1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2012, Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /*
28 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
29 */
30
31 /*
32 * Data-Link Services Module
33 */
34
35 #include <sys/strsun.h>
36 #include <sys/vlan.h>
37 #include <sys/dld_impl.h>
38 #include <sys/mac_client_priv.h>
39
40 int
dls_open(dls_link_t * dlp,dls_dl_handle_t ddh,dld_str_t * dsp)41 dls_open(dls_link_t *dlp, dls_dl_handle_t ddh, dld_str_t *dsp)
42 {
43 zoneid_t zid = getzoneid();
44 boolean_t local;
45 int err;
46
47 /*
48 * Check whether this client belongs to the zone of this dlp. Note that
49 * a global zone client is allowed to open a local zone dlp.
50 */
51 if (zid != GLOBAL_ZONEID && dlp->dl_zid != zid)
52 return (ENOENT);
53
54 /*
55 * mac_start() is required for non-legacy MACs to show accurate
56 * kstats even before the interface is brought up. For legacy
57 * drivers, this is not needed. Further, calling mac_start() for
58 * legacy drivers would make the shared-lower-stream to stay in
59 * the DL_IDLE state, which in turn causes performance regression.
60 */
61 if (!mac_capab_get(dlp->dl_mh, MAC_CAPAB_LEGACY, NULL) &&
62 ((err = mac_start(dlp->dl_mh)) != 0)) {
63 return (err);
64 }
65
66 local = (zid == dlp->dl_zid);
67 dlp->dl_zone_ref += (local ? 1 : 0);
68
69 /*
70 * Cache a copy of the MAC interface handle, a pointer to the
71 * immutable MAC info.
72 */
73 dsp->ds_dlp = dlp;
74 dsp->ds_mh = dlp->dl_mh;
75 dsp->ds_mch = dlp->dl_mch;
76 dsp->ds_mip = dlp->dl_mip;
77 dsp->ds_ddh = ddh;
78 dsp->ds_local = local;
79
80 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
81 return (0);
82 }
83
84 void
dls_close(dld_str_t * dsp)85 dls_close(dld_str_t *dsp)
86 {
87 dls_link_t *dlp = dsp->ds_dlp;
88 dls_multicst_addr_t *p;
89 dls_multicst_addr_t *nextp;
90
91 ASSERT(dsp->ds_datathr_cnt == 0);
92 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
93
94 if (dsp->ds_local)
95 dlp->dl_zone_ref--;
96 dsp->ds_local = B_FALSE;
97
98 /*
99 * Walk the list of multicast addresses, disabling each at the MAC.
100 * Note that we must remove multicast address before
101 * mac_unicast_remove() (called by dls_active_clear()) because
102 * mac_multicast_remove() relies on the unicast flows on the mac
103 * client.
104 */
105 for (p = dsp->ds_dmap; p != NULL; p = nextp) {
106 (void) mac_multicast_remove(dsp->ds_mch, p->dma_addr);
107 nextp = p->dma_nextp;
108 kmem_free(p, sizeof (dls_multicst_addr_t));
109 }
110 dsp->ds_dmap = NULL;
111
112 dls_active_clear(dsp, B_TRUE);
113
114 /*
115 * If the dld_str_t is bound then unbind it.
116 */
117 if (dsp->ds_dlstate == DL_IDLE) {
118 dls_unbind(dsp);
119 dsp->ds_dlstate = DL_UNBOUND;
120 }
121
122 /*
123 * If the MAC has been set in promiscuous mode then disable it.
124 * This needs to be done before resetting ds_rx.
125 */
126 (void) dls_promisc(dsp, 0);
127
128 /*
129 * At this point we have cutoff inbound packet flow from the mac
130 * for this 'dsp'. The dls_link_remove above cut off packets meant
131 * for us and waited for upcalls to finish. Similarly the dls_promisc
132 * reset above waited for promisc callbacks to finish. Now we can
133 * safely reset ds_rx to NULL
134 */
135 dsp->ds_rx = NULL;
136 dsp->ds_rx_arg = NULL;
137
138 dsp->ds_dlp = NULL;
139
140 if (!mac_capab_get(dsp->ds_mh, MAC_CAPAB_LEGACY, NULL))
141 mac_stop(dsp->ds_mh);
142
143 /*
144 * Release our reference to the dls_link_t allowing that to be
145 * destroyed if there are no more dls_impl_t.
146 */
147 dls_link_rele(dlp);
148 }
149
150 int
dls_bind(dld_str_t * dsp,uint32_t sap)151 dls_bind(dld_str_t *dsp, uint32_t sap)
152 {
153 uint32_t dls_sap;
154
155 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
156
157 /*
158 * Check to see the value is legal for the media type.
159 */
160 if (!mac_sap_verify(dsp->ds_mh, sap, &dls_sap))
161 return (EINVAL);
162
163 if (dsp->ds_promisc & DLS_PROMISC_SAP)
164 dls_sap = DLS_SAP_PROMISC;
165
166 /*
167 * Set up the dld_str_t to mark it as able to receive packets.
168 */
169 dsp->ds_sap = sap;
170
171 /*
172 * The MAC layer does the VLAN demultiplexing and will only pass up
173 * untagged packets to non-promiscuous primary MAC clients. In order to
174 * support the binding to the VLAN SAP which is required by DLPI, dls
175 * needs to get a copy of all tagged packets when the client binds to
176 * the VLAN SAP. We do this by registering a separate promiscuous
177 * callback for each dls client binding to that SAP.
178 *
179 * Note: even though there are two promiscuous handles in dld_str_t,
180 * ds_mph is for the regular promiscuous mode, ds_vlan_mph is the handle
181 * to receive VLAN pkt when promiscuous mode is not on. Only one of
182 * them can be non-NULL at the same time, to avoid receiving dup copies
183 * of pkts.
184 */
185 if (sap == ETHERTYPE_VLAN && dsp->ds_promisc == 0) {
186 int err;
187
188 if (dsp->ds_vlan_mph != NULL)
189 return (EINVAL);
190 err = mac_promisc_add(dsp->ds_mch,
191 MAC_CLIENT_PROMISC_ALL, dls_rx_vlan_promisc, dsp,
192 &dsp->ds_vlan_mph, MAC_PROMISC_FLAGS_NO_PHYS);
193
194 if (err == 0 && dsp->ds_nonip &&
195 dsp->ds_dlp->dl_nonip_cnt++ == 0)
196 mac_rx_bypass_disable(dsp->ds_mch);
197
198 return (err);
199 }
200
201 /*
202 * Now bind the dld_str_t by adding it into the hash table in the
203 * dls_link_t.
204 */
205 dls_link_add(dsp->ds_dlp, dls_sap, dsp);
206 if (dsp->ds_nonip && dsp->ds_dlp->dl_nonip_cnt++ == 0)
207 mac_rx_bypass_disable(dsp->ds_mch);
208
209 return (0);
210 }
211
212 void
dls_unbind(dld_str_t * dsp)213 dls_unbind(dld_str_t *dsp)
214 {
215 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
216
217 if (dsp->ds_nonip && --dsp->ds_dlp->dl_nonip_cnt == 0)
218 mac_rx_bypass_enable(dsp->ds_mch);
219
220 /*
221 * For VLAN SAP, there was a promisc handle registered when dls_bind.
222 * When unbind this dls link, we need to remove the promisc handle.
223 * See comments in dls_bind().
224 */
225 if (dsp->ds_vlan_mph != NULL) {
226 mac_promisc_remove(dsp->ds_vlan_mph);
227 dsp->ds_vlan_mph = NULL;
228 return;
229 }
230
231 /*
232 * Unbind the dld_str_t by removing it from the hash table in the
233 * dls_link_t.
234 */
235 dls_link_remove(dsp->ds_dlp, dsp);
236 dsp->ds_sap = 0;
237 }
238
239 /*
240 * In order to prevent promiscuous-mode processing with dsp->ds_promisc
241 * set to inaccurate values, this function sets dsp->ds_promisc with new
242 * flags. For enabling (mac_promisc_add), the flags are set prior to the
243 * actual enabling. For disabling (mac_promisc_remove), the flags are set
244 * after the actual disabling.
245 */
246 int
dls_promisc(dld_str_t * dsp,uint32_t new_flags)247 dls_promisc(dld_str_t *dsp, uint32_t new_flags)
248 {
249 int err = 0;
250 uint32_t old_flags = dsp->ds_promisc;
251 mac_client_promisc_type_t mptype = MAC_CLIENT_PROMISC_ALL;
252
253 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
254 ASSERT(!(new_flags & ~(DLS_PROMISC_SAP | DLS_PROMISC_MULTI |
255 DLS_PROMISC_PHYS)));
256
257 /*
258 * If the user has only requested DLS_PROMISC_MULTI then we need to make
259 * sure that they don't see all packets.
260 */
261 if (new_flags == DLS_PROMISC_MULTI)
262 mptype = MAC_CLIENT_PROMISC_MULTI;
263
264 if (dsp->ds_promisc == 0 && new_flags != 0) {
265 /*
266 * If only DLS_PROMISC_SAP, we don't turn on the
267 * physical promisc mode
268 */
269 dsp->ds_promisc = new_flags;
270 err = mac_promisc_add(dsp->ds_mch, mptype,
271 dls_rx_promisc, dsp, &dsp->ds_mph,
272 (new_flags != DLS_PROMISC_SAP) ? 0 :
273 MAC_PROMISC_FLAGS_NO_PHYS);
274 if (err != 0) {
275 dsp->ds_promisc = old_flags;
276 return (err);
277 }
278
279 /* Remove vlan promisc handle to avoid sending dup copy up */
280 if (dsp->ds_vlan_mph != NULL) {
281 mac_promisc_remove(dsp->ds_vlan_mph);
282 dsp->ds_vlan_mph = NULL;
283 }
284 } else if (dsp->ds_promisc != 0 && new_flags == 0) {
285 ASSERT(dsp->ds_mph != NULL);
286
287 mac_promisc_remove(dsp->ds_mph);
288 dsp->ds_promisc = new_flags;
289 dsp->ds_mph = NULL;
290
291 if (dsp->ds_sap == ETHERTYPE_VLAN &&
292 dsp->ds_dlstate != DL_UNBOUND) {
293 if (dsp->ds_vlan_mph != NULL)
294 return (EINVAL);
295 err = mac_promisc_add(dsp->ds_mch,
296 MAC_CLIENT_PROMISC_ALL, dls_rx_vlan_promisc, dsp,
297 &dsp->ds_vlan_mph, MAC_PROMISC_FLAGS_NO_PHYS);
298 }
299 } else if (dsp->ds_promisc == DLS_PROMISC_SAP && new_flags != 0 &&
300 new_flags != dsp->ds_promisc) {
301 /*
302 * If the old flag is PROMISC_SAP, but the current flag has
303 * changed to some new non-zero value, we need to turn the
304 * physical promiscuous mode.
305 */
306 ASSERT(dsp->ds_mph != NULL);
307 mac_promisc_remove(dsp->ds_mph);
308 /* Honors both after-remove and before-add semantics! */
309 dsp->ds_promisc = new_flags;
310 err = mac_promisc_add(dsp->ds_mch, mptype,
311 dls_rx_promisc, dsp, &dsp->ds_mph, 0);
312 if (err != 0)
313 dsp->ds_promisc = old_flags;
314 } else {
315 /* No adding or removing, but record the new flags anyway. */
316 dsp->ds_promisc = new_flags;
317 }
318
319 return (err);
320 }
321
322 int
dls_multicst_add(dld_str_t * dsp,const uint8_t * addr)323 dls_multicst_add(dld_str_t *dsp, const uint8_t *addr)
324 {
325 int err;
326 dls_multicst_addr_t **pp;
327 dls_multicst_addr_t *p;
328 uint_t addr_length;
329
330 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
331
332 /*
333 * Check whether the address is in the list of enabled addresses for
334 * this dld_str_t.
335 */
336 addr_length = dsp->ds_mip->mi_addr_length;
337
338 /*
339 * Protect against concurrent access of ds_dmap by data threads using
340 * ds_rw_lock. The mac perimeter serializes the dls_multicst_add and
341 * remove operations. Dropping the ds_rw_lock across mac calls is thus
342 * ok and is also required by the locking protocol.
343 */
344 rw_enter(&dsp->ds_rw_lock, RW_WRITER);
345 for (pp = &(dsp->ds_dmap); (p = *pp) != NULL; pp = &(p->dma_nextp)) {
346 if (bcmp(addr, p->dma_addr, addr_length) == 0) {
347 /*
348 * It is there so there's nothing to do.
349 */
350 err = 0;
351 goto done;
352 }
353 }
354
355 /*
356 * Allocate a new list item and add it to the list.
357 */
358 p = kmem_zalloc(sizeof (dls_multicst_addr_t), KM_SLEEP);
359 bcopy(addr, p->dma_addr, addr_length);
360 *pp = p;
361 rw_exit(&dsp->ds_rw_lock);
362
363 /*
364 * Enable the address at the MAC.
365 */
366 err = mac_multicast_add(dsp->ds_mch, addr);
367 if (err == 0)
368 return (0);
369
370 /* Undo the operation as it has failed */
371 rw_enter(&dsp->ds_rw_lock, RW_WRITER);
372 ASSERT(*pp == p && p->dma_nextp == NULL);
373 *pp = NULL;
374 kmem_free(p, sizeof (dls_multicst_addr_t));
375 done:
376 rw_exit(&dsp->ds_rw_lock);
377 return (err);
378 }
379
380 int
dls_multicst_remove(dld_str_t * dsp,const uint8_t * addr)381 dls_multicst_remove(dld_str_t *dsp, const uint8_t *addr)
382 {
383 dls_multicst_addr_t **pp;
384 dls_multicst_addr_t *p;
385 uint_t addr_length;
386
387 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
388
389 /*
390 * Find the address in the list of enabled addresses for this
391 * dld_str_t.
392 */
393 addr_length = dsp->ds_mip->mi_addr_length;
394
395 /*
396 * Protect against concurrent access to ds_dmap by data threads using
397 * ds_rw_lock. The mac perimeter serializes the dls_multicst_add and
398 * remove operations. Dropping the ds_rw_lock across mac calls is thus
399 * ok and is also required by the locking protocol.
400 */
401 rw_enter(&dsp->ds_rw_lock, RW_WRITER);
402 for (pp = &(dsp->ds_dmap); (p = *pp) != NULL; pp = &(p->dma_nextp)) {
403 if (bcmp(addr, p->dma_addr, addr_length) == 0)
404 break;
405 }
406
407 /*
408 * If we walked to the end of the list then the given address is
409 * not currently enabled for this dld_str_t.
410 */
411 if (p == NULL) {
412 rw_exit(&dsp->ds_rw_lock);
413 return (ENOENT);
414 }
415
416 /*
417 * Remove the address from the list.
418 */
419 *pp = p->dma_nextp;
420 rw_exit(&dsp->ds_rw_lock);
421
422 /*
423 * Disable the address at the MAC.
424 */
425 mac_multicast_remove(dsp->ds_mch, addr);
426 kmem_free(p, sizeof (dls_multicst_addr_t));
427 return (0);
428 }
429
430 mblk_t *
dls_header(dld_str_t * dsp,const uint8_t * addr,uint16_t sap,uint_t pri,mblk_t ** payloadp)431 dls_header(dld_str_t *dsp, const uint8_t *addr, uint16_t sap, uint_t pri,
432 mblk_t **payloadp)
433 {
434 uint16_t vid;
435 size_t extra_len;
436 uint16_t mac_sap;
437 mblk_t *mp, *payload;
438 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER);
439 struct ether_vlan_header *evhp;
440
441 vid = mac_client_vid(dsp->ds_mch);
442 payload = (payloadp == NULL) ? NULL : (*payloadp);
443
444 /*
445 * In the case of Ethernet, we need to tell mac_header() if we need
446 * extra room beyond the Ethernet header for a VLAN header. We'll
447 * need to add a VLAN header if this isn't an ETHERTYPE_VLAN listener
448 * (because such streams will be handling VLAN headers on their own)
449 * and one of the following conditions is satisfied:
450 *
451 * - This is a VLAN stream
452 * - This is a physical stream, the priority is not 0, and user
453 * priority tagging is allowed.
454 */
455 if (is_ethernet && sap != ETHERTYPE_VLAN &&
456 (vid != VLAN_ID_NONE ||
457 (pri != 0 && dsp->ds_dlp->dl_tagmode != LINK_TAGMODE_VLANONLY))) {
458 extra_len = sizeof (struct ether_vlan_header) -
459 sizeof (struct ether_header);
460 mac_sap = ETHERTYPE_VLAN;
461 } else {
462 extra_len = 0;
463 mac_sap = sap;
464 }
465
466 mp = mac_header(dsp->ds_mh, addr, mac_sap, payload, extra_len);
467 if (mp == NULL)
468 return (NULL);
469
470 if ((vid == VLAN_ID_NONE && (pri == 0 ||
471 dsp->ds_dlp->dl_tagmode == LINK_TAGMODE_VLANONLY)) || !is_ethernet)
472 return (mp);
473
474 /*
475 * Fill in the tag information.
476 */
477 ASSERT(MBLKL(mp) == sizeof (struct ether_header));
478 if (extra_len != 0) {
479 mp->b_wptr += extra_len;
480 evhp = (struct ether_vlan_header *)mp->b_rptr;
481 evhp->ether_tci = htons(VLAN_TCI(pri, ETHER_CFI, vid));
482 evhp->ether_type = htons(sap);
483 } else {
484 /*
485 * The stream is ETHERTYPE_VLAN listener, so its VLAN tag is
486 * in the payload. Update the priority.
487 */
488 struct ether_vlan_extinfo *extinfo;
489 size_t len = sizeof (struct ether_vlan_extinfo);
490
491 ASSERT(sap == ETHERTYPE_VLAN);
492 ASSERT(payload != NULL);
493
494 if ((DB_REF(payload) > 1) || (MBLKL(payload) < len)) {
495 mblk_t *newmp;
496
497 /*
498 * Because some DLS consumers only check the db_ref
499 * count of the first mblk, we pullup 'payload' into
500 * a single mblk.
501 */
502 newmp = msgpullup(payload, -1);
503 if ((newmp == NULL) || (MBLKL(newmp) < len)) {
504 freemsg(newmp);
505 freemsg(mp);
506 return (NULL);
507 } else {
508 freemsg(payload);
509 *payloadp = payload = newmp;
510 }
511 }
512
513 extinfo = (struct ether_vlan_extinfo *)payload->b_rptr;
514 extinfo->ether_tci = htons(VLAN_TCI(pri, ETHER_CFI,
515 VLAN_ID(ntohs(extinfo->ether_tci))));
516 }
517 return (mp);
518 }
519
520 void
dls_rx_set(dld_str_t * dsp,dls_rx_t rx,void * arg)521 dls_rx_set(dld_str_t *dsp, dls_rx_t rx, void *arg)
522 {
523 mutex_enter(&dsp->ds_lock);
524 dsp->ds_rx = rx;
525 dsp->ds_rx_arg = arg;
526 mutex_exit(&dsp->ds_lock);
527 }
528
529 static boolean_t
dls_accept_common(dld_str_t * dsp,mac_header_info_t * mhip,dls_rx_t * ds_rx,void ** ds_rx_arg,boolean_t promisc,boolean_t promisc_loopback)530 dls_accept_common(dld_str_t *dsp, mac_header_info_t *mhip, dls_rx_t *ds_rx,
531 void **ds_rx_arg, boolean_t promisc, boolean_t promisc_loopback)
532 {
533 dls_multicst_addr_t *dmap;
534 size_t addr_length = dsp->ds_mip->mi_addr_length;
535
536 /*
537 * We must not accept packets if the dld_str_t is not marked as bound
538 * or is being removed.
539 */
540 if (dsp->ds_dlstate != DL_IDLE)
541 goto refuse;
542
543 if (dsp->ds_promisc != 0) {
544 /*
545 * Filter out packets that arrived from the data path
546 * (i_dls_link_rx) when promisc mode is on. We need to correlate
547 * the ds_promisc flags with the mac header destination type. If
548 * only DLS_PROMISC_MULTI is enabled, we need to only reject
549 * multicast packets as those are the only ones which filter up
550 * the promiscuous path. If we have DLS_PROMISC_PHYS or
551 * DLS_PROMISC_SAP set, then we know that we'll be seeing
552 * everything, so we should drop it now.
553 */
554 if (!promisc && !(dsp->ds_promisc == DLS_PROMISC_MULTI &&
555 mhip->mhi_dsttype != MAC_ADDRTYPE_MULTICAST))
556 goto refuse;
557 /*
558 * If the dls_impl_t is in 'all physical' mode then
559 * always accept.
560 */
561 if (dsp->ds_promisc & DLS_PROMISC_PHYS)
562 goto accept;
563
564 /*
565 * Loopback packets i.e. packets sent out by DLS on a given
566 * mac end point, will be accepted back by DLS on loopback
567 * from the mac, only in the 'all physical' mode which has been
568 * covered by the previous check above
569 */
570 if (promisc_loopback)
571 goto refuse;
572 }
573
574 switch (mhip->mhi_dsttype) {
575 case MAC_ADDRTYPE_UNICAST:
576 case MAC_ADDRTYPE_BROADCAST:
577 /*
578 * We can accept unicast and broadcast packets because
579 * filtering is already done by the mac layer.
580 */
581 goto accept;
582 case MAC_ADDRTYPE_MULTICAST:
583 /*
584 * Additional filtering is needed for multicast addresses
585 * because different streams may be interested in different
586 * addresses.
587 */
588 if (dsp->ds_promisc & DLS_PROMISC_MULTI)
589 goto accept;
590
591 rw_enter(&dsp->ds_rw_lock, RW_READER);
592 for (dmap = dsp->ds_dmap; dmap != NULL;
593 dmap = dmap->dma_nextp) {
594 if (memcmp(mhip->mhi_daddr, dmap->dma_addr,
595 addr_length) == 0) {
596 rw_exit(&dsp->ds_rw_lock);
597 goto accept;
598 }
599 }
600 rw_exit(&dsp->ds_rw_lock);
601 break;
602 }
603
604 refuse:
605 return (B_FALSE);
606
607 accept:
608 /*
609 * the returned ds_rx and ds_rx_arg will always be in sync.
610 */
611 mutex_enter(&dsp->ds_lock);
612 *ds_rx = dsp->ds_rx;
613 *ds_rx_arg = dsp->ds_rx_arg;
614 mutex_exit(&dsp->ds_lock);
615
616 return (B_TRUE);
617 }
618
619 /* ARGSUSED */
620 boolean_t
dls_accept(dld_str_t * dsp,mac_header_info_t * mhip,dls_rx_t * ds_rx,void ** ds_rx_arg)621 dls_accept(dld_str_t *dsp, mac_header_info_t *mhip, dls_rx_t *ds_rx,
622 void **ds_rx_arg)
623 {
624 return (dls_accept_common(dsp, mhip, ds_rx, ds_rx_arg, B_FALSE,
625 B_FALSE));
626 }
627
628 boolean_t
dls_accept_promisc(dld_str_t * dsp,mac_header_info_t * mhip,dls_rx_t * ds_rx,void ** ds_rx_arg,boolean_t loopback)629 dls_accept_promisc(dld_str_t *dsp, mac_header_info_t *mhip, dls_rx_t *ds_rx,
630 void **ds_rx_arg, boolean_t loopback)
631 {
632 return (dls_accept_common(dsp, mhip, ds_rx, ds_rx_arg, B_TRUE,
633 loopback));
634 }
635
636 int
dls_mac_active_set(dls_link_t * dlp)637 dls_mac_active_set(dls_link_t *dlp)
638 {
639 int err = 0;
640
641 /*
642 * First client; add the primary unicast address.
643 */
644 if (dlp->dl_nactive == 0) {
645 /*
646 * First client; add the primary unicast address.
647 */
648 mac_diag_t diag;
649
650 /* request the primary MAC address */
651 if ((err = mac_unicast_add(dlp->dl_mch, NULL,
652 MAC_UNICAST_PRIMARY | MAC_UNICAST_TAG_DISABLE |
653 MAC_UNICAST_DISABLE_TX_VID_CHECK, &dlp->dl_mah, 0,
654 &diag)) != 0) {
655 return (err);
656 }
657
658 /*
659 * Set the function to start receiving packets.
660 */
661 mac_rx_set(dlp->dl_mch, i_dls_link_rx, dlp);
662 }
663 dlp->dl_nactive++;
664 return (0);
665 }
666
667 void
dls_mac_active_clear(dls_link_t * dlp)668 dls_mac_active_clear(dls_link_t *dlp)
669 {
670 if (--dlp->dl_nactive == 0) {
671 ASSERT(dlp->dl_mah != NULL);
672 (void) mac_unicast_remove(dlp->dl_mch, dlp->dl_mah);
673 dlp->dl_mah = NULL;
674 mac_rx_clear(dlp->dl_mch);
675 }
676 }
677
678 int
dls_active_set(dld_str_t * dsp)679 dls_active_set(dld_str_t *dsp)
680 {
681 int err = 0;
682
683 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
684
685 if (dsp->ds_passivestate == DLD_PASSIVE)
686 return (0);
687
688 /* If we're already active, then there's nothing more to do. */
689 if ((dsp->ds_nactive == 0) &&
690 ((err = dls_mac_active_set(dsp->ds_dlp)) != 0)) {
691 /* except for ENXIO all other errors are mapped to EBUSY */
692 if (err != ENXIO)
693 return (EBUSY);
694 return (err);
695 }
696
697 dsp->ds_passivestate = DLD_ACTIVE;
698 dsp->ds_nactive++;
699 return (0);
700 }
701
702 /*
703 * Note that dls_active_set() is called whenever an active operation
704 * (DL_BIND_REQ, DL_ENABMULTI_REQ ...) is processed and
705 * dls_active_clear(dsp, B_FALSE) is called whenever the active operation
706 * is being undone (DL_UNBIND_REQ, DL_DISABMULTI_REQ ...). In some cases,
707 * a stream is closed without every active operation being undone and we
708 * need to clear all the "active" states by calling
709 * dls_active_clear(dsp, B_TRUE).
710 */
711 void
dls_active_clear(dld_str_t * dsp,boolean_t all)712 dls_active_clear(dld_str_t *dsp, boolean_t all)
713 {
714 ASSERT(MAC_PERIM_HELD(dsp->ds_mh));
715
716 if (dsp->ds_passivestate == DLD_PASSIVE)
717 return;
718
719 if (all && dsp->ds_nactive == 0)
720 return;
721
722 ASSERT(dsp->ds_nactive > 0);
723
724 dsp->ds_nactive -= (all ? dsp->ds_nactive : 1);
725 if (dsp->ds_nactive != 0)
726 return;
727
728 ASSERT(dsp->ds_passivestate == DLD_ACTIVE);
729 dls_mac_active_clear(dsp->ds_dlp);
730 dsp->ds_passivestate = DLD_UNINITIALIZED;
731 }
732