1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 */
28
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_prop.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zfs_znode.h>
46 #include <zfs_fletcher.h>
47 #include <sys/avl.h>
48 #include <sys/ddt.h>
49 #include <sys/zfs_onexit.h>
50 #include <sys/dmu_send.h>
51 #include <sys/dsl_destroy.h>
52 #include <sys/blkptr.h>
53 #include <sys/dsl_bookmark.h>
54 #include <sys/zfeature.h>
55 #include <sys/bqueue.h>
56
57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
58 int zfs_send_corrupt_data = B_FALSE;
59 int zfs_send_queue_length = 16 * 1024 * 1024;
60 int zfs_recv_queue_length = 16 * 1024 * 1024;
61
62 static char *dmu_recv_tag = "dmu_recv_tag";
63 const char *recv_clone_name = "%recv";
64
65 #define BP_SPAN(datablkszsec, indblkshift, level) \
66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
67 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
68
69 static void byteswap_record(dmu_replay_record_t *drr);
70
71 struct send_thread_arg {
72 bqueue_t q;
73 dsl_dataset_t *ds; /* Dataset to traverse */
74 uint64_t fromtxg; /* Traverse from this txg */
75 int flags; /* flags to pass to traverse_dataset */
76 int error_code;
77 boolean_t cancel;
78 zbookmark_phys_t resume;
79 };
80
81 struct send_block_record {
82 boolean_t eos_marker; /* Marks the end of the stream */
83 blkptr_t bp;
84 zbookmark_phys_t zb;
85 uint8_t indblkshift;
86 uint16_t datablkszsec;
87 bqueue_node_t ln;
88 };
89
90 static int
dump_bytes(dmu_sendarg_t * dsp,void * buf,int len)91 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
92 {
93 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
94 ssize_t resid; /* have to get resid to get detailed errno */
95 ASSERT0(len % 8);
96
97 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
98 (caddr_t)buf, len,
99 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
100
101 mutex_enter(&ds->ds_sendstream_lock);
102 *dsp->dsa_off += len;
103 mutex_exit(&ds->ds_sendstream_lock);
104
105 return (dsp->dsa_err);
106 }
107
108 /*
109 * For all record types except BEGIN, fill in the checksum (overlaid in
110 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
111 * up to the start of the checksum itself.
112 */
113 static int
dump_record(dmu_sendarg_t * dsp,void * payload,int payload_len)114 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
115 {
116 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
117 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
118 fletcher_4_incremental_native(dsp->dsa_drr,
119 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
120 &dsp->dsa_zc);
121 if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
122 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
123 drr_checksum.drr_checksum));
124 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
125 }
126 fletcher_4_incremental_native(&dsp->dsa_drr->
127 drr_u.drr_checksum.drr_checksum,
128 sizeof (zio_cksum_t), &dsp->dsa_zc);
129 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
130 return (SET_ERROR(EINTR));
131 if (payload_len != 0) {
132 fletcher_4_incremental_native(payload, payload_len,
133 &dsp->dsa_zc);
134 if (dump_bytes(dsp, payload, payload_len) != 0)
135 return (SET_ERROR(EINTR));
136 }
137 return (0);
138 }
139
140 static int
dump_free(dmu_sendarg_t * dsp,uint64_t object,uint64_t offset,uint64_t length)141 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
142 uint64_t length)
143 {
144 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
145
146 /*
147 * When we receive a free record, dbuf_free_range() assumes
148 * that the receiving system doesn't have any dbufs in the range
149 * being freed. This is always true because there is a one-record
150 * constraint: we only send one WRITE record for any given
151 * object,offset. We know that the one-record constraint is
152 * true because we always send data in increasing order by
153 * object,offset.
154 *
155 * If the increasing-order constraint ever changes, we should find
156 * another way to assert that the one-record constraint is still
157 * satisfied.
158 */
159 ASSERT(object > dsp->dsa_last_data_object ||
160 (object == dsp->dsa_last_data_object &&
161 offset > dsp->dsa_last_data_offset));
162
163 /*
164 * If we are doing a non-incremental send, then there can't
165 * be any data in the dataset we're receiving into. Therefore
166 * a free record would simply be a no-op. Save space by not
167 * sending it to begin with.
168 */
169 if (!dsp->dsa_incremental)
170 return (0);
171
172 if (length != -1ULL && offset + length < offset)
173 length = -1ULL;
174
175 /*
176 * If there is a pending op, but it's not PENDING_FREE, push it out,
177 * since free block aggregation can only be done for blocks of the
178 * same type (i.e., DRR_FREE records can only be aggregated with
179 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
180 * aggregated with other DRR_FREEOBJECTS records.
181 */
182 if (dsp->dsa_pending_op != PENDING_NONE &&
183 dsp->dsa_pending_op != PENDING_FREE) {
184 if (dump_record(dsp, NULL, 0) != 0)
185 return (SET_ERROR(EINTR));
186 dsp->dsa_pending_op = PENDING_NONE;
187 }
188
189 if (dsp->dsa_pending_op == PENDING_FREE) {
190 /*
191 * There should never be a PENDING_FREE if length is -1
192 * (because dump_dnode is the only place where this
193 * function is called with a -1, and only after flushing
194 * any pending record).
195 */
196 ASSERT(length != -1ULL);
197 /*
198 * Check to see whether this free block can be aggregated
199 * with pending one.
200 */
201 if (drrf->drr_object == object && drrf->drr_offset +
202 drrf->drr_length == offset) {
203 drrf->drr_length += length;
204 return (0);
205 } else {
206 /* not a continuation. Push out pending record */
207 if (dump_record(dsp, NULL, 0) != 0)
208 return (SET_ERROR(EINTR));
209 dsp->dsa_pending_op = PENDING_NONE;
210 }
211 }
212 /* create a FREE record and make it pending */
213 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
214 dsp->dsa_drr->drr_type = DRR_FREE;
215 drrf->drr_object = object;
216 drrf->drr_offset = offset;
217 drrf->drr_length = length;
218 drrf->drr_toguid = dsp->dsa_toguid;
219 if (length == -1ULL) {
220 if (dump_record(dsp, NULL, 0) != 0)
221 return (SET_ERROR(EINTR));
222 } else {
223 dsp->dsa_pending_op = PENDING_FREE;
224 }
225
226 return (0);
227 }
228
229 static int
dump_write(dmu_sendarg_t * dsp,dmu_object_type_t type,uint64_t object,uint64_t offset,int blksz,const blkptr_t * bp,void * data)230 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
231 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
232 {
233 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
234
235 /*
236 * We send data in increasing object, offset order.
237 * See comment in dump_free() for details.
238 */
239 ASSERT(object > dsp->dsa_last_data_object ||
240 (object == dsp->dsa_last_data_object &&
241 offset > dsp->dsa_last_data_offset));
242 dsp->dsa_last_data_object = object;
243 dsp->dsa_last_data_offset = offset + blksz - 1;
244
245 /*
246 * If there is any kind of pending aggregation (currently either
247 * a grouping of free objects or free blocks), push it out to
248 * the stream, since aggregation can't be done across operations
249 * of different types.
250 */
251 if (dsp->dsa_pending_op != PENDING_NONE) {
252 if (dump_record(dsp, NULL, 0) != 0)
253 return (SET_ERROR(EINTR));
254 dsp->dsa_pending_op = PENDING_NONE;
255 }
256 /* write a WRITE record */
257 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
258 dsp->dsa_drr->drr_type = DRR_WRITE;
259 drrw->drr_object = object;
260 drrw->drr_type = type;
261 drrw->drr_offset = offset;
262 drrw->drr_length = blksz;
263 drrw->drr_toguid = dsp->dsa_toguid;
264 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
265 /*
266 * There's no pre-computed checksum for partial-block
267 * writes or embedded BP's, so (like
268 * fletcher4-checkummed blocks) userland will have to
269 * compute a dedup-capable checksum itself.
270 */
271 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
272 } else {
273 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
274 if (zio_checksum_table[drrw->drr_checksumtype].ci_dedup)
275 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
276 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
277 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
278 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
279 drrw->drr_key.ddk_cksum = bp->blk_cksum;
280 }
281
282 if (dump_record(dsp, data, blksz) != 0)
283 return (SET_ERROR(EINTR));
284 return (0);
285 }
286
287 static int
dump_write_embedded(dmu_sendarg_t * dsp,uint64_t object,uint64_t offset,int blksz,const blkptr_t * bp)288 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
289 int blksz, const blkptr_t *bp)
290 {
291 char buf[BPE_PAYLOAD_SIZE];
292 struct drr_write_embedded *drrw =
293 &(dsp->dsa_drr->drr_u.drr_write_embedded);
294
295 if (dsp->dsa_pending_op != PENDING_NONE) {
296 if (dump_record(dsp, NULL, 0) != 0)
297 return (EINTR);
298 dsp->dsa_pending_op = PENDING_NONE;
299 }
300
301 ASSERT(BP_IS_EMBEDDED(bp));
302
303 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
304 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
305 drrw->drr_object = object;
306 drrw->drr_offset = offset;
307 drrw->drr_length = blksz;
308 drrw->drr_toguid = dsp->dsa_toguid;
309 drrw->drr_compression = BP_GET_COMPRESS(bp);
310 drrw->drr_etype = BPE_GET_ETYPE(bp);
311 drrw->drr_lsize = BPE_GET_LSIZE(bp);
312 drrw->drr_psize = BPE_GET_PSIZE(bp);
313
314 decode_embedded_bp_compressed(bp, buf);
315
316 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
317 return (EINTR);
318 return (0);
319 }
320
321 static int
dump_spill(dmu_sendarg_t * dsp,uint64_t object,int blksz,void * data)322 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
323 {
324 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
325
326 if (dsp->dsa_pending_op != PENDING_NONE) {
327 if (dump_record(dsp, NULL, 0) != 0)
328 return (SET_ERROR(EINTR));
329 dsp->dsa_pending_op = PENDING_NONE;
330 }
331
332 /* write a SPILL record */
333 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
334 dsp->dsa_drr->drr_type = DRR_SPILL;
335 drrs->drr_object = object;
336 drrs->drr_length = blksz;
337 drrs->drr_toguid = dsp->dsa_toguid;
338
339 if (dump_record(dsp, data, blksz) != 0)
340 return (SET_ERROR(EINTR));
341 return (0);
342 }
343
344 static int
dump_freeobjects(dmu_sendarg_t * dsp,uint64_t firstobj,uint64_t numobjs)345 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
346 {
347 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
348
349 /* See comment in dump_free(). */
350 if (!dsp->dsa_incremental)
351 return (0);
352
353 /*
354 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
355 * push it out, since free block aggregation can only be done for
356 * blocks of the same type (i.e., DRR_FREE records can only be
357 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
358 * can only be aggregated with other DRR_FREEOBJECTS records.
359 */
360 if (dsp->dsa_pending_op != PENDING_NONE &&
361 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
362 if (dump_record(dsp, NULL, 0) != 0)
363 return (SET_ERROR(EINTR));
364 dsp->dsa_pending_op = PENDING_NONE;
365 }
366 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
367 /*
368 * See whether this free object array can be aggregated
369 * with pending one
370 */
371 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
372 drrfo->drr_numobjs += numobjs;
373 return (0);
374 } else {
375 /* can't be aggregated. Push out pending record */
376 if (dump_record(dsp, NULL, 0) != 0)
377 return (SET_ERROR(EINTR));
378 dsp->dsa_pending_op = PENDING_NONE;
379 }
380 }
381
382 /* write a FREEOBJECTS record */
383 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
384 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
385 drrfo->drr_firstobj = firstobj;
386 drrfo->drr_numobjs = numobjs;
387 drrfo->drr_toguid = dsp->dsa_toguid;
388
389 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
390
391 return (0);
392 }
393
394 static int
dump_dnode(dmu_sendarg_t * dsp,uint64_t object,dnode_phys_t * dnp)395 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
396 {
397 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
398
399 if (object < dsp->dsa_resume_object) {
400 /*
401 * Note: when resuming, we will visit all the dnodes in
402 * the block of dnodes that we are resuming from. In
403 * this case it's unnecessary to send the dnodes prior to
404 * the one we are resuming from. We should be at most one
405 * block's worth of dnodes behind the resume point.
406 */
407 ASSERT3U(dsp->dsa_resume_object - object, <,
408 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
409 return (0);
410 }
411
412 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
413 return (dump_freeobjects(dsp, object, 1));
414
415 if (dsp->dsa_pending_op != PENDING_NONE) {
416 if (dump_record(dsp, NULL, 0) != 0)
417 return (SET_ERROR(EINTR));
418 dsp->dsa_pending_op = PENDING_NONE;
419 }
420
421 /* write an OBJECT record */
422 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
423 dsp->dsa_drr->drr_type = DRR_OBJECT;
424 drro->drr_object = object;
425 drro->drr_type = dnp->dn_type;
426 drro->drr_bonustype = dnp->dn_bonustype;
427 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
428 drro->drr_bonuslen = dnp->dn_bonuslen;
429 drro->drr_checksumtype = dnp->dn_checksum;
430 drro->drr_compress = dnp->dn_compress;
431 drro->drr_toguid = dsp->dsa_toguid;
432
433 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
434 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
435 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
436
437 if (dump_record(dsp, DN_BONUS(dnp),
438 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
439 return (SET_ERROR(EINTR));
440 }
441
442 /* Free anything past the end of the file. */
443 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
444 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
445 return (SET_ERROR(EINTR));
446 if (dsp->dsa_err != 0)
447 return (SET_ERROR(EINTR));
448 return (0);
449 }
450
451 static boolean_t
backup_do_embed(dmu_sendarg_t * dsp,const blkptr_t * bp)452 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
453 {
454 if (!BP_IS_EMBEDDED(bp))
455 return (B_FALSE);
456
457 /*
458 * Compression function must be legacy, or explicitly enabled.
459 */
460 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
461 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
462 return (B_FALSE);
463
464 /*
465 * Embed type must be explicitly enabled.
466 */
467 switch (BPE_GET_ETYPE(bp)) {
468 case BP_EMBEDDED_TYPE_DATA:
469 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
470 return (B_TRUE);
471 break;
472 default:
473 return (B_FALSE);
474 }
475 return (B_FALSE);
476 }
477
478 /*
479 * This is the callback function to traverse_dataset that acts as the worker
480 * thread for dmu_send_impl.
481 */
482 /*ARGSUSED*/
483 static int
send_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const struct dnode_phys * dnp,void * arg)484 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
485 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
486 {
487 struct send_thread_arg *sta = arg;
488 struct send_block_record *record;
489 uint64_t record_size;
490 int err = 0;
491
492 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
493 zb->zb_object >= sta->resume.zb_object);
494
495 if (sta->cancel)
496 return (SET_ERROR(EINTR));
497
498 if (bp == NULL) {
499 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
500 return (0);
501 } else if (zb->zb_level < 0) {
502 return (0);
503 }
504
505 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
506 record->eos_marker = B_FALSE;
507 record->bp = *bp;
508 record->zb = *zb;
509 record->indblkshift = dnp->dn_indblkshift;
510 record->datablkszsec = dnp->dn_datablkszsec;
511 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
512 bqueue_enqueue(&sta->q, record, record_size);
513
514 return (err);
515 }
516
517 /*
518 * This function kicks off the traverse_dataset. It also handles setting the
519 * error code of the thread in case something goes wrong, and pushes the End of
520 * Stream record when the traverse_dataset call has finished. If there is no
521 * dataset to traverse, the thread immediately pushes End of Stream marker.
522 */
523 static void
send_traverse_thread(void * arg)524 send_traverse_thread(void *arg)
525 {
526 struct send_thread_arg *st_arg = arg;
527 int err;
528 struct send_block_record *data;
529
530 if (st_arg->ds != NULL) {
531 err = traverse_dataset_resume(st_arg->ds,
532 st_arg->fromtxg, &st_arg->resume,
533 st_arg->flags, send_cb, st_arg);
534
535 if (err != EINTR)
536 st_arg->error_code = err;
537 }
538 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
539 data->eos_marker = B_TRUE;
540 bqueue_enqueue(&st_arg->q, data, 1);
541 }
542
543 /*
544 * This function actually handles figuring out what kind of record needs to be
545 * dumped, reading the data (which has hopefully been prefetched), and calling
546 * the appropriate helper function.
547 */
548 static int
do_dump(dmu_sendarg_t * dsa,struct send_block_record * data)549 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
550 {
551 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
552 const blkptr_t *bp = &data->bp;
553 const zbookmark_phys_t *zb = &data->zb;
554 uint8_t indblkshift = data->indblkshift;
555 uint16_t dblkszsec = data->datablkszsec;
556 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
557 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
558 int err = 0;
559
560 ASSERT3U(zb->zb_level, >=, 0);
561
562 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
563 zb->zb_object >= dsa->dsa_resume_object);
564
565 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
566 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
567 return (0);
568 } else if (BP_IS_HOLE(bp) &&
569 zb->zb_object == DMU_META_DNODE_OBJECT) {
570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
571 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
572 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
573 } else if (BP_IS_HOLE(bp)) {
574 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
575 uint64_t offset = zb->zb_blkid * span;
576 err = dump_free(dsa, zb->zb_object, offset, span);
577 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
578 return (0);
579 } else if (type == DMU_OT_DNODE) {
580 int blksz = BP_GET_LSIZE(bp);
581 arc_flags_t aflags = ARC_FLAG_WAIT;
582 arc_buf_t *abuf;
583
584 ASSERT0(zb->zb_level);
585
586 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
587 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
588 &aflags, zb) != 0)
589 return (SET_ERROR(EIO));
590
591 dnode_phys_t *blk = abuf->b_data;
592 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
593 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
594 err = dump_dnode(dsa, dnobj + i, blk + i);
595 if (err != 0)
596 break;
597 }
598 (void) arc_buf_remove_ref(abuf, &abuf);
599 } else if (type == DMU_OT_SA) {
600 arc_flags_t aflags = ARC_FLAG_WAIT;
601 arc_buf_t *abuf;
602 int blksz = BP_GET_LSIZE(bp);
603
604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
606 &aflags, zb) != 0)
607 return (SET_ERROR(EIO));
608
609 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
610 (void) arc_buf_remove_ref(abuf, &abuf);
611 } else if (backup_do_embed(dsa, bp)) {
612 /* it's an embedded level-0 block of a regular object */
613 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
614 ASSERT0(zb->zb_level);
615 err = dump_write_embedded(dsa, zb->zb_object,
616 zb->zb_blkid * blksz, blksz, bp);
617 } else {
618 /* it's a level-0 block of a regular object */
619 arc_flags_t aflags = ARC_FLAG_WAIT;
620 arc_buf_t *abuf;
621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
622 uint64_t offset;
623
624 ASSERT0(zb->zb_level);
625 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
626 (zb->zb_object == dsa->dsa_resume_object &&
627 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
628
629 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
631 &aflags, zb) != 0) {
632 if (zfs_send_corrupt_data) {
633 /* Send a block filled with 0x"zfs badd bloc" */
634 abuf = arc_buf_alloc(spa, blksz, &abuf,
635 ARC_BUFC_DATA);
636 uint64_t *ptr;
637 for (ptr = abuf->b_data;
638 (char *)ptr < (char *)abuf->b_data + blksz;
639 ptr++)
640 *ptr = 0x2f5baddb10cULL;
641 } else {
642 return (SET_ERROR(EIO));
643 }
644 }
645
646 offset = zb->zb_blkid * blksz;
647
648 if (!(dsa->dsa_featureflags &
649 DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
650 blksz > SPA_OLD_MAXBLOCKSIZE) {
651 char *buf = abuf->b_data;
652 while (blksz > 0 && err == 0) {
653 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
654 err = dump_write(dsa, type, zb->zb_object,
655 offset, n, NULL, buf);
656 offset += n;
657 buf += n;
658 blksz -= n;
659 }
660 } else {
661 err = dump_write(dsa, type, zb->zb_object,
662 offset, blksz, bp, abuf->b_data);
663 }
664 (void) arc_buf_remove_ref(abuf, &abuf);
665 }
666
667 ASSERT(err == 0 || err == EINTR);
668 return (err);
669 }
670
671 /*
672 * Pop the new data off the queue, and free the old data.
673 */
674 static struct send_block_record *
get_next_record(bqueue_t * bq,struct send_block_record * data)675 get_next_record(bqueue_t *bq, struct send_block_record *data)
676 {
677 struct send_block_record *tmp = bqueue_dequeue(bq);
678 kmem_free(data, sizeof (*data));
679 return (tmp);
680 }
681
682 /*
683 * Actually do the bulk of the work in a zfs send.
684 *
685 * Note: Releases dp using the specified tag.
686 */
687 static int
dmu_send_impl(void * tag,dsl_pool_t * dp,dsl_dataset_t * to_ds,zfs_bookmark_phys_t * ancestor_zb,boolean_t is_clone,boolean_t embedok,boolean_t large_block_ok,int outfd,uint64_t resumeobj,uint64_t resumeoff,vnode_t * vp,offset_t * off)688 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
689 zfs_bookmark_phys_t *ancestor_zb,
690 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
691 uint64_t resumeobj, uint64_t resumeoff,
692 vnode_t *vp, offset_t *off)
693 {
694 objset_t *os;
695 dmu_replay_record_t *drr;
696 dmu_sendarg_t *dsp;
697 int err;
698 uint64_t fromtxg = 0;
699 uint64_t featureflags = 0;
700 struct send_thread_arg to_arg = { 0 };
701
702 err = dmu_objset_from_ds(to_ds, &os);
703 if (err != 0) {
704 dsl_pool_rele(dp, tag);
705 return (err);
706 }
707
708 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
709 drr->drr_type = DRR_BEGIN;
710 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
711 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
712 DMU_SUBSTREAM);
713
714 #ifdef _KERNEL
715 if (dmu_objset_type(os) == DMU_OST_ZFS) {
716 uint64_t version;
717 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
718 kmem_free(drr, sizeof (dmu_replay_record_t));
719 dsl_pool_rele(dp, tag);
720 return (SET_ERROR(EINVAL));
721 }
722 if (version >= ZPL_VERSION_SA) {
723 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
724 }
725 }
726 #endif
727
728 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
729 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
730 if (embedok &&
731 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
732 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
733 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
734 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
735 }
736
737 if (resumeobj != 0 || resumeoff != 0) {
738 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
739 }
740
741 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
742 featureflags);
743
744 drr->drr_u.drr_begin.drr_creation_time =
745 dsl_dataset_phys(to_ds)->ds_creation_time;
746 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
747 if (is_clone)
748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
749 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
750 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
751 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
752
753 if (ancestor_zb != NULL) {
754 drr->drr_u.drr_begin.drr_fromguid =
755 ancestor_zb->zbm_guid;
756 fromtxg = ancestor_zb->zbm_creation_txg;
757 }
758 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
759 if (!to_ds->ds_is_snapshot) {
760 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
761 sizeof (drr->drr_u.drr_begin.drr_toname));
762 }
763
764 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
765
766 dsp->dsa_drr = drr;
767 dsp->dsa_vp = vp;
768 dsp->dsa_outfd = outfd;
769 dsp->dsa_proc = curproc;
770 dsp->dsa_os = os;
771 dsp->dsa_off = off;
772 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
773 dsp->dsa_pending_op = PENDING_NONE;
774 dsp->dsa_incremental = (ancestor_zb != NULL);
775 dsp->dsa_featureflags = featureflags;
776 dsp->dsa_resume_object = resumeobj;
777 dsp->dsa_resume_offset = resumeoff;
778
779 mutex_enter(&to_ds->ds_sendstream_lock);
780 list_insert_head(&to_ds->ds_sendstreams, dsp);
781 mutex_exit(&to_ds->ds_sendstream_lock);
782
783 dsl_dataset_long_hold(to_ds, FTAG);
784 dsl_pool_rele(dp, tag);
785
786 void *payload = NULL;
787 size_t payload_len = 0;
788 if (resumeobj != 0 || resumeoff != 0) {
789 dmu_object_info_t to_doi;
790 err = dmu_object_info(os, resumeobj, &to_doi);
791 if (err != 0)
792 goto out;
793 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
794 resumeoff / to_doi.doi_data_block_size);
795
796 nvlist_t *nvl = fnvlist_alloc();
797 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
798 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
799 payload = fnvlist_pack(nvl, &payload_len);
800 drr->drr_payloadlen = payload_len;
801 fnvlist_free(nvl);
802 }
803
804 err = dump_record(dsp, payload, payload_len);
805 fnvlist_pack_free(payload, payload_len);
806 if (err != 0) {
807 err = dsp->dsa_err;
808 goto out;
809 }
810
811 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
812 offsetof(struct send_block_record, ln));
813 to_arg.error_code = 0;
814 to_arg.cancel = B_FALSE;
815 to_arg.ds = to_ds;
816 to_arg.fromtxg = fromtxg;
817 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
818 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
819 TS_RUN, minclsyspri);
820
821 struct send_block_record *to_data;
822 to_data = bqueue_dequeue(&to_arg.q);
823
824 while (!to_data->eos_marker && err == 0) {
825 err = do_dump(dsp, to_data);
826 to_data = get_next_record(&to_arg.q, to_data);
827 if (issig(JUSTLOOKING) && issig(FORREAL))
828 err = EINTR;
829 }
830
831 if (err != 0) {
832 to_arg.cancel = B_TRUE;
833 while (!to_data->eos_marker) {
834 to_data = get_next_record(&to_arg.q, to_data);
835 }
836 }
837 kmem_free(to_data, sizeof (*to_data));
838
839 bqueue_destroy(&to_arg.q);
840
841 if (err == 0 && to_arg.error_code != 0)
842 err = to_arg.error_code;
843
844 if (err != 0)
845 goto out;
846
847 if (dsp->dsa_pending_op != PENDING_NONE)
848 if (dump_record(dsp, NULL, 0) != 0)
849 err = SET_ERROR(EINTR);
850
851 if (err != 0) {
852 if (err == EINTR && dsp->dsa_err != 0)
853 err = dsp->dsa_err;
854 goto out;
855 }
856
857 bzero(drr, sizeof (dmu_replay_record_t));
858 drr->drr_type = DRR_END;
859 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
860 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
861
862 if (dump_record(dsp, NULL, 0) != 0)
863 err = dsp->dsa_err;
864
865 out:
866 mutex_enter(&to_ds->ds_sendstream_lock);
867 list_remove(&to_ds->ds_sendstreams, dsp);
868 mutex_exit(&to_ds->ds_sendstream_lock);
869
870 kmem_free(drr, sizeof (dmu_replay_record_t));
871 kmem_free(dsp, sizeof (dmu_sendarg_t));
872
873 dsl_dataset_long_rele(to_ds, FTAG);
874
875 return (err);
876 }
877
878 int
dmu_send_obj(const char * pool,uint64_t tosnap,uint64_t fromsnap,boolean_t embedok,boolean_t large_block_ok,int outfd,vnode_t * vp,offset_t * off)879 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
880 boolean_t embedok, boolean_t large_block_ok,
881 int outfd, vnode_t *vp, offset_t *off)
882 {
883 dsl_pool_t *dp;
884 dsl_dataset_t *ds;
885 dsl_dataset_t *fromds = NULL;
886 int err;
887
888 err = dsl_pool_hold(pool, FTAG, &dp);
889 if (err != 0)
890 return (err);
891
892 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
893 if (err != 0) {
894 dsl_pool_rele(dp, FTAG);
895 return (err);
896 }
897
898 if (fromsnap != 0) {
899 zfs_bookmark_phys_t zb;
900 boolean_t is_clone;
901
902 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
903 if (err != 0) {
904 dsl_dataset_rele(ds, FTAG);
905 dsl_pool_rele(dp, FTAG);
906 return (err);
907 }
908 if (!dsl_dataset_is_before(ds, fromds, 0))
909 err = SET_ERROR(EXDEV);
910 zb.zbm_creation_time =
911 dsl_dataset_phys(fromds)->ds_creation_time;
912 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
913 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
914 is_clone = (fromds->ds_dir != ds->ds_dir);
915 dsl_dataset_rele(fromds, FTAG);
916 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
917 embedok, large_block_ok, outfd, 0, 0, vp, off);
918 } else {
919 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
920 embedok, large_block_ok, outfd, 0, 0, vp, off);
921 }
922 dsl_dataset_rele(ds, FTAG);
923 return (err);
924 }
925
926 int
dmu_send(const char * tosnap,const char * fromsnap,boolean_t embedok,boolean_t large_block_ok,int outfd,uint64_t resumeobj,uint64_t resumeoff,vnode_t * vp,offset_t * off)927 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
928 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
929 vnode_t *vp, offset_t *off)
930 {
931 dsl_pool_t *dp;
932 dsl_dataset_t *ds;
933 int err;
934 boolean_t owned = B_FALSE;
935
936 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
937 return (SET_ERROR(EINVAL));
938
939 err = dsl_pool_hold(tosnap, FTAG, &dp);
940 if (err != 0)
941 return (err);
942
943 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
944 /*
945 * We are sending a filesystem or volume. Ensure
946 * that it doesn't change by owning the dataset.
947 */
948 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
949 owned = B_TRUE;
950 } else {
951 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
952 }
953 if (err != 0) {
954 dsl_pool_rele(dp, FTAG);
955 return (err);
956 }
957
958 if (fromsnap != NULL) {
959 zfs_bookmark_phys_t zb;
960 boolean_t is_clone = B_FALSE;
961 int fsnamelen = strchr(tosnap, '@') - tosnap;
962
963 /*
964 * If the fromsnap is in a different filesystem, then
965 * mark the send stream as a clone.
966 */
967 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
968 (fromsnap[fsnamelen] != '@' &&
969 fromsnap[fsnamelen] != '#')) {
970 is_clone = B_TRUE;
971 }
972
973 if (strchr(fromsnap, '@')) {
974 dsl_dataset_t *fromds;
975 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
976 if (err == 0) {
977 if (!dsl_dataset_is_before(ds, fromds, 0))
978 err = SET_ERROR(EXDEV);
979 zb.zbm_creation_time =
980 dsl_dataset_phys(fromds)->ds_creation_time;
981 zb.zbm_creation_txg =
982 dsl_dataset_phys(fromds)->ds_creation_txg;
983 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
984 is_clone = (ds->ds_dir != fromds->ds_dir);
985 dsl_dataset_rele(fromds, FTAG);
986 }
987 } else {
988 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
989 }
990 if (err != 0) {
991 dsl_dataset_rele(ds, FTAG);
992 dsl_pool_rele(dp, FTAG);
993 return (err);
994 }
995 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
996 embedok, large_block_ok,
997 outfd, resumeobj, resumeoff, vp, off);
998 } else {
999 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1000 embedok, large_block_ok,
1001 outfd, resumeobj, resumeoff, vp, off);
1002 }
1003 if (owned)
1004 dsl_dataset_disown(ds, FTAG);
1005 else
1006 dsl_dataset_rele(ds, FTAG);
1007 return (err);
1008 }
1009
1010 static int
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t * ds,uint64_t size,uint64_t * sizep)1011 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1012 uint64_t *sizep)
1013 {
1014 int err;
1015 /*
1016 * Assume that space (both on-disk and in-stream) is dominated by
1017 * data. We will adjust for indirect blocks and the copies property,
1018 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1019 */
1020
1021 /*
1022 * Subtract out approximate space used by indirect blocks.
1023 * Assume most space is used by data blocks (non-indirect, non-dnode).
1024 * Assume all blocks are recordsize. Assume ditto blocks and
1025 * internal fragmentation counter out compression.
1026 *
1027 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1028 * block, which we observe in practice.
1029 */
1030 uint64_t recordsize;
1031 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1032 if (err != 0)
1033 return (err);
1034 size -= size / recordsize * sizeof (blkptr_t);
1035
1036 /* Add in the space for the record associated with each block. */
1037 size += size / recordsize * sizeof (dmu_replay_record_t);
1038
1039 *sizep = size;
1040
1041 return (0);
1042 }
1043
1044 int
dmu_send_estimate(dsl_dataset_t * ds,dsl_dataset_t * fromds,uint64_t * sizep)1045 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1046 {
1047 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1048 int err;
1049 uint64_t size;
1050
1051 ASSERT(dsl_pool_config_held(dp));
1052
1053 /* tosnap must be a snapshot */
1054 if (!ds->ds_is_snapshot)
1055 return (SET_ERROR(EINVAL));
1056
1057 /* fromsnap, if provided, must be a snapshot */
1058 if (fromds != NULL && !fromds->ds_is_snapshot)
1059 return (SET_ERROR(EINVAL));
1060
1061 /*
1062 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1063 * or the origin's fs.
1064 */
1065 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1066 return (SET_ERROR(EXDEV));
1067
1068 /* Get uncompressed size estimate of changed data. */
1069 if (fromds == NULL) {
1070 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1071 } else {
1072 uint64_t used, comp;
1073 err = dsl_dataset_space_written(fromds, ds,
1074 &used, &comp, &size);
1075 if (err != 0)
1076 return (err);
1077 }
1078
1079 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1080 return (err);
1081 }
1082
1083 /*
1084 * Simple callback used to traverse the blocks of a snapshot and sum their
1085 * uncompressed size
1086 */
1087 /* ARGSUSED */
1088 static int
dmu_calculate_send_traversal(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)1089 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1090 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1091 {
1092 uint64_t *spaceptr = arg;
1093 if (bp != NULL && !BP_IS_HOLE(bp)) {
1094 *spaceptr += BP_GET_UCSIZE(bp);
1095 }
1096 return (0);
1097 }
1098
1099 /*
1100 * Given a desination snapshot and a TXG, calculate the approximate size of a
1101 * send stream sent from that TXG. from_txg may be zero, indicating that the
1102 * whole snapshot will be sent.
1103 */
1104 int
dmu_send_estimate_from_txg(dsl_dataset_t * ds,uint64_t from_txg,uint64_t * sizep)1105 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1106 uint64_t *sizep)
1107 {
1108 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1109 int err;
1110 uint64_t size = 0;
1111
1112 ASSERT(dsl_pool_config_held(dp));
1113
1114 /* tosnap must be a snapshot */
1115 if (!dsl_dataset_is_snapshot(ds))
1116 return (SET_ERROR(EINVAL));
1117
1118 /* verify that from_txg is before the provided snapshot was taken */
1119 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1120 return (SET_ERROR(EXDEV));
1121 }
1122
1123 /*
1124 * traverse the blocks of the snapshot with birth times after
1125 * from_txg, summing their uncompressed size
1126 */
1127 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1128 dmu_calculate_send_traversal, &size);
1129 if (err)
1130 return (err);
1131
1132 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1133 return (err);
1134 }
1135
1136 typedef struct dmu_recv_begin_arg {
1137 const char *drba_origin;
1138 dmu_recv_cookie_t *drba_cookie;
1139 cred_t *drba_cred;
1140 uint64_t drba_snapobj;
1141 } dmu_recv_begin_arg_t;
1142
1143 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid)1144 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1145 uint64_t fromguid)
1146 {
1147 uint64_t val;
1148 int error;
1149 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1150
1151 /* temporary clone name must not exist */
1152 error = zap_lookup(dp->dp_meta_objset,
1153 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1154 8, 1, &val);
1155 if (error != ENOENT)
1156 return (error == 0 ? EBUSY : error);
1157
1158 /* new snapshot name must not exist */
1159 error = zap_lookup(dp->dp_meta_objset,
1160 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1161 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1162 if (error != ENOENT)
1163 return (error == 0 ? EEXIST : error);
1164
1165 /*
1166 * Check snapshot limit before receiving. We'll recheck again at the
1167 * end, but might as well abort before receiving if we're already over
1168 * the limit.
1169 *
1170 * Note that we do not check the file system limit with
1171 * dsl_dir_fscount_check because the temporary %clones don't count
1172 * against that limit.
1173 */
1174 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1175 NULL, drba->drba_cred);
1176 if (error != 0)
1177 return (error);
1178
1179 if (fromguid != 0) {
1180 dsl_dataset_t *snap;
1181 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1182
1183 /* Find snapshot in this dir that matches fromguid. */
1184 while (obj != 0) {
1185 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1186 &snap);
1187 if (error != 0)
1188 return (SET_ERROR(ENODEV));
1189 if (snap->ds_dir != ds->ds_dir) {
1190 dsl_dataset_rele(snap, FTAG);
1191 return (SET_ERROR(ENODEV));
1192 }
1193 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1194 break;
1195 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1196 dsl_dataset_rele(snap, FTAG);
1197 }
1198 if (obj == 0)
1199 return (SET_ERROR(ENODEV));
1200
1201 if (drba->drba_cookie->drc_force) {
1202 drba->drba_snapobj = obj;
1203 } else {
1204 /*
1205 * If we are not forcing, there must be no
1206 * changes since fromsnap.
1207 */
1208 if (dsl_dataset_modified_since_snap(ds, snap)) {
1209 dsl_dataset_rele(snap, FTAG);
1210 return (SET_ERROR(ETXTBSY));
1211 }
1212 drba->drba_snapobj = ds->ds_prev->ds_object;
1213 }
1214
1215 dsl_dataset_rele(snap, FTAG);
1216 } else {
1217 /* if full, then must be forced */
1218 if (!drba->drba_cookie->drc_force)
1219 return (SET_ERROR(EEXIST));
1220 /* start from $ORIGIN@$ORIGIN, if supported */
1221 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1222 dp->dp_origin_snap->ds_object : 0;
1223 }
1224
1225 return (0);
1226
1227 }
1228
1229 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)1230 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1231 {
1232 dmu_recv_begin_arg_t *drba = arg;
1233 dsl_pool_t *dp = dmu_tx_pool(tx);
1234 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1235 uint64_t fromguid = drrb->drr_fromguid;
1236 int flags = drrb->drr_flags;
1237 int error;
1238 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1239 dsl_dataset_t *ds;
1240 const char *tofs = drba->drba_cookie->drc_tofs;
1241
1242 /* already checked */
1243 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1244 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1245
1246 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1247 DMU_COMPOUNDSTREAM ||
1248 drrb->drr_type >= DMU_OST_NUMTYPES ||
1249 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1250 return (SET_ERROR(EINVAL));
1251
1252 /* Verify pool version supports SA if SA_SPILL feature set */
1253 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1254 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1255 return (SET_ERROR(ENOTSUP));
1256
1257 if (drba->drba_cookie->drc_resumable &&
1258 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1259 return (SET_ERROR(ENOTSUP));
1260
1261 /*
1262 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1263 * record to a plan WRITE record, so the pool must have the
1264 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1265 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1266 */
1267 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1268 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1269 return (SET_ERROR(ENOTSUP));
1270 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1271 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1272 return (SET_ERROR(ENOTSUP));
1273
1274 /*
1275 * The receiving code doesn't know how to translate large blocks
1276 * to smaller ones, so the pool must have the LARGE_BLOCKS
1277 * feature enabled if the stream has LARGE_BLOCKS.
1278 */
1279 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1280 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1281 return (SET_ERROR(ENOTSUP));
1282
1283 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1284 if (error == 0) {
1285 /* target fs already exists; recv into temp clone */
1286
1287 /* Can't recv a clone into an existing fs */
1288 if (flags & DRR_FLAG_CLONE) {
1289 dsl_dataset_rele(ds, FTAG);
1290 return (SET_ERROR(EINVAL));
1291 }
1292
1293 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1294 dsl_dataset_rele(ds, FTAG);
1295 } else if (error == ENOENT) {
1296 /* target fs does not exist; must be a full backup or clone */
1297 char buf[ZFS_MAX_DATASET_NAME_LEN];
1298
1299 /*
1300 * If it's a non-clone incremental, we are missing the
1301 * target fs, so fail the recv.
1302 */
1303 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1304 drba->drba_origin))
1305 return (SET_ERROR(ENOENT));
1306
1307 /* Open the parent of tofs */
1308 ASSERT3U(strlen(tofs), <, sizeof (buf));
1309 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1310 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1311 if (error != 0)
1312 return (error);
1313
1314 /*
1315 * Check filesystem and snapshot limits before receiving. We'll
1316 * recheck snapshot limits again at the end (we create the
1317 * filesystems and increment those counts during begin_sync).
1318 */
1319 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1320 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1321 if (error != 0) {
1322 dsl_dataset_rele(ds, FTAG);
1323 return (error);
1324 }
1325
1326 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1327 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1328 if (error != 0) {
1329 dsl_dataset_rele(ds, FTAG);
1330 return (error);
1331 }
1332
1333 if (drba->drba_origin != NULL) {
1334 dsl_dataset_t *origin;
1335 error = dsl_dataset_hold(dp, drba->drba_origin,
1336 FTAG, &origin);
1337 if (error != 0) {
1338 dsl_dataset_rele(ds, FTAG);
1339 return (error);
1340 }
1341 if (!origin->ds_is_snapshot) {
1342 dsl_dataset_rele(origin, FTAG);
1343 dsl_dataset_rele(ds, FTAG);
1344 return (SET_ERROR(EINVAL));
1345 }
1346 if (dsl_dataset_phys(origin)->ds_guid != fromguid) {
1347 dsl_dataset_rele(origin, FTAG);
1348 dsl_dataset_rele(ds, FTAG);
1349 return (SET_ERROR(ENODEV));
1350 }
1351 dsl_dataset_rele(origin, FTAG);
1352 }
1353 dsl_dataset_rele(ds, FTAG);
1354 error = 0;
1355 }
1356 return (error);
1357 }
1358
1359 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)1360 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1361 {
1362 dmu_recv_begin_arg_t *drba = arg;
1363 dsl_pool_t *dp = dmu_tx_pool(tx);
1364 objset_t *mos = dp->dp_meta_objset;
1365 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1366 const char *tofs = drba->drba_cookie->drc_tofs;
1367 dsl_dataset_t *ds, *newds;
1368 uint64_t dsobj;
1369 int error;
1370 uint64_t crflags = 0;
1371
1372 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1373 crflags |= DS_FLAG_CI_DATASET;
1374
1375 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1376 if (error == 0) {
1377 /* create temporary clone */
1378 dsl_dataset_t *snap = NULL;
1379 if (drba->drba_snapobj != 0) {
1380 VERIFY0(dsl_dataset_hold_obj(dp,
1381 drba->drba_snapobj, FTAG, &snap));
1382 }
1383 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1384 snap, crflags, drba->drba_cred, tx);
1385 if (drba->drba_snapobj != 0)
1386 dsl_dataset_rele(snap, FTAG);
1387 dsl_dataset_rele(ds, FTAG);
1388 } else {
1389 dsl_dir_t *dd;
1390 const char *tail;
1391 dsl_dataset_t *origin = NULL;
1392
1393 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1394
1395 if (drba->drba_origin != NULL) {
1396 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1397 FTAG, &origin));
1398 }
1399
1400 /* Create new dataset. */
1401 dsobj = dsl_dataset_create_sync(dd,
1402 strrchr(tofs, '/') + 1,
1403 origin, crflags, drba->drba_cred, tx);
1404 if (origin != NULL)
1405 dsl_dataset_rele(origin, FTAG);
1406 dsl_dir_rele(dd, FTAG);
1407 drba->drba_cookie->drc_newfs = B_TRUE;
1408 }
1409 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1410
1411 if (drba->drba_cookie->drc_resumable) {
1412 dsl_dataset_zapify(newds, tx);
1413 if (drrb->drr_fromguid != 0) {
1414 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1415 8, 1, &drrb->drr_fromguid, tx));
1416 }
1417 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1418 8, 1, &drrb->drr_toguid, tx));
1419 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1420 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1421 uint64_t one = 1;
1422 uint64_t zero = 0;
1423 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1424 8, 1, &one, tx));
1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1426 8, 1, &zero, tx));
1427 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1428 8, 1, &zero, tx));
1429 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1430 DMU_BACKUP_FEATURE_EMBED_DATA) {
1431 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1432 8, 1, &one, tx));
1433 }
1434 }
1435
1436 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1437 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1438
1439 /*
1440 * If we actually created a non-clone, we need to create the
1441 * objset in our new dataset.
1442 */
1443 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1444 (void) dmu_objset_create_impl(dp->dp_spa,
1445 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1446 }
1447
1448 drba->drba_cookie->drc_ds = newds;
1449
1450 spa_history_log_internal_ds(newds, "receive", tx, "");
1451 }
1452
1453 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)1454 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1455 {
1456 dmu_recv_begin_arg_t *drba = arg;
1457 dsl_pool_t *dp = dmu_tx_pool(tx);
1458 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1459 int error;
1460 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1461 dsl_dataset_t *ds;
1462 const char *tofs = drba->drba_cookie->drc_tofs;
1463
1464 /* already checked */
1465 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1466 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1467
1468 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1469 DMU_COMPOUNDSTREAM ||
1470 drrb->drr_type >= DMU_OST_NUMTYPES)
1471 return (SET_ERROR(EINVAL));
1472
1473 /* Verify pool version supports SA if SA_SPILL feature set */
1474 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1475 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1476 return (SET_ERROR(ENOTSUP));
1477
1478 /*
1479 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1480 * record to a plain WRITE record, so the pool must have the
1481 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1482 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1483 */
1484 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1485 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1486 return (SET_ERROR(ENOTSUP));
1487 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1488 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1489 return (SET_ERROR(ENOTSUP));
1490
1491 /* 6 extra bytes for /%recv */
1492 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1493
1494 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1495 tofs, recv_clone_name);
1496
1497 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1498 /* %recv does not exist; continue in tofs */
1499 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1500 if (error != 0)
1501 return (error);
1502 }
1503
1504 /* check that ds is marked inconsistent */
1505 if (!DS_IS_INCONSISTENT(ds)) {
1506 dsl_dataset_rele(ds, FTAG);
1507 return (SET_ERROR(EINVAL));
1508 }
1509
1510 /* check that there is resuming data, and that the toguid matches */
1511 if (!dsl_dataset_is_zapified(ds)) {
1512 dsl_dataset_rele(ds, FTAG);
1513 return (SET_ERROR(EINVAL));
1514 }
1515 uint64_t val;
1516 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1517 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1518 if (error != 0 || drrb->drr_toguid != val) {
1519 dsl_dataset_rele(ds, FTAG);
1520 return (SET_ERROR(EINVAL));
1521 }
1522
1523 /*
1524 * Check if the receive is still running. If so, it will be owned.
1525 * Note that nothing else can own the dataset (e.g. after the receive
1526 * fails) because it will be marked inconsistent.
1527 */
1528 if (dsl_dataset_has_owner(ds)) {
1529 dsl_dataset_rele(ds, FTAG);
1530 return (SET_ERROR(EBUSY));
1531 }
1532
1533 /* There should not be any snapshots of this fs yet. */
1534 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1535 dsl_dataset_rele(ds, FTAG);
1536 return (SET_ERROR(EINVAL));
1537 }
1538
1539 /*
1540 * Note: resume point will be checked when we process the first WRITE
1541 * record.
1542 */
1543
1544 /* check that the origin matches */
1545 val = 0;
1546 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1547 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1548 if (drrb->drr_fromguid != val) {
1549 dsl_dataset_rele(ds, FTAG);
1550 return (SET_ERROR(EINVAL));
1551 }
1552
1553 dsl_dataset_rele(ds, FTAG);
1554 return (0);
1555 }
1556
1557 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)1558 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1559 {
1560 dmu_recv_begin_arg_t *drba = arg;
1561 dsl_pool_t *dp = dmu_tx_pool(tx);
1562 const char *tofs = drba->drba_cookie->drc_tofs;
1563 dsl_dataset_t *ds;
1564 uint64_t dsobj;
1565 /* 6 extra bytes for /%recv */
1566 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1567
1568 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1569 tofs, recv_clone_name);
1570
1571 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1572 /* %recv does not exist; continue in tofs */
1573 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1574 drba->drba_cookie->drc_newfs = B_TRUE;
1575 }
1576
1577 /* clear the inconsistent flag so that we can own it */
1578 ASSERT(DS_IS_INCONSISTENT(ds));
1579 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1580 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1581 dsobj = ds->ds_object;
1582 dsl_dataset_rele(ds, FTAG);
1583
1584 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1585
1586 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1587 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1588
1589 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1590
1591 drba->drba_cookie->drc_ds = ds;
1592
1593 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1594 }
1595
1596 /*
1597 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1598 * succeeds; otherwise we will leak the holds on the datasets.
1599 */
1600 int
dmu_recv_begin(char * tofs,char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t resumable,char * origin,dmu_recv_cookie_t * drc)1601 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1602 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1603 {
1604 dmu_recv_begin_arg_t drba = { 0 };
1605
1606 bzero(drc, sizeof (dmu_recv_cookie_t));
1607 drc->drc_drr_begin = drr_begin;
1608 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1609 drc->drc_tosnap = tosnap;
1610 drc->drc_tofs = tofs;
1611 drc->drc_force = force;
1612 drc->drc_resumable = resumable;
1613 drc->drc_cred = CRED();
1614
1615 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1616 drc->drc_byteswap = B_TRUE;
1617 fletcher_4_incremental_byteswap(drr_begin,
1618 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1619 byteswap_record(drr_begin);
1620 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1621 fletcher_4_incremental_native(drr_begin,
1622 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1623 } else {
1624 return (SET_ERROR(EINVAL));
1625 }
1626
1627 drba.drba_origin = origin;
1628 drba.drba_cookie = drc;
1629 drba.drba_cred = CRED();
1630
1631 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1632 DMU_BACKUP_FEATURE_RESUMING) {
1633 return (dsl_sync_task(tofs,
1634 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1635 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1636 } else {
1637 return (dsl_sync_task(tofs,
1638 dmu_recv_begin_check, dmu_recv_begin_sync,
1639 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1640 }
1641 }
1642
1643 struct receive_record_arg {
1644 dmu_replay_record_t header;
1645 void *payload; /* Pointer to a buffer containing the payload */
1646 /*
1647 * If the record is a write, pointer to the arc_buf_t containing the
1648 * payload.
1649 */
1650 arc_buf_t *write_buf;
1651 int payload_size;
1652 uint64_t bytes_read; /* bytes read from stream when record created */
1653 boolean_t eos_marker; /* Marks the end of the stream */
1654 bqueue_node_t node;
1655 };
1656
1657 struct receive_writer_arg {
1658 objset_t *os;
1659 boolean_t byteswap;
1660 bqueue_t q;
1661
1662 /*
1663 * These three args are used to signal to the main thread that we're
1664 * done.
1665 */
1666 kmutex_t mutex;
1667 kcondvar_t cv;
1668 boolean_t done;
1669
1670 int err;
1671 /* A map from guid to dataset to help handle dedup'd streams. */
1672 avl_tree_t *guid_to_ds_map;
1673 boolean_t resumable;
1674 uint64_t last_object, last_offset;
1675 uint64_t bytes_read; /* bytes read when current record created */
1676 };
1677
1678 struct receive_arg {
1679 objset_t *os;
1680 vnode_t *vp; /* The vnode to read the stream from */
1681 uint64_t voff; /* The current offset in the stream */
1682 uint64_t bytes_read;
1683 /*
1684 * A record that has had its payload read in, but hasn't yet been handed
1685 * off to the worker thread.
1686 */
1687 struct receive_record_arg *rrd;
1688 /* A record that has had its header read in, but not its payload. */
1689 struct receive_record_arg *next_rrd;
1690 zio_cksum_t cksum;
1691 zio_cksum_t prev_cksum;
1692 int err;
1693 boolean_t byteswap;
1694 /* Sorted list of objects not to issue prefetches for. */
1695 list_t ignore_obj_list;
1696 };
1697
1698 struct receive_ign_obj_node {
1699 list_node_t node;
1700 uint64_t object;
1701 };
1702
1703 typedef struct guid_map_entry {
1704 uint64_t guid;
1705 dsl_dataset_t *gme_ds;
1706 avl_node_t avlnode;
1707 } guid_map_entry_t;
1708
1709 static int
guid_compare(const void * arg1,const void * arg2)1710 guid_compare(const void *arg1, const void *arg2)
1711 {
1712 const guid_map_entry_t *gmep1 = arg1;
1713 const guid_map_entry_t *gmep2 = arg2;
1714
1715 if (gmep1->guid < gmep2->guid)
1716 return (-1);
1717 else if (gmep1->guid > gmep2->guid)
1718 return (1);
1719 return (0);
1720 }
1721
1722 static void
free_guid_map_onexit(void * arg)1723 free_guid_map_onexit(void *arg)
1724 {
1725 avl_tree_t *ca = arg;
1726 void *cookie = NULL;
1727 guid_map_entry_t *gmep;
1728
1729 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1730 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1731 dsl_dataset_rele(gmep->gme_ds, gmep);
1732 kmem_free(gmep, sizeof (guid_map_entry_t));
1733 }
1734 avl_destroy(ca);
1735 kmem_free(ca, sizeof (avl_tree_t));
1736 }
1737
1738 static int
receive_read(struct receive_arg * ra,int len,void * buf)1739 receive_read(struct receive_arg *ra, int len, void *buf)
1740 {
1741 int done = 0;
1742
1743 /* some things will require 8-byte alignment, so everything must */
1744 ASSERT0(len % 8);
1745
1746 while (done < len) {
1747 ssize_t resid;
1748
1749 ra->err = vn_rdwr(UIO_READ, ra->vp,
1750 (char *)buf + done, len - done,
1751 ra->voff, UIO_SYSSPACE, FAPPEND,
1752 RLIM64_INFINITY, CRED(), &resid);
1753
1754 if (resid == len - done) {
1755 /*
1756 * Note: ECKSUM indicates that the receive
1757 * was interrupted and can potentially be resumed.
1758 */
1759 ra->err = SET_ERROR(ECKSUM);
1760 }
1761 ra->voff += len - done - resid;
1762 done = len - resid;
1763 if (ra->err != 0)
1764 return (ra->err);
1765 }
1766
1767 ra->bytes_read += len;
1768
1769 ASSERT3U(done, ==, len);
1770 return (0);
1771 }
1772
1773 static void
byteswap_record(dmu_replay_record_t * drr)1774 byteswap_record(dmu_replay_record_t *drr)
1775 {
1776 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1777 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1778 drr->drr_type = BSWAP_32(drr->drr_type);
1779 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1780
1781 switch (drr->drr_type) {
1782 case DRR_BEGIN:
1783 DO64(drr_begin.drr_magic);
1784 DO64(drr_begin.drr_versioninfo);
1785 DO64(drr_begin.drr_creation_time);
1786 DO32(drr_begin.drr_type);
1787 DO32(drr_begin.drr_flags);
1788 DO64(drr_begin.drr_toguid);
1789 DO64(drr_begin.drr_fromguid);
1790 break;
1791 case DRR_OBJECT:
1792 DO64(drr_object.drr_object);
1793 DO32(drr_object.drr_type);
1794 DO32(drr_object.drr_bonustype);
1795 DO32(drr_object.drr_blksz);
1796 DO32(drr_object.drr_bonuslen);
1797 DO64(drr_object.drr_toguid);
1798 break;
1799 case DRR_FREEOBJECTS:
1800 DO64(drr_freeobjects.drr_firstobj);
1801 DO64(drr_freeobjects.drr_numobjs);
1802 DO64(drr_freeobjects.drr_toguid);
1803 break;
1804 case DRR_WRITE:
1805 DO64(drr_write.drr_object);
1806 DO32(drr_write.drr_type);
1807 DO64(drr_write.drr_offset);
1808 DO64(drr_write.drr_length);
1809 DO64(drr_write.drr_toguid);
1810 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1811 DO64(drr_write.drr_key.ddk_prop);
1812 break;
1813 case DRR_WRITE_BYREF:
1814 DO64(drr_write_byref.drr_object);
1815 DO64(drr_write_byref.drr_offset);
1816 DO64(drr_write_byref.drr_length);
1817 DO64(drr_write_byref.drr_toguid);
1818 DO64(drr_write_byref.drr_refguid);
1819 DO64(drr_write_byref.drr_refobject);
1820 DO64(drr_write_byref.drr_refoffset);
1821 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1822 drr_key.ddk_cksum);
1823 DO64(drr_write_byref.drr_key.ddk_prop);
1824 break;
1825 case DRR_WRITE_EMBEDDED:
1826 DO64(drr_write_embedded.drr_object);
1827 DO64(drr_write_embedded.drr_offset);
1828 DO64(drr_write_embedded.drr_length);
1829 DO64(drr_write_embedded.drr_toguid);
1830 DO32(drr_write_embedded.drr_lsize);
1831 DO32(drr_write_embedded.drr_psize);
1832 break;
1833 case DRR_FREE:
1834 DO64(drr_free.drr_object);
1835 DO64(drr_free.drr_offset);
1836 DO64(drr_free.drr_length);
1837 DO64(drr_free.drr_toguid);
1838 break;
1839 case DRR_SPILL:
1840 DO64(drr_spill.drr_object);
1841 DO64(drr_spill.drr_length);
1842 DO64(drr_spill.drr_toguid);
1843 break;
1844 case DRR_END:
1845 DO64(drr_end.drr_toguid);
1846 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1847 break;
1848 }
1849
1850 if (drr->drr_type != DRR_BEGIN) {
1851 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1852 }
1853
1854 #undef DO64
1855 #undef DO32
1856 }
1857
1858 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1859 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1860 {
1861 if (bonus_type == DMU_OT_SA) {
1862 return (1);
1863 } else {
1864 return (1 +
1865 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1866 }
1867 }
1868
1869 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1870 save_resume_state(struct receive_writer_arg *rwa,
1871 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1872 {
1873 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1874
1875 if (!rwa->resumable)
1876 return;
1877
1878 /*
1879 * We use ds_resume_bytes[] != 0 to indicate that we need to
1880 * update this on disk, so it must not be 0.
1881 */
1882 ASSERT(rwa->bytes_read != 0);
1883
1884 /*
1885 * We only resume from write records, which have a valid
1886 * (non-meta-dnode) object number.
1887 */
1888 ASSERT(object != 0);
1889
1890 /*
1891 * For resuming to work correctly, we must receive records in order,
1892 * sorted by object,offset. This is checked by the callers, but
1893 * assert it here for good measure.
1894 */
1895 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1896 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1897 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1898 ASSERT3U(rwa->bytes_read, >=,
1899 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1900
1901 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1902 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1903 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1904 }
1905
1906 static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1907 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1908 void *data)
1909 {
1910 dmu_object_info_t doi;
1911 dmu_tx_t *tx;
1912 uint64_t object;
1913 int err;
1914
1915 if (drro->drr_type == DMU_OT_NONE ||
1916 !DMU_OT_IS_VALID(drro->drr_type) ||
1917 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1918 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1919 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1920 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1921 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1922 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1923 drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1924 return (SET_ERROR(EINVAL));
1925 }
1926
1927 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1928
1929 if (err != 0 && err != ENOENT)
1930 return (SET_ERROR(EINVAL));
1931 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
1932
1933 /*
1934 * If we are losing blkptrs or changing the block size this must
1935 * be a new file instance. We must clear out the previous file
1936 * contents before we can change this type of metadata in the dnode.
1937 */
1938 if (err == 0) {
1939 int nblkptr;
1940
1941 nblkptr = deduce_nblkptr(drro->drr_bonustype,
1942 drro->drr_bonuslen);
1943
1944 if (drro->drr_blksz != doi.doi_data_block_size ||
1945 nblkptr < doi.doi_nblkptr) {
1946 err = dmu_free_long_range(rwa->os, drro->drr_object,
1947 0, DMU_OBJECT_END);
1948 if (err != 0)
1949 return (SET_ERROR(EINVAL));
1950 }
1951 }
1952
1953 tx = dmu_tx_create(rwa->os);
1954 dmu_tx_hold_bonus(tx, object);
1955 err = dmu_tx_assign(tx, TXG_WAIT);
1956 if (err != 0) {
1957 dmu_tx_abort(tx);
1958 return (err);
1959 }
1960
1961 if (object == DMU_NEW_OBJECT) {
1962 /* currently free, want to be allocated */
1963 err = dmu_object_claim(rwa->os, drro->drr_object,
1964 drro->drr_type, drro->drr_blksz,
1965 drro->drr_bonustype, drro->drr_bonuslen, tx);
1966 } else if (drro->drr_type != doi.doi_type ||
1967 drro->drr_blksz != doi.doi_data_block_size ||
1968 drro->drr_bonustype != doi.doi_bonus_type ||
1969 drro->drr_bonuslen != doi.doi_bonus_size) {
1970 /* currently allocated, but with different properties */
1971 err = dmu_object_reclaim(rwa->os, drro->drr_object,
1972 drro->drr_type, drro->drr_blksz,
1973 drro->drr_bonustype, drro->drr_bonuslen, tx);
1974 }
1975 if (err != 0) {
1976 dmu_tx_commit(tx);
1977 return (SET_ERROR(EINVAL));
1978 }
1979
1980 dmu_object_set_checksum(rwa->os, drro->drr_object,
1981 drro->drr_checksumtype, tx);
1982 dmu_object_set_compress(rwa->os, drro->drr_object,
1983 drro->drr_compress, tx);
1984
1985 if (data != NULL) {
1986 dmu_buf_t *db;
1987
1988 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
1989 dmu_buf_will_dirty(db, tx);
1990
1991 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1992 bcopy(data, db->db_data, drro->drr_bonuslen);
1993 if (rwa->byteswap) {
1994 dmu_object_byteswap_t byteswap =
1995 DMU_OT_BYTESWAP(drro->drr_bonustype);
1996 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1997 drro->drr_bonuslen);
1998 }
1999 dmu_buf_rele(db, FTAG);
2000 }
2001 dmu_tx_commit(tx);
2002
2003 return (0);
2004 }
2005
2006 /* ARGSUSED */
2007 static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)2008 receive_freeobjects(struct receive_writer_arg *rwa,
2009 struct drr_freeobjects *drrfo)
2010 {
2011 uint64_t obj;
2012
2013 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2014 return (SET_ERROR(EINVAL));
2015
2016 for (obj = drrfo->drr_firstobj;
2017 obj < drrfo->drr_firstobj + drrfo->drr_numobjs;
2018 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2019 int err;
2020
2021 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2022 continue;
2023
2024 err = dmu_free_long_object(rwa->os, obj);
2025 if (err != 0)
2026 return (err);
2027 }
2028
2029 return (0);
2030 }
2031
2032 static int
receive_write(struct receive_writer_arg * rwa,struct drr_write * drrw,arc_buf_t * abuf)2033 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2034 arc_buf_t *abuf)
2035 {
2036 dmu_tx_t *tx;
2037 int err;
2038
2039 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2040 !DMU_OT_IS_VALID(drrw->drr_type))
2041 return (SET_ERROR(EINVAL));
2042
2043 /*
2044 * For resuming to work, records must be in increasing order
2045 * by (object, offset).
2046 */
2047 if (drrw->drr_object < rwa->last_object ||
2048 (drrw->drr_object == rwa->last_object &&
2049 drrw->drr_offset < rwa->last_offset)) {
2050 return (SET_ERROR(EINVAL));
2051 }
2052 rwa->last_object = drrw->drr_object;
2053 rwa->last_offset = drrw->drr_offset;
2054
2055 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2056 return (SET_ERROR(EINVAL));
2057
2058 tx = dmu_tx_create(rwa->os);
2059
2060 dmu_tx_hold_write(tx, drrw->drr_object,
2061 drrw->drr_offset, drrw->drr_length);
2062 err = dmu_tx_assign(tx, TXG_WAIT);
2063 if (err != 0) {
2064 dmu_tx_abort(tx);
2065 return (err);
2066 }
2067 if (rwa->byteswap) {
2068 dmu_object_byteswap_t byteswap =
2069 DMU_OT_BYTESWAP(drrw->drr_type);
2070 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2071 drrw->drr_length);
2072 }
2073
2074 dmu_buf_t *bonus;
2075 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2076 return (SET_ERROR(EINVAL));
2077 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2078
2079 /*
2080 * Note: If the receive fails, we want the resume stream to start
2081 * with the same record that we last successfully received (as opposed
2082 * to the next record), so that we can verify that we are
2083 * resuming from the correct location.
2084 */
2085 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2086 dmu_tx_commit(tx);
2087 dmu_buf_rele(bonus, FTAG);
2088
2089 return (0);
2090 }
2091
2092 /*
2093 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2094 * streams to refer to a copy of the data that is already on the
2095 * system because it came in earlier in the stream. This function
2096 * finds the earlier copy of the data, and uses that copy instead of
2097 * data from the stream to fulfill this write.
2098 */
2099 static int
receive_write_byref(struct receive_writer_arg * rwa,struct drr_write_byref * drrwbr)2100 receive_write_byref(struct receive_writer_arg *rwa,
2101 struct drr_write_byref *drrwbr)
2102 {
2103 dmu_tx_t *tx;
2104 int err;
2105 guid_map_entry_t gmesrch;
2106 guid_map_entry_t *gmep;
2107 avl_index_t where;
2108 objset_t *ref_os = NULL;
2109 dmu_buf_t *dbp;
2110
2111 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2112 return (SET_ERROR(EINVAL));
2113
2114 /*
2115 * If the GUID of the referenced dataset is different from the
2116 * GUID of the target dataset, find the referenced dataset.
2117 */
2118 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2119 gmesrch.guid = drrwbr->drr_refguid;
2120 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2121 &where)) == NULL) {
2122 return (SET_ERROR(EINVAL));
2123 }
2124 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2125 return (SET_ERROR(EINVAL));
2126 } else {
2127 ref_os = rwa->os;
2128 }
2129
2130 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2131 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2132 if (err != 0)
2133 return (err);
2134
2135 tx = dmu_tx_create(rwa->os);
2136
2137 dmu_tx_hold_write(tx, drrwbr->drr_object,
2138 drrwbr->drr_offset, drrwbr->drr_length);
2139 err = dmu_tx_assign(tx, TXG_WAIT);
2140 if (err != 0) {
2141 dmu_tx_abort(tx);
2142 return (err);
2143 }
2144 dmu_write(rwa->os, drrwbr->drr_object,
2145 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2146 dmu_buf_rele(dbp, FTAG);
2147
2148 /* See comment in restore_write. */
2149 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2150 dmu_tx_commit(tx);
2151 return (0);
2152 }
2153
2154 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)2155 receive_write_embedded(struct receive_writer_arg *rwa,
2156 struct drr_write_embedded *drrwe, void *data)
2157 {
2158 dmu_tx_t *tx;
2159 int err;
2160
2161 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2162 return (EINVAL);
2163
2164 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2165 return (EINVAL);
2166
2167 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2168 return (EINVAL);
2169 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2170 return (EINVAL);
2171
2172 tx = dmu_tx_create(rwa->os);
2173
2174 dmu_tx_hold_write(tx, drrwe->drr_object,
2175 drrwe->drr_offset, drrwe->drr_length);
2176 err = dmu_tx_assign(tx, TXG_WAIT);
2177 if (err != 0) {
2178 dmu_tx_abort(tx);
2179 return (err);
2180 }
2181
2182 dmu_write_embedded(rwa->os, drrwe->drr_object,
2183 drrwe->drr_offset, data, drrwe->drr_etype,
2184 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2185 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2186
2187 /* See comment in restore_write. */
2188 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2189 dmu_tx_commit(tx);
2190 return (0);
2191 }
2192
2193 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,void * data)2194 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2195 void *data)
2196 {
2197 dmu_tx_t *tx;
2198 dmu_buf_t *db, *db_spill;
2199 int err;
2200
2201 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2202 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2203 return (SET_ERROR(EINVAL));
2204
2205 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2206 return (SET_ERROR(EINVAL));
2207
2208 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2209 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2210 dmu_buf_rele(db, FTAG);
2211 return (err);
2212 }
2213
2214 tx = dmu_tx_create(rwa->os);
2215
2216 dmu_tx_hold_spill(tx, db->db_object);
2217
2218 err = dmu_tx_assign(tx, TXG_WAIT);
2219 if (err != 0) {
2220 dmu_buf_rele(db, FTAG);
2221 dmu_buf_rele(db_spill, FTAG);
2222 dmu_tx_abort(tx);
2223 return (err);
2224 }
2225 dmu_buf_will_dirty(db_spill, tx);
2226
2227 if (db_spill->db_size < drrs->drr_length)
2228 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2229 drrs->drr_length, tx));
2230 bcopy(data, db_spill->db_data, drrs->drr_length);
2231
2232 dmu_buf_rele(db, FTAG);
2233 dmu_buf_rele(db_spill, FTAG);
2234
2235 dmu_tx_commit(tx);
2236 return (0);
2237 }
2238
2239 /* ARGSUSED */
2240 static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)2241 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2242 {
2243 int err;
2244
2245 if (drrf->drr_length != -1ULL &&
2246 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2247 return (SET_ERROR(EINVAL));
2248
2249 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2250 return (SET_ERROR(EINVAL));
2251
2252 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2253 drrf->drr_offset, drrf->drr_length);
2254
2255 return (err);
2256 }
2257
2258 /* used to destroy the drc_ds on error */
2259 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)2260 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2261 {
2262 if (drc->drc_resumable) {
2263 /* wait for our resume state to be written to disk */
2264 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2265 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2266 } else {
2267 char name[ZFS_MAX_DATASET_NAME_LEN];
2268 dsl_dataset_name(drc->drc_ds, name);
2269 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2270 (void) dsl_destroy_head(name);
2271 }
2272 }
2273
2274 static void
receive_cksum(struct receive_arg * ra,int len,void * buf)2275 receive_cksum(struct receive_arg *ra, int len, void *buf)
2276 {
2277 if (ra->byteswap) {
2278 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2279 } else {
2280 fletcher_4_incremental_native(buf, len, &ra->cksum);
2281 }
2282 }
2283
2284 /*
2285 * Read the payload into a buffer of size len, and update the current record's
2286 * payload field.
2287 * Allocate ra->next_rrd and read the next record's header into
2288 * ra->next_rrd->header.
2289 * Verify checksum of payload and next record.
2290 */
2291 static int
receive_read_payload_and_next_header(struct receive_arg * ra,int len,void * buf)2292 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2293 {
2294 int err;
2295
2296 if (len != 0) {
2297 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2298 err = receive_read(ra, len, buf);
2299 if (err != 0)
2300 return (err);
2301 receive_cksum(ra, len, buf);
2302
2303 /* note: rrd is NULL when reading the begin record's payload */
2304 if (ra->rrd != NULL) {
2305 ra->rrd->payload = buf;
2306 ra->rrd->payload_size = len;
2307 ra->rrd->bytes_read = ra->bytes_read;
2308 }
2309 }
2310
2311 ra->prev_cksum = ra->cksum;
2312
2313 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2314 err = receive_read(ra, sizeof (ra->next_rrd->header),
2315 &ra->next_rrd->header);
2316 ra->next_rrd->bytes_read = ra->bytes_read;
2317 if (err != 0) {
2318 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2319 ra->next_rrd = NULL;
2320 return (err);
2321 }
2322 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2323 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2324 ra->next_rrd = NULL;
2325 return (SET_ERROR(EINVAL));
2326 }
2327
2328 /*
2329 * Note: checksum is of everything up to but not including the
2330 * checksum itself.
2331 */
2332 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2333 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2334 receive_cksum(ra,
2335 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2336 &ra->next_rrd->header);
2337
2338 zio_cksum_t cksum_orig =
2339 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2340 zio_cksum_t *cksump =
2341 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2342
2343 if (ra->byteswap)
2344 byteswap_record(&ra->next_rrd->header);
2345
2346 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2347 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2348 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2349 ra->next_rrd = NULL;
2350 return (SET_ERROR(ECKSUM));
2351 }
2352
2353 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2354
2355 return (0);
2356 }
2357
2358 /*
2359 * Issue the prefetch reads for any necessary indirect blocks.
2360 *
2361 * We use the object ignore list to tell us whether or not to issue prefetches
2362 * for a given object. We do this for both correctness (in case the blocksize
2363 * of an object has changed) and performance (if the object doesn't exist, don't
2364 * needlessly try to issue prefetches). We also trim the list as we go through
2365 * the stream to prevent it from growing to an unbounded size.
2366 *
2367 * The object numbers within will always be in sorted order, and any write
2368 * records we see will also be in sorted order, but they're not sorted with
2369 * respect to each other (i.e. we can get several object records before
2370 * receiving each object's write records). As a result, once we've reached a
2371 * given object number, we can safely remove any reference to lower object
2372 * numbers in the ignore list. In practice, we receive up to 32 object records
2373 * before receiving write records, so the list can have up to 32 nodes in it.
2374 */
2375 /* ARGSUSED */
2376 static void
receive_read_prefetch(struct receive_arg * ra,uint64_t object,uint64_t offset,uint64_t length)2377 receive_read_prefetch(struct receive_arg *ra,
2378 uint64_t object, uint64_t offset, uint64_t length)
2379 {
2380 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list);
2381 while (node != NULL && node->object < object) {
2382 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list));
2383 kmem_free(node, sizeof (*node));
2384 node = list_head(&ra->ignore_obj_list);
2385 }
2386 if (node == NULL || node->object > object) {
2387 dmu_prefetch(ra->os, object, 1, offset, length,
2388 ZIO_PRIORITY_SYNC_READ);
2389 }
2390 }
2391
2392 /*
2393 * Read records off the stream, issuing any necessary prefetches.
2394 */
2395 static int
receive_read_record(struct receive_arg * ra)2396 receive_read_record(struct receive_arg *ra)
2397 {
2398 int err;
2399
2400 switch (ra->rrd->header.drr_type) {
2401 case DRR_OBJECT:
2402 {
2403 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2404 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2405 void *buf = kmem_zalloc(size, KM_SLEEP);
2406 dmu_object_info_t doi;
2407 err = receive_read_payload_and_next_header(ra, size, buf);
2408 if (err != 0) {
2409 kmem_free(buf, size);
2410 return (err);
2411 }
2412 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2413 /*
2414 * See receive_read_prefetch for an explanation why we're
2415 * storing this object in the ignore_obj_list.
2416 */
2417 if (err == ENOENT ||
2418 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2419 struct receive_ign_obj_node *node =
2420 kmem_zalloc(sizeof (*node),
2421 KM_SLEEP);
2422 node->object = drro->drr_object;
2423 #ifdef ZFS_DEBUG
2424 struct receive_ign_obj_node *last_object =
2425 list_tail(&ra->ignore_obj_list);
2426 uint64_t last_objnum = (last_object != NULL ?
2427 last_object->object : 0);
2428 ASSERT3U(node->object, >, last_objnum);
2429 #endif
2430 list_insert_tail(&ra->ignore_obj_list, node);
2431 err = 0;
2432 }
2433 return (err);
2434 }
2435 case DRR_FREEOBJECTS:
2436 {
2437 err = receive_read_payload_and_next_header(ra, 0, NULL);
2438 return (err);
2439 }
2440 case DRR_WRITE:
2441 {
2442 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2443 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2444 drrw->drr_length);
2445
2446 err = receive_read_payload_and_next_header(ra,
2447 drrw->drr_length, abuf->b_data);
2448 if (err != 0) {
2449 dmu_return_arcbuf(abuf);
2450 return (err);
2451 }
2452 ra->rrd->write_buf = abuf;
2453 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2454 drrw->drr_length);
2455 return (err);
2456 }
2457 case DRR_WRITE_BYREF:
2458 {
2459 struct drr_write_byref *drrwb =
2460 &ra->rrd->header.drr_u.drr_write_byref;
2461 err = receive_read_payload_and_next_header(ra, 0, NULL);
2462 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2463 drrwb->drr_length);
2464 return (err);
2465 }
2466 case DRR_WRITE_EMBEDDED:
2467 {
2468 struct drr_write_embedded *drrwe =
2469 &ra->rrd->header.drr_u.drr_write_embedded;
2470 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2471 void *buf = kmem_zalloc(size, KM_SLEEP);
2472
2473 err = receive_read_payload_and_next_header(ra, size, buf);
2474 if (err != 0) {
2475 kmem_free(buf, size);
2476 return (err);
2477 }
2478
2479 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2480 drrwe->drr_length);
2481 return (err);
2482 }
2483 case DRR_FREE:
2484 {
2485 /*
2486 * It might be beneficial to prefetch indirect blocks here, but
2487 * we don't really have the data to decide for sure.
2488 */
2489 err = receive_read_payload_and_next_header(ra, 0, NULL);
2490 return (err);
2491 }
2492 case DRR_END:
2493 {
2494 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2495 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2496 return (SET_ERROR(ECKSUM));
2497 return (0);
2498 }
2499 case DRR_SPILL:
2500 {
2501 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2502 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2503 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2504 buf);
2505 if (err != 0)
2506 kmem_free(buf, drrs->drr_length);
2507 return (err);
2508 }
2509 default:
2510 return (SET_ERROR(EINVAL));
2511 }
2512 }
2513
2514 /*
2515 * Commit the records to the pool.
2516 */
2517 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2518 receive_process_record(struct receive_writer_arg *rwa,
2519 struct receive_record_arg *rrd)
2520 {
2521 int err;
2522
2523 /* Processing in order, therefore bytes_read should be increasing. */
2524 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2525 rwa->bytes_read = rrd->bytes_read;
2526
2527 switch (rrd->header.drr_type) {
2528 case DRR_OBJECT:
2529 {
2530 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2531 err = receive_object(rwa, drro, rrd->payload);
2532 kmem_free(rrd->payload, rrd->payload_size);
2533 rrd->payload = NULL;
2534 return (err);
2535 }
2536 case DRR_FREEOBJECTS:
2537 {
2538 struct drr_freeobjects *drrfo =
2539 &rrd->header.drr_u.drr_freeobjects;
2540 return (receive_freeobjects(rwa, drrfo));
2541 }
2542 case DRR_WRITE:
2543 {
2544 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2545 err = receive_write(rwa, drrw, rrd->write_buf);
2546 /* if receive_write() is successful, it consumes the arc_buf */
2547 if (err != 0)
2548 dmu_return_arcbuf(rrd->write_buf);
2549 rrd->write_buf = NULL;
2550 rrd->payload = NULL;
2551 return (err);
2552 }
2553 case DRR_WRITE_BYREF:
2554 {
2555 struct drr_write_byref *drrwbr =
2556 &rrd->header.drr_u.drr_write_byref;
2557 return (receive_write_byref(rwa, drrwbr));
2558 }
2559 case DRR_WRITE_EMBEDDED:
2560 {
2561 struct drr_write_embedded *drrwe =
2562 &rrd->header.drr_u.drr_write_embedded;
2563 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2564 kmem_free(rrd->payload, rrd->payload_size);
2565 rrd->payload = NULL;
2566 return (err);
2567 }
2568 case DRR_FREE:
2569 {
2570 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2571 return (receive_free(rwa, drrf));
2572 }
2573 case DRR_SPILL:
2574 {
2575 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2576 err = receive_spill(rwa, drrs, rrd->payload);
2577 kmem_free(rrd->payload, rrd->payload_size);
2578 rrd->payload = NULL;
2579 return (err);
2580 }
2581 default:
2582 return (SET_ERROR(EINVAL));
2583 }
2584 }
2585
2586 /*
2587 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2588 * receive_process_record When we're done, signal the main thread and exit.
2589 */
2590 static void
receive_writer_thread(void * arg)2591 receive_writer_thread(void *arg)
2592 {
2593 struct receive_writer_arg *rwa = arg;
2594 struct receive_record_arg *rrd;
2595 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2596 rrd = bqueue_dequeue(&rwa->q)) {
2597 /*
2598 * If there's an error, the main thread will stop putting things
2599 * on the queue, but we need to clear everything in it before we
2600 * can exit.
2601 */
2602 if (rwa->err == 0) {
2603 rwa->err = receive_process_record(rwa, rrd);
2604 } else if (rrd->write_buf != NULL) {
2605 dmu_return_arcbuf(rrd->write_buf);
2606 rrd->write_buf = NULL;
2607 rrd->payload = NULL;
2608 } else if (rrd->payload != NULL) {
2609 kmem_free(rrd->payload, rrd->payload_size);
2610 rrd->payload = NULL;
2611 }
2612 kmem_free(rrd, sizeof (*rrd));
2613 }
2614 kmem_free(rrd, sizeof (*rrd));
2615 mutex_enter(&rwa->mutex);
2616 rwa->done = B_TRUE;
2617 cv_signal(&rwa->cv);
2618 mutex_exit(&rwa->mutex);
2619 }
2620
2621 static int
resume_check(struct receive_arg * ra,nvlist_t * begin_nvl)2622 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2623 {
2624 uint64_t val;
2625 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2626 uint64_t dsobj = dmu_objset_id(ra->os);
2627 uint64_t resume_obj, resume_off;
2628
2629 if (nvlist_lookup_uint64(begin_nvl,
2630 "resume_object", &resume_obj) != 0 ||
2631 nvlist_lookup_uint64(begin_nvl,
2632 "resume_offset", &resume_off) != 0) {
2633 return (SET_ERROR(EINVAL));
2634 }
2635 VERIFY0(zap_lookup(mos, dsobj,
2636 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2637 if (resume_obj != val)
2638 return (SET_ERROR(EINVAL));
2639 VERIFY0(zap_lookup(mos, dsobj,
2640 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2641 if (resume_off != val)
2642 return (SET_ERROR(EINVAL));
2643
2644 return (0);
2645 }
2646
2647
2648 /*
2649 * Read in the stream's records, one by one, and apply them to the pool. There
2650 * are two threads involved; the thread that calls this function will spin up a
2651 * worker thread, read the records off the stream one by one, and issue
2652 * prefetches for any necessary indirect blocks. It will then push the records
2653 * onto an internal blocking queue. The worker thread will pull the records off
2654 * the queue, and actually write the data into the DMU. This way, the worker
2655 * thread doesn't have to wait for reads to complete, since everything it needs
2656 * (the indirect blocks) will be prefetched.
2657 *
2658 * NB: callers *must* call dmu_recv_end() if this succeeds.
2659 */
2660 int
dmu_recv_stream(dmu_recv_cookie_t * drc,vnode_t * vp,offset_t * voffp,int cleanup_fd,uint64_t * action_handlep)2661 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2662 int cleanup_fd, uint64_t *action_handlep)
2663 {
2664 int err = 0;
2665 struct receive_arg ra = { 0 };
2666 struct receive_writer_arg rwa = { 0 };
2667 int featureflags;
2668 nvlist_t *begin_nvl = NULL;
2669
2670 ra.byteswap = drc->drc_byteswap;
2671 ra.cksum = drc->drc_cksum;
2672 ra.vp = vp;
2673 ra.voff = *voffp;
2674
2675 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2676 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2677 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2678 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2679 }
2680
2681 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node),
2682 offsetof(struct receive_ign_obj_node, node));
2683
2684 /* these were verified in dmu_recv_begin */
2685 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2686 DMU_SUBSTREAM);
2687 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2688
2689 /*
2690 * Open the objset we are modifying.
2691 */
2692 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2693
2694 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2695
2696 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2697
2698 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2699 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2700 minor_t minor;
2701
2702 if (cleanup_fd == -1) {
2703 ra.err = SET_ERROR(EBADF);
2704 goto out;
2705 }
2706 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2707 if (ra.err != 0) {
2708 cleanup_fd = -1;
2709 goto out;
2710 }
2711
2712 if (*action_handlep == 0) {
2713 rwa.guid_to_ds_map =
2714 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2715 avl_create(rwa.guid_to_ds_map, guid_compare,
2716 sizeof (guid_map_entry_t),
2717 offsetof(guid_map_entry_t, avlnode));
2718 err = zfs_onexit_add_cb(minor,
2719 free_guid_map_onexit, rwa.guid_to_ds_map,
2720 action_handlep);
2721 if (ra.err != 0)
2722 goto out;
2723 } else {
2724 err = zfs_onexit_cb_data(minor, *action_handlep,
2725 (void **)&rwa.guid_to_ds_map);
2726 if (ra.err != 0)
2727 goto out;
2728 }
2729
2730 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2731 }
2732
2733 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2734 void *payload = NULL;
2735 if (payloadlen != 0)
2736 payload = kmem_alloc(payloadlen, KM_SLEEP);
2737
2738 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2739 if (err != 0) {
2740 if (payloadlen != 0)
2741 kmem_free(payload, payloadlen);
2742 goto out;
2743 }
2744 if (payloadlen != 0) {
2745 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2746 kmem_free(payload, payloadlen);
2747 if (err != 0)
2748 goto out;
2749 }
2750
2751 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2752 err = resume_check(&ra, begin_nvl);
2753 if (err != 0)
2754 goto out;
2755 }
2756
2757 (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2758 offsetof(struct receive_record_arg, node));
2759 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2760 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2761 rwa.os = ra.os;
2762 rwa.byteswap = drc->drc_byteswap;
2763 rwa.resumable = drc->drc_resumable;
2764
2765 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2766 TS_RUN, minclsyspri);
2767 /*
2768 * We're reading rwa.err without locks, which is safe since we are the
2769 * only reader, and the worker thread is the only writer. It's ok if we
2770 * miss a write for an iteration or two of the loop, since the writer
2771 * thread will keep freeing records we send it until we send it an eos
2772 * marker.
2773 *
2774 * We can leave this loop in 3 ways: First, if rwa.err is
2775 * non-zero. In that case, the writer thread will free the rrd we just
2776 * pushed. Second, if we're interrupted; in that case, either it's the
2777 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2778 * has been handed off to the writer thread who will free it. Finally,
2779 * if receive_read_record fails or we're at the end of the stream, then
2780 * we free ra.rrd and exit.
2781 */
2782 while (rwa.err == 0) {
2783 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2784 err = SET_ERROR(EINTR);
2785 break;
2786 }
2787
2788 ASSERT3P(ra.rrd, ==, NULL);
2789 ra.rrd = ra.next_rrd;
2790 ra.next_rrd = NULL;
2791 /* Allocates and loads header into ra.next_rrd */
2792 err = receive_read_record(&ra);
2793
2794 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2795 kmem_free(ra.rrd, sizeof (*ra.rrd));
2796 ra.rrd = NULL;
2797 break;
2798 }
2799
2800 bqueue_enqueue(&rwa.q, ra.rrd,
2801 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2802 ra.rrd = NULL;
2803 }
2804 if (ra.next_rrd == NULL)
2805 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2806 ra.next_rrd->eos_marker = B_TRUE;
2807 bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2808
2809 mutex_enter(&rwa.mutex);
2810 while (!rwa.done) {
2811 cv_wait(&rwa.cv, &rwa.mutex);
2812 }
2813 mutex_exit(&rwa.mutex);
2814
2815 cv_destroy(&rwa.cv);
2816 mutex_destroy(&rwa.mutex);
2817 bqueue_destroy(&rwa.q);
2818 if (err == 0)
2819 err = rwa.err;
2820
2821 out:
2822 nvlist_free(begin_nvl);
2823 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2824 zfs_onexit_fd_rele(cleanup_fd);
2825
2826 if (err != 0) {
2827 /*
2828 * Clean up references. If receive is not resumable,
2829 * destroy what we created, so we don't leave it in
2830 * the inconsistent state.
2831 */
2832 dmu_recv_cleanup_ds(drc);
2833 }
2834
2835 *voffp = ra.voff;
2836 for (struct receive_ign_obj_node *n =
2837 list_remove_head(&ra.ignore_obj_list); n != NULL;
2838 n = list_remove_head(&ra.ignore_obj_list)) {
2839 kmem_free(n, sizeof (*n));
2840 }
2841 list_destroy(&ra.ignore_obj_list);
2842 return (err);
2843 }
2844
2845 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)2846 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2847 {
2848 dmu_recv_cookie_t *drc = arg;
2849 dsl_pool_t *dp = dmu_tx_pool(tx);
2850 int error;
2851
2852 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2853
2854 if (!drc->drc_newfs) {
2855 dsl_dataset_t *origin_head;
2856
2857 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2858 if (error != 0)
2859 return (error);
2860 if (drc->drc_force) {
2861 /*
2862 * We will destroy any snapshots in tofs (i.e. before
2863 * origin_head) that are after the origin (which is
2864 * the snap before drc_ds, because drc_ds can not
2865 * have any snaps of its own).
2866 */
2867 uint64_t obj;
2868
2869 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2870 while (obj !=
2871 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2872 dsl_dataset_t *snap;
2873 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2874 &snap);
2875 if (error != 0)
2876 break;
2877 if (snap->ds_dir != origin_head->ds_dir)
2878 error = SET_ERROR(EINVAL);
2879 if (error == 0) {
2880 error = dsl_destroy_snapshot_check_impl(
2881 snap, B_FALSE);
2882 }
2883 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2884 dsl_dataset_rele(snap, FTAG);
2885 if (error != 0)
2886 break;
2887 }
2888 if (error != 0) {
2889 dsl_dataset_rele(origin_head, FTAG);
2890 return (error);
2891 }
2892 }
2893 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2894 origin_head, drc->drc_force, drc->drc_owner, tx);
2895 if (error != 0) {
2896 dsl_dataset_rele(origin_head, FTAG);
2897 return (error);
2898 }
2899 error = dsl_dataset_snapshot_check_impl(origin_head,
2900 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2901 dsl_dataset_rele(origin_head, FTAG);
2902 if (error != 0)
2903 return (error);
2904
2905 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2906 } else {
2907 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2908 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2909 }
2910 return (error);
2911 }
2912
2913 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)2914 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2915 {
2916 dmu_recv_cookie_t *drc = arg;
2917 dsl_pool_t *dp = dmu_tx_pool(tx);
2918
2919 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2920 tx, "snap=%s", drc->drc_tosnap);
2921
2922 if (!drc->drc_newfs) {
2923 dsl_dataset_t *origin_head;
2924
2925 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2926 &origin_head));
2927
2928 if (drc->drc_force) {
2929 /*
2930 * Destroy any snapshots of drc_tofs (origin_head)
2931 * after the origin (the snap before drc_ds).
2932 */
2933 uint64_t obj;
2934
2935 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2936 while (obj !=
2937 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2938 dsl_dataset_t *snap;
2939 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2940 &snap));
2941 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
2942 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2943 dsl_destroy_snapshot_sync_impl(snap,
2944 B_FALSE, tx);
2945 dsl_dataset_rele(snap, FTAG);
2946 }
2947 }
2948 VERIFY3P(drc->drc_ds->ds_prev, ==,
2949 origin_head->ds_prev);
2950
2951 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
2952 origin_head, tx);
2953 dsl_dataset_snapshot_sync_impl(origin_head,
2954 drc->drc_tosnap, tx);
2955
2956 /* set snapshot's creation time and guid */
2957 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
2958 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
2959 drc->drc_drrb->drr_creation_time;
2960 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
2961 drc->drc_drrb->drr_toguid;
2962 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
2963 ~DS_FLAG_INCONSISTENT;
2964
2965 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
2966 dsl_dataset_phys(origin_head)->ds_flags &=
2967 ~DS_FLAG_INCONSISTENT;
2968
2969 dsl_dataset_rele(origin_head, FTAG);
2970 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
2971
2972 if (drc->drc_owner != NULL)
2973 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
2974 } else {
2975 dsl_dataset_t *ds = drc->drc_ds;
2976
2977 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
2978
2979 /* set snapshot's creation time and guid */
2980 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
2981 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
2982 drc->drc_drrb->drr_creation_time;
2983 dsl_dataset_phys(ds->ds_prev)->ds_guid =
2984 drc->drc_drrb->drr_toguid;
2985 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
2986 ~DS_FLAG_INCONSISTENT;
2987
2988 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2989 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
2990 if (dsl_dataset_has_resume_receive_state(ds)) {
2991 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2992 DS_FIELD_RESUME_FROMGUID, tx);
2993 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2994 DS_FIELD_RESUME_OBJECT, tx);
2995 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2996 DS_FIELD_RESUME_OFFSET, tx);
2997 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2998 DS_FIELD_RESUME_BYTES, tx);
2999 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3000 DS_FIELD_RESUME_TOGUID, tx);
3001 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3002 DS_FIELD_RESUME_TONAME, tx);
3003 }
3004 }
3005 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3006 /*
3007 * Release the hold from dmu_recv_begin. This must be done before
3008 * we return to open context, so that when we free the dataset's dnode,
3009 * we can evict its bonus buffer.
3010 */
3011 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3012 drc->drc_ds = NULL;
3013 }
3014
3015 static int
add_ds_to_guidmap(const char * name,avl_tree_t * guid_map,uint64_t snapobj)3016 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3017 {
3018 dsl_pool_t *dp;
3019 dsl_dataset_t *snapds;
3020 guid_map_entry_t *gmep;
3021 int err;
3022
3023 ASSERT(guid_map != NULL);
3024
3025 err = dsl_pool_hold(name, FTAG, &dp);
3026 if (err != 0)
3027 return (err);
3028 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3029 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3030 if (err == 0) {
3031 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3032 gmep->gme_ds = snapds;
3033 avl_add(guid_map, gmep);
3034 dsl_dataset_long_hold(snapds, gmep);
3035 } else {
3036 kmem_free(gmep, sizeof (*gmep));
3037 }
3038
3039 dsl_pool_rele(dp, FTAG);
3040 return (err);
3041 }
3042
3043 static int dmu_recv_end_modified_blocks = 3;
3044
3045 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)3046 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3047 {
3048 int error;
3049
3050 #ifdef _KERNEL
3051 /*
3052 * We will be destroying the ds; make sure its origin is unmounted if
3053 * necessary.
3054 */
3055 char name[ZFS_MAX_DATASET_NAME_LEN];
3056 dsl_dataset_name(drc->drc_ds, name);
3057 zfs_destroy_unmount_origin(name);
3058 #endif
3059
3060 error = dsl_sync_task(drc->drc_tofs,
3061 dmu_recv_end_check, dmu_recv_end_sync, drc,
3062 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3063
3064 if (error != 0)
3065 dmu_recv_cleanup_ds(drc);
3066 return (error);
3067 }
3068
3069 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)3070 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3071 {
3072 int error;
3073
3074 error = dsl_sync_task(drc->drc_tofs,
3075 dmu_recv_end_check, dmu_recv_end_sync, drc,
3076 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3077
3078 if (error != 0) {
3079 dmu_recv_cleanup_ds(drc);
3080 } else if (drc->drc_guid_to_ds_map != NULL) {
3081 (void) add_ds_to_guidmap(drc->drc_tofs,
3082 drc->drc_guid_to_ds_map,
3083 drc->drc_newsnapobj);
3084 }
3085 return (error);
3086 }
3087
3088 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)3089 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3090 {
3091 drc->drc_owner = owner;
3092
3093 if (drc->drc_newfs)
3094 return (dmu_recv_new_end(drc));
3095 else
3096 return (dmu_recv_existing_end(drc));
3097 }
3098
3099 /*
3100 * Return TRUE if this objset is currently being received into.
3101 */
3102 boolean_t
dmu_objset_is_receiving(objset_t * os)3103 dmu_objset_is_receiving(objset_t *os)
3104 {
3105 return (os->os_dsl_dataset != NULL &&
3106 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3107 }
3108