xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
28  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
29  * Copyright (c) 2019 Datto Inc.
30  * Copyright (c) 2019, 2023, Klara Inc.
31  * Copyright (c) 2019, Allan Jude
32  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
34  */
35 
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dbuf.h>
40 #include <sys/dnode.h>
41 #include <sys/zfs_context.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/dmu_traverse.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_dir.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_synctask.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dmu_zfetch.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zap.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/zio_compress.h>
54 #include <sys/sa.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/brt.h>
58 #include <sys/trace_zfs.h>
59 #include <sys/zfs_racct.h>
60 #include <sys/zfs_rlock.h>
61 #ifdef _KERNEL
62 #include <sys/vmsystm.h>
63 #include <sys/zfs_znode.h>
64 #endif
65 
66 /*
67  * Enable/disable nopwrite feature.
68  */
69 static int zfs_nopwrite_enabled = 1;
70 
71 /*
72  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
73  * one TXG. After this threshold is crossed, additional dirty blocks from frees
74  * will wait until the next TXG.
75  * A value of zero will disable this throttle.
76  */
77 static uint_t zfs_per_txg_dirty_frees_percent = 30;
78 
79 /*
80  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
81  * By default this is enabled to ensure accurate hole reporting, it can result
82  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
83  * Disabling this option will result in holes never being reported in dirty
84  * files which is always safe.
85  */
86 static int zfs_dmu_offset_next_sync = 1;
87 
88 /*
89  * Limit the amount we can prefetch with one call to this amount.  This
90  * helps to limit the amount of memory that can be used by prefetching.
91  * Larger objects should be prefetched a bit at a time.
92  */
93 #ifdef _ILP32
94 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
95 #else
96 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
97 #endif
98 
99 /*
100  * Override copies= for dedup state objects. 0 means the traditional behaviour
101  * (ie the default for the containing objset ie 3 for the MOS).
102  */
103 uint_t dmu_ddt_copies = 0;
104 
105 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
106 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
108 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
109 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
110 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
111 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
112 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
113 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
114 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
115 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
116 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
117 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
118 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
119 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
120 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
121 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
122 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
123 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
124 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
125 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
128 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
129 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
131 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
132 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
135 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
136 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
139 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
140 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
141 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
142 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
143 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
144 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
146 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
147 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
148 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
149 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
150 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
151 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
152 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
153 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
154 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
155 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
156 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
157 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
158 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
159 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
160 };
161 
162 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
163 	{	byteswap_uint8_array,	"uint8"		},
164 	{	byteswap_uint16_array,	"uint16"	},
165 	{	byteswap_uint32_array,	"uint32"	},
166 	{	byteswap_uint64_array,	"uint64"	},
167 	{	zap_byteswap,		"zap"		},
168 	{	dnode_buf_byteswap,	"dnode"		},
169 	{	dmu_objset_byteswap,	"objset"	},
170 	{	zfs_znode_byteswap,	"znode"		},
171 	{	zfs_oldacl_byteswap,	"oldacl"	},
172 	{	zfs_acl_byteswap,	"acl"		}
173 };
174 
175 int
dmu_buf_hold_noread_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp)176 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
177     const void *tag, dmu_buf_t **dbp)
178 {
179 	uint64_t blkid;
180 	dmu_buf_impl_t *db;
181 
182 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
183 	blkid = dbuf_whichblock(dn, 0, offset);
184 	db = dbuf_hold(dn, blkid, tag);
185 	rw_exit(&dn->dn_struct_rwlock);
186 
187 	if (db == NULL) {
188 		*dbp = NULL;
189 		return (SET_ERROR(EIO));
190 	}
191 
192 	*dbp = &db->db;
193 	return (0);
194 }
195 
196 int
dmu_buf_hold_noread(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp)197 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
198     const void *tag, dmu_buf_t **dbp)
199 {
200 	dnode_t *dn;
201 	uint64_t blkid;
202 	dmu_buf_impl_t *db;
203 	int err;
204 
205 	err = dnode_hold(os, object, FTAG, &dn);
206 	if (err)
207 		return (err);
208 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
209 	blkid = dbuf_whichblock(dn, 0, offset);
210 	db = dbuf_hold(dn, blkid, tag);
211 	rw_exit(&dn->dn_struct_rwlock);
212 	dnode_rele(dn, FTAG);
213 
214 	if (db == NULL) {
215 		*dbp = NULL;
216 		return (SET_ERROR(EIO));
217 	}
218 
219 	*dbp = &db->db;
220 	return (err);
221 }
222 
223 int
dmu_buf_hold_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp,int flags)224 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
225     const void *tag, dmu_buf_t **dbp, int flags)
226 {
227 	int err;
228 	int db_flags = DB_RF_CANFAIL;
229 
230 	if (flags & DMU_READ_NO_PREFETCH)
231 		db_flags |= DB_RF_NOPREFETCH;
232 	if (flags & DMU_READ_NO_DECRYPT)
233 		db_flags |= DB_RF_NO_DECRYPT;
234 
235 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
236 	if (err == 0) {
237 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
238 		err = dbuf_read(db, NULL, db_flags);
239 		if (err != 0) {
240 			dbuf_rele(db, tag);
241 			*dbp = NULL;
242 		}
243 	}
244 
245 	return (err);
246 }
247 
248 int
dmu_buf_hold(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp,int flags)249 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
250     const void *tag, dmu_buf_t **dbp, int flags)
251 {
252 	int err;
253 	int db_flags = DB_RF_CANFAIL;
254 
255 	if (flags & DMU_READ_NO_PREFETCH)
256 		db_flags |= DB_RF_NOPREFETCH;
257 	if (flags & DMU_READ_NO_DECRYPT)
258 		db_flags |= DB_RF_NO_DECRYPT;
259 
260 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
261 	if (err == 0) {
262 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
263 		err = dbuf_read(db, NULL, db_flags);
264 		if (err != 0) {
265 			dbuf_rele(db, tag);
266 			*dbp = NULL;
267 		}
268 	}
269 
270 	return (err);
271 }
272 
273 int
dmu_bonus_max(void)274 dmu_bonus_max(void)
275 {
276 	return (DN_OLD_MAX_BONUSLEN);
277 }
278 
279 int
dmu_set_bonus(dmu_buf_t * db_fake,int newsize,dmu_tx_t * tx)280 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
281 {
282 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
283 	dnode_t *dn;
284 	int error;
285 
286 	if (newsize < 0 || newsize > db_fake->db_size)
287 		return (SET_ERROR(EINVAL));
288 
289 	DB_DNODE_ENTER(db);
290 	dn = DB_DNODE(db);
291 
292 	if (dn->dn_bonus != db) {
293 		error = SET_ERROR(EINVAL);
294 	} else {
295 		dnode_setbonuslen(dn, newsize, tx);
296 		error = 0;
297 	}
298 
299 	DB_DNODE_EXIT(db);
300 	return (error);
301 }
302 
303 int
dmu_set_bonustype(dmu_buf_t * db_fake,dmu_object_type_t type,dmu_tx_t * tx)304 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
305 {
306 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
307 	dnode_t *dn;
308 	int error;
309 
310 	if (!DMU_OT_IS_VALID(type))
311 		return (SET_ERROR(EINVAL));
312 
313 	DB_DNODE_ENTER(db);
314 	dn = DB_DNODE(db);
315 
316 	if (dn->dn_bonus != db) {
317 		error = SET_ERROR(EINVAL);
318 	} else {
319 		dnode_setbonus_type(dn, type, tx);
320 		error = 0;
321 	}
322 
323 	DB_DNODE_EXIT(db);
324 	return (error);
325 }
326 
327 dmu_object_type_t
dmu_get_bonustype(dmu_buf_t * db_fake)328 dmu_get_bonustype(dmu_buf_t *db_fake)
329 {
330 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
331 	dmu_object_type_t type;
332 
333 	DB_DNODE_ENTER(db);
334 	type = DB_DNODE(db)->dn_bonustype;
335 	DB_DNODE_EXIT(db);
336 
337 	return (type);
338 }
339 
340 int
dmu_rm_spill(objset_t * os,uint64_t object,dmu_tx_t * tx)341 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
342 {
343 	dnode_t *dn;
344 	int error;
345 
346 	error = dnode_hold(os, object, FTAG, &dn);
347 	dbuf_rm_spill(dn, tx);
348 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
349 	dnode_rm_spill(dn, tx);
350 	rw_exit(&dn->dn_struct_rwlock);
351 	dnode_rele(dn, FTAG);
352 	return (error);
353 }
354 
355 /*
356  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
357  * has not yet been allocated a new bonus dbuf a will be allocated.
358  * Returns ENOENT, EIO, or 0.
359  */
dmu_bonus_hold_by_dnode(dnode_t * dn,const void * tag,dmu_buf_t ** dbp,uint32_t flags)360 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
361     uint32_t flags)
362 {
363 	dmu_buf_impl_t *db;
364 	int error;
365 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
366 
367 	if (flags & DMU_READ_NO_PREFETCH)
368 		db_flags |= DB_RF_NOPREFETCH;
369 	if (flags & DMU_READ_NO_DECRYPT)
370 		db_flags |= DB_RF_NO_DECRYPT;
371 
372 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
373 	if (dn->dn_bonus == NULL) {
374 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
375 			rw_exit(&dn->dn_struct_rwlock);
376 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
377 		}
378 		if (dn->dn_bonus == NULL)
379 			dbuf_create_bonus(dn);
380 	}
381 	db = dn->dn_bonus;
382 
383 	/* as long as the bonus buf is held, the dnode will be held */
384 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
385 		VERIFY(dnode_add_ref(dn, db));
386 		atomic_inc_32(&dn->dn_dbufs_count);
387 	}
388 
389 	/*
390 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
391 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
392 	 * a dnode hold for every dbuf.
393 	 */
394 	rw_exit(&dn->dn_struct_rwlock);
395 
396 	error = dbuf_read(db, NULL, db_flags);
397 	if (error) {
398 		dnode_evict_bonus(dn);
399 		dbuf_rele(db, tag);
400 		*dbp = NULL;
401 		return (error);
402 	}
403 
404 	*dbp = &db->db;
405 	return (0);
406 }
407 
408 int
dmu_bonus_hold(objset_t * os,uint64_t object,const void * tag,dmu_buf_t ** dbp)409 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
410 {
411 	dnode_t *dn;
412 	int error;
413 
414 	error = dnode_hold(os, object, FTAG, &dn);
415 	if (error)
416 		return (error);
417 
418 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
419 	dnode_rele(dn, FTAG);
420 
421 	return (error);
422 }
423 
424 /*
425  * returns ENOENT, EIO, or 0.
426  *
427  * This interface will allocate a blank spill dbuf when a spill blk
428  * doesn't already exist on the dnode.
429  *
430  * if you only want to find an already existing spill db, then
431  * dmu_spill_hold_existing() should be used.
432  */
433 int
dmu_spill_hold_by_dnode(dnode_t * dn,uint32_t flags,const void * tag,dmu_buf_t ** dbp)434 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
435     dmu_buf_t **dbp)
436 {
437 	dmu_buf_impl_t *db = NULL;
438 	int err;
439 
440 	if ((flags & DB_RF_HAVESTRUCT) == 0)
441 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
442 
443 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
444 
445 	if ((flags & DB_RF_HAVESTRUCT) == 0)
446 		rw_exit(&dn->dn_struct_rwlock);
447 
448 	if (db == NULL) {
449 		*dbp = NULL;
450 		return (SET_ERROR(EIO));
451 	}
452 	err = dbuf_read(db, NULL, flags);
453 	if (err == 0)
454 		*dbp = &db->db;
455 	else {
456 		dbuf_rele(db, tag);
457 		*dbp = NULL;
458 	}
459 	return (err);
460 }
461 
462 int
dmu_spill_hold_existing(dmu_buf_t * bonus,const void * tag,dmu_buf_t ** dbp)463 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
464 {
465 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
466 	dnode_t *dn;
467 	int err;
468 
469 	DB_DNODE_ENTER(db);
470 	dn = DB_DNODE(db);
471 
472 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
473 		err = SET_ERROR(EINVAL);
474 	} else {
475 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
476 
477 		if (!dn->dn_have_spill) {
478 			err = SET_ERROR(ENOENT);
479 		} else {
480 			err = dmu_spill_hold_by_dnode(dn,
481 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
482 		}
483 
484 		rw_exit(&dn->dn_struct_rwlock);
485 	}
486 
487 	DB_DNODE_EXIT(db);
488 	return (err);
489 }
490 
491 int
dmu_spill_hold_by_bonus(dmu_buf_t * bonus,uint32_t flags,const void * tag,dmu_buf_t ** dbp)492 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
493     dmu_buf_t **dbp)
494 {
495 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
496 	int err;
497 	uint32_t db_flags = DB_RF_CANFAIL;
498 
499 	if (flags & DMU_READ_NO_DECRYPT)
500 		db_flags |= DB_RF_NO_DECRYPT;
501 
502 	DB_DNODE_ENTER(db);
503 	err = dmu_spill_hold_by_dnode(DB_DNODE(db), db_flags, tag, dbp);
504 	DB_DNODE_EXIT(db);
505 
506 	return (err);
507 }
508 
509 /*
510  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
511  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
512  * and can induce severe lock contention when writing to several files
513  * whose dnodes are in the same block.
514  */
515 int
dmu_buf_hold_array_by_dnode(dnode_t * dn,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp,uint32_t flags)516 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
517     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
518     uint32_t flags)
519 {
520 	dmu_buf_t **dbp;
521 	zstream_t *zs = NULL;
522 	uint64_t blkid, nblks, i;
523 	uint32_t dbuf_flags;
524 	int err;
525 	zio_t *zio = NULL;
526 	boolean_t missed = B_FALSE;
527 
528 	ASSERT(!read || length <= DMU_MAX_ACCESS);
529 
530 	/*
531 	 * Note: We directly notify the prefetch code of this read, so that
532 	 * we can tell it about the multi-block read.  dbuf_read() only knows
533 	 * about the one block it is accessing.
534 	 */
535 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
536 	    DB_RF_NOPREFETCH;
537 
538 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
539 		dbuf_flags |= DB_RF_NO_DECRYPT;
540 
541 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
542 	if (dn->dn_datablkshift) {
543 		int blkshift = dn->dn_datablkshift;
544 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
545 		    P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
546 		    >> blkshift;
547 	} else {
548 		if (offset + length > dn->dn_datablksz) {
549 			zfs_panic_recover("zfs: accessing past end of object "
550 			    "%llx/%llx (size=%u access=%llu+%llu)",
551 			    (longlong_t)dn->dn_objset->
552 			    os_dsl_dataset->ds_object,
553 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
554 			    (longlong_t)offset, (longlong_t)length);
555 			rw_exit(&dn->dn_struct_rwlock);
556 			return (SET_ERROR(EIO));
557 		}
558 		nblks = 1;
559 	}
560 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
561 
562 	if (read)
563 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
564 		    ZIO_FLAG_CANFAIL);
565 	blkid = dbuf_whichblock(dn, 0, offset);
566 	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
567 		/*
568 		 * Prepare the zfetch before initiating the demand reads, so
569 		 * that if multiple threads block on same indirect block, we
570 		 * base predictions on the original less racy request order.
571 		 */
572 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
573 		    B_TRUE);
574 	}
575 	for (i = 0; i < nblks; i++) {
576 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
577 		if (db == NULL) {
578 			if (zs) {
579 				dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
580 				    B_TRUE);
581 			}
582 			rw_exit(&dn->dn_struct_rwlock);
583 			dmu_buf_rele_array(dbp, nblks, tag);
584 			if (read)
585 				zio_nowait(zio);
586 			return (SET_ERROR(EIO));
587 		}
588 
589 		/*
590 		 * Initiate async demand data read.
591 		 * We check the db_state after calling dbuf_read() because
592 		 * (1) dbuf_read() may change the state to CACHED due to a
593 		 * hit in the ARC, and (2) on a cache miss, a child will
594 		 * have been added to "zio" but not yet completed, so the
595 		 * state will not yet be CACHED.
596 		 */
597 		if (read) {
598 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
599 			    offset + length < db->db.db_offset +
600 			    db->db.db_size) {
601 				if (offset <= db->db.db_offset)
602 					dbuf_flags |= DB_RF_PARTIAL_FIRST;
603 				else
604 					dbuf_flags |= DB_RF_PARTIAL_MORE;
605 			}
606 			(void) dbuf_read(db, zio, dbuf_flags);
607 			if (db->db_state != DB_CACHED)
608 				missed = B_TRUE;
609 		}
610 		dbp[i] = &db->db;
611 	}
612 
613 	/*
614 	 * If we are doing O_DIRECT we still hold the dbufs, even for reads,
615 	 * but we do not issue any reads here. We do not want to account for
616 	 * writes in this case.
617 	 *
618 	 * O_DIRECT write/read accounting takes place in
619 	 * dmu_{write/read}_abd().
620 	 */
621 	if (!read && ((flags & DMU_DIRECTIO) == 0))
622 		zfs_racct_write(dn->dn_objset->os_spa, length, nblks, flags);
623 
624 	if (zs)
625 		dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE);
626 	rw_exit(&dn->dn_struct_rwlock);
627 
628 	if (read) {
629 		/* wait for async read i/o */
630 		err = zio_wait(zio);
631 		if (err) {
632 			dmu_buf_rele_array(dbp, nblks, tag);
633 			return (err);
634 		}
635 
636 		/* wait for other io to complete */
637 		for (i = 0; i < nblks; i++) {
638 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
639 			mutex_enter(&db->db_mtx);
640 			while (db->db_state == DB_READ ||
641 			    db->db_state == DB_FILL)
642 				cv_wait(&db->db_changed, &db->db_mtx);
643 			if (db->db_state == DB_UNCACHED)
644 				err = SET_ERROR(EIO);
645 			mutex_exit(&db->db_mtx);
646 			if (err) {
647 				dmu_buf_rele_array(dbp, nblks, tag);
648 				return (err);
649 			}
650 		}
651 	}
652 
653 	*numbufsp = nblks;
654 	*dbpp = dbp;
655 	return (0);
656 }
657 
658 int
dmu_buf_hold_array(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,int read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)659 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
660     uint64_t length, int read, const void *tag, int *numbufsp,
661     dmu_buf_t ***dbpp)
662 {
663 	dnode_t *dn;
664 	int err;
665 
666 	err = dnode_hold(os, object, FTAG, &dn);
667 	if (err)
668 		return (err);
669 
670 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
671 	    numbufsp, dbpp, DMU_READ_PREFETCH);
672 
673 	dnode_rele(dn, FTAG);
674 
675 	return (err);
676 }
677 
678 int
dmu_buf_hold_array_by_bonus(dmu_buf_t * db_fake,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)679 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
680     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
681     dmu_buf_t ***dbpp)
682 {
683 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
684 	int err;
685 
686 	DB_DNODE_ENTER(db);
687 	err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
688 	    tag, numbufsp, dbpp, DMU_READ_PREFETCH);
689 	DB_DNODE_EXIT(db);
690 
691 	return (err);
692 }
693 
694 void
dmu_buf_rele_array(dmu_buf_t ** dbp_fake,int numbufs,const void * tag)695 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
696 {
697 	int i;
698 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
699 
700 	if (numbufs == 0)
701 		return;
702 
703 	for (i = 0; i < numbufs; i++) {
704 		if (dbp[i])
705 			dbuf_rele(dbp[i], tag);
706 	}
707 
708 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
709 }
710 
711 /*
712  * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
713  * indirect blocks prefetched will be those that point to the blocks containing
714  * the data starting at offset, and continuing to offset + len.  If the range
715  * is too long, prefetch the first dmu_prefetch_max bytes as requested, while
716  * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
717  * should primarily help random reads, since for long sequential reads there is
718  * a speculative prefetcher.
719  *
720  * Note that if the indirect blocks above the blocks being prefetched are not
721  * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
722  * is currently synchronous.
723  */
724 void
dmu_prefetch(objset_t * os,uint64_t object,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)725 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
726     uint64_t len, zio_priority_t pri)
727 {
728 	dnode_t *dn;
729 
730 	if (dmu_prefetch_max == 0 || len == 0) {
731 		dmu_prefetch_dnode(os, object, pri);
732 		return;
733 	}
734 
735 	if (dnode_hold(os, object, FTAG, &dn) != 0)
736 		return;
737 
738 	dmu_prefetch_by_dnode(dn, level, offset, len, pri);
739 
740 	dnode_rele(dn, FTAG);
741 }
742 
743 void
dmu_prefetch_by_dnode(dnode_t * dn,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)744 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
745     uint64_t len, zio_priority_t pri)
746 {
747 	int64_t level2 = level;
748 	uint64_t start, end, start2, end2;
749 
750 	/*
751 	 * Depending on len we may do two prefetches: blocks [start, end) at
752 	 * level, and following blocks [start2, end2) at higher level2.
753 	 */
754 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
755 	if (dn->dn_datablkshift != 0) {
756 		/*
757 		 * The object has multiple blocks.  Calculate the full range
758 		 * of blocks [start, end2) and then split it into two parts,
759 		 * so that the first [start, end) fits into dmu_prefetch_max.
760 		 */
761 		start = dbuf_whichblock(dn, level, offset);
762 		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
763 		uint8_t ibs = dn->dn_indblkshift;
764 		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
765 		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
766 		start2 = end = MIN(end2, start + limit);
767 
768 		/*
769 		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
770 		 */
771 		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
772 		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
773 		do {
774 			level2++;
775 			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
776 			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
777 		} while (end2 - start2 > limit);
778 	} else {
779 		/* There is only one block.  Prefetch it or nothing. */
780 		start = start2 = end2 = 0;
781 		end = start + (level == 0 && offset < dn->dn_datablksz);
782 	}
783 
784 	for (uint64_t i = start; i < end; i++)
785 		dbuf_prefetch(dn, level, i, pri, 0);
786 	for (uint64_t i = start2; i < end2; i++)
787 		dbuf_prefetch(dn, level2, i, pri, 0);
788 	rw_exit(&dn->dn_struct_rwlock);
789 }
790 
791 typedef struct {
792 	kmutex_t	dpa_lock;
793 	kcondvar_t	dpa_cv;
794 	uint64_t	dpa_pending_io;
795 } dmu_prefetch_arg_t;
796 
797 static void
dmu_prefetch_done(void * arg,uint64_t level,uint64_t blkid,boolean_t issued)798 dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
799 {
800 	(void) level; (void) blkid; (void)issued;
801 	dmu_prefetch_arg_t *dpa = arg;
802 
803 	ASSERT0(level);
804 
805 	mutex_enter(&dpa->dpa_lock);
806 	ASSERT3U(dpa->dpa_pending_io, >, 0);
807 	if (--dpa->dpa_pending_io == 0)
808 		cv_broadcast(&dpa->dpa_cv);
809 	mutex_exit(&dpa->dpa_lock);
810 }
811 
812 static void
dmu_prefetch_wait_by_dnode(dnode_t * dn,uint64_t offset,uint64_t len)813 dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
814 {
815 	dmu_prefetch_arg_t dpa;
816 
817 	mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
818 	cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);
819 
820 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
821 
822 	uint64_t start = dbuf_whichblock(dn, 0, offset);
823 	uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
824 	dpa.dpa_pending_io = end - start;
825 
826 	for (uint64_t blk = start; blk < end; blk++) {
827 		(void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
828 		    0, dmu_prefetch_done, &dpa);
829 	}
830 
831 	rw_exit(&dn->dn_struct_rwlock);
832 
833 	/* wait for prefetch L0 reads to finish */
834 	mutex_enter(&dpa.dpa_lock);
835 	while (dpa.dpa_pending_io > 0) {
836 		cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);
837 
838 	}
839 	mutex_exit(&dpa.dpa_lock);
840 
841 	mutex_destroy(&dpa.dpa_lock);
842 	cv_destroy(&dpa.dpa_cv);
843 }
844 
845 /*
846  * Issue prefetch I/Os for the given L0 block range and wait for the I/O
847  * to complete. This does not enforce dmu_prefetch_max and will prefetch
848  * the entire range. The blocks are read from disk into the ARC but no
849  * decompression occurs (i.e., the dbuf cache is not required).
850  */
851 int
dmu_prefetch_wait(objset_t * os,uint64_t object,uint64_t offset,uint64_t size)852 dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
853 {
854 	dnode_t *dn;
855 	int err = 0;
856 
857 	err = dnode_hold(os, object, FTAG, &dn);
858 	if (err != 0)
859 		return (err);
860 
861 	/*
862 	 * Chunk the requests (16 indirects worth) so that we can be interrupted
863 	 */
864 	uint64_t chunksize;
865 	if (dn->dn_indblkshift) {
866 		uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
867 		chunksize = (nbps * 16) << dn->dn_datablkshift;
868 	} else {
869 		chunksize = dn->dn_datablksz;
870 	}
871 
872 	while (size > 0) {
873 		uint64_t mylen = MIN(size, chunksize);
874 
875 		dmu_prefetch_wait_by_dnode(dn, offset, mylen);
876 
877 		offset += mylen;
878 		size -= mylen;
879 
880 		if (issig()) {
881 			err = SET_ERROR(EINTR);
882 			break;
883 		}
884 	}
885 
886 	dnode_rele(dn, FTAG);
887 
888 	return (err);
889 }
890 
891 /*
892  * Issue prefetch I/Os for the given object's dnode.
893  */
894 void
dmu_prefetch_dnode(objset_t * os,uint64_t object,zio_priority_t pri)895 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
896 {
897 	if (object == 0 || object >= DN_MAX_OBJECT)
898 		return;
899 
900 	dnode_t *dn = DMU_META_DNODE(os);
901 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
902 	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
903 	dbuf_prefetch(dn, 0, blkid, pri, 0);
904 	rw_exit(&dn->dn_struct_rwlock);
905 }
906 
907 /*
908  * Get the next "chunk" of file data to free.  We traverse the file from
909  * the end so that the file gets shorter over time (if we crash in the
910  * middle, this will leave us in a better state).  We find allocated file
911  * data by simply searching the allocated level 1 indirects.
912  *
913  * On input, *start should be the first offset that does not need to be
914  * freed (e.g. "offset + length").  On return, *start will be the first
915  * offset that should be freed and l1blks is set to the number of level 1
916  * indirect blocks found within the chunk.
917  */
918 static int
get_next_chunk(dnode_t * dn,uint64_t * start,uint64_t minimum,uint64_t * l1blks)919 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
920 {
921 	uint64_t blks;
922 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
923 	/* bytes of data covered by a level-1 indirect block */
924 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
925 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
926 
927 	ASSERT3U(minimum, <=, *start);
928 
929 	/* dn_nlevels == 1 means we don't have any L1 blocks */
930 	if (dn->dn_nlevels <= 1) {
931 		*l1blks = 0;
932 		*start = minimum;
933 		return (0);
934 	}
935 
936 	/*
937 	 * Check if we can free the entire range assuming that all of the
938 	 * L1 blocks in this range have data. If we can, we use this
939 	 * worst case value as an estimate so we can avoid having to look
940 	 * at the object's actual data.
941 	 */
942 	uint64_t total_l1blks =
943 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
944 	    iblkrange;
945 	if (total_l1blks <= maxblks) {
946 		*l1blks = total_l1blks;
947 		*start = minimum;
948 		return (0);
949 	}
950 	ASSERT(ISP2(iblkrange));
951 
952 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
953 		int err;
954 
955 		/*
956 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
957 		 * indirect block at or before the input offset.  We must
958 		 * decrement *start so that it is at the end of the region
959 		 * to search.
960 		 */
961 		(*start)--;
962 
963 		err = dnode_next_offset(dn,
964 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
965 
966 		/* if there are no indirect blocks before start, we are done */
967 		if (err == ESRCH) {
968 			*start = minimum;
969 			break;
970 		} else if (err != 0) {
971 			*l1blks = blks;
972 			return (err);
973 		}
974 
975 		/* set start to the beginning of this L1 indirect */
976 		*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
977 	}
978 	if (*start < minimum)
979 		*start = minimum;
980 	*l1blks = blks;
981 
982 	return (0);
983 }
984 
985 /*
986  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
987  * otherwise return false.
988  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
989  */
990 static boolean_t
dmu_objset_zfs_unmounting(objset_t * os)991 dmu_objset_zfs_unmounting(objset_t *os)
992 {
993 #ifdef _KERNEL
994 	if (dmu_objset_type(os) == DMU_OST_ZFS)
995 		return (zfs_get_vfs_flag_unmounted(os));
996 #else
997 	(void) os;
998 #endif
999 	return (B_FALSE);
1000 }
1001 
1002 static int
dmu_free_long_range_impl(objset_t * os,dnode_t * dn,uint64_t offset,uint64_t length)1003 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
1004     uint64_t length)
1005 {
1006 	uint64_t object_size;
1007 	int err;
1008 	uint64_t dirty_frees_threshold;
1009 	dsl_pool_t *dp = dmu_objset_pool(os);
1010 
1011 	if (dn == NULL)
1012 		return (SET_ERROR(EINVAL));
1013 
1014 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1015 	if (offset >= object_size)
1016 		return (0);
1017 
1018 	if (zfs_per_txg_dirty_frees_percent <= 100)
1019 		dirty_frees_threshold =
1020 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
1021 	else
1022 		dirty_frees_threshold = zfs_dirty_data_max / 20;
1023 
1024 	if (length == DMU_OBJECT_END || offset + length > object_size)
1025 		length = object_size - offset;
1026 
1027 	while (length != 0) {
1028 		uint64_t chunk_end, chunk_begin, chunk_len;
1029 		uint64_t l1blks;
1030 		dmu_tx_t *tx;
1031 
1032 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
1033 			return (SET_ERROR(EINTR));
1034 
1035 		chunk_end = chunk_begin = offset + length;
1036 
1037 		/* move chunk_begin backwards to the beginning of this chunk */
1038 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
1039 		if (err)
1040 			return (err);
1041 		ASSERT3U(chunk_begin, >=, offset);
1042 		ASSERT3U(chunk_begin, <=, chunk_end);
1043 
1044 		chunk_len = chunk_end - chunk_begin;
1045 
1046 		tx = dmu_tx_create(os);
1047 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
1048 
1049 		/*
1050 		 * Mark this transaction as typically resulting in a net
1051 		 * reduction in space used.
1052 		 */
1053 		dmu_tx_mark_netfree(tx);
1054 		err = dmu_tx_assign(tx, DMU_TX_WAIT);
1055 		if (err) {
1056 			dmu_tx_abort(tx);
1057 			return (err);
1058 		}
1059 
1060 		uint64_t txg = dmu_tx_get_txg(tx);
1061 
1062 		mutex_enter(&dp->dp_lock);
1063 		uint64_t long_free_dirty =
1064 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
1065 		mutex_exit(&dp->dp_lock);
1066 
1067 		/*
1068 		 * To avoid filling up a TXG with just frees, wait for
1069 		 * the next TXG to open before freeing more chunks if
1070 		 * we have reached the threshold of frees.
1071 		 */
1072 		if (dirty_frees_threshold != 0 &&
1073 		    long_free_dirty >= dirty_frees_threshold) {
1074 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
1075 			dmu_tx_commit(tx);
1076 			txg_wait_open(dp, 0, B_TRUE);
1077 			continue;
1078 		}
1079 
1080 		/*
1081 		 * In order to prevent unnecessary write throttling, for each
1082 		 * TXG, we track the cumulative size of L1 blocks being dirtied
1083 		 * in dnode_free_range() below. We compare this number to a
1084 		 * tunable threshold, past which we prevent new L1 dirty freeing
1085 		 * blocks from being added into the open TXG. See
1086 		 * dmu_free_long_range_impl() for details. The threshold
1087 		 * prevents write throttle activation due to dirty freeing L1
1088 		 * blocks taking up a large percentage of zfs_dirty_data_max.
1089 		 */
1090 		mutex_enter(&dp->dp_lock);
1091 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
1092 		    l1blks << dn->dn_indblkshift;
1093 		mutex_exit(&dp->dp_lock);
1094 		DTRACE_PROBE3(free__long__range,
1095 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
1096 		    uint64_t, txg);
1097 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
1098 
1099 		dmu_tx_commit(tx);
1100 
1101 		length -= chunk_len;
1102 	}
1103 	return (0);
1104 }
1105 
1106 int
dmu_free_long_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t length)1107 dmu_free_long_range(objset_t *os, uint64_t object,
1108     uint64_t offset, uint64_t length)
1109 {
1110 	dnode_t *dn;
1111 	int err;
1112 
1113 	err = dnode_hold(os, object, FTAG, &dn);
1114 	if (err != 0)
1115 		return (err);
1116 	err = dmu_free_long_range_impl(os, dn, offset, length);
1117 
1118 	/*
1119 	 * It is important to zero out the maxblkid when freeing the entire
1120 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1121 	 * will take the fast path, and (b) dnode_reallocate() can verify
1122 	 * that the entire file has been freed.
1123 	 */
1124 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1125 		dn->dn_maxblkid = 0;
1126 
1127 	dnode_rele(dn, FTAG);
1128 	return (err);
1129 }
1130 
1131 int
dmu_free_long_object(objset_t * os,uint64_t object)1132 dmu_free_long_object(objset_t *os, uint64_t object)
1133 {
1134 	dmu_tx_t *tx;
1135 	int err;
1136 
1137 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1138 	if (err != 0)
1139 		return (err);
1140 
1141 	tx = dmu_tx_create(os);
1142 	dmu_tx_hold_bonus(tx, object);
1143 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1144 	dmu_tx_mark_netfree(tx);
1145 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
1146 	if (err == 0) {
1147 		err = dmu_object_free(os, object, tx);
1148 		dmu_tx_commit(tx);
1149 	} else {
1150 		dmu_tx_abort(tx);
1151 	}
1152 
1153 	return (err);
1154 }
1155 
1156 int
dmu_free_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1157 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1158     uint64_t size, dmu_tx_t *tx)
1159 {
1160 	dnode_t *dn;
1161 	int err = dnode_hold(os, object, FTAG, &dn);
1162 	if (err)
1163 		return (err);
1164 	ASSERT(offset < UINT64_MAX);
1165 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1166 	dnode_free_range(dn, offset, size, tx);
1167 	dnode_rele(dn, FTAG);
1168 	return (0);
1169 }
1170 
1171 static int
dmu_read_impl(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1172 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1173     void *buf, uint32_t flags)
1174 {
1175 	dmu_buf_t **dbp;
1176 	int numbufs, err = 0;
1177 
1178 	/*
1179 	 * Deal with odd block sizes, where there can't be data past the first
1180 	 * block. If we ever do the tail block optimization, we will need to
1181 	 * handle that here as well.
1182 	 */
1183 	if (dn->dn_maxblkid == 0) {
1184 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1185 		    MIN(size, dn->dn_datablksz - offset);
1186 		memset((char *)buf + newsz, 0, size - newsz);
1187 		size = newsz;
1188 	}
1189 
1190 	if (size == 0)
1191 		return (0);
1192 
1193 	/* Allow Direct I/O when requested and properly aligned */
1194 	if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned(buf) &&
1195 	    zfs_dio_aligned(offset, size, PAGESIZE)) {
1196 		abd_t *data = abd_get_from_buf(buf, size);
1197 		err = dmu_read_abd(dn, offset, size, data, flags);
1198 		abd_free(data);
1199 		return (err);
1200 	}
1201 
1202 	while (size > 0) {
1203 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1204 		int i;
1205 
1206 		/*
1207 		 * NB: we could do this block-at-a-time, but it's nice
1208 		 * to be reading in parallel.
1209 		 */
1210 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1211 		    TRUE, FTAG, &numbufs, &dbp, flags);
1212 		if (err)
1213 			break;
1214 
1215 		for (i = 0; i < numbufs; i++) {
1216 			uint64_t tocpy;
1217 			int64_t bufoff;
1218 			dmu_buf_t *db = dbp[i];
1219 
1220 			ASSERT(size > 0);
1221 
1222 			bufoff = offset - db->db_offset;
1223 			tocpy = MIN(db->db_size - bufoff, size);
1224 
1225 			ASSERT(db->db_data != NULL);
1226 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1227 
1228 			offset += tocpy;
1229 			size -= tocpy;
1230 			buf = (char *)buf + tocpy;
1231 		}
1232 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1233 	}
1234 	return (err);
1235 }
1236 
1237 int
dmu_read(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1238 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1239     void *buf, uint32_t flags)
1240 {
1241 	dnode_t *dn;
1242 	int err;
1243 
1244 	err = dnode_hold(os, object, FTAG, &dn);
1245 	if (err != 0)
1246 		return (err);
1247 
1248 	err = dmu_read_impl(dn, offset, size, buf, flags);
1249 	dnode_rele(dn, FTAG);
1250 	return (err);
1251 }
1252 
1253 int
dmu_read_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1254 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1255     uint32_t flags)
1256 {
1257 	return (dmu_read_impl(dn, offset, size, buf, flags));
1258 }
1259 
1260 static void
dmu_write_impl(dmu_buf_t ** dbp,int numbufs,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1261 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1262     const void *buf, dmu_tx_t *tx)
1263 {
1264 	int i;
1265 
1266 	for (i = 0; i < numbufs; i++) {
1267 		uint64_t tocpy;
1268 		int64_t bufoff;
1269 		dmu_buf_t *db = dbp[i];
1270 
1271 		ASSERT(size > 0);
1272 
1273 		bufoff = offset - db->db_offset;
1274 		tocpy = MIN(db->db_size - bufoff, size);
1275 
1276 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1277 
1278 		if (tocpy == db->db_size)
1279 			dmu_buf_will_fill(db, tx, B_FALSE);
1280 		else
1281 			dmu_buf_will_dirty(db, tx);
1282 
1283 		ASSERT(db->db_data != NULL);
1284 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1285 
1286 		if (tocpy == db->db_size)
1287 			dmu_buf_fill_done(db, tx, B_FALSE);
1288 
1289 		offset += tocpy;
1290 		size -= tocpy;
1291 		buf = (char *)buf + tocpy;
1292 	}
1293 }
1294 
1295 void
dmu_write(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1296 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1297     const void *buf, dmu_tx_t *tx)
1298 {
1299 	dmu_buf_t **dbp;
1300 	int numbufs;
1301 
1302 	if (size == 0)
1303 		return;
1304 
1305 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1306 	    FALSE, FTAG, &numbufs, &dbp));
1307 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1308 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1309 }
1310 
1311 /*
1312  * This interface is not used internally by ZFS but is provided for
1313  * use by Lustre which is built on the DMU interfaces.
1314  */
1315 int
dmu_write_by_dnode_flags(dnode_t * dn,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx,uint32_t flags)1316 dmu_write_by_dnode_flags(dnode_t *dn, uint64_t offset, uint64_t size,
1317     const void *buf, dmu_tx_t *tx, uint32_t flags)
1318 {
1319 	dmu_buf_t **dbp;
1320 	int numbufs;
1321 	int error;
1322 
1323 	if (size == 0)
1324 		return (0);
1325 
1326 	/* Allow Direct I/O when requested and properly aligned */
1327 	if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned((void *)buf) &&
1328 	    zfs_dio_aligned(offset, size, dn->dn_datablksz)) {
1329 		abd_t *data = abd_get_from_buf((void *)buf, size);
1330 		error = dmu_write_abd(dn, offset, size, data, DMU_DIRECTIO, tx);
1331 		abd_free(data);
1332 		return (error);
1333 	}
1334 
1335 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1336 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1337 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1338 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1339 	return (0);
1340 }
1341 
1342 int
dmu_write_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1343 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1344     const void *buf, dmu_tx_t *tx)
1345 {
1346 	return (dmu_write_by_dnode_flags(dn, offset, size, buf, tx, 0));
1347 }
1348 
1349 void
dmu_prealloc(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1350 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1351     dmu_tx_t *tx)
1352 {
1353 	dmu_buf_t **dbp;
1354 	int numbufs, i;
1355 
1356 	if (size == 0)
1357 		return;
1358 
1359 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1360 	    FALSE, FTAG, &numbufs, &dbp));
1361 
1362 	for (i = 0; i < numbufs; i++) {
1363 		dmu_buf_t *db = dbp[i];
1364 
1365 		dmu_buf_will_not_fill(db, tx);
1366 	}
1367 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1368 }
1369 
1370 void
dmu_write_embedded(objset_t * os,uint64_t object,uint64_t offset,void * data,uint8_t etype,uint8_t comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1371 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1372     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1373     int compressed_size, int byteorder, dmu_tx_t *tx)
1374 {
1375 	dmu_buf_t *db;
1376 
1377 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1378 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1379 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1380 	    FTAG, &db));
1381 
1382 	dmu_buf_write_embedded(db,
1383 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1384 	    uncompressed_size, compressed_size, byteorder, tx);
1385 
1386 	dmu_buf_rele(db, FTAG);
1387 }
1388 
1389 void
dmu_redact(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1390 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1391     dmu_tx_t *tx)
1392 {
1393 	int numbufs, i;
1394 	dmu_buf_t **dbp;
1395 
1396 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1397 	    &numbufs, &dbp));
1398 	for (i = 0; i < numbufs; i++)
1399 		dmu_buf_redact(dbp[i], tx);
1400 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1401 }
1402 
1403 #ifdef _KERNEL
1404 int
dmu_read_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size)1405 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1406 {
1407 	dmu_buf_t **dbp;
1408 	int numbufs, i, err;
1409 
1410 	if (uio->uio_extflg & UIO_DIRECT)
1411 		return (dmu_read_uio_direct(dn, uio, size));
1412 
1413 	/*
1414 	 * NB: we could do this block-at-a-time, but it's nice
1415 	 * to be reading in parallel.
1416 	 */
1417 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1418 	    TRUE, FTAG, &numbufs, &dbp, 0);
1419 	if (err)
1420 		return (err);
1421 
1422 	for (i = 0; i < numbufs; i++) {
1423 		uint64_t tocpy;
1424 		int64_t bufoff;
1425 		dmu_buf_t *db = dbp[i];
1426 
1427 		ASSERT(size > 0);
1428 
1429 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1430 		tocpy = MIN(db->db_size - bufoff, size);
1431 
1432 		ASSERT(db->db_data != NULL);
1433 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1434 		    UIO_READ, uio);
1435 
1436 		if (err)
1437 			break;
1438 
1439 		size -= tocpy;
1440 	}
1441 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1442 
1443 	return (err);
1444 }
1445 
1446 /*
1447  * Read 'size' bytes into the uio buffer.
1448  * From object zdb->db_object.
1449  * Starting at zfs_uio_offset(uio).
1450  *
1451  * If the caller already has a dbuf in the target object
1452  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1453  * because we don't have to find the dnode_t for the object.
1454  */
1455 int
dmu_read_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size)1456 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1457 {
1458 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1459 	int err;
1460 
1461 	if (size == 0)
1462 		return (0);
1463 
1464 	DB_DNODE_ENTER(db);
1465 	err = dmu_read_uio_dnode(DB_DNODE(db), uio, size);
1466 	DB_DNODE_EXIT(db);
1467 
1468 	return (err);
1469 }
1470 
1471 /*
1472  * Read 'size' bytes into the uio buffer.
1473  * From the specified object
1474  * Starting at offset zfs_uio_offset(uio).
1475  */
1476 int
dmu_read_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size)1477 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1478 {
1479 	dnode_t *dn;
1480 	int err;
1481 
1482 	if (size == 0)
1483 		return (0);
1484 
1485 	err = dnode_hold(os, object, FTAG, &dn);
1486 	if (err)
1487 		return (err);
1488 
1489 	err = dmu_read_uio_dnode(dn, uio, size);
1490 
1491 	dnode_rele(dn, FTAG);
1492 
1493 	return (err);
1494 }
1495 
1496 int
dmu_write_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx)1497 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1498 {
1499 	dmu_buf_t **dbp;
1500 	int numbufs;
1501 	int err = 0;
1502 	uint64_t write_size;
1503 
1504 top:
1505 	write_size = size;
1506 
1507 	/*
1508 	 * We only allow Direct I/O writes to happen if we are block
1509 	 * sized aligned. Otherwise, we pass the write off to the ARC.
1510 	 */
1511 	if ((uio->uio_extflg & UIO_DIRECT) &&
1512 	    (write_size >= dn->dn_datablksz)) {
1513 		if (zfs_dio_aligned(zfs_uio_offset(uio), write_size,
1514 		    dn->dn_datablksz)) {
1515 			return (dmu_write_uio_direct(dn, uio, size, tx));
1516 		} else if (write_size > dn->dn_datablksz &&
1517 		    zfs_dio_offset_aligned(zfs_uio_offset(uio),
1518 		    dn->dn_datablksz)) {
1519 			write_size =
1520 			    dn->dn_datablksz * (write_size / dn->dn_datablksz);
1521 			err = dmu_write_uio_direct(dn, uio, write_size, tx);
1522 			if (err == 0) {
1523 				size -= write_size;
1524 				goto top;
1525 			} else {
1526 				return (err);
1527 			}
1528 		} else {
1529 			write_size =
1530 			    P2PHASE(zfs_uio_offset(uio), dn->dn_datablksz);
1531 		}
1532 	}
1533 
1534 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), write_size,
1535 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1536 	if (err)
1537 		return (err);
1538 
1539 	for (int i = 0; i < numbufs; i++) {
1540 		uint64_t tocpy;
1541 		int64_t bufoff;
1542 		dmu_buf_t *db = dbp[i];
1543 
1544 		ASSERT(write_size > 0);
1545 
1546 		offset_t off = zfs_uio_offset(uio);
1547 		bufoff = off - db->db_offset;
1548 		tocpy = MIN(db->db_size - bufoff, write_size);
1549 
1550 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1551 
1552 		if (tocpy == db->db_size)
1553 			dmu_buf_will_fill(db, tx, B_TRUE);
1554 		else
1555 			dmu_buf_will_dirty(db, tx);
1556 
1557 		ASSERT(db->db_data != NULL);
1558 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1559 		    tocpy, UIO_WRITE, uio);
1560 
1561 		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1562 			/* The fill was reverted.  Undo any uio progress. */
1563 			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1564 		}
1565 
1566 		if (err)
1567 			break;
1568 
1569 		write_size -= tocpy;
1570 		size -= tocpy;
1571 	}
1572 
1573 	IMPLY(err == 0, write_size == 0);
1574 
1575 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1576 
1577 	if ((uio->uio_extflg & UIO_DIRECT) && size > 0) {
1578 		goto top;
1579 	}
1580 
1581 	return (err);
1582 }
1583 
1584 /*
1585  * Write 'size' bytes from the uio buffer.
1586  * To object zdb->db_object.
1587  * Starting at offset zfs_uio_offset(uio).
1588  *
1589  * If the caller already has a dbuf in the target object
1590  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1591  * because we don't have to find the dnode_t for the object.
1592  */
1593 int
dmu_write_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx)1594 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1595     dmu_tx_t *tx)
1596 {
1597 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1598 	int err;
1599 
1600 	if (size == 0)
1601 		return (0);
1602 
1603 	DB_DNODE_ENTER(db);
1604 	err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx);
1605 	DB_DNODE_EXIT(db);
1606 
1607 	return (err);
1608 }
1609 
1610 /*
1611  * Write 'size' bytes from the uio buffer.
1612  * To the specified object.
1613  * Starting at offset zfs_uio_offset(uio).
1614  */
1615 int
dmu_write_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx)1616 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1617     dmu_tx_t *tx)
1618 {
1619 	dnode_t *dn;
1620 	int err;
1621 
1622 	if (size == 0)
1623 		return (0);
1624 
1625 	err = dnode_hold(os, object, FTAG, &dn);
1626 	if (err)
1627 		return (err);
1628 
1629 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1630 
1631 	dnode_rele(dn, FTAG);
1632 
1633 	return (err);
1634 }
1635 #endif /* _KERNEL */
1636 
1637 static void
dmu_cached_bps(spa_t * spa,blkptr_t * bps,uint_t nbps,uint64_t * l1sz,uint64_t * l2sz)1638 dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
1639     uint64_t *l1sz, uint64_t *l2sz)
1640 {
1641 	int cached_flags;
1642 
1643 	if (bps == NULL)
1644 		return;
1645 
1646 	for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
1647 		blkptr_t *bp = &bps[blk_off];
1648 
1649 		if (BP_IS_HOLE(bp))
1650 			continue;
1651 
1652 		cached_flags = arc_cached(spa, bp);
1653 		if (cached_flags == 0)
1654 			continue;
1655 
1656 		if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
1657 		    ARC_CACHED_IN_L2)
1658 			*l2sz += BP_GET_LSIZE(bp);
1659 		else
1660 			*l1sz += BP_GET_LSIZE(bp);
1661 	}
1662 }
1663 
1664 /*
1665  * Estimate DMU object cached size.
1666  */
1667 int
dmu_object_cached_size(objset_t * os,uint64_t object,uint64_t * l1sz,uint64_t * l2sz)1668 dmu_object_cached_size(objset_t *os, uint64_t object,
1669     uint64_t *l1sz, uint64_t *l2sz)
1670 {
1671 	dnode_t *dn;
1672 	dmu_object_info_t doi;
1673 	int err = 0;
1674 
1675 	*l1sz = *l2sz = 0;
1676 
1677 	if (dnode_hold(os, object, FTAG, &dn) != 0)
1678 		return (0);
1679 
1680 	if (dn->dn_nlevels < 2) {
1681 		dnode_rele(dn, FTAG);
1682 		return (0);
1683 	}
1684 
1685 	dmu_object_info_from_dnode(dn, &doi);
1686 
1687 	for (uint64_t off = 0; off < doi.doi_max_offset;
1688 	    off += dmu_prefetch_max) {
1689 		/* dbuf_read doesn't prefetch L1 blocks. */
1690 		dmu_prefetch_by_dnode(dn, 1, off,
1691 		    dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
1692 	}
1693 
1694 	/*
1695 	 * Hold all valid L1 blocks, asking ARC the status of each BP
1696 	 * contained in each such L1 block.
1697 	 */
1698 	uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
1699 	uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);
1700 
1701 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1702 	for (uint64_t blk = 0; blk < l1blks; blk++) {
1703 		dmu_buf_impl_t *db = NULL;
1704 
1705 		if (issig()) {
1706 			/*
1707 			 * On interrupt, get out, and bubble up EINTR
1708 			 */
1709 			err = EINTR;
1710 			break;
1711 		}
1712 
1713 		/*
1714 		 * If we get an i/o error here, the L1 can't be read,
1715 		 * and nothing under it could be cached, so we just
1716 		 * continue. Ignoring the error from dbuf_hold_impl
1717 		 * or from dbuf_read is then a reasonable choice.
1718 		 */
1719 		err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
1720 		if (err != 0) {
1721 			/*
1722 			 * ignore error and continue
1723 			 */
1724 			err = 0;
1725 			continue;
1726 		}
1727 
1728 		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1729 		if (err == 0) {
1730 			dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
1731 			    nbps, l1sz, l2sz);
1732 		}
1733 		/*
1734 		 * error may be ignored, and we continue
1735 		 */
1736 		err = 0;
1737 		dbuf_rele(db, FTAG);
1738 	}
1739 	rw_exit(&dn->dn_struct_rwlock);
1740 
1741 	dnode_rele(dn, FTAG);
1742 	return (err);
1743 }
1744 
1745 /*
1746  * Allocate a loaned anonymous arc buffer.
1747  */
1748 arc_buf_t *
dmu_request_arcbuf(dmu_buf_t * handle,int size)1749 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1750 {
1751 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1752 
1753 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1754 }
1755 
1756 /*
1757  * Free a loaned arc buffer.
1758  */
1759 void
dmu_return_arcbuf(arc_buf_t * buf)1760 dmu_return_arcbuf(arc_buf_t *buf)
1761 {
1762 	arc_return_buf(buf, FTAG);
1763 	arc_buf_destroy(buf, FTAG);
1764 }
1765 
1766 /*
1767  * A "lightweight" write is faster than a regular write (e.g.
1768  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1769  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1770  * data can not be read or overwritten until the transaction's txg has been
1771  * synced.  This makes it appropriate for workloads that are known to be
1772  * (temporarily) write-only, like "zfs receive".
1773  *
1774  * A single block is written, starting at the specified offset in bytes.  If
1775  * the call is successful, it returns 0 and the provided abd has been
1776  * consumed (the caller should not free it).
1777  */
1778 int
dmu_lightweight_write_by_dnode(dnode_t * dn,uint64_t offset,abd_t * abd,const zio_prop_t * zp,zio_flag_t flags,dmu_tx_t * tx)1779 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1780     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1781 {
1782 	dbuf_dirty_record_t *dr =
1783 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1784 	if (dr == NULL)
1785 		return (SET_ERROR(EIO));
1786 	dr->dt.dll.dr_abd = abd;
1787 	dr->dt.dll.dr_props = *zp;
1788 	dr->dt.dll.dr_flags = flags;
1789 	return (0);
1790 }
1791 
1792 /*
1793  * When possible directly assign passed loaned arc buffer to a dbuf.
1794  * If this is not possible copy the contents of passed arc buf via
1795  * dmu_write().
1796  */
1797 int
dmu_assign_arcbuf_by_dnode(dnode_t * dn,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)1798 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1799     dmu_tx_t *tx)
1800 {
1801 	dmu_buf_impl_t *db;
1802 	objset_t *os = dn->dn_objset;
1803 	uint64_t object = dn->dn_object;
1804 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1805 	uint64_t blkid;
1806 
1807 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1808 	blkid = dbuf_whichblock(dn, 0, offset);
1809 	db = dbuf_hold(dn, blkid, FTAG);
1810 	rw_exit(&dn->dn_struct_rwlock);
1811 	if (db == NULL)
1812 		return (SET_ERROR(EIO));
1813 
1814 	/*
1815 	 * We can only assign if the offset is aligned and the arc buf is the
1816 	 * same size as the dbuf.
1817 	 */
1818 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1819 		zfs_racct_write(os->os_spa, blksz, 1, 0);
1820 		dbuf_assign_arcbuf(db, buf, tx);
1821 		dbuf_rele(db, FTAG);
1822 	} else {
1823 		/* compressed bufs must always be assignable to their dbuf */
1824 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1825 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1826 
1827 		dbuf_rele(db, FTAG);
1828 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1829 		dmu_return_arcbuf(buf);
1830 	}
1831 
1832 	return (0);
1833 }
1834 
1835 int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t * handle,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)1836 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1837     dmu_tx_t *tx)
1838 {
1839 	int err;
1840 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1841 
1842 	DB_DNODE_ENTER(db);
1843 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx);
1844 	DB_DNODE_EXIT(db);
1845 
1846 	return (err);
1847 }
1848 
1849 void
dmu_sync_ready(zio_t * zio,arc_buf_t * buf,void * varg)1850 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1851 {
1852 	(void) buf;
1853 	dmu_sync_arg_t *dsa = varg;
1854 
1855 	if (zio->io_error == 0) {
1856 		dbuf_dirty_record_t *dr = dsa->dsa_dr;
1857 		blkptr_t *bp = zio->io_bp;
1858 
1859 		if (BP_IS_HOLE(bp)) {
1860 			dmu_buf_t *db = NULL;
1861 			if (dr)
1862 				db = &(dr->dr_dbuf->db);
1863 			else
1864 				db = dsa->dsa_zgd->zgd_db;
1865 			/*
1866 			 * A block of zeros may compress to a hole, but the
1867 			 * block size still needs to be known for replay.
1868 			 */
1869 			BP_SET_LSIZE(bp, db->db_size);
1870 		} else if (!BP_IS_EMBEDDED(bp)) {
1871 			ASSERT(BP_GET_LEVEL(bp) == 0);
1872 			BP_SET_FILL(bp, 1);
1873 		}
1874 	}
1875 }
1876 
1877 static void
dmu_sync_late_arrival_ready(zio_t * zio)1878 dmu_sync_late_arrival_ready(zio_t *zio)
1879 {
1880 	dmu_sync_ready(zio, NULL, zio->io_private);
1881 }
1882 
1883 void
dmu_sync_done(zio_t * zio,arc_buf_t * buf,void * varg)1884 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1885 {
1886 	(void) buf;
1887 	dmu_sync_arg_t *dsa = varg;
1888 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1889 	dmu_buf_impl_t *db = dr->dr_dbuf;
1890 	zgd_t *zgd = dsa->dsa_zgd;
1891 
1892 	/*
1893 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1894 	 * the writes for the lwb have completed.
1895 	 */
1896 	if (zgd && zio->io_error == 0) {
1897 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1898 	}
1899 
1900 	mutex_enter(&db->db_mtx);
1901 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1902 	if (zio->io_error == 0) {
1903 		ASSERT0(dr->dt.dl.dr_has_raw_params);
1904 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1905 		if (dr->dt.dl.dr_nopwrite) {
1906 			blkptr_t *bp = zio->io_bp;
1907 			blkptr_t *bp_orig = &zio->io_bp_orig;
1908 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1909 
1910 			ASSERT(BP_EQUAL(bp, bp_orig));
1911 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1912 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1913 			VERIFY(zio_checksum_table[chksum].ci_flags &
1914 			    ZCHECKSUM_FLAG_NOPWRITE);
1915 		}
1916 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1917 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1918 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1919 		dr->dt.dl.dr_gang_copies = zio->io_prop.zp_gang_copies;
1920 
1921 		/*
1922 		 * Old style holes are filled with all zeros, whereas
1923 		 * new-style holes maintain their lsize, type, level,
1924 		 * and birth time (see zio_write_compress). While we
1925 		 * need to reset the BP_SET_LSIZE() call that happened
1926 		 * in dmu_sync_ready for old style holes, we do *not*
1927 		 * want to wipe out the information contained in new
1928 		 * style holes. Thus, only zero out the block pointer if
1929 		 * it's an old style hole.
1930 		 */
1931 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1932 		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1933 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1934 	} else {
1935 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1936 	}
1937 
1938 	cv_broadcast(&db->db_changed);
1939 	mutex_exit(&db->db_mtx);
1940 
1941 	if (dsa->dsa_done)
1942 		dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1943 
1944 	kmem_free(dsa, sizeof (*dsa));
1945 }
1946 
1947 static void
dmu_sync_late_arrival_done(zio_t * zio)1948 dmu_sync_late_arrival_done(zio_t *zio)
1949 {
1950 	blkptr_t *bp = zio->io_bp;
1951 	dmu_sync_arg_t *dsa = zio->io_private;
1952 	zgd_t *zgd = dsa->dsa_zgd;
1953 
1954 	if (zio->io_error == 0) {
1955 		/*
1956 		 * Record the vdev(s) backing this blkptr so they can be
1957 		 * flushed after the writes for the lwb have completed.
1958 		 */
1959 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1960 
1961 		if (!BP_IS_HOLE(bp)) {
1962 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1963 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1964 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1965 			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
1966 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1967 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1968 		}
1969 	}
1970 
1971 	dmu_tx_commit(dsa->dsa_tx);
1972 
1973 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1974 
1975 	abd_free(zio->io_abd);
1976 	kmem_free(dsa, sizeof (*dsa));
1977 }
1978 
1979 static int
dmu_sync_late_arrival(zio_t * pio,objset_t * os,dmu_sync_cb_t * done,zgd_t * zgd,zio_prop_t * zp,zbookmark_phys_t * zb)1980 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1981     zio_prop_t *zp, zbookmark_phys_t *zb)
1982 {
1983 	dmu_sync_arg_t *dsa;
1984 	dmu_tx_t *tx;
1985 	int error;
1986 
1987 	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1988 	    DB_RF_CANFAIL | DB_RF_NOPREFETCH);
1989 	if (error != 0)
1990 		return (error);
1991 
1992 	tx = dmu_tx_create(os);
1993 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1994 	/*
1995 	 * This transaction does not produce any dirty data or log blocks, so
1996 	 * it should not be throttled.  All other cases wait for TXG sync, by
1997 	 * which time the log block we are writing will be obsolete, so we can
1998 	 * skip waiting and just return error here instead.
1999 	 */
2000 	if (dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE) != 0) {
2001 		dmu_tx_abort(tx);
2002 		/* Make zl_get_data do txg_waited_synced() */
2003 		return (SET_ERROR(EIO));
2004 	}
2005 
2006 	/*
2007 	 * In order to prevent the zgd's lwb from being free'd prior to
2008 	 * dmu_sync_late_arrival_done() being called, we have to ensure
2009 	 * the lwb's "max txg" takes this tx's txg into account.
2010 	 */
2011 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
2012 
2013 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2014 	dsa->dsa_dr = NULL;
2015 	dsa->dsa_done = done;
2016 	dsa->dsa_zgd = zgd;
2017 	dsa->dsa_tx = tx;
2018 
2019 	/*
2020 	 * Since we are currently syncing this txg, it's nontrivial to
2021 	 * determine what BP to nopwrite against, so we disable nopwrite.
2022 	 *
2023 	 * When syncing, the db_blkptr is initially the BP of the previous
2024 	 * txg.  We can not nopwrite against it because it will be changed
2025 	 * (this is similar to the non-late-arrival case where the dbuf is
2026 	 * dirty in a future txg).
2027 	 *
2028 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
2029 	 * We can not nopwrite against it because although the BP will not
2030 	 * (typically) be changed, the data has not yet been persisted to this
2031 	 * location.
2032 	 *
2033 	 * Finally, when dbuf_write_done() is called, it is theoretically
2034 	 * possible to always nopwrite, because the data that was written in
2035 	 * this txg is the same data that we are trying to write.  However we
2036 	 * would need to check that this dbuf is not dirty in any future
2037 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
2038 	 * don't nopwrite in this case.
2039 	 */
2040 	zp->zp_nopwrite = B_FALSE;
2041 
2042 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
2043 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
2044 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
2045 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
2046 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
2047 
2048 	return (0);
2049 }
2050 
2051 /*
2052  * Intent log support: sync the block associated with db to disk.
2053  * N.B. and XXX: the caller is responsible for making sure that the
2054  * data isn't changing while dmu_sync() is writing it.
2055  *
2056  * Return values:
2057  *
2058  *	EEXIST: this txg has already been synced, so there's nothing to do.
2059  *		The caller should not log the write.
2060  *
2061  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2062  *		The caller should not log the write.
2063  *
2064  *	EALREADY: this block is already in the process of being synced.
2065  *		The caller should track its progress (somehow).
2066  *
2067  *	EIO: could not do the I/O.
2068  *		The caller should do a txg_wait_synced().
2069  *
2070  *	0: the I/O has been initiated.
2071  *		The caller should log this blkptr in the done callback.
2072  *		It is possible that the I/O will fail, in which case
2073  *		the error will be reported to the done callback and
2074  *		propagated to pio from zio_done().
2075  */
2076 int
dmu_sync(zio_t * pio,uint64_t txg,dmu_sync_cb_t * done,zgd_t * zgd)2077 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2078 {
2079 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2080 	objset_t *os = db->db_objset;
2081 	dsl_dataset_t *ds = os->os_dsl_dataset;
2082 	dbuf_dirty_record_t *dr, *dr_next;
2083 	dmu_sync_arg_t *dsa;
2084 	zbookmark_phys_t zb;
2085 	zio_prop_t zp;
2086 
2087 	ASSERT(pio != NULL);
2088 	ASSERT(txg != 0);
2089 
2090 	SET_BOOKMARK(&zb, ds->ds_object,
2091 	    db->db.db_object, db->db_level, db->db_blkid);
2092 
2093 	DB_DNODE_ENTER(db);
2094 	dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
2095 	DB_DNODE_EXIT(db);
2096 
2097 	/*
2098 	 * If we're frozen (running ziltest), we always need to generate a bp.
2099 	 */
2100 	if (txg > spa_freeze_txg(os->os_spa))
2101 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2102 
2103 	/*
2104 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2105 	 * and us.  If we determine that this txg is not yet syncing,
2106 	 * but it begins to sync a moment later, that's OK because the
2107 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2108 	 */
2109 	mutex_enter(&db->db_mtx);
2110 
2111 	if (txg <= spa_last_synced_txg(os->os_spa)) {
2112 		/*
2113 		 * This txg has already synced.  There's nothing to do.
2114 		 */
2115 		mutex_exit(&db->db_mtx);
2116 		return (SET_ERROR(EEXIST));
2117 	}
2118 
2119 	if (txg <= spa_syncing_txg(os->os_spa)) {
2120 		/*
2121 		 * This txg is currently syncing, so we can't mess with
2122 		 * the dirty record anymore; just write a new log block.
2123 		 */
2124 		mutex_exit(&db->db_mtx);
2125 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2126 	}
2127 
2128 	dr = dbuf_find_dirty_eq(db, txg);
2129 
2130 	if (dr == NULL) {
2131 		/*
2132 		 * There's no dr for this dbuf, so it must have been freed.
2133 		 * There's no need to log writes to freed blocks, so we're done.
2134 		 */
2135 		mutex_exit(&db->db_mtx);
2136 		return (SET_ERROR(ENOENT));
2137 	}
2138 
2139 	dr_next = list_next(&db->db_dirty_records, dr);
2140 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
2141 
2142 	if (db->db_blkptr != NULL) {
2143 		/*
2144 		 * We need to fill in zgd_bp with the current blkptr so that
2145 		 * the nopwrite code can check if we're writing the same
2146 		 * data that's already on disk.  We can only nopwrite if we
2147 		 * are sure that after making the copy, db_blkptr will not
2148 		 * change until our i/o completes.  We ensure this by
2149 		 * holding the db_mtx, and only allowing nopwrite if the
2150 		 * block is not already dirty (see below).  This is verified
2151 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2152 		 * not changed.
2153 		 */
2154 		*zgd->zgd_bp = *db->db_blkptr;
2155 	}
2156 
2157 	/*
2158 	 * Assume the on-disk data is X, the current syncing data (in
2159 	 * txg - 1) is Y, and the current in-memory data is Z (currently
2160 	 * in dmu_sync).
2161 	 *
2162 	 * We usually want to perform a nopwrite if X and Z are the
2163 	 * same.  However, if Y is different (i.e. the BP is going to
2164 	 * change before this write takes effect), then a nopwrite will
2165 	 * be incorrect - we would override with X, which could have
2166 	 * been freed when Y was written.
2167 	 *
2168 	 * (Note that this is not a concern when we are nop-writing from
2169 	 * syncing context, because X and Y must be identical, because
2170 	 * all previous txgs have been synced.)
2171 	 *
2172 	 * Therefore, we disable nopwrite if the current BP could change
2173 	 * before this TXG.  There are two ways it could change: by
2174 	 * being dirty (dr_next is non-NULL), or by being freed
2175 	 * (dnode_block_freed()).  This behavior is verified by
2176 	 * zio_done(), which VERIFYs that the override BP is identical
2177 	 * to the on-disk BP.
2178 	 */
2179 	if (dr_next != NULL) {
2180 		zp.zp_nopwrite = B_FALSE;
2181 	} else {
2182 		DB_DNODE_ENTER(db);
2183 		if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
2184 			zp.zp_nopwrite = B_FALSE;
2185 		DB_DNODE_EXIT(db);
2186 	}
2187 
2188 	ASSERT(dr->dr_txg == txg);
2189 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2190 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2191 		/*
2192 		 * We have already issued a sync write for this buffer,
2193 		 * or this buffer has already been synced.  It could not
2194 		 * have been dirtied since, or we would have cleared the state.
2195 		 */
2196 		mutex_exit(&db->db_mtx);
2197 		return (SET_ERROR(EALREADY));
2198 	}
2199 
2200 	ASSERT0(dr->dt.dl.dr_has_raw_params);
2201 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2202 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2203 	mutex_exit(&db->db_mtx);
2204 
2205 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2206 	dsa->dsa_dr = dr;
2207 	dsa->dsa_done = done;
2208 	dsa->dsa_zgd = zgd;
2209 	dsa->dsa_tx = NULL;
2210 
2211 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
2212 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db),
2213 	    dbuf_is_l2cacheable(db, NULL), &zp, dmu_sync_ready, NULL,
2214 	    dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL,
2215 	    &zb));
2216 
2217 	return (0);
2218 }
2219 
2220 int
dmu_object_set_nlevels(objset_t * os,uint64_t object,int nlevels,dmu_tx_t * tx)2221 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2222 {
2223 	dnode_t *dn;
2224 	int err;
2225 
2226 	err = dnode_hold(os, object, FTAG, &dn);
2227 	if (err)
2228 		return (err);
2229 	err = dnode_set_nlevels(dn, nlevels, tx);
2230 	dnode_rele(dn, FTAG);
2231 	return (err);
2232 }
2233 
2234 int
dmu_object_set_blocksize(objset_t * os,uint64_t object,uint64_t size,int ibs,dmu_tx_t * tx)2235 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2236     dmu_tx_t *tx)
2237 {
2238 	dnode_t *dn;
2239 	int err;
2240 
2241 	err = dnode_hold(os, object, FTAG, &dn);
2242 	if (err)
2243 		return (err);
2244 	err = dnode_set_blksz(dn, size, ibs, tx);
2245 	dnode_rele(dn, FTAG);
2246 	return (err);
2247 }
2248 
2249 int
dmu_object_set_maxblkid(objset_t * os,uint64_t object,uint64_t maxblkid,dmu_tx_t * tx)2250 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2251     dmu_tx_t *tx)
2252 {
2253 	dnode_t *dn;
2254 	int err;
2255 
2256 	err = dnode_hold(os, object, FTAG, &dn);
2257 	if (err)
2258 		return (err);
2259 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2260 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2261 	rw_exit(&dn->dn_struct_rwlock);
2262 	dnode_rele(dn, FTAG);
2263 	return (0);
2264 }
2265 
2266 void
dmu_object_set_checksum(objset_t * os,uint64_t object,uint8_t checksum,dmu_tx_t * tx)2267 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2268     dmu_tx_t *tx)
2269 {
2270 	dnode_t *dn;
2271 
2272 	/*
2273 	 * Send streams include each object's checksum function.  This
2274 	 * check ensures that the receiving system can understand the
2275 	 * checksum function transmitted.
2276 	 */
2277 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2278 
2279 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2280 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2281 	dn->dn_checksum = checksum;
2282 	dnode_setdirty(dn, tx);
2283 	dnode_rele(dn, FTAG);
2284 }
2285 
2286 void
dmu_object_set_compress(objset_t * os,uint64_t object,uint8_t compress,dmu_tx_t * tx)2287 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2288     dmu_tx_t *tx)
2289 {
2290 	dnode_t *dn;
2291 
2292 	/*
2293 	 * Send streams include each object's compression function.  This
2294 	 * check ensures that the receiving system can understand the
2295 	 * compression function transmitted.
2296 	 */
2297 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2298 
2299 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2300 	dn->dn_compress = compress;
2301 	dnode_setdirty(dn, tx);
2302 	dnode_rele(dn, FTAG);
2303 }
2304 
2305 /*
2306  * When the "redundant_metadata" property is set to "most", only indirect
2307  * blocks of this level and higher will have an additional ditto block.
2308  */
2309 static const int zfs_redundant_metadata_most_ditto_level = 2;
2310 
2311 void
dmu_write_policy(objset_t * os,dnode_t * dn,int level,int wp,zio_prop_t * zp)2312 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2313 {
2314 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2315 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2316 	    (wp & WP_SPILL));
2317 	enum zio_checksum checksum = os->os_checksum;
2318 	enum zio_compress compress = os->os_compress;
2319 	uint8_t complevel = os->os_complevel;
2320 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2321 	boolean_t dedup = B_FALSE;
2322 	boolean_t nopwrite = B_FALSE;
2323 	boolean_t dedup_verify = os->os_dedup_verify;
2324 	boolean_t encrypt = B_FALSE;
2325 	int copies = os->os_copies;
2326 	int gang_copies = os->os_copies;
2327 
2328 	/*
2329 	 * We maintain different write policies for each of the following
2330 	 * types of data:
2331 	 *	 1. metadata
2332 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2333 	 *	 3. all other level 0 blocks
2334 	 */
2335 	if (ismd) {
2336 		/*
2337 		 * XXX -- we should design a compression algorithm
2338 		 * that specializes in arrays of bps.
2339 		 */
2340 		compress = zio_compress_select(os->os_spa,
2341 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2342 
2343 		/*
2344 		 * Metadata always gets checksummed.  If the data
2345 		 * checksum is multi-bit correctable, and it's not a
2346 		 * ZBT-style checksum, then it's suitable for metadata
2347 		 * as well.  Otherwise, the metadata checksum defaults
2348 		 * to fletcher4.
2349 		 */
2350 		if (!(zio_checksum_table[checksum].ci_flags &
2351 		    ZCHECKSUM_FLAG_METADATA) ||
2352 		    (zio_checksum_table[checksum].ci_flags &
2353 		    ZCHECKSUM_FLAG_EMBEDDED))
2354 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2355 
2356 		switch (os->os_redundant_metadata) {
2357 		case ZFS_REDUNDANT_METADATA_ALL:
2358 			copies++;
2359 			gang_copies++;
2360 			break;
2361 		case ZFS_REDUNDANT_METADATA_MOST:
2362 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2363 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2364 				copies++;
2365 			if (level + 1 >=
2366 			    zfs_redundant_metadata_most_ditto_level ||
2367 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2368 				gang_copies++;
2369 			break;
2370 		case ZFS_REDUNDANT_METADATA_SOME:
2371 			if (DMU_OT_IS_CRITICAL(type)) {
2372 				copies++;
2373 				gang_copies++;
2374 			} else if (DMU_OT_IS_METADATA(type)) {
2375 				gang_copies++;
2376 			}
2377 			break;
2378 		case ZFS_REDUNDANT_METADATA_NONE:
2379 			break;
2380 		}
2381 
2382 		if (dmu_ddt_copies > 0) {
2383 			/*
2384 			 * If this tuneable is set, and this is a write for a
2385 			 * dedup entry store (zap or log), then we treat it
2386 			 * something like ZFS_REDUNDANT_METADATA_MOST on a
2387 			 * regular dataset: this many copies, and one more for
2388 			 * "higher" indirect blocks. This specific exception is
2389 			 * necessary because dedup objects are stored in the
2390 			 * MOS, which always has the highest possible copies.
2391 			 */
2392 			dmu_object_type_t stype =
2393 			    dn ? dn->dn_storage_type : DMU_OT_NONE;
2394 			if (stype == DMU_OT_NONE)
2395 				stype = type;
2396 			if (stype == DMU_OT_DDT_ZAP) {
2397 				copies = dmu_ddt_copies;
2398 				if (level >=
2399 				    zfs_redundant_metadata_most_ditto_level)
2400 					copies++;
2401 			}
2402 		}
2403 	} else if (wp & WP_NOFILL) {
2404 		ASSERT(level == 0);
2405 
2406 		/*
2407 		 * If we're writing preallocated blocks, we aren't actually
2408 		 * writing them so don't set any policy properties.  These
2409 		 * blocks are currently only used by an external subsystem
2410 		 * outside of zfs (i.e. dump) and not written by the zio
2411 		 * pipeline.
2412 		 */
2413 		compress = ZIO_COMPRESS_OFF;
2414 		checksum = ZIO_CHECKSUM_OFF;
2415 	} else {
2416 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2417 		    compress);
2418 		complevel = zio_complevel_select(os->os_spa, compress,
2419 		    complevel, complevel);
2420 
2421 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2422 		    zio_checksum_select(dn->dn_checksum, checksum) :
2423 		    dedup_checksum;
2424 
2425 		/*
2426 		 * Determine dedup setting.  If we are in dmu_sync(),
2427 		 * we won't actually dedup now because that's all
2428 		 * done in syncing context; but we do want to use the
2429 		 * dedup checksum.  If the checksum is not strong
2430 		 * enough to ensure unique signatures, force
2431 		 * dedup_verify.
2432 		 */
2433 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2434 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2435 			if (!(zio_checksum_table[checksum].ci_flags &
2436 			    ZCHECKSUM_FLAG_DEDUP))
2437 				dedup_verify = B_TRUE;
2438 		}
2439 
2440 		/*
2441 		 * Enable nopwrite if we have secure enough checksum
2442 		 * algorithm (see comment in zio_nop_write) and
2443 		 * compression is enabled.  We don't enable nopwrite if
2444 		 * dedup is enabled as the two features are mutually
2445 		 * exclusive.
2446 		 */
2447 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2448 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2449 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2450 
2451 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2452 		    (os->os_redundant_metadata ==
2453 		    ZFS_REDUNDANT_METADATA_MOST &&
2454 		    zfs_redundant_metadata_most_ditto_level <= 1))
2455 			gang_copies++;
2456 	}
2457 
2458 	/*
2459 	 * All objects in an encrypted objset are protected from modification
2460 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2461 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2462 	 * not subject to nopwrite since writing the same data will still
2463 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2464 	 * to avoid ambiguity in the dedup code since the DDT does not store
2465 	 * object types.
2466 	 */
2467 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2468 		encrypt = B_TRUE;
2469 
2470 		if (DMU_OT_IS_ENCRYPTED(type)) {
2471 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2472 			gang_copies = MIN(gang_copies, SPA_DVAS_PER_BP - 1);
2473 			nopwrite = B_FALSE;
2474 		} else {
2475 			dedup = B_FALSE;
2476 		}
2477 
2478 		if (level <= 0 &&
2479 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2480 			compress = ZIO_COMPRESS_EMPTY;
2481 		}
2482 	}
2483 
2484 	zp->zp_compress = compress;
2485 	zp->zp_complevel = complevel;
2486 	zp->zp_checksum = checksum;
2487 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2488 	zp->zp_level = level;
2489 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2490 	zp->zp_gang_copies = MIN(gang_copies, spa_max_replication(os->os_spa));
2491 	zp->zp_dedup = dedup;
2492 	zp->zp_dedup_verify = dedup && dedup_verify;
2493 	zp->zp_nopwrite = nopwrite;
2494 	zp->zp_encrypt = encrypt;
2495 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2496 	zp->zp_direct_write = (wp & WP_DIRECT_WR) ? B_TRUE : B_FALSE;
2497 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2498 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2499 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2500 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2501 	    os->os_zpl_special_smallblock : 0;
2502 	zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;
2503 
2504 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2505 }
2506 
2507 /*
2508  * Reports the location of data and holes in an object.  In order to
2509  * accurately report holes all dirty data must be synced to disk.  This
2510  * causes extremely poor performance when seeking for holes in a dirty file.
2511  * As a compromise, only provide hole data when the dnode is clean.  When
2512  * a dnode is dirty report the dnode as having no holes by returning EBUSY
2513  * which is always safe to do.
2514  */
2515 int
dmu_offset_next(objset_t * os,uint64_t object,boolean_t hole,uint64_t * off)2516 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2517 {
2518 	dnode_t *dn;
2519 	int restarted = 0, err;
2520 
2521 restart:
2522 	err = dnode_hold(os, object, FTAG, &dn);
2523 	if (err)
2524 		return (err);
2525 
2526 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2527 
2528 	if (dnode_is_dirty(dn)) {
2529 		/*
2530 		 * If the zfs_dmu_offset_next_sync module option is enabled
2531 		 * then hole reporting has been requested.  Dirty dnodes
2532 		 * must be synced to disk to accurately report holes.
2533 		 *
2534 		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2535 		 * held by the caller only a single restart will be required.
2536 		 * We tolerate callers which do not hold the rangelock by
2537 		 * returning EBUSY and not reporting holes after one restart.
2538 		 */
2539 		if (zfs_dmu_offset_next_sync) {
2540 			rw_exit(&dn->dn_struct_rwlock);
2541 			dnode_rele(dn, FTAG);
2542 
2543 			if (restarted)
2544 				return (SET_ERROR(EBUSY));
2545 
2546 			txg_wait_synced(dmu_objset_pool(os), 0);
2547 			restarted = 1;
2548 			goto restart;
2549 		}
2550 
2551 		err = SET_ERROR(EBUSY);
2552 	} else {
2553 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2554 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2555 	}
2556 
2557 	rw_exit(&dn->dn_struct_rwlock);
2558 	dnode_rele(dn, FTAG);
2559 
2560 	return (err);
2561 }
2562 
2563 int
dmu_read_l0_bps(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,blkptr_t * bps,size_t * nbpsp)2564 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2565     blkptr_t *bps, size_t *nbpsp)
2566 {
2567 	dmu_buf_t **dbp, *dbuf;
2568 	dmu_buf_impl_t *db;
2569 	blkptr_t *bp;
2570 	int error, numbufs;
2571 
2572 	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2573 	    &numbufs, &dbp);
2574 	if (error != 0) {
2575 		if (error == ESRCH) {
2576 			error = SET_ERROR(ENXIO);
2577 		}
2578 		return (error);
2579 	}
2580 
2581 	ASSERT3U(numbufs, <=, *nbpsp);
2582 
2583 	for (int i = 0; i < numbufs; i++) {
2584 		dbuf = dbp[i];
2585 		db = (dmu_buf_impl_t *)dbuf;
2586 
2587 		mutex_enter(&db->db_mtx);
2588 
2589 		if (!list_is_empty(&db->db_dirty_records)) {
2590 			dbuf_dirty_record_t *dr;
2591 
2592 			dr = list_head(&db->db_dirty_records);
2593 			if (dr->dt.dl.dr_brtwrite) {
2594 				/*
2595 				 * This is very special case where we clone a
2596 				 * block and in the same transaction group we
2597 				 * read its BP (most likely to clone the clone).
2598 				 */
2599 				bp = &dr->dt.dl.dr_overridden_by;
2600 			} else {
2601 				/*
2602 				 * The block was modified in the same
2603 				 * transaction group.
2604 				 */
2605 				mutex_exit(&db->db_mtx);
2606 				error = SET_ERROR(EAGAIN);
2607 				goto out;
2608 			}
2609 		} else {
2610 			bp = db->db_blkptr;
2611 		}
2612 
2613 		mutex_exit(&db->db_mtx);
2614 
2615 		if (bp == NULL) {
2616 			/*
2617 			 * The file size was increased, but the block was never
2618 			 * written, otherwise we would either have the block
2619 			 * pointer or the dirty record and would not get here.
2620 			 * It is effectively a hole, so report it as such.
2621 			 */
2622 			BP_ZERO(&bps[i]);
2623 			continue;
2624 		}
2625 		/*
2626 		 * Make sure we clone only data blocks.
2627 		 */
2628 		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2629 			error = SET_ERROR(EINVAL);
2630 			goto out;
2631 		}
2632 
2633 		/*
2634 		 * If the block was allocated in transaction group that is not
2635 		 * yet synced, we could clone it, but we couldn't write this
2636 		 * operation into ZIL, or it may be impossible to replay, since
2637 		 * the block may appear not yet allocated at that point.
2638 		 */
2639 		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2640 			error = SET_ERROR(EINVAL);
2641 			goto out;
2642 		}
2643 		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
2644 			error = SET_ERROR(EAGAIN);
2645 			goto out;
2646 		}
2647 
2648 		bps[i] = *bp;
2649 	}
2650 
2651 	*nbpsp = numbufs;
2652 out:
2653 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2654 
2655 	return (error);
2656 }
2657 
2658 int
dmu_brt_clone(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,dmu_tx_t * tx,const blkptr_t * bps,size_t nbps)2659 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2660     dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2661 {
2662 	spa_t *spa;
2663 	dmu_buf_t **dbp, *dbuf;
2664 	dmu_buf_impl_t *db;
2665 	struct dirty_leaf *dl;
2666 	dbuf_dirty_record_t *dr;
2667 	const blkptr_t *bp;
2668 	int error = 0, i, numbufs;
2669 
2670 	spa = os->os_spa;
2671 
2672 	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2673 	    &numbufs, &dbp));
2674 	ASSERT3U(nbps, ==, numbufs);
2675 
2676 	/*
2677 	 * Before we start cloning make sure that the dbufs sizes match new BPs
2678 	 * sizes. If they don't, that's a no-go, as we are not able to shrink
2679 	 * dbufs.
2680 	 */
2681 	for (i = 0; i < numbufs; i++) {
2682 		dbuf = dbp[i];
2683 		db = (dmu_buf_impl_t *)dbuf;
2684 		bp = &bps[i];
2685 
2686 		ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2687 		ASSERT0(db->db_level);
2688 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2689 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2690 
2691 		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2692 			error = SET_ERROR(EXDEV);
2693 			goto out;
2694 		}
2695 	}
2696 
2697 	for (i = 0; i < numbufs; i++) {
2698 		dbuf = dbp[i];
2699 		db = (dmu_buf_impl_t *)dbuf;
2700 		bp = &bps[i];
2701 
2702 		dmu_buf_will_clone_or_dio(dbuf, tx);
2703 
2704 		mutex_enter(&db->db_mtx);
2705 
2706 		dr = list_head(&db->db_dirty_records);
2707 		VERIFY(dr != NULL);
2708 		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2709 		dl = &dr->dt.dl;
2710 		ASSERT0(dl->dr_has_raw_params);
2711 		dl->dr_overridden_by = *bp;
2712 		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2713 			if (!BP_IS_EMBEDDED(bp)) {
2714 				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2715 				    BP_GET_BIRTH(bp));
2716 			} else {
2717 				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2718 				    dr->dr_txg);
2719 			}
2720 		}
2721 		dl->dr_brtwrite = B_TRUE;
2722 		dl->dr_override_state = DR_OVERRIDDEN;
2723 
2724 		mutex_exit(&db->db_mtx);
2725 
2726 		/*
2727 		 * When data in embedded into BP there is no need to create
2728 		 * BRT entry as there is no data block. Just copy the BP as
2729 		 * it contains the data.
2730 		 */
2731 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2732 			brt_pending_add(spa, bp, tx);
2733 		}
2734 	}
2735 out:
2736 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2737 
2738 	return (error);
2739 }
2740 
2741 void
__dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2742 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2743 {
2744 	dnode_phys_t *dnp = dn->dn_phys;
2745 
2746 	doi->doi_data_block_size = dn->dn_datablksz;
2747 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2748 	    1ULL << dn->dn_indblkshift : 0;
2749 	doi->doi_type = dn->dn_type;
2750 	doi->doi_bonus_type = dn->dn_bonustype;
2751 	doi->doi_bonus_size = dn->dn_bonuslen;
2752 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2753 	doi->doi_indirection = dn->dn_nlevels;
2754 	doi->doi_checksum = dn->dn_checksum;
2755 	doi->doi_compress = dn->dn_compress;
2756 	doi->doi_nblkptr = dn->dn_nblkptr;
2757 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2758 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2759 	doi->doi_fill_count = 0;
2760 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2761 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2762 }
2763 
2764 void
dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2765 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2766 {
2767 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2768 	mutex_enter(&dn->dn_mtx);
2769 
2770 	__dmu_object_info_from_dnode(dn, doi);
2771 
2772 	mutex_exit(&dn->dn_mtx);
2773 	rw_exit(&dn->dn_struct_rwlock);
2774 }
2775 
2776 /*
2777  * Get information on a DMU object.
2778  * If doi is NULL, just indicates whether the object exists.
2779  */
2780 int
dmu_object_info(objset_t * os,uint64_t object,dmu_object_info_t * doi)2781 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2782 {
2783 	dnode_t *dn;
2784 	int err = dnode_hold(os, object, FTAG, &dn);
2785 
2786 	if (err)
2787 		return (err);
2788 
2789 	if (doi != NULL)
2790 		dmu_object_info_from_dnode(dn, doi);
2791 
2792 	dnode_rele(dn, FTAG);
2793 	return (0);
2794 }
2795 
2796 /*
2797  * As above, but faster; can be used when you have a held dbuf in hand.
2798  */
2799 void
dmu_object_info_from_db(dmu_buf_t * db_fake,dmu_object_info_t * doi)2800 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2801 {
2802 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2803 
2804 	DB_DNODE_ENTER(db);
2805 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2806 	DB_DNODE_EXIT(db);
2807 }
2808 
2809 /*
2810  * Faster still when you only care about the size.
2811  */
2812 void
dmu_object_size_from_db(dmu_buf_t * db_fake,uint32_t * blksize,u_longlong_t * nblk512)2813 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2814     u_longlong_t *nblk512)
2815 {
2816 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2817 	dnode_t *dn;
2818 
2819 	DB_DNODE_ENTER(db);
2820 	dn = DB_DNODE(db);
2821 
2822 	*blksize = dn->dn_datablksz;
2823 	/* add in number of slots used for the dnode itself */
2824 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2825 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2826 	DB_DNODE_EXIT(db);
2827 }
2828 
2829 void
dmu_object_dnsize_from_db(dmu_buf_t * db_fake,int * dnsize)2830 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2831 {
2832 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2833 
2834 	DB_DNODE_ENTER(db);
2835 	*dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
2836 	DB_DNODE_EXIT(db);
2837 }
2838 
2839 void
byteswap_uint64_array(void * vbuf,size_t size)2840 byteswap_uint64_array(void *vbuf, size_t size)
2841 {
2842 	uint64_t *buf = vbuf;
2843 	size_t count = size >> 3;
2844 	int i;
2845 
2846 	ASSERT((size & 7) == 0);
2847 
2848 	for (i = 0; i < count; i++)
2849 		buf[i] = BSWAP_64(buf[i]);
2850 }
2851 
2852 void
byteswap_uint32_array(void * vbuf,size_t size)2853 byteswap_uint32_array(void *vbuf, size_t size)
2854 {
2855 	uint32_t *buf = vbuf;
2856 	size_t count = size >> 2;
2857 	int i;
2858 
2859 	ASSERT((size & 3) == 0);
2860 
2861 	for (i = 0; i < count; i++)
2862 		buf[i] = BSWAP_32(buf[i]);
2863 }
2864 
2865 void
byteswap_uint16_array(void * vbuf,size_t size)2866 byteswap_uint16_array(void *vbuf, size_t size)
2867 {
2868 	uint16_t *buf = vbuf;
2869 	size_t count = size >> 1;
2870 	int i;
2871 
2872 	ASSERT((size & 1) == 0);
2873 
2874 	for (i = 0; i < count; i++)
2875 		buf[i] = BSWAP_16(buf[i]);
2876 }
2877 
2878 void
byteswap_uint8_array(void * vbuf,size_t size)2879 byteswap_uint8_array(void *vbuf, size_t size)
2880 {
2881 	(void) vbuf, (void) size;
2882 }
2883 
2884 void
dmu_init(void)2885 dmu_init(void)
2886 {
2887 	abd_init();
2888 	zfs_dbgmsg_init();
2889 	sa_cache_init();
2890 	dmu_objset_init();
2891 	dnode_init();
2892 	zfetch_init();
2893 	dmu_tx_init();
2894 	l2arc_init();
2895 	arc_init();
2896 	dbuf_init();
2897 }
2898 
2899 void
dmu_fini(void)2900 dmu_fini(void)
2901 {
2902 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2903 	l2arc_fini();
2904 	dmu_tx_fini();
2905 	zfetch_fini();
2906 	dbuf_fini();
2907 	dnode_fini();
2908 	dmu_objset_fini();
2909 	sa_cache_fini();
2910 	zfs_dbgmsg_fini();
2911 	abd_fini();
2912 }
2913 
2914 EXPORT_SYMBOL(dmu_bonus_hold);
2915 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2916 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2917 EXPORT_SYMBOL(dmu_buf_rele_array);
2918 EXPORT_SYMBOL(dmu_prefetch);
2919 EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2920 EXPORT_SYMBOL(dmu_prefetch_dnode);
2921 EXPORT_SYMBOL(dmu_free_range);
2922 EXPORT_SYMBOL(dmu_free_long_range);
2923 EXPORT_SYMBOL(dmu_free_long_object);
2924 EXPORT_SYMBOL(dmu_read);
2925 EXPORT_SYMBOL(dmu_read_by_dnode);
2926 EXPORT_SYMBOL(dmu_read_uio);
2927 EXPORT_SYMBOL(dmu_read_uio_dbuf);
2928 EXPORT_SYMBOL(dmu_read_uio_dnode);
2929 EXPORT_SYMBOL(dmu_write);
2930 EXPORT_SYMBOL(dmu_write_by_dnode);
2931 EXPORT_SYMBOL(dmu_write_by_dnode_flags);
2932 EXPORT_SYMBOL(dmu_write_uio);
2933 EXPORT_SYMBOL(dmu_write_uio_dbuf);
2934 EXPORT_SYMBOL(dmu_write_uio_dnode);
2935 EXPORT_SYMBOL(dmu_prealloc);
2936 EXPORT_SYMBOL(dmu_object_info);
2937 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2938 EXPORT_SYMBOL(dmu_object_info_from_db);
2939 EXPORT_SYMBOL(dmu_object_size_from_db);
2940 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2941 EXPORT_SYMBOL(dmu_object_set_nlevels);
2942 EXPORT_SYMBOL(dmu_object_set_blocksize);
2943 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2944 EXPORT_SYMBOL(dmu_object_set_checksum);
2945 EXPORT_SYMBOL(dmu_object_set_compress);
2946 EXPORT_SYMBOL(dmu_offset_next);
2947 EXPORT_SYMBOL(dmu_write_policy);
2948 EXPORT_SYMBOL(dmu_sync);
2949 EXPORT_SYMBOL(dmu_request_arcbuf);
2950 EXPORT_SYMBOL(dmu_return_arcbuf);
2951 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2952 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2953 EXPORT_SYMBOL(dmu_buf_hold);
2954 EXPORT_SYMBOL(dmu_ot);
2955 
2956 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2957 	"Enable NOP writes");
2958 
2959 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2960 	"Percentage of dirtied blocks from frees in one TXG");
2961 
2962 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2963 	"Enable forcing txg sync to find holes");
2964 
2965 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2966 	"Limit one prefetch call to this size");
2967 
2968 ZFS_MODULE_PARAM(zfs, , dmu_ddt_copies, UINT, ZMOD_RW,
2969 	"Override copies= for dedup objects");
2970