1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
49 #include <sys/avl.h>
50 #include <sys/ddt.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_send.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
58
59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
60 int zfs_send_corrupt_data = B_FALSE;
61 int zfs_send_queue_length = 16 * 1024 * 1024;
62 int zfs_recv_queue_length = 16 * 1024 * 1024;
63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
64 int zfs_send_set_freerecords_bit = B_TRUE;
65
66 static char *dmu_recv_tag = "dmu_recv_tag";
67 const char *recv_clone_name = "%recv";
68
69 #define BP_SPAN(datablkszsec, indblkshift, level) \
70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
71 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
72
73 static void byteswap_record(dmu_replay_record_t *drr);
74
75 struct send_thread_arg {
76 bqueue_t q;
77 dsl_dataset_t *ds; /* Dataset to traverse */
78 uint64_t fromtxg; /* Traverse from this txg */
79 int flags; /* flags to pass to traverse_dataset */
80 int error_code;
81 boolean_t cancel;
82 zbookmark_phys_t resume;
83 };
84
85 struct send_block_record {
86 boolean_t eos_marker; /* Marks the end of the stream */
87 blkptr_t bp;
88 zbookmark_phys_t zb;
89 uint8_t indblkshift;
90 uint16_t datablkszsec;
91 bqueue_node_t ln;
92 };
93
94 static int
dump_bytes(dmu_sendarg_t * dsp,void * buf,int len)95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
96 {
97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
98 ssize_t resid; /* have to get resid to get detailed errno */
99 ASSERT0(len % 8);
100
101 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
102 (caddr_t)buf, len,
103 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
104
105 mutex_enter(&ds->ds_sendstream_lock);
106 *dsp->dsa_off += len;
107 mutex_exit(&ds->ds_sendstream_lock);
108
109 return (dsp->dsa_err);
110 }
111
112 /*
113 * For all record types except BEGIN, fill in the checksum (overlaid in
114 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
115 * up to the start of the checksum itself.
116 */
117 static int
dump_record(dmu_sendarg_t * dsp,void * payload,int payload_len)118 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
119 {
120 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
121 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
122 fletcher_4_incremental_native(dsp->dsa_drr,
123 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
124 &dsp->dsa_zc);
125 if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
126 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
127 drr_checksum.drr_checksum));
128 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
129 }
130 fletcher_4_incremental_native(&dsp->dsa_drr->
131 drr_u.drr_checksum.drr_checksum,
132 sizeof (zio_cksum_t), &dsp->dsa_zc);
133 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
134 return (SET_ERROR(EINTR));
135 if (payload_len != 0) {
136 fletcher_4_incremental_native(payload, payload_len,
137 &dsp->dsa_zc);
138 if (dump_bytes(dsp, payload, payload_len) != 0)
139 return (SET_ERROR(EINTR));
140 }
141 return (0);
142 }
143
144 /*
145 * Fill in the drr_free struct, or perform aggregation if the previous record is
146 * also a free record, and the two are adjacent.
147 *
148 * Note that we send free records even for a full send, because we want to be
149 * able to receive a full send as a clone, which requires a list of all the free
150 * and freeobject records that were generated on the source.
151 */
152 static int
dump_free(dmu_sendarg_t * dsp,uint64_t object,uint64_t offset,uint64_t length)153 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
154 uint64_t length)
155 {
156 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
157
158 /*
159 * When we receive a free record, dbuf_free_range() assumes
160 * that the receiving system doesn't have any dbufs in the range
161 * being freed. This is always true because there is a one-record
162 * constraint: we only send one WRITE record for any given
163 * object,offset. We know that the one-record constraint is
164 * true because we always send data in increasing order by
165 * object,offset.
166 *
167 * If the increasing-order constraint ever changes, we should find
168 * another way to assert that the one-record constraint is still
169 * satisfied.
170 */
171 ASSERT(object > dsp->dsa_last_data_object ||
172 (object == dsp->dsa_last_data_object &&
173 offset > dsp->dsa_last_data_offset));
174
175 if (length != -1ULL && offset + length < offset)
176 length = -1ULL;
177
178 /*
179 * If there is a pending op, but it's not PENDING_FREE, push it out,
180 * since free block aggregation can only be done for blocks of the
181 * same type (i.e., DRR_FREE records can only be aggregated with
182 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
183 * aggregated with other DRR_FREEOBJECTS records.
184 */
185 if (dsp->dsa_pending_op != PENDING_NONE &&
186 dsp->dsa_pending_op != PENDING_FREE) {
187 if (dump_record(dsp, NULL, 0) != 0)
188 return (SET_ERROR(EINTR));
189 dsp->dsa_pending_op = PENDING_NONE;
190 }
191
192 if (dsp->dsa_pending_op == PENDING_FREE) {
193 /*
194 * There should never be a PENDING_FREE if length is -1
195 * (because dump_dnode is the only place where this
196 * function is called with a -1, and only after flushing
197 * any pending record).
198 */
199 ASSERT(length != -1ULL);
200 /*
201 * Check to see whether this free block can be aggregated
202 * with pending one.
203 */
204 if (drrf->drr_object == object && drrf->drr_offset +
205 drrf->drr_length == offset) {
206 drrf->drr_length += length;
207 return (0);
208 } else {
209 /* not a continuation. Push out pending record */
210 if (dump_record(dsp, NULL, 0) != 0)
211 return (SET_ERROR(EINTR));
212 dsp->dsa_pending_op = PENDING_NONE;
213 }
214 }
215 /* create a FREE record and make it pending */
216 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
217 dsp->dsa_drr->drr_type = DRR_FREE;
218 drrf->drr_object = object;
219 drrf->drr_offset = offset;
220 drrf->drr_length = length;
221 drrf->drr_toguid = dsp->dsa_toguid;
222 if (length == -1ULL) {
223 if (dump_record(dsp, NULL, 0) != 0)
224 return (SET_ERROR(EINTR));
225 } else {
226 dsp->dsa_pending_op = PENDING_FREE;
227 }
228
229 return (0);
230 }
231
232 static int
dump_write(dmu_sendarg_t * dsp,dmu_object_type_t type,uint64_t object,uint64_t offset,int blksz,const blkptr_t * bp,void * data)233 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
234 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
235 {
236 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
237
238 /*
239 * We send data in increasing object, offset order.
240 * See comment in dump_free() for details.
241 */
242 ASSERT(object > dsp->dsa_last_data_object ||
243 (object == dsp->dsa_last_data_object &&
244 offset > dsp->dsa_last_data_offset));
245 dsp->dsa_last_data_object = object;
246 dsp->dsa_last_data_offset = offset + blksz - 1;
247
248 /*
249 * If there is any kind of pending aggregation (currently either
250 * a grouping of free objects or free blocks), push it out to
251 * the stream, since aggregation can't be done across operations
252 * of different types.
253 */
254 if (dsp->dsa_pending_op != PENDING_NONE) {
255 if (dump_record(dsp, NULL, 0) != 0)
256 return (SET_ERROR(EINTR));
257 dsp->dsa_pending_op = PENDING_NONE;
258 }
259 /* write a WRITE record */
260 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
261 dsp->dsa_drr->drr_type = DRR_WRITE;
262 drrw->drr_object = object;
263 drrw->drr_type = type;
264 drrw->drr_offset = offset;
265 drrw->drr_length = blksz;
266 drrw->drr_toguid = dsp->dsa_toguid;
267 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
268 /*
269 * There's no pre-computed checksum for partial-block
270 * writes or embedded BP's, so (like
271 * fletcher4-checkummed blocks) userland will have to
272 * compute a dedup-capable checksum itself.
273 */
274 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
275 } else {
276 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
277 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
278 ZCHECKSUM_FLAG_DEDUP)
279 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
280 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
281 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
282 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
283 drrw->drr_key.ddk_cksum = bp->blk_cksum;
284 }
285
286 if (dump_record(dsp, data, blksz) != 0)
287 return (SET_ERROR(EINTR));
288 return (0);
289 }
290
291 static int
dump_write_embedded(dmu_sendarg_t * dsp,uint64_t object,uint64_t offset,int blksz,const blkptr_t * bp)292 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
293 int blksz, const blkptr_t *bp)
294 {
295 char buf[BPE_PAYLOAD_SIZE];
296 struct drr_write_embedded *drrw =
297 &(dsp->dsa_drr->drr_u.drr_write_embedded);
298
299 if (dsp->dsa_pending_op != PENDING_NONE) {
300 if (dump_record(dsp, NULL, 0) != 0)
301 return (EINTR);
302 dsp->dsa_pending_op = PENDING_NONE;
303 }
304
305 ASSERT(BP_IS_EMBEDDED(bp));
306
307 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
308 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
309 drrw->drr_object = object;
310 drrw->drr_offset = offset;
311 drrw->drr_length = blksz;
312 drrw->drr_toguid = dsp->dsa_toguid;
313 drrw->drr_compression = BP_GET_COMPRESS(bp);
314 drrw->drr_etype = BPE_GET_ETYPE(bp);
315 drrw->drr_lsize = BPE_GET_LSIZE(bp);
316 drrw->drr_psize = BPE_GET_PSIZE(bp);
317
318 decode_embedded_bp_compressed(bp, buf);
319
320 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
321 return (EINTR);
322 return (0);
323 }
324
325 static int
dump_spill(dmu_sendarg_t * dsp,uint64_t object,int blksz,void * data)326 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
327 {
328 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
329
330 if (dsp->dsa_pending_op != PENDING_NONE) {
331 if (dump_record(dsp, NULL, 0) != 0)
332 return (SET_ERROR(EINTR));
333 dsp->dsa_pending_op = PENDING_NONE;
334 }
335
336 /* write a SPILL record */
337 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
338 dsp->dsa_drr->drr_type = DRR_SPILL;
339 drrs->drr_object = object;
340 drrs->drr_length = blksz;
341 drrs->drr_toguid = dsp->dsa_toguid;
342
343 if (dump_record(dsp, data, blksz) != 0)
344 return (SET_ERROR(EINTR));
345 return (0);
346 }
347
348 static int
dump_freeobjects(dmu_sendarg_t * dsp,uint64_t firstobj,uint64_t numobjs)349 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
350 {
351 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
352
353 /*
354 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
355 * push it out, since free block aggregation can only be done for
356 * blocks of the same type (i.e., DRR_FREE records can only be
357 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
358 * can only be aggregated with other DRR_FREEOBJECTS records.
359 */
360 if (dsp->dsa_pending_op != PENDING_NONE &&
361 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
362 if (dump_record(dsp, NULL, 0) != 0)
363 return (SET_ERROR(EINTR));
364 dsp->dsa_pending_op = PENDING_NONE;
365 }
366 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
367 /*
368 * See whether this free object array can be aggregated
369 * with pending one
370 */
371 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
372 drrfo->drr_numobjs += numobjs;
373 return (0);
374 } else {
375 /* can't be aggregated. Push out pending record */
376 if (dump_record(dsp, NULL, 0) != 0)
377 return (SET_ERROR(EINTR));
378 dsp->dsa_pending_op = PENDING_NONE;
379 }
380 }
381
382 /* write a FREEOBJECTS record */
383 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
384 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
385 drrfo->drr_firstobj = firstobj;
386 drrfo->drr_numobjs = numobjs;
387 drrfo->drr_toguid = dsp->dsa_toguid;
388
389 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
390
391 return (0);
392 }
393
394 static int
dump_dnode(dmu_sendarg_t * dsp,uint64_t object,dnode_phys_t * dnp)395 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
396 {
397 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
398
399 if (object < dsp->dsa_resume_object) {
400 /*
401 * Note: when resuming, we will visit all the dnodes in
402 * the block of dnodes that we are resuming from. In
403 * this case it's unnecessary to send the dnodes prior to
404 * the one we are resuming from. We should be at most one
405 * block's worth of dnodes behind the resume point.
406 */
407 ASSERT3U(dsp->dsa_resume_object - object, <,
408 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
409 return (0);
410 }
411
412 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
413 return (dump_freeobjects(dsp, object, 1));
414
415 if (dsp->dsa_pending_op != PENDING_NONE) {
416 if (dump_record(dsp, NULL, 0) != 0)
417 return (SET_ERROR(EINTR));
418 dsp->dsa_pending_op = PENDING_NONE;
419 }
420
421 /* write an OBJECT record */
422 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
423 dsp->dsa_drr->drr_type = DRR_OBJECT;
424 drro->drr_object = object;
425 drro->drr_type = dnp->dn_type;
426 drro->drr_bonustype = dnp->dn_bonustype;
427 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
428 drro->drr_bonuslen = dnp->dn_bonuslen;
429 drro->drr_checksumtype = dnp->dn_checksum;
430 drro->drr_compress = dnp->dn_compress;
431 drro->drr_toguid = dsp->dsa_toguid;
432
433 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
434 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
435 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
436
437 if (dump_record(dsp, DN_BONUS(dnp),
438 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
439 return (SET_ERROR(EINTR));
440 }
441
442 /* Free anything past the end of the file. */
443 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
444 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
445 return (SET_ERROR(EINTR));
446 if (dsp->dsa_err != 0)
447 return (SET_ERROR(EINTR));
448 return (0);
449 }
450
451 static boolean_t
backup_do_embed(dmu_sendarg_t * dsp,const blkptr_t * bp)452 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
453 {
454 if (!BP_IS_EMBEDDED(bp))
455 return (B_FALSE);
456
457 /*
458 * Compression function must be legacy, or explicitly enabled.
459 */
460 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
461 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
462 return (B_FALSE);
463
464 /*
465 * Embed type must be explicitly enabled.
466 */
467 switch (BPE_GET_ETYPE(bp)) {
468 case BP_EMBEDDED_TYPE_DATA:
469 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
470 return (B_TRUE);
471 break;
472 default:
473 return (B_FALSE);
474 }
475 return (B_FALSE);
476 }
477
478 /*
479 * This is the callback function to traverse_dataset that acts as the worker
480 * thread for dmu_send_impl.
481 */
482 /*ARGSUSED*/
483 static int
send_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const struct dnode_phys * dnp,void * arg)484 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
485 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
486 {
487 struct send_thread_arg *sta = arg;
488 struct send_block_record *record;
489 uint64_t record_size;
490 int err = 0;
491
492 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
493 zb->zb_object >= sta->resume.zb_object);
494
495 if (sta->cancel)
496 return (SET_ERROR(EINTR));
497
498 if (bp == NULL) {
499 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
500 return (0);
501 } else if (zb->zb_level < 0) {
502 return (0);
503 }
504
505 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
506 record->eos_marker = B_FALSE;
507 record->bp = *bp;
508 record->zb = *zb;
509 record->indblkshift = dnp->dn_indblkshift;
510 record->datablkszsec = dnp->dn_datablkszsec;
511 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
512 bqueue_enqueue(&sta->q, record, record_size);
513
514 return (err);
515 }
516
517 /*
518 * This function kicks off the traverse_dataset. It also handles setting the
519 * error code of the thread in case something goes wrong, and pushes the End of
520 * Stream record when the traverse_dataset call has finished. If there is no
521 * dataset to traverse, the thread immediately pushes End of Stream marker.
522 */
523 static void
send_traverse_thread(void * arg)524 send_traverse_thread(void *arg)
525 {
526 struct send_thread_arg *st_arg = arg;
527 int err;
528 struct send_block_record *data;
529
530 if (st_arg->ds != NULL) {
531 err = traverse_dataset_resume(st_arg->ds,
532 st_arg->fromtxg, &st_arg->resume,
533 st_arg->flags, send_cb, st_arg);
534
535 if (err != EINTR)
536 st_arg->error_code = err;
537 }
538 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
539 data->eos_marker = B_TRUE;
540 bqueue_enqueue(&st_arg->q, data, 1);
541 }
542
543 /*
544 * This function actually handles figuring out what kind of record needs to be
545 * dumped, reading the data (which has hopefully been prefetched), and calling
546 * the appropriate helper function.
547 */
548 static int
do_dump(dmu_sendarg_t * dsa,struct send_block_record * data)549 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
550 {
551 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
552 const blkptr_t *bp = &data->bp;
553 const zbookmark_phys_t *zb = &data->zb;
554 uint8_t indblkshift = data->indblkshift;
555 uint16_t dblkszsec = data->datablkszsec;
556 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
557 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
558 int err = 0;
559
560 ASSERT3U(zb->zb_level, >=, 0);
561
562 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
563 zb->zb_object >= dsa->dsa_resume_object);
564
565 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
566 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
567 return (0);
568 } else if (BP_IS_HOLE(bp) &&
569 zb->zb_object == DMU_META_DNODE_OBJECT) {
570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
571 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
572 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
573 } else if (BP_IS_HOLE(bp)) {
574 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
575 uint64_t offset = zb->zb_blkid * span;
576 err = dump_free(dsa, zb->zb_object, offset, span);
577 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
578 return (0);
579 } else if (type == DMU_OT_DNODE) {
580 int blksz = BP_GET_LSIZE(bp);
581 arc_flags_t aflags = ARC_FLAG_WAIT;
582 arc_buf_t *abuf;
583
584 ASSERT0(zb->zb_level);
585
586 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
587 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
588 &aflags, zb) != 0)
589 return (SET_ERROR(EIO));
590
591 dnode_phys_t *blk = abuf->b_data;
592 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
593 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
594 err = dump_dnode(dsa, dnobj + i, blk + i);
595 if (err != 0)
596 break;
597 }
598 (void) arc_buf_remove_ref(abuf, &abuf);
599 } else if (type == DMU_OT_SA) {
600 arc_flags_t aflags = ARC_FLAG_WAIT;
601 arc_buf_t *abuf;
602 int blksz = BP_GET_LSIZE(bp);
603
604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
606 &aflags, zb) != 0)
607 return (SET_ERROR(EIO));
608
609 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
610 (void) arc_buf_remove_ref(abuf, &abuf);
611 } else if (backup_do_embed(dsa, bp)) {
612 /* it's an embedded level-0 block of a regular object */
613 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
614 ASSERT0(zb->zb_level);
615 err = dump_write_embedded(dsa, zb->zb_object,
616 zb->zb_blkid * blksz, blksz, bp);
617 } else {
618 /* it's a level-0 block of a regular object */
619 arc_flags_t aflags = ARC_FLAG_WAIT;
620 arc_buf_t *abuf;
621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
622 uint64_t offset;
623
624 ASSERT0(zb->zb_level);
625 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
626 (zb->zb_object == dsa->dsa_resume_object &&
627 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
628
629 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
631 &aflags, zb) != 0) {
632 if (zfs_send_corrupt_data) {
633 /* Send a block filled with 0x"zfs badd bloc" */
634 abuf = arc_buf_alloc(spa, blksz, &abuf,
635 ARC_BUFC_DATA);
636 uint64_t *ptr;
637 for (ptr = abuf->b_data;
638 (char *)ptr < (char *)abuf->b_data + blksz;
639 ptr++)
640 *ptr = 0x2f5baddb10cULL;
641 } else {
642 return (SET_ERROR(EIO));
643 }
644 }
645
646 offset = zb->zb_blkid * blksz;
647
648 if (!(dsa->dsa_featureflags &
649 DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
650 blksz > SPA_OLD_MAXBLOCKSIZE) {
651 char *buf = abuf->b_data;
652 while (blksz > 0 && err == 0) {
653 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
654 err = dump_write(dsa, type, zb->zb_object,
655 offset, n, NULL, buf);
656 offset += n;
657 buf += n;
658 blksz -= n;
659 }
660 } else {
661 err = dump_write(dsa, type, zb->zb_object,
662 offset, blksz, bp, abuf->b_data);
663 }
664 (void) arc_buf_remove_ref(abuf, &abuf);
665 }
666
667 ASSERT(err == 0 || err == EINTR);
668 return (err);
669 }
670
671 /*
672 * Pop the new data off the queue, and free the old data.
673 */
674 static struct send_block_record *
get_next_record(bqueue_t * bq,struct send_block_record * data)675 get_next_record(bqueue_t *bq, struct send_block_record *data)
676 {
677 struct send_block_record *tmp = bqueue_dequeue(bq);
678 kmem_free(data, sizeof (*data));
679 return (tmp);
680 }
681
682 /*
683 * Actually do the bulk of the work in a zfs send.
684 *
685 * Note: Releases dp using the specified tag.
686 */
687 static int
dmu_send_impl(void * tag,dsl_pool_t * dp,dsl_dataset_t * to_ds,zfs_bookmark_phys_t * ancestor_zb,boolean_t is_clone,boolean_t embedok,boolean_t large_block_ok,int outfd,uint64_t resumeobj,uint64_t resumeoff,vnode_t * vp,offset_t * off)688 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
689 zfs_bookmark_phys_t *ancestor_zb,
690 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
691 uint64_t resumeobj, uint64_t resumeoff,
692 vnode_t *vp, offset_t *off)
693 {
694 objset_t *os;
695 dmu_replay_record_t *drr;
696 dmu_sendarg_t *dsp;
697 int err;
698 uint64_t fromtxg = 0;
699 uint64_t featureflags = 0;
700 struct send_thread_arg to_arg = { 0 };
701
702 err = dmu_objset_from_ds(to_ds, &os);
703 if (err != 0) {
704 dsl_pool_rele(dp, tag);
705 return (err);
706 }
707
708 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
709 drr->drr_type = DRR_BEGIN;
710 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
711 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
712 DMU_SUBSTREAM);
713
714 #ifdef _KERNEL
715 if (dmu_objset_type(os) == DMU_OST_ZFS) {
716 uint64_t version;
717 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
718 kmem_free(drr, sizeof (dmu_replay_record_t));
719 dsl_pool_rele(dp, tag);
720 return (SET_ERROR(EINVAL));
721 }
722 if (version >= ZPL_VERSION_SA) {
723 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
724 }
725 }
726 #endif
727
728 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
729 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
730 if (embedok &&
731 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
732 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
733 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
734 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
735 }
736
737 if (resumeobj != 0 || resumeoff != 0) {
738 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
739 }
740
741 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
742 featureflags);
743
744 drr->drr_u.drr_begin.drr_creation_time =
745 dsl_dataset_phys(to_ds)->ds_creation_time;
746 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
747 if (is_clone)
748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
749 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
750 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
751 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
752 if (zfs_send_set_freerecords_bit)
753 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
754
755 if (ancestor_zb != NULL) {
756 drr->drr_u.drr_begin.drr_fromguid =
757 ancestor_zb->zbm_guid;
758 fromtxg = ancestor_zb->zbm_creation_txg;
759 }
760 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
761 if (!to_ds->ds_is_snapshot) {
762 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
763 sizeof (drr->drr_u.drr_begin.drr_toname));
764 }
765
766 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
767
768 dsp->dsa_drr = drr;
769 dsp->dsa_vp = vp;
770 dsp->dsa_outfd = outfd;
771 dsp->dsa_proc = curproc;
772 dsp->dsa_os = os;
773 dsp->dsa_off = off;
774 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
775 dsp->dsa_pending_op = PENDING_NONE;
776 dsp->dsa_featureflags = featureflags;
777 dsp->dsa_resume_object = resumeobj;
778 dsp->dsa_resume_offset = resumeoff;
779
780 mutex_enter(&to_ds->ds_sendstream_lock);
781 list_insert_head(&to_ds->ds_sendstreams, dsp);
782 mutex_exit(&to_ds->ds_sendstream_lock);
783
784 dsl_dataset_long_hold(to_ds, FTAG);
785 dsl_pool_rele(dp, tag);
786
787 void *payload = NULL;
788 size_t payload_len = 0;
789 if (resumeobj != 0 || resumeoff != 0) {
790 dmu_object_info_t to_doi;
791 err = dmu_object_info(os, resumeobj, &to_doi);
792 if (err != 0)
793 goto out;
794 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
795 resumeoff / to_doi.doi_data_block_size);
796
797 nvlist_t *nvl = fnvlist_alloc();
798 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
799 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
800 payload = fnvlist_pack(nvl, &payload_len);
801 drr->drr_payloadlen = payload_len;
802 fnvlist_free(nvl);
803 }
804
805 err = dump_record(dsp, payload, payload_len);
806 fnvlist_pack_free(payload, payload_len);
807 if (err != 0) {
808 err = dsp->dsa_err;
809 goto out;
810 }
811
812 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
813 offsetof(struct send_block_record, ln));
814 to_arg.error_code = 0;
815 to_arg.cancel = B_FALSE;
816 to_arg.ds = to_ds;
817 to_arg.fromtxg = fromtxg;
818 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
819 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
820 TS_RUN, minclsyspri);
821
822 struct send_block_record *to_data;
823 to_data = bqueue_dequeue(&to_arg.q);
824
825 while (!to_data->eos_marker && err == 0) {
826 err = do_dump(dsp, to_data);
827 to_data = get_next_record(&to_arg.q, to_data);
828 if (issig(JUSTLOOKING) && issig(FORREAL))
829 err = EINTR;
830 }
831
832 if (err != 0) {
833 to_arg.cancel = B_TRUE;
834 while (!to_data->eos_marker) {
835 to_data = get_next_record(&to_arg.q, to_data);
836 }
837 }
838 kmem_free(to_data, sizeof (*to_data));
839
840 bqueue_destroy(&to_arg.q);
841
842 if (err == 0 && to_arg.error_code != 0)
843 err = to_arg.error_code;
844
845 if (err != 0)
846 goto out;
847
848 if (dsp->dsa_pending_op != PENDING_NONE)
849 if (dump_record(dsp, NULL, 0) != 0)
850 err = SET_ERROR(EINTR);
851
852 if (err != 0) {
853 if (err == EINTR && dsp->dsa_err != 0)
854 err = dsp->dsa_err;
855 goto out;
856 }
857
858 bzero(drr, sizeof (dmu_replay_record_t));
859 drr->drr_type = DRR_END;
860 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
861 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
862
863 if (dump_record(dsp, NULL, 0) != 0)
864 err = dsp->dsa_err;
865
866 out:
867 mutex_enter(&to_ds->ds_sendstream_lock);
868 list_remove(&to_ds->ds_sendstreams, dsp);
869 mutex_exit(&to_ds->ds_sendstream_lock);
870
871 kmem_free(drr, sizeof (dmu_replay_record_t));
872 kmem_free(dsp, sizeof (dmu_sendarg_t));
873
874 dsl_dataset_long_rele(to_ds, FTAG);
875
876 return (err);
877 }
878
879 int
dmu_send_obj(const char * pool,uint64_t tosnap,uint64_t fromsnap,boolean_t embedok,boolean_t large_block_ok,int outfd,vnode_t * vp,offset_t * off)880 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
881 boolean_t embedok, boolean_t large_block_ok,
882 int outfd, vnode_t *vp, offset_t *off)
883 {
884 dsl_pool_t *dp;
885 dsl_dataset_t *ds;
886 dsl_dataset_t *fromds = NULL;
887 int err;
888
889 err = dsl_pool_hold(pool, FTAG, &dp);
890 if (err != 0)
891 return (err);
892
893 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
894 if (err != 0) {
895 dsl_pool_rele(dp, FTAG);
896 return (err);
897 }
898
899 if (fromsnap != 0) {
900 zfs_bookmark_phys_t zb;
901 boolean_t is_clone;
902
903 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
904 if (err != 0) {
905 dsl_dataset_rele(ds, FTAG);
906 dsl_pool_rele(dp, FTAG);
907 return (err);
908 }
909 if (!dsl_dataset_is_before(ds, fromds, 0))
910 err = SET_ERROR(EXDEV);
911 zb.zbm_creation_time =
912 dsl_dataset_phys(fromds)->ds_creation_time;
913 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
914 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
915 is_clone = (fromds->ds_dir != ds->ds_dir);
916 dsl_dataset_rele(fromds, FTAG);
917 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
918 embedok, large_block_ok, outfd, 0, 0, vp, off);
919 } else {
920 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
921 embedok, large_block_ok, outfd, 0, 0, vp, off);
922 }
923 dsl_dataset_rele(ds, FTAG);
924 return (err);
925 }
926
927 int
dmu_send(const char * tosnap,const char * fromsnap,boolean_t embedok,boolean_t large_block_ok,int outfd,uint64_t resumeobj,uint64_t resumeoff,vnode_t * vp,offset_t * off)928 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
929 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
930 vnode_t *vp, offset_t *off)
931 {
932 dsl_pool_t *dp;
933 dsl_dataset_t *ds;
934 int err;
935 boolean_t owned = B_FALSE;
936
937 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
938 return (SET_ERROR(EINVAL));
939
940 err = dsl_pool_hold(tosnap, FTAG, &dp);
941 if (err != 0)
942 return (err);
943
944 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
945 /*
946 * We are sending a filesystem or volume. Ensure
947 * that it doesn't change by owning the dataset.
948 */
949 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
950 owned = B_TRUE;
951 } else {
952 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
953 }
954 if (err != 0) {
955 dsl_pool_rele(dp, FTAG);
956 return (err);
957 }
958
959 if (fromsnap != NULL) {
960 zfs_bookmark_phys_t zb;
961 boolean_t is_clone = B_FALSE;
962 int fsnamelen = strchr(tosnap, '@') - tosnap;
963
964 /*
965 * If the fromsnap is in a different filesystem, then
966 * mark the send stream as a clone.
967 */
968 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
969 (fromsnap[fsnamelen] != '@' &&
970 fromsnap[fsnamelen] != '#')) {
971 is_clone = B_TRUE;
972 }
973
974 if (strchr(fromsnap, '@')) {
975 dsl_dataset_t *fromds;
976 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
977 if (err == 0) {
978 if (!dsl_dataset_is_before(ds, fromds, 0))
979 err = SET_ERROR(EXDEV);
980 zb.zbm_creation_time =
981 dsl_dataset_phys(fromds)->ds_creation_time;
982 zb.zbm_creation_txg =
983 dsl_dataset_phys(fromds)->ds_creation_txg;
984 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
985 is_clone = (ds->ds_dir != fromds->ds_dir);
986 dsl_dataset_rele(fromds, FTAG);
987 }
988 } else {
989 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
990 }
991 if (err != 0) {
992 dsl_dataset_rele(ds, FTAG);
993 dsl_pool_rele(dp, FTAG);
994 return (err);
995 }
996 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
997 embedok, large_block_ok,
998 outfd, resumeobj, resumeoff, vp, off);
999 } else {
1000 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1001 embedok, large_block_ok,
1002 outfd, resumeobj, resumeoff, vp, off);
1003 }
1004 if (owned)
1005 dsl_dataset_disown(ds, FTAG);
1006 else
1007 dsl_dataset_rele(ds, FTAG);
1008 return (err);
1009 }
1010
1011 static int
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t * ds,uint64_t size,uint64_t * sizep)1012 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1013 uint64_t *sizep)
1014 {
1015 int err;
1016 /*
1017 * Assume that space (both on-disk and in-stream) is dominated by
1018 * data. We will adjust for indirect blocks and the copies property,
1019 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1020 */
1021
1022 /*
1023 * Subtract out approximate space used by indirect blocks.
1024 * Assume most space is used by data blocks (non-indirect, non-dnode).
1025 * Assume all blocks are recordsize. Assume ditto blocks and
1026 * internal fragmentation counter out compression.
1027 *
1028 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1029 * block, which we observe in practice.
1030 */
1031 uint64_t recordsize;
1032 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1033 if (err != 0)
1034 return (err);
1035 size -= size / recordsize * sizeof (blkptr_t);
1036
1037 /* Add in the space for the record associated with each block. */
1038 size += size / recordsize * sizeof (dmu_replay_record_t);
1039
1040 *sizep = size;
1041
1042 return (0);
1043 }
1044
1045 int
dmu_send_estimate(dsl_dataset_t * ds,dsl_dataset_t * fromds,uint64_t * sizep)1046 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1047 {
1048 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1049 int err;
1050 uint64_t size;
1051
1052 ASSERT(dsl_pool_config_held(dp));
1053
1054 /* tosnap must be a snapshot */
1055 if (!ds->ds_is_snapshot)
1056 return (SET_ERROR(EINVAL));
1057
1058 /* fromsnap, if provided, must be a snapshot */
1059 if (fromds != NULL && !fromds->ds_is_snapshot)
1060 return (SET_ERROR(EINVAL));
1061
1062 /*
1063 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1064 * or the origin's fs.
1065 */
1066 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1067 return (SET_ERROR(EXDEV));
1068
1069 /* Get uncompressed size estimate of changed data. */
1070 if (fromds == NULL) {
1071 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1072 } else {
1073 uint64_t used, comp;
1074 err = dsl_dataset_space_written(fromds, ds,
1075 &used, &comp, &size);
1076 if (err != 0)
1077 return (err);
1078 }
1079
1080 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1081 return (err);
1082 }
1083
1084 /*
1085 * Simple callback used to traverse the blocks of a snapshot and sum their
1086 * uncompressed size
1087 */
1088 /* ARGSUSED */
1089 static int
dmu_calculate_send_traversal(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)1090 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1091 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1092 {
1093 uint64_t *spaceptr = arg;
1094 if (bp != NULL && !BP_IS_HOLE(bp)) {
1095 *spaceptr += BP_GET_UCSIZE(bp);
1096 }
1097 return (0);
1098 }
1099
1100 /*
1101 * Given a desination snapshot and a TXG, calculate the approximate size of a
1102 * send stream sent from that TXG. from_txg may be zero, indicating that the
1103 * whole snapshot will be sent.
1104 */
1105 int
dmu_send_estimate_from_txg(dsl_dataset_t * ds,uint64_t from_txg,uint64_t * sizep)1106 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1107 uint64_t *sizep)
1108 {
1109 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1110 int err;
1111 uint64_t size = 0;
1112
1113 ASSERT(dsl_pool_config_held(dp));
1114
1115 /* tosnap must be a snapshot */
1116 if (!dsl_dataset_is_snapshot(ds))
1117 return (SET_ERROR(EINVAL));
1118
1119 /* verify that from_txg is before the provided snapshot was taken */
1120 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1121 return (SET_ERROR(EXDEV));
1122 }
1123
1124 /*
1125 * traverse the blocks of the snapshot with birth times after
1126 * from_txg, summing their uncompressed size
1127 */
1128 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1129 dmu_calculate_send_traversal, &size);
1130 if (err)
1131 return (err);
1132
1133 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1134 return (err);
1135 }
1136
1137 typedef struct dmu_recv_begin_arg {
1138 const char *drba_origin;
1139 dmu_recv_cookie_t *drba_cookie;
1140 cred_t *drba_cred;
1141 uint64_t drba_snapobj;
1142 } dmu_recv_begin_arg_t;
1143
1144 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid)1145 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1146 uint64_t fromguid)
1147 {
1148 uint64_t val;
1149 int error;
1150 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1151
1152 /* temporary clone name must not exist */
1153 error = zap_lookup(dp->dp_meta_objset,
1154 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1155 8, 1, &val);
1156 if (error != ENOENT)
1157 return (error == 0 ? EBUSY : error);
1158
1159 /* new snapshot name must not exist */
1160 error = zap_lookup(dp->dp_meta_objset,
1161 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1162 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1163 if (error != ENOENT)
1164 return (error == 0 ? EEXIST : error);
1165
1166 /*
1167 * Check snapshot limit before receiving. We'll recheck again at the
1168 * end, but might as well abort before receiving if we're already over
1169 * the limit.
1170 *
1171 * Note that we do not check the file system limit with
1172 * dsl_dir_fscount_check because the temporary %clones don't count
1173 * against that limit.
1174 */
1175 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1176 NULL, drba->drba_cred);
1177 if (error != 0)
1178 return (error);
1179
1180 if (fromguid != 0) {
1181 dsl_dataset_t *snap;
1182 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1183
1184 /* Find snapshot in this dir that matches fromguid. */
1185 while (obj != 0) {
1186 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1187 &snap);
1188 if (error != 0)
1189 return (SET_ERROR(ENODEV));
1190 if (snap->ds_dir != ds->ds_dir) {
1191 dsl_dataset_rele(snap, FTAG);
1192 return (SET_ERROR(ENODEV));
1193 }
1194 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1195 break;
1196 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1197 dsl_dataset_rele(snap, FTAG);
1198 }
1199 if (obj == 0)
1200 return (SET_ERROR(ENODEV));
1201
1202 if (drba->drba_cookie->drc_force) {
1203 drba->drba_snapobj = obj;
1204 } else {
1205 /*
1206 * If we are not forcing, there must be no
1207 * changes since fromsnap.
1208 */
1209 if (dsl_dataset_modified_since_snap(ds, snap)) {
1210 dsl_dataset_rele(snap, FTAG);
1211 return (SET_ERROR(ETXTBSY));
1212 }
1213 drba->drba_snapobj = ds->ds_prev->ds_object;
1214 }
1215
1216 dsl_dataset_rele(snap, FTAG);
1217 } else {
1218 /* if full, then must be forced */
1219 if (!drba->drba_cookie->drc_force)
1220 return (SET_ERROR(EEXIST));
1221 /* start from $ORIGIN@$ORIGIN, if supported */
1222 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1223 dp->dp_origin_snap->ds_object : 0;
1224 }
1225
1226 return (0);
1227
1228 }
1229
1230 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)1231 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1232 {
1233 dmu_recv_begin_arg_t *drba = arg;
1234 dsl_pool_t *dp = dmu_tx_pool(tx);
1235 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1236 uint64_t fromguid = drrb->drr_fromguid;
1237 int flags = drrb->drr_flags;
1238 int error;
1239 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1240 dsl_dataset_t *ds;
1241 const char *tofs = drba->drba_cookie->drc_tofs;
1242
1243 /* already checked */
1244 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1245 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1246
1247 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1248 DMU_COMPOUNDSTREAM ||
1249 drrb->drr_type >= DMU_OST_NUMTYPES ||
1250 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1251 return (SET_ERROR(EINVAL));
1252
1253 /* Verify pool version supports SA if SA_SPILL feature set */
1254 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1255 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1256 return (SET_ERROR(ENOTSUP));
1257
1258 if (drba->drba_cookie->drc_resumable &&
1259 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1260 return (SET_ERROR(ENOTSUP));
1261
1262 /*
1263 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1264 * record to a plan WRITE record, so the pool must have the
1265 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1266 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1267 */
1268 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1269 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1270 return (SET_ERROR(ENOTSUP));
1271 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1272 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1273 return (SET_ERROR(ENOTSUP));
1274
1275 /*
1276 * The receiving code doesn't know how to translate large blocks
1277 * to smaller ones, so the pool must have the LARGE_BLOCKS
1278 * feature enabled if the stream has LARGE_BLOCKS.
1279 */
1280 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1281 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1282 return (SET_ERROR(ENOTSUP));
1283
1284 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1285 if (error == 0) {
1286 /* target fs already exists; recv into temp clone */
1287
1288 /* Can't recv a clone into an existing fs */
1289 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1290 dsl_dataset_rele(ds, FTAG);
1291 return (SET_ERROR(EINVAL));
1292 }
1293
1294 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1295 dsl_dataset_rele(ds, FTAG);
1296 } else if (error == ENOENT) {
1297 /* target fs does not exist; must be a full backup or clone */
1298 char buf[ZFS_MAX_DATASET_NAME_LEN];
1299
1300 /*
1301 * If it's a non-clone incremental, we are missing the
1302 * target fs, so fail the recv.
1303 */
1304 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1305 drba->drba_origin))
1306 return (SET_ERROR(ENOENT));
1307
1308 /*
1309 * If we're receiving a full send as a clone, and it doesn't
1310 * contain all the necessary free records and freeobject
1311 * records, reject it.
1312 */
1313 if (fromguid == 0 && drba->drba_origin &&
1314 !(flags & DRR_FLAG_FREERECORDS))
1315 return (SET_ERROR(EINVAL));
1316
1317 /* Open the parent of tofs */
1318 ASSERT3U(strlen(tofs), <, sizeof (buf));
1319 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1320 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1321 if (error != 0)
1322 return (error);
1323
1324 /*
1325 * Check filesystem and snapshot limits before receiving. We'll
1326 * recheck snapshot limits again at the end (we create the
1327 * filesystems and increment those counts during begin_sync).
1328 */
1329 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1330 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1331 if (error != 0) {
1332 dsl_dataset_rele(ds, FTAG);
1333 return (error);
1334 }
1335
1336 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1337 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1338 if (error != 0) {
1339 dsl_dataset_rele(ds, FTAG);
1340 return (error);
1341 }
1342
1343 if (drba->drba_origin != NULL) {
1344 dsl_dataset_t *origin;
1345 error = dsl_dataset_hold(dp, drba->drba_origin,
1346 FTAG, &origin);
1347 if (error != 0) {
1348 dsl_dataset_rele(ds, FTAG);
1349 return (error);
1350 }
1351 if (!origin->ds_is_snapshot) {
1352 dsl_dataset_rele(origin, FTAG);
1353 dsl_dataset_rele(ds, FTAG);
1354 return (SET_ERROR(EINVAL));
1355 }
1356 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1357 fromguid != 0) {
1358 dsl_dataset_rele(origin, FTAG);
1359 dsl_dataset_rele(ds, FTAG);
1360 return (SET_ERROR(ENODEV));
1361 }
1362 dsl_dataset_rele(origin, FTAG);
1363 }
1364 dsl_dataset_rele(ds, FTAG);
1365 error = 0;
1366 }
1367 return (error);
1368 }
1369
1370 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)1371 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1372 {
1373 dmu_recv_begin_arg_t *drba = arg;
1374 dsl_pool_t *dp = dmu_tx_pool(tx);
1375 objset_t *mos = dp->dp_meta_objset;
1376 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1377 const char *tofs = drba->drba_cookie->drc_tofs;
1378 dsl_dataset_t *ds, *newds;
1379 uint64_t dsobj;
1380 int error;
1381 uint64_t crflags = 0;
1382
1383 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1384 crflags |= DS_FLAG_CI_DATASET;
1385
1386 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1387 if (error == 0) {
1388 /* create temporary clone */
1389 dsl_dataset_t *snap = NULL;
1390 if (drba->drba_snapobj != 0) {
1391 VERIFY0(dsl_dataset_hold_obj(dp,
1392 drba->drba_snapobj, FTAG, &snap));
1393 }
1394 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1395 snap, crflags, drba->drba_cred, tx);
1396 if (drba->drba_snapobj != 0)
1397 dsl_dataset_rele(snap, FTAG);
1398 dsl_dataset_rele(ds, FTAG);
1399 } else {
1400 dsl_dir_t *dd;
1401 const char *tail;
1402 dsl_dataset_t *origin = NULL;
1403
1404 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1405
1406 if (drba->drba_origin != NULL) {
1407 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1408 FTAG, &origin));
1409 }
1410
1411 /* Create new dataset. */
1412 dsobj = dsl_dataset_create_sync(dd,
1413 strrchr(tofs, '/') + 1,
1414 origin, crflags, drba->drba_cred, tx);
1415 if (origin != NULL)
1416 dsl_dataset_rele(origin, FTAG);
1417 dsl_dir_rele(dd, FTAG);
1418 drba->drba_cookie->drc_newfs = B_TRUE;
1419 }
1420 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1421
1422 if (drba->drba_cookie->drc_resumable) {
1423 dsl_dataset_zapify(newds, tx);
1424 if (drrb->drr_fromguid != 0) {
1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1426 8, 1, &drrb->drr_fromguid, tx));
1427 }
1428 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1429 8, 1, &drrb->drr_toguid, tx));
1430 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1431 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1432 uint64_t one = 1;
1433 uint64_t zero = 0;
1434 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1435 8, 1, &one, tx));
1436 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1437 8, 1, &zero, tx));
1438 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1439 8, 1, &zero, tx));
1440 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1441 DMU_BACKUP_FEATURE_EMBED_DATA) {
1442 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1443 8, 1, &one, tx));
1444 }
1445 }
1446
1447 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1448 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1449
1450 /*
1451 * If we actually created a non-clone, we need to create the
1452 * objset in our new dataset.
1453 */
1454 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1455 (void) dmu_objset_create_impl(dp->dp_spa,
1456 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1457 }
1458
1459 drba->drba_cookie->drc_ds = newds;
1460
1461 spa_history_log_internal_ds(newds, "receive", tx, "");
1462 }
1463
1464 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)1465 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1466 {
1467 dmu_recv_begin_arg_t *drba = arg;
1468 dsl_pool_t *dp = dmu_tx_pool(tx);
1469 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1470 int error;
1471 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1472 dsl_dataset_t *ds;
1473 const char *tofs = drba->drba_cookie->drc_tofs;
1474
1475 /* already checked */
1476 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1477 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1478
1479 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1480 DMU_COMPOUNDSTREAM ||
1481 drrb->drr_type >= DMU_OST_NUMTYPES)
1482 return (SET_ERROR(EINVAL));
1483
1484 /* Verify pool version supports SA if SA_SPILL feature set */
1485 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1486 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1487 return (SET_ERROR(ENOTSUP));
1488
1489 /*
1490 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1491 * record to a plain WRITE record, so the pool must have the
1492 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1493 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1494 */
1495 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1496 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1497 return (SET_ERROR(ENOTSUP));
1498 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1499 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1500 return (SET_ERROR(ENOTSUP));
1501
1502 /* 6 extra bytes for /%recv */
1503 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1504
1505 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1506 tofs, recv_clone_name);
1507
1508 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1509 /* %recv does not exist; continue in tofs */
1510 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1511 if (error != 0)
1512 return (error);
1513 }
1514
1515 /* check that ds is marked inconsistent */
1516 if (!DS_IS_INCONSISTENT(ds)) {
1517 dsl_dataset_rele(ds, FTAG);
1518 return (SET_ERROR(EINVAL));
1519 }
1520
1521 /* check that there is resuming data, and that the toguid matches */
1522 if (!dsl_dataset_is_zapified(ds)) {
1523 dsl_dataset_rele(ds, FTAG);
1524 return (SET_ERROR(EINVAL));
1525 }
1526 uint64_t val;
1527 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1528 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1529 if (error != 0 || drrb->drr_toguid != val) {
1530 dsl_dataset_rele(ds, FTAG);
1531 return (SET_ERROR(EINVAL));
1532 }
1533
1534 /*
1535 * Check if the receive is still running. If so, it will be owned.
1536 * Note that nothing else can own the dataset (e.g. after the receive
1537 * fails) because it will be marked inconsistent.
1538 */
1539 if (dsl_dataset_has_owner(ds)) {
1540 dsl_dataset_rele(ds, FTAG);
1541 return (SET_ERROR(EBUSY));
1542 }
1543
1544 /* There should not be any snapshots of this fs yet. */
1545 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1546 dsl_dataset_rele(ds, FTAG);
1547 return (SET_ERROR(EINVAL));
1548 }
1549
1550 /*
1551 * Note: resume point will be checked when we process the first WRITE
1552 * record.
1553 */
1554
1555 /* check that the origin matches */
1556 val = 0;
1557 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1558 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1559 if (drrb->drr_fromguid != val) {
1560 dsl_dataset_rele(ds, FTAG);
1561 return (SET_ERROR(EINVAL));
1562 }
1563
1564 dsl_dataset_rele(ds, FTAG);
1565 return (0);
1566 }
1567
1568 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)1569 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1570 {
1571 dmu_recv_begin_arg_t *drba = arg;
1572 dsl_pool_t *dp = dmu_tx_pool(tx);
1573 const char *tofs = drba->drba_cookie->drc_tofs;
1574 dsl_dataset_t *ds;
1575 uint64_t dsobj;
1576 /* 6 extra bytes for /%recv */
1577 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1578
1579 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1580 tofs, recv_clone_name);
1581
1582 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1583 /* %recv does not exist; continue in tofs */
1584 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1585 drba->drba_cookie->drc_newfs = B_TRUE;
1586 }
1587
1588 /* clear the inconsistent flag so that we can own it */
1589 ASSERT(DS_IS_INCONSISTENT(ds));
1590 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1591 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1592 dsobj = ds->ds_object;
1593 dsl_dataset_rele(ds, FTAG);
1594
1595 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1596
1597 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1598 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1599
1600 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1601
1602 drba->drba_cookie->drc_ds = ds;
1603
1604 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1605 }
1606
1607 /*
1608 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1609 * succeeds; otherwise we will leak the holds on the datasets.
1610 */
1611 int
dmu_recv_begin(char * tofs,char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t resumable,char * origin,dmu_recv_cookie_t * drc)1612 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1613 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1614 {
1615 dmu_recv_begin_arg_t drba = { 0 };
1616
1617 bzero(drc, sizeof (dmu_recv_cookie_t));
1618 drc->drc_drr_begin = drr_begin;
1619 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1620 drc->drc_tosnap = tosnap;
1621 drc->drc_tofs = tofs;
1622 drc->drc_force = force;
1623 drc->drc_resumable = resumable;
1624 drc->drc_cred = CRED();
1625
1626 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1627 drc->drc_byteswap = B_TRUE;
1628 fletcher_4_incremental_byteswap(drr_begin,
1629 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1630 byteswap_record(drr_begin);
1631 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1632 fletcher_4_incremental_native(drr_begin,
1633 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1634 } else {
1635 return (SET_ERROR(EINVAL));
1636 }
1637
1638 drba.drba_origin = origin;
1639 drba.drba_cookie = drc;
1640 drba.drba_cred = CRED();
1641
1642 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1643 DMU_BACKUP_FEATURE_RESUMING) {
1644 return (dsl_sync_task(tofs,
1645 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1646 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1647 } else {
1648 return (dsl_sync_task(tofs,
1649 dmu_recv_begin_check, dmu_recv_begin_sync,
1650 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1651 }
1652 }
1653
1654 struct receive_record_arg {
1655 dmu_replay_record_t header;
1656 void *payload; /* Pointer to a buffer containing the payload */
1657 /*
1658 * If the record is a write, pointer to the arc_buf_t containing the
1659 * payload.
1660 */
1661 arc_buf_t *write_buf;
1662 int payload_size;
1663 uint64_t bytes_read; /* bytes read from stream when record created */
1664 boolean_t eos_marker; /* Marks the end of the stream */
1665 bqueue_node_t node;
1666 };
1667
1668 struct receive_writer_arg {
1669 objset_t *os;
1670 boolean_t byteswap;
1671 bqueue_t q;
1672
1673 /*
1674 * These three args are used to signal to the main thread that we're
1675 * done.
1676 */
1677 kmutex_t mutex;
1678 kcondvar_t cv;
1679 boolean_t done;
1680
1681 int err;
1682 /* A map from guid to dataset to help handle dedup'd streams. */
1683 avl_tree_t *guid_to_ds_map;
1684 boolean_t resumable;
1685 uint64_t last_object, last_offset;
1686 uint64_t bytes_read; /* bytes read when current record created */
1687 };
1688
1689 struct objlist {
1690 list_t list; /* List of struct receive_objnode. */
1691 /*
1692 * Last object looked up. Used to assert that objects are being looked
1693 * up in ascending order.
1694 */
1695 uint64_t last_lookup;
1696 };
1697
1698 struct receive_objnode {
1699 list_node_t node;
1700 uint64_t object;
1701 };
1702
1703 struct receive_arg {
1704 objset_t *os;
1705 vnode_t *vp; /* The vnode to read the stream from */
1706 uint64_t voff; /* The current offset in the stream */
1707 uint64_t bytes_read;
1708 /*
1709 * A record that has had its payload read in, but hasn't yet been handed
1710 * off to the worker thread.
1711 */
1712 struct receive_record_arg *rrd;
1713 /* A record that has had its header read in, but not its payload. */
1714 struct receive_record_arg *next_rrd;
1715 zio_cksum_t cksum;
1716 zio_cksum_t prev_cksum;
1717 int err;
1718 boolean_t byteswap;
1719 /* Sorted list of objects not to issue prefetches for. */
1720 struct objlist ignore_objlist;
1721 };
1722
1723 typedef struct guid_map_entry {
1724 uint64_t guid;
1725 dsl_dataset_t *gme_ds;
1726 avl_node_t avlnode;
1727 } guid_map_entry_t;
1728
1729 static int
guid_compare(const void * arg1,const void * arg2)1730 guid_compare(const void *arg1, const void *arg2)
1731 {
1732 const guid_map_entry_t *gmep1 = arg1;
1733 const guid_map_entry_t *gmep2 = arg2;
1734
1735 if (gmep1->guid < gmep2->guid)
1736 return (-1);
1737 else if (gmep1->guid > gmep2->guid)
1738 return (1);
1739 return (0);
1740 }
1741
1742 static void
free_guid_map_onexit(void * arg)1743 free_guid_map_onexit(void *arg)
1744 {
1745 avl_tree_t *ca = arg;
1746 void *cookie = NULL;
1747 guid_map_entry_t *gmep;
1748
1749 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1750 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1751 dsl_dataset_rele(gmep->gme_ds, gmep);
1752 kmem_free(gmep, sizeof (guid_map_entry_t));
1753 }
1754 avl_destroy(ca);
1755 kmem_free(ca, sizeof (avl_tree_t));
1756 }
1757
1758 static int
receive_read(struct receive_arg * ra,int len,void * buf)1759 receive_read(struct receive_arg *ra, int len, void *buf)
1760 {
1761 int done = 0;
1762
1763 /* some things will require 8-byte alignment, so everything must */
1764 ASSERT0(len % 8);
1765
1766 while (done < len) {
1767 ssize_t resid;
1768
1769 ra->err = vn_rdwr(UIO_READ, ra->vp,
1770 (char *)buf + done, len - done,
1771 ra->voff, UIO_SYSSPACE, FAPPEND,
1772 RLIM64_INFINITY, CRED(), &resid);
1773
1774 if (resid == len - done) {
1775 /*
1776 * Note: ECKSUM indicates that the receive
1777 * was interrupted and can potentially be resumed.
1778 */
1779 ra->err = SET_ERROR(ECKSUM);
1780 }
1781 ra->voff += len - done - resid;
1782 done = len - resid;
1783 if (ra->err != 0)
1784 return (ra->err);
1785 }
1786
1787 ra->bytes_read += len;
1788
1789 ASSERT3U(done, ==, len);
1790 return (0);
1791 }
1792
1793 static void
byteswap_record(dmu_replay_record_t * drr)1794 byteswap_record(dmu_replay_record_t *drr)
1795 {
1796 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1797 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1798 drr->drr_type = BSWAP_32(drr->drr_type);
1799 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1800
1801 switch (drr->drr_type) {
1802 case DRR_BEGIN:
1803 DO64(drr_begin.drr_magic);
1804 DO64(drr_begin.drr_versioninfo);
1805 DO64(drr_begin.drr_creation_time);
1806 DO32(drr_begin.drr_type);
1807 DO32(drr_begin.drr_flags);
1808 DO64(drr_begin.drr_toguid);
1809 DO64(drr_begin.drr_fromguid);
1810 break;
1811 case DRR_OBJECT:
1812 DO64(drr_object.drr_object);
1813 DO32(drr_object.drr_type);
1814 DO32(drr_object.drr_bonustype);
1815 DO32(drr_object.drr_blksz);
1816 DO32(drr_object.drr_bonuslen);
1817 DO64(drr_object.drr_toguid);
1818 break;
1819 case DRR_FREEOBJECTS:
1820 DO64(drr_freeobjects.drr_firstobj);
1821 DO64(drr_freeobjects.drr_numobjs);
1822 DO64(drr_freeobjects.drr_toguid);
1823 break;
1824 case DRR_WRITE:
1825 DO64(drr_write.drr_object);
1826 DO32(drr_write.drr_type);
1827 DO64(drr_write.drr_offset);
1828 DO64(drr_write.drr_length);
1829 DO64(drr_write.drr_toguid);
1830 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1831 DO64(drr_write.drr_key.ddk_prop);
1832 break;
1833 case DRR_WRITE_BYREF:
1834 DO64(drr_write_byref.drr_object);
1835 DO64(drr_write_byref.drr_offset);
1836 DO64(drr_write_byref.drr_length);
1837 DO64(drr_write_byref.drr_toguid);
1838 DO64(drr_write_byref.drr_refguid);
1839 DO64(drr_write_byref.drr_refobject);
1840 DO64(drr_write_byref.drr_refoffset);
1841 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1842 drr_key.ddk_cksum);
1843 DO64(drr_write_byref.drr_key.ddk_prop);
1844 break;
1845 case DRR_WRITE_EMBEDDED:
1846 DO64(drr_write_embedded.drr_object);
1847 DO64(drr_write_embedded.drr_offset);
1848 DO64(drr_write_embedded.drr_length);
1849 DO64(drr_write_embedded.drr_toguid);
1850 DO32(drr_write_embedded.drr_lsize);
1851 DO32(drr_write_embedded.drr_psize);
1852 break;
1853 case DRR_FREE:
1854 DO64(drr_free.drr_object);
1855 DO64(drr_free.drr_offset);
1856 DO64(drr_free.drr_length);
1857 DO64(drr_free.drr_toguid);
1858 break;
1859 case DRR_SPILL:
1860 DO64(drr_spill.drr_object);
1861 DO64(drr_spill.drr_length);
1862 DO64(drr_spill.drr_toguid);
1863 break;
1864 case DRR_END:
1865 DO64(drr_end.drr_toguid);
1866 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1867 break;
1868 }
1869
1870 if (drr->drr_type != DRR_BEGIN) {
1871 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1872 }
1873
1874 #undef DO64
1875 #undef DO32
1876 }
1877
1878 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1879 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1880 {
1881 if (bonus_type == DMU_OT_SA) {
1882 return (1);
1883 } else {
1884 return (1 +
1885 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1886 }
1887 }
1888
1889 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1890 save_resume_state(struct receive_writer_arg *rwa,
1891 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1892 {
1893 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1894
1895 if (!rwa->resumable)
1896 return;
1897
1898 /*
1899 * We use ds_resume_bytes[] != 0 to indicate that we need to
1900 * update this on disk, so it must not be 0.
1901 */
1902 ASSERT(rwa->bytes_read != 0);
1903
1904 /*
1905 * We only resume from write records, which have a valid
1906 * (non-meta-dnode) object number.
1907 */
1908 ASSERT(object != 0);
1909
1910 /*
1911 * For resuming to work correctly, we must receive records in order,
1912 * sorted by object,offset. This is checked by the callers, but
1913 * assert it here for good measure.
1914 */
1915 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1916 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1917 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1918 ASSERT3U(rwa->bytes_read, >=,
1919 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1920
1921 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1922 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1923 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1924 }
1925
1926 static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1927 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1928 void *data)
1929 {
1930 dmu_object_info_t doi;
1931 dmu_tx_t *tx;
1932 uint64_t object;
1933 int err;
1934
1935 if (drro->drr_type == DMU_OT_NONE ||
1936 !DMU_OT_IS_VALID(drro->drr_type) ||
1937 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1938 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1939 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1940 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1941 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1942 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1943 drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1944 return (SET_ERROR(EINVAL));
1945 }
1946
1947 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1948
1949 if (err != 0 && err != ENOENT)
1950 return (SET_ERROR(EINVAL));
1951 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
1952
1953 /*
1954 * If we are losing blkptrs or changing the block size this must
1955 * be a new file instance. We must clear out the previous file
1956 * contents before we can change this type of metadata in the dnode.
1957 */
1958 if (err == 0) {
1959 int nblkptr;
1960
1961 nblkptr = deduce_nblkptr(drro->drr_bonustype,
1962 drro->drr_bonuslen);
1963
1964 if (drro->drr_blksz != doi.doi_data_block_size ||
1965 nblkptr < doi.doi_nblkptr) {
1966 err = dmu_free_long_range(rwa->os, drro->drr_object,
1967 0, DMU_OBJECT_END);
1968 if (err != 0)
1969 return (SET_ERROR(EINVAL));
1970 }
1971 }
1972
1973 tx = dmu_tx_create(rwa->os);
1974 dmu_tx_hold_bonus(tx, object);
1975 err = dmu_tx_assign(tx, TXG_WAIT);
1976 if (err != 0) {
1977 dmu_tx_abort(tx);
1978 return (err);
1979 }
1980
1981 if (object == DMU_NEW_OBJECT) {
1982 /* currently free, want to be allocated */
1983 err = dmu_object_claim(rwa->os, drro->drr_object,
1984 drro->drr_type, drro->drr_blksz,
1985 drro->drr_bonustype, drro->drr_bonuslen, tx);
1986 } else if (drro->drr_type != doi.doi_type ||
1987 drro->drr_blksz != doi.doi_data_block_size ||
1988 drro->drr_bonustype != doi.doi_bonus_type ||
1989 drro->drr_bonuslen != doi.doi_bonus_size) {
1990 /* currently allocated, but with different properties */
1991 err = dmu_object_reclaim(rwa->os, drro->drr_object,
1992 drro->drr_type, drro->drr_blksz,
1993 drro->drr_bonustype, drro->drr_bonuslen, tx);
1994 }
1995 if (err != 0) {
1996 dmu_tx_commit(tx);
1997 return (SET_ERROR(EINVAL));
1998 }
1999
2000 dmu_object_set_checksum(rwa->os, drro->drr_object,
2001 drro->drr_checksumtype, tx);
2002 dmu_object_set_compress(rwa->os, drro->drr_object,
2003 drro->drr_compress, tx);
2004
2005 if (data != NULL) {
2006 dmu_buf_t *db;
2007
2008 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2009 dmu_buf_will_dirty(db, tx);
2010
2011 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2012 bcopy(data, db->db_data, drro->drr_bonuslen);
2013 if (rwa->byteswap) {
2014 dmu_object_byteswap_t byteswap =
2015 DMU_OT_BYTESWAP(drro->drr_bonustype);
2016 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2017 drro->drr_bonuslen);
2018 }
2019 dmu_buf_rele(db, FTAG);
2020 }
2021 dmu_tx_commit(tx);
2022
2023 return (0);
2024 }
2025
2026 /* ARGSUSED */
2027 static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)2028 receive_freeobjects(struct receive_writer_arg *rwa,
2029 struct drr_freeobjects *drrfo)
2030 {
2031 uint64_t obj;
2032 int next_err = 0;
2033
2034 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2035 return (SET_ERROR(EINVAL));
2036
2037 for (obj = drrfo->drr_firstobj;
2038 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2039 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2040 int err;
2041
2042 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2043 continue;
2044
2045 err = dmu_free_long_object(rwa->os, obj);
2046 if (err != 0)
2047 return (err);
2048 }
2049 if (next_err != ESRCH)
2050 return (next_err);
2051 return (0);
2052 }
2053
2054 static int
receive_write(struct receive_writer_arg * rwa,struct drr_write * drrw,arc_buf_t * abuf)2055 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2056 arc_buf_t *abuf)
2057 {
2058 dmu_tx_t *tx;
2059 int err;
2060
2061 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2062 !DMU_OT_IS_VALID(drrw->drr_type))
2063 return (SET_ERROR(EINVAL));
2064
2065 /*
2066 * For resuming to work, records must be in increasing order
2067 * by (object, offset).
2068 */
2069 if (drrw->drr_object < rwa->last_object ||
2070 (drrw->drr_object == rwa->last_object &&
2071 drrw->drr_offset < rwa->last_offset)) {
2072 return (SET_ERROR(EINVAL));
2073 }
2074 rwa->last_object = drrw->drr_object;
2075 rwa->last_offset = drrw->drr_offset;
2076
2077 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2078 return (SET_ERROR(EINVAL));
2079
2080 tx = dmu_tx_create(rwa->os);
2081
2082 dmu_tx_hold_write(tx, drrw->drr_object,
2083 drrw->drr_offset, drrw->drr_length);
2084 err = dmu_tx_assign(tx, TXG_WAIT);
2085 if (err != 0) {
2086 dmu_tx_abort(tx);
2087 return (err);
2088 }
2089 if (rwa->byteswap) {
2090 dmu_object_byteswap_t byteswap =
2091 DMU_OT_BYTESWAP(drrw->drr_type);
2092 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2093 drrw->drr_length);
2094 }
2095
2096 dmu_buf_t *bonus;
2097 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2098 return (SET_ERROR(EINVAL));
2099 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2100
2101 /*
2102 * Note: If the receive fails, we want the resume stream to start
2103 * with the same record that we last successfully received (as opposed
2104 * to the next record), so that we can verify that we are
2105 * resuming from the correct location.
2106 */
2107 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2108 dmu_tx_commit(tx);
2109 dmu_buf_rele(bonus, FTAG);
2110
2111 return (0);
2112 }
2113
2114 /*
2115 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2116 * streams to refer to a copy of the data that is already on the
2117 * system because it came in earlier in the stream. This function
2118 * finds the earlier copy of the data, and uses that copy instead of
2119 * data from the stream to fulfill this write.
2120 */
2121 static int
receive_write_byref(struct receive_writer_arg * rwa,struct drr_write_byref * drrwbr)2122 receive_write_byref(struct receive_writer_arg *rwa,
2123 struct drr_write_byref *drrwbr)
2124 {
2125 dmu_tx_t *tx;
2126 int err;
2127 guid_map_entry_t gmesrch;
2128 guid_map_entry_t *gmep;
2129 avl_index_t where;
2130 objset_t *ref_os = NULL;
2131 dmu_buf_t *dbp;
2132
2133 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2134 return (SET_ERROR(EINVAL));
2135
2136 /*
2137 * If the GUID of the referenced dataset is different from the
2138 * GUID of the target dataset, find the referenced dataset.
2139 */
2140 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2141 gmesrch.guid = drrwbr->drr_refguid;
2142 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2143 &where)) == NULL) {
2144 return (SET_ERROR(EINVAL));
2145 }
2146 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2147 return (SET_ERROR(EINVAL));
2148 } else {
2149 ref_os = rwa->os;
2150 }
2151
2152 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2153 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2154 if (err != 0)
2155 return (err);
2156
2157 tx = dmu_tx_create(rwa->os);
2158
2159 dmu_tx_hold_write(tx, drrwbr->drr_object,
2160 drrwbr->drr_offset, drrwbr->drr_length);
2161 err = dmu_tx_assign(tx, TXG_WAIT);
2162 if (err != 0) {
2163 dmu_tx_abort(tx);
2164 return (err);
2165 }
2166 dmu_write(rwa->os, drrwbr->drr_object,
2167 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2168 dmu_buf_rele(dbp, FTAG);
2169
2170 /* See comment in restore_write. */
2171 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2172 dmu_tx_commit(tx);
2173 return (0);
2174 }
2175
2176 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)2177 receive_write_embedded(struct receive_writer_arg *rwa,
2178 struct drr_write_embedded *drrwe, void *data)
2179 {
2180 dmu_tx_t *tx;
2181 int err;
2182
2183 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2184 return (EINVAL);
2185
2186 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2187 return (EINVAL);
2188
2189 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2190 return (EINVAL);
2191 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2192 return (EINVAL);
2193
2194 tx = dmu_tx_create(rwa->os);
2195
2196 dmu_tx_hold_write(tx, drrwe->drr_object,
2197 drrwe->drr_offset, drrwe->drr_length);
2198 err = dmu_tx_assign(tx, TXG_WAIT);
2199 if (err != 0) {
2200 dmu_tx_abort(tx);
2201 return (err);
2202 }
2203
2204 dmu_write_embedded(rwa->os, drrwe->drr_object,
2205 drrwe->drr_offset, data, drrwe->drr_etype,
2206 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2207 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2208
2209 /* See comment in restore_write. */
2210 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2211 dmu_tx_commit(tx);
2212 return (0);
2213 }
2214
2215 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,void * data)2216 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2217 void *data)
2218 {
2219 dmu_tx_t *tx;
2220 dmu_buf_t *db, *db_spill;
2221 int err;
2222
2223 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2224 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2225 return (SET_ERROR(EINVAL));
2226
2227 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2228 return (SET_ERROR(EINVAL));
2229
2230 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2231 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2232 dmu_buf_rele(db, FTAG);
2233 return (err);
2234 }
2235
2236 tx = dmu_tx_create(rwa->os);
2237
2238 dmu_tx_hold_spill(tx, db->db_object);
2239
2240 err = dmu_tx_assign(tx, TXG_WAIT);
2241 if (err != 0) {
2242 dmu_buf_rele(db, FTAG);
2243 dmu_buf_rele(db_spill, FTAG);
2244 dmu_tx_abort(tx);
2245 return (err);
2246 }
2247 dmu_buf_will_dirty(db_spill, tx);
2248
2249 if (db_spill->db_size < drrs->drr_length)
2250 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2251 drrs->drr_length, tx));
2252 bcopy(data, db_spill->db_data, drrs->drr_length);
2253
2254 dmu_buf_rele(db, FTAG);
2255 dmu_buf_rele(db_spill, FTAG);
2256
2257 dmu_tx_commit(tx);
2258 return (0);
2259 }
2260
2261 /* ARGSUSED */
2262 static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)2263 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2264 {
2265 int err;
2266
2267 if (drrf->drr_length != -1ULL &&
2268 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2269 return (SET_ERROR(EINVAL));
2270
2271 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2272 return (SET_ERROR(EINVAL));
2273
2274 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2275 drrf->drr_offset, drrf->drr_length);
2276
2277 return (err);
2278 }
2279
2280 /* used to destroy the drc_ds on error */
2281 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)2282 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2283 {
2284 if (drc->drc_resumable) {
2285 /* wait for our resume state to be written to disk */
2286 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2287 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2288 } else {
2289 char name[ZFS_MAX_DATASET_NAME_LEN];
2290 dsl_dataset_name(drc->drc_ds, name);
2291 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2292 (void) dsl_destroy_head(name);
2293 }
2294 }
2295
2296 static void
receive_cksum(struct receive_arg * ra,int len,void * buf)2297 receive_cksum(struct receive_arg *ra, int len, void *buf)
2298 {
2299 if (ra->byteswap) {
2300 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2301 } else {
2302 fletcher_4_incremental_native(buf, len, &ra->cksum);
2303 }
2304 }
2305
2306 /*
2307 * Read the payload into a buffer of size len, and update the current record's
2308 * payload field.
2309 * Allocate ra->next_rrd and read the next record's header into
2310 * ra->next_rrd->header.
2311 * Verify checksum of payload and next record.
2312 */
2313 static int
receive_read_payload_and_next_header(struct receive_arg * ra,int len,void * buf)2314 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2315 {
2316 int err;
2317
2318 if (len != 0) {
2319 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2320 err = receive_read(ra, len, buf);
2321 if (err != 0)
2322 return (err);
2323 receive_cksum(ra, len, buf);
2324
2325 /* note: rrd is NULL when reading the begin record's payload */
2326 if (ra->rrd != NULL) {
2327 ra->rrd->payload = buf;
2328 ra->rrd->payload_size = len;
2329 ra->rrd->bytes_read = ra->bytes_read;
2330 }
2331 }
2332
2333 ra->prev_cksum = ra->cksum;
2334
2335 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2336 err = receive_read(ra, sizeof (ra->next_rrd->header),
2337 &ra->next_rrd->header);
2338 ra->next_rrd->bytes_read = ra->bytes_read;
2339 if (err != 0) {
2340 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2341 ra->next_rrd = NULL;
2342 return (err);
2343 }
2344 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2345 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2346 ra->next_rrd = NULL;
2347 return (SET_ERROR(EINVAL));
2348 }
2349
2350 /*
2351 * Note: checksum is of everything up to but not including the
2352 * checksum itself.
2353 */
2354 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2355 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2356 receive_cksum(ra,
2357 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2358 &ra->next_rrd->header);
2359
2360 zio_cksum_t cksum_orig =
2361 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2362 zio_cksum_t *cksump =
2363 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2364
2365 if (ra->byteswap)
2366 byteswap_record(&ra->next_rrd->header);
2367
2368 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2369 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2370 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2371 ra->next_rrd = NULL;
2372 return (SET_ERROR(ECKSUM));
2373 }
2374
2375 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2376
2377 return (0);
2378 }
2379
2380 static void
objlist_create(struct objlist * list)2381 objlist_create(struct objlist *list)
2382 {
2383 list_create(&list->list, sizeof (struct receive_objnode),
2384 offsetof(struct receive_objnode, node));
2385 list->last_lookup = 0;
2386 }
2387
2388 static void
objlist_destroy(struct objlist * list)2389 objlist_destroy(struct objlist *list)
2390 {
2391 for (struct receive_objnode *n = list_remove_head(&list->list);
2392 n != NULL; n = list_remove_head(&list->list)) {
2393 kmem_free(n, sizeof (*n));
2394 }
2395 list_destroy(&list->list);
2396 }
2397
2398 /*
2399 * This function looks through the objlist to see if the specified object number
2400 * is contained in the objlist. In the process, it will remove all object
2401 * numbers in the list that are smaller than the specified object number. Thus,
2402 * any lookup of an object number smaller than a previously looked up object
2403 * number will always return false; therefore, all lookups should be done in
2404 * ascending order.
2405 */
2406 static boolean_t
objlist_exists(struct objlist * list,uint64_t object)2407 objlist_exists(struct objlist *list, uint64_t object)
2408 {
2409 struct receive_objnode *node = list_head(&list->list);
2410 ASSERT3U(object, >=, list->last_lookup);
2411 list->last_lookup = object;
2412 while (node != NULL && node->object < object) {
2413 VERIFY3P(node, ==, list_remove_head(&list->list));
2414 kmem_free(node, sizeof (*node));
2415 node = list_head(&list->list);
2416 }
2417 return (node != NULL && node->object == object);
2418 }
2419
2420 /*
2421 * The objlist is a list of object numbers stored in ascending order. However,
2422 * the insertion of new object numbers does not seek out the correct location to
2423 * store a new object number; instead, it appends it to the list for simplicity.
2424 * Thus, any users must take care to only insert new object numbers in ascending
2425 * order.
2426 */
2427 static void
objlist_insert(struct objlist * list,uint64_t object)2428 objlist_insert(struct objlist *list, uint64_t object)
2429 {
2430 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2431 node->object = object;
2432 #ifdef ZFS_DEBUG
2433 struct receive_objnode *last_object = list_tail(&list->list);
2434 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2435 ASSERT3U(node->object, >, last_objnum);
2436 #endif
2437 list_insert_tail(&list->list, node);
2438 }
2439
2440 /*
2441 * Issue the prefetch reads for any necessary indirect blocks.
2442 *
2443 * We use the object ignore list to tell us whether or not to issue prefetches
2444 * for a given object. We do this for both correctness (in case the blocksize
2445 * of an object has changed) and performance (if the object doesn't exist, don't
2446 * needlessly try to issue prefetches). We also trim the list as we go through
2447 * the stream to prevent it from growing to an unbounded size.
2448 *
2449 * The object numbers within will always be in sorted order, and any write
2450 * records we see will also be in sorted order, but they're not sorted with
2451 * respect to each other (i.e. we can get several object records before
2452 * receiving each object's write records). As a result, once we've reached a
2453 * given object number, we can safely remove any reference to lower object
2454 * numbers in the ignore list. In practice, we receive up to 32 object records
2455 * before receiving write records, so the list can have up to 32 nodes in it.
2456 */
2457 /* ARGSUSED */
2458 static void
receive_read_prefetch(struct receive_arg * ra,uint64_t object,uint64_t offset,uint64_t length)2459 receive_read_prefetch(struct receive_arg *ra,
2460 uint64_t object, uint64_t offset, uint64_t length)
2461 {
2462 if (!objlist_exists(&ra->ignore_objlist, object)) {
2463 dmu_prefetch(ra->os, object, 1, offset, length,
2464 ZIO_PRIORITY_SYNC_READ);
2465 }
2466 }
2467
2468 /*
2469 * Read records off the stream, issuing any necessary prefetches.
2470 */
2471 static int
receive_read_record(struct receive_arg * ra)2472 receive_read_record(struct receive_arg *ra)
2473 {
2474 int err;
2475
2476 switch (ra->rrd->header.drr_type) {
2477 case DRR_OBJECT:
2478 {
2479 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2480 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2481 void *buf = kmem_zalloc(size, KM_SLEEP);
2482 dmu_object_info_t doi;
2483 err = receive_read_payload_and_next_header(ra, size, buf);
2484 if (err != 0) {
2485 kmem_free(buf, size);
2486 return (err);
2487 }
2488 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2489 /*
2490 * See receive_read_prefetch for an explanation why we're
2491 * storing this object in the ignore_obj_list.
2492 */
2493 if (err == ENOENT ||
2494 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2495 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2496 err = 0;
2497 }
2498 return (err);
2499 }
2500 case DRR_FREEOBJECTS:
2501 {
2502 err = receive_read_payload_and_next_header(ra, 0, NULL);
2503 return (err);
2504 }
2505 case DRR_WRITE:
2506 {
2507 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2508 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2509 drrw->drr_length);
2510
2511 err = receive_read_payload_and_next_header(ra,
2512 drrw->drr_length, abuf->b_data);
2513 if (err != 0) {
2514 dmu_return_arcbuf(abuf);
2515 return (err);
2516 }
2517 ra->rrd->write_buf = abuf;
2518 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2519 drrw->drr_length);
2520 return (err);
2521 }
2522 case DRR_WRITE_BYREF:
2523 {
2524 struct drr_write_byref *drrwb =
2525 &ra->rrd->header.drr_u.drr_write_byref;
2526 err = receive_read_payload_and_next_header(ra, 0, NULL);
2527 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2528 drrwb->drr_length);
2529 return (err);
2530 }
2531 case DRR_WRITE_EMBEDDED:
2532 {
2533 struct drr_write_embedded *drrwe =
2534 &ra->rrd->header.drr_u.drr_write_embedded;
2535 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2536 void *buf = kmem_zalloc(size, KM_SLEEP);
2537
2538 err = receive_read_payload_and_next_header(ra, size, buf);
2539 if (err != 0) {
2540 kmem_free(buf, size);
2541 return (err);
2542 }
2543
2544 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2545 drrwe->drr_length);
2546 return (err);
2547 }
2548 case DRR_FREE:
2549 {
2550 /*
2551 * It might be beneficial to prefetch indirect blocks here, but
2552 * we don't really have the data to decide for sure.
2553 */
2554 err = receive_read_payload_and_next_header(ra, 0, NULL);
2555 return (err);
2556 }
2557 case DRR_END:
2558 {
2559 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2560 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2561 return (SET_ERROR(ECKSUM));
2562 return (0);
2563 }
2564 case DRR_SPILL:
2565 {
2566 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2567 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2568 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2569 buf);
2570 if (err != 0)
2571 kmem_free(buf, drrs->drr_length);
2572 return (err);
2573 }
2574 default:
2575 return (SET_ERROR(EINVAL));
2576 }
2577 }
2578
2579 /*
2580 * Commit the records to the pool.
2581 */
2582 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2583 receive_process_record(struct receive_writer_arg *rwa,
2584 struct receive_record_arg *rrd)
2585 {
2586 int err;
2587
2588 /* Processing in order, therefore bytes_read should be increasing. */
2589 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2590 rwa->bytes_read = rrd->bytes_read;
2591
2592 switch (rrd->header.drr_type) {
2593 case DRR_OBJECT:
2594 {
2595 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2596 err = receive_object(rwa, drro, rrd->payload);
2597 kmem_free(rrd->payload, rrd->payload_size);
2598 rrd->payload = NULL;
2599 return (err);
2600 }
2601 case DRR_FREEOBJECTS:
2602 {
2603 struct drr_freeobjects *drrfo =
2604 &rrd->header.drr_u.drr_freeobjects;
2605 return (receive_freeobjects(rwa, drrfo));
2606 }
2607 case DRR_WRITE:
2608 {
2609 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2610 err = receive_write(rwa, drrw, rrd->write_buf);
2611 /* if receive_write() is successful, it consumes the arc_buf */
2612 if (err != 0)
2613 dmu_return_arcbuf(rrd->write_buf);
2614 rrd->write_buf = NULL;
2615 rrd->payload = NULL;
2616 return (err);
2617 }
2618 case DRR_WRITE_BYREF:
2619 {
2620 struct drr_write_byref *drrwbr =
2621 &rrd->header.drr_u.drr_write_byref;
2622 return (receive_write_byref(rwa, drrwbr));
2623 }
2624 case DRR_WRITE_EMBEDDED:
2625 {
2626 struct drr_write_embedded *drrwe =
2627 &rrd->header.drr_u.drr_write_embedded;
2628 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2629 kmem_free(rrd->payload, rrd->payload_size);
2630 rrd->payload = NULL;
2631 return (err);
2632 }
2633 case DRR_FREE:
2634 {
2635 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2636 return (receive_free(rwa, drrf));
2637 }
2638 case DRR_SPILL:
2639 {
2640 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2641 err = receive_spill(rwa, drrs, rrd->payload);
2642 kmem_free(rrd->payload, rrd->payload_size);
2643 rrd->payload = NULL;
2644 return (err);
2645 }
2646 default:
2647 return (SET_ERROR(EINVAL));
2648 }
2649 }
2650
2651 /*
2652 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2653 * receive_process_record When we're done, signal the main thread and exit.
2654 */
2655 static void
receive_writer_thread(void * arg)2656 receive_writer_thread(void *arg)
2657 {
2658 struct receive_writer_arg *rwa = arg;
2659 struct receive_record_arg *rrd;
2660 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2661 rrd = bqueue_dequeue(&rwa->q)) {
2662 /*
2663 * If there's an error, the main thread will stop putting things
2664 * on the queue, but we need to clear everything in it before we
2665 * can exit.
2666 */
2667 if (rwa->err == 0) {
2668 rwa->err = receive_process_record(rwa, rrd);
2669 } else if (rrd->write_buf != NULL) {
2670 dmu_return_arcbuf(rrd->write_buf);
2671 rrd->write_buf = NULL;
2672 rrd->payload = NULL;
2673 } else if (rrd->payload != NULL) {
2674 kmem_free(rrd->payload, rrd->payload_size);
2675 rrd->payload = NULL;
2676 }
2677 kmem_free(rrd, sizeof (*rrd));
2678 }
2679 kmem_free(rrd, sizeof (*rrd));
2680 mutex_enter(&rwa->mutex);
2681 rwa->done = B_TRUE;
2682 cv_signal(&rwa->cv);
2683 mutex_exit(&rwa->mutex);
2684 }
2685
2686 static int
resume_check(struct receive_arg * ra,nvlist_t * begin_nvl)2687 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2688 {
2689 uint64_t val;
2690 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2691 uint64_t dsobj = dmu_objset_id(ra->os);
2692 uint64_t resume_obj, resume_off;
2693
2694 if (nvlist_lookup_uint64(begin_nvl,
2695 "resume_object", &resume_obj) != 0 ||
2696 nvlist_lookup_uint64(begin_nvl,
2697 "resume_offset", &resume_off) != 0) {
2698 return (SET_ERROR(EINVAL));
2699 }
2700 VERIFY0(zap_lookup(mos, dsobj,
2701 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2702 if (resume_obj != val)
2703 return (SET_ERROR(EINVAL));
2704 VERIFY0(zap_lookup(mos, dsobj,
2705 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2706 if (resume_off != val)
2707 return (SET_ERROR(EINVAL));
2708
2709 return (0);
2710 }
2711
2712 /*
2713 * Read in the stream's records, one by one, and apply them to the pool. There
2714 * are two threads involved; the thread that calls this function will spin up a
2715 * worker thread, read the records off the stream one by one, and issue
2716 * prefetches for any necessary indirect blocks. It will then push the records
2717 * onto an internal blocking queue. The worker thread will pull the records off
2718 * the queue, and actually write the data into the DMU. This way, the worker
2719 * thread doesn't have to wait for reads to complete, since everything it needs
2720 * (the indirect blocks) will be prefetched.
2721 *
2722 * NB: callers *must* call dmu_recv_end() if this succeeds.
2723 */
2724 int
dmu_recv_stream(dmu_recv_cookie_t * drc,vnode_t * vp,offset_t * voffp,int cleanup_fd,uint64_t * action_handlep)2725 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2726 int cleanup_fd, uint64_t *action_handlep)
2727 {
2728 int err = 0;
2729 struct receive_arg ra = { 0 };
2730 struct receive_writer_arg rwa = { 0 };
2731 int featureflags;
2732 nvlist_t *begin_nvl = NULL;
2733
2734 ra.byteswap = drc->drc_byteswap;
2735 ra.cksum = drc->drc_cksum;
2736 ra.vp = vp;
2737 ra.voff = *voffp;
2738
2739 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2740 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2741 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2742 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2743 }
2744
2745 objlist_create(&ra.ignore_objlist);
2746
2747 /* these were verified in dmu_recv_begin */
2748 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2749 DMU_SUBSTREAM);
2750 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2751
2752 /*
2753 * Open the objset we are modifying.
2754 */
2755 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2756
2757 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2758
2759 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2760
2761 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2762 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2763 minor_t minor;
2764
2765 if (cleanup_fd == -1) {
2766 ra.err = SET_ERROR(EBADF);
2767 goto out;
2768 }
2769 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2770 if (ra.err != 0) {
2771 cleanup_fd = -1;
2772 goto out;
2773 }
2774
2775 if (*action_handlep == 0) {
2776 rwa.guid_to_ds_map =
2777 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2778 avl_create(rwa.guid_to_ds_map, guid_compare,
2779 sizeof (guid_map_entry_t),
2780 offsetof(guid_map_entry_t, avlnode));
2781 err = zfs_onexit_add_cb(minor,
2782 free_guid_map_onexit, rwa.guid_to_ds_map,
2783 action_handlep);
2784 if (ra.err != 0)
2785 goto out;
2786 } else {
2787 err = zfs_onexit_cb_data(minor, *action_handlep,
2788 (void **)&rwa.guid_to_ds_map);
2789 if (ra.err != 0)
2790 goto out;
2791 }
2792
2793 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2794 }
2795
2796 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2797 void *payload = NULL;
2798 if (payloadlen != 0)
2799 payload = kmem_alloc(payloadlen, KM_SLEEP);
2800
2801 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2802 if (err != 0) {
2803 if (payloadlen != 0)
2804 kmem_free(payload, payloadlen);
2805 goto out;
2806 }
2807 if (payloadlen != 0) {
2808 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2809 kmem_free(payload, payloadlen);
2810 if (err != 0)
2811 goto out;
2812 }
2813
2814 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2815 err = resume_check(&ra, begin_nvl);
2816 if (err != 0)
2817 goto out;
2818 }
2819
2820 (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2821 offsetof(struct receive_record_arg, node));
2822 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2823 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2824 rwa.os = ra.os;
2825 rwa.byteswap = drc->drc_byteswap;
2826 rwa.resumable = drc->drc_resumable;
2827
2828 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2829 TS_RUN, minclsyspri);
2830 /*
2831 * We're reading rwa.err without locks, which is safe since we are the
2832 * only reader, and the worker thread is the only writer. It's ok if we
2833 * miss a write for an iteration or two of the loop, since the writer
2834 * thread will keep freeing records we send it until we send it an eos
2835 * marker.
2836 *
2837 * We can leave this loop in 3 ways: First, if rwa.err is
2838 * non-zero. In that case, the writer thread will free the rrd we just
2839 * pushed. Second, if we're interrupted; in that case, either it's the
2840 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2841 * has been handed off to the writer thread who will free it. Finally,
2842 * if receive_read_record fails or we're at the end of the stream, then
2843 * we free ra.rrd and exit.
2844 */
2845 while (rwa.err == 0) {
2846 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2847 err = SET_ERROR(EINTR);
2848 break;
2849 }
2850
2851 ASSERT3P(ra.rrd, ==, NULL);
2852 ra.rrd = ra.next_rrd;
2853 ra.next_rrd = NULL;
2854 /* Allocates and loads header into ra.next_rrd */
2855 err = receive_read_record(&ra);
2856
2857 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2858 kmem_free(ra.rrd, sizeof (*ra.rrd));
2859 ra.rrd = NULL;
2860 break;
2861 }
2862
2863 bqueue_enqueue(&rwa.q, ra.rrd,
2864 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2865 ra.rrd = NULL;
2866 }
2867 if (ra.next_rrd == NULL)
2868 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2869 ra.next_rrd->eos_marker = B_TRUE;
2870 bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2871
2872 mutex_enter(&rwa.mutex);
2873 while (!rwa.done) {
2874 cv_wait(&rwa.cv, &rwa.mutex);
2875 }
2876 mutex_exit(&rwa.mutex);
2877
2878 cv_destroy(&rwa.cv);
2879 mutex_destroy(&rwa.mutex);
2880 bqueue_destroy(&rwa.q);
2881 if (err == 0)
2882 err = rwa.err;
2883
2884 out:
2885 nvlist_free(begin_nvl);
2886 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2887 zfs_onexit_fd_rele(cleanup_fd);
2888
2889 if (err != 0) {
2890 /*
2891 * Clean up references. If receive is not resumable,
2892 * destroy what we created, so we don't leave it in
2893 * the inconsistent state.
2894 */
2895 dmu_recv_cleanup_ds(drc);
2896 }
2897
2898 *voffp = ra.voff;
2899 objlist_destroy(&ra.ignore_objlist);
2900 return (err);
2901 }
2902
2903 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)2904 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2905 {
2906 dmu_recv_cookie_t *drc = arg;
2907 dsl_pool_t *dp = dmu_tx_pool(tx);
2908 int error;
2909
2910 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2911
2912 if (!drc->drc_newfs) {
2913 dsl_dataset_t *origin_head;
2914
2915 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2916 if (error != 0)
2917 return (error);
2918 if (drc->drc_force) {
2919 /*
2920 * We will destroy any snapshots in tofs (i.e. before
2921 * origin_head) that are after the origin (which is
2922 * the snap before drc_ds, because drc_ds can not
2923 * have any snaps of its own).
2924 */
2925 uint64_t obj;
2926
2927 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2928 while (obj !=
2929 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2930 dsl_dataset_t *snap;
2931 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2932 &snap);
2933 if (error != 0)
2934 break;
2935 if (snap->ds_dir != origin_head->ds_dir)
2936 error = SET_ERROR(EINVAL);
2937 if (error == 0) {
2938 error = dsl_destroy_snapshot_check_impl(
2939 snap, B_FALSE);
2940 }
2941 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2942 dsl_dataset_rele(snap, FTAG);
2943 if (error != 0)
2944 break;
2945 }
2946 if (error != 0) {
2947 dsl_dataset_rele(origin_head, FTAG);
2948 return (error);
2949 }
2950 }
2951 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2952 origin_head, drc->drc_force, drc->drc_owner, tx);
2953 if (error != 0) {
2954 dsl_dataset_rele(origin_head, FTAG);
2955 return (error);
2956 }
2957 error = dsl_dataset_snapshot_check_impl(origin_head,
2958 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2959 dsl_dataset_rele(origin_head, FTAG);
2960 if (error != 0)
2961 return (error);
2962
2963 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2964 } else {
2965 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2966 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2967 }
2968 return (error);
2969 }
2970
2971 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)2972 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2973 {
2974 dmu_recv_cookie_t *drc = arg;
2975 dsl_pool_t *dp = dmu_tx_pool(tx);
2976
2977 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2978 tx, "snap=%s", drc->drc_tosnap);
2979
2980 if (!drc->drc_newfs) {
2981 dsl_dataset_t *origin_head;
2982
2983 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2984 &origin_head));
2985
2986 if (drc->drc_force) {
2987 /*
2988 * Destroy any snapshots of drc_tofs (origin_head)
2989 * after the origin (the snap before drc_ds).
2990 */
2991 uint64_t obj;
2992
2993 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2994 while (obj !=
2995 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2996 dsl_dataset_t *snap;
2997 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2998 &snap));
2999 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3000 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3001 dsl_destroy_snapshot_sync_impl(snap,
3002 B_FALSE, tx);
3003 dsl_dataset_rele(snap, FTAG);
3004 }
3005 }
3006 VERIFY3P(drc->drc_ds->ds_prev, ==,
3007 origin_head->ds_prev);
3008
3009 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3010 origin_head, tx);
3011 dsl_dataset_snapshot_sync_impl(origin_head,
3012 drc->drc_tosnap, tx);
3013
3014 /* set snapshot's creation time and guid */
3015 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3016 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3017 drc->drc_drrb->drr_creation_time;
3018 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3019 drc->drc_drrb->drr_toguid;
3020 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3021 ~DS_FLAG_INCONSISTENT;
3022
3023 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3024 dsl_dataset_phys(origin_head)->ds_flags &=
3025 ~DS_FLAG_INCONSISTENT;
3026
3027 dsl_dataset_rele(origin_head, FTAG);
3028 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3029
3030 if (drc->drc_owner != NULL)
3031 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3032 } else {
3033 dsl_dataset_t *ds = drc->drc_ds;
3034
3035 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3036
3037 /* set snapshot's creation time and guid */
3038 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3039 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3040 drc->drc_drrb->drr_creation_time;
3041 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3042 drc->drc_drrb->drr_toguid;
3043 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3044 ~DS_FLAG_INCONSISTENT;
3045
3046 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3047 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3048 if (dsl_dataset_has_resume_receive_state(ds)) {
3049 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3050 DS_FIELD_RESUME_FROMGUID, tx);
3051 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3052 DS_FIELD_RESUME_OBJECT, tx);
3053 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3054 DS_FIELD_RESUME_OFFSET, tx);
3055 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3056 DS_FIELD_RESUME_BYTES, tx);
3057 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3058 DS_FIELD_RESUME_TOGUID, tx);
3059 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3060 DS_FIELD_RESUME_TONAME, tx);
3061 }
3062 }
3063 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3064 /*
3065 * Release the hold from dmu_recv_begin. This must be done before
3066 * we return to open context, so that when we free the dataset's dnode,
3067 * we can evict its bonus buffer.
3068 */
3069 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3070 drc->drc_ds = NULL;
3071 }
3072
3073 static int
add_ds_to_guidmap(const char * name,avl_tree_t * guid_map,uint64_t snapobj)3074 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3075 {
3076 dsl_pool_t *dp;
3077 dsl_dataset_t *snapds;
3078 guid_map_entry_t *gmep;
3079 int err;
3080
3081 ASSERT(guid_map != NULL);
3082
3083 err = dsl_pool_hold(name, FTAG, &dp);
3084 if (err != 0)
3085 return (err);
3086 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3087 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3088 if (err == 0) {
3089 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3090 gmep->gme_ds = snapds;
3091 avl_add(guid_map, gmep);
3092 dsl_dataset_long_hold(snapds, gmep);
3093 } else {
3094 kmem_free(gmep, sizeof (*gmep));
3095 }
3096
3097 dsl_pool_rele(dp, FTAG);
3098 return (err);
3099 }
3100
3101 static int dmu_recv_end_modified_blocks = 3;
3102
3103 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)3104 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3105 {
3106 int error;
3107
3108 #ifdef _KERNEL
3109 /*
3110 * We will be destroying the ds; make sure its origin is unmounted if
3111 * necessary.
3112 */
3113 char name[ZFS_MAX_DATASET_NAME_LEN];
3114 dsl_dataset_name(drc->drc_ds, name);
3115 zfs_destroy_unmount_origin(name);
3116 #endif
3117
3118 error = dsl_sync_task(drc->drc_tofs,
3119 dmu_recv_end_check, dmu_recv_end_sync, drc,
3120 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3121
3122 if (error != 0)
3123 dmu_recv_cleanup_ds(drc);
3124 return (error);
3125 }
3126
3127 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)3128 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3129 {
3130 int error;
3131
3132 error = dsl_sync_task(drc->drc_tofs,
3133 dmu_recv_end_check, dmu_recv_end_sync, drc,
3134 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3135
3136 if (error != 0) {
3137 dmu_recv_cleanup_ds(drc);
3138 } else if (drc->drc_guid_to_ds_map != NULL) {
3139 (void) add_ds_to_guidmap(drc->drc_tofs,
3140 drc->drc_guid_to_ds_map,
3141 drc->drc_newsnapobj);
3142 }
3143 return (error);
3144 }
3145
3146 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)3147 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3148 {
3149 drc->drc_owner = owner;
3150
3151 if (drc->drc_newfs)
3152 return (dmu_recv_new_end(drc));
3153 else
3154 return (dmu_recv_existing_end(drc));
3155 }
3156
3157 /*
3158 * Return TRUE if this objset is currently being received into.
3159 */
3160 boolean_t
dmu_objset_is_receiving(objset_t * os)3161 dmu_objset_is_receiving(objset_t *os)
3162 {
3163 return (os->os_dsl_dataset != NULL &&
3164 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3165 }
3166