xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision 5e2fc2c3c59455ddd6354e765ca474182d90ba28)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/arc.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_send.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dbuf.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/spa.h>
44 #include <sys/zio.h>
45 #include <sys/dmu_zfetch.h>
46 #include <sys/sa.h>
47 #include <sys/sa_impl.h>
48 #include <sys/zfeature.h>
49 #include <sys/blkptr.h>
50 #include <sys/range_tree.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/callb.h>
53 #include <sys/abd.h>
54 #include <sys/brt.h>
55 #include <sys/vdev.h>
56 #include <cityhash.h>
57 #include <sys/spa_impl.h>
58 #include <sys/wmsum.h>
59 #include <sys/vdev_impl.h>
60 
61 static kstat_t *dbuf_ksp;
62 
63 typedef struct dbuf_stats {
64 	/*
65 	 * Various statistics about the size of the dbuf cache.
66 	 */
67 	kstat_named_t cache_count;
68 	kstat_named_t cache_size_bytes;
69 	kstat_named_t cache_size_bytes_max;
70 	/*
71 	 * Statistics regarding the bounds on the dbuf cache size.
72 	 */
73 	kstat_named_t cache_target_bytes;
74 	kstat_named_t cache_lowater_bytes;
75 	kstat_named_t cache_hiwater_bytes;
76 	/*
77 	 * Total number of dbuf cache evictions that have occurred.
78 	 */
79 	kstat_named_t cache_total_evicts;
80 	/*
81 	 * The distribution of dbuf levels in the dbuf cache and
82 	 * the total size of all dbufs at each level.
83 	 */
84 	kstat_named_t cache_levels[DN_MAX_LEVELS];
85 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86 	/*
87 	 * Statistics about the dbuf hash table.
88 	 */
89 	kstat_named_t hash_hits;
90 	kstat_named_t hash_misses;
91 	kstat_named_t hash_collisions;
92 	kstat_named_t hash_elements;
93 	/*
94 	 * Number of sublists containing more than one dbuf in the dbuf
95 	 * hash table. Keep track of the longest hash chain.
96 	 */
97 	kstat_named_t hash_chains;
98 	kstat_named_t hash_chain_max;
99 	/*
100 	 * Number of times a dbuf_create() discovers that a dbuf was
101 	 * already created and in the dbuf hash table.
102 	 */
103 	kstat_named_t hash_insert_race;
104 	/*
105 	 * Number of entries in the hash table dbuf and mutex arrays.
106 	 */
107 	kstat_named_t hash_table_count;
108 	kstat_named_t hash_mutex_count;
109 	/*
110 	 * Statistics about the size of the metadata dbuf cache.
111 	 */
112 	kstat_named_t metadata_cache_count;
113 	kstat_named_t metadata_cache_size_bytes;
114 	kstat_named_t metadata_cache_size_bytes_max;
115 	/*
116 	 * For diagnostic purposes, this is incremented whenever we can't add
117 	 * something to the metadata cache because it's full, and instead put
118 	 * the data in the regular dbuf cache.
119 	 */
120 	kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122 
123 dbuf_stats_t dbuf_stats = {
124 	{ "cache_count",			KSTAT_DATA_UINT64 },
125 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
126 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
127 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
128 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
129 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
130 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
131 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
132 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
133 	{ "hash_hits",				KSTAT_DATA_UINT64 },
134 	{ "hash_misses",			KSTAT_DATA_UINT64 },
135 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
136 	{ "hash_elements",			KSTAT_DATA_UINT64 },
137 	{ "hash_chains",			KSTAT_DATA_UINT64 },
138 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
139 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
140 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
141 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
142 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
145 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
146 };
147 
148 struct {
149 	wmsum_t cache_count;
150 	wmsum_t cache_total_evicts;
151 	wmsum_t cache_levels[DN_MAX_LEVELS];
152 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
153 	wmsum_t hash_hits;
154 	wmsum_t hash_misses;
155 	wmsum_t hash_collisions;
156 	wmsum_t hash_elements;
157 	wmsum_t hash_chains;
158 	wmsum_t hash_insert_race;
159 	wmsum_t metadata_cache_count;
160 	wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162 
163 #define	DBUF_STAT_INCR(stat, val)	\
164 	wmsum_add(&dbuf_sums.stat, val)
165 #define	DBUF_STAT_DECR(stat, val)	\
166 	DBUF_STAT_INCR(stat, -(val))
167 #define	DBUF_STAT_BUMP(stat)		\
168 	DBUF_STAT_INCR(stat, 1)
169 #define	DBUF_STAT_BUMPDOWN(stat)	\
170 	DBUF_STAT_INCR(stat, -1)
171 #define	DBUF_STAT_MAX(stat, v) {					\
172 	uint64_t _m;							\
173 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
174 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 		continue;						\
176 }
177 
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 
181 /*
182  * Global data structures and functions for the dbuf cache.
183  */
184 static kmem_cache_t *dbuf_kmem_cache;
185 kmem_cache_t *dbuf_dirty_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187 
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192 
193 /*
194  * There are two dbuf caches; each dbuf can only be in one of them at a time.
195  *
196  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198  *    that represent the metadata that describes filesystems/snapshots/
199  *    bookmarks/properties/etc. We only evict from this cache when we export a
200  *    pool, to short-circuit as much I/O as possible for all administrative
201  *    commands that need the metadata. There is no eviction policy for this
202  *    cache, because we try to only include types in it which would occupy a
203  *    very small amount of space per object but create a large impact on the
204  *    performance of these commands. Instead, after it reaches a maximum size
205  *    (which should only happen on very small memory systems with a very large
206  *    number of filesystem objects), we stop taking new dbufs into the
207  *    metadata cache, instead putting them in the normal dbuf cache.
208  *
209  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210  *    are not currently held but have been recently released. These dbufs
211  *    are not eligible for arc eviction until they are aged out of the cache.
212  *    Dbufs that are aged out of the cache will be immediately destroyed and
213  *    become eligible for arc eviction.
214  *
215  * Dbufs are added to these caches once the last hold is released. If a dbuf is
216  * later accessed and still exists in the dbuf cache, then it will be removed
217  * from the cache and later re-added to the head of the cache.
218  *
219  * If a given dbuf meets the requirements for the metadata cache, it will go
220  * there, otherwise it will be considered for the generic LRU dbuf cache. The
221  * caches and the refcounts tracking their sizes are stored in an array indexed
222  * by those caches' matching enum values (from dbuf_cached_state_t).
223  */
224 typedef struct dbuf_cache {
225 	multilist_t cache;
226 	zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229 
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233 
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237 
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240 
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243 
244 /*
245  * The LRU dbuf cache uses a three-stage eviction policy:
246  *	- A low water marker designates when the dbuf eviction thread
247  *	should stop evicting from the dbuf cache.
248  *	- When we reach the maximum size (aka mid water mark), we
249  *	signal the eviction thread to run.
250  *	- The high water mark indicates when the eviction thread
251  *	is unable to keep up with the incoming load and eviction must
252  *	happen in the context of the calling thread.
253  *
254  * The dbuf cache:
255  *                                                 (max size)
256  *                                      low water   mid water   hi water
257  * +----------------------------------------+----------+----------+
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * |                                        |          |          |
262  * +----------------------------------------+----------+----------+
263  *                                        stop        signal     evict
264  *                                      evicting     eviction   directly
265  *                                                    thread
266  *
267  * The high and low water marks indicate the operating range for the eviction
268  * thread. The low water mark is, by default, 90% of the total size of the
269  * cache and the high water mark is at 110% (both of these percentages can be
270  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271  * respectively). The eviction thread will try to ensure that the cache remains
272  * within this range by waking up every second and checking if the cache is
273  * above the low water mark. The thread can also be woken up by callers adding
274  * elements into the cache if the cache is larger than the mid water (i.e max
275  * cache size). Once the eviction thread is woken up and eviction is required,
276  * it will continue evicting buffers until it's able to reduce the cache size
277  * to the low water mark. If the cache size continues to grow and hits the high
278  * water mark, then callers adding elements to the cache will begin to evict
279  * directly from the cache until the cache is no longer above the high water
280  * mark.
281  */
282 
283 /*
284  * The percentage above and below the maximum cache size.
285  */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288 
289 static int
dbuf_cons(void * vdb,void * unused,int kmflag)290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 	(void) unused, (void) kmflag;
293 	dmu_buf_impl_t *db = vdb;
294 	memset(db, 0, sizeof (dmu_buf_impl_t));
295 
296 	mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
297 	rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
298 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 	multilist_link_init(&db->db_cache_link);
300 	zfs_refcount_create(&db->db_holds);
301 
302 	return (0);
303 }
304 
305 static void
dbuf_dest(void * vdb,void * unused)306 dbuf_dest(void *vdb, void *unused)
307 {
308 	(void) unused;
309 	dmu_buf_impl_t *db = vdb;
310 	mutex_destroy(&db->db_mtx);
311 	rw_destroy(&db->db_rwlock);
312 	cv_destroy(&db->db_changed);
313 	ASSERT(!multilist_link_active(&db->db_cache_link));
314 	zfs_refcount_destroy(&db->db_holds);
315 }
316 
317 /*
318  * dbuf hash table routines
319  */
320 static dbuf_hash_table_t dbuf_hash_table;
321 
322 /*
323  * We use Cityhash for this. It's fast, and has good hash properties without
324  * requiring any large static buffers.
325  */
326 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331 
332 #define	DTRACE_SET_STATE(db, why) \
333 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
334 	    const char *, why)
335 
336 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
337 	((dbuf)->db.db_object == (obj) &&		\
338 	(dbuf)->db_objset == (os) &&			\
339 	(dbuf)->db_level == (level) &&			\
340 	(dbuf)->db_blkid == (blkid))
341 
342 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid,uint64_t * hash_out)343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344     uint64_t *hash_out)
345 {
346 	dbuf_hash_table_t *h = &dbuf_hash_table;
347 	uint64_t hv;
348 	uint64_t idx;
349 	dmu_buf_impl_t *db;
350 
351 	hv = dbuf_hash(os, obj, level, blkid);
352 	idx = hv & h->hash_table_mask;
353 
354 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 			mutex_enter(&db->db_mtx);
358 			if (db->db_state != DB_EVICTING) {
359 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 				return (db);
361 			}
362 			mutex_exit(&db->db_mtx);
363 		}
364 	}
365 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 	if (hash_out != NULL)
367 		*hash_out = hv;
368 	return (NULL);
369 }
370 
371 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 	dnode_t *dn;
375 	dmu_buf_impl_t *db = NULL;
376 
377 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 		if (dn->dn_bonus != NULL) {
380 			db = dn->dn_bonus;
381 			mutex_enter(&db->db_mtx);
382 		}
383 		rw_exit(&dn->dn_struct_rwlock);
384 		dnode_rele(dn, FTAG);
385 	}
386 	return (db);
387 }
388 
389 /*
390  * Insert an entry into the hash table.  If there is already an element
391  * equal to elem in the hash table, then the already existing element
392  * will be returned and the new element will not be inserted.
393  * Otherwise returns NULL.
394  */
395 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 	dbuf_hash_table_t *h = &dbuf_hash_table;
399 	objset_t *os = db->db_objset;
400 	uint64_t obj = db->db.db_object;
401 	int level = db->db_level;
402 	uint64_t blkid, idx;
403 	dmu_buf_impl_t *dbf;
404 	uint32_t i;
405 
406 	blkid = db->db_blkid;
407 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 	idx = db->db_hash & h->hash_table_mask;
409 
410 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 	    dbf = dbf->db_hash_next, i++) {
413 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 			mutex_enter(&dbf->db_mtx);
415 			if (dbf->db_state != DB_EVICTING) {
416 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 				return (dbf);
418 			}
419 			mutex_exit(&dbf->db_mtx);
420 		}
421 	}
422 
423 	if (i > 0) {
424 		DBUF_STAT_BUMP(hash_collisions);
425 		if (i == 1)
426 			DBUF_STAT_BUMP(hash_chains);
427 
428 		DBUF_STAT_MAX(hash_chain_max, i);
429 	}
430 
431 	mutex_enter(&db->db_mtx);
432 	db->db_hash_next = h->hash_table[idx];
433 	h->hash_table[idx] = db;
434 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 	DBUF_STAT_BUMP(hash_elements);
436 
437 	return (NULL);
438 }
439 
440 /*
441  * This returns whether this dbuf should be stored in the metadata cache, which
442  * is based on whether it's from one of the dnode types that store data related
443  * to traversing dataset hierarchies.
444  */
445 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 	DB_DNODE_ENTER(db);
449 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 	DB_DNODE_EXIT(db);
451 
452 	/* Check if this dbuf is one of the types we care about */
453 	if (DMU_OT_IS_METADATA_CACHED(type)) {
454 		/* If we hit this, then we set something up wrong in dmu_ot */
455 		ASSERT(DMU_OT_IS_METADATA(type));
456 
457 		/*
458 		 * Sanity check for small-memory systems: don't allocate too
459 		 * much memory for this purpose.
460 		 */
461 		if (zfs_refcount_count(
462 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 		    dbuf_metadata_cache_target_bytes()) {
464 			DBUF_STAT_BUMP(metadata_cache_overflow);
465 			return (B_FALSE);
466 		}
467 
468 		return (B_TRUE);
469 	}
470 
471 	return (B_FALSE);
472 }
473 
474 /*
475  * Remove an entry from the hash table.  It must be in the EVICTING state.
476  */
477 static void
dbuf_hash_remove(dmu_buf_impl_t * db)478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 	dbuf_hash_table_t *h = &dbuf_hash_table;
481 	uint64_t idx;
482 	dmu_buf_impl_t *dbf, **dbp;
483 
484 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 	    db->db_blkid), ==, db->db_hash);
486 	idx = db->db_hash & h->hash_table_mask;
487 
488 	/*
489 	 * We mustn't hold db_mtx to maintain lock ordering:
490 	 * DBUF_HASH_MUTEX > db_mtx.
491 	 */
492 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 	ASSERT(db->db_state == DB_EVICTING);
494 	ASSERT(!MUTEX_HELD(&db->db_mtx));
495 
496 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 	dbp = &h->hash_table[idx];
498 	while ((dbf = *dbp) != db) {
499 		dbp = &dbf->db_hash_next;
500 		ASSERT(dbf != NULL);
501 	}
502 	*dbp = db->db_hash_next;
503 	db->db_hash_next = NULL;
504 	if (h->hash_table[idx] &&
505 	    h->hash_table[idx]->db_hash_next == NULL)
506 		DBUF_STAT_BUMPDOWN(hash_chains);
507 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 	DBUF_STAT_BUMPDOWN(hash_elements);
509 }
510 
511 typedef enum {
512 	DBVU_EVICTING,
513 	DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515 
516 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 	int64_t holds;
521 
522 	if (db->db_user == NULL)
523 		return;
524 
525 	/* Only data blocks support the attachment of user data. */
526 	ASSERT0(db->db_level);
527 
528 	/* Clients must resolve a dbuf before attaching user data. */
529 	ASSERT(db->db.db_data != NULL);
530 	ASSERT3U(db->db_state, ==, DB_CACHED);
531 
532 	holds = zfs_refcount_count(&db->db_holds);
533 	if (verify_type == DBVU_EVICTING) {
534 		/*
535 		 * Immediate eviction occurs when holds == dirtycnt.
536 		 * For normal eviction buffers, holds is zero on
537 		 * eviction, except when dbuf_fix_old_data() calls
538 		 * dbuf_clear_data().  However, the hold count can grow
539 		 * during eviction even though db_mtx is held (see
540 		 * dmu_bonus_hold() for an example), so we can only
541 		 * test the generic invariant that holds >= dirtycnt.
542 		 */
543 		ASSERT3U(holds, >=, db->db_dirtycnt);
544 	} else {
545 		if (db->db_user_immediate_evict == TRUE)
546 			ASSERT3U(holds, >=, db->db_dirtycnt);
547 		else
548 			ASSERT3U(holds, >, 0);
549 	}
550 #endif
551 }
552 
553 static void
dbuf_evict_user(dmu_buf_impl_t * db)554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 	dmu_buf_user_t *dbu = db->db_user;
557 
558 	ASSERT(MUTEX_HELD(&db->db_mtx));
559 
560 	if (dbu == NULL)
561 		return;
562 
563 	dbuf_verify_user(db, DBVU_EVICTING);
564 	db->db_user = NULL;
565 
566 #ifdef ZFS_DEBUG
567 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 		*dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570 
571 	if (db->db_caching_status != DB_NO_CACHE) {
572 		/*
573 		 * This is a cached dbuf, so the size of the user data is
574 		 * included in its cached amount. We adjust it here because the
575 		 * user data has already been detached from the dbuf, and the
576 		 * sync functions are not supposed to touch it (the dbuf might
577 		 * not exist anymore by the time the sync functions run.
578 		 */
579 		uint64_t size = dbu->dbu_size;
580 		(void) zfs_refcount_remove_many(
581 		    &dbuf_caches[db->db_caching_status].size, size, dbu);
582 		if (db->db_caching_status == DB_DBUF_CACHE)
583 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
584 	}
585 
586 	/*
587 	 * There are two eviction callbacks - one that we call synchronously
588 	 * and one that we invoke via a taskq.  The async one is useful for
589 	 * avoiding lock order reversals and limiting stack depth.
590 	 *
591 	 * Note that if we have a sync callback but no async callback,
592 	 * it's likely that the sync callback will free the structure
593 	 * containing the dbu.  In that case we need to take care to not
594 	 * dereference dbu after calling the sync evict func.
595 	 */
596 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
597 
598 	if (dbu->dbu_evict_func_sync != NULL)
599 		dbu->dbu_evict_func_sync(dbu);
600 
601 	if (has_async) {
602 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
603 		    dbu, 0, &dbu->dbu_tqent);
604 	}
605 }
606 
607 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)608 dbuf_is_metadata(dmu_buf_impl_t *db)
609 {
610 	/*
611 	 * Consider indirect blocks and spill blocks to be meta data.
612 	 */
613 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
614 		return (B_TRUE);
615 	} else {
616 		boolean_t is_metadata;
617 
618 		DB_DNODE_ENTER(db);
619 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
620 		DB_DNODE_EXIT(db);
621 
622 		return (is_metadata);
623 	}
624 }
625 
626 /*
627  * We want to exclude buffers that are on a special allocation class from
628  * L2ARC.
629  */
630 boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t * db,blkptr_t * bp)631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
632 {
633 	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
634 	    (db->db_objset->os_secondary_cache ==
635 	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
636 		if (l2arc_exclude_special == 0)
637 			return (B_TRUE);
638 
639 		/*
640 		 * bp must be checked in the event it was passed from
641 		 * dbuf_read_impl() as the result of a the BP being set from
642 		 * a Direct I/O write in dbuf_read(). See comments in
643 		 * dbuf_read().
644 		 */
645 		blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
646 
647 		if (db_bp == NULL || BP_IS_HOLE(db_bp))
648 			return (B_FALSE);
649 		uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
650 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
651 		vdev_t *vd = NULL;
652 
653 		if (vdev < rvd->vdev_children)
654 			vd = rvd->vdev_child[vdev];
655 
656 		if (vd == NULL)
657 			return (B_TRUE);
658 
659 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
660 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
661 			return (B_TRUE);
662 	}
663 	return (B_FALSE);
664 }
665 
666 static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t * bp,dnode_t * dn,int64_t level)667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
668 {
669 	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
670 	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
671 	    (level > 0 ||
672 	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
673 		if (l2arc_exclude_special == 0)
674 			return (B_TRUE);
675 
676 		if (bp == NULL || BP_IS_HOLE(bp))
677 			return (B_FALSE);
678 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
679 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
680 		vdev_t *vd = NULL;
681 
682 		if (vdev < rvd->vdev_children)
683 			vd = rvd->vdev_child[vdev];
684 
685 		if (vd == NULL)
686 			return (B_TRUE);
687 
688 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
689 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
690 			return (B_TRUE);
691 	}
692 	return (B_FALSE);
693 }
694 
695 
696 /*
697  * This function *must* return indices evenly distributed between all
698  * sublists of the multilist. This is needed due to how the dbuf eviction
699  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
700  * distributed between all sublists and uses this assumption when
701  * deciding which sublist to evict from and how much to evict from it.
702  */
703 static unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
705 {
706 	dmu_buf_impl_t *db = obj;
707 
708 	/*
709 	 * The assumption here, is the hash value for a given
710 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
711 	 * (i.e. it's objset, object, level and blkid fields don't change).
712 	 * Thus, we don't need to store the dbuf's sublist index
713 	 * on insertion, as this index can be recalculated on removal.
714 	 *
715 	 * Also, the low order bits of the hash value are thought to be
716 	 * distributed evenly. Otherwise, in the case that the multilist
717 	 * has a power of two number of sublists, each sublists' usage
718 	 * would not be evenly distributed. In this context full 64bit
719 	 * division would be a waste of time, so limit it to 32 bits.
720 	 */
721 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
722 	    db->db_level, db->db_blkid) %
723 	    multilist_get_num_sublists(ml));
724 }
725 
726 /*
727  * The target size of the dbuf cache can grow with the ARC target,
728  * unless limited by the tunable dbuf_cache_max_bytes.
729  */
730 static inline unsigned long
dbuf_cache_target_bytes(void)731 dbuf_cache_target_bytes(void)
732 {
733 	return (MIN(dbuf_cache_max_bytes,
734 	    arc_target_bytes() >> dbuf_cache_shift));
735 }
736 
737 /*
738  * The target size of the dbuf metadata cache can grow with the ARC target,
739  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
740  */
741 static inline unsigned long
dbuf_metadata_cache_target_bytes(void)742 dbuf_metadata_cache_target_bytes(void)
743 {
744 	return (MIN(dbuf_metadata_cache_max_bytes,
745 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
746 }
747 
748 static inline uint64_t
dbuf_cache_hiwater_bytes(void)749 dbuf_cache_hiwater_bytes(void)
750 {
751 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
752 	return (dbuf_cache_target +
753 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
754 }
755 
756 static inline uint64_t
dbuf_cache_lowater_bytes(void)757 dbuf_cache_lowater_bytes(void)
758 {
759 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
760 	return (dbuf_cache_target -
761 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
762 }
763 
764 static inline boolean_t
dbuf_cache_above_lowater(void)765 dbuf_cache_above_lowater(void)
766 {
767 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
768 	    dbuf_cache_lowater_bytes());
769 }
770 
771 /*
772  * Evict the oldest eligible dbuf from the dbuf cache.
773  */
774 static void
dbuf_evict_one(void)775 dbuf_evict_one(void)
776 {
777 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
778 	multilist_sublist_t *mls = multilist_sublist_lock_idx(
779 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
780 
781 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
782 
783 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
784 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
785 		db = multilist_sublist_prev(mls, db);
786 	}
787 
788 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
789 	    multilist_sublist_t *, mls);
790 
791 	if (db != NULL) {
792 		multilist_sublist_remove(mls, db);
793 		multilist_sublist_unlock(mls);
794 		uint64_t size = db->db.db_size;
795 		uint64_t usize = dmu_buf_user_size(&db->db);
796 		(void) zfs_refcount_remove_many(
797 		    &dbuf_caches[DB_DBUF_CACHE].size, size, db);
798 		(void) zfs_refcount_remove_many(
799 		    &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
800 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
801 		DBUF_STAT_BUMPDOWN(cache_count);
802 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
803 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
804 		db->db_caching_status = DB_NO_CACHE;
805 		dbuf_destroy(db);
806 		DBUF_STAT_BUMP(cache_total_evicts);
807 	} else {
808 		multilist_sublist_unlock(mls);
809 	}
810 }
811 
812 /*
813  * The dbuf evict thread is responsible for aging out dbufs from the
814  * cache. Once the cache has reached it's maximum size, dbufs are removed
815  * and destroyed. The eviction thread will continue running until the size
816  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
817  * out of the cache it is destroyed and becomes eligible for arc eviction.
818  */
819 static __attribute__((noreturn)) void
dbuf_evict_thread(void * unused)820 dbuf_evict_thread(void *unused)
821 {
822 	(void) unused;
823 	callb_cpr_t cpr;
824 
825 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
826 
827 	mutex_enter(&dbuf_evict_lock);
828 	while (!dbuf_evict_thread_exit) {
829 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
830 			CALLB_CPR_SAFE_BEGIN(&cpr);
831 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
832 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
833 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
834 		}
835 		mutex_exit(&dbuf_evict_lock);
836 
837 		/*
838 		 * Keep evicting as long as we're above the low water mark
839 		 * for the cache. We do this without holding the locks to
840 		 * minimize lock contention.
841 		 */
842 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
843 			dbuf_evict_one();
844 		}
845 
846 		mutex_enter(&dbuf_evict_lock);
847 	}
848 
849 	dbuf_evict_thread_exit = B_FALSE;
850 	cv_broadcast(&dbuf_evict_cv);
851 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
852 	thread_exit();
853 }
854 
855 /*
856  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
857  * If the dbuf cache is at its high water mark, then evict a dbuf from the
858  * dbuf cache using the caller's context.
859  */
860 static void
dbuf_evict_notify(uint64_t size)861 dbuf_evict_notify(uint64_t size)
862 {
863 	/*
864 	 * We check if we should evict without holding the dbuf_evict_lock,
865 	 * because it's OK to occasionally make the wrong decision here,
866 	 * and grabbing the lock results in massive lock contention.
867 	 */
868 	if (size > dbuf_cache_target_bytes()) {
869 		/*
870 		 * Avoid calling dbuf_evict_one() from memory reclaim context
871 		 * (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks.
872 		 * Memory reclaim threads can get stuck waiting for the dbuf
873 		 * hash lock.
874 		 */
875 		if (size > dbuf_cache_hiwater_bytes() &&
876 		    !current_is_reclaim_thread()) {
877 			dbuf_evict_one();
878 		}
879 		cv_signal(&dbuf_evict_cv);
880 	}
881 }
882 
883 /*
884  * Since dbuf cache size is a fraction of target ARC size, ARC calls this when
885  * its target size is reduced due to memory pressure.
886  */
887 void
dbuf_cache_reduce_target_size(void)888 dbuf_cache_reduce_target_size(void)
889 {
890 	uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
891 
892 	if (size > dbuf_cache_target_bytes())
893 		cv_signal(&dbuf_evict_cv);
894 }
895 
896 static int
dbuf_kstat_update(kstat_t * ksp,int rw)897 dbuf_kstat_update(kstat_t *ksp, int rw)
898 {
899 	dbuf_stats_t *ds = ksp->ks_data;
900 	dbuf_hash_table_t *h = &dbuf_hash_table;
901 
902 	if (rw == KSTAT_WRITE)
903 		return (SET_ERROR(EACCES));
904 
905 	ds->cache_count.value.ui64 =
906 	    wmsum_value(&dbuf_sums.cache_count);
907 	ds->cache_size_bytes.value.ui64 =
908 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
909 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
910 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
911 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
912 	ds->cache_total_evicts.value.ui64 =
913 	    wmsum_value(&dbuf_sums.cache_total_evicts);
914 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
915 		ds->cache_levels[i].value.ui64 =
916 		    wmsum_value(&dbuf_sums.cache_levels[i]);
917 		ds->cache_levels_bytes[i].value.ui64 =
918 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
919 	}
920 	ds->hash_hits.value.ui64 =
921 	    wmsum_value(&dbuf_sums.hash_hits);
922 	ds->hash_misses.value.ui64 =
923 	    wmsum_value(&dbuf_sums.hash_misses);
924 	ds->hash_collisions.value.ui64 =
925 	    wmsum_value(&dbuf_sums.hash_collisions);
926 	ds->hash_elements.value.ui64 =
927 	    wmsum_value(&dbuf_sums.hash_elements);
928 	ds->hash_chains.value.ui64 =
929 	    wmsum_value(&dbuf_sums.hash_chains);
930 	ds->hash_insert_race.value.ui64 =
931 	    wmsum_value(&dbuf_sums.hash_insert_race);
932 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
933 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
934 	ds->metadata_cache_count.value.ui64 =
935 	    wmsum_value(&dbuf_sums.metadata_cache_count);
936 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
937 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
938 	ds->metadata_cache_overflow.value.ui64 =
939 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
940 	return (0);
941 }
942 
943 void
dbuf_init(void)944 dbuf_init(void)
945 {
946 	uint64_t hmsize, hsize = 1ULL << 16;
947 	dbuf_hash_table_t *h = &dbuf_hash_table;
948 
949 	/*
950 	 * The hash table is big enough to fill one eighth of physical memory
951 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
952 	 * By default, the table will take up
953 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
954 	 */
955 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
956 		hsize <<= 1;
957 
958 	h->hash_table = NULL;
959 	while (h->hash_table == NULL) {
960 		h->hash_table_mask = hsize - 1;
961 
962 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
963 		if (h->hash_table == NULL)
964 			hsize >>= 1;
965 
966 		ASSERT3U(hsize, >=, 1ULL << 10);
967 	}
968 
969 	/*
970 	 * The hash table buckets are protected by an array of mutexes where
971 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
972 	 * array size of 8192 is targeted to avoid contention.
973 	 */
974 	if (dbuf_mutex_cache_shift == 0)
975 		hmsize = MAX(hsize >> 7, 1ULL << 13);
976 	else
977 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
978 
979 	h->hash_mutexes = NULL;
980 	while (h->hash_mutexes == NULL) {
981 		h->hash_mutex_mask = hmsize - 1;
982 
983 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
984 		    KM_SLEEP);
985 		if (h->hash_mutexes == NULL)
986 			hmsize >>= 1;
987 	}
988 
989 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
990 	    sizeof (dmu_buf_impl_t),
991 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
992 	dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
993 	    sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
994 
995 	for (int i = 0; i < hmsize; i++)
996 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
997 
998 	dbuf_stats_init(h);
999 
1000 	/*
1001 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
1002 	 * configuration is not required.
1003 	 */
1004 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
1005 
1006 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1007 		multilist_create(&dbuf_caches[dcs].cache,
1008 		    sizeof (dmu_buf_impl_t),
1009 		    offsetof(dmu_buf_impl_t, db_cache_link),
1010 		    dbuf_cache_multilist_index_func);
1011 		zfs_refcount_create(&dbuf_caches[dcs].size);
1012 	}
1013 
1014 	dbuf_evict_thread_exit = B_FALSE;
1015 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1016 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
1017 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
1018 	    NULL, 0, &p0, TS_RUN, minclsyspri);
1019 
1020 	wmsum_init(&dbuf_sums.cache_count, 0);
1021 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1022 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1023 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
1024 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1025 	}
1026 	wmsum_init(&dbuf_sums.hash_hits, 0);
1027 	wmsum_init(&dbuf_sums.hash_misses, 0);
1028 	wmsum_init(&dbuf_sums.hash_collisions, 0);
1029 	wmsum_init(&dbuf_sums.hash_elements, 0);
1030 	wmsum_init(&dbuf_sums.hash_chains, 0);
1031 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
1032 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1033 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1034 
1035 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1036 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1037 	    KSTAT_FLAG_VIRTUAL);
1038 	if (dbuf_ksp != NULL) {
1039 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
1040 			snprintf(dbuf_stats.cache_levels[i].name,
1041 			    KSTAT_STRLEN, "cache_level_%d", i);
1042 			dbuf_stats.cache_levels[i].data_type =
1043 			    KSTAT_DATA_UINT64;
1044 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
1045 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
1046 			dbuf_stats.cache_levels_bytes[i].data_type =
1047 			    KSTAT_DATA_UINT64;
1048 		}
1049 		dbuf_ksp->ks_data = &dbuf_stats;
1050 		dbuf_ksp->ks_update = dbuf_kstat_update;
1051 		kstat_install(dbuf_ksp);
1052 	}
1053 }
1054 
1055 void
dbuf_fini(void)1056 dbuf_fini(void)
1057 {
1058 	dbuf_hash_table_t *h = &dbuf_hash_table;
1059 
1060 	dbuf_stats_destroy();
1061 
1062 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1063 		mutex_destroy(&h->hash_mutexes[i]);
1064 
1065 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1066 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1067 	    sizeof (kmutex_t));
1068 
1069 	kmem_cache_destroy(dbuf_kmem_cache);
1070 	kmem_cache_destroy(dbuf_dirty_kmem_cache);
1071 	taskq_destroy(dbu_evict_taskq);
1072 
1073 	mutex_enter(&dbuf_evict_lock);
1074 	dbuf_evict_thread_exit = B_TRUE;
1075 	while (dbuf_evict_thread_exit) {
1076 		cv_signal(&dbuf_evict_cv);
1077 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1078 	}
1079 	mutex_exit(&dbuf_evict_lock);
1080 
1081 	mutex_destroy(&dbuf_evict_lock);
1082 	cv_destroy(&dbuf_evict_cv);
1083 
1084 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1085 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1086 		multilist_destroy(&dbuf_caches[dcs].cache);
1087 	}
1088 
1089 	if (dbuf_ksp != NULL) {
1090 		kstat_delete(dbuf_ksp);
1091 		dbuf_ksp = NULL;
1092 	}
1093 
1094 	wmsum_fini(&dbuf_sums.cache_count);
1095 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1096 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1097 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1098 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1099 	}
1100 	wmsum_fini(&dbuf_sums.hash_hits);
1101 	wmsum_fini(&dbuf_sums.hash_misses);
1102 	wmsum_fini(&dbuf_sums.hash_collisions);
1103 	wmsum_fini(&dbuf_sums.hash_elements);
1104 	wmsum_fini(&dbuf_sums.hash_chains);
1105 	wmsum_fini(&dbuf_sums.hash_insert_race);
1106 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1107 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1108 }
1109 
1110 /*
1111  * Other stuff.
1112  */
1113 
1114 #ifdef ZFS_DEBUG
1115 static void
dbuf_verify(dmu_buf_impl_t * db)1116 dbuf_verify(dmu_buf_impl_t *db)
1117 {
1118 	dnode_t *dn;
1119 	dbuf_dirty_record_t *dr;
1120 	uint32_t txg_prev;
1121 
1122 	ASSERT(MUTEX_HELD(&db->db_mtx));
1123 
1124 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1125 		return;
1126 
1127 	ASSERT(db->db_objset != NULL);
1128 	DB_DNODE_ENTER(db);
1129 	dn = DB_DNODE(db);
1130 	if (dn == NULL) {
1131 		ASSERT0P(db->db_parent);
1132 		ASSERT0P(db->db_blkptr);
1133 	} else {
1134 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1135 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1136 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1137 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1138 		    db->db_blkid == DMU_SPILL_BLKID ||
1139 		    !avl_is_empty(&dn->dn_dbufs));
1140 	}
1141 	if (db->db_blkid == DMU_BONUS_BLKID) {
1142 		ASSERT(dn != NULL);
1143 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1144 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1145 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1146 		ASSERT(dn != NULL);
1147 		ASSERT0(db->db.db_offset);
1148 	} else {
1149 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1150 	}
1151 
1152 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1153 		ASSERT(dr->dr_dbuf == db);
1154 		txg_prev = dr->dr_txg;
1155 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1156 		    dr = list_next(&db->db_dirty_records, dr)) {
1157 			ASSERT(dr->dr_dbuf == db);
1158 			ASSERT(txg_prev > dr->dr_txg);
1159 			txg_prev = dr->dr_txg;
1160 		}
1161 	}
1162 
1163 	/*
1164 	 * We can't assert that db_size matches dn_datablksz because it
1165 	 * can be momentarily different when another thread is doing
1166 	 * dnode_set_blksz().
1167 	 */
1168 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1169 		dr = db->db_data_pending;
1170 		/*
1171 		 * It should only be modified in syncing context, so
1172 		 * make sure we only have one copy of the data.
1173 		 */
1174 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1175 	}
1176 
1177 	/* verify db->db_blkptr */
1178 	if (db->db_blkptr) {
1179 		if (db->db_parent == dn->dn_dbuf) {
1180 			/* db is pointed to by the dnode */
1181 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1182 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1183 				ASSERT0P(db->db_parent);
1184 			else
1185 				ASSERT(db->db_parent != NULL);
1186 			if (db->db_blkid != DMU_SPILL_BLKID)
1187 				ASSERT3P(db->db_blkptr, ==,
1188 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1189 		} else {
1190 			/* db is pointed to by an indirect block */
1191 			int epb __maybe_unused = db->db_parent->db.db_size >>
1192 			    SPA_BLKPTRSHIFT;
1193 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1194 			ASSERT3U(db->db_parent->db.db_object, ==,
1195 			    db->db.db_object);
1196 			ASSERT3P(db->db_blkptr, ==,
1197 			    ((blkptr_t *)db->db_parent->db.db_data +
1198 			    db->db_blkid % epb));
1199 		}
1200 	}
1201 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1202 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1203 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1204 	    db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1205 		/*
1206 		 * If the blkptr isn't set but they have nonzero data,
1207 		 * it had better be dirty, otherwise we'll lose that
1208 		 * data when we evict this buffer.
1209 		 *
1210 		 * There is an exception to this rule for indirect blocks; in
1211 		 * this case, if the indirect block is a hole, we fill in a few
1212 		 * fields on each of the child blocks (importantly, birth time)
1213 		 * to prevent hole birth times from being lost when you
1214 		 * partially fill in a hole.
1215 		 */
1216 		if (db->db_dirtycnt == 0) {
1217 			if (db->db_level == 0) {
1218 				uint64_t *buf = db->db.db_data;
1219 				int i;
1220 
1221 				for (i = 0; i < db->db.db_size >> 3; i++) {
1222 					ASSERT0(buf[i]);
1223 				}
1224 			} else {
1225 				blkptr_t *bps = db->db.db_data;
1226 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1227 				    db->db.db_size);
1228 				/*
1229 				 * We want to verify that all the blkptrs in the
1230 				 * indirect block are holes, but we may have
1231 				 * automatically set up a few fields for them.
1232 				 * We iterate through each blkptr and verify
1233 				 * they only have those fields set.
1234 				 */
1235 				for (int i = 0;
1236 				    i < db->db.db_size / sizeof (blkptr_t);
1237 				    i++) {
1238 					blkptr_t *bp = &bps[i];
1239 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1240 					    &bp->blk_cksum));
1241 					ASSERT(
1242 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1243 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1244 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1245 					ASSERT0(bp->blk_fill);
1246 					ASSERT(!BP_IS_EMBEDDED(bp));
1247 					ASSERT(BP_IS_HOLE(bp));
1248 					ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp));
1249 				}
1250 			}
1251 		}
1252 	}
1253 	DB_DNODE_EXIT(db);
1254 }
1255 #endif
1256 
1257 static void
dbuf_clear_data(dmu_buf_impl_t * db)1258 dbuf_clear_data(dmu_buf_impl_t *db)
1259 {
1260 	ASSERT(MUTEX_HELD(&db->db_mtx));
1261 	dbuf_evict_user(db);
1262 	ASSERT0P(db->db_buf);
1263 	db->db.db_data = NULL;
1264 	if (db->db_state != DB_NOFILL) {
1265 		db->db_state = DB_UNCACHED;
1266 		DTRACE_SET_STATE(db, "clear data");
1267 	}
1268 }
1269 
1270 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)1271 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1272 {
1273 	ASSERT(MUTEX_HELD(&db->db_mtx));
1274 	ASSERT(buf != NULL);
1275 
1276 	db->db_buf = buf;
1277 	ASSERT(buf->b_data != NULL);
1278 	db->db.db_data = buf->b_data;
1279 }
1280 
1281 static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t * db)1282 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1283 {
1284 	spa_t *spa = db->db_objset->os_spa;
1285 
1286 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1287 }
1288 
1289 /*
1290  * Calculate which level n block references the data at the level 0 offset
1291  * provided.
1292  */
1293 uint64_t
dbuf_whichblock(const dnode_t * dn,const int64_t level,const uint64_t offset)1294 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1295 {
1296 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1297 		/*
1298 		 * The level n blkid is equal to the level 0 blkid divided by
1299 		 * the number of level 0s in a level n block.
1300 		 *
1301 		 * The level 0 blkid is offset >> datablkshift =
1302 		 * offset / 2^datablkshift.
1303 		 *
1304 		 * The number of level 0s in a level n is the number of block
1305 		 * pointers in an indirect block, raised to the power of level.
1306 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1307 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1308 		 *
1309 		 * Thus, the level n blkid is: offset /
1310 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1311 		 * = offset / 2^(datablkshift + level *
1312 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1313 		 * = offset >> (datablkshift + level *
1314 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1315 		 */
1316 
1317 		const unsigned exp = dn->dn_datablkshift +
1318 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1319 
1320 		if (exp >= 8 * sizeof (offset)) {
1321 			/* This only happens on the highest indirection level */
1322 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1323 			return (0);
1324 		}
1325 
1326 		ASSERT3U(exp, <, 8 * sizeof (offset));
1327 
1328 		return (offset >> exp);
1329 	} else {
1330 		ASSERT3U(offset, <, dn->dn_datablksz);
1331 		return (0);
1332 	}
1333 }
1334 
1335 /*
1336  * This function is used to lock the parent of the provided dbuf. This should be
1337  * used when modifying or reading db_blkptr.
1338  */
1339 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,const void * tag)1340 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1341 {
1342 	enum db_lock_type ret = DLT_NONE;
1343 	if (db->db_parent != NULL) {
1344 		rw_enter(&db->db_parent->db_rwlock, rw);
1345 		ret = DLT_PARENT;
1346 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1347 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1348 		    tag);
1349 		ret = DLT_OBJSET;
1350 	}
1351 	/*
1352 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1353 	 * of the meta-dnode of the MOS.
1354 	 */
1355 	return (ret);
1356 }
1357 
1358 /*
1359  * We need to pass the lock type in because it's possible that the block will
1360  * move from being the topmost indirect block in a dnode (and thus, have no
1361  * parent) to not the top-most via an indirection increase. This would cause a
1362  * panic if we didn't pass the lock type in.
1363  */
1364 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,const void * tag)1365 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1366 {
1367 	if (type == DLT_PARENT)
1368 		rw_exit(&db->db_parent->db_rwlock);
1369 	else if (type == DLT_OBJSET)
1370 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1371 }
1372 
1373 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)1374 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1375     arc_buf_t *buf, void *vdb)
1376 {
1377 	(void) zb, (void) bp;
1378 	dmu_buf_impl_t *db = vdb;
1379 
1380 	mutex_enter(&db->db_mtx);
1381 	ASSERT3U(db->db_state, ==, DB_READ);
1382 
1383 	/*
1384 	 * All reads are synchronous, so we must have a hold on the dbuf
1385 	 */
1386 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1387 	ASSERT0P(db->db_buf);
1388 	ASSERT0P(db->db.db_data);
1389 	if (buf == NULL) {
1390 		/* i/o error */
1391 		ASSERT(zio == NULL || zio->io_error != 0);
1392 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1393 		ASSERT0P(db->db_buf);
1394 		db->db_state = DB_UNCACHED;
1395 		DTRACE_SET_STATE(db, "i/o error");
1396 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1397 		/* freed in flight */
1398 		ASSERT(zio == NULL || zio->io_error == 0);
1399 		arc_release(buf, db);
1400 		memset(buf->b_data, 0, db->db.db_size);
1401 		arc_buf_freeze(buf);
1402 		db->db_freed_in_flight = FALSE;
1403 		dbuf_set_data(db, buf);
1404 		db->db_state = DB_CACHED;
1405 		DTRACE_SET_STATE(db, "freed in flight");
1406 	} else {
1407 		/* success */
1408 		ASSERT(zio == NULL || zio->io_error == 0);
1409 		dbuf_set_data(db, buf);
1410 		db->db_state = DB_CACHED;
1411 		DTRACE_SET_STATE(db, "successful read");
1412 	}
1413 	cv_broadcast(&db->db_changed);
1414 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1415 }
1416 
1417 /*
1418  * Shortcut for performing reads on bonus dbufs.  Returns
1419  * an error if we fail to verify the dnode associated with
1420  * a decrypted block. Otherwise success.
1421  */
1422 static int
dbuf_read_bonus(dmu_buf_impl_t * db,dnode_t * dn)1423 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1424 {
1425 	void* db_data;
1426 	int bonuslen, max_bonuslen;
1427 
1428 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1429 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1430 	ASSERT(MUTEX_HELD(&db->db_mtx));
1431 	ASSERT(DB_DNODE_HELD(db));
1432 	ASSERT3U(bonuslen, <=, db->db.db_size);
1433 	db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1434 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1435 	if (bonuslen < max_bonuslen)
1436 		memset(db_data, 0, max_bonuslen);
1437 	if (bonuslen)
1438 		memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen);
1439 	db->db.db_data = db_data;
1440 	db->db_state = DB_CACHED;
1441 	DTRACE_SET_STATE(db, "bonus buffer filled");
1442 	return (0);
1443 }
1444 
1445 static void
dbuf_handle_indirect_hole(void * data,dnode_t * dn,blkptr_t * dbbp)1446 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp)
1447 {
1448 	blkptr_t *bps = data;
1449 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1450 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1451 
1452 	for (int i = 0; i < n_bps; i++) {
1453 		blkptr_t *bp = &bps[i];
1454 
1455 		ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1456 		BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1457 		    dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1458 		BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1459 		BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1460 		BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1461 	}
1462 }
1463 
1464 /*
1465  * Handle reads on dbufs that are holes, if necessary.  This function
1466  * requires that the dbuf's mutex is held. Returns success (0) if action
1467  * was taken, ENOENT if no action was taken.
1468  */
1469 static int
dbuf_read_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * bp)1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1471 {
1472 	ASSERT(MUTEX_HELD(&db->db_mtx));
1473 	arc_buf_t *db_data;
1474 
1475 	int is_hole = bp == NULL || BP_IS_HOLE(bp);
1476 	/*
1477 	 * For level 0 blocks only, if the above check fails:
1478 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1479 	 * processes the delete record and clears the bp while we are waiting
1480 	 * for the dn_mtx (resulting in a "no" from block_freed).
1481 	 */
1482 	if (!is_hole && db->db_level == 0)
1483 		is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1484 
1485 	if (is_hole) {
1486 		db_data = dbuf_alloc_arcbuf(db);
1487 		memset(db_data->b_data, 0, db->db.db_size);
1488 
1489 		if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1490 		    BP_GET_LOGICAL_BIRTH(bp) != 0) {
1491 			dbuf_handle_indirect_hole(db_data->b_data, dn, bp);
1492 		}
1493 		dbuf_set_data(db, db_data);
1494 		db->db_state = DB_CACHED;
1495 		DTRACE_SET_STATE(db, "hole read satisfied");
1496 		return (0);
1497 	}
1498 	return (ENOENT);
1499 }
1500 
1501 /*
1502  * This function ensures that, when doing a decrypting read of a block,
1503  * we make sure we have decrypted the dnode associated with it. We must do
1504  * this so that we ensure we are fully authenticating the checksum-of-MACs
1505  * tree from the root of the objset down to this block. Indirect blocks are
1506  * always verified against their secure checksum-of-MACs assuming that the
1507  * dnode containing them is correct. Now that we are doing a decrypting read,
1508  * we can be sure that the key is loaded and verify that assumption. This is
1509  * especially important considering that we always read encrypted dnode
1510  * blocks as raw data (without verifying their MACs) to start, and
1511  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1512  */
1513 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,dnode_t * dn,dmu_flags_t flags)1514 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn,
1515     dmu_flags_t flags)
1516 {
1517 	objset_t *os = db->db_objset;
1518 	dmu_buf_impl_t *dndb;
1519 	arc_buf_t *dnbuf;
1520 	zbookmark_phys_t zb;
1521 	int err;
1522 
1523 	if ((flags & DMU_READ_NO_DECRYPT) != 0 ||
1524 	    !os->os_encrypted || os->os_raw_receive ||
1525 	    (dndb = dn->dn_dbuf) == NULL)
1526 		return (0);
1527 
1528 	dnbuf = dndb->db_buf;
1529 	if (!arc_is_encrypted(dnbuf))
1530 		return (0);
1531 
1532 	mutex_enter(&dndb->db_mtx);
1533 
1534 	/*
1535 	 * Since dnode buffer is modified by sync process, there can be only
1536 	 * one copy of it.  It means we can not modify (decrypt) it while it
1537 	 * is being written.  I don't see how this may happen now, since
1538 	 * encrypted dnode writes by receive should be completed before any
1539 	 * plain-text reads due to txg wait, but better be safe than sorry.
1540 	 */
1541 	while (1) {
1542 		if (!arc_is_encrypted(dnbuf)) {
1543 			mutex_exit(&dndb->db_mtx);
1544 			return (0);
1545 		}
1546 		dbuf_dirty_record_t *dr = dndb->db_data_pending;
1547 		if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1548 			break;
1549 		cv_wait(&dndb->db_changed, &dndb->db_mtx);
1550 	};
1551 
1552 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1553 	    DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1554 	err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1555 
1556 	/*
1557 	 * An error code of EACCES tells us that the key is still not
1558 	 * available. This is ok if we are only reading authenticated
1559 	 * (and therefore non-encrypted) blocks.
1560 	 */
1561 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1562 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1563 	    (db->db_blkid == DMU_BONUS_BLKID &&
1564 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1565 		err = 0;
1566 
1567 	mutex_exit(&dndb->db_mtx);
1568 
1569 	return (err);
1570 }
1571 
1572 /*
1573  * Drops db_mtx and the parent lock specified by dblt and tag before
1574  * returning.
1575  */
1576 static int
dbuf_read_impl(dmu_buf_impl_t * db,dnode_t * dn,zio_t * zio,dmu_flags_t flags,db_lock_type_t dblt,blkptr_t * bp,const void * tag)1577 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags,
1578     db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1579 {
1580 	zbookmark_phys_t zb;
1581 	uint32_t aflags = ARC_FLAG_NOWAIT;
1582 	int err, zio_flags;
1583 
1584 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1585 	ASSERT(MUTEX_HELD(&db->db_mtx));
1586 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1587 	ASSERT0P(db->db_buf);
1588 	ASSERT(db->db_parent == NULL ||
1589 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1590 
1591 	if (db->db_blkid == DMU_BONUS_BLKID) {
1592 		err = dbuf_read_bonus(db, dn);
1593 		goto early_unlock;
1594 	}
1595 
1596 	err = dbuf_read_hole(db, dn, bp);
1597 	if (err == 0)
1598 		goto early_unlock;
1599 
1600 	ASSERT(bp != NULL);
1601 
1602 	/*
1603 	 * Any attempt to read a redacted block should result in an error. This
1604 	 * will never happen under normal conditions, but can be useful for
1605 	 * debugging purposes.
1606 	 */
1607 	if (BP_IS_REDACTED(bp)) {
1608 		ASSERT(dsl_dataset_feature_is_active(
1609 		    db->db_objset->os_dsl_dataset,
1610 		    SPA_FEATURE_REDACTED_DATASETS));
1611 		err = SET_ERROR(EIO);
1612 		goto early_unlock;
1613 	}
1614 
1615 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1616 	    db->db.db_object, db->db_level, db->db_blkid);
1617 
1618 	/*
1619 	 * All bps of an encrypted os should have the encryption bit set.
1620 	 * If this is not true it indicates tampering and we report an error.
1621 	 */
1622 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1623 		spa_log_error(db->db_objset->os_spa, &zb,
1624 		    BP_GET_PHYSICAL_BIRTH(bp));
1625 		err = SET_ERROR(EIO);
1626 		goto early_unlock;
1627 	}
1628 
1629 	db->db_state = DB_READ;
1630 	DTRACE_SET_STATE(db, "read issued");
1631 	mutex_exit(&db->db_mtx);
1632 
1633 	if (!DBUF_IS_CACHEABLE(db))
1634 		aflags |= ARC_FLAG_UNCACHED;
1635 	else if (dbuf_is_l2cacheable(db, bp))
1636 		aflags |= ARC_FLAG_L2CACHE;
1637 
1638 	dbuf_add_ref(db, NULL);
1639 
1640 	zio_flags = (flags & DB_RF_CANFAIL) ?
1641 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1642 
1643 	if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1644 		zio_flags |= ZIO_FLAG_RAW;
1645 
1646 	/*
1647 	 * The zio layer will copy the provided blkptr later, but we need to
1648 	 * do this now so that we can release the parent's rwlock. We have to
1649 	 * do that now so that if dbuf_read_done is called synchronously (on
1650 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1651 	 * parent's rwlock, which would be a lock ordering violation.
1652 	 */
1653 	blkptr_t copy = *bp;
1654 	dmu_buf_unlock_parent(db, dblt, tag);
1655 	return (arc_read(zio, db->db_objset->os_spa, &copy,
1656 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1657 	    &aflags, &zb));
1658 
1659 early_unlock:
1660 	mutex_exit(&db->db_mtx);
1661 	dmu_buf_unlock_parent(db, dblt, tag);
1662 	return (err);
1663 }
1664 
1665 /*
1666  * This is our just-in-time copy function.  It makes a copy of buffers that
1667  * have been modified in a previous transaction group before we access them in
1668  * the current active group.
1669  *
1670  * This function is used in three places: when we are dirtying a buffer for the
1671  * first time in a txg, when we are freeing a range in a dnode that includes
1672  * this buffer, and when we are accessing a buffer which was received compressed
1673  * and later referenced in a WRITE_BYREF record.
1674  *
1675  * Note that when we are called from dbuf_free_range() we do not put a hold on
1676  * the buffer, we just traverse the active dbuf list for the dnode.
1677  */
1678 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1679 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1680 {
1681 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1682 
1683 	ASSERT(MUTEX_HELD(&db->db_mtx));
1684 	ASSERT(db->db.db_data != NULL);
1685 	ASSERT0(db->db_level);
1686 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1687 
1688 	if (dr == NULL ||
1689 	    (dr->dt.dl.dr_data !=
1690 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1691 		return;
1692 
1693 	/*
1694 	 * If the last dirty record for this dbuf has not yet synced
1695 	 * and its referencing the dbuf data, either:
1696 	 *	reset the reference to point to a new copy,
1697 	 * or (if there a no active holders)
1698 	 *	just null out the current db_data pointer.
1699 	 */
1700 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1701 	if (db->db_blkid == DMU_BONUS_BLKID) {
1702 		dnode_t *dn = DB_DNODE(db);
1703 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1704 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1705 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1706 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1707 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1708 		dnode_t *dn = DB_DNODE(db);
1709 		int size = arc_buf_size(db->db_buf);
1710 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1711 		spa_t *spa = db->db_objset->os_spa;
1712 		enum zio_compress compress_type =
1713 		    arc_get_compression(db->db_buf);
1714 		uint8_t complevel = arc_get_complevel(db->db_buf);
1715 
1716 		if (arc_is_encrypted(db->db_buf)) {
1717 			boolean_t byteorder;
1718 			uint8_t salt[ZIO_DATA_SALT_LEN];
1719 			uint8_t iv[ZIO_DATA_IV_LEN];
1720 			uint8_t mac[ZIO_DATA_MAC_LEN];
1721 
1722 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1723 			    iv, mac);
1724 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1725 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1726 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1727 			    compress_type, complevel);
1728 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1729 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1730 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1731 			    size, arc_buf_lsize(db->db_buf), compress_type,
1732 			    complevel);
1733 		} else {
1734 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1735 		}
1736 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1737 	} else {
1738 		db->db_buf = NULL;
1739 		dbuf_clear_data(db);
1740 	}
1741 }
1742 
1743 int
dbuf_read(dmu_buf_impl_t * db,zio_t * pio,dmu_flags_t flags)1744 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags)
1745 {
1746 	dnode_t *dn;
1747 	boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1748 	int err;
1749 
1750 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1751 
1752 	DB_DNODE_ENTER(db);
1753 	dn = DB_DNODE(db);
1754 
1755 	/*
1756 	 * Ensure that this block's dnode has been decrypted if the caller
1757 	 * has requested decrypted data.
1758 	 */
1759 	err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1760 	if (err != 0)
1761 		goto done;
1762 
1763 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1764 	    (flags & DMU_READ_NO_PREFETCH) == 0;
1765 
1766 	mutex_enter(&db->db_mtx);
1767 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1768 		db->db_pending_evict = B_FALSE;
1769 	if (flags & DMU_PARTIAL_FIRST)
1770 		db->db_partial_read = B_TRUE;
1771 	else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING)))
1772 		db->db_partial_read = B_FALSE;
1773 	miss = (db->db_state != DB_CACHED);
1774 
1775 	if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1776 		/*
1777 		 * Another reader came in while the dbuf was in flight between
1778 		 * UNCACHED and CACHED.  Either a writer will finish filling
1779 		 * the buffer, sending the dbuf to CACHED, or the first reader's
1780 		 * request will reach the read_done callback and send the dbuf
1781 		 * to CACHED.  Otherwise, a failure occurred and the dbuf will
1782 		 * be sent to UNCACHED.
1783 		 */
1784 		if (flags & DB_RF_NEVERWAIT) {
1785 			mutex_exit(&db->db_mtx);
1786 			DB_DNODE_EXIT(db);
1787 			goto done;
1788 		}
1789 		do {
1790 			ASSERT(db->db_state == DB_READ ||
1791 			    (flags & DB_RF_HAVESTRUCT) == 0);
1792 			DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1793 			    zio_t *, pio);
1794 			cv_wait(&db->db_changed, &db->db_mtx);
1795 		} while (db->db_state == DB_READ || db->db_state == DB_FILL);
1796 		if (db->db_state == DB_UNCACHED) {
1797 			err = SET_ERROR(EIO);
1798 			mutex_exit(&db->db_mtx);
1799 			DB_DNODE_EXIT(db);
1800 			goto done;
1801 		}
1802 	}
1803 
1804 	if (db->db_state == DB_CACHED) {
1805 		/*
1806 		 * If the arc buf is compressed or encrypted and the caller
1807 		 * requested uncompressed data, we need to untransform it
1808 		 * before returning. We also call arc_untransform() on any
1809 		 * unauthenticated blocks, which will verify their MAC if
1810 		 * the key is now available.
1811 		 */
1812 		if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1813 		    (arc_is_encrypted(db->db_buf) ||
1814 		    arc_is_unauthenticated(db->db_buf) ||
1815 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1816 			spa_t *spa = dn->dn_objset->os_spa;
1817 			zbookmark_phys_t zb;
1818 
1819 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1820 			    db->db.db_object, db->db_level, db->db_blkid);
1821 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1822 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1823 			dbuf_set_data(db, db->db_buf);
1824 		}
1825 		mutex_exit(&db->db_mtx);
1826 	} else {
1827 		ASSERT(db->db_state == DB_UNCACHED ||
1828 		    db->db_state == DB_NOFILL);
1829 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1830 		blkptr_t *bp;
1831 
1832 		/*
1833 		 * If a block clone or Direct I/O write has occurred we will
1834 		 * get the dirty records overridden BP so we get the most
1835 		 * recent data.
1836 		 */
1837 		err = dmu_buf_get_bp_from_dbuf(db, &bp);
1838 
1839 		if (!err) {
1840 			if (pio == NULL && (db->db_state == DB_NOFILL ||
1841 			    (bp != NULL && !BP_IS_HOLE(bp)))) {
1842 				spa_t *spa = dn->dn_objset->os_spa;
1843 				pio =
1844 				    zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1845 				need_wait = B_TRUE;
1846 			}
1847 
1848 			err =
1849 			    dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1850 		} else {
1851 			mutex_exit(&db->db_mtx);
1852 			dmu_buf_unlock_parent(db, dblt, FTAG);
1853 		}
1854 		/* dbuf_read_impl drops db_mtx and parent's rwlock. */
1855 		miss = (db->db_state != DB_CACHED);
1856 	}
1857 
1858 	if (err == 0 && prefetch) {
1859 		dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1860 		    flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) ||
1861 		    db->db_pending_evict);
1862 	}
1863 	DB_DNODE_EXIT(db);
1864 
1865 	/*
1866 	 * If we created a zio we must execute it to avoid leaking it, even if
1867 	 * it isn't attached to any work due to an error in dbuf_read_impl().
1868 	 */
1869 	if (need_wait) {
1870 		if (err == 0)
1871 			err = zio_wait(pio);
1872 		else
1873 			(void) zio_wait(pio);
1874 		pio = NULL;
1875 	}
1876 
1877 done:
1878 	if (miss)
1879 		DBUF_STAT_BUMP(hash_misses);
1880 	else
1881 		DBUF_STAT_BUMP(hash_hits);
1882 	if (pio && err != 0) {
1883 		zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1884 		    ZIO_FLAG_CANFAIL);
1885 		zio->io_error = err;
1886 		zio_nowait(zio);
1887 	}
1888 
1889 	return (err);
1890 }
1891 
1892 static void
dbuf_noread(dmu_buf_impl_t * db,dmu_flags_t flags)1893 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags)
1894 {
1895 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1896 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897 	mutex_enter(&db->db_mtx);
1898 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1899 		db->db_pending_evict = B_FALSE;
1900 	db->db_partial_read = B_FALSE;
1901 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1902 		cv_wait(&db->db_changed, &db->db_mtx);
1903 	if (db->db_state == DB_UNCACHED) {
1904 		ASSERT0P(db->db_buf);
1905 		ASSERT0P(db->db.db_data);
1906 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1907 		db->db_state = DB_FILL;
1908 		DTRACE_SET_STATE(db, "assigning filled buffer");
1909 	} else if (db->db_state == DB_NOFILL) {
1910 		dbuf_clear_data(db);
1911 	} else {
1912 		ASSERT3U(db->db_state, ==, DB_CACHED);
1913 	}
1914 	mutex_exit(&db->db_mtx);
1915 }
1916 
1917 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1918 dbuf_unoverride(dbuf_dirty_record_t *dr)
1919 {
1920 	dmu_buf_impl_t *db = dr->dr_dbuf;
1921 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1922 	uint64_t txg = dr->dr_txg;
1923 
1924 	ASSERT(MUTEX_HELD(&db->db_mtx));
1925 
1926 	/*
1927 	 * This assert is valid because dmu_sync() expects to be called by
1928 	 * a zilog's get_data while holding a range lock.  This call only
1929 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1930 	 */
1931 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1932 	ASSERT0(db->db_level);
1933 
1934 	if (db->db_blkid == DMU_BONUS_BLKID ||
1935 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1936 		return;
1937 
1938 	ASSERT(db->db_data_pending != dr);
1939 
1940 	/* free this block */
1941 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1942 		zio_free(db->db_objset->os_spa, txg, bp);
1943 
1944 	if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1945 		ASSERT0P(dr->dt.dl.dr_data);
1946 		dr->dt.dl.dr_data = db->db_buf;
1947 	}
1948 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1949 	dr->dt.dl.dr_nopwrite = B_FALSE;
1950 	dr->dt.dl.dr_brtwrite = B_FALSE;
1951 	dr->dt.dl.dr_diowrite = B_FALSE;
1952 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1953 
1954 	/*
1955 	 * In the event that Direct I/O was used, we do not
1956 	 * need to release the buffer from the ARC.
1957 	 *
1958 	 * Release the already-written buffer, so we leave it in
1959 	 * a consistent dirty state.  Note that all callers are
1960 	 * modifying the buffer, so they will immediately do
1961 	 * another (redundant) arc_release().  Therefore, leave
1962 	 * the buf thawed to save the effort of freezing &
1963 	 * immediately re-thawing it.
1964 	 */
1965 	if (dr->dt.dl.dr_data)
1966 		arc_release(dr->dt.dl.dr_data, db);
1967 }
1968 
1969 /*
1970  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1971  * data blocks in the free range, so that any future readers will find
1972  * empty blocks.
1973  */
1974 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1975 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1976     dmu_tx_t *tx)
1977 {
1978 	dmu_buf_impl_t *db_search;
1979 	dmu_buf_impl_t *db, *db_next;
1980 	uint64_t txg = tx->tx_txg;
1981 	avl_index_t where;
1982 	dbuf_dirty_record_t *dr;
1983 
1984 	if (end_blkid > dn->dn_maxblkid &&
1985 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1986 		end_blkid = dn->dn_maxblkid;
1987 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1988 	    (u_longlong_t)end_blkid);
1989 
1990 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1991 	db_search->db_level = 0;
1992 	db_search->db_blkid = start_blkid;
1993 	db_search->db_state = DB_SEARCH;
1994 
1995 	mutex_enter(&dn->dn_dbufs_mtx);
1996 	db = avl_find(&dn->dn_dbufs, db_search, &where);
1997 	ASSERT0P(db);
1998 
1999 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2000 
2001 	for (; db != NULL; db = db_next) {
2002 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
2003 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2004 
2005 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
2006 			break;
2007 		}
2008 		ASSERT3U(db->db_blkid, >=, start_blkid);
2009 
2010 		/* found a level 0 buffer in the range */
2011 		mutex_enter(&db->db_mtx);
2012 		if (dbuf_undirty(db, tx)) {
2013 			/* mutex has been dropped and dbuf destroyed */
2014 			continue;
2015 		}
2016 
2017 		if (db->db_state == DB_UNCACHED ||
2018 		    db->db_state == DB_NOFILL ||
2019 		    db->db_state == DB_EVICTING) {
2020 			ASSERT0P(db->db.db_data);
2021 			mutex_exit(&db->db_mtx);
2022 			continue;
2023 		}
2024 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2025 			/* will be handled in dbuf_read_done or dbuf_rele */
2026 			db->db_freed_in_flight = TRUE;
2027 			mutex_exit(&db->db_mtx);
2028 			continue;
2029 		}
2030 		if (zfs_refcount_count(&db->db_holds) == 0) {
2031 			ASSERT(db->db_buf);
2032 			dbuf_destroy(db);
2033 			continue;
2034 		}
2035 		/* The dbuf is referenced */
2036 
2037 		dr = list_head(&db->db_dirty_records);
2038 		if (dr != NULL) {
2039 			if (dr->dr_txg == txg) {
2040 				/*
2041 				 * This buffer is "in-use", re-adjust the file
2042 				 * size to reflect that this buffer may
2043 				 * contain new data when we sync.
2044 				 */
2045 				if (db->db_blkid != DMU_SPILL_BLKID &&
2046 				    db->db_blkid > dn->dn_maxblkid)
2047 					dn->dn_maxblkid = db->db_blkid;
2048 				dbuf_unoverride(dr);
2049 			} else {
2050 				/*
2051 				 * This dbuf is not dirty in the open context.
2052 				 * Either uncache it (if its not referenced in
2053 				 * the open context) or reset its contents to
2054 				 * empty.
2055 				 */
2056 				dbuf_fix_old_data(db, txg);
2057 			}
2058 		}
2059 		/* clear the contents if its cached */
2060 		if (db->db_state == DB_CACHED) {
2061 			ASSERT(db->db.db_data != NULL);
2062 			arc_release(db->db_buf, db);
2063 			rw_enter(&db->db_rwlock, RW_WRITER);
2064 			memset(db->db.db_data, 0, db->db.db_size);
2065 			rw_exit(&db->db_rwlock);
2066 			arc_buf_freeze(db->db_buf);
2067 		}
2068 
2069 		mutex_exit(&db->db_mtx);
2070 	}
2071 
2072 	mutex_exit(&dn->dn_dbufs_mtx);
2073 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2074 }
2075 
2076 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)2077 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2078 {
2079 	arc_buf_t *buf, *old_buf;
2080 	dbuf_dirty_record_t *dr;
2081 	int osize = db->db.db_size;
2082 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2083 	dnode_t *dn;
2084 
2085 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2086 
2087 	DB_DNODE_ENTER(db);
2088 	dn = DB_DNODE(db);
2089 
2090 	/*
2091 	 * XXX we should be doing a dbuf_read, checking the return
2092 	 * value and returning that up to our callers
2093 	 */
2094 	dmu_buf_will_dirty(&db->db, tx);
2095 
2096 	VERIFY3P(db->db_buf, !=, NULL);
2097 
2098 	/* create the data buffer for the new block */
2099 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2100 
2101 	/* copy old block data to the new block */
2102 	old_buf = db->db_buf;
2103 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2104 	/* zero the remainder */
2105 	if (size > osize)
2106 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2107 
2108 	mutex_enter(&db->db_mtx);
2109 	dbuf_set_data(db, buf);
2110 	arc_buf_destroy(old_buf, db);
2111 	db->db.db_size = size;
2112 
2113 	dr = list_head(&db->db_dirty_records);
2114 	/* dirty record added by dmu_buf_will_dirty() */
2115 	VERIFY(dr != NULL);
2116 	if (db->db_level == 0)
2117 		dr->dt.dl.dr_data = buf;
2118 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2119 	ASSERT3U(dr->dr_accounted, ==, osize);
2120 	dr->dr_accounted = size;
2121 	mutex_exit(&db->db_mtx);
2122 
2123 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2124 	DB_DNODE_EXIT(db);
2125 }
2126 
2127 void
dbuf_release_bp(dmu_buf_impl_t * db)2128 dbuf_release_bp(dmu_buf_impl_t *db)
2129 {
2130 	objset_t *os __maybe_unused = db->db_objset;
2131 
2132 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2133 	ASSERT(arc_released(os->os_phys_buf) ||
2134 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2135 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2136 
2137 	(void) arc_release(db->db_buf, db);
2138 }
2139 
2140 /*
2141  * We already have a dirty record for this TXG, and we are being
2142  * dirtied again.
2143  */
2144 static void
dbuf_redirty(dbuf_dirty_record_t * dr)2145 dbuf_redirty(dbuf_dirty_record_t *dr)
2146 {
2147 	dmu_buf_impl_t *db = dr->dr_dbuf;
2148 
2149 	ASSERT(MUTEX_HELD(&db->db_mtx));
2150 
2151 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2152 		/*
2153 		 * If this buffer has already been written out,
2154 		 * we now need to reset its state.
2155 		 */
2156 		dbuf_unoverride(dr);
2157 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2158 		    db->db_state != DB_NOFILL) {
2159 			/* Already released on initial dirty, so just thaw. */
2160 			ASSERT(arc_released(db->db_buf));
2161 			arc_buf_thaw(db->db_buf);
2162 		}
2163 
2164 		/*
2165 		 * Clear the rewrite flag since this is now a logical
2166 		 * modification.
2167 		 */
2168 		dr->dt.dl.dr_rewrite = B_FALSE;
2169 	}
2170 }
2171 
2172 dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx)2173 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2174 {
2175 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2176 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2177 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2178 	ASSERT(dn->dn_maxblkid >= blkid);
2179 
2180 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2181 	list_link_init(&dr->dr_dirty_node);
2182 	list_link_init(&dr->dr_dbuf_node);
2183 	dr->dr_dnode = dn;
2184 	dr->dr_txg = tx->tx_txg;
2185 	dr->dt.dll.dr_blkid = blkid;
2186 	dr->dr_accounted = dn->dn_datablksz;
2187 
2188 	/*
2189 	 * There should not be any dbuf for the block that we're dirtying.
2190 	 * Otherwise the buffer contents could be inconsistent between the
2191 	 * dbuf and the lightweight dirty record.
2192 	 */
2193 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2194 	    NULL));
2195 
2196 	mutex_enter(&dn->dn_mtx);
2197 	int txgoff = tx->tx_txg & TXG_MASK;
2198 	if (dn->dn_free_ranges[txgoff] != NULL) {
2199 		zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2200 	}
2201 
2202 	if (dn->dn_nlevels == 1) {
2203 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2204 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2205 		mutex_exit(&dn->dn_mtx);
2206 		rw_exit(&dn->dn_struct_rwlock);
2207 		dnode_setdirty(dn, tx);
2208 	} else {
2209 		mutex_exit(&dn->dn_mtx);
2210 
2211 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2212 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2213 		    1, blkid >> epbs, FTAG);
2214 		rw_exit(&dn->dn_struct_rwlock);
2215 		if (parent_db == NULL) {
2216 			kmem_free(dr, sizeof (*dr));
2217 			return (NULL);
2218 		}
2219 		int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL |
2220 		    DMU_READ_NO_PREFETCH);
2221 		if (err != 0) {
2222 			dbuf_rele(parent_db, FTAG);
2223 			kmem_free(dr, sizeof (*dr));
2224 			return (NULL);
2225 		}
2226 
2227 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2228 		dbuf_rele(parent_db, FTAG);
2229 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2230 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2231 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2232 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2233 		dr->dr_parent = parent_dr;
2234 	}
2235 
2236 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2237 
2238 	return (dr);
2239 }
2240 
2241 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2242 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2243 {
2244 	dnode_t *dn;
2245 	objset_t *os;
2246 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2247 	int txgoff = tx->tx_txg & TXG_MASK;
2248 	boolean_t drop_struct_rwlock = B_FALSE;
2249 
2250 	ASSERT(tx->tx_txg != 0);
2251 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2252 	DMU_TX_DIRTY_BUF(tx, db);
2253 
2254 	DB_DNODE_ENTER(db);
2255 	dn = DB_DNODE(db);
2256 	/*
2257 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2258 	 * objects may be dirtied in syncing context, but only if they
2259 	 * were already pre-dirtied in open context.
2260 	 */
2261 #ifdef ZFS_DEBUG
2262 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2263 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2264 		    RW_READER, FTAG);
2265 	}
2266 	ASSERT(!dmu_tx_is_syncing(tx) ||
2267 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2268 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2269 	    dn->dn_objset->os_dsl_dataset == NULL);
2270 	if (dn->dn_objset->os_dsl_dataset != NULL)
2271 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2272 #endif
2273 
2274 	mutex_enter(&db->db_mtx);
2275 	/*
2276 	 * XXX make this true for indirects too?  The problem is that
2277 	 * transactions created with dmu_tx_create_assigned() from
2278 	 * syncing context don't bother holding ahead.
2279 	 */
2280 	ASSERT(db->db_level != 0 ||
2281 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2282 	    db->db_state == DB_NOFILL);
2283 
2284 	if (db->db_blkid == DMU_SPILL_BLKID)
2285 		dn->dn_have_spill = B_TRUE;
2286 
2287 	/*
2288 	 * If this buffer is already dirty, we're done.
2289 	 */
2290 	dr_head = list_head(&db->db_dirty_records);
2291 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2292 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2293 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2294 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2295 		DB_DNODE_EXIT(db);
2296 
2297 		dbuf_redirty(dr_next);
2298 		mutex_exit(&db->db_mtx);
2299 		return (dr_next);
2300 	}
2301 
2302 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2303 
2304 	/*
2305 	 * We should only be dirtying in syncing context if it's the
2306 	 * mos or we're initializing the os or it's a special object.
2307 	 * However, we are allowed to dirty in syncing context provided
2308 	 * we already dirtied it in open context.  Hence we must make
2309 	 * this assertion only if we're not already dirty.
2310 	 */
2311 	os = dn->dn_objset;
2312 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2313 #ifdef ZFS_DEBUG
2314 	if (dn->dn_objset->os_dsl_dataset != NULL)
2315 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2316 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2317 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2318 	if (dn->dn_objset->os_dsl_dataset != NULL)
2319 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2320 #endif
2321 	ASSERT(db->db.db_size != 0);
2322 
2323 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2324 
2325 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2326 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2327 	}
2328 
2329 	/*
2330 	 * If this buffer is dirty in an old transaction group we need
2331 	 * to make a copy of it so that the changes we make in this
2332 	 * transaction group won't leak out when we sync the older txg.
2333 	 */
2334 	dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2335 	memset(dr, 0, sizeof (*dr));
2336 	list_link_init(&dr->dr_dirty_node);
2337 	list_link_init(&dr->dr_dbuf_node);
2338 	dr->dr_dnode = dn;
2339 	if (db->db_level == 0) {
2340 		void *data_old = db->db_buf;
2341 
2342 		if (db->db_state != DB_NOFILL) {
2343 			if (db->db_blkid == DMU_BONUS_BLKID) {
2344 				dbuf_fix_old_data(db, tx->tx_txg);
2345 				data_old = db->db.db_data;
2346 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2347 				/*
2348 				 * Release the data buffer from the cache so
2349 				 * that we can modify it without impacting
2350 				 * possible other users of this cached data
2351 				 * block.  Note that indirect blocks and
2352 				 * private objects are not released until the
2353 				 * syncing state (since they are only modified
2354 				 * then).
2355 				 */
2356 				arc_release(db->db_buf, db);
2357 				dbuf_fix_old_data(db, tx->tx_txg);
2358 				data_old = db->db_buf;
2359 			}
2360 			ASSERT(data_old != NULL);
2361 		}
2362 		dr->dt.dl.dr_data = data_old;
2363 	} else {
2364 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2365 		list_create(&dr->dt.di.dr_children,
2366 		    sizeof (dbuf_dirty_record_t),
2367 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2368 	}
2369 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2370 		dr->dr_accounted = db->db.db_size;
2371 	}
2372 	dr->dr_dbuf = db;
2373 	dr->dr_txg = tx->tx_txg;
2374 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2375 
2376 	/*
2377 	 * We could have been freed_in_flight between the dbuf_noread
2378 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2379 	 * happened after the free.
2380 	 */
2381 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2382 	    db->db_blkid != DMU_SPILL_BLKID) {
2383 		mutex_enter(&dn->dn_mtx);
2384 		if (dn->dn_free_ranges[txgoff] != NULL) {
2385 			zfs_range_tree_clear(dn->dn_free_ranges[txgoff],
2386 			    db->db_blkid, 1);
2387 		}
2388 		mutex_exit(&dn->dn_mtx);
2389 		db->db_freed_in_flight = FALSE;
2390 	}
2391 
2392 	/*
2393 	 * This buffer is now part of this txg
2394 	 */
2395 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2396 	db->db_dirtycnt += 1;
2397 	ASSERT3U(db->db_dirtycnt, <=, 3);
2398 
2399 	mutex_exit(&db->db_mtx);
2400 
2401 	if (db->db_blkid == DMU_BONUS_BLKID ||
2402 	    db->db_blkid == DMU_SPILL_BLKID) {
2403 		mutex_enter(&dn->dn_mtx);
2404 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2405 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2406 		mutex_exit(&dn->dn_mtx);
2407 		dnode_setdirty(dn, tx);
2408 		DB_DNODE_EXIT(db);
2409 		return (dr);
2410 	}
2411 
2412 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2413 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2414 		drop_struct_rwlock = B_TRUE;
2415 	}
2416 
2417 	/*
2418 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2419 	 * when we get to syncing context we will need to decrement its
2420 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2421 	 * syncing context won't have to wait for the i/o.
2422 	 */
2423 	if (db->db_blkptr != NULL) {
2424 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2425 		ddt_prefetch(os->os_spa, db->db_blkptr);
2426 		dmu_buf_unlock_parent(db, dblt, FTAG);
2427 	}
2428 
2429 	/*
2430 	 * We need to hold the dn_struct_rwlock to make this assertion,
2431 	 * because it protects dn_phys / dn_next_nlevels from changing.
2432 	 */
2433 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2434 	    dn->dn_phys->dn_nlevels > db->db_level ||
2435 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2436 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2437 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2438 
2439 
2440 	if (db->db_level == 0) {
2441 		ASSERT(!db->db_objset->os_raw_receive ||
2442 		    dn->dn_maxblkid >= db->db_blkid);
2443 		dnode_new_blkid(dn, db->db_blkid, tx,
2444 		    drop_struct_rwlock, B_FALSE);
2445 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2446 	}
2447 
2448 	if (db->db_level+1 < dn->dn_nlevels) {
2449 		dmu_buf_impl_t *parent = db->db_parent;
2450 		dbuf_dirty_record_t *di;
2451 		int parent_held = FALSE;
2452 
2453 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2454 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2455 			parent = dbuf_hold_level(dn, db->db_level + 1,
2456 			    db->db_blkid >> epbs, FTAG);
2457 			ASSERT(parent != NULL);
2458 			parent_held = TRUE;
2459 		}
2460 		if (drop_struct_rwlock)
2461 			rw_exit(&dn->dn_struct_rwlock);
2462 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2463 		di = dbuf_dirty(parent, tx);
2464 		if (parent_held)
2465 			dbuf_rele(parent, FTAG);
2466 
2467 		mutex_enter(&db->db_mtx);
2468 		/*
2469 		 * Since we've dropped the mutex, it's possible that
2470 		 * dbuf_undirty() might have changed this out from under us.
2471 		 */
2472 		if (list_head(&db->db_dirty_records) == dr ||
2473 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2474 			mutex_enter(&di->dt.di.dr_mtx);
2475 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2476 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2477 			list_insert_tail(&di->dt.di.dr_children, dr);
2478 			mutex_exit(&di->dt.di.dr_mtx);
2479 			dr->dr_parent = di;
2480 		}
2481 		mutex_exit(&db->db_mtx);
2482 	} else {
2483 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2484 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2485 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2486 		mutex_enter(&dn->dn_mtx);
2487 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2488 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2489 		mutex_exit(&dn->dn_mtx);
2490 		if (drop_struct_rwlock)
2491 			rw_exit(&dn->dn_struct_rwlock);
2492 	}
2493 
2494 	dnode_setdirty(dn, tx);
2495 	DB_DNODE_EXIT(db);
2496 	return (dr);
2497 }
2498 
2499 static void
dbuf_undirty_bonus(dbuf_dirty_record_t * dr)2500 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2501 {
2502 	dmu_buf_impl_t *db = dr->dr_dbuf;
2503 
2504 	ASSERT(MUTEX_HELD(&db->db_mtx));
2505 	if (dr->dt.dl.dr_data != db->db.db_data) {
2506 		struct dnode *dn = dr->dr_dnode;
2507 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2508 
2509 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2510 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2511 	}
2512 	db->db_data_pending = NULL;
2513 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2514 	list_remove(&db->db_dirty_records, dr);
2515 	if (dr->dr_dbuf->db_level != 0) {
2516 		mutex_destroy(&dr->dt.di.dr_mtx);
2517 		list_destroy(&dr->dt.di.dr_children);
2518 	}
2519 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2520 	ASSERT3U(db->db_dirtycnt, >, 0);
2521 	db->db_dirtycnt -= 1;
2522 }
2523 
2524 /*
2525  * Undirty a buffer in the transaction group referenced by the given
2526  * transaction.  Return whether this evicted the dbuf.
2527  */
2528 boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2529 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2530 {
2531 	uint64_t txg = tx->tx_txg;
2532 	boolean_t brtwrite;
2533 	boolean_t diowrite;
2534 
2535 	ASSERT(txg != 0);
2536 
2537 	/*
2538 	 * Due to our use of dn_nlevels below, this can only be called
2539 	 * in open context, unless we are operating on the MOS or it's
2540 	 * a special object. From syncing context, dn_nlevels may be
2541 	 * different from the dn_nlevels used when dbuf was dirtied.
2542 	 */
2543 	ASSERT(db->db_objset ==
2544 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2545 	    DMU_OBJECT_IS_SPECIAL(db->db.db_object) ||
2546 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2547 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2548 	ASSERT0(db->db_level);
2549 	ASSERT(MUTEX_HELD(&db->db_mtx));
2550 
2551 	/*
2552 	 * If this buffer is not dirty, we're done.
2553 	 */
2554 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2555 	if (dr == NULL)
2556 		return (B_FALSE);
2557 	ASSERT(dr->dr_dbuf == db);
2558 
2559 	brtwrite = dr->dt.dl.dr_brtwrite;
2560 	diowrite = dr->dt.dl.dr_diowrite;
2561 	if (brtwrite) {
2562 		ASSERT3B(diowrite, ==, B_FALSE);
2563 		/*
2564 		 * We are freeing a block that we cloned in the same
2565 		 * transaction group.
2566 		 */
2567 		blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
2568 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2569 			brt_pending_remove(dmu_objset_spa(db->db_objset),
2570 			    bp, tx);
2571 		}
2572 	}
2573 
2574 	dnode_t *dn = dr->dr_dnode;
2575 
2576 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2577 
2578 	ASSERT(db->db.db_size != 0);
2579 
2580 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2581 	    dr->dr_accounted, txg);
2582 
2583 	list_remove(&db->db_dirty_records, dr);
2584 
2585 	/*
2586 	 * Note that there are three places in dbuf_dirty()
2587 	 * where this dirty record may be put on a list.
2588 	 * Make sure to do a list_remove corresponding to
2589 	 * every one of those list_insert calls.
2590 	 */
2591 	if (dr->dr_parent) {
2592 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2593 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2594 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2595 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2596 	    db->db_level + 1 == dn->dn_nlevels) {
2597 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2598 		mutex_enter(&dn->dn_mtx);
2599 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2600 		mutex_exit(&dn->dn_mtx);
2601 	}
2602 
2603 	if (db->db_state != DB_NOFILL && !brtwrite) {
2604 		dbuf_unoverride(dr);
2605 
2606 		if (dr->dt.dl.dr_data != db->db_buf) {
2607 			ASSERT(db->db_buf != NULL);
2608 			ASSERT(dr->dt.dl.dr_data != NULL);
2609 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2610 		}
2611 	}
2612 
2613 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2614 
2615 	ASSERT(db->db_dirtycnt > 0);
2616 	db->db_dirtycnt -= 1;
2617 
2618 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2619 		ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2620 		    arc_released(db->db_buf));
2621 		dbuf_destroy(db);
2622 		return (B_TRUE);
2623 	}
2624 
2625 	return (B_FALSE);
2626 }
2627 
2628 void
dmu_buf_will_dirty_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,dmu_flags_t flags)2629 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags)
2630 {
2631 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2632 	boolean_t undirty = B_FALSE;
2633 
2634 	ASSERT(tx->tx_txg != 0);
2635 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2636 
2637 	/*
2638 	 * Quick check for dirtiness to improve performance for some workloads
2639 	 * (e.g. file deletion with indirect blocks cached).
2640 	 */
2641 	mutex_enter(&db->db_mtx);
2642 	if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2643 		/*
2644 		 * It's possible that the dbuf is already dirty but not cached,
2645 		 * because there are some calls to dbuf_dirty() that don't
2646 		 * go through dmu_buf_will_dirty().
2647 		 */
2648 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2649 		if (dr != NULL) {
2650 			if (db->db_level == 0 &&
2651 			    dr->dt.dl.dr_brtwrite) {
2652 				/*
2653 				 * Block cloning: If we are dirtying a cloned
2654 				 * level 0 block, we cannot simply redirty it,
2655 				 * because this dr has no associated data.
2656 				 * We will go through a full undirtying below,
2657 				 * before dirtying it again.
2658 				 */
2659 				undirty = B_TRUE;
2660 			} else {
2661 				/* This dbuf is already dirty and cached. */
2662 				dbuf_redirty(dr);
2663 				mutex_exit(&db->db_mtx);
2664 				return;
2665 			}
2666 		}
2667 	}
2668 	mutex_exit(&db->db_mtx);
2669 
2670 	DB_DNODE_ENTER(db);
2671 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2672 		flags |= DB_RF_HAVESTRUCT;
2673 	DB_DNODE_EXIT(db);
2674 
2675 	/*
2676 	 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2677 	 * want to make sure dbuf_read() will read the pending cloned block and
2678 	 * not the uderlying block that is being replaced. dbuf_undirty() will
2679 	 * do brt_pending_remove() before removing the dirty record.
2680 	 */
2681 	(void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED);
2682 	if (undirty) {
2683 		mutex_enter(&db->db_mtx);
2684 		VERIFY(!dbuf_undirty(db, tx));
2685 		mutex_exit(&db->db_mtx);
2686 	}
2687 	(void) dbuf_dirty(db, tx);
2688 }
2689 
2690 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2691 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2692 {
2693 	dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2694 }
2695 
2696 void
dmu_buf_will_rewrite(dmu_buf_t * db_fake,dmu_tx_t * tx)2697 dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx)
2698 {
2699 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2700 
2701 	ASSERT(tx->tx_txg != 0);
2702 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2703 
2704 	/*
2705 	 * If the dbuf is already dirty in this txg, it will be written
2706 	 * anyway, so there's nothing to do.
2707 	 */
2708 	mutex_enter(&db->db_mtx);
2709 	if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2710 		mutex_exit(&db->db_mtx);
2711 		return;
2712 	}
2713 	mutex_exit(&db->db_mtx);
2714 
2715 	/*
2716 	 * The dbuf is not dirty, so we need to make it dirty and
2717 	 * mark it for rewrite (preserve logical birth time).
2718 	 */
2719 	dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2720 
2721 	mutex_enter(&db->db_mtx);
2722 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2723 	if (dr != NULL && db->db_level == 0)
2724 		dr->dt.dl.dr_rewrite = B_TRUE;
2725 	mutex_exit(&db->db_mtx);
2726 }
2727 
2728 boolean_t
dmu_buf_is_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2729 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2730 {
2731 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2732 	dbuf_dirty_record_t *dr;
2733 
2734 	mutex_enter(&db->db_mtx);
2735 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2736 	mutex_exit(&db->db_mtx);
2737 	return (dr != NULL);
2738 }
2739 
2740 /*
2741  * Normally the db_blkptr points to the most recent on-disk content for the
2742  * dbuf (and anything newer will be cached in the dbuf). However, a pending
2743  * block clone or not yet synced Direct I/O write will have a dirty record BP
2744  * pointing to the most recent data.
2745  */
2746 int
dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t * db,blkptr_t ** bp)2747 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2748 {
2749 	ASSERT(MUTEX_HELD(&db->db_mtx));
2750 	int error = 0;
2751 
2752 	if (db->db_level != 0) {
2753 		*bp = db->db_blkptr;
2754 		return (0);
2755 	}
2756 
2757 	*bp = db->db_blkptr;
2758 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2759 	if (dr && db->db_state == DB_NOFILL) {
2760 		/* Block clone */
2761 		if (!dr->dt.dl.dr_brtwrite)
2762 			error = EIO;
2763 		else
2764 			*bp = &dr->dt.dl.dr_overridden_by;
2765 	} else if (dr && db->db_state == DB_UNCACHED) {
2766 		/* Direct I/O write */
2767 		if (dr->dt.dl.dr_diowrite)
2768 			*bp = &dr->dt.dl.dr_overridden_by;
2769 	}
2770 
2771 	return (error);
2772 }
2773 
2774 /*
2775  * Direct I/O reads can read directly from the ARC, but the data has
2776  * to be untransformed in order to copy it over into user pages.
2777  */
2778 int
dmu_buf_untransform_direct(dmu_buf_impl_t * db,spa_t * spa)2779 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2780 {
2781 	int err = 0;
2782 	DB_DNODE_ENTER(db);
2783 	dnode_t *dn = DB_DNODE(db);
2784 
2785 	ASSERT3S(db->db_state, ==, DB_CACHED);
2786 	ASSERT(MUTEX_HELD(&db->db_mtx));
2787 
2788 	/*
2789 	 * Ensure that this block's dnode has been decrypted if
2790 	 * the caller has requested decrypted data.
2791 	 */
2792 	err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2793 
2794 	/*
2795 	 * If the arc buf is compressed or encrypted and the caller
2796 	 * requested uncompressed data, we need to untransform it
2797 	 * before returning. We also call arc_untransform() on any
2798 	 * unauthenticated blocks, which will verify their MAC if
2799 	 * the key is now available.
2800 	 */
2801 	if (err == 0 && db->db_buf != NULL &&
2802 	    (arc_is_encrypted(db->db_buf) ||
2803 	    arc_is_unauthenticated(db->db_buf) ||
2804 	    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2805 		zbookmark_phys_t zb;
2806 
2807 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2808 		    db->db.db_object, db->db_level, db->db_blkid);
2809 		dbuf_fix_old_data(db, spa_syncing_txg(spa));
2810 		err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2811 		dbuf_set_data(db, db->db_buf);
2812 	}
2813 	DB_DNODE_EXIT(db);
2814 	DBUF_STAT_BUMP(hash_hits);
2815 
2816 	return (err);
2817 }
2818 
2819 void
dmu_buf_will_clone_or_dio(dmu_buf_t * db_fake,dmu_tx_t * tx)2820 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2821 {
2822 	/*
2823 	 * Block clones and Direct I/O writes always happen in open-context.
2824 	 */
2825 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2826 	ASSERT0(db->db_level);
2827 	ASSERT(!dmu_tx_is_syncing(tx));
2828 	ASSERT0(db->db_level);
2829 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2830 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2831 
2832 	mutex_enter(&db->db_mtx);
2833 	DBUF_VERIFY(db);
2834 
2835 	/*
2836 	 * We are going to clone or issue a Direct I/O write on this block, so
2837 	 * undirty modifications done to this block so far in this txg. This
2838 	 * includes writes and clones into this block.
2839 	 *
2840 	 * If there dirty record associated with this txg from a previous Direct
2841 	 * I/O write then space accounting cleanup takes place. It is important
2842 	 * to go ahead free up the space accounting through dbuf_undirty() ->
2843 	 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2844 	 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2845 	 * This can cause an issue with Direct I/O writes in the case of
2846 	 * overwriting the same block, because all DVA allocations are being
2847 	 * done in open-context. Constantly allowing Direct I/O overwrites to
2848 	 * the same block can exhaust the pools available space leading to
2849 	 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2850 	 * will eventually suspend the pool. By cleaning up sapce acccounting
2851 	 * now, the ENOSPC error can be avoided.
2852 	 *
2853 	 * Since we are undirtying the record in open-context, we must have a
2854 	 * hold on the db, so it should never be evicted after calling
2855 	 * dbuf_undirty().
2856 	 */
2857 	VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2858 	ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2859 
2860 	if (db->db_buf != NULL) {
2861 		/*
2862 		 * If there is an associated ARC buffer with this dbuf we can
2863 		 * only destroy it if the previous dirty record does not
2864 		 * reference it.
2865 		 */
2866 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2867 		if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2868 			arc_buf_destroy(db->db_buf, db);
2869 
2870 		/*
2871 		 * Setting the dbuf's data pointers to NULL will force all
2872 		 * future reads down to the devices to get the most up to date
2873 		 * version of the data after a Direct I/O write has completed.
2874 		 */
2875 		db->db_buf = NULL;
2876 		dbuf_clear_data(db);
2877 	}
2878 
2879 	ASSERT0P(db->db_buf);
2880 	ASSERT0P(db->db.db_data);
2881 
2882 	db->db_state = DB_NOFILL;
2883 	DTRACE_SET_STATE(db,
2884 	    "allocating NOFILL buffer for clone or direct I/O write");
2885 
2886 	DBUF_VERIFY(db);
2887 	mutex_exit(&db->db_mtx);
2888 
2889 	dbuf_noread(db, DMU_KEEP_CACHING);
2890 	(void) dbuf_dirty(db, tx);
2891 }
2892 
2893 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2894 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2895 {
2896 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2897 
2898 	mutex_enter(&db->db_mtx);
2899 	db->db_state = DB_NOFILL;
2900 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2901 	mutex_exit(&db->db_mtx);
2902 
2903 	dbuf_noread(db, DMU_KEEP_CACHING);
2904 	(void) dbuf_dirty(db, tx);
2905 }
2906 
2907 void
dmu_buf_will_fill_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail,dmu_flags_t flags)2908 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail,
2909     dmu_flags_t flags)
2910 {
2911 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2912 
2913 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2914 	ASSERT(tx->tx_txg != 0);
2915 	ASSERT0(db->db_level);
2916 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2917 
2918 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2919 	    dmu_tx_private_ok(tx));
2920 
2921 	mutex_enter(&db->db_mtx);
2922 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2923 	if (db->db_state == DB_NOFILL ||
2924 	    (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2925 		/*
2926 		 * If the fill can fail we should have a way to return back to
2927 		 * the cloned or Direct I/O write data.
2928 		 */
2929 		if (canfail && dr) {
2930 			mutex_exit(&db->db_mtx);
2931 			dmu_buf_will_dirty_flags(db_fake, tx, flags);
2932 			return;
2933 		}
2934 		/*
2935 		 * Block cloning: We will be completely overwriting a block
2936 		 * cloned in this transaction group, so let's undirty the
2937 		 * pending clone and mark the block as uncached. This will be
2938 		 * as if the clone was never done.
2939 		 */
2940 		if (db->db_state == DB_NOFILL) {
2941 			VERIFY(!dbuf_undirty(db, tx));
2942 			db->db_state = DB_UNCACHED;
2943 		}
2944 	}
2945 	mutex_exit(&db->db_mtx);
2946 
2947 	dbuf_noread(db, flags);
2948 	(void) dbuf_dirty(db, tx);
2949 }
2950 
2951 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail)2952 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2953 {
2954 	dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH);
2955 }
2956 
2957 /*
2958  * This function is effectively the same as dmu_buf_will_dirty(), but
2959  * indicates the caller expects raw encrypted data in the db, and provides
2960  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2961  * blkptr_t when this dbuf is written.  This is only used for blocks of
2962  * dnodes, during raw receive.
2963  */
2964 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2965 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2966     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2967 {
2968 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2969 	dbuf_dirty_record_t *dr;
2970 
2971 	/*
2972 	 * dr_has_raw_params is only processed for blocks of dnodes
2973 	 * (see dbuf_sync_dnode_leaf_crypt()).
2974 	 */
2975 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2976 	ASSERT0(db->db_level);
2977 	ASSERT(db->db_objset->os_raw_receive);
2978 
2979 	dmu_buf_will_dirty_flags(db_fake, tx,
2980 	    DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT);
2981 
2982 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2983 
2984 	ASSERT3P(dr, !=, NULL);
2985 	ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2986 
2987 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2988 	dr->dt.dl.dr_byteorder = byteorder;
2989 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2990 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2991 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2992 }
2993 
2994 static void
dbuf_override_impl(dmu_buf_impl_t * db,const blkptr_t * bp,dmu_tx_t * tx)2995 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2996 {
2997 	struct dirty_leaf *dl;
2998 	dbuf_dirty_record_t *dr;
2999 
3000 	ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
3001 	ASSERT0(db->db_level);
3002 
3003 	dr = list_head(&db->db_dirty_records);
3004 	ASSERT3P(dr, !=, NULL);
3005 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3006 	dl = &dr->dt.dl;
3007 	ASSERT0(dl->dr_has_raw_params);
3008 	dl->dr_overridden_by = *bp;
3009 	dl->dr_override_state = DR_OVERRIDDEN;
3010 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3011 }
3012 
3013 boolean_t
dmu_buf_fill_done(dmu_buf_t * dbuf,dmu_tx_t * tx,boolean_t failed)3014 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
3015 {
3016 	(void) tx;
3017 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3018 	mutex_enter(&db->db_mtx);
3019 	DBUF_VERIFY(db);
3020 
3021 	if (db->db_state == DB_FILL) {
3022 		if (db->db_level == 0 && db->db_freed_in_flight) {
3023 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3024 			/* we were freed while filling */
3025 			/* XXX dbuf_undirty? */
3026 			memset(db->db.db_data, 0, db->db.db_size);
3027 			db->db_freed_in_flight = FALSE;
3028 			db->db_state = DB_CACHED;
3029 			DTRACE_SET_STATE(db,
3030 			    "fill done handling freed in flight");
3031 			failed = B_FALSE;
3032 		} else if (failed) {
3033 			VERIFY(!dbuf_undirty(db, tx));
3034 			arc_buf_destroy(db->db_buf, db);
3035 			db->db_buf = NULL;
3036 			dbuf_clear_data(db);
3037 			DTRACE_SET_STATE(db, "fill failed");
3038 		} else {
3039 			db->db_state = DB_CACHED;
3040 			DTRACE_SET_STATE(db, "fill done");
3041 		}
3042 		cv_broadcast(&db->db_changed);
3043 	} else {
3044 		db->db_state = DB_CACHED;
3045 		failed = B_FALSE;
3046 	}
3047 	mutex_exit(&db->db_mtx);
3048 	return (failed);
3049 }
3050 
3051 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)3052 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3053     bp_embedded_type_t etype, enum zio_compress comp,
3054     int uncompressed_size, int compressed_size, int byteorder,
3055     dmu_tx_t *tx)
3056 {
3057 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3058 	struct dirty_leaf *dl;
3059 	dmu_object_type_t type;
3060 	dbuf_dirty_record_t *dr;
3061 
3062 	if (etype == BP_EMBEDDED_TYPE_DATA) {
3063 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3064 		    SPA_FEATURE_EMBEDDED_DATA));
3065 	}
3066 
3067 	DB_DNODE_ENTER(db);
3068 	type = DB_DNODE(db)->dn_type;
3069 	DB_DNODE_EXIT(db);
3070 
3071 	ASSERT0(db->db_level);
3072 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3073 
3074 	dmu_buf_will_not_fill(dbuf, tx);
3075 
3076 	dr = list_head(&db->db_dirty_records);
3077 	ASSERT3P(dr, !=, NULL);
3078 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3079 	dl = &dr->dt.dl;
3080 	ASSERT0(dl->dr_has_raw_params);
3081 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
3082 	    data, comp, uncompressed_size, compressed_size);
3083 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3084 	BP_SET_TYPE(&dl->dr_overridden_by, type);
3085 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3086 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3087 
3088 	dl->dr_override_state = DR_OVERRIDDEN;
3089 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3090 }
3091 
3092 void
dmu_buf_redact(dmu_buf_t * dbuf,dmu_tx_t * tx)3093 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3094 {
3095 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3096 	dmu_object_type_t type;
3097 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3098 	    SPA_FEATURE_REDACTED_DATASETS));
3099 
3100 	DB_DNODE_ENTER(db);
3101 	type = DB_DNODE(db)->dn_type;
3102 	DB_DNODE_EXIT(db);
3103 
3104 	ASSERT0(db->db_level);
3105 	dmu_buf_will_not_fill(dbuf, tx);
3106 
3107 	blkptr_t bp = { { { {0} } } };
3108 	BP_SET_TYPE(&bp, type);
3109 	BP_SET_LEVEL(&bp, 0);
3110 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3111 	BP_SET_REDACTED(&bp);
3112 	BPE_SET_LSIZE(&bp, dbuf->db_size);
3113 
3114 	dbuf_override_impl(db, &bp, tx);
3115 }
3116 
3117 /*
3118  * Directly assign a provided arc buf to a given dbuf if it's not referenced
3119  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3120  */
3121 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)3122 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx,
3123     dmu_flags_t flags)
3124 {
3125 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3126 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3127 	ASSERT0(db->db_level);
3128 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3129 	ASSERT(buf != NULL);
3130 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3131 	ASSERT(tx->tx_txg != 0);
3132 
3133 	arc_return_buf(buf, db);
3134 	ASSERT(arc_released(buf));
3135 
3136 	mutex_enter(&db->db_mtx);
3137 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
3138 		db->db_pending_evict = B_FALSE;
3139 	db->db_partial_read = B_FALSE;
3140 
3141 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
3142 		cv_wait(&db->db_changed, &db->db_mtx);
3143 
3144 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3145 	    db->db_state == DB_NOFILL);
3146 
3147 	if (db->db_state == DB_CACHED &&
3148 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3149 		/*
3150 		 * In practice, we will never have a case where we have an
3151 		 * encrypted arc buffer while additional holds exist on the
3152 		 * dbuf. We don't handle this here so we simply assert that
3153 		 * fact instead.
3154 		 */
3155 		ASSERT(!arc_is_encrypted(buf));
3156 		mutex_exit(&db->db_mtx);
3157 		(void) dbuf_dirty(db, tx);
3158 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3159 		arc_buf_destroy(buf, db);
3160 		return;
3161 	}
3162 
3163 	if (db->db_state == DB_CACHED) {
3164 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3165 
3166 		ASSERT(db->db_buf != NULL);
3167 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3168 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
3169 
3170 			if (!arc_released(db->db_buf)) {
3171 				ASSERT(dr->dt.dl.dr_override_state ==
3172 				    DR_OVERRIDDEN);
3173 				arc_release(db->db_buf, db);
3174 			}
3175 			dr->dt.dl.dr_data = buf;
3176 			arc_buf_destroy(db->db_buf, db);
3177 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3178 			arc_release(db->db_buf, db);
3179 			arc_buf_destroy(db->db_buf, db);
3180 		}
3181 		db->db_buf = NULL;
3182 	} else if (db->db_state == DB_NOFILL) {
3183 		/*
3184 		 * We will be completely replacing the cloned block.  In case
3185 		 * it was cloned in this transaction group, let's undirty the
3186 		 * pending clone and mark the block as uncached. This will be
3187 		 * as if the clone was never done.
3188 		 */
3189 		VERIFY(!dbuf_undirty(db, tx));
3190 		db->db_state = DB_UNCACHED;
3191 	}
3192 	ASSERT0P(db->db_buf);
3193 	dbuf_set_data(db, buf);
3194 	db->db_state = DB_FILL;
3195 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
3196 	mutex_exit(&db->db_mtx);
3197 	(void) dbuf_dirty(db, tx);
3198 	dmu_buf_fill_done(&db->db, tx, B_FALSE);
3199 }
3200 
3201 void
dbuf_destroy(dmu_buf_impl_t * db)3202 dbuf_destroy(dmu_buf_impl_t *db)
3203 {
3204 	dnode_t *dn;
3205 	dmu_buf_impl_t *parent = db->db_parent;
3206 	dmu_buf_impl_t *dndb;
3207 
3208 	ASSERT(MUTEX_HELD(&db->db_mtx));
3209 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3210 
3211 	if (db->db_buf != NULL) {
3212 		arc_buf_destroy(db->db_buf, db);
3213 		db->db_buf = NULL;
3214 	}
3215 
3216 	if (db->db_blkid == DMU_BONUS_BLKID) {
3217 		int slots = DB_DNODE(db)->dn_num_slots;
3218 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3219 		if (db->db.db_data != NULL) {
3220 			kmem_free(db->db.db_data, bonuslen);
3221 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3222 			db->db_state = DB_UNCACHED;
3223 			DTRACE_SET_STATE(db, "buffer cleared");
3224 		}
3225 	}
3226 
3227 	dbuf_clear_data(db);
3228 
3229 	if (multilist_link_active(&db->db_cache_link)) {
3230 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3231 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3232 
3233 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3234 
3235 		ASSERT0(dmu_buf_user_size(&db->db));
3236 		(void) zfs_refcount_remove_many(
3237 		    &dbuf_caches[db->db_caching_status].size,
3238 		    db->db.db_size, db);
3239 
3240 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3241 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3242 		} else {
3243 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3244 			DBUF_STAT_BUMPDOWN(cache_count);
3245 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3246 			    db->db.db_size);
3247 		}
3248 		db->db_caching_status = DB_NO_CACHE;
3249 	}
3250 
3251 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3252 	ASSERT0P(db->db_data_pending);
3253 	ASSERT(list_is_empty(&db->db_dirty_records));
3254 
3255 	db->db_state = DB_EVICTING;
3256 	DTRACE_SET_STATE(db, "buffer eviction started");
3257 	db->db_blkptr = NULL;
3258 
3259 	/*
3260 	 * Now that db_state is DB_EVICTING, nobody else can find this via
3261 	 * the hash table.  We can now drop db_mtx, which allows us to
3262 	 * acquire the dn_dbufs_mtx.
3263 	 */
3264 	mutex_exit(&db->db_mtx);
3265 
3266 	DB_DNODE_ENTER(db);
3267 	dn = DB_DNODE(db);
3268 	dndb = dn->dn_dbuf;
3269 	if (db->db_blkid != DMU_BONUS_BLKID) {
3270 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3271 		if (needlock)
3272 			mutex_enter_nested(&dn->dn_dbufs_mtx,
3273 			    NESTED_SINGLE);
3274 		avl_remove(&dn->dn_dbufs, db);
3275 		membar_producer();
3276 		DB_DNODE_EXIT(db);
3277 		if (needlock)
3278 			mutex_exit(&dn->dn_dbufs_mtx);
3279 		/*
3280 		 * Decrementing the dbuf count means that the hold corresponding
3281 		 * to the removed dbuf is no longer discounted in dnode_move(),
3282 		 * so the dnode cannot be moved until after we release the hold.
3283 		 * The membar_producer() ensures visibility of the decremented
3284 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3285 		 * release any lock.
3286 		 */
3287 		mutex_enter(&dn->dn_mtx);
3288 		dnode_rele_and_unlock(dn, db, B_TRUE);
3289 #ifdef USE_DNODE_HANDLE
3290 		db->db_dnode_handle = NULL;
3291 #else
3292 		db->db_dnode = NULL;
3293 #endif
3294 
3295 		dbuf_hash_remove(db);
3296 	} else {
3297 		DB_DNODE_EXIT(db);
3298 	}
3299 
3300 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3301 
3302 	db->db_parent = NULL;
3303 
3304 	ASSERT0P(db->db_buf);
3305 	ASSERT0P(db->db.db_data);
3306 	ASSERT0P(db->db_hash_next);
3307 	ASSERT0P(db->db_blkptr);
3308 	ASSERT0P(db->db_data_pending);
3309 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3310 	ASSERT(!multilist_link_active(&db->db_cache_link));
3311 
3312 	/*
3313 	 * If this dbuf is referenced from an indirect dbuf,
3314 	 * decrement the ref count on the indirect dbuf.
3315 	 */
3316 	if (parent && parent != dndb) {
3317 		mutex_enter(&parent->db_mtx);
3318 		dbuf_rele_and_unlock(parent, db, B_TRUE);
3319 	}
3320 
3321 	kmem_cache_free(dbuf_kmem_cache, db);
3322 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3323 }
3324 
3325 /*
3326  * Note: While bpp will always be updated if the function returns success,
3327  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3328  * this happens when the dnode is the meta-dnode, or {user|group|project}used
3329  * object.
3330  */
3331 __attribute__((always_inline))
3332 static inline int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)3333 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3334     dmu_buf_impl_t **parentp, blkptr_t **bpp)
3335 {
3336 	*parentp = NULL;
3337 	*bpp = NULL;
3338 
3339 	ASSERT(blkid != DMU_BONUS_BLKID);
3340 
3341 	if (blkid == DMU_SPILL_BLKID) {
3342 		mutex_enter(&dn->dn_mtx);
3343 		if (dn->dn_have_spill &&
3344 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3345 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3346 		else
3347 			*bpp = NULL;
3348 		dbuf_add_ref(dn->dn_dbuf, NULL);
3349 		*parentp = dn->dn_dbuf;
3350 		mutex_exit(&dn->dn_mtx);
3351 		return (0);
3352 	}
3353 
3354 	int nlevels =
3355 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3356 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3357 
3358 	ASSERT3U(level * epbs, <, 64);
3359 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3360 	/*
3361 	 * This assertion shouldn't trip as long as the max indirect block size
3362 	 * is less than 1M.  The reason for this is that up to that point,
3363 	 * the number of levels required to address an entire object with blocks
3364 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3365 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3366 	 * (i.e. we can address the entire object), objects will all use at most
3367 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3368 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3369 	 * enough to address an entire object, so objects will have 5 levels,
3370 	 * but then this assertion will overflow.
3371 	 *
3372 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3373 	 * need to redo this logic to handle overflows.
3374 	 */
3375 	ASSERT(level >= nlevels ||
3376 	    ((nlevels - level - 1) * epbs) +
3377 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3378 	if (level >= nlevels ||
3379 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3380 	    ((nlevels - level - 1) * epbs)) ||
3381 	    (fail_sparse &&
3382 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3383 		/* the buffer has no parent yet */
3384 		return (SET_ERROR(ENOENT));
3385 	} else if (level < nlevels-1) {
3386 		/* this block is referenced from an indirect block */
3387 		int err;
3388 
3389 		err = dbuf_hold_impl(dn, level + 1,
3390 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3391 
3392 		if (err)
3393 			return (err);
3394 		err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL |
3395 		    DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH);
3396 		if (err) {
3397 			dbuf_rele(*parentp, NULL);
3398 			*parentp = NULL;
3399 			return (err);
3400 		}
3401 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3402 		    (blkid & ((1ULL << epbs) - 1));
3403 		return (0);
3404 	} else {
3405 		/* the block is referenced from the dnode */
3406 		ASSERT3U(level, ==, nlevels-1);
3407 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3408 		    blkid < dn->dn_phys->dn_nblkptr);
3409 		if (dn->dn_dbuf) {
3410 			dbuf_add_ref(dn->dn_dbuf, NULL);
3411 			*parentp = dn->dn_dbuf;
3412 		}
3413 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3414 		return (0);
3415 	}
3416 }
3417 
3418 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr,uint64_t hash)3419 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3420     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3421 {
3422 	objset_t *os = dn->dn_objset;
3423 	dmu_buf_impl_t *db, *odb;
3424 
3425 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3426 	ASSERT(dn->dn_type != DMU_OT_NONE);
3427 
3428 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3429 
3430 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3431 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3432 
3433 	db->db_objset = os;
3434 	db->db.db_object = dn->dn_object;
3435 	db->db_level = level;
3436 	db->db_blkid = blkid;
3437 	db->db_dirtycnt = 0;
3438 #ifdef USE_DNODE_HANDLE
3439 	db->db_dnode_handle = dn->dn_handle;
3440 #else
3441 	db->db_dnode = dn;
3442 #endif
3443 	db->db_parent = parent;
3444 	db->db_blkptr = blkptr;
3445 	db->db_hash = hash;
3446 
3447 	db->db_user = NULL;
3448 	db->db_user_immediate_evict = FALSE;
3449 	db->db_freed_in_flight = FALSE;
3450 	db->db_pending_evict = TRUE;
3451 	db->db_partial_read = FALSE;
3452 
3453 	if (blkid == DMU_BONUS_BLKID) {
3454 		ASSERT3P(parent, ==, dn->dn_dbuf);
3455 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3456 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3457 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3458 		db->db.db_offset = DMU_BONUS_BLKID;
3459 		db->db_state = DB_UNCACHED;
3460 		DTRACE_SET_STATE(db, "bonus buffer created");
3461 		db->db_caching_status = DB_NO_CACHE;
3462 		/* the bonus dbuf is not placed in the hash table */
3463 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3464 		return (db);
3465 	} else if (blkid == DMU_SPILL_BLKID) {
3466 		db->db.db_size = (blkptr != NULL) ?
3467 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3468 		db->db.db_offset = 0;
3469 	} else {
3470 		int blocksize =
3471 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3472 		db->db.db_size = blocksize;
3473 		db->db.db_offset = db->db_blkid * blocksize;
3474 	}
3475 
3476 	/*
3477 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3478 	 * in the hash table *and* added to the dbufs list.
3479 	 * This prevents a possible deadlock with someone
3480 	 * trying to look up this dbuf before it's added to the
3481 	 * dn_dbufs list.
3482 	 */
3483 	mutex_enter(&dn->dn_dbufs_mtx);
3484 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3485 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3486 		/* someone else inserted it first */
3487 		mutex_exit(&dn->dn_dbufs_mtx);
3488 		kmem_cache_free(dbuf_kmem_cache, db);
3489 		DBUF_STAT_BUMP(hash_insert_race);
3490 		return (odb);
3491 	}
3492 	avl_add(&dn->dn_dbufs, db);
3493 
3494 	db->db_state = DB_UNCACHED;
3495 	DTRACE_SET_STATE(db, "regular buffer created");
3496 	db->db_caching_status = DB_NO_CACHE;
3497 	mutex_exit(&dn->dn_dbufs_mtx);
3498 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3499 
3500 	if (parent && parent != dn->dn_dbuf)
3501 		dbuf_add_ref(parent, db);
3502 
3503 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3504 	    zfs_refcount_count(&dn->dn_holds) > 0);
3505 	(void) zfs_refcount_add(&dn->dn_holds, db);
3506 
3507 	dprintf_dbuf(db, "db=%p\n", db);
3508 
3509 	return (db);
3510 }
3511 
3512 /*
3513  * This function returns a block pointer and information about the object,
3514  * given a dnode and a block.  This is a publicly accessible version of
3515  * dbuf_findbp that only returns some information, rather than the
3516  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3517  * should be locked as (at least) a reader.
3518  */
3519 int
dbuf_dnode_findbp(dnode_t * dn,uint64_t level,uint64_t blkid,blkptr_t * bp,uint16_t * datablkszsec,uint8_t * indblkshift)3520 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3521     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3522 {
3523 	dmu_buf_impl_t *dbp = NULL;
3524 	blkptr_t *bp2;
3525 	int err = 0;
3526 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3527 
3528 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3529 	if (err == 0) {
3530 		ASSERT3P(bp2, !=, NULL);
3531 		*bp = *bp2;
3532 		if (dbp != NULL)
3533 			dbuf_rele(dbp, NULL);
3534 		if (datablkszsec != NULL)
3535 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3536 		if (indblkshift != NULL)
3537 			*indblkshift = dn->dn_phys->dn_indblkshift;
3538 	}
3539 
3540 	return (err);
3541 }
3542 
3543 typedef struct dbuf_prefetch_arg {
3544 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3545 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3546 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3547 	int dpa_curlevel; /* The current level that we're reading */
3548 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3549 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3550 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3551 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3552 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3553 	void *dpa_arg; /* prefetch completion arg */
3554 } dbuf_prefetch_arg_t;
3555 
3556 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)3557 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3558 {
3559 	if (dpa->dpa_cb != NULL) {
3560 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3561 		    dpa->dpa_zb.zb_blkid, io_done);
3562 	}
3563 	kmem_free(dpa, sizeof (*dpa));
3564 }
3565 
3566 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3567 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3568     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3569 {
3570 	(void) zio, (void) zb, (void) iobp;
3571 	dbuf_prefetch_arg_t *dpa = private;
3572 
3573 	if (abuf != NULL)
3574 		arc_buf_destroy(abuf, private);
3575 
3576 	dbuf_prefetch_fini(dpa, B_TRUE);
3577 }
3578 
3579 /*
3580  * Actually issue the prefetch read for the block given.
3581  */
3582 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)3583 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3584 {
3585 	ASSERT(!BP_IS_HOLE(bp));
3586 	ASSERT(!BP_IS_REDACTED(bp));
3587 	if (BP_IS_EMBEDDED(bp))
3588 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3589 
3590 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3591 	arc_flags_t aflags =
3592 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3593 	    ARC_FLAG_NO_BUF;
3594 
3595 	/* dnodes are always read as raw and then converted later */
3596 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3597 	    dpa->dpa_curlevel == 0)
3598 		zio_flags |= ZIO_FLAG_RAW;
3599 
3600 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3601 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3602 	ASSERT(dpa->dpa_zio != NULL);
3603 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3604 	    dbuf_issue_final_prefetch_done, dpa,
3605 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3606 }
3607 
3608 /*
3609  * Called when an indirect block above our prefetch target is read in.  This
3610  * will either read in the next indirect block down the tree or issue the actual
3611  * prefetch if the next block down is our target.
3612  */
3613 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3614 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3615     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3616 {
3617 	(void) zb, (void) iobp;
3618 	dbuf_prefetch_arg_t *dpa = private;
3619 
3620 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3621 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3622 
3623 	if (abuf == NULL) {
3624 		ASSERT(zio == NULL || zio->io_error != 0);
3625 		dbuf_prefetch_fini(dpa, B_TRUE);
3626 		return;
3627 	}
3628 	ASSERT(zio == NULL || zio->io_error == 0);
3629 
3630 	/*
3631 	 * The dpa_dnode is only valid if we are called with a NULL
3632 	 * zio. This indicates that the arc_read() returned without
3633 	 * first calling zio_read() to issue a physical read. Once
3634 	 * a physical read is made the dpa_dnode must be invalidated
3635 	 * as the locks guarding it may have been dropped. If the
3636 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3637 	 * cache. To do so, we must hold the dbuf associated with the block
3638 	 * we just prefetched, read its contents so that we associate it
3639 	 * with an arc_buf_t, and then release it.
3640 	 */
3641 	if (zio != NULL) {
3642 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3643 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3644 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3645 		} else {
3646 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3647 		}
3648 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3649 
3650 		dpa->dpa_dnode = NULL;
3651 	} else if (dpa->dpa_dnode != NULL) {
3652 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3653 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3654 		    dpa->dpa_zb.zb_level));
3655 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3656 		    dpa->dpa_curlevel, curblkid, FTAG);
3657 		if (db == NULL) {
3658 			arc_buf_destroy(abuf, private);
3659 			dbuf_prefetch_fini(dpa, B_TRUE);
3660 			return;
3661 		}
3662 		(void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
3663 		    DMU_READ_NO_PREFETCH);
3664 		dbuf_rele(db, FTAG);
3665 	}
3666 
3667 	dpa->dpa_curlevel--;
3668 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3669 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3670 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3671 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3672 
3673 	ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL ||
3674 	    dsl_dataset_feature_is_active(
3675 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3676 	    SPA_FEATURE_REDACTED_DATASETS));
3677 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3678 		arc_buf_destroy(abuf, private);
3679 		dbuf_prefetch_fini(dpa, B_TRUE);
3680 		return;
3681 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3682 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3683 		dbuf_issue_final_prefetch(dpa, bp);
3684 	} else {
3685 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3686 		zbookmark_phys_t zb;
3687 
3688 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3689 		if (dpa->dpa_dnode) {
3690 			if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode,
3691 			    dpa->dpa_curlevel))
3692 				iter_aflags |= ARC_FLAG_L2CACHE;
3693 		} else {
3694 			if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3695 				iter_aflags |= ARC_FLAG_L2CACHE;
3696 		}
3697 
3698 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3699 
3700 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3701 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3702 
3703 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3704 		    bp, dbuf_prefetch_indirect_done, dpa,
3705 		    ZIO_PRIORITY_SYNC_READ,
3706 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3707 		    &iter_aflags, &zb);
3708 	}
3709 
3710 	arc_buf_destroy(abuf, private);
3711 }
3712 
3713 /*
3714  * Issue prefetch reads for the given block on the given level.  If the indirect
3715  * blocks above that block are not in memory, we will read them in
3716  * asynchronously.  As a result, this call never blocks waiting for a read to
3717  * complete. Note that the prefetch might fail if the dataset is encrypted and
3718  * the encryption key is unmapped before the IO completes.
3719  */
3720 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)3721 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3722     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3723     void *arg)
3724 {
3725 	blkptr_t bp;
3726 	int epbs, nlevels, curlevel;
3727 	uint64_t curblkid;
3728 
3729 	ASSERT(blkid != DMU_BONUS_BLKID);
3730 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3731 
3732 	if (blkid > dn->dn_maxblkid)
3733 		goto no_issue;
3734 
3735 	if (level == 0 && dnode_block_freed(dn, blkid))
3736 		goto no_issue;
3737 
3738 	/*
3739 	 * This dnode hasn't been written to disk yet, so there's nothing to
3740 	 * prefetch.
3741 	 */
3742 	nlevels = dn->dn_phys->dn_nlevels;
3743 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3744 		goto no_issue;
3745 
3746 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3747 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3748 		goto no_issue;
3749 
3750 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3751 	    level, blkid, NULL);
3752 	if (db != NULL) {
3753 		mutex_exit(&db->db_mtx);
3754 		/*
3755 		 * This dbuf already exists.  It is either CACHED, or
3756 		 * (we assume) about to be read or filled.
3757 		 */
3758 		goto no_issue;
3759 	}
3760 
3761 	/*
3762 	 * Find the closest ancestor (indirect block) of the target block
3763 	 * that is present in the cache.  In this indirect block, we will
3764 	 * find the bp that is at curlevel, curblkid.
3765 	 */
3766 	curlevel = level;
3767 	curblkid = blkid;
3768 	while (curlevel < nlevels - 1) {
3769 		int parent_level = curlevel + 1;
3770 		uint64_t parent_blkid = curblkid >> epbs;
3771 		dmu_buf_impl_t *db;
3772 
3773 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3774 		    FALSE, TRUE, FTAG, &db) == 0) {
3775 			blkptr_t *bpp = db->db_buf->b_data;
3776 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3777 			dbuf_rele(db, FTAG);
3778 			break;
3779 		}
3780 
3781 		curlevel = parent_level;
3782 		curblkid = parent_blkid;
3783 	}
3784 
3785 	if (curlevel == nlevels - 1) {
3786 		/* No cached indirect blocks found. */
3787 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3788 		bp = dn->dn_phys->dn_blkptr[curblkid];
3789 	}
3790 	ASSERT(!BP_IS_REDACTED(&bp) ||
3791 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3792 	    SPA_FEATURE_REDACTED_DATASETS));
3793 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3794 		goto no_issue;
3795 
3796 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3797 
3798 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3799 	    ZIO_FLAG_CANFAIL);
3800 
3801 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3802 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3803 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3804 	    dn->dn_object, level, blkid);
3805 	dpa->dpa_curlevel = curlevel;
3806 	dpa->dpa_prio = prio;
3807 	dpa->dpa_aflags = aflags;
3808 	dpa->dpa_spa = dn->dn_objset->os_spa;
3809 	dpa->dpa_dnode = dn;
3810 	dpa->dpa_epbs = epbs;
3811 	dpa->dpa_zio = pio;
3812 	dpa->dpa_cb = cb;
3813 	dpa->dpa_arg = arg;
3814 
3815 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3816 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3817 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3818 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3819 
3820 	/*
3821 	 * If we have the indirect just above us, no need to do the asynchronous
3822 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3823 	 * a higher level, though, we want to issue the prefetches for all the
3824 	 * indirect blocks asynchronously, so we can go on with whatever we were
3825 	 * doing.
3826 	 */
3827 	if (curlevel == level) {
3828 		ASSERT3U(curblkid, ==, blkid);
3829 		dbuf_issue_final_prefetch(dpa, &bp);
3830 	} else {
3831 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3832 		zbookmark_phys_t zb;
3833 
3834 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3835 		if (dnode_level_is_l2cacheable(&bp, dn, curlevel))
3836 			iter_aflags |= ARC_FLAG_L2CACHE;
3837 
3838 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3839 		    dn->dn_object, curlevel, curblkid);
3840 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3841 		    &bp, dbuf_prefetch_indirect_done, dpa,
3842 		    ZIO_PRIORITY_SYNC_READ,
3843 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3844 		    &iter_aflags, &zb);
3845 	}
3846 	/*
3847 	 * We use pio here instead of dpa_zio since it's possible that
3848 	 * dpa may have already been freed.
3849 	 */
3850 	zio_nowait(pio);
3851 	return (1);
3852 no_issue:
3853 	if (cb != NULL)
3854 		cb(arg, level, blkid, B_FALSE);
3855 	return (0);
3856 }
3857 
3858 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)3859 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3860     arc_flags_t aflags)
3861 {
3862 
3863 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3864 }
3865 
3866 /*
3867  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3868  * the case of encrypted, compressed and uncompressed buffers by
3869  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3870  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3871  *
3872  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3873  */
3874 noinline static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db)3875 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3876 {
3877 	dbuf_dirty_record_t *dr = db->db_data_pending;
3878 	arc_buf_t *data = dr->dt.dl.dr_data;
3879 	arc_buf_t *db_data;
3880 	enum zio_compress compress_type = arc_get_compression(data);
3881 	uint8_t complevel = arc_get_complevel(data);
3882 
3883 	if (arc_is_encrypted(data)) {
3884 		boolean_t byteorder;
3885 		uint8_t salt[ZIO_DATA_SALT_LEN];
3886 		uint8_t iv[ZIO_DATA_IV_LEN];
3887 		uint8_t mac[ZIO_DATA_MAC_LEN];
3888 
3889 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3890 		db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3891 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3892 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3893 		    compress_type, complevel);
3894 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3895 		db_data = arc_alloc_compressed_buf(
3896 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3897 		    arc_buf_lsize(data), compress_type, complevel);
3898 	} else {
3899 		db_data = arc_alloc_buf(dn->dn_objset->os_spa, db,
3900 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size);
3901 	}
3902 	memcpy(db_data->b_data, data->b_data, arc_buf_size(data));
3903 
3904 	dbuf_set_data(db, db_data);
3905 }
3906 
3907 /*
3908  * Returns with db_holds incremented, and db_mtx not held.
3909  * Note: dn_struct_rwlock must be held.
3910  */
3911 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,const void * tag,dmu_buf_impl_t ** dbp)3912 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3913     boolean_t fail_sparse, boolean_t fail_uncached,
3914     const void *tag, dmu_buf_impl_t **dbp)
3915 {
3916 	dmu_buf_impl_t *db, *parent = NULL;
3917 	uint64_t hv;
3918 
3919 	/* If the pool has been created, verify the tx_sync_lock is not held */
3920 	spa_t *spa = dn->dn_objset->os_spa;
3921 	dsl_pool_t *dp = spa->spa_dsl_pool;
3922 	if (dp != NULL) {
3923 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3924 	}
3925 
3926 	ASSERT(blkid != DMU_BONUS_BLKID);
3927 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3928 	if (!fail_sparse)
3929 		ASSERT3U(dn->dn_nlevels, >, level);
3930 
3931 	*dbp = NULL;
3932 
3933 	/* dbuf_find() returns with db_mtx held */
3934 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3935 
3936 	if (db == NULL) {
3937 		blkptr_t *bp = NULL;
3938 		int err;
3939 
3940 		if (fail_uncached)
3941 			return (SET_ERROR(ENOENT));
3942 
3943 		ASSERT0P(parent);
3944 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3945 		if (fail_sparse) {
3946 			if (err == 0 && bp && BP_IS_HOLE(bp))
3947 				err = SET_ERROR(ENOENT);
3948 			if (err) {
3949 				if (parent)
3950 					dbuf_rele(parent, NULL);
3951 				return (err);
3952 			}
3953 		}
3954 		if (err && err != ENOENT)
3955 			return (err);
3956 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3957 	}
3958 
3959 	if (fail_uncached && db->db_state != DB_CACHED) {
3960 		mutex_exit(&db->db_mtx);
3961 		return (SET_ERROR(ENOENT));
3962 	}
3963 
3964 	if (db->db_buf != NULL) {
3965 		arc_buf_access(db->db_buf);
3966 		ASSERT(MUTEX_HELD(&db->db_mtx));
3967 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3968 	}
3969 
3970 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3971 
3972 	/*
3973 	 * If this buffer is currently syncing out, and we are
3974 	 * still referencing it from db_data, we need to make a copy
3975 	 * of it in case we decide we want to dirty it again in this txg.
3976 	 */
3977 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3978 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3979 	    db->db_state == DB_CACHED && db->db_data_pending) {
3980 		dbuf_dirty_record_t *dr = db->db_data_pending;
3981 		if (dr->dt.dl.dr_data == db->db_buf) {
3982 			ASSERT3P(db->db_buf, !=, NULL);
3983 			dbuf_hold_copy(dn, db);
3984 		}
3985 	}
3986 
3987 	if (multilist_link_active(&db->db_cache_link)) {
3988 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3989 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3990 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3991 
3992 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3993 
3994 		uint64_t size = db->db.db_size;
3995 		uint64_t usize = dmu_buf_user_size(&db->db);
3996 		(void) zfs_refcount_remove_many(
3997 		    &dbuf_caches[db->db_caching_status].size, size, db);
3998 		(void) zfs_refcount_remove_many(
3999 		    &dbuf_caches[db->db_caching_status].size, usize,
4000 		    db->db_user);
4001 
4002 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
4003 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
4004 		} else {
4005 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
4006 			DBUF_STAT_BUMPDOWN(cache_count);
4007 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
4008 			    size + usize);
4009 		}
4010 		db->db_caching_status = DB_NO_CACHE;
4011 	}
4012 	(void) zfs_refcount_add(&db->db_holds, tag);
4013 	DBUF_VERIFY(db);
4014 	mutex_exit(&db->db_mtx);
4015 
4016 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
4017 	if (parent)
4018 		dbuf_rele(parent, NULL);
4019 
4020 	ASSERT3P(DB_DNODE(db), ==, dn);
4021 	ASSERT3U(db->db_blkid, ==, blkid);
4022 	ASSERT3U(db->db_level, ==, level);
4023 	*dbp = db;
4024 
4025 	return (0);
4026 }
4027 
4028 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,const void * tag)4029 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
4030 {
4031 	return (dbuf_hold_level(dn, 0, blkid, tag));
4032 }
4033 
4034 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,const void * tag)4035 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4036 {
4037 	dmu_buf_impl_t *db;
4038 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4039 	return (err ? NULL : db);
4040 }
4041 
4042 void
dbuf_create_bonus(dnode_t * dn)4043 dbuf_create_bonus(dnode_t *dn)
4044 {
4045 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4046 
4047 	ASSERT0P(dn->dn_bonus);
4048 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4049 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4050 	dn->dn_bonus->db_pending_evict = FALSE;
4051 }
4052 
4053 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)4054 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4055 {
4056 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4057 
4058 	if (db->db_blkid != DMU_SPILL_BLKID)
4059 		return (SET_ERROR(ENOTSUP));
4060 	if (blksz == 0)
4061 		blksz = SPA_MINBLOCKSIZE;
4062 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4063 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4064 
4065 	dbuf_new_size(db, blksz, tx);
4066 
4067 	return (0);
4068 }
4069 
4070 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)4071 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4072 {
4073 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4074 }
4075 
4076 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4077 void
dbuf_add_ref(dmu_buf_impl_t * db,const void * tag)4078 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4079 {
4080 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4081 	VERIFY3S(holds, >, 1);
4082 }
4083 
4084 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4085 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,const void * tag)4086 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4087     const void *tag)
4088 {
4089 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4090 	dmu_buf_impl_t *found_db;
4091 	boolean_t result = B_FALSE;
4092 
4093 	if (blkid == DMU_BONUS_BLKID)
4094 		found_db = dbuf_find_bonus(os, obj);
4095 	else
4096 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
4097 
4098 	if (found_db != NULL) {
4099 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4100 			(void) zfs_refcount_add(&db->db_holds, tag);
4101 			result = B_TRUE;
4102 		}
4103 		mutex_exit(&found_db->db_mtx);
4104 	}
4105 	return (result);
4106 }
4107 
4108 /*
4109  * If you call dbuf_rele() you had better not be referencing the dnode handle
4110  * unless you have some other direct or indirect hold on the dnode. (An indirect
4111  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4112  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4113  * dnode's parent dbuf evicting its dnode handles.
4114  */
4115 void
dbuf_rele(dmu_buf_impl_t * db,const void * tag)4116 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4117 {
4118 	mutex_enter(&db->db_mtx);
4119 	dbuf_rele_and_unlock(db, tag, B_FALSE);
4120 }
4121 
4122 void
dmu_buf_rele(dmu_buf_t * db,const void * tag)4123 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4124 {
4125 	dbuf_rele((dmu_buf_impl_t *)db, tag);
4126 }
4127 
4128 /*
4129  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
4130  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
4131  * argument should be set if we are already in the dbuf-evicting code
4132  * path, in which case we don't want to recursively evict.  This allows us to
4133  * avoid deeply nested stacks that would have a call flow similar to this:
4134  *
4135  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4136  *	^						|
4137  *	|						|
4138  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
4139  *
4140  */
4141 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,const void * tag,boolean_t evicting)4142 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4143 {
4144 	int64_t holds;
4145 	uint64_t size;
4146 
4147 	ASSERT(MUTEX_HELD(&db->db_mtx));
4148 	DBUF_VERIFY(db);
4149 
4150 	/*
4151 	 * Remove the reference to the dbuf before removing its hold on the
4152 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
4153 	 * buffer has a corresponding dnode hold.
4154 	 */
4155 	holds = zfs_refcount_remove(&db->db_holds, tag);
4156 	ASSERT(holds >= 0);
4157 
4158 	/*
4159 	 * We can't freeze indirects if there is a possibility that they
4160 	 * may be modified in the current syncing context.
4161 	 */
4162 	if (db->db_buf != NULL &&
4163 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4164 		arc_buf_freeze(db->db_buf);
4165 	}
4166 
4167 	if (holds == db->db_dirtycnt &&
4168 	    db->db_level == 0 && db->db_user_immediate_evict)
4169 		dbuf_evict_user(db);
4170 
4171 	if (holds == 0) {
4172 		if (db->db_blkid == DMU_BONUS_BLKID) {
4173 			dnode_t *dn;
4174 			boolean_t evict_dbuf = db->db_pending_evict;
4175 
4176 			/*
4177 			 * If the dnode moves here, we cannot cross this
4178 			 * barrier until the move completes.
4179 			 */
4180 			DB_DNODE_ENTER(db);
4181 
4182 			dn = DB_DNODE(db);
4183 			atomic_dec_32(&dn->dn_dbufs_count);
4184 
4185 			/*
4186 			 * Decrementing the dbuf count means that the bonus
4187 			 * buffer's dnode hold is no longer discounted in
4188 			 * dnode_move(). The dnode cannot move until after
4189 			 * the dnode_rele() below.
4190 			 */
4191 			DB_DNODE_EXIT(db);
4192 
4193 			/*
4194 			 * Do not reference db after its lock is dropped.
4195 			 * Another thread may evict it.
4196 			 */
4197 			mutex_exit(&db->db_mtx);
4198 
4199 			if (evict_dbuf)
4200 				dnode_evict_bonus(dn);
4201 
4202 			dnode_rele(dn, db);
4203 		} else if (db->db_buf == NULL) {
4204 			/*
4205 			 * This is a special case: we never associated this
4206 			 * dbuf with any data allocated from the ARC.
4207 			 */
4208 			ASSERT(db->db_state == DB_UNCACHED ||
4209 			    db->db_state == DB_NOFILL);
4210 			dbuf_destroy(db);
4211 		} else if (arc_released(db->db_buf)) {
4212 			/*
4213 			 * This dbuf has anonymous data associated with it.
4214 			 */
4215 			dbuf_destroy(db);
4216 		} else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) {
4217 			/*
4218 			 * We don't expect more accesses to the dbuf, and it
4219 			 * is either not cacheable or was marked for eviction.
4220 			 */
4221 			dbuf_destroy(db);
4222 		} else if (!multilist_link_active(&db->db_cache_link)) {
4223 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4224 
4225 			dbuf_cached_state_t dcs =
4226 			    dbuf_include_in_metadata_cache(db) ?
4227 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4228 			db->db_caching_status = dcs;
4229 
4230 			multilist_insert(&dbuf_caches[dcs].cache, db);
4231 			uint64_t db_size = db->db.db_size;
4232 			uint64_t dbu_size = dmu_buf_user_size(&db->db);
4233 			(void) zfs_refcount_add_many(
4234 			    &dbuf_caches[dcs].size, db_size, db);
4235 			size = zfs_refcount_add_many(
4236 			    &dbuf_caches[dcs].size, dbu_size, db->db_user);
4237 			uint8_t db_level = db->db_level;
4238 			mutex_exit(&db->db_mtx);
4239 
4240 			if (dcs == DB_DBUF_METADATA_CACHE) {
4241 				DBUF_STAT_BUMP(metadata_cache_count);
4242 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4243 				    size);
4244 			} else {
4245 				DBUF_STAT_BUMP(cache_count);
4246 				DBUF_STAT_MAX(cache_size_bytes_max, size);
4247 				DBUF_STAT_BUMP(cache_levels[db_level]);
4248 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
4249 				    db_size + dbu_size);
4250 			}
4251 
4252 			if (dcs == DB_DBUF_CACHE && !evicting)
4253 				dbuf_evict_notify(size);
4254 		}
4255 	} else {
4256 		mutex_exit(&db->db_mtx);
4257 	}
4258 }
4259 
4260 #pragma weak dmu_buf_refcount = dbuf_refcount
4261 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)4262 dbuf_refcount(dmu_buf_impl_t *db)
4263 {
4264 	return (zfs_refcount_count(&db->db_holds));
4265 }
4266 
4267 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)4268 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4269 {
4270 	uint64_t holds;
4271 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4272 
4273 	mutex_enter(&db->db_mtx);
4274 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4275 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4276 	mutex_exit(&db->db_mtx);
4277 
4278 	return (holds);
4279 }
4280 
4281 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)4282 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4283     dmu_buf_user_t *new_user)
4284 {
4285 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4286 
4287 	mutex_enter(&db->db_mtx);
4288 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4289 	if (db->db_user == old_user)
4290 		db->db_user = new_user;
4291 	else
4292 		old_user = db->db_user;
4293 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4294 	mutex_exit(&db->db_mtx);
4295 
4296 	return (old_user);
4297 }
4298 
4299 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4300 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4301 {
4302 	return (dmu_buf_replace_user(db_fake, NULL, user));
4303 }
4304 
4305 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)4306 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4307 {
4308 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4309 
4310 	db->db_user_immediate_evict = TRUE;
4311 	return (dmu_buf_set_user(db_fake, user));
4312 }
4313 
4314 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4315 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4316 {
4317 	return (dmu_buf_replace_user(db_fake, user, NULL));
4318 }
4319 
4320 void *
dmu_buf_get_user(dmu_buf_t * db_fake)4321 dmu_buf_get_user(dmu_buf_t *db_fake)
4322 {
4323 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4324 
4325 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4326 	return (db->db_user);
4327 }
4328 
4329 uint64_t
dmu_buf_user_size(dmu_buf_t * db_fake)4330 dmu_buf_user_size(dmu_buf_t *db_fake)
4331 {
4332 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4333 	if (db->db_user == NULL)
4334 		return (0);
4335 	return (atomic_load_64(&db->db_user->dbu_size));
4336 }
4337 
4338 void
dmu_buf_add_user_size(dmu_buf_t * db_fake,uint64_t nadd)4339 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4340 {
4341 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4342 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4343 	ASSERT3P(db->db_user, !=, NULL);
4344 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4345 	atomic_add_64(&db->db_user->dbu_size, nadd);
4346 }
4347 
4348 void
dmu_buf_sub_user_size(dmu_buf_t * db_fake,uint64_t nsub)4349 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4350 {
4351 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4352 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4353 	ASSERT3P(db->db_user, !=, NULL);
4354 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4355 	atomic_sub_64(&db->db_user->dbu_size, nsub);
4356 }
4357 
4358 void
dmu_buf_user_evict_wait(void)4359 dmu_buf_user_evict_wait(void)
4360 {
4361 	taskq_wait(dbu_evict_taskq);
4362 }
4363 
4364 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)4365 dmu_buf_get_blkptr(dmu_buf_t *db)
4366 {
4367 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4368 	return (dbi->db_blkptr);
4369 }
4370 
4371 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)4372 dmu_buf_get_objset(dmu_buf_t *db)
4373 {
4374 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4375 	return (dbi->db_objset);
4376 }
4377 
4378 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)4379 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4380 {
4381 	/* ASSERT(dmu_tx_is_syncing(tx) */
4382 	ASSERT(MUTEX_HELD(&db->db_mtx));
4383 
4384 	if (db->db_blkptr != NULL)
4385 		return;
4386 
4387 	if (db->db_blkid == DMU_SPILL_BLKID) {
4388 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4389 		BP_ZERO(db->db_blkptr);
4390 		return;
4391 	}
4392 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4393 		/*
4394 		 * This buffer was allocated at a time when there was
4395 		 * no available blkptrs from the dnode, or it was
4396 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4397 		 */
4398 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4399 		ASSERT0P(db->db_parent);
4400 		db->db_parent = dn->dn_dbuf;
4401 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4402 		DBUF_VERIFY(db);
4403 	} else {
4404 		dmu_buf_impl_t *parent = db->db_parent;
4405 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4406 
4407 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4408 		if (parent == NULL) {
4409 			mutex_exit(&db->db_mtx);
4410 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4411 			parent = dbuf_hold_level(dn, db->db_level + 1,
4412 			    db->db_blkid >> epbs, db);
4413 			rw_exit(&dn->dn_struct_rwlock);
4414 			mutex_enter(&db->db_mtx);
4415 			db->db_parent = parent;
4416 		}
4417 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4418 		    (db->db_blkid & ((1ULL << epbs) - 1));
4419 		DBUF_VERIFY(db);
4420 	}
4421 }
4422 
4423 static void
dbuf_sync_bonus(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4424 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4425 {
4426 	dmu_buf_impl_t *db = dr->dr_dbuf;
4427 	void *data = dr->dt.dl.dr_data;
4428 
4429 	ASSERT0(db->db_level);
4430 	ASSERT(MUTEX_HELD(&db->db_mtx));
4431 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4432 	ASSERT(data != NULL);
4433 
4434 	dnode_t *dn = dr->dr_dnode;
4435 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4436 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4437 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4438 
4439 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4440 
4441 	dbuf_undirty_bonus(dr);
4442 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4443 }
4444 
4445 /*
4446  * When syncing out a blocks of dnodes, adjust the block to deal with
4447  * encryption.  Normally, we make sure the block is decrypted before writing
4448  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4449  * from a raw receive.  In this case, set the ARC buf's crypt params so
4450  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4451  */
4452 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)4453 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4454 {
4455 	int err;
4456 	dmu_buf_impl_t *db = dr->dr_dbuf;
4457 
4458 	ASSERT(MUTEX_HELD(&db->db_mtx));
4459 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4460 	ASSERT0(db->db_level);
4461 
4462 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4463 		zbookmark_phys_t zb;
4464 
4465 		/*
4466 		 * Unfortunately, there is currently no mechanism for
4467 		 * syncing context to handle decryption errors. An error
4468 		 * here is only possible if an attacker maliciously
4469 		 * changed a dnode block and updated the associated
4470 		 * checksums going up the block tree.
4471 		 */
4472 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4473 		    db->db.db_object, db->db_level, db->db_blkid);
4474 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4475 		    &zb, B_TRUE);
4476 		if (err)
4477 			panic("Invalid dnode block MAC");
4478 	} else if (dr->dt.dl.dr_has_raw_params) {
4479 		(void) arc_release(dr->dt.dl.dr_data, db);
4480 		arc_convert_to_raw(dr->dt.dl.dr_data,
4481 		    dmu_objset_id(db->db_objset),
4482 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4483 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4484 	}
4485 }
4486 
4487 /*
4488  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4489  * is critical the we not allow the compiler to inline this function in to
4490  * dbuf_sync_list() thereby drastically bloating the stack usage.
4491  */
4492 noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4493 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4494 {
4495 	dmu_buf_impl_t *db = dr->dr_dbuf;
4496 	dnode_t *dn = dr->dr_dnode;
4497 
4498 	ASSERT(dmu_tx_is_syncing(tx));
4499 
4500 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4501 
4502 	mutex_enter(&db->db_mtx);
4503 
4504 	ASSERT(db->db_level > 0);
4505 	DBUF_VERIFY(db);
4506 
4507 	/* Read the block if it hasn't been read yet. */
4508 	if (db->db_buf == NULL) {
4509 		mutex_exit(&db->db_mtx);
4510 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4511 		mutex_enter(&db->db_mtx);
4512 	}
4513 	ASSERT3U(db->db_state, ==, DB_CACHED);
4514 	ASSERT(db->db_buf != NULL);
4515 
4516 	/* Indirect block size must match what the dnode thinks it is. */
4517 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4518 	dbuf_check_blkptr(dn, db);
4519 
4520 	/* Provide the pending dirty record to child dbufs */
4521 	db->db_data_pending = dr;
4522 
4523 	mutex_exit(&db->db_mtx);
4524 
4525 	dbuf_write(dr, db->db_buf, tx);
4526 
4527 	zio_t *zio = dr->dr_zio;
4528 	mutex_enter(&dr->dt.di.dr_mtx);
4529 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4530 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4531 	mutex_exit(&dr->dt.di.dr_mtx);
4532 	zio_nowait(zio);
4533 }
4534 
4535 /*
4536  * Verify that the size of the data in our bonus buffer does not exceed
4537  * its recorded size.
4538  *
4539  * The purpose of this verification is to catch any cases in development
4540  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4541  * due to incorrect feature management, older pools expect to read more
4542  * data even though they didn't actually write it to begin with.
4543  *
4544  * For a example, this would catch an error in the feature logic where we
4545  * open an older pool and we expect to write the space map histogram of
4546  * a space map with size SPACE_MAP_SIZE_V0.
4547  */
4548 static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t * dr)4549 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4550 {
4551 #ifdef ZFS_DEBUG
4552 	dnode_t *dn = dr->dr_dnode;
4553 
4554 	/*
4555 	 * Encrypted bonus buffers can have data past their bonuslen.
4556 	 * Skip the verification of these blocks.
4557 	 */
4558 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4559 		return;
4560 
4561 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4562 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4563 	ASSERT3U(bonuslen, <=, maxbonuslen);
4564 
4565 	arc_buf_t *datap = dr->dt.dl.dr_data;
4566 	char *datap_end = ((char *)datap) + bonuslen;
4567 	char *datap_max = ((char *)datap) + maxbonuslen;
4568 
4569 	/* ensure that everything is zero after our data */
4570 	for (; datap_end < datap_max; datap_end++)
4571 		ASSERT0(*datap_end);
4572 #endif
4573 }
4574 
4575 static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t * dr)4576 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4577 {
4578 	/* This must be a lightweight dirty record. */
4579 	ASSERT0P(dr->dr_dbuf);
4580 	dnode_t *dn = dr->dr_dnode;
4581 
4582 	if (dn->dn_phys->dn_nlevels == 1) {
4583 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4584 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4585 	} else {
4586 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4587 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4588 		VERIFY3U(parent_db->db_level, ==, 1);
4589 		VERIFY3P(DB_DNODE(parent_db), ==, dn);
4590 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4591 		blkptr_t *bp = parent_db->db.db_data;
4592 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4593 	}
4594 }
4595 
4596 static void
dbuf_lightweight_ready(zio_t * zio)4597 dbuf_lightweight_ready(zio_t *zio)
4598 {
4599 	dbuf_dirty_record_t *dr = zio->io_private;
4600 	blkptr_t *bp = zio->io_bp;
4601 
4602 	if (zio->io_error != 0)
4603 		return;
4604 
4605 	dnode_t *dn = dr->dr_dnode;
4606 
4607 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4608 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4609 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4610 	    bp_get_dsize_sync(spa, bp_orig);
4611 	dnode_diduse_space(dn, delta);
4612 
4613 	uint64_t blkid = dr->dt.dll.dr_blkid;
4614 	mutex_enter(&dn->dn_mtx);
4615 	if (blkid > dn->dn_phys->dn_maxblkid) {
4616 		ASSERT0(dn->dn_objset->os_raw_receive);
4617 		dn->dn_phys->dn_maxblkid = blkid;
4618 	}
4619 	mutex_exit(&dn->dn_mtx);
4620 
4621 	if (!BP_IS_EMBEDDED(bp)) {
4622 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4623 		BP_SET_FILL(bp, fill);
4624 	}
4625 
4626 	dmu_buf_impl_t *parent_db;
4627 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4628 	if (dr->dr_parent == NULL) {
4629 		parent_db = dn->dn_dbuf;
4630 	} else {
4631 		parent_db = dr->dr_parent->dr_dbuf;
4632 	}
4633 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4634 	*bp_orig = *bp;
4635 	rw_exit(&parent_db->db_rwlock);
4636 }
4637 
4638 static void
dbuf_lightweight_done(zio_t * zio)4639 dbuf_lightweight_done(zio_t *zio)
4640 {
4641 	dbuf_dirty_record_t *dr = zio->io_private;
4642 
4643 	VERIFY0(zio->io_error);
4644 
4645 	objset_t *os = dr->dr_dnode->dn_objset;
4646 	dmu_tx_t *tx = os->os_synctx;
4647 
4648 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4649 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4650 	} else {
4651 		dsl_dataset_t *ds = os->os_dsl_dataset;
4652 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4653 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4654 	}
4655 
4656 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4657 	    zio->io_txg);
4658 
4659 	abd_free(dr->dt.dll.dr_abd);
4660 	kmem_free(dr, sizeof (*dr));
4661 }
4662 
4663 noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4664 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4665 {
4666 	dnode_t *dn = dr->dr_dnode;
4667 	zio_t *pio;
4668 	if (dn->dn_phys->dn_nlevels == 1) {
4669 		pio = dn->dn_zio;
4670 	} else {
4671 		pio = dr->dr_parent->dr_zio;
4672 	}
4673 
4674 	zbookmark_phys_t zb = {
4675 		.zb_objset = dmu_objset_id(dn->dn_objset),
4676 		.zb_object = dn->dn_object,
4677 		.zb_level = 0,
4678 		.zb_blkid = dr->dt.dll.dr_blkid,
4679 	};
4680 
4681 	/*
4682 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4683 	 * will have the old BP in dbuf_lightweight_done().
4684 	 */
4685 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4686 
4687 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4688 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4689 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4690 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4691 	    dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4692 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4693 
4694 	zio_nowait(dr->dr_zio);
4695 }
4696 
4697 /*
4698  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4699  * critical the we not allow the compiler to inline this function in to
4700  * dbuf_sync_list() thereby drastically bloating the stack usage.
4701  */
4702 noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4703 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4704 {
4705 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4706 	dmu_buf_impl_t *db = dr->dr_dbuf;
4707 	dnode_t *dn = dr->dr_dnode;
4708 	objset_t *os;
4709 	uint64_t txg = tx->tx_txg;
4710 
4711 	ASSERT(dmu_tx_is_syncing(tx));
4712 
4713 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4714 
4715 	mutex_enter(&db->db_mtx);
4716 	/*
4717 	 * To be synced, we must be dirtied.  But we might have been freed
4718 	 * after the dirty.
4719 	 */
4720 	if (db->db_state == DB_UNCACHED) {
4721 		/* This buffer has been freed since it was dirtied */
4722 		ASSERT0P(db->db.db_data);
4723 	} else if (db->db_state == DB_FILL) {
4724 		/* This buffer was freed and is now being re-filled */
4725 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4726 	} else if (db->db_state == DB_READ) {
4727 		/*
4728 		 * This buffer was either cloned or had a Direct I/O write
4729 		 * occur and has an in-flgiht read on the BP. It is safe to
4730 		 * issue the write here, because the read has already been
4731 		 * issued and the contents won't change.
4732 		 *
4733 		 * We can verify the case of both the clone and Direct I/O
4734 		 * write by making sure the first dirty record for the dbuf
4735 		 * has no ARC buffer associated with it.
4736 		 */
4737 		dbuf_dirty_record_t *dr_head =
4738 		    list_head(&db->db_dirty_records);
4739 		ASSERT0P(db->db_buf);
4740 		ASSERT0P(db->db.db_data);
4741 		ASSERT0P(dr_head->dt.dl.dr_data);
4742 		ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4743 	} else {
4744 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4745 	}
4746 	DBUF_VERIFY(db);
4747 
4748 	if (db->db_blkid == DMU_SPILL_BLKID) {
4749 		mutex_enter(&dn->dn_mtx);
4750 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4751 			/*
4752 			 * In the previous transaction group, the bonus buffer
4753 			 * was entirely used to store the attributes for the
4754 			 * dnode which overrode the dn_spill field.  However,
4755 			 * when adding more attributes to the file a spill
4756 			 * block was required to hold the extra attributes.
4757 			 *
4758 			 * Make sure to clear the garbage left in the dn_spill
4759 			 * field from the previous attributes in the bonus
4760 			 * buffer.  Otherwise, after writing out the spill
4761 			 * block to the new allocated dva, it will free
4762 			 * the old block pointed to by the invalid dn_spill.
4763 			 */
4764 			db->db_blkptr = NULL;
4765 		}
4766 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4767 		mutex_exit(&dn->dn_mtx);
4768 	}
4769 
4770 	/*
4771 	 * If this is a bonus buffer, simply copy the bonus data into the
4772 	 * dnode.  It will be written out when the dnode is synced (and it
4773 	 * will be synced, since it must have been dirty for dbuf_sync to
4774 	 * be called).
4775 	 */
4776 	if (db->db_blkid == DMU_BONUS_BLKID) {
4777 		ASSERT(dr->dr_dbuf == db);
4778 		dbuf_sync_bonus(dr, tx);
4779 		return;
4780 	}
4781 
4782 	os = dn->dn_objset;
4783 
4784 	/*
4785 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4786 	 * operation to sneak in. As a result, we need to ensure that we
4787 	 * don't check the dr_override_state until we have returned from
4788 	 * dbuf_check_blkptr.
4789 	 */
4790 	dbuf_check_blkptr(dn, db);
4791 
4792 	/*
4793 	 * If this buffer is in the middle of an immediate write, wait for the
4794 	 * synchronous IO to complete.
4795 	 *
4796 	 * This is also valid even with Direct I/O writes setting a dirty
4797 	 * records override state into DR_IN_DMU_SYNC, because all
4798 	 * Direct I/O writes happen in open-context.
4799 	 */
4800 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4801 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4802 		cv_wait(&db->db_changed, &db->db_mtx);
4803 	}
4804 
4805 	/*
4806 	 * If this is a dnode block, ensure it is appropriately encrypted
4807 	 * or decrypted, depending on what we are writing to it this txg.
4808 	 */
4809 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4810 		dbuf_prepare_encrypted_dnode_leaf(dr);
4811 
4812 	if (*datap != NULL && *datap == db->db_buf &&
4813 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4814 	    zfs_refcount_count(&db->db_holds) > 1) {
4815 		/*
4816 		 * If this buffer is currently "in use" (i.e., there
4817 		 * are active holds and db_data still references it),
4818 		 * then make a copy before we start the write so that
4819 		 * any modifications from the open txg will not leak
4820 		 * into this write.
4821 		 *
4822 		 * NOTE: this copy does not need to be made for
4823 		 * objects only modified in the syncing context (e.g.
4824 		 * DNONE_DNODE blocks).
4825 		 */
4826 		int psize = arc_buf_size(*datap);
4827 		int lsize = arc_buf_lsize(*datap);
4828 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4829 		enum zio_compress compress_type = arc_get_compression(*datap);
4830 		uint8_t complevel = arc_get_complevel(*datap);
4831 
4832 		if (arc_is_encrypted(*datap)) {
4833 			boolean_t byteorder;
4834 			uint8_t salt[ZIO_DATA_SALT_LEN];
4835 			uint8_t iv[ZIO_DATA_IV_LEN];
4836 			uint8_t mac[ZIO_DATA_MAC_LEN];
4837 
4838 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4839 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4840 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4841 			    dn->dn_type, psize, lsize, compress_type,
4842 			    complevel);
4843 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4844 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4845 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4846 			    psize, lsize, compress_type, complevel);
4847 		} else {
4848 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4849 		}
4850 		memcpy((*datap)->b_data, db->db.db_data, psize);
4851 	}
4852 	db->db_data_pending = dr;
4853 
4854 	mutex_exit(&db->db_mtx);
4855 
4856 	dbuf_write(dr, *datap, tx);
4857 
4858 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4859 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4860 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4861 	} else {
4862 		zio_nowait(dr->dr_zio);
4863 	}
4864 }
4865 
4866 /*
4867  * Syncs out a range of dirty records for indirect or leaf dbufs.  May be
4868  * called recursively from dbuf_sync_indirect().
4869  */
4870 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)4871 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4872 {
4873 	dbuf_dirty_record_t *dr;
4874 
4875 	while ((dr = list_head(list))) {
4876 		if (dr->dr_zio != NULL) {
4877 			/*
4878 			 * If we find an already initialized zio then we
4879 			 * are processing the meta-dnode, and we have finished.
4880 			 * The dbufs for all dnodes are put back on the list
4881 			 * during processing, so that we can zio_wait()
4882 			 * these IOs after initiating all child IOs.
4883 			 */
4884 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4885 			    DMU_META_DNODE_OBJECT);
4886 			break;
4887 		}
4888 		list_remove(list, dr);
4889 		if (dr->dr_dbuf == NULL) {
4890 			dbuf_sync_lightweight(dr, tx);
4891 		} else {
4892 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4893 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4894 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4895 			}
4896 			if (dr->dr_dbuf->db_level > 0)
4897 				dbuf_sync_indirect(dr, tx);
4898 			else
4899 				dbuf_sync_leaf(dr, tx);
4900 		}
4901 	}
4902 }
4903 
4904 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4905 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4906 {
4907 	(void) buf;
4908 	dmu_buf_impl_t *db = vdb;
4909 	dnode_t *dn;
4910 	blkptr_t *bp = zio->io_bp;
4911 	blkptr_t *bp_orig = &zio->io_bp_orig;
4912 	spa_t *spa = zio->io_spa;
4913 	int64_t delta;
4914 	uint64_t fill = 0;
4915 	int i;
4916 
4917 	ASSERT3P(db->db_blkptr, !=, NULL);
4918 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4919 
4920 	DB_DNODE_ENTER(db);
4921 	dn = DB_DNODE(db);
4922 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4923 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4924 	zio->io_prev_space_delta = delta;
4925 
4926 	if (BP_GET_BIRTH(bp) != 0) {
4927 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4928 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4929 		    (db->db_blkid == DMU_SPILL_BLKID &&
4930 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4931 		    BP_IS_EMBEDDED(bp));
4932 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4933 	}
4934 
4935 	mutex_enter(&db->db_mtx);
4936 
4937 #ifdef ZFS_DEBUG
4938 	if (db->db_blkid == DMU_SPILL_BLKID) {
4939 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4940 		ASSERT(!(BP_IS_HOLE(bp)) &&
4941 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4942 	}
4943 #endif
4944 
4945 	if (db->db_level == 0) {
4946 		mutex_enter(&dn->dn_mtx);
4947 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4948 		    db->db_blkid != DMU_SPILL_BLKID) {
4949 			ASSERT0(db->db_objset->os_raw_receive);
4950 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4951 		}
4952 		mutex_exit(&dn->dn_mtx);
4953 
4954 		if (dn->dn_type == DMU_OT_DNODE) {
4955 			i = 0;
4956 			while (i < db->db.db_size) {
4957 				dnode_phys_t *dnp =
4958 				    (void *)(((char *)db->db.db_data) + i);
4959 
4960 				i += DNODE_MIN_SIZE;
4961 				if (dnp->dn_type != DMU_OT_NONE) {
4962 					fill++;
4963 					for (int j = 0; j < dnp->dn_nblkptr;
4964 					    j++) {
4965 						(void) zfs_blkptr_verify(spa,
4966 						    &dnp->dn_blkptr[j],
4967 						    BLK_CONFIG_SKIP,
4968 						    BLK_VERIFY_HALT);
4969 					}
4970 					if (dnp->dn_flags &
4971 					    DNODE_FLAG_SPILL_BLKPTR) {
4972 						(void) zfs_blkptr_verify(spa,
4973 						    DN_SPILL_BLKPTR(dnp),
4974 						    BLK_CONFIG_SKIP,
4975 						    BLK_VERIFY_HALT);
4976 					}
4977 					i += dnp->dn_extra_slots *
4978 					    DNODE_MIN_SIZE;
4979 				}
4980 			}
4981 		} else {
4982 			if (BP_IS_HOLE(bp)) {
4983 				fill = 0;
4984 			} else {
4985 				fill = 1;
4986 			}
4987 		}
4988 	} else {
4989 		blkptr_t *ibp = db->db.db_data;
4990 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4991 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4992 			if (BP_IS_HOLE(ibp))
4993 				continue;
4994 			(void) zfs_blkptr_verify(spa, ibp,
4995 			    BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4996 			fill += BP_GET_FILL(ibp);
4997 		}
4998 	}
4999 	DB_DNODE_EXIT(db);
5000 
5001 	if (!BP_IS_EMBEDDED(bp))
5002 		BP_SET_FILL(bp, fill);
5003 
5004 	mutex_exit(&db->db_mtx);
5005 
5006 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
5007 	*db->db_blkptr = *bp;
5008 	dmu_buf_unlock_parent(db, dblt, FTAG);
5009 }
5010 
5011 /*
5012  * This function gets called just prior to running through the compression
5013  * stage of the zio pipeline. If we're an indirect block comprised of only
5014  * holes, then we want this indirect to be compressed away to a hole. In
5015  * order to do that we must zero out any information about the holes that
5016  * this indirect points to prior to before we try to compress it.
5017  */
5018 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)5019 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
5020 {
5021 	(void) zio, (void) buf;
5022 	dmu_buf_impl_t *db = vdb;
5023 	blkptr_t *bp;
5024 	unsigned int epbs, i;
5025 
5026 	ASSERT3U(db->db_level, >, 0);
5027 	DB_DNODE_ENTER(db);
5028 	epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
5029 	DB_DNODE_EXIT(db);
5030 	ASSERT3U(epbs, <, 31);
5031 
5032 	/* Determine if all our children are holes */
5033 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
5034 		if (!BP_IS_HOLE(bp))
5035 			break;
5036 	}
5037 
5038 	/*
5039 	 * If all the children are holes, then zero them all out so that
5040 	 * we may get compressed away.
5041 	 */
5042 	if (i == 1ULL << epbs) {
5043 		/*
5044 		 * We only found holes. Grab the rwlock to prevent
5045 		 * anybody from reading the blocks we're about to
5046 		 * zero out.
5047 		 */
5048 		rw_enter(&db->db_rwlock, RW_WRITER);
5049 		memset(db->db.db_data, 0, db->db.db_size);
5050 		rw_exit(&db->db_rwlock);
5051 	}
5052 }
5053 
5054 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)5055 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5056 {
5057 	(void) buf;
5058 	dmu_buf_impl_t *db = vdb;
5059 	blkptr_t *bp_orig = &zio->io_bp_orig;
5060 	blkptr_t *bp = db->db_blkptr;
5061 	objset_t *os = db->db_objset;
5062 	dmu_tx_t *tx = os->os_synctx;
5063 
5064 	ASSERT0(zio->io_error);
5065 	ASSERT(db->db_blkptr == bp);
5066 
5067 	/*
5068 	 * For nopwrites and rewrites we ensure that the bp matches our
5069 	 * original and bypass all the accounting.
5070 	 */
5071 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5072 		ASSERT(BP_EQUAL(bp, bp_orig));
5073 	} else {
5074 		dsl_dataset_t *ds = os->os_dsl_dataset;
5075 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5076 		dsl_dataset_block_born(ds, bp, tx);
5077 	}
5078 
5079 	mutex_enter(&db->db_mtx);
5080 
5081 	DBUF_VERIFY(db);
5082 
5083 	dbuf_dirty_record_t *dr = db->db_data_pending;
5084 	dnode_t *dn = dr->dr_dnode;
5085 	ASSERT(!list_link_active(&dr->dr_dirty_node));
5086 	ASSERT(dr->dr_dbuf == db);
5087 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5088 	list_remove(&db->db_dirty_records, dr);
5089 
5090 #ifdef ZFS_DEBUG
5091 	if (db->db_blkid == DMU_SPILL_BLKID) {
5092 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5093 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5094 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5095 	}
5096 #endif
5097 
5098 	if (db->db_level == 0) {
5099 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5100 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5101 
5102 		/* no dr_data if this is a NO_FILL or Direct I/O */
5103 		if (dr->dt.dl.dr_data != NULL &&
5104 		    dr->dt.dl.dr_data != db->db_buf) {
5105 			ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5106 			ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5107 			arc_buf_destroy(dr->dt.dl.dr_data, db);
5108 		}
5109 	} else {
5110 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5111 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5112 		if (!BP_IS_HOLE(db->db_blkptr)) {
5113 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5114 			    SPA_BLKPTRSHIFT;
5115 			ASSERT3U(db->db_blkid, <=,
5116 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5117 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5118 			    db->db.db_size);
5119 		}
5120 		mutex_destroy(&dr->dt.di.dr_mtx);
5121 		list_destroy(&dr->dt.di.dr_children);
5122 	}
5123 
5124 	cv_broadcast(&db->db_changed);
5125 	ASSERT(db->db_dirtycnt > 0);
5126 	db->db_dirtycnt -= 1;
5127 	db->db_data_pending = NULL;
5128 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5129 
5130 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5131 	    zio->io_txg);
5132 
5133 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5134 }
5135 
5136 static void
dbuf_write_nofill_ready(zio_t * zio)5137 dbuf_write_nofill_ready(zio_t *zio)
5138 {
5139 	dbuf_write_ready(zio, NULL, zio->io_private);
5140 }
5141 
5142 static void
dbuf_write_nofill_done(zio_t * zio)5143 dbuf_write_nofill_done(zio_t *zio)
5144 {
5145 	dbuf_write_done(zio, NULL, zio->io_private);
5146 }
5147 
5148 static void
dbuf_write_override_ready(zio_t * zio)5149 dbuf_write_override_ready(zio_t *zio)
5150 {
5151 	dbuf_dirty_record_t *dr = zio->io_private;
5152 	dmu_buf_impl_t *db = dr->dr_dbuf;
5153 
5154 	dbuf_write_ready(zio, NULL, db);
5155 }
5156 
5157 static void
dbuf_write_override_done(zio_t * zio)5158 dbuf_write_override_done(zio_t *zio)
5159 {
5160 	dbuf_dirty_record_t *dr = zio->io_private;
5161 	dmu_buf_impl_t *db = dr->dr_dbuf;
5162 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5163 
5164 	mutex_enter(&db->db_mtx);
5165 	if (!BP_EQUAL(zio->io_bp, obp)) {
5166 		if (!BP_IS_HOLE(obp))
5167 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5168 		arc_release(dr->dt.dl.dr_data, db);
5169 	}
5170 	mutex_exit(&db->db_mtx);
5171 
5172 	dbuf_write_done(zio, NULL, db);
5173 
5174 	if (zio->io_abd != NULL)
5175 		abd_free(zio->io_abd);
5176 }
5177 
5178 typedef struct dbuf_remap_impl_callback_arg {
5179 	objset_t	*drica_os;
5180 	uint64_t	drica_blk_birth;
5181 	dmu_tx_t	*drica_tx;
5182 } dbuf_remap_impl_callback_arg_t;
5183 
5184 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)5185 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5186     void *arg)
5187 {
5188 	dbuf_remap_impl_callback_arg_t *drica = arg;
5189 	objset_t *os = drica->drica_os;
5190 	spa_t *spa = dmu_objset_spa(os);
5191 	dmu_tx_t *tx = drica->drica_tx;
5192 
5193 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5194 
5195 	if (os == spa_meta_objset(spa)) {
5196 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5197 	} else {
5198 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5199 		    size, drica->drica_blk_birth, tx);
5200 	}
5201 }
5202 
5203 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)5204 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5205 {
5206 	blkptr_t bp_copy = *bp;
5207 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
5208 	dbuf_remap_impl_callback_arg_t drica;
5209 
5210 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5211 
5212 	drica.drica_os = dn->dn_objset;
5213 	drica.drica_blk_birth = BP_GET_BIRTH(bp);
5214 	drica.drica_tx = tx;
5215 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5216 	    &drica)) {
5217 		/*
5218 		 * If the blkptr being remapped is tracked by a livelist,
5219 		 * then we need to make sure the livelist reflects the update.
5220 		 * First, cancel out the old blkptr by appending a 'FREE'
5221 		 * entry. Next, add an 'ALLOC' to track the new version. This
5222 		 * way we avoid trying to free an inaccurate blkptr at delete.
5223 		 * Note that embedded blkptrs are not tracked in livelists.
5224 		 */
5225 		if (dn->dn_objset != spa_meta_objset(spa)) {
5226 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5227 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5228 			    BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) {
5229 				ASSERT(!BP_IS_EMBEDDED(bp));
5230 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
5231 				ASSERT(spa_feature_is_enabled(spa,
5232 				    SPA_FEATURE_LIVELIST));
5233 				bplist_append(&ds->ds_dir->dd_pending_frees,
5234 				    bp);
5235 				bplist_append(&ds->ds_dir->dd_pending_allocs,
5236 				    &bp_copy);
5237 			}
5238 		}
5239 
5240 		/*
5241 		 * The db_rwlock prevents dbuf_read_impl() from
5242 		 * dereferencing the BP while we are changing it.  To
5243 		 * avoid lock contention, only grab it when we are actually
5244 		 * changing the BP.
5245 		 */
5246 		if (rw != NULL)
5247 			rw_enter(rw, RW_WRITER);
5248 		*bp = bp_copy;
5249 		if (rw != NULL)
5250 			rw_exit(rw);
5251 	}
5252 }
5253 
5254 /*
5255  * Remap any existing BP's to concrete vdevs, if possible.
5256  */
5257 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)5258 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5259 {
5260 	spa_t *spa = dmu_objset_spa(db->db_objset);
5261 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5262 
5263 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5264 		return;
5265 
5266 	if (db->db_level > 0) {
5267 		blkptr_t *bp = db->db.db_data;
5268 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5269 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5270 		}
5271 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5272 		dnode_phys_t *dnp = db->db.db_data;
5273 		ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5274 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5275 		    i += dnp[i].dn_extra_slots + 1) {
5276 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5277 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5278 				    &dn->dn_dbuf->db_rwlock);
5279 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5280 				    tx);
5281 			}
5282 		}
5283 	}
5284 }
5285 
5286 
5287 /*
5288  * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5289  * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5290  */
5291 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)5292 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5293 {
5294 	dmu_buf_impl_t *db = dr->dr_dbuf;
5295 	dnode_t *dn = dr->dr_dnode;
5296 	objset_t *os;
5297 	dmu_buf_impl_t *parent = db->db_parent;
5298 	uint64_t txg = tx->tx_txg;
5299 	zbookmark_phys_t zb;
5300 	zio_prop_t zp;
5301 	zio_t *pio; /* parent I/O */
5302 	int wp_flag = 0;
5303 
5304 	ASSERT(dmu_tx_is_syncing(tx));
5305 
5306 	os = dn->dn_objset;
5307 
5308 	if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5309 		/*
5310 		 * Private object buffers are released here rather than in
5311 		 * dbuf_dirty() since they are only modified in the syncing
5312 		 * context and we don't want the overhead of making multiple
5313 		 * copies of the data.
5314 		 */
5315 		if (BP_IS_HOLE(db->db_blkptr))
5316 			arc_buf_thaw(data);
5317 		else
5318 			dbuf_release_bp(db);
5319 		dbuf_remap(dn, db, tx);
5320 	}
5321 
5322 	if (parent != dn->dn_dbuf) {
5323 		/* Our parent is an indirect block. */
5324 		/* We have a dirty parent that has been scheduled for write. */
5325 		ASSERT(parent && parent->db_data_pending);
5326 		/* Our parent's buffer is one level closer to the dnode. */
5327 		ASSERT(db->db_level == parent->db_level-1);
5328 		/*
5329 		 * We're about to modify our parent's db_data by modifying
5330 		 * our block pointer, so the parent must be released.
5331 		 */
5332 		ASSERT(arc_released(parent->db_buf));
5333 		pio = parent->db_data_pending->dr_zio;
5334 	} else {
5335 		/* Our parent is the dnode itself. */
5336 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5337 		    db->db_blkid != DMU_SPILL_BLKID) ||
5338 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5339 		if (db->db_blkid != DMU_SPILL_BLKID)
5340 			ASSERT3P(db->db_blkptr, ==,
5341 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5342 		pio = dn->dn_zio;
5343 	}
5344 
5345 	ASSERT(db->db_level == 0 || data == db->db_buf);
5346 	ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg);
5347 	ASSERT(pio);
5348 
5349 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5350 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5351 	    db->db.db_object, db->db_level, db->db_blkid);
5352 
5353 	if (db->db_blkid == DMU_SPILL_BLKID)
5354 		wp_flag = WP_SPILL;
5355 	wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5356 
5357 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5358 
5359 	/*
5360 	 * Set rewrite properties for zfs_rewrite() operations.
5361 	 */
5362 	if (db->db_level == 0 && dr->dt.dl.dr_rewrite) {
5363 		zp.zp_rewrite = B_TRUE;
5364 
5365 		/*
5366 		 * Mark physical rewrite feature for activation.
5367 		 * This will be activated automatically during dataset sync.
5368 		 */
5369 		dsl_dataset_t *ds = os->os_dsl_dataset;
5370 		if (!dsl_dataset_feature_is_active(ds,
5371 		    SPA_FEATURE_PHYSICAL_REWRITE)) {
5372 			ds->ds_feature_activation[
5373 			    SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE;
5374 		}
5375 	}
5376 
5377 	/*
5378 	 * We copy the blkptr now (rather than when we instantiate the dirty
5379 	 * record), because its value can change between open context and
5380 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5381 	 * db_blkptr because we are in syncing context.
5382 	 */
5383 	dr->dr_bp_copy = *db->db_blkptr;
5384 
5385 	if (db->db_level == 0 &&
5386 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5387 		/*
5388 		 * The BP for this block has been provided by open context
5389 		 * (by dmu_sync(), dmu_write_direct(),
5390 		 *  or dmu_buf_write_embedded()).
5391 		 */
5392 		abd_t *contents = (data != NULL) ?
5393 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5394 
5395 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5396 		    contents, db->db.db_size, db->db.db_size, &zp,
5397 		    dbuf_write_override_ready, NULL,
5398 		    dbuf_write_override_done,
5399 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5400 		mutex_enter(&db->db_mtx);
5401 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5402 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5403 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies,
5404 		    dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite);
5405 		mutex_exit(&db->db_mtx);
5406 	} else if (data == NULL) {
5407 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5408 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5409 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5410 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5411 		    dbuf_write_nofill_ready, NULL,
5412 		    dbuf_write_nofill_done, db,
5413 		    ZIO_PRIORITY_ASYNC_WRITE,
5414 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5415 	} else {
5416 		ASSERT(arc_released(data));
5417 
5418 		/*
5419 		 * For indirect blocks, we want to setup the children
5420 		 * ready callback so that we can properly handle an indirect
5421 		 * block that only contains holes.
5422 		 */
5423 		arc_write_done_func_t *children_ready_cb = NULL;
5424 		if (db->db_level != 0)
5425 			children_ready_cb = dbuf_write_children_ready;
5426 
5427 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5428 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5429 		    dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5430 		    children_ready_cb, dbuf_write_done, db,
5431 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5432 	}
5433 }
5434 
5435 EXPORT_SYMBOL(dbuf_find);
5436 EXPORT_SYMBOL(dbuf_is_metadata);
5437 EXPORT_SYMBOL(dbuf_destroy);
5438 EXPORT_SYMBOL(dbuf_whichblock);
5439 EXPORT_SYMBOL(dbuf_read);
5440 EXPORT_SYMBOL(dbuf_unoverride);
5441 EXPORT_SYMBOL(dbuf_free_range);
5442 EXPORT_SYMBOL(dbuf_new_size);
5443 EXPORT_SYMBOL(dbuf_release_bp);
5444 EXPORT_SYMBOL(dbuf_dirty);
5445 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5446 EXPORT_SYMBOL(dmu_buf_will_dirty);
5447 EXPORT_SYMBOL(dmu_buf_will_rewrite);
5448 EXPORT_SYMBOL(dmu_buf_is_dirty);
5449 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5450 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5451 EXPORT_SYMBOL(dmu_buf_will_fill);
5452 EXPORT_SYMBOL(dmu_buf_fill_done);
5453 EXPORT_SYMBOL(dmu_buf_rele);
5454 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5455 EXPORT_SYMBOL(dbuf_prefetch);
5456 EXPORT_SYMBOL(dbuf_hold_impl);
5457 EXPORT_SYMBOL(dbuf_hold);
5458 EXPORT_SYMBOL(dbuf_hold_level);
5459 EXPORT_SYMBOL(dbuf_create_bonus);
5460 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5461 EXPORT_SYMBOL(dbuf_rm_spill);
5462 EXPORT_SYMBOL(dbuf_add_ref);
5463 EXPORT_SYMBOL(dbuf_rele);
5464 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5465 EXPORT_SYMBOL(dbuf_refcount);
5466 EXPORT_SYMBOL(dbuf_sync_list);
5467 EXPORT_SYMBOL(dmu_buf_set_user);
5468 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5469 EXPORT_SYMBOL(dmu_buf_get_user);
5470 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5471 
5472 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5473 	"Maximum size in bytes of the dbuf cache.");
5474 
5475 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5476 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5477 
5478 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5479 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5480 
5481 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5482 	"Maximum size in bytes of dbuf metadata cache.");
5483 
5484 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5485 	"Set size of dbuf cache to log2 fraction of arc size.");
5486 
5487 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5488 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5489 
5490 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5491 	"Set size of dbuf cache mutex array as log2 shift.");
5492