORMAL_INTR_SUMM | ABNORMAL_INTR_SUMM))) {
1494 mutex_exit(&dnetp->intrlock);
1495 return (DDI_INTR_UNCLAIMED);
1496 }
1497
1498 dnetp->stat_intr++;
1499
1500 if (int_status & GPTIMER_INTR) {
1501 ddi_put32(dnetp->io_handle,
1502 REG32(dnetp->io_reg, STATUS_REG), GPTIMER_INTR);
1503 if (dnetp->timer.cb)
1504 dnetp->timer.cb(dnetp);
1505 else
1506 cmn_err(CE_WARN, "dnet: unhandled timer interrupt");
1507 }
1508
1509 if (int_status & TX_INTR) {
1510 ddi_put32(dnetp->io_handle,
1511 REG32(dnetp->io_reg, STATUS_REG), TX_INTR);
1512 mutex_enter(&dnetp->txlock);
1513 if (dnetp->need_tx_update) {
1514 mutex_exit(&dnetp->txlock);
1515 mutex_exit(&dnetp->intrlock);
1516 mac_tx_update(dnetp->mac_handle);
1517 mutex_enter(&dnetp->intrlock);
1518 mutex_enter(&dnetp->txlock);
1519 dnetp->need_tx_update = B_FALSE;
1520 }
1521 /* reclaim any xmit descriptors that are completed */
1522 dnet_reclaim_Tx_desc(dnetp);
1523 mutex_exit(&dnetp->txlock);
1524 }
1525
1526 /*
1527 * Check if receive interrupt bit is set
1528 */
1529 if (int_status & (RX_INTR | RX_UNAVAIL_INTR)) {
1530 ddi_put32(dnetp->io_handle,
1531 REG32(dnetp->io_reg, STATUS_REG),
1532 int_status & (RX_INTR | RX_UNAVAIL_INTR));
1533 dnet_getp(dnetp);
1534 }
1535
1536 if (int_status & ABNORMAL_INTR_SUMM) {
1537 /*
1538 * Check for system error
1539 */
1540 if (int_status & SYS_ERR) {
1541 if ((int_status & SYS_ERR_BITS) == MASTER_ABORT)
1542 cmn_err(CE_WARN, "DNET: Bus Master Abort");
1543 if ((int_status & SYS_ERR_BITS) == TARGET_ABORT)
1544 cmn_err(CE_WARN, "DNET: Bus Target Abort");
1545 if ((int_status & SYS_ERR_BITS) == PARITY_ERROR)
1546 cmn_err(CE_WARN, "DNET: Parity error");
1547 }
1548
1549 /*
1550 * If the jabber has timed out then reset the chip
1551 */
1552 if (int_status & TX_JABBER_TIMEOUT)
1553 cmn_err(CE_WARN, "DNET: Jabber timeout.");
1554
1555 /*
1556 * If an underflow has occurred, reset the chip
1557 */
1558 if (int_status & TX_UNDERFLOW)
1559 cmn_err(CE_WARN, "DNET: Tx Underflow.");
1560
1561 #ifdef DNETDEBUG
1562 if (dnetdebug & DNETINT)
1563 cmn_err(CE_NOTE, "Trying to reset...");
1564 #endif
1565 dnet_reset_board(dnetp);
1566 dnet_init_board(dnetp);
1567 /* XXX function return value ignored */
1568 (void) dnet_start(dnetp);
1569 }
1570
1571 /*
1572 * Enable the interrupts. Enable xmit interrupt in case we are
1573 * running out of free descriptors or if there are packets
1574 * in the queue waiting to be transmitted.
1575 */
1576 enable_interrupts(dnetp);
1577 mutex_exit(&dnetp->intrlock);
1578 return (DDI_INTR_CLAIMED); /* Indicate it was our interrupt */
1579 }
1580
1581 static void
dnet_getp(struct dnetinstance * dnetp)1582 dnet_getp(struct dnetinstance *dnetp)
1583 {
1584 int packet_length, index;
1585 mblk_t *mp;
1586 caddr_t virtual_address;
1587 struct rx_desc_type *desc = dnetp->rx_desc;
1588 int marker = dnetp->rx_current_desc;
1589 int misses;
1590
1591 if (!dnetp->overrun_workaround) {
1592 /*
1593 * If the workaround is not in place, we must still update
1594 * the missed frame statistic from the on-chip counter.
1595 */
1596 misses = ddi_get32(dnetp->io_handle,
1597 REG32(dnetp->io_reg, MISSED_FRAME_REG));
1598 dnetp->stat_missed += (misses & MISSED_FRAME_MASK);
1599 }
1600
1601 /* While host owns the current descriptor */
1602 while (!(desc[dnetp->rx_current_desc].desc0.own)) {
1603 struct free_ptr *frp;
1604 caddr_t newbuf;
1605 struct rbuf_list *rp;
1606
1607 index = dnetp->rx_current_desc;
1608 ASSERT(desc[index].desc0.first_desc != 0);
1609
1610 /*
1611 * DMA overrun errata from DEC: avoid possible bus hangs
1612 * and data corruption
1613 */
1614 if (dnetp->overrun_workaround &&
1615 marker == dnetp->rx_current_desc) {
1616 int opn;
1617 do {
1618 marker = (marker+1) % dnetp->max_rx_desc;
1619 } while (!(dnetp->rx_desc[marker].desc0.own) &&
1620 marker != index);
1621
1622 misses = ddi_get32(dnetp->io_handle,
1623 REG32(dnetp->io_reg, MISSED_FRAME_REG));
1624 dnetp->stat_missed +=
1625 (misses & MISSED_FRAME_MASK);
1626 if (misses & OVERFLOW_COUNTER_MASK) {
1627 /*
1628 * Overflow(s) have occurred : stop receiver,
1629 * and wait until in stopped state
1630 */
1631 opn = ddi_get32(dnetp->io_handle,
1632 REG32(dnetp->io_reg, OPN_MODE_REG));
1633 ddi_put32(dnetp->io_handle,
1634 REG32(dnetp->io_reg, OPN_MODE_REG),
1635 opn & ~(START_RECEIVE));
1636
1637 do {
1638 drv_usecwait(10);
1639 } while ((ddi_get32(dnetp->io_handle,
1640 REG32(dnetp->io_reg, STATUS_REG)) &
1641 RECEIVE_PROCESS_STATE) != 0);
1642 #ifdef DNETDEBUG
1643 if (dnetdebug & DNETRECV)
1644 cmn_err(CE_CONT, "^*");
1645 #endif
1646 /* Discard probably corrupt frames */
1647 while (!(dnetp->rx_desc[index].desc0.own)) {
1648 dnetp->rx_desc[index].desc0.own = 1;
1649 index = (index+1) % dnetp->max_rx_desc;
1650 dnetp->stat_missed++;
1651 }
1652
1653 /* restart the receiver */
1654 opn = ddi_get32(dnetp->io_handle,
1655 REG32(dnetp->io_reg, OPN_MODE_REG));
1656 ddi_put32(dnetp->io_handle,
1657 REG32(dnetp->io_reg, OPN_MODE_REG),
1658 opn | START_RECEIVE);
1659 marker = dnetp->rx_current_desc = index;
1660 continue;
1661 }
1662 /*
1663 * At this point, we know that all packets before
1664 * "marker" were received before a dma overrun occurred
1665 */
1666 }
1667
1668 /*
1669 * If we get an oversized packet it could span multiple
1670 * descriptors. If this happens an error bit should be set.
1671 */
1672 while (desc[index].desc0.last_desc == 0) {
1673 index = (index + 1) % dnetp->max_rx_desc;
1674 if (desc[index].desc0.own)
1675 return; /* not done receiving large packet */
1676 }
1677 while (dnetp->rx_current_desc != index) {
1678 desc[dnetp->rx_current_desc].desc0.own = 1;
1679 dnetp->rx_current_desc =
1680 (dnetp->rx_current_desc + 1) % dnetp->max_rx_desc;
1681 #ifdef DNETDEBUG
1682 if (dnetdebug & DNETRECV)
1683 cmn_err(CE_WARN, "dnet: received large packet");
1684 #endif
1685 }
1686
1687 packet_length = desc[index].desc0.frame_len;
1688
1689 /*
1690 * Remove CRC from received data. This is an artefact of the
1691 * 21x4x chip and should not be passed higher up the network
1692 * stack.
1693 */
1694 packet_length -= ETHERFCSL;
1695
1696 /* get the virtual address of the packet received */
1697 virtual_address =
1698 dnetp->rx_buf_vaddr[index];
1699
1700 /*
1701 * If no packet errors then do:
1702 * 1. Allocate a new receive buffer so that we can
1703 * use the current buffer as streams buffer to
1704 * avoid bcopy.
1705 * 2. If we got a new receive buffer then allocate
1706 * an mblk using desballoc().
1707 * 3. Otherwise use the mblk from allocb() and do
1708 * the bcopy.
1709 */
1710 frp = NULL;
1711 rp = NULL;
1712 newbuf = NULL;
1713 mp = NULL;
1714 if (!desc[index].desc0.err_summary ||
1715 (desc[index].desc0.frame2long &&
1716 packet_length < rx_buf_size)) {
1717 ASSERT(packet_length < rx_buf_size);
1718 /*
1719 * Allocate another receive buffer for this descriptor.
1720 * If we fail to allocate then we do the normal bcopy.
1721 */
1722 rp = dnet_rbuf_alloc(dnetp->devinfo, 0);
1723 if (rp != NULL) {
1724 newbuf = rp->rbuf_vaddr;
1725 frp = kmem_zalloc(sizeof (*frp), KM_NOSLEEP);
1726 if (frp != NULL) {
1727 frp->free_rtn.free_func =
1728 dnet_freemsg_buf;
1729 frp->free_rtn.free_arg = (char *)frp;
1730 frp->buf = virtual_address;
1731 mp = desballoc(
1732 (uchar_t *)virtual_address,
1733 packet_length, 0, &frp->free_rtn);
1734 if (mp == NULL) {
1735 kmem_free(frp, sizeof (*frp));
1736 dnet_rbuf_free((caddr_t)newbuf);
1737 frp = NULL;
1738 newbuf = NULL;
1739 }
1740 }
1741 }
1742 if (mp == NULL) {
1743 if (newbuf != NULL)
1744 dnet_rbuf_free((caddr_t)newbuf);
1745 mp = allocb(packet_length, 0);
1746 }
1747 }
1748
1749 if ((desc[index].desc0.err_summary &&
1750 packet_length >= rx_buf_size) || mp == NULL) {
1751
1752 /* Update gld statistics */
1753 if (desc[index].desc0.err_summary)
1754 update_rx_stats(dnetp, index);
1755 else
1756 dnetp->stat_norcvbuf++;
1757
1758 /*
1759 * Reset ownership of the descriptor.
1760 */
1761 desc[index].desc0.own = 1;
1762 dnetp->rx_current_desc =
1763 (dnetp->rx_current_desc+1) % dnetp->max_rx_desc;
1764
1765 /* Demand receive polling by the chip */
1766 ddi_put32(dnetp->io_handle,
1767 REG32(dnetp->io_reg, RX_POLL_REG), RX_POLL_DEMAND);
1768
1769 continue;
1770 }
1771
1772 if (newbuf != NULL) {
1773 uint32_t end_paddr;
1774 /* attach the new buffer to the rx descriptor */
1775 dnetp->rx_buf_vaddr[index] = newbuf;
1776 dnetp->rx_buf_paddr[index] = rp->rbuf_paddr;
1777 desc[index].buffer1 = rp->rbuf_paddr;
1778 desc[index].desc1.buffer_size1 = rx_buf_size;
1779 desc[index].desc1.buffer_size2 = 0;
1780 end_paddr = rp->rbuf_endpaddr;
1781 if ((desc[index].buffer1 & ~dnetp->pgmask) !=
1782 (end_paddr & ~dnetp->pgmask)) {
1783 /* discontiguous */
1784 desc[index].buffer2 = end_paddr&~dnetp->pgmask;
1785 desc[index].desc1.buffer_size2 =
1786 (end_paddr & dnetp->pgmask) + 1;
1787 desc[index].desc1.buffer_size1 =
1788 rx_buf_size-desc[index].desc1.buffer_size2;
1789 }
1790 } else {
1791 /* couldn't allocate another buffer; copy the data */
1792 BCOPY((caddr_t)virtual_address, (caddr_t)mp->b_wptr,
1793 packet_length);
1794 }
1795
1796 mp->b_wptr += packet_length;
1797
1798 desc[dnetp->rx_current_desc].desc0.own = 1;
1799
1800 /*
1801 * Increment receive desc index. This is for the scan of
1802 * next packet
1803 */
1804 dnetp->rx_current_desc =
1805 (dnetp->rx_current_desc+1) % dnetp->max_rx_desc;
1806
1807 /* Demand polling by chip */
1808 ddi_put32(dnetp->io_handle,
1809 REG32(dnetp->io_reg, RX_POLL_REG), RX_POLL_DEMAND);
1810
1811 /* send the packet upstream */
1812 mutex_exit(&dnetp->intrlock);
1813 mac_rx(dnetp->mac_handle, NULL, mp);
1814 mutex_enter(&dnetp->intrlock);
1815 }
1816 }
1817 /*
1818 * Function to update receive statistics
1819 */
1820 static void
update_rx_stats(struct dnetinstance * dnetp,int index)1821 update_rx_stats(struct dnetinstance *dnetp, int index)
1822 {
1823 struct rx_desc_type *descp = &(dnetp->rx_desc[index]);
1824
1825 /*
1826 * Update gld statistics
1827 */
1828 dnetp->stat_errrcv++;
1829
1830 if (descp->desc0.overflow) {
1831 /* FIFO Overrun */
1832 dnetp->stat_overflow++;
1833 }
1834
1835 if (descp->desc0.collision) {
1836 /*EMPTY*/
1837 /* Late Colllision on receive */
1838 /* no appropriate counter */
1839 }
1840
1841 if (descp->desc0.crc) {
1842 /* CRC Error */
1843 dnetp->stat_crc++;
1844 }
1845
1846 if (descp->desc0.runt_frame) {
1847 /* Runt Error */
1848 dnetp->stat_short++;
1849 }
1850
1851 if (descp->desc0.desc_err) {
1852 /*EMPTY*/
1853 /* Not enough receive descriptors */
1854 /* This condition is accounted in dnet_intr() */
1855 }
1856
1857 if (descp->desc0.frame2long) {
1858 dnetp->stat_frame++;
1859 }
1860 }
1861
1862 /*
1863 * Function to update transmit statistics
1864 */
1865 static void
update_tx_stats(struct dnetinstance * dnetp,int index)1866 update_tx_stats(struct dnetinstance *dnetp, int index)
1867 {
1868 struct tx_desc_type *descp = &(dnetp->tx_desc[index]);
1869 int fd;
1870 media_block_t *block = dnetp->selected_media_block;
1871
1872
1873 /* Update gld statistics */
1874 dnetp->stat_errxmt++;
1875
1876 /* If we're in full-duplex don't count collisions or carrier loss. */
1877 if (dnetp->mii_up) {
1878 fd = dnetp->mii_duplex;
1879 } else {
1880 /* Rely on media code */
1881 fd = block->media_code == MEDIA_TP_FD ||
1882 block->media_code == MEDIA_SYM_SCR_FD;
1883 }
1884
1885 if (descp->desc0.collision_count && !fd) {
1886 dnetp->stat_collisions += descp->desc0.collision_count;
1887 }
1888
1889 if (descp->desc0.late_collision && !fd) {
1890 dnetp->stat_xmtlatecoll++;
1891 }
1892
1893 if (descp->desc0.excess_collision && !fd) {
1894 dnetp->stat_excoll++;
1895 }
1896
1897 if (descp->desc0.underflow) {
1898 dnetp->stat_underflow++;
1899 }
1900
1901 #if 0
1902 if (descp->desc0.tx_jabber_to) {
1903 /* no appropriate counter */
1904 }
1905 #endif
1906
1907 if (descp->desc0.carrier_loss && !fd) {
1908 dnetp->stat_nocarrier++;
1909 }
1910
1911 if (descp->desc0.no_carrier && !fd) {
1912 dnetp->stat_nocarrier++;
1913 }
1914 }
1915
1916 /*
1917 * ========== Media Selection Setup Routines ==========
1918 */
1919
1920
1921 static void
write_gpr(struct dnetinstance * dnetp,uint32_t val)1922 write_gpr(struct dnetinstance *dnetp, uint32_t val)
1923 {
1924 #ifdef DEBUG
1925 if (dnetdebug & DNETREGCFG)
1926 cmn_err(CE_NOTE, "GPR: %x", val);
1927 #endif
1928 switch (dnetp->board_type) {
1929 case DEVICE_ID_21143:
1930 /* Set the correct bit for a control write */
1931 if (val & GPR_CONTROL_WRITE)
1932 val |= CWE_21143, val &= ~GPR_CONTROL_WRITE;
1933 /* Write to upper half of CSR15 */
1934 dnetp->gprsia = (dnetp->gprsia & 0xffff) | (val << 16);
1935 ddi_put32(dnetp->io_handle,
1936 REG32(dnetp->io_reg, SIA_GENERAL_REG), dnetp->gprsia);
1937 break;
1938 default:
1939 /* Set the correct bit for a control write */
1940 if (val & GPR_CONTROL_WRITE)
1941 val |= CWE_21140, val &= ~GPR_CONTROL_WRITE;
1942 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, GP_REG), val);
1943 break;
1944 }
1945 }
1946
1947 static uint32_t
read_gpr(struct dnetinstance * dnetp)1948 read_gpr(struct dnetinstance *dnetp)
1949 {
1950 switch (dnetp->board_type) {
1951 case DEVICE_ID_21143:
1952 /* Read upper half of CSR15 */
1953 return (ddi_get32(dnetp->io_handle,
1954 REG32(dnetp->io_reg, SIA_GENERAL_REG)) >> 16);
1955 default:
1956 return (ddi_get32(dnetp->io_handle,
1957 REG32(dnetp->io_reg, GP_REG)));
1958 }
1959 }
1960
1961 static void
set_gpr(struct dnetinstance * dnetp)1962 set_gpr(struct dnetinstance *dnetp)
1963 {
1964 uint32_t *sequence;
1965 int len;
1966 LEAF_FORMAT *leaf = &dnetp->sr.leaf[dnetp->leaf];
1967 media_block_t *block = dnetp->selected_media_block;
1968 int i;
1969
1970 if (ddi_getlongprop(DDI_DEV_T_ANY, dnetp->devinfo,
1971 DDI_PROP_DONTPASS, "gpr-sequence", (caddr_t)&sequence,
1972 &len) == DDI_PROP_SUCCESS) {
1973 for (i = 0; i < len / sizeof (uint32_t); i++)
1974 write_gpr(dnetp, sequence[i]);
1975 kmem_free(sequence, len);
1976 } else {
1977 /*
1978 * Write the reset sequence if this is the first time this
1979 * block has been selected.
1980 */
1981 if (block->rstseqlen) {
1982 for (i = 0; i < block->rstseqlen; i++)
1983 write_gpr(dnetp, block->rstseq[i]);
1984 /*
1985 * XXX Legacy blocks do not have reset sequences, so the
1986 * static blocks will never be modified by this
1987 */
1988 block->rstseqlen = 0;
1989 }
1990 if (leaf->gpr)
1991 write_gpr(dnetp, leaf->gpr | GPR_CONTROL_WRITE);
1992
1993 /* write GPR sequence each time */
1994 for (i = 0; i < block->gprseqlen; i++)
1995 write_gpr(dnetp, block->gprseq[i]);
1996 }
1997
1998 /* This has possibly caused a PHY to reset. Let MII know */
1999 if (dnetp->phyaddr != -1)
2000 /* XXX function return value ignored */
2001 (void) mii_sync(dnetp->mii, dnetp->phyaddr);
2002 drv_usecwait(5);
2003 }
2004
2005 /* set_opr() - must be called with intrlock held */
2006
2007 static void
set_opr(struct dnetinstance * dnetp)2008 set_opr(struct dnetinstance *dnetp)
2009 {
2010 uint32_t fd, mb1, sf;
2011
2012 int opnmode_len;
2013 uint32_t val;
2014 media_block_t *block = dnetp->selected_media_block;
2015
2016 ASSERT(block);
2017
2018 /* Check for custom "opnmode_reg" property */
2019 opnmode_len = sizeof (val);
2020 if (ddi_prop_op(DDI_DEV_T_ANY, dnetp->devinfo,
2021 PROP_LEN_AND_VAL_BUF, DDI_PROP_DONTPASS, "opnmode_reg",
2022 (caddr_t)&val, &opnmode_len) != DDI_PROP_SUCCESS)
2023 opnmode_len = 0;
2024
2025 /* Some bits exist only on 21140 and greater */
2026 if (dnetp->board_type != DEVICE_ID_21040 &&
2027 dnetp->board_type != DEVICE_ID_21041) {
2028 mb1 = OPN_REG_MB1;
2029 sf = STORE_AND_FORWARD;
2030 } else {
2031 mb1 = sf = 0;
2032 mb1 = OPN_REG_MB1; /* Needed for 21040? */
2033 }
2034
2035 if (opnmode_len) {
2036 ddi_put32(dnetp->io_handle,
2037 REG32(dnetp->io_reg, OPN_MODE_REG), val);
2038 dnet_reset_board(dnetp);
2039 ddi_put32(dnetp->io_handle,
2040 REG32(dnetp->io_reg, OPN_MODE_REG), val);
2041 return;
2042 }
2043
2044 /*
2045 * Set each bit in CSR6 that we want
2046 */
2047
2048 /* Always want these bits set */
2049 val = HASH_FILTERING | HASH_ONLY | TX_THRESHOLD_160 | mb1 | sf;
2050
2051 /* Promiscuous mode */
2052 val |= dnetp->promisc ? PROM_MODE : 0;
2053
2054 /* Scrambler for SYM style media */
2055 val |= ((block->command & CMD_SCR) && !dnetp->disable_scrambler) ?
2056 SCRAMBLER_MODE : 0;
2057
2058 /* Full duplex */
2059 if (dnetp->mii_up) {
2060 fd = dnetp->mii_duplex;
2061 } else {
2062 /* Rely on media code */
2063 fd = block->media_code == MEDIA_TP_FD ||
2064 block->media_code == MEDIA_SYM_SCR_FD;
2065 }
2066
2067 /* Port select (and therefore, heartbeat disable) */
2068 val |= block->command & CMD_PS ? (PORT_SELECT | HEARTBEAT_DISABLE) : 0;
2069
2070 /* PCS function */
2071 val |= (block->command) & CMD_PCS ? PCS_FUNCTION : 0;
2072 val |= fd ? FULL_DUPLEX : 0;
2073
2074 #ifdef DNETDEBUG
2075 if (dnetdebug & DNETREGCFG)
2076 cmn_err(CE_NOTE, "OPN: %x", val);
2077 #endif
2078 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG), val);
2079 dnet_reset_board(dnetp);
2080 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, OPN_MODE_REG), val);
2081 }
2082
2083 static void
set_sia(struct dnetinstance * dnetp)2084 set_sia(struct dnetinstance *dnetp)
2085 {
2086 media_block_t *block = dnetp->selected_media_block;
2087
2088 ASSERT(MUTEX_HELD(&dnetp->intrlock));
2089 if (block->type == 2) {
2090 int sia_delay;
2091 #ifdef DNETDEBUG
2092 if (dnetdebug & DNETREGCFG)
2093 cmn_err(CE_NOTE,
2094 "SIA: CSR13: %x, CSR14: %x, CSR15: %x",
2095 block->un.sia.csr13,
2096 block->un.sia.csr14,
2097 block->un.sia.csr15);
2098 #endif
2099 sia_delay = ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
2100 DDI_PROP_DONTPASS, "sia-delay", 10000);
2101
2102 ddi_put32(dnetp->io_handle,
2103 REG32(dnetp->io_reg, SIA_CONNECT_REG), 0);
2104
2105 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, SIA_TXRX_REG),
2106 block->un.sia.csr14);
2107
2108 /*
2109 * For '143, we need to write through a copy of the register
2110 * to keep the GP half intact
2111 */
2112 dnetp->gprsia = (dnetp->gprsia&0xffff0000)|block->un.sia.csr15;
2113 ddi_put32(dnetp->io_handle,
2114 REG32(dnetp->io_reg, SIA_GENERAL_REG),
2115 dnetp->gprsia);
2116
2117 ddi_put32(dnetp->io_handle,
2118 REG32(dnetp->io_reg, SIA_CONNECT_REG),
2119 block->un.sia.csr13);
2120
2121 drv_usecwait(sia_delay);
2122
2123 } else if (dnetp->board_type != DEVICE_ID_21140) {
2124 ddi_put32(dnetp->io_handle,
2125 REG32(dnetp->io_reg, SIA_CONNECT_REG), 0);
2126 ddi_put32(dnetp->io_handle,
2127 REG32(dnetp->io_reg, SIA_TXRX_REG), 0);
2128 }
2129 }
2130
2131 /*
2132 * This function (re)allocates the receive and transmit buffers and
2133 * descriptors. It can be called more than once per instance, though
2134 * currently it is only called from attach. It should only be called
2135 * while the device is reset.
2136 */
2137 static int
dnet_alloc_bufs(struct dnetinstance * dnetp)2138 dnet_alloc_bufs(struct dnetinstance *dnetp)
2139 {
2140 int i;
2141 size_t len;
2142 int page_size;
2143 int realloc = 0;
2144 int nrecv_desc_old = 0;
2145 ddi_dma_cookie_t cookie;
2146 uint_t ncookies;
2147
2148 /*
2149 * check if we are trying to reallocate with different xmit/recv
2150 * descriptor ring sizes.
2151 */
2152 if ((dnetp->tx_desc != NULL) &&
2153 (dnetp->nxmit_desc != dnetp->max_tx_desc))
2154 realloc = 1;
2155
2156 if ((dnetp->rx_desc != NULL) &&
2157 (dnetp->nrecv_desc != dnetp->max_rx_desc))
2158 realloc = 1;
2159
2160 /* free up the old buffers if we are reallocating them */
2161 if (realloc) {
2162 nrecv_desc_old = dnetp->nrecv_desc;
2163 dnet_free_bufs(dnetp); /* free the old buffers */
2164 }
2165
2166 if (dnetp->dma_handle == NULL)
2167 if (ddi_dma_alloc_handle(dnetp->devinfo, &dma_attr,
2168 DDI_DMA_SLEEP, 0, &dnetp->dma_handle) != DDI_SUCCESS)
2169 return (FAILURE);
2170
2171 if (dnetp->dma_handle_tx == NULL)
2172 if (ddi_dma_alloc_handle(dnetp->devinfo, &dma_attr_tx,
2173 DDI_DMA_SLEEP, 0, &dnetp->dma_handle_tx) != DDI_SUCCESS)
2174 return (FAILURE);
2175
2176 if (dnetp->dma_handle_txdesc == NULL)
2177 if (ddi_dma_alloc_handle(dnetp->devinfo, &dma_attr,
2178 DDI_DMA_SLEEP, 0, &dnetp->dma_handle_txdesc) != DDI_SUCCESS)
2179 return (FAILURE);
2180
2181 if (dnetp->dma_handle_setbuf == NULL)
2182 if (ddi_dma_alloc_handle(dnetp->devinfo, &dma_attr,
2183 DDI_DMA_SLEEP, 0, &dnetp->dma_handle_setbuf) != DDI_SUCCESS)
2184 return (FAILURE);
2185
2186 page_size = ddi_ptob(dnetp->devinfo, 1);
2187
2188 dnetp->pgmask = page_size - 1;
2189
2190 /* allocate setup buffer if necessary */
2191 if (dnetp->setup_buf_vaddr == NULL) {
2192 if (ddi_dma_mem_alloc(dnetp->dma_handle_setbuf,
2193 SETUPBUF_SIZE, &accattr, DDI_DMA_STREAMING,
2194 DDI_DMA_DONTWAIT, 0, (caddr_t *)&dnetp->setup_buf_vaddr,
2195 &len, &dnetp->setup_buf_acchdl) != DDI_SUCCESS)
2196 return (FAILURE);
2197
2198 if (ddi_dma_addr_bind_handle(dnetp->dma_handle_setbuf,
2199 NULL, dnetp->setup_buf_vaddr, SETUPBUF_SIZE,
2200 DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
2201 NULL, &cookie, &ncookies) != DDI_DMA_MAPPED)
2202 return (FAILURE);
2203
2204 dnetp->setup_buf_paddr = cookie.dmac_address;
2205 bzero(dnetp->setup_buf_vaddr, len);
2206 }
2207
2208 /* allocate xmit descriptor array of size dnetp->max_tx_desc */
2209 if (dnetp->tx_desc == NULL) {
2210 if (ddi_dma_mem_alloc(dnetp->dma_handle_txdesc,
2211 sizeof (struct tx_desc_type) * dnetp->max_tx_desc,
2212 &accattr, DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, 0,
2213 (caddr_t *)&dnetp->tx_desc, &len,
2214 &dnetp->tx_desc_acchdl) != DDI_SUCCESS)
2215 return (FAILURE);
2216
2217 if (ddi_dma_addr_bind_handle(dnetp->dma_handle_txdesc,
2218 NULL, (caddr_t)dnetp->tx_desc,
2219 sizeof (struct tx_desc_type) * dnetp->max_tx_desc,
2220 DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
2221 NULL, &cookie, &ncookies) != DDI_DMA_MAPPED)
2222 return (FAILURE);
2223 dnetp->tx_desc_paddr = cookie.dmac_address;
2224 bzero(dnetp->tx_desc, len);
2225 dnetp->nxmit_desc = dnetp->max_tx_desc;
2226
2227 dnetp->tx_msgbufp =
2228 kmem_zalloc(dnetp->max_tx_desc * sizeof (mblk_t **),
2229 KM_SLEEP);
2230 }
2231
2232 /* allocate receive descriptor array of size dnetp->max_rx_desc */
2233 if (dnetp->rx_desc == NULL) {
2234 int ndesc;
2235
2236 if (ddi_dma_mem_alloc(dnetp->dma_handle,
2237 sizeof (struct rx_desc_type) * dnetp->max_rx_desc,
2238 &accattr, DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, 0,
2239 (caddr_t *)&dnetp->rx_desc, &len,
2240 &dnetp->rx_desc_acchdl) != DDI_SUCCESS)
2241 return (FAILURE);
2242
2243 if (ddi_dma_addr_bind_handle(dnetp->dma_handle,
2244 NULL, (caddr_t)dnetp->rx_desc,
2245 sizeof (struct rx_desc_type) * dnetp->max_rx_desc,
2246 DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
2247 NULL, &cookie, &ncookies) != DDI_DMA_MAPPED)
2248 return (FAILURE);
2249
2250 dnetp->rx_desc_paddr = cookie.dmac_address;
2251 bzero(dnetp->rx_desc, len);
2252 dnetp->nrecv_desc = dnetp->max_rx_desc;
2253
2254 dnetp->rx_buf_vaddr =
2255 kmem_zalloc(dnetp->max_rx_desc * sizeof (caddr_t),
2256 KM_SLEEP);
2257 dnetp->rx_buf_paddr =
2258 kmem_zalloc(dnetp->max_rx_desc * sizeof (uint32_t),
2259 KM_SLEEP);
2260 /*
2261 * Allocate or add to the pool of receive buffers. The pool
2262 * is shared among all instances of dnet.
2263 *
2264 * XXX NEEDSWORK
2265 *
2266 * We arbitrarily allocate twice as many receive buffers as
2267 * receive descriptors because we use the buffers for streams
2268 * messages to pass the packets up the stream. We should
2269 * instead have initialized constants reflecting
2270 * MAX_RX_BUF_2104x and MAX_RX_BUF_2114x, and we should also
2271 * probably have a total maximum for the free pool, so that we
2272 * don't get out of hand when someone puts in an 8-port board.
2273 * The maximum for the entire pool should be the total number
2274 * of descriptors for all attached instances together, plus the
2275 * total maximum for the free pool. This maximum would only be
2276 * reached after some number of instances allocate buffers:
2277 * each instance would add (max_rx_buf-max_rx_desc) to the free
2278 * pool.
2279 */
2280 ndesc = dnetp->max_rx_desc - nrecv_desc_old;
2281 if ((ndesc > 0) &&
2282 (dnet_rbuf_init(dnetp->devinfo, ndesc * 2) != 0))
2283 return (FAILURE);
2284
2285 for (i = 0; i < dnetp->max_rx_desc; i++) {
2286 struct rbuf_list *rp;
2287
2288 rp = dnet_rbuf_alloc(dnetp->devinfo, 1);
2289 if (rp == NULL)
2290 return (FAILURE);
2291 dnetp->rx_buf_vaddr[i] = rp->rbuf_vaddr;
2292 dnetp->rx_buf_paddr[i] = rp->rbuf_paddr;
2293 }
2294 }
2295
2296 return (SUCCESS);
2297 }
2298 /*
2299 * free descriptors/buffers allocated for this device instance. This routine
2300 * should only be called while the device is reset.
2301 */
2302 static void
dnet_free_bufs(struct dnetinstance * dnetp)2303 dnet_free_bufs(struct dnetinstance *dnetp)
2304 {
2305 int i;
2306 /* free up any xmit descriptors/buffers */
2307 if (dnetp->tx_desc != NULL) {
2308 ddi_dma_mem_free(&dnetp->tx_desc_acchdl);
2309 dnetp->tx_desc = NULL;
2310 /* we use streams buffers for DMA in xmit process */
2311 if (dnetp->tx_msgbufp != NULL) {
2312 /* free up any streams message buffers unclaimed */
2313 for (i = 0; i < dnetp->nxmit_desc; i++) {
2314 if (dnetp->tx_msgbufp[i] != NULL) {
2315 freemsg(dnetp->tx_msgbufp[i]);
2316 }
2317 }
2318 kmem_free(dnetp->tx_msgbufp,
2319 dnetp->nxmit_desc * sizeof (mblk_t **));
2320 dnetp->tx_msgbufp = NULL;
2321 }
2322 dnetp->nxmit_desc = 0;
2323 }
2324
2325 /* free up any receive descriptors/buffers */
2326 if (dnetp->rx_desc != NULL) {
2327 ddi_dma_mem_free(&dnetp->rx_desc_acchdl);
2328 dnetp->rx_desc = NULL;
2329 if (dnetp->rx_buf_vaddr != NULL) {
2330 /* free up the attached rbufs if any */
2331 for (i = 0; i < dnetp->nrecv_desc; i++) {
2332 if (dnetp->rx_buf_vaddr[i])
2333 dnet_rbuf_free(
2334 (caddr_t)dnetp->rx_buf_vaddr[i]);
2335 }
2336 kmem_free(dnetp->rx_buf_vaddr,
2337 dnetp->nrecv_desc * sizeof (caddr_t));
2338 kmem_free(dnetp->rx_buf_paddr,
2339 dnetp->nrecv_desc * sizeof (uint32_t));
2340 dnetp->rx_buf_vaddr = NULL;
2341 dnetp->rx_buf_paddr = NULL;
2342 }
2343 dnetp->nrecv_desc = 0;
2344 }
2345
2346 if (dnetp->setup_buf_vaddr != NULL) {
2347 ddi_dma_mem_free(&dnetp->setup_buf_acchdl);
2348 dnetp->setup_buf_vaddr = NULL;
2349 }
2350
2351 if (dnetp->dma_handle != NULL) {
2352 (void) ddi_dma_unbind_handle(dnetp->dma_handle);
2353 ddi_dma_free_handle(&dnetp->dma_handle);
2354 dnetp->dma_handle = NULL;
2355 }
2356
2357 if (dnetp->dma_handle_tx != NULL) {
2358 (void) ddi_dma_unbind_handle(dnetp->dma_handle_tx);
2359 ddi_dma_free_handle(&dnetp->dma_handle_tx);
2360 dnetp->dma_handle_tx = NULL;
2361 }
2362
2363 if (dnetp->dma_handle_txdesc != NULL) {
2364 (void) ddi_dma_unbind_handle(dnetp->dma_handle_txdesc);
2365 ddi_dma_free_handle(&dnetp->dma_handle_txdesc);
2366 dnetp->dma_handle_txdesc = NULL;
2367 }
2368
2369 if (dnetp->dma_handle_setbuf != NULL) {
2370 (void) ddi_dma_unbind_handle(dnetp->dma_handle_setbuf);
2371 ddi_dma_free_handle(&dnetp->dma_handle_setbuf);
2372 dnetp->dma_handle_setbuf = NULL;
2373 }
2374
2375 }
2376
2377 /*
2378 * Initialize transmit and receive descriptors.
2379 */
2380 static void
dnet_init_txrx_bufs(struct dnetinstance * dnetp)2381 dnet_init_txrx_bufs(struct dnetinstance *dnetp)
2382 {
2383 int i;
2384
2385 /*
2386 * Initilize all the Tx descriptors
2387 */
2388 for (i = 0; i < dnetp->nxmit_desc; i++) {
2389 /*
2390 * We may be resetting the device due to errors,
2391 * so free up any streams message buffer unclaimed.
2392 */
2393 if (dnetp->tx_msgbufp[i] != NULL) {
2394 freemsg(dnetp->tx_msgbufp[i]);
2395 dnetp->tx_msgbufp[i] = NULL;
2396 }
2397 *(uint32_t *)&dnetp->tx_desc[i].desc0 = 0;
2398 *(uint32_t *)&dnetp->tx_desc[i].desc1 = 0;
2399 dnetp->tx_desc[i].buffer1 = 0;
2400 dnetp->tx_desc[i].buffer2 = 0;
2401 }
2402 dnetp->tx_desc[i - 1].desc1.end_of_ring = 1;
2403
2404 /*
2405 * Initialize the Rx descriptors
2406 */
2407 for (i = 0; i < dnetp->nrecv_desc; i++) {
2408 uint32_t end_paddr;
2409 *(uint32_t *)&dnetp->rx_desc[i].desc0 = 0;
2410 *(uint32_t *)&dnetp->rx_desc[i].desc1 = 0;
2411 dnetp->rx_desc[i].desc0.own = 1;
2412 dnetp->rx_desc[i].desc1.buffer_size1 = rx_buf_size;
2413 dnetp->rx_desc[i].buffer1 = dnetp->rx_buf_paddr[i];
2414 dnetp->rx_desc[i].buffer2 = 0;
2415 end_paddr = dnetp->rx_buf_paddr[i]+rx_buf_size-1;
2416
2417 if ((dnetp->rx_desc[i].buffer1 & ~dnetp->pgmask) !=
2418 (end_paddr & ~dnetp->pgmask)) {
2419 /* discontiguous */
2420 dnetp->rx_desc[i].buffer2 = end_paddr&~dnetp->pgmask;
2421 dnetp->rx_desc[i].desc1.buffer_size2 =
2422 (end_paddr & dnetp->pgmask) + 1;
2423 dnetp->rx_desc[i].desc1.buffer_size1 =
2424 rx_buf_size-dnetp->rx_desc[i].desc1.buffer_size2;
2425 }
2426 }
2427 dnetp->rx_desc[i - 1].desc1.end_of_ring = 1;
2428 }
2429
2430 static int
alloc_descriptor(struct dnetinstance * dnetp)2431 alloc_descriptor(struct dnetinstance *dnetp)
2432 {
2433 int index;
2434 struct tx_desc_type *ring = dnetp->tx_desc;
2435
2436 ASSERT(MUTEX_HELD(&dnetp->intrlock));
2437 alloctop:
2438 mutex_enter(&dnetp->txlock);
2439 index = dnetp->tx_current_desc;
2440
2441 dnet_reclaim_Tx_desc(dnetp);
2442
2443 /* we do have free descriptors, right? */
2444 if (dnetp->free_desc <= 0) {
2445 #ifdef DNETDEBUG
2446 if (dnetdebug & DNETRECV)
2447 cmn_err(CE_NOTE, "dnet: Ring buffer is full");
2448 #endif
2449 mutex_exit(&dnetp->txlock);
2450 return (FAILURE);
2451 }
2452
2453 /* sanity, make sure the next descriptor is free for use (should be) */
2454 if (ring[index].desc0.own) {
2455 #ifdef DNETDEBUG
2456 if (dnetdebug & DNETRECV)
2457 cmn_err(CE_WARN,
2458 "dnet: next descriptor is not free for use");
2459 #endif
2460 mutex_exit(&dnetp->txlock);
2461 return (FAILURE);
2462 }
2463 if (dnetp->need_saddr) {
2464 mutex_exit(&dnetp->txlock);
2465 /* XXX function return value ignored */
2466 if (!dnetp->suspended)
2467 (void) dnet_set_addr(dnetp);
2468 goto alloctop;
2469 }
2470
2471 *(uint32_t *)&ring[index].desc0 = 0; /* init descs */
2472 *(uint32_t *)&ring[index].desc1 &= DNET_END_OF_RING;
2473
2474 /* hardware will own this descriptor when poll activated */
2475 dnetp->free_desc--;
2476
2477 /* point to next free descriptor to be used */
2478 dnetp->tx_current_desc = NextTXIndex(index);
2479
2480 #ifdef DNET_NOISY
2481 cmn_err(CE_WARN, "sfree 0x%x, transmitted 0x%x, tx_current 0x%x",
2482 dnetp->free_desc, dnetp->transmitted_desc, dnetp->tx_current_desc);
2483 #endif
2484 mutex_exit(&dnetp->txlock);
2485 return (SUCCESS);
2486 }
2487
2488 /*
2489 * dnet_reclaim_Tx_desc() - called with txlock held.
2490 */
2491 static void
dnet_reclaim_Tx_desc(struct dnetinstance * dnetp)2492 dnet_reclaim_Tx_desc(struct dnetinstance *dnetp)
2493 {
2494 struct tx_desc_type *desc = dnetp->tx_desc;
2495 int index;
2496
2497 ASSERT(MUTEX_HELD(&dnetp->txlock));
2498
2499 index = dnetp->transmitted_desc;
2500 while (((dnetp->free_desc == 0) || (index != dnetp->tx_current_desc)) &&
2501 !(desc[index].desc0.own)) {
2502 /*
2503 * Check for Tx Error that gets set
2504 * in the last desc.
2505 */
2506 if (desc[index].desc1.setup_packet == 0 &&
2507 desc[index].desc1.last_desc &&
2508 desc[index].desc0.err_summary)
2509 update_tx_stats(dnetp, index);
2510
2511 /*
2512 * If we have used the streams message buffer for this
2513 * descriptor then free up the message now.
2514 */
2515 if (dnetp->tx_msgbufp[index] != NULL) {
2516 freemsg(dnetp->tx_msgbufp[index]);
2517 dnetp->tx_msgbufp[index] = NULL;
2518 }
2519 dnetp->free_desc++;
2520 index = (index+1) % dnetp->max_tx_desc;
2521 }
2522
2523 dnetp->transmitted_desc = index;
2524 }
2525
2526 /*
2527 * Receive buffer allocation/freeing routines.
2528 *
2529 * There is a common pool of receive buffers shared by all dnet instances.
2530 *
2531 * XXX NEEDSWORK
2532 *
2533 * We arbitrarily allocate twice as many receive buffers as
2534 * receive descriptors because we use the buffers for streams
2535 * messages to pass the packets up the stream. We should
2536 * instead have initialized constants reflecting
2537 * MAX_RX_BUF_2104x and MAX_RX_BUF_2114x, and we should also
2538 * probably have a total maximum for the free pool, so that we
2539 * don't get out of hand when someone puts in an 8-port board.
2540 * The maximum for the entire pool should be the total number
2541 * of descriptors for all attached instances together, plus the
2542 * total maximum for the free pool. This maximum would only be
2543 * reached after some number of instances allocate buffers:
2544 * each instance would add (max_rx_buf-max_rx_desc) to the free
2545 * pool.
2546 */
2547
2548 static struct rbuf_list *rbuf_usedlist_head;
2549 static struct rbuf_list *rbuf_freelist_head;
2550 static struct rbuf_list *rbuf_usedlist_end; /* last buffer allocated */
2551
2552 static int rbuf_freebufs; /* no. of free buffers in the pool */
2553 static int rbuf_pool_size; /* total no. of buffers in the pool */
2554
2555 /* initialize/add 'nbufs' buffers to the rbuf pool */
2556 /* ARGSUSED */
2557 static int
dnet_rbuf_init(dev_info_t * dip,int nbufs)2558 dnet_rbuf_init(dev_info_t *dip, int nbufs)
2559 {
2560 int i;
2561 struct rbuf_list *rp;
2562 ddi_dma_cookie_t cookie;
2563 uint_t ncookies;
2564 size_t len;
2565
2566 mutex_enter(&dnet_rbuf_lock);
2567
2568 /* allocate buffers and add them to the pool */
2569 for (i = 0; i < nbufs; i++) {
2570 /* allocate rbuf_list element */
2571 rp = kmem_zalloc(sizeof (struct rbuf_list), KM_SLEEP);
2572 if (ddi_dma_alloc_handle(dip, &dma_attr_rb, DDI_DMA_SLEEP,
2573 0, &rp->rbuf_dmahdl) != DDI_SUCCESS)
2574 goto fail_kfree;
2575
2576 /* allocate dma memory for the buffer */
2577 if (ddi_dma_mem_alloc(rp->rbuf_dmahdl, rx_buf_size, &accattr,
2578 DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, 0,
2579 &rp->rbuf_vaddr, &len,
2580 &rp->rbuf_acchdl) != DDI_SUCCESS)
2581 goto fail_freehdl;
2582
2583 if (ddi_dma_addr_bind_handle(rp->rbuf_dmahdl, NULL,
2584 rp->rbuf_vaddr, len, DDI_DMA_RDWR | DDI_DMA_STREAMING,
2585 DDI_DMA_SLEEP, NULL, &cookie,
2586 &ncookies) != DDI_DMA_MAPPED)
2587 goto fail_free;
2588
2589 if (ncookies > 2)
2590 goto fail_unbind;
2591 if (ncookies == 1) {
2592 rp->rbuf_endpaddr =
2593 cookie.dmac_address + rx_buf_size - 1;
2594 } else {
2595 ddi_dma_nextcookie(rp->rbuf_dmahdl, &cookie);
2596 rp->rbuf_endpaddr =
2597 cookie.dmac_address + cookie.dmac_size - 1;
2598 }
2599 rp->rbuf_paddr = cookie.dmac_address;
2600
2601 rp->rbuf_next = rbuf_freelist_head;
2602 rbuf_freelist_head = rp;
2603 rbuf_pool_size++;
2604 rbuf_freebufs++;
2605 }
2606
2607 mutex_exit(&dnet_rbuf_lock);
2608 return (0);
2609 fail_unbind:
2610 (void) ddi_dma_unbind_handle(rp->rbuf_dmahdl);
2611 fail_free:
2612 ddi_dma_mem_free(&rp->rbuf_acchdl);
2613 fail_freehdl:
2614 ddi_dma_free_handle(&rp->rbuf_dmahdl);
2615 fail_kfree:
2616 kmem_free(rp, sizeof (struct rbuf_list));
2617
2618 mutex_exit(&dnet_rbuf_lock);
2619 return (-1);
2620 }
2621
2622 /*
2623 * Try to free up all the rbufs in the pool. Returns 0 if it frees up all
2624 * buffers. The buffers in the used list are considered busy so these
2625 * buffers are not freed.
2626 */
2627 static int
dnet_rbuf_destroy()2628 dnet_rbuf_destroy()
2629 {
2630 struct rbuf_list *rp, *next;
2631
2632 mutex_enter(&dnet_rbuf_lock);
2633
2634 for (rp = rbuf_freelist_head; rp; rp = next) {
2635 next = rp->rbuf_next;
2636 ddi_dma_mem_free(&rp->rbuf_acchdl);
2637 (void) ddi_dma_unbind_handle(rp->rbuf_dmahdl);
2638 kmem_free(rp, sizeof (struct rbuf_list));
2639 rbuf_pool_size--;
2640 rbuf_freebufs--;
2641 }
2642 rbuf_freelist_head = NULL;
2643
2644 if (rbuf_pool_size) { /* pool is still not empty */
2645 mutex_exit(&dnet_rbuf_lock);
2646 return (-1);
2647 }
2648 mutex_exit(&dnet_rbuf_lock);
2649 return (0);
2650 }
2651 static struct rbuf_list *
dnet_rbuf_alloc(dev_info_t * dip,int cansleep)2652 dnet_rbuf_alloc(dev_info_t *dip, int cansleep)
2653 {
2654 struct rbuf_list *rp;
2655 size_t len;
2656 ddi_dma_cookie_t cookie;
2657 uint_t ncookies;
2658
2659 mutex_enter(&dnet_rbuf_lock);
2660
2661 if (rbuf_freelist_head == NULL) {
2662
2663 if (!cansleep) {
2664 mutex_exit(&dnet_rbuf_lock);
2665 return (NULL);
2666 }
2667
2668 /* allocate rbuf_list element */
2669 rp = kmem_zalloc(sizeof (struct rbuf_list), KM_SLEEP);
2670 if (ddi_dma_alloc_handle(dip, &dma_attr_rb, DDI_DMA_SLEEP,
2671 0, &rp->rbuf_dmahdl) != DDI_SUCCESS)
2672 goto fail_kfree;
2673
2674 /* allocate dma memory for the buffer */
2675 if (ddi_dma_mem_alloc(rp->rbuf_dmahdl, rx_buf_size, &accattr,
2676 DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, 0,
2677 &rp->rbuf_vaddr, &len,
2678 &rp->rbuf_acchdl) != DDI_SUCCESS)
2679 goto fail_freehdl;
2680
2681 if (ddi_dma_addr_bind_handle(rp->rbuf_dmahdl, NULL,
2682 rp->rbuf_vaddr, len, DDI_DMA_RDWR | DDI_DMA_STREAMING,
2683 DDI_DMA_SLEEP, NULL, &cookie,
2684 &ncookies) != DDI_DMA_MAPPED)
2685 goto fail_free;
2686
2687 if (ncookies > 2)
2688 goto fail_unbind;
2689 if (ncookies == 1) {
2690 rp->rbuf_endpaddr =
2691 cookie.dmac_address + rx_buf_size - 1;
2692 } else {
2693 ddi_dma_nextcookie(rp->rbuf_dmahdl, &cookie);
2694 rp->rbuf_endpaddr =
2695 cookie.dmac_address + cookie.dmac_size - 1;
2696 }
2697 rp->rbuf_paddr = cookie.dmac_address;
2698
2699 rbuf_freelist_head = rp;
2700 rbuf_pool_size++;
2701 rbuf_freebufs++;
2702 }
2703
2704 /* take the buffer from the head of the free list */
2705 rp = rbuf_freelist_head;
2706 rbuf_freelist_head = rbuf_freelist_head->rbuf_next;
2707
2708 /* update the used list; put the entry at the end */
2709 if (rbuf_usedlist_head == NULL)
2710 rbuf_usedlist_head = rp;
2711 else
2712 rbuf_usedlist_end->rbuf_next = rp;
2713 rp->rbuf_next = NULL;
2714 rbuf_usedlist_end = rp;
2715 rbuf_freebufs--;
2716
2717 mutex_exit(&dnet_rbuf_lock);
2718
2719 return (rp);
2720 fail_unbind:
2721 (void) ddi_dma_unbind_handle(rp->rbuf_dmahdl);
2722 fail_free:
2723 ddi_dma_mem_free(&rp->rbuf_acchdl);
2724 fail_freehdl:
2725 ddi_dma_free_handle(&rp->rbuf_dmahdl);
2726 fail_kfree:
2727 kmem_free(rp, sizeof (struct rbuf_list));
2728 mutex_exit(&dnet_rbuf_lock);
2729 return (NULL);
2730 }
2731
2732 static void
dnet_rbuf_free(caddr_t vaddr)2733 dnet_rbuf_free(caddr_t vaddr)
2734 {
2735 struct rbuf_list *rp, *prev;
2736
2737 ASSERT(vaddr != NULL);
2738 ASSERT(rbuf_usedlist_head != NULL);
2739
2740 mutex_enter(&dnet_rbuf_lock);
2741
2742 /* find the entry in the used list */
2743 for (prev = rp = rbuf_usedlist_head; rp; rp = rp->rbuf_next) {
2744 if (rp->rbuf_vaddr == vaddr)
2745 break;
2746 prev = rp;
2747 }
2748
2749 if (rp == NULL) {
2750 cmn_err(CE_WARN, "DNET: rbuf_free: bad addr 0x%p",
2751 (void *)vaddr);
2752 mutex_exit(&dnet_rbuf_lock);
2753 return;
2754 }
2755
2756 /* update the used list and put the buffer back in the free list */
2757 if (rbuf_usedlist_head != rp) {
2758 prev->rbuf_next = rp->rbuf_next;
2759 if (rbuf_usedlist_end == rp)
2760 rbuf_usedlist_end = prev;
2761 } else {
2762 rbuf_usedlist_head = rp->rbuf_next;
2763 if (rbuf_usedlist_end == rp)
2764 rbuf_usedlist_end = NULL;
2765 }
2766 rp->rbuf_next = rbuf_freelist_head;
2767 rbuf_freelist_head = rp;
2768 rbuf_freebufs++;
2769
2770 mutex_exit(&dnet_rbuf_lock);
2771 }
2772
2773 /*
2774 * Free the receive buffer used in a stream's message block allocated
2775 * thru desballoc().
2776 */
2777 static void
dnet_freemsg_buf(struct free_ptr * frp)2778 dnet_freemsg_buf(struct free_ptr *frp)
2779 {
2780 dnet_rbuf_free((caddr_t)frp->buf); /* buffer goes back to the pool */
2781 kmem_free(frp, sizeof (*frp)); /* free up the free_rtn structure */
2782 }
2783
2784 /*
2785 * ========== SROM Read Routines ==========
2786 */
2787
2788 /*
2789 * The following code gets the SROM information, either by reading it
2790 * from the device or, failing that, by reading a property.
2791 */
2792 static int
dnet_read_srom(dev_info_t * devinfo,int board_type,ddi_acc_handle_t io_handle,caddr_t io_reg,uchar_t * vi,int maxlen)2793 dnet_read_srom(dev_info_t *devinfo, int board_type, ddi_acc_handle_t io_handle,
2794 caddr_t io_reg, uchar_t *vi, int maxlen)
2795 {
2796 int all_ones, zerocheck, i;
2797
2798 /*
2799 * Load SROM into vendor_info
2800 */
2801 if (board_type == DEVICE_ID_21040)
2802 dnet_read21040addr(devinfo, io_handle, io_reg, vi, &maxlen);
2803 else
2804 /* 21041/21140 serial rom */
2805 dnet_read21140srom(io_handle, io_reg, vi, maxlen);
2806 /*
2807 * If the dumpsrom property is present in the conf file, print
2808 * the contents of the SROM to the console
2809 */
2810 if (ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
2811 "dumpsrom", 0))
2812 dnet_dumpbin("SROM", vi, 1, maxlen);
2813
2814 for (zerocheck = i = 0, all_ones = 0xff; i < maxlen; i++) {
2815 zerocheck |= vi[i];
2816 all_ones &= vi[i];
2817 }
2818 if (zerocheck == 0 || all_ones == 0xff) {
2819 return (get_alternative_srom_image(devinfo, vi, maxlen));
2820 } else {
2821 #ifdef BUG_4010796
2822 set_alternative_srom_image(devinfo, vi, maxlen);
2823 #endif
2824 return (0); /* Primary */
2825 }
2826 }
2827
2828 /*
2829 * The function reads the ethernet address of the 21040 adapter
2830 */
2831 static void
dnet_read21040addr(dev_info_t * dip,ddi_acc_handle_t io_handle,caddr_t io_reg,uchar_t * addr,int * len)2832 dnet_read21040addr(dev_info_t *dip, ddi_acc_handle_t io_handle, caddr_t io_reg,
2833 uchar_t *addr, int *len)
2834 {
2835 uint32_t val;
2836 int i;
2837
2838 /* No point reading more than the ethernet address */
2839 *len = ddi_getprop(DDI_DEV_T_ANY, dip,
2840 DDI_PROP_DONTPASS, macoffset_propname, 0) + ETHERADDRL;
2841
2842 /* Reset ROM pointer */
2843 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG), 0);
2844 for (i = 0; i < *len; i++) {
2845 do {
2846 val = ddi_get32(io_handle,
2847 REG32(io_reg, ETHER_ROM_REG));
2848 } while (val & 0x80000000);
2849 addr[i] = val & 0xFF;
2850 }
2851 }
2852
2853 #define drv_nsecwait(x) drv_usecwait(((x)+999)/1000) /* XXX */
2854
2855 /*
2856 * The function reads the SROM of the 21140 adapter
2857 */
2858 static void
dnet_read21140srom(ddi_acc_handle_t io_handle,caddr_t io_reg,uchar_t * addr,int maxlen)2859 dnet_read21140srom(ddi_acc_handle_t io_handle, caddr_t io_reg, uchar_t *addr,
2860 int maxlen)
2861 {
2862 uint32_t i, j;
2863 uint32_t dout;
2864 uint16_t word;
2865 uint8_t rom_addr;
2866 uint8_t bit;
2867
2868
2869 rom_addr = 0;
2870 for (i = 0; i < maxlen; i += 2) {
2871 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2872 READ_OP | SEL_ROM);
2873 drv_nsecwait(30);
2874 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2875 READ_OP | SEL_ROM | SEL_CHIP);
2876 drv_nsecwait(50);
2877 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2878 READ_OP | SEL_ROM | SEL_CHIP | SEL_CLK);
2879 drv_nsecwait(250);
2880 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2881 READ_OP | SEL_ROM | SEL_CHIP);
2882 drv_nsecwait(100);
2883
2884 /* command */
2885 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2886 READ_OP | SEL_ROM | SEL_CHIP | DATA_IN);
2887 drv_nsecwait(150);
2888 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2889 READ_OP | SEL_ROM | SEL_CHIP | DATA_IN | SEL_CLK);
2890 drv_nsecwait(250);
2891 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2892 READ_OP | SEL_ROM | SEL_CHIP | DATA_IN);
2893 drv_nsecwait(250);
2894 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2895 READ_OP | SEL_ROM | SEL_CHIP | DATA_IN | SEL_CLK);
2896 drv_nsecwait(250);
2897 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2898 READ_OP | SEL_ROM | SEL_CHIP | DATA_IN);
2899 drv_nsecwait(100);
2900 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2901 READ_OP | SEL_ROM | SEL_CHIP);
2902 drv_nsecwait(150);
2903 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2904 READ_OP | SEL_ROM | SEL_CHIP | SEL_CLK);
2905 drv_nsecwait(250);
2906 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2907 READ_OP | SEL_ROM | SEL_CHIP);
2908 drv_nsecwait(100);
2909
2910 /* Address */
2911 for (j = HIGH_ADDRESS_BIT; j >= 1; j >>= 1) {
2912 bit = (rom_addr & j) ? DATA_IN : 0;
2913 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2914 READ_OP | SEL_ROM | SEL_CHIP | bit);
2915 drv_nsecwait(150);
2916 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2917 READ_OP | SEL_ROM | SEL_CHIP | bit | SEL_CLK);
2918 drv_nsecwait(250);
2919 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2920 READ_OP | SEL_ROM | SEL_CHIP | bit);
2921 drv_nsecwait(100);
2922 }
2923 drv_nsecwait(150);
2924
2925 /* Data */
2926 word = 0;
2927 for (j = 0x8000; j >= 1; j >>= 1) {
2928 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2929 READ_OP | SEL_ROM | SEL_CHIP | SEL_CLK);
2930 drv_nsecwait(100);
2931 dout = ddi_get32(io_handle,
2932 REG32(io_reg, ETHER_ROM_REG));
2933 drv_nsecwait(150);
2934 if (dout & DATA_OUT)
2935 word |= j;
2936 ddi_put32(io_handle,
2937 REG32(io_reg, ETHER_ROM_REG),
2938 READ_OP | SEL_ROM | SEL_CHIP);
2939 drv_nsecwait(250);
2940 }
2941 addr[i] = (word & 0x0000FF);
2942 addr[i + 1] = (word >> 8);
2943 rom_addr++;
2944 ddi_put32(io_handle, REG32(io_reg, ETHER_ROM_REG),
2945 READ_OP | SEL_ROM);
2946 drv_nsecwait(100);
2947 }
2948 }
2949
2950
2951 /*
2952 * XXX NEEDSWORK
2953 *
2954 * Some lame multiport cards have only one SROM, which can be accessed
2955 * only from the "first" 21x4x chip, whichever that one is. If we can't
2956 * get at our SROM, we look for its contents in a property instead, which
2957 * we rely on the bootstrap to have properly set.
2958 * #ifdef BUG_4010796
2959 * We also have a hack to try to set it ourselves, when the "first" port
2960 * attaches, if it has not already been properly set. However, this method
2961 * is not reliable, since it makes the unwarrented assumption that the
2962 * "first" port will attach first.
2963 * #endif
2964 */
2965
2966 static int
get_alternative_srom_image(dev_info_t * devinfo,uchar_t * vi,int len)2967 get_alternative_srom_image(dev_info_t *devinfo, uchar_t *vi, int len)
2968 {
2969 int l = len;
2970
2971 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
2972 "DNET_SROM", (caddr_t)vi, &len) != DDI_PROP_SUCCESS &&
2973 (len = l) && ddi_getlongprop_buf(DDI_DEV_T_ANY,
2974 ddi_get_parent(devinfo), DDI_PROP_DONTPASS, "DNET_SROM",
2975 (caddr_t)vi, &len) != DDI_PROP_SUCCESS)
2976 return (-1); /* Can't find it! */
2977
2978 /*
2979 * The return value from this routine specifies which port number
2980 * we are. The primary port is denoted port 0. On a QUAD card we
2981 * should return 1, 2, and 3 from this routine. The return value
2982 * is used to modify the ethernet address from the SROM data.
2983 */
2984
2985 #ifdef BUG_4010796
2986 {
2987 /*
2988 * For the present, we remember the device number of our primary
2989 * sibling and hope we and our other siblings are consecutively
2990 * numbered up from there. In the future perhaps the bootstrap
2991 * will pass us the necessary information telling us which physical
2992 * port we really are.
2993 */
2994 pci_regspec_t *assignp;
2995 int assign_len;
2996 int devnum;
2997 int primary_devnum;
2998
2999 primary_devnum = ddi_getprop(DDI_DEV_T_ANY, devinfo, 0,
3000 "DNET_DEVNUM", -1);
3001 if (primary_devnum == -1)
3002 return (1); /* XXX NEEDSWORK -- We have no better idea */
3003
3004 if ((ddi_getlongprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
3005 "assigned-addresses", (caddr_t)&assignp,
3006 &assign_len)) != DDI_PROP_SUCCESS)
3007 return (1); /* XXX NEEDSWORK -- We have no better idea */
3008
3009 devnum = PCI_REG_DEV_G(assignp->pci_phys_hi);
3010 kmem_free(assignp, assign_len);
3011 return (devnum - primary_devnum);
3012 }
3013 #else
3014 return (1); /* XXX NEEDSWORK -- We have no better idea */
3015 #endif
3016 }
3017
3018
3019 #ifdef BUG_4010796
3020 static void
set_alternative_srom_image(dev_info_t * devinfo,uchar_t * vi,int len)3021 set_alternative_srom_image(dev_info_t *devinfo, uchar_t *vi, int len)
3022 {
3023 int proplen;
3024 pci_regspec_t *assignp;
3025 int assign_len;
3026 int devnum;
3027
3028 if (ddi_getproplen(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
3029 "DNET_SROM", &proplen) == DDI_PROP_SUCCESS ||
3030 ddi_getproplen(DDI_DEV_T_ANY, ddi_get_parent(devinfo),
3031 DDI_PROP_DONTPASS, "DNET_SROM", &proplen) == DDI_PROP_SUCCESS)
3032 return; /* Already done! */
3033
3034 /* function return value ignored */
3035 (void) ddi_prop_update_byte_array(DDI_DEV_T_NONE,
3036 ddi_get_parent(devinfo), "DNET_SROM", (uchar_t *)vi, len);
3037 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devinfo,
3038 "DNET_HACK", "hack");
3039
3040 if ((ddi_getlongprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
3041 "assigned-addresses", (caddr_t)&assignp,
3042 &assign_len)) == DDI_PROP_SUCCESS) {
3043 devnum = PCI_REG_DEV_G(assignp->pci_phys_hi);
3044 kmem_free(assignp, assign_len);
3045 /* function return value ignored */
3046 (void) ddi_prop_update_int(DDI_DEV_T_NONE,
3047 ddi_get_parent(devinfo), "DNET_DEVNUM", devnum);
3048 }
3049 }
3050 #endif
3051
3052 /*
3053 * ========== SROM Parsing Routines ==========
3054 */
3055
3056 static int
check_srom_valid(uchar_t * vi)3057 check_srom_valid(uchar_t *vi)
3058 {
3059 int word, bit;
3060 uint8_t crc;
3061 uint16_t *wvi; /* word16 pointer to vendor info */
3062 uint16_t bitval;
3063
3064 /* verify that the number of controllers on the card is within range */
3065 if (vi[SROM_ADAPTER_CNT] < 1 || vi[SROM_ADAPTER_CNT] > MAX_ADAPTERS)
3066 return (0);
3067
3068 /*
3069 * version 1 and 3 of this card did not check the id block CRC value
3070 * and this can't be changed without retesting every supported card
3071 *
3072 * however version 4 of the SROM can have this test applied
3073 * without fear of breaking something that used to work.
3074 * the CRC algorithm is taken from the Intel document
3075 * "21x4 Serial ROM Format"
3076 * version 4.09
3077 * 3-Mar-1999
3078 */
3079
3080 switch (vi[SROM_VERSION]) {
3081 case 1:
3082 /* fallthru */
3083 case 3:
3084 return (vi[SROM_MBZ] == 0 && /* must be zero */
3085 vi[SROM_MBZ2] == 0 && /* must be zero */
3086 vi[SROM_MBZ3] == 0); /* must be zero */
3087
3088 case 4:
3089 wvi = (uint16_t *)vi;
3090 crc = 0xff;
3091 for (word = 0; word < 9; word++)
3092 for (bit = 15; bit >= 0; bit--) {
3093 if (word == 8 && bit == 7)
3094 return (crc == vi[16]);
3095 bitval =
3096 ((wvi[word] >> bit) & 1) ^ ((crc >> 7) & 1);
3097 crc <<= 1;
3098 if (bitval == 1) {
3099 crc ^= 7;
3100 }
3101 }
3102
3103 default:
3104 return (0);
3105 }
3106 }
3107
3108 /*
3109 * ========== Active Media Determination Routines ==========
3110 */
3111
3112 /* This routine is also called for V3 Compact and extended type 0 SROMs */
3113 static int
is_fdmedia(int media)3114 is_fdmedia(int media)
3115 {
3116 if (media == MEDIA_TP_FD || media == MEDIA_SYM_SCR_FD)
3117 return (1);
3118 else
3119 return (0);
3120 }
3121
3122 /*
3123 * "Linkset" is used to merge media that use the same link test check. So,
3124 * if the TP link is added to the linkset, so is the TP Full duplex link.
3125 * Used to avoid checking the same link status twice.
3126 */
3127 static void
linkset_add(uint32_t * set,int media)3128 linkset_add(uint32_t *set, int media)
3129 {
3130 if (media == MEDIA_TP_FD || media == MEDIA_TP)
3131 *set |= (1UL<<MEDIA_TP_FD) | (1UL<<MEDIA_TP);
3132 else if (media == MEDIA_SYM_SCR_FD || media == MEDIA_SYM_SCR)
3133 *set |= (1UL<<MEDIA_SYM_SCR_FD) | (1UL<<MEDIA_SYM_SCR);
3134 else *set |= 1UL<<media;
3135 }
3136 static int
linkset_isset(uint32_t linkset,int media)3137 linkset_isset(uint32_t linkset, int media)
3138 {
3139 return (((1UL<<media) & linkset) ? 1:0);
3140 }
3141
3142 /*
3143 * The following code detects which Media is connected for 21041/21140
3144 * Expect to change this code to support new 21140 variants.
3145 * find_active_media() - called with intrlock held.
3146 */
3147 static void
find_active_media(struct dnetinstance * dnetp)3148 find_active_media(struct dnetinstance *dnetp)
3149 {
3150 int i;
3151 media_block_t *block;
3152 media_block_t *best_allowed = NULL;
3153 media_block_t *hd_found = NULL;
3154 media_block_t *fd_found = NULL;
3155 LEAF_FORMAT *leaf = &dnetp->sr.leaf[dnetp->leaf];
3156 uint32_t checked = 0, links_up = 0;
3157
3158 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3159
3160 dnetp->selected_media_block = leaf->default_block;
3161
3162 if (dnetp->phyaddr != -1) {
3163 dnetp->selected_media_block = leaf->mii_block;
3164 setup_block(dnetp);
3165
3166 if (ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
3167 DDI_PROP_DONTPASS, "portmon", 1)) {
3168 /* XXX return value ignored */
3169 (void) mii_start_portmon(dnetp->mii, dnet_mii_link_cb,
3170 &dnetp->intrlock);
3171 /*
3172 * If the port monitor detects the link is already
3173 * up, there is no point going through the rest of the
3174 * link sense
3175 */
3176 if (dnetp->mii_up) {
3177 return;
3178 }
3179 }
3180 }
3181
3182 /*
3183 * Media is searched for in order of Precedence. This DEC SROM spec
3184 * tells us that the first media entry in the SROM is the lowest
3185 * precedence and should be checked last. This is why we go to the last
3186 * Media block and work back to the beginning.
3187 *
3188 * However, some older SROMs (Cogent EM110's etc.) have this the wrong
3189 * way around. As a result, following the SROM spec would result in a
3190 * 10 link being chosen over a 100 link if both media are available.
3191 * So we continue trying the media until we have at least tried the
3192 * DEFAULT media.
3193 */
3194
3195 /* Search for an active medium, and select it */
3196 for (block = leaf->block + leaf->block_count - 1;
3197 block >= leaf->block; block--) {
3198 int media = block->media_code;
3199
3200 /* User settings disallow selection of this block */
3201 if (dnetp->disallowed_media & (1UL<<media))
3202 continue;
3203
3204 /* We may not be able to pick the default */
3205 if (best_allowed == NULL || block == leaf->default_block)
3206 best_allowed = block;
3207 #ifdef DEBUG
3208 if (dnetdebug & DNETSENSE)
3209 cmn_err(CE_NOTE, "Testing %s medium (block type %d)",
3210 media_str[media], block->type);
3211 #endif
3212
3213 dnetp->selected_media_block = block;
3214 switch (block->type) {
3215
3216 case 2: /* SIA Media block: Best we can do is send a packet */
3217 setup_block(dnetp);
3218 if (send_test_packet(dnetp)) {
3219 if (!is_fdmedia(media))
3220 return;
3221 if (!fd_found)
3222 fd_found = block;
3223 }
3224 break;
3225
3226 /* SYM/SCR or TP block: Use the link-sense bits */
3227 case 0:
3228 if (!linkset_isset(checked, media)) {
3229 linkset_add(&checked, media);
3230 if (((media == MEDIA_BNC ||
3231 media == MEDIA_AUI) &&
3232 send_test_packet(dnetp)) ||
3233 dnet_link_sense(dnetp))
3234 linkset_add(&links_up, media);
3235 }
3236
3237 if (linkset_isset(links_up, media)) {
3238 /*
3239 * Half Duplex is *always* the favoured media.
3240 * Full Duplex can be set and forced via the
3241 * conf file.
3242 */
3243 if (!is_fdmedia(media) &&
3244 dnetp->selected_media_block ==
3245 leaf->default_block) {
3246 /*
3247 * Cogent cards have the media in
3248 * opposite order to the spec.,
3249 * this code forces the media test to
3250 * keep going until the default media
3251 * is tested.
3252 *
3253 * In Cogent case, 10, 10FD, 100FD, 100
3254 * 100 is the default but 10 could have
3255 * been detected and would have been
3256 * chosen but now we force it through to
3257 * 100.
3258 */
3259 setup_block(dnetp);
3260 return;
3261 } else if (!is_fdmedia(media)) {
3262 /*
3263 * This allows all the others to work
3264 * properly by remembering the media
3265 * that works and not defaulting to
3266 * a FD link.
3267 */
3268 if (hd_found == NULL)
3269 hd_found = block;
3270 } else if (fd_found == NULL) {
3271 /*
3272 * No media have already been found
3273 * so far, this is FD, it works so
3274 * remember it and if no others are
3275 * detected, use it.
3276 */
3277 fd_found = block;
3278 }
3279 }
3280 break;
3281
3282 /*
3283 * MII block: May take up to a second or so to settle if
3284 * setup causes a PHY reset
3285 */
3286 case 1: case 3:
3287 setup_block(dnetp);
3288 for (i = 0; ; i++) {
3289 if (mii_linkup(dnetp->mii, dnetp->phyaddr)) {
3290 /* XXX function return value ignored */
3291 (void) mii_getspeed(dnetp->mii,
3292 dnetp->phyaddr,
3293 &dnetp->mii_speed,
3294 &dnetp->mii_duplex);
3295 dnetp->mii_up = 1;
3296 leaf->mii_block = block;
3297 return;
3298 }
3299 if (i == 10)
3300 break;
3301 delay(drv_usectohz(150000));
3302 }
3303 dnetp->mii_up = 0;
3304 break;
3305 }
3306 } /* for loop */
3307 if (hd_found) {
3308 dnetp->selected_media_block = hd_found;
3309 } else if (fd_found) {
3310 dnetp->selected_media_block = fd_found;
3311 } else {
3312 if (best_allowed == NULL)
3313 best_allowed = leaf->default_block;
3314 dnetp->selected_media_block = best_allowed;
3315 cmn_err(CE_WARN, "!dnet: Default media selected\n");
3316 }
3317 setup_block(dnetp);
3318 }
3319
3320 /*
3321 * Do anything neccessary to select the selected_media_block.
3322 * setup_block() - called with intrlock held.
3323 */
3324 static void
setup_block(struct dnetinstance * dnetp)3325 setup_block(struct dnetinstance *dnetp)
3326 {
3327 dnet_reset_board(dnetp);
3328 dnet_init_board(dnetp);
3329 /* XXX function return value ignored */
3330 (void) dnet_start(dnetp);
3331 }
3332
3333 /* dnet_link_sense() - called with intrlock held */
3334 static int
dnet_link_sense(struct dnetinstance * dnetp)3335 dnet_link_sense(struct dnetinstance *dnetp)
3336 {
3337 /*
3338 * This routine makes use of the command word from the srom config.
3339 * Details of the auto-sensing information contained in this can
3340 * be found in the "Digital Semiconductor 21X4 Serial ROM Format v3.03"
3341 * spec. Section 4.3.2.1, and 4.5.2.1.3
3342 */
3343 media_block_t *block = dnetp->selected_media_block;
3344 uint32_t link, status, mask, polarity;
3345 int settletime, stabletime, waittime, upsamples;
3346 int delay_100, delay_10;
3347
3348
3349 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3350 /* Don't autosense if the medium does not support it */
3351 if (block->command & (1 << 15)) {
3352 /* This should be the default block */
3353 if (block->command & (1UL<<14))
3354 dnetp->sr.leaf[dnetp->leaf].default_block = block;
3355 return (0);
3356 }
3357
3358 delay_100 = ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
3359 DDI_PROP_DONTPASS, "autosense-delay-100", 2000);
3360
3361 delay_10 = ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
3362 DDI_PROP_DONTPASS, "autosense-delay-10", 400);
3363
3364 /*
3365 * Scrambler may need to be disabled for link sensing
3366 * to work
3367 */
3368 dnetp->disable_scrambler = 1;
3369 setup_block(dnetp);
3370 dnetp->disable_scrambler = 0;
3371
3372 if (block->media_code == MEDIA_TP || block->media_code == MEDIA_TP_FD)
3373 settletime = delay_10;
3374 else
3375 settletime = delay_100;
3376 stabletime = settletime / 4;
3377
3378 mask = 1 << ((block->command & CMD_MEDIABIT_MASK) >> 1);
3379 polarity = block->command & CMD_POL ? 0xffffffff : 0;
3380
3381 for (waittime = 0, upsamples = 0;
3382 waittime <= settletime + stabletime && upsamples < 8;
3383 waittime += stabletime/8) {
3384 delay(drv_usectohz(stabletime*1000 / 8));
3385 status = read_gpr(dnetp);
3386 link = (status^polarity) & mask;
3387 if (link)
3388 upsamples++;
3389 else
3390 upsamples = 0;
3391 }
3392 #ifdef DNETDEBUG
3393 if (dnetdebug & DNETSENSE)
3394 cmn_err(CE_NOTE, "%s upsamples:%d stat:%x polarity:%x "
3395 "mask:%x link:%x",
3396 upsamples == 8 ? "UP":"DOWN",
3397 upsamples, status, polarity, mask, link);
3398 #endif
3399 if (upsamples == 8)
3400 return (1);
3401 return (0);
3402 }
3403
3404 static int
send_test_packet(struct dnetinstance * dnetp)3405 send_test_packet(struct dnetinstance *dnetp)
3406 {
3407 int packet_delay;
3408 struct tx_desc_type *desc;
3409 int bufindex;
3410 int media_code = dnetp->selected_media_block->media_code;
3411 uint32_t del;
3412
3413 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3414 /*
3415 * For a successful test packet, the card must have settled into
3416 * its current setting. Almost all cards we've tested manage to
3417 * do this with all media within 50ms. However, the SMC 8432
3418 * requires 300ms to settle into BNC mode. We now only do this
3419 * from attach, and we do sleeping delay() instead of drv_usecwait()
3420 * so we hope this .2 second delay won't cause too much suffering.
3421 * ALSO: with an autonegotiating hub, an aditional 1 second delay is
3422 * required. This is done if the media type is TP
3423 */
3424 if (media_code == MEDIA_TP || media_code == MEDIA_TP_FD) {
3425 packet_delay = ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
3426 DDI_PROP_DONTPASS, "test_packet_delay_tp", 1300000);
3427 } else {
3428 packet_delay = ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
3429 DDI_PROP_DONTPASS, "test_packet_delay", 300000);
3430 }
3431 delay(drv_usectohz(packet_delay));
3432
3433 desc = dnetp->tx_desc;
3434
3435 bufindex = dnetp->tx_current_desc;
3436 if (alloc_descriptor(dnetp) == FAILURE) {
3437 cmn_err(CE_WARN, "DNET: send_test_packet: alloc_descriptor"
3438 "failed");
3439 return (0);
3440 }
3441
3442 /*
3443 * use setup buffer as the buffer for the test packet
3444 * instead of allocating one.
3445 */
3446
3447 ASSERT(dnetp->setup_buf_vaddr != NULL);
3448 /* Put something decent in dest address so we don't annoy other cards */
3449 BCOPY((caddr_t)dnetp->curr_macaddr,
3450 (caddr_t)dnetp->setup_buf_vaddr, ETHERADDRL);
3451 BCOPY((caddr_t)dnetp->curr_macaddr,
3452 (caddr_t)dnetp->setup_buf_vaddr+ETHERADDRL, ETHERADDRL);
3453
3454 desc[bufindex].buffer1 = dnetp->setup_buf_paddr;
3455 desc[bufindex].desc1.buffer_size1 = SETUPBUF_SIZE;
3456 desc[bufindex].buffer2 = (uint32_t)(0);
3457 desc[bufindex].desc1.first_desc = 1;
3458 desc[bufindex].desc1.last_desc = 1;
3459 desc[bufindex].desc1.int_on_comp = 1;
3460 desc[bufindex].desc0.own = 1;
3461
3462 ddi_put8(dnetp->io_handle, REG8(dnetp->io_reg, TX_POLL_REG),
3463 TX_POLL_DEMAND);
3464
3465 /*
3466 * Give enough time for the chip to transmit the packet
3467 */
3468 #if 1
3469 del = 1000;
3470 while (desc[bufindex].desc0.own && --del)
3471 drv_usecwait(10); /* quickly wait up to 10ms */
3472 if (desc[bufindex].desc0.own)
3473 delay(drv_usectohz(200000)); /* nicely wait a longer time */
3474 #else
3475 del = 0x10000;
3476 while (desc[bufindex].desc0.own && --del)
3477 drv_usecwait(10);
3478 #endif
3479
3480 #ifdef DNETDEBUG
3481 if (dnetdebug & DNETSENSE)
3482 cmn_err(CE_NOTE, "desc0 bits = %u, %u, %u, %u, %u, %u",
3483 desc[bufindex].desc0.own,
3484 desc[bufindex].desc0.err_summary,
3485 desc[bufindex].desc0.carrier_loss,
3486 desc[bufindex].desc0.no_carrier,
3487 desc[bufindex].desc0.late_collision,
3488 desc[bufindex].desc0.link_fail);
3489 #endif
3490 if (desc[bufindex].desc0.own) /* it shouldn't take this long, error */
3491 return (0);
3492
3493 return (!desc[bufindex].desc0.err_summary);
3494 }
3495
3496 /* enable_interrupts - called with intrlock held */
3497 static void
enable_interrupts(struct dnetinstance * dnetp)3498 enable_interrupts(struct dnetinstance *dnetp)
3499 {
3500 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3501 /* Don't enable interrupts if they have been forced off */
3502 if (dnetp->interrupts_disabled)
3503 return;
3504 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, INT_MASK_REG),
3505 ABNORMAL_INTR_MASK | NORMAL_INTR_MASK | SYSTEM_ERROR_MASK |
3506 (dnetp->timer.cb ? GPTIMER_INTR : 0) |
3507 RX_INTERRUPT_MASK |
3508 TX_INTERRUPT_MASK | TX_JABBER_MASK | TX_UNDERFLOW_MASK);
3509 }
3510
3511 /*
3512 * Some older multiport cards are non-PCI compliant in their interrupt routing.
3513 * Second and subsequent devices are incorrectly configured by the BIOS
3514 * (either in their ILINE configuration or the MP Configuration Table for PC+MP
3515 * systems).
3516 * The hack stops registering the interrupt routine for the FIRST
3517 * device on the adapter, and registers its own. It builds up a table
3518 * of dnetp structures for each device, and the new interrupt routine
3519 * calls dnet_intr for each of them.
3520 * Known cards that suffer from this problem are:
3521 * All Cogent multiport cards;
3522 * Znyx 314;
3523 * Znyx 315.
3524 *
3525 * XXX NEEDSWORK -- see comments above get_alternative_srom_image(). This
3526 * hack relies on the fact that the offending cards will have only one SROM.
3527 * It uses this fact to identify devices that are on the same multiport
3528 * adapter, as opposed to multiple devices from the same vendor (as
3529 * indicated by "secondary")
3530 */
3531 static int
dnet_hack_interrupts(struct dnetinstance * dnetp,int secondary)3532 dnet_hack_interrupts(struct dnetinstance *dnetp, int secondary)
3533 {
3534 int i;
3535 struct hackintr_inf *hackintr_inf;
3536 dev_info_t *devinfo = dnetp->devinfo;
3537 uint32_t oui = 0; /* Organizationally Unique ID */
3538
3539 if (ddi_getprop(DDI_DEV_T_ANY, devinfo, DDI_PROP_DONTPASS,
3540 "no_INTA_workaround", 0) != 0)
3541 return (0);
3542
3543 for (i = 0; i < 3; i++)
3544 oui = (oui << 8) | dnetp->vendor_addr[i];
3545
3546 /* Check wheather or not we need to implement the hack */
3547
3548 switch (oui) {
3549 case ZNYX_ETHER:
3550 /* Znyx multiport 21040 cards <<==>> ZX314 or ZX315 */
3551 if (dnetp->board_type != DEVICE_ID_21040)
3552 return (0);
3553 break;
3554
3555 case COGENT_ETHER:
3556 /* All known Cogent multiport cards */
3557 break;
3558
3559 case ADAPTEC_ETHER:
3560 /* Adaptec multiport cards */
3561 break;
3562
3563 default:
3564 /* Other cards work correctly */
3565 return (0);
3566 }
3567
3568 /* card is (probably) non-PCI compliant in its interrupt routing */
3569
3570
3571 if (!secondary) {
3572
3573 /*
3574 * If we have already registered a hacked interrupt, and
3575 * this is also a 'primary' adapter, then this is NOT part of
3576 * a multiport card, but a second card on the same PCI bus.
3577 * BUGID: 4057747
3578 */
3579 if (ddi_getprop(DDI_DEV_T_ANY, ddi_get_parent(devinfo),
3580 DDI_PROP_DONTPASS, hackintr_propname, 0) != 0)
3581 return (0);
3582 /* ... Primary not part of a multiport device */
3583
3584 #ifdef DNETDEBUG
3585 if (dnetdebug & DNETTRACE)
3586 cmn_err(CE_NOTE, "dnet: Implementing hardware "
3587 "interrupt flaw workaround");
3588 #endif
3589 dnetp->hackintr_inf = hackintr_inf =
3590 kmem_zalloc(sizeof (struct hackintr_inf), KM_SLEEP);
3591 if (hackintr_inf == NULL)
3592 goto fail;
3593
3594 hackintr_inf->dnetps[0] = dnetp;
3595 hackintr_inf->devinfo = devinfo;
3596
3597 /*
3598 * Add a property to allow successive attaches to find the
3599 * table
3600 */
3601
3602 if (ddi_prop_update_byte_array(DDI_DEV_T_NONE,
3603 ddi_get_parent(devinfo), hackintr_propname,
3604 (uchar_t *)&dnetp->hackintr_inf,
3605 sizeof (void *)) != DDI_PROP_SUCCESS)
3606 goto fail;
3607
3608
3609 /* Register our hacked interrupt routine */
3610 if (ddi_add_intr(devinfo, 0, &dnetp->icookie, NULL,
3611 (uint_t (*)(char *))dnet_hack_intr,
3612 (caddr_t)hackintr_inf) != DDI_SUCCESS) {
3613 /* XXX function return value ignored */
3614 (void) ddi_prop_remove(DDI_DEV_T_NONE,
3615 ddi_get_parent(devinfo),
3616 hackintr_propname);
3617 goto fail;
3618 }
3619
3620 /*
3621 * Mutex required to ensure interrupt routine has completed
3622 * when detaching devices
3623 */
3624 mutex_init(&hackintr_inf->lock, NULL, MUTEX_DRIVER,
3625 dnetp->icookie);
3626
3627 /* Stop GLD registering an interrupt */
3628 return (-1);
3629 } else {
3630
3631 /* Add the dnetp for this secondary device to the table */
3632
3633 hackintr_inf = (struct hackintr_inf *)(uintptr_t)
3634 ddi_getprop(DDI_DEV_T_ANY, ddi_get_parent(devinfo),
3635 DDI_PROP_DONTPASS, hackintr_propname, 0);
3636
3637 if (hackintr_inf == NULL)
3638 goto fail;
3639
3640 /* Find an empty slot */
3641 for (i = 0; i < MAX_INST; i++)
3642 if (hackintr_inf->dnetps[i] == NULL)
3643 break;
3644
3645 /* More than 8 ports on adapter ?! */
3646 if (i == MAX_INST)
3647 goto fail;
3648
3649 hackintr_inf->dnetps[i] = dnetp;
3650
3651 /*
3652 * Allow GLD to register a handler for this
3653 * device. If the card is actually broken, as we suspect, this
3654 * handler will never get called. However, by registering the
3655 * interrupt handler, we can copy gracefully with new multiport
3656 * Cogent cards that decide to fix the hardware problem
3657 */
3658 return (0);
3659 }
3660
3661 fail:
3662 cmn_err(CE_WARN, "dnet: Could not work around hardware interrupt"
3663 " routing problem");
3664 return (0);
3665 }
3666
3667 /*
3668 * Call dnet_intr for all adapters on a multiport card
3669 */
3670 static uint_t
dnet_hack_intr(struct hackintr_inf * hackintr_inf)3671 dnet_hack_intr(struct hackintr_inf *hackintr_inf)
3672 {
3673 int i;
3674 int claimed = DDI_INTR_UNCLAIMED;
3675
3676 /* Stop detaches while processing interrupts */
3677 mutex_enter(&hackintr_inf->lock);
3678
3679 for (i = 0; i < MAX_INST; i++) {
3680 if (hackintr_inf->dnetps[i] &&
3681 dnet_intr((caddr_t)hackintr_inf->dnetps[i]) ==
3682 DDI_INTR_CLAIMED) {
3683 claimed = DDI_INTR_CLAIMED;
3684 }
3685 }
3686 mutex_exit(&hackintr_inf->lock);
3687 return (claimed);
3688 }
3689
3690 /*
3691 * This removes the detaching device from the table procesed by the hacked
3692 * interrupt routine. Because the interrupts from all devices come in to the
3693 * same interrupt handler, ALL devices must stop interrupting once the
3694 * primary device detaches. This isn't a problem at present, because all
3695 * instances of a device are detached when the driver is unloaded.
3696 */
3697 static int
dnet_detach_hacked_interrupt(dev_info_t * devinfo)3698 dnet_detach_hacked_interrupt(dev_info_t *devinfo)
3699 {
3700 int i;
3701 struct hackintr_inf *hackintr_inf;
3702 struct dnetinstance *altdnetp, *dnetp =
3703 ddi_get_driver_private(devinfo);
3704
3705 hackintr_inf = (struct hackintr_inf *)(uintptr_t)
3706 ddi_getprop(DDI_DEV_T_ANY, ddi_get_parent(devinfo),
3707 DDI_PROP_DONTPASS, hackintr_propname, 0);
3708
3709 /*
3710 * No hackintr_inf implies hack was not required or the primary has
3711 * detached, and our interrupts are already disabled
3712 */
3713 if (!hackintr_inf) {
3714 /* remove the interrupt for the non-hacked case */
3715 ddi_remove_intr(devinfo, 0, dnetp->icookie);
3716 return (DDI_SUCCESS);
3717 }
3718
3719 /* Remove this device from the handled table */
3720 mutex_enter(&hackintr_inf->lock);
3721 for (i = 0; i < MAX_INST; i++) {
3722 if (hackintr_inf->dnetps[i] == dnetp) {
3723 hackintr_inf->dnetps[i] = NULL;
3724 break;
3725 }
3726 }
3727
3728 mutex_exit(&hackintr_inf->lock);
3729
3730 /* Not the primary card, we are done */
3731 if (devinfo != hackintr_inf->devinfo)
3732 return (DDI_SUCCESS);
3733
3734 /*
3735 * This is the primary card. All remaining adapters on this device
3736 * must have their interrupts disabled before we remove the handler
3737 */
3738 for (i = 0; i < MAX_INST; i++) {
3739 if ((altdnetp = hackintr_inf->dnetps[i]) != NULL) {
3740 altdnetp->interrupts_disabled = 1;
3741 ddi_put32(altdnetp->io_handle,
3742 REG32(altdnetp->io_reg, INT_MASK_REG), 0);
3743 }
3744 }
3745
3746 /* It should now be safe to remove the interrupt handler */
3747
3748 ddi_remove_intr(devinfo, 0, dnetp->icookie);
3749 mutex_destroy(&hackintr_inf->lock);
3750 /* XXX function return value ignored */
3751 (void) ddi_prop_remove(DDI_DEV_T_NONE, ddi_get_parent(devinfo),
3752 hackintr_propname);
3753 kmem_free(hackintr_inf, sizeof (struct hackintr_inf));
3754 return (DDI_SUCCESS);
3755 }
3756
3757 /* do_phy() - called with intrlock held */
3758 static void
do_phy(struct dnetinstance * dnetp)3759 do_phy(struct dnetinstance *dnetp)
3760 {
3761 dev_info_t *dip;
3762 LEAF_FORMAT *leaf = dnetp->sr.leaf + dnetp->leaf;
3763 media_block_t *block;
3764 int phy;
3765
3766 dip = dnetp->devinfo;
3767
3768 /*
3769 * Find and configure the PHY media block. If NO PHY blocks are
3770 * found on the SROM, but a PHY device is present, we assume the card
3771 * is a legacy device, and that there is ONLY a PHY interface on the
3772 * card (ie, no BNC or AUI, and 10BaseT is implemented by the PHY
3773 */
3774
3775 for (block = leaf->block + leaf->block_count -1;
3776 block >= leaf->block; block --) {
3777 if (block->type == 3 || block->type == 1) {
3778 leaf->mii_block = block;
3779 break;
3780 }
3781 }
3782
3783 /*
3784 * If no MII block, select default, and hope this configuration will
3785 * allow the phy to be read/written if it is present
3786 */
3787 dnetp->selected_media_block = leaf->mii_block ?
3788 leaf->mii_block : leaf->default_block;
3789
3790 setup_block(dnetp);
3791 /* XXX function return value ignored */
3792 (void) mii_create(dip, dnet_mii_write, dnet_mii_read, &dnetp->mii);
3793
3794 /*
3795 * We try PHY 0 LAST because it is less likely to be connected
3796 */
3797 for (phy = 1; phy < 33; phy++)
3798 if (mii_probe_phy(dnetp->mii, phy % 32) == MII_SUCCESS &&
3799 mii_init_phy(dnetp->mii, phy % 32) == MII_SUCCESS) {
3800 #ifdef DNETDEBUG
3801 if (dnetdebug & DNETSENSE)
3802 cmn_err(CE_NOTE, "dnet: "
3803 "PHY at address %d", phy % 32);
3804 #endif
3805 dnetp->phyaddr = phy % 32;
3806 if (!leaf->mii_block) {
3807 /* Legacy card, change the leaf node */
3808 set_leaf(&dnetp->sr, &leaf_phylegacy);
3809 }
3810 return;
3811 }
3812 #ifdef DNETDEBUG
3813 if (dnetdebug & DNETSENSE)
3814 cmn_err(CE_NOTE, "dnet: No PHY found");
3815 #endif
3816 }
3817
3818 static ushort_t
dnet_mii_read(dev_info_t * dip,int phy_addr,int reg_num)3819 dnet_mii_read(dev_info_t *dip, int phy_addr, int reg_num)
3820 {
3821 struct dnetinstance *dnetp;
3822
3823 uint32_t command_word;
3824 uint32_t tmp;
3825 uint32_t data = 0;
3826 int i;
3827 int bits_in_ushort = ((sizeof (ushort_t))*8);
3828 int turned_around = 0;
3829
3830 dnetp = ddi_get_driver_private(dip);
3831
3832 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3833 /* Write Preamble */
3834 write_mii(dnetp, MII_PRE, 2*bits_in_ushort);
3835
3836 /* Prepare command word */
3837 command_word = (uint32_t)phy_addr << MII_PHY_ADDR_ALIGN;
3838 command_word |= (uint32_t)reg_num << MII_REG_ADDR_ALIGN;
3839 command_word |= MII_READ_FRAME;
3840
3841 write_mii(dnetp, command_word, bits_in_ushort-2);
3842
3843 mii_tristate(dnetp);
3844
3845 /* Check that the PHY generated a zero bit the 2nd clock */
3846 tmp = ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg, ETHER_ROM_REG));
3847
3848 turned_around = (tmp & MII_DATA_IN) ? 0 : 1;
3849
3850 /* read data WORD */
3851 for (i = 0; i < bits_in_ushort; i++) {
3852 ddi_put32(dnetp->io_handle,
3853 REG32(dnetp->io_reg, ETHER_ROM_REG), MII_READ);
3854 drv_usecwait(MII_DELAY);
3855 ddi_put32(dnetp->io_handle,
3856 REG32(dnetp->io_reg, ETHER_ROM_REG), MII_READ | MII_CLOCK);
3857 drv_usecwait(MII_DELAY);
3858 tmp = ddi_get32(dnetp->io_handle,
3859 REG32(dnetp->io_reg, ETHER_ROM_REG));
3860 drv_usecwait(MII_DELAY);
3861 data = (data << 1) | (tmp >> MII_DATA_IN_POSITION) & 0x0001;
3862 }
3863
3864 mii_tristate(dnetp);
3865 return (turned_around ? data: -1);
3866 }
3867
3868 static void
dnet_mii_write(dev_info_t * dip,int phy_addr,int reg_num,int reg_dat)3869 dnet_mii_write(dev_info_t *dip, int phy_addr, int reg_num, int reg_dat)
3870 {
3871 struct dnetinstance *dnetp;
3872 uint32_t command_word;
3873 int bits_in_ushort = ((sizeof (ushort_t))*8);
3874
3875 dnetp = ddi_get_driver_private(dip);
3876
3877 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3878 write_mii(dnetp, MII_PRE, 2*bits_in_ushort);
3879
3880 /* Prepare command word */
3881 command_word = ((uint32_t)phy_addr << MII_PHY_ADDR_ALIGN);
3882 command_word |= ((uint32_t)reg_num << MII_REG_ADDR_ALIGN);
3883 command_word |= (MII_WRITE_FRAME | (uint32_t)reg_dat);
3884
3885 write_mii(dnetp, command_word, 2*bits_in_ushort);
3886 mii_tristate(dnetp);
3887 }
3888
3889 /*
3890 * Write data size bits from mii_data to the MII control lines.
3891 */
3892 static void
write_mii(struct dnetinstance * dnetp,uint32_t mii_data,int data_size)3893 write_mii(struct dnetinstance *dnetp, uint32_t mii_data, int data_size)
3894 {
3895 int i;
3896 uint32_t dbit;
3897
3898 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3899 for (i = data_size; i > 0; i--) {
3900 dbit = ((mii_data >>
3901 (31 - MII_WRITE_DATA_POSITION)) & MII_WRITE_DATA);
3902 ddi_put32(dnetp->io_handle,
3903 REG32(dnetp->io_reg, ETHER_ROM_REG),
3904 MII_WRITE | dbit);
3905 drv_usecwait(MII_DELAY);
3906 ddi_put32(dnetp->io_handle,
3907 REG32(dnetp->io_reg, ETHER_ROM_REG),
3908 MII_WRITE | MII_CLOCK | dbit);
3909 drv_usecwait(MII_DELAY);
3910 mii_data <<= 1;
3911 }
3912 }
3913
3914 /*
3915 * Put the MDIO port in tri-state for the turn around bits
3916 * in MII read and at end of MII management sequence.
3917 */
3918 static void
mii_tristate(struct dnetinstance * dnetp)3919 mii_tristate(struct dnetinstance *dnetp)
3920 {
3921 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3922 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, ETHER_ROM_REG),
3923 MII_WRITE_TS);
3924 drv_usecwait(MII_DELAY);
3925 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, ETHER_ROM_REG),
3926 MII_WRITE_TS | MII_CLOCK);
3927 drv_usecwait(MII_DELAY);
3928 }
3929
3930
3931 static void
set_leaf(SROM_FORMAT * sr,LEAF_FORMAT * leaf)3932 set_leaf(SROM_FORMAT *sr, LEAF_FORMAT *leaf)
3933 {
3934 if (sr->leaf && !sr->leaf->is_static)
3935 kmem_free(sr->leaf, sr->adapters * sizeof (LEAF_FORMAT));
3936 sr->leaf = leaf;
3937 }
3938
3939 /*
3940 * Callback from MII module. Makes sure that the CSR registers are
3941 * configured properly if the PHY changes mode.
3942 */
3943 /* ARGSUSED */
3944 /* dnet_mii_link_cb - called with intrlock held */
3945 static void
dnet_mii_link_cb(dev_info_t * dip,int phy,enum mii_phy_state state)3946 dnet_mii_link_cb(dev_info_t *dip, int phy, enum mii_phy_state state)
3947 {
3948 struct dnetinstance *dnetp = ddi_get_driver_private(dip);
3949 LEAF_FORMAT *leaf;
3950
3951 ASSERT(MUTEX_HELD(&dnetp->intrlock));
3952
3953 leaf = dnetp->sr.leaf + dnetp->leaf;
3954 if (state == phy_state_linkup) {
3955 dnetp->mii_up = 1;
3956
3957 (void) mii_getspeed(dnetp->mii, dnetp->phyaddr,
3958 &dnetp->mii_speed, &dnetp->mii_duplex);
3959
3960 dnetp->selected_media_block = leaf->mii_block;
3961 setup_block(dnetp);
3962 } else {
3963 /* NEEDSWORK: Probably can call find_active_media here */
3964 dnetp->mii_up = 0;
3965
3966 if (leaf->default_block->media_code == MEDIA_MII)
3967 dnetp->selected_media_block = leaf->default_block;
3968 setup_block(dnetp);
3969 }
3970
3971 if (dnetp->running) {
3972 mac_link_update(dnetp->mac_handle,
3973 (dnetp->mii_up ? LINK_STATE_UP : LINK_STATE_DOWN));
3974 }
3975 }
3976
3977 /*
3978 * SROM parsing routines.
3979 * Refer to the Digital 3.03 SROM spec while reading this! (references refer
3980 * to this document)
3981 * Where possible ALL vendor specific changes should be localised here. The
3982 * SROM data should be capable of describing any programmatic irregularities
3983 * of DNET cards (via SIA or GP registers, in particular), so vendor specific
3984 * code elsewhere should not be required
3985 */
3986 static void
dnet_parse_srom(struct dnetinstance * dnetp,SROM_FORMAT * sr,uchar_t * vi)3987 dnet_parse_srom(struct dnetinstance *dnetp, SROM_FORMAT *sr, uchar_t *vi)
3988 {
3989 uint32_t ether_mfg = 0;
3990 int i;
3991 uchar_t *p;
3992
3993 if (!ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
3994 DDI_PROP_DONTPASS, "no_sromconfig", 0))
3995 dnetp->sr.init_from_srom = check_srom_valid(vi);
3996
3997 if (dnetp->sr.init_from_srom && dnetp->board_type != DEVICE_ID_21040) {
3998 /* Section 2/3: General SROM Format/ ID Block */
3999 p = vi+18;
4000 sr->version = *p++;
4001 sr->adapters = *p++;
4002
4003 sr->leaf =
4004 kmem_zalloc(sr->adapters * sizeof (LEAF_FORMAT), KM_SLEEP);
4005 for (i = 0; i < 6; i++)
4006 sr->netaddr[i] = *p++;
4007
4008 for (i = 0; i < sr->adapters; i++) {
4009 uchar_t devno = *p++;
4010 uint16_t offset = *p++;
4011 offset |= *p++ << 8;
4012 sr->leaf[i].device_number = devno;
4013 parse_controller_leaf(dnetp, sr->leaf+i, vi+offset);
4014 }
4015 /*
4016 * 'Orrible hack for cogent cards. The 6911A board seems to
4017 * have an incorrect SROM. (From the OEMDEMO program
4018 * supplied by cogent, it seems that the ROM matches a setup
4019 * or a board with a QSI or ICS PHY.
4020 */
4021 for (i = 0; i < 3; i++)
4022 ether_mfg = (ether_mfg << 8) | sr->netaddr[i];
4023
4024 if (ether_mfg == ADAPTEC_ETHER) {
4025 static uint16_t cogent_gprseq[] = {0x821, 0};
4026 switch (vi[COGENT_SROM_ID]) {
4027 case COGENT_ANA6911A_C:
4028 case COGENT_ANA6911AC_C:
4029 #ifdef DNETDEBUG
4030 if (dnetdebug & DNETTRACE)
4031 cmn_err(CE_WARN,
4032 "Suspected bad GPR sequence."
4033 " Making a guess (821,0)");
4034 #endif
4035
4036 /* XXX function return value ignored */
4037 (void) ddi_prop_update_byte_array(
4038 DDI_DEV_T_NONE, dnetp->devinfo,
4039 "gpr-sequence", (uchar_t *)cogent_gprseq,
4040 sizeof (cogent_gprseq));
4041 break;
4042 }
4043 }
4044 } else {
4045 /*
4046 * Adhoc SROM, check for some cards which need special handling
4047 * Assume vendor info contains ether address in first six bytes
4048 */
4049
4050 uchar_t *mac = vi + ddi_getprop(DDI_DEV_T_ANY, dnetp->devinfo,
4051 DDI_PROP_DONTPASS, macoffset_propname, 0);
4052
4053 for (i = 0; i < 6; i++)
4054 sr->netaddr[i] = mac[i];
4055
4056 if (dnetp->board_type == DEVICE_ID_21140) {
4057 for (i = 0; i < 3; i++)
4058 ether_mfg = (ether_mfg << 8) | mac[i];
4059
4060 switch (ether_mfg) {
4061 case ASANTE_ETHER:
4062 dnetp->vendor_21140 = ASANTE_TYPE;
4063 dnetp->vendor_revision = 0;
4064 set_leaf(sr, &leaf_asante);
4065 sr->adapters = 1;
4066 break;
4067
4068 case COGENT_ETHER:
4069 case ADAPTEC_ETHER:
4070 dnetp->vendor_21140 = COGENT_EM_TYPE;
4071 dnetp->vendor_revision =
4072 vi[VENDOR_REVISION_OFFSET];
4073 set_leaf(sr, &leaf_cogent_100);
4074 sr->adapters = 1;
4075 break;
4076
4077 default:
4078 dnetp->vendor_21140 = DEFAULT_TYPE;
4079 dnetp->vendor_revision = 0;
4080 set_leaf(sr, &leaf_default_100);
4081 sr->adapters = 1;
4082 break;
4083 }
4084 } else if (dnetp->board_type == DEVICE_ID_21041) {
4085 set_leaf(sr, &leaf_21041);
4086 } else if (dnetp->board_type == DEVICE_ID_21040) {
4087 set_leaf(sr, &leaf_21040);
4088 }
4089 }
4090 }
4091
4092 /* Section 4.2, 4.3, 4.4, 4.5 */
4093 static void
parse_controller_leaf(struct dnetinstance * dnetp,LEAF_FORMAT * leaf,uchar_t * vi)4094 parse_controller_leaf(struct dnetinstance *dnetp, LEAF_FORMAT *leaf,
4095 uchar_t *vi)
4096 {
4097 int i;
4098
4099 leaf->selected_contype = *vi++;
4100 leaf->selected_contype |= *vi++ << 8;
4101
4102 if (dnetp->board_type == DEVICE_ID_21140) /* Sect. 4.3 */
4103 leaf->gpr = *vi++;
4104
4105 leaf->block_count = *vi++;
4106
4107 if (leaf->block_count > MAX_MEDIA) {
4108 cmn_err(CE_WARN, "dnet: Too many media in SROM!");
4109 leaf->block_count = 1;
4110 }
4111 for (i = 0; i <= leaf->block_count; i++) {
4112 vi = parse_media_block(dnetp, leaf->block + i, vi);
4113 if (leaf->block[i].command & CMD_DEFAULT_MEDIUM)
4114 leaf->default_block = leaf->block+i;
4115 }
4116 /* No explicit default block: use last in the ROM */
4117 if (leaf->default_block == NULL)
4118 leaf->default_block = leaf->block + leaf->block_count -1;
4119
4120 }
4121
4122 static uchar_t *
parse_media_block(struct dnetinstance * dnetp,media_block_t * block,uchar_t * vi)4123 parse_media_block(struct dnetinstance *dnetp, media_block_t *block, uchar_t *vi)
4124 {
4125 int i;
4126
4127 /*
4128 * There are three kinds of media block we need to worry about:
4129 * The 21041 blocks.
4130 * 21140 blocks from a version 1 SROM
4131 * 2114[023] block from a version 3 SROM
4132 */
4133
4134 if (dnetp->board_type == DEVICE_ID_21041) {
4135 /* Section 4.2 */
4136 block->media_code = *vi & 0x3f;
4137 block->type = 2;
4138 if (*vi++ & 0x40) {
4139 block->un.sia.csr13 = *vi++;
4140 block->un.sia.csr13 |= *vi++ << 8;
4141 block->un.sia.csr14 = *vi++;
4142 block->un.sia.csr14 |= *vi++ << 8;
4143 block->un.sia.csr15 = *vi++;
4144 block->un.sia.csr15 |= *vi++ << 8;
4145 } else {
4146 /* No media data (csrs 13,14,15). Insert defaults */
4147 switch (block->media_code) {
4148 case MEDIA_TP:
4149 block->un.sia.csr13 = 0xef01;
4150 block->un.sia.csr14 = 0x7f3f;
4151 block->un.sia.csr15 = 0x0008;
4152 break;
4153 case MEDIA_TP_FD:
4154 block->un.sia.csr13 = 0xef01;
4155 block->un.sia.csr14 = 0x7f3d;
4156 block->un.sia.csr15 = 0x0008;
4157 break;
4158 case MEDIA_BNC:
4159 block->un.sia.csr13 = 0xef09;
4160 block->un.sia.csr14 = 0x0705;
4161 block->un.sia.csr15 = 0x0006;
4162 break;
4163 case MEDIA_AUI:
4164 block->un.sia.csr13 = 0xef09;
4165 block->un.sia.csr14 = 0x0705;
4166 block->un.sia.csr15 = 0x000e;
4167 break;
4168 }
4169 }
4170 } else if (*vi & 0x80) { /* Extended format: Section 4.3.2.2 */
4171 int blocklen = *vi++ & 0x7f;
4172 block->type = *vi++;
4173 switch (block->type) {
4174 case 0: /* "non-MII": Section 4.3.2.2.1 */
4175 block->media_code = (*vi++) & 0x3f;
4176 block->gprseqlen = 1;
4177 block->gprseq[0] = *vi++;
4178 block->command = *vi++;
4179 block->command |= *vi++ << 8;
4180 break;
4181
4182 case 1: /* MII/PHY: Section 4.3.2.2.2 */
4183 block->command = CMD_PS;
4184 block->media_code = MEDIA_MII;
4185 /* This is whats needed in CSR6 */
4186
4187 block->un.mii.phy_num = *vi++;
4188 block->gprseqlen = *vi++;
4189
4190 for (i = 0; i < block->gprseqlen; i++)
4191 block->gprseq[i] = *vi++;
4192 block->rstseqlen = *vi++;
4193 for (i = 0; i < block->rstseqlen; i++)
4194 block->rstseq[i] = *vi++;
4195
4196 block->un.mii.mediacaps = *vi++;
4197 block->un.mii.mediacaps |= *vi++ << 8;
4198 block->un.mii.nwayadvert = *vi++;
4199 block->un.mii.nwayadvert |= *vi++ << 8;
4200 block->un.mii.fdxmask = *vi++;
4201 block->un.mii.fdxmask |= *vi++ << 8;
4202 block->un.mii.ttmmask = *vi++;
4203 block->un.mii.ttmmask |= *vi++ << 8;
4204 break;
4205
4206 case 2: /* SIA Media: Section 4.4.2.1.1 */
4207 block->media_code = *vi & 0x3f;
4208 if (*vi++ & 0x40) {
4209 block->un.sia.csr13 = *vi++;
4210 block->un.sia.csr13 |= *vi++ << 8;
4211 block->un.sia.csr14 = *vi++;
4212 block->un.sia.csr14 |= *vi++ << 8;
4213 block->un.sia.csr15 = *vi++;
4214 block->un.sia.csr15 |= *vi++ << 8;
4215 } else {
4216 /*
4217 * SIA values not provided by SROM; provide
4218 * defaults. See appendix D of 2114[23] manuals.
4219 */
4220 switch (block->media_code) {
4221 case MEDIA_BNC:
4222 block->un.sia.csr13 = 0x0009;
4223 block->un.sia.csr14 = 0x0705;
4224 block->un.sia.csr15 = 0x0000;
4225 break;
4226 case MEDIA_AUI:
4227 block->un.sia.csr13 = 0x0009;
4228 block->un.sia.csr14 = 0x0705;
4229 block->un.sia.csr15 = 0x0008;
4230 break;
4231 case MEDIA_TP:
4232 block->un.sia.csr13 = 0x0001;
4233 block->un.sia.csr14 = 0x7f3f;
4234 block->un.sia.csr15 = 0x0000;
4235 break;
4236 case MEDIA_TP_FD:
4237 block->un.sia.csr13 = 0x0001;
4238 block->un.sia.csr14 = 0x7f3d;
4239 block->un.sia.csr15 = 0x0000;
4240 break;
4241 default:
4242 block->un.sia.csr13 = 0x0000;
4243 block->un.sia.csr14 = 0x0000;
4244 block->un.sia.csr15 = 0x0000;
4245 }
4246 }
4247
4248 /* Treat GP control/data as a GPR sequence */
4249 block->gprseqlen = 2;
4250 block->gprseq[0] = *vi++;
4251 block->gprseq[0] |= *vi++ << 8;
4252 block->gprseq[0] |= GPR_CONTROL_WRITE;
4253 block->gprseq[1] = *vi++;
4254 block->gprseq[1] |= *vi++ << 8;
4255 break;
4256
4257 case 3: /* MII/PHY : Section 4.4.2.1.2 */
4258 block->command = CMD_PS;
4259 block->media_code = MEDIA_MII;
4260 block->un.mii.phy_num = *vi++;
4261
4262 block->gprseqlen = *vi++;
4263 for (i = 0; i < block->gprseqlen; i++) {
4264 block->gprseq[i] = *vi++;
4265 block->gprseq[i] |= *vi++ << 8;
4266 }
4267
4268 block->rstseqlen = *vi++;
4269 for (i = 0; i < block->rstseqlen; i++) {
4270 block->rstseq[i] = *vi++;
4271 block->rstseq[i] |= *vi++ << 8;
4272 }
4273 block->un.mii.mediacaps = *vi++;
4274 block->un.mii.mediacaps |= *vi++ << 8;
4275 block->un.mii.nwayadvert = *vi++;
4276 block->un.mii.nwayadvert |= *vi++ << 8;
4277 block->un.mii.fdxmask = *vi++;
4278 block->un.mii.fdxmask |= *vi++ << 8;
4279 block->un.mii.ttmmask = *vi++;
4280 block->un.mii.ttmmask |= *vi++ << 8;
4281 block->un.mii.miiintr |= *vi++;
4282 break;
4283
4284 case 4: /* SYM Media: 4.5.2.1.3 */
4285 block->media_code = *vi++ & 0x3f;
4286 /* Treat GP control and data as a GPR sequence */
4287 block->gprseqlen = 2;
4288 block->gprseq[0] = *vi++;
4289 block->gprseq[0] |= *vi++ << 8;
4290 block->gprseq[0] |= GPR_CONTROL_WRITE;
4291 block->gprseq[1] = *vi++;
4292 block->gprseq[1] |= *vi++ << 8;
4293 block->command = *vi++;
4294 block->command |= *vi++ << 8;
4295 break;
4296
4297 case 5: /* GPR reset sequence: Section 4.5.2.1.4 */
4298 block->rstseqlen = *vi++;
4299 for (i = 0; i < block->rstseqlen; i++)
4300 block->rstseq[i] = *vi++;
4301 break;
4302
4303 default: /* Unknown media block. Skip it. */
4304 cmn_err(CE_WARN, "dnet: Unsupported SROM block.");
4305 vi += blocklen;
4306 break;
4307 }
4308 } else { /* Compact format (or V1 SROM): Section 4.3.2.1 */
4309 block->type = 0;
4310 block->media_code = *vi++ & 0x3f;
4311 block->gprseqlen = 1;
4312 block->gprseq[0] = *vi++;
4313 block->command = *vi++;
4314 block->command |= (*vi++) << 8;
4315 }
4316 return (vi);
4317 }
4318
4319
4320 /*
4321 * An alternative to doing this would be to store the legacy ROMs in binary
4322 * format in the conf file, and in read_srom, pick out the data. This would
4323 * then allow the parser to continue on as normal. This makes it a little
4324 * easier to read.
4325 */
4326 static void
setup_legacy_blocks()4327 setup_legacy_blocks()
4328 {
4329 LEAF_FORMAT *leaf;
4330 media_block_t *block;
4331
4332 /* Default FAKE SROM */
4333 leaf = &leaf_default_100;
4334 leaf->is_static = 1;
4335 leaf->default_block = &leaf->block[3];
4336 leaf->block_count = 4; /* 100 cards are highly unlikely to have BNC */
4337 block = leaf->block;
4338 block->media_code = MEDIA_TP_FD;
4339 block->type = 0;
4340 block->command = 0x8e; /* PCS, PS off, media sense: bit7, pol=1 */
4341 block++;
4342 block->media_code = MEDIA_TP;
4343 block->type = 0;
4344 block->command = 0x8e; /* PCS, PS off, media sense: bit7, pol=1 */
4345 block++;
4346 block->media_code = MEDIA_SYM_SCR_FD;
4347 block->type = 0;
4348 block->command = 0x6d; /* PCS, PS, SCR on, media sense: bit6, pol=0 */
4349 block++;
4350 block->media_code = MEDIA_SYM_SCR;
4351 block->type = 0;
4352 block->command = 0x406d; /* PCS, PS, SCR on, media sense: bit6, pol=0 */
4353
4354 /* COGENT FAKE SROM */
4355 leaf = &leaf_cogent_100;
4356 leaf->is_static = 1;
4357 leaf->default_block = &leaf->block[4];
4358 leaf->block_count = 5; /* 100TX, 100TX-FD, 10T 10T-FD, BNC */
4359 block = leaf->block; /* BNC */
4360 block->media_code = MEDIA_BNC;
4361 block->type = 0;
4362 block->command = 0x8000; /* No media sense, PCS, SCR, PS all off */
4363 block->gprseqlen = 2;
4364 block->rstseqlen = 0;
4365 block->gprseq[0] = 0x13f;
4366 block->gprseq[1] = 1;
4367
4368 block++;
4369 block->media_code = MEDIA_TP_FD;
4370 block->type = 0;
4371 block->command = 0x8e; /* PCS, PS off, media sense: bit7, pol=1 */
4372 block->gprseqlen = 2;
4373 block->rstseqlen = 0;
4374 block->gprseq[0] = 0x13f;
4375 block->gprseq[1] = 0x26;
4376
4377 block++; /* 10BaseT */
4378 block->media_code = MEDIA_TP;
4379 block->type = 0;
4380 block->command = 0x8e; /* PCS, PS off, media sense: bit7, pol=1 */
4381 block->gprseqlen = 2;
4382 block->rstseqlen = 0;
4383 block->gprseq[0] = 0x13f;
4384 block->gprseq[1] = 0x3e;
4385
4386 block++; /* 100BaseTX-FD */
4387 block->media_code = MEDIA_SYM_SCR_FD;
4388 block->type = 0;
4389 block->command = 0x6d; /* PCS, PS, SCR on, media sense: bit6, pol=0 */
4390 block->gprseqlen = 2;
4391 block->rstseqlen = 0;
4392 block->gprseq[0] = 0x13f;
4393 block->gprseq[1] = 1;
4394
4395 block++; /* 100BaseTX */
4396 block->media_code = MEDIA_SYM_SCR;
4397 block->type = 0;
4398 block->command = 0x406d; /* PCS, PS, SCR on, media sense: bit6, pol=0 */
4399 block->gprseqlen = 2;
4400 block->rstseqlen = 0;
4401 block->gprseq[0] = 0x13f;
4402 block->gprseq[1] = 1;
4403
4404 /* Generic legacy card with a PHY. */
4405 leaf = &leaf_phylegacy;
4406 leaf->block_count = 1;
4407 leaf->mii_block = leaf->block;
4408 leaf->default_block = &leaf->block[0];
4409 leaf->is_static = 1;
4410 block = leaf->block;
4411 block->media_code = MEDIA_MII;
4412 block->type = 1; /* MII Block type 1 */
4413 block->command = 1; /* Port select */
4414 block->gprseqlen = 0;
4415 block->rstseqlen = 0;
4416
4417 /* ASANTE FAKE SROM */
4418 leaf = &leaf_asante;
4419 leaf->is_static = 1;
4420 leaf->default_block = &leaf->block[0];
4421 leaf->block_count = 1;
4422 block = leaf->block;
4423 block->media_code = MEDIA_MII;
4424 block->type = 1; /* MII Block type 1 */
4425 block->command = 1; /* Port select */
4426 block->gprseqlen = 3;
4427 block->rstseqlen = 0;
4428 block->gprseq[0] = 0x180;
4429 block->gprseq[1] = 0x80;
4430 block->gprseq[2] = 0x0;
4431
4432 /* LEGACY 21041 card FAKE SROM */
4433 leaf = &leaf_21041;
4434 leaf->is_static = 1;
4435 leaf->block_count = 4; /* SIA Blocks for TP, TPfd, BNC, AUI */
4436 leaf->default_block = &leaf->block[3];
4437
4438 block = leaf->block;
4439 block->media_code = MEDIA_AUI;
4440 block->type = 2;
4441 block->un.sia.csr13 = 0xef09;
4442 block->un.sia.csr14 = 0x0705;
4443 block->un.sia.csr15 = 0x000e;
4444
4445 block++;
4446 block->media_code = MEDIA_TP_FD;
4447 block->type = 2;
4448 block->un.sia.csr13 = 0xef01;
4449 block->un.sia.csr14 = 0x7f3d;
4450 block->un.sia.csr15 = 0x0008;
4451
4452 block++;
4453 block->media_code = MEDIA_BNC;
4454 block->type = 2;
4455 block->un.sia.csr13 = 0xef09;
4456 block->un.sia.csr14 = 0x0705;
4457 block->un.sia.csr15 = 0x0006;
4458
4459 block++;
4460 block->media_code = MEDIA_TP;
4461 block->type = 2;
4462 block->un.sia.csr13 = 0xef01;
4463 block->un.sia.csr14 = 0x7f3f;
4464 block->un.sia.csr15 = 0x0008;
4465
4466 /* LEGACY 21040 card FAKE SROM */
4467 leaf = &leaf_21040;
4468 leaf->is_static = 1;
4469 leaf->block_count = 4; /* SIA Blocks for TP, TPfd, BNC, AUI */
4470 block = leaf->block;
4471 block->media_code = MEDIA_AUI;
4472 block->type = 2;
4473 block->un.sia.csr13 = 0x8f09;
4474 block->un.sia.csr14 = 0x0705;
4475 block->un.sia.csr15 = 0x000e;
4476 block++;
4477 block->media_code = MEDIA_TP_FD;
4478 block->type = 2;
4479 block->un.sia.csr13 = 0x0f01;
4480 block->un.sia.csr14 = 0x7f3d;
4481 block->un.sia.csr15 = 0x0008;
4482 block++;
4483 block->media_code = MEDIA_BNC;
4484 block->type = 2;
4485 block->un.sia.csr13 = 0xef09;
4486 block->un.sia.csr14 = 0x0705;
4487 block->un.sia.csr15 = 0x0006;
4488 block++;
4489 block->media_code = MEDIA_TP;
4490 block->type = 2;
4491 block->un.sia.csr13 = 0x8f01;
4492 block->un.sia.csr14 = 0x7f3f;
4493 block->un.sia.csr15 = 0x0008;
4494 }
4495
4496 static void
dnet_print_srom(SROM_FORMAT * sr)4497 dnet_print_srom(SROM_FORMAT *sr)
4498 {
4499 int i;
4500 uchar_t *a = sr->netaddr;
4501 cmn_err(CE_NOTE, "SROM Dump: %d. ver %d, Num adapters %d,"
4502 "Addr:%x:%x:%x:%x:%x:%x",
4503 sr->init_from_srom, sr->version, sr->adapters,
4504 a[0], a[1], a[2], a[3], a[4], a[5]);
4505
4506 for (i = 0; i < sr->adapters; i++)
4507 dnet_dump_leaf(sr->leaf+i);
4508 }
4509
4510 static void
dnet_dump_leaf(LEAF_FORMAT * leaf)4511 dnet_dump_leaf(LEAF_FORMAT *leaf)
4512 {
4513 int i;
4514 cmn_err(CE_NOTE, "Leaf: Device %d, block_count %d, gpr: %x",
4515 leaf->device_number, leaf->block_count, leaf->gpr);
4516 for (i = 0; i < leaf->block_count; i++)
4517 dnet_dump_block(leaf->block+i);
4518 }
4519
4520 static void
dnet_dump_block(media_block_t * block)4521 dnet_dump_block(media_block_t *block)
4522 {
4523 cmn_err(CE_NOTE, "Block(%p): type %x, media %s, command: %x ",
4524 (void *)block,
4525 block->type, media_str[block->media_code], block->command);
4526 dnet_dumpbin("\tGPR Seq", (uchar_t *)block->gprseq, 2,
4527 block->gprseqlen *2);
4528 dnet_dumpbin("\tGPR Reset", (uchar_t *)block->rstseq, 2,
4529 block->rstseqlen *2);
4530 switch (block->type) {
4531 case 1: case 3:
4532 cmn_err(CE_NOTE, "\tMII Info: phy %d, nway %x, fdx"
4533 "%x, ttm %x, mediacap %x",
4534 block->un.mii.phy_num, block->un.mii.nwayadvert,
4535 block->un.mii.fdxmask, block->un.mii.ttmmask,
4536 block->un.mii.mediacaps);
4537 break;
4538 case 2:
4539 cmn_err(CE_NOTE, "\tSIA Regs: CSR13:%x, CSR14:%x, CSR15:%x",
4540 block->un.sia.csr13, block->un.sia.csr14,
4541 block->un.sia.csr15);
4542 break;
4543 }
4544 }
4545
4546
4547 /* Utility to print out binary info dumps. Handy for SROMs, etc */
4548
4549 static int
hexcode(unsigned val)4550 hexcode(unsigned val)
4551 {
4552 if (val <= 9)
4553 return (val +'0');
4554 if (val <= 15)
4555 return (val + 'a' - 10);
4556 return (-1);
4557 }
4558
4559 static void
dnet_dumpbin(char * msg,unsigned char * data,int size,int len)4560 dnet_dumpbin(char *msg, unsigned char *data, int size, int len)
4561 {
4562 char hex[128], *p = hex;
4563 char ascii[128], *q = ascii;
4564 int i, j;
4565
4566 if (!len)
4567 return;
4568
4569 for (i = 0; i < len; i += size) {
4570 for (j = size - 1; j >= 0; j--) { /* PORTABILITY: byte order */
4571 *p++ = hexcode(data[i+j] >> 4);
4572 *p++ = hexcode(data[i+j] & 0xf);
4573 *q++ = (data[i+j] < 32 || data[i+j] > 127) ?
4574 '.' : data[i];
4575 }
4576 *p++ = ' ';
4577 if (q-ascii >= 8) {
4578 *p = *q = 0;
4579 cmn_err(CE_NOTE, "%s: %s\t%s", msg, hex, ascii);
4580 p = hex;
4581 q = ascii;
4582 }
4583 }
4584 if (p != hex) {
4585 while ((p - hex) < 8*3)
4586 *p++ = ' ';
4587 *p = *q = 0;
4588 cmn_err(CE_NOTE, "%s: %s\t%s", msg, hex, ascii);
4589 }
4590 }
4591
4592 #ifdef DNETDEBUG
4593 void
dnet_usectimeout(struct dnetinstance * dnetp,uint32_t usecs,int contin,timercb_t cback)4594 dnet_usectimeout(struct dnetinstance *dnetp, uint32_t usecs, int contin,
4595 timercb_t cback)
4596 {
4597 mutex_enter(&dnetp->intrlock);
4598 dnetp->timer.start_ticks = (usecs * 100) / 8192;
4599 dnetp->timer.cb = cback;
4600 ddi_put32(dnetp->io_handle, REG32(dnetp->io_reg, GP_TIMER_REG),
4601 dnetp->timer.start_ticks | (contin ? GPTIMER_CONT : 0));
4602 if (dnetp->timer.cb)
4603 enable_interrupts(dnetp);
4604 mutex_exit(&dnetp->intrlock);
4605 }
4606
4607 uint32_t
dnet_usecelapsed(struct dnetinstance * dnetp)4608 dnet_usecelapsed(struct dnetinstance *dnetp)
4609 {
4610 uint32_t ticks = dnetp->timer.start_ticks -
4611 (ddi_get32(dnetp->io_handle, REG32(dnetp->io_reg, GP_TIMER_REG)) &
4612 0xffff);
4613 return ((ticks * 8192) / 100);
4614 }
4615
4616 /* ARGSUSED */
4617 void
dnet_timestamp(struct dnetinstance * dnetp,char * buf)4618 dnet_timestamp(struct dnetinstance *dnetp, char *buf)
4619 {
4620 uint32_t elapsed = dnet_usecelapsed(dnetp);
4621 char loc[32], *p = loc;
4622 int firstdigit = 1;
4623 uint32_t divisor;
4624
4625 while (*p++ = *buf++)
4626 ;
4627 p--;
4628
4629 for (divisor = 1000000000; divisor /= 10; ) {
4630 int digit = (elapsed / divisor);
4631 elapsed -= digit * divisor;
4632 if (!firstdigit || digit) {
4633 *p++ = digit + '0';
4634 firstdigit = 0;
4635 }
4636
4637 }
4638
4639 /* Actual zero, output it */
4640 if (firstdigit)
4641 *p++ = '0';
4642
4643 *p++ = '-';
4644 *p++ = '>';
4645 *p++ = 0;
4646
4647 printf(loc);
4648 dnet_usectimeout(dnetp, 1000000, 0, 0);
4649 }
4650
4651 #endif
4652