1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/cpuset.h>
56 #ifdef INTRNG
57 #include <sys/intr.h>
58 #endif
59
60 #include <net/vnet.h>
61
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67
68 #include <dev/iommu/iommu.h>
69
70 #include <ddb/ddb.h>
71
72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
73 NULL);
74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75 NULL);
76
77 static bool disable_failed_devs = false;
78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
80
81 /*
82 * Used to attach drivers to devclasses.
83 */
84 typedef struct driverlink *driverlink_t;
85 struct driverlink {
86 kobj_class_t driver;
87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
88 int pass;
89 int flags;
90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */
91 TAILQ_ENTRY(driverlink) passlink;
92 };
93
94 /*
95 * Forward declarations
96 */
97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
99 typedef TAILQ_HEAD(device_list, _device) device_list_t;
100
101 struct devclass {
102 TAILQ_ENTRY(devclass) link;
103 devclass_t parent; /* parent in devclass hierarchy */
104 driver_list_t drivers; /* bus devclasses store drivers for bus */
105 char *name;
106 device_t *devices; /* array of devices indexed by unit */
107 int maxunit; /* size of devices array */
108 int flags;
109 #define DC_HAS_CHILDREN 1
110
111 struct sysctl_ctx_list sysctl_ctx;
112 struct sysctl_oid *sysctl_tree;
113 };
114
115 struct device_prop_elm {
116 const char *name;
117 void *val;
118 void *dtr_ctx;
119 device_prop_dtr_t dtr;
120 LIST_ENTRY(device_prop_elm) link;
121 };
122
123 static void device_destroy_props(device_t dev);
124
125 /**
126 * @brief Implementation of _device.
127 *
128 * The structure is named "_device" instead of "device" to avoid type confusion
129 * caused by other subsystems defining a (struct device).
130 */
131 struct _device {
132 /*
133 * A device is a kernel object. The first field must be the
134 * current ops table for the object.
135 */
136 KOBJ_FIELDS;
137
138 /*
139 * Device hierarchy.
140 */
141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */
142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */
143 device_t parent; /**< parent of this device */
144 device_list_t children; /**< list of child devices */
145
146 /*
147 * Details of this device.
148 */
149 driver_t *driver; /**< current driver */
150 devclass_t devclass; /**< current device class */
151 int unit; /**< current unit number */
152 char* nameunit; /**< name+unit e.g. foodev0 */
153 char* desc; /**< driver specific description */
154 u_int busy; /**< count of calls to device_busy() */
155 device_state_t state; /**< current device state */
156 uint32_t devflags; /**< api level flags for device_get_flags() */
157 u_int flags; /**< internal device flags */
158 u_int order; /**< order from device_add_child_ordered() */
159 void *ivars; /**< instance variables */
160 void *softc; /**< current driver's variables */
161 LIST_HEAD(, device_prop_elm) props;
162
163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
165 };
166
167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
169
170 EVENTHANDLER_LIST_DEFINE(device_attach);
171 EVENTHANDLER_LIST_DEFINE(device_detach);
172 EVENTHANDLER_LIST_DEFINE(device_nomatch);
173 EVENTHANDLER_LIST_DEFINE(dev_lookup);
174
175 static void devctl2_init(void);
176 static bool device_frozen;
177
178 #define DRIVERNAME(d) ((d)? d->name : "no driver")
179 #define DEVCLANAME(d) ((d)? d->name : "no devclass")
180
181 #ifdef BUS_DEBUG
182
183 static int bus_debug = 1;
184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
185 "Bus debug level");
186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device")
188
189 /**
190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
191 * prevent syslog from deleting initial spaces
192 */
193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
194
195 static void print_device_short(device_t dev, int indent);
196 static void print_device(device_t dev, int indent);
197 void print_device_tree_short(device_t dev, int indent);
198 void print_device_tree(device_t dev, int indent);
199 static void print_driver_short(driver_t *driver, int indent);
200 static void print_driver(driver_t *driver, int indent);
201 static void print_driver_list(driver_list_t drivers, int indent);
202 static void print_devclass_short(devclass_t dc, int indent);
203 static void print_devclass(devclass_t dc, int indent);
204 void print_devclass_list_short(void);
205 void print_devclass_list(void);
206
207 #else
208 /* Make the compiler ignore the function calls */
209 #define PDEBUG(a) /* nop */
210 #define DEVICENAME(d) /* nop */
211
212 #define print_device_short(d,i) /* nop */
213 #define print_device(d,i) /* nop */
214 #define print_device_tree_short(d,i) /* nop */
215 #define print_device_tree(d,i) /* nop */
216 #define print_driver_short(d,i) /* nop */
217 #define print_driver(d,i) /* nop */
218 #define print_driver_list(d,i) /* nop */
219 #define print_devclass_short(d,i) /* nop */
220 #define print_devclass(d,i) /* nop */
221 #define print_devclass_list_short() /* nop */
222 #define print_devclass_list() /* nop */
223 #endif
224
225 /*
226 * dev sysctl tree
227 */
228
229 enum {
230 DEVCLASS_SYSCTL_PARENT,
231 };
232
233 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
235 {
236 devclass_t dc = (devclass_t)arg1;
237 const char *value;
238
239 switch (arg2) {
240 case DEVCLASS_SYSCTL_PARENT:
241 value = dc->parent ? dc->parent->name : "";
242 break;
243 default:
244 return (EINVAL);
245 }
246 return (SYSCTL_OUT_STR(req, value));
247 }
248
249 static void
devclass_sysctl_init(devclass_t dc)250 devclass_sysctl_init(devclass_t dc)
251 {
252 if (dc->sysctl_tree != NULL)
253 return;
254 sysctl_ctx_init(&dc->sysctl_ctx);
255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
259 OID_AUTO, "%parent",
260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
262 "parent class");
263 }
264
265 enum {
266 DEVICE_SYSCTL_DESC,
267 DEVICE_SYSCTL_DRIVER,
268 DEVICE_SYSCTL_LOCATION,
269 DEVICE_SYSCTL_PNPINFO,
270 DEVICE_SYSCTL_PARENT,
271 DEVICE_SYSCTL_IOMMU,
272 };
273
274 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)275 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
276 {
277 struct sbuf sb;
278 device_t dev = (device_t)arg1;
279 device_t iommu;
280 int error;
281 uint16_t rid;
282 const char *c;
283
284 sbuf_new_for_sysctl(&sb, NULL, 1024, req);
285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
286 bus_topo_lock();
287 switch (arg2) {
288 case DEVICE_SYSCTL_DESC:
289 sbuf_cat(&sb, dev->desc ? dev->desc : "");
290 break;
291 case DEVICE_SYSCTL_DRIVER:
292 sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
293 break;
294 case DEVICE_SYSCTL_LOCATION:
295 bus_child_location(dev, &sb);
296 break;
297 case DEVICE_SYSCTL_PNPINFO:
298 bus_child_pnpinfo(dev, &sb);
299 break;
300 case DEVICE_SYSCTL_PARENT:
301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
302 break;
303 case DEVICE_SYSCTL_IOMMU:
304 iommu = NULL;
305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
306 (void **)&iommu);
307 c = "";
308 if (error == 0 && iommu != NULL) {
309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
310 c = " ";
311 }
312 rid = 0;
313 #ifdef IOMMU
314 iommu_get_requester(dev, &rid);
315 #endif
316 if (rid != 0)
317 sbuf_printf(&sb, "%srid=%#x", c, rid);
318 break;
319 default:
320 error = EINVAL;
321 goto out;
322 }
323 error = sbuf_finish(&sb);
324 out:
325 bus_topo_unlock();
326 sbuf_delete(&sb);
327 return (error);
328 }
329
330 static void
device_sysctl_init(device_t dev)331 device_sysctl_init(device_t dev)
332 {
333 devclass_t dc = dev->devclass;
334 int domain;
335
336 if (dev->sysctl_tree != NULL)
337 return;
338 devclass_sysctl_init(dc);
339 sysctl_ctx_init(&dev->sysctl_ctx);
340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
342 dev->nameunit + strlen(dc->name),
343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
347 "device description");
348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
349 OID_AUTO, "%driver",
350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
352 "device driver name");
353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
354 OID_AUTO, "%location",
355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
357 "device location relative to parent");
358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
359 OID_AUTO, "%pnpinfo",
360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
362 "device identification");
363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
364 OID_AUTO, "%parent",
365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
367 "parent device");
368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
369 OID_AUTO, "%iommu",
370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
372 "iommu unit handling the device requests");
373 if (bus_get_domain(dev, &domain) == 0)
374 SYSCTL_ADD_INT(&dev->sysctl_ctx,
375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
377 }
378
379 static void
device_sysctl_update(device_t dev)380 device_sysctl_update(device_t dev)
381 {
382 devclass_t dc = dev->devclass;
383
384 if (dev->sysctl_tree == NULL)
385 return;
386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
387 }
388
389 static void
device_sysctl_fini(device_t dev)390 device_sysctl_fini(device_t dev)
391 {
392 if (dev->sysctl_tree == NULL)
393 return;
394 sysctl_ctx_free(&dev->sysctl_ctx);
395 dev->sysctl_tree = NULL;
396 }
397
398 static struct device_list bus_data_devices;
399 static int bus_data_generation = 1;
400
401 static kobj_method_t null_methods[] = {
402 KOBJMETHOD_END
403 };
404
405 DEFINE_CLASS(null, null_methods, 0);
406
407 void
bus_topo_assert(void)408 bus_topo_assert(void)
409 {
410
411 GIANT_REQUIRED;
412 }
413
414 struct mtx *
bus_topo_mtx(void)415 bus_topo_mtx(void)
416 {
417
418 return (&Giant);
419 }
420
421 void
bus_topo_lock(void)422 bus_topo_lock(void)
423 {
424
425 mtx_lock(bus_topo_mtx());
426 }
427
428 void
bus_topo_unlock(void)429 bus_topo_unlock(void)
430 {
431
432 mtx_unlock(bus_topo_mtx());
433 }
434
435 /*
436 * Bus pass implementation
437 */
438
439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
440 static int bus_current_pass = BUS_PASS_ROOT;
441
442 /**
443 * @internal
444 * @brief Register the pass level of a new driver attachment
445 *
446 * Register a new driver attachment's pass level. If no driver
447 * attachment with the same pass level has been added, then @p new
448 * will be added to the global passes list.
449 *
450 * @param new the new driver attachment
451 */
452 static void
driver_register_pass(struct driverlink * new)453 driver_register_pass(struct driverlink *new)
454 {
455 struct driverlink *dl;
456
457 /* We only consider pass numbers during boot. */
458 if (bus_current_pass == BUS_PASS_DEFAULT)
459 return;
460
461 /*
462 * Walk the passes list. If we already know about this pass
463 * then there is nothing to do. If we don't, then insert this
464 * driver link into the list.
465 */
466 TAILQ_FOREACH(dl, &passes, passlink) {
467 if (dl->pass < new->pass)
468 continue;
469 if (dl->pass == new->pass)
470 return;
471 TAILQ_INSERT_BEFORE(dl, new, passlink);
472 return;
473 }
474 TAILQ_INSERT_TAIL(&passes, new, passlink);
475 }
476
477 /**
478 * @brief Retrieve the current bus pass
479 *
480 * Retrieves the current bus pass level. Call the BUS_NEW_PASS()
481 * method on the root bus to kick off a new device tree scan for each
482 * new pass level that has at least one driver.
483 */
484 int
bus_get_pass(void)485 bus_get_pass(void)
486 {
487
488 return (bus_current_pass);
489 }
490
491 /**
492 * @brief Raise the current bus pass
493 *
494 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
495 * method on the root bus to kick off a new device tree scan for each
496 * new pass level that has at least one driver.
497 */
498 static void
bus_set_pass(int pass)499 bus_set_pass(int pass)
500 {
501 struct driverlink *dl;
502
503 if (bus_current_pass > pass)
504 panic("Attempt to lower bus pass level");
505
506 TAILQ_FOREACH(dl, &passes, passlink) {
507 /* Skip pass values below the current pass level. */
508 if (dl->pass <= bus_current_pass)
509 continue;
510
511 /*
512 * Bail once we hit a driver with a pass level that is
513 * too high.
514 */
515 if (dl->pass > pass)
516 break;
517
518 /*
519 * Raise the pass level to the next level and rescan
520 * the tree.
521 */
522 bus_current_pass = dl->pass;
523 BUS_NEW_PASS(root_bus);
524 }
525
526 /*
527 * If there isn't a driver registered for the requested pass,
528 * then bus_current_pass might still be less than 'pass'. Set
529 * it to 'pass' in that case.
530 */
531 if (bus_current_pass < pass)
532 bus_current_pass = pass;
533 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
534 }
535
536 /*
537 * Devclass implementation
538 */
539
540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
541
542 /**
543 * @internal
544 * @brief Find or create a device class
545 *
546 * If a device class with the name @p classname exists, return it,
547 * otherwise if @p create is non-zero create and return a new device
548 * class.
549 *
550 * If @p parentname is non-NULL, the parent of the devclass is set to
551 * the devclass of that name.
552 *
553 * @param classname the devclass name to find or create
554 * @param parentname the parent devclass name or @c NULL
555 * @param create non-zero to create a devclass
556 */
557 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)558 devclass_find_internal(const char *classname, const char *parentname,
559 int create)
560 {
561 devclass_t dc;
562
563 PDEBUG(("looking for %s", classname));
564 if (!classname)
565 return (NULL);
566
567 TAILQ_FOREACH(dc, &devclasses, link) {
568 if (!strcmp(dc->name, classname))
569 break;
570 }
571
572 if (create && !dc) {
573 PDEBUG(("creating %s", classname));
574 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
575 M_BUS, M_NOWAIT | M_ZERO);
576 if (!dc)
577 return (NULL);
578 dc->parent = NULL;
579 dc->name = (char*) (dc + 1);
580 strcpy(dc->name, classname);
581 TAILQ_INIT(&dc->drivers);
582 TAILQ_INSERT_TAIL(&devclasses, dc, link);
583
584 bus_data_generation_update();
585 }
586
587 /*
588 * If a parent class is specified, then set that as our parent so
589 * that this devclass will support drivers for the parent class as
590 * well. If the parent class has the same name don't do this though
591 * as it creates a cycle that can trigger an infinite loop in
592 * device_probe_child() if a device exists for which there is no
593 * suitable driver.
594 */
595 if (parentname && dc && !dc->parent &&
596 strcmp(classname, parentname) != 0) {
597 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
598 dc->parent->flags |= DC_HAS_CHILDREN;
599 }
600
601 return (dc);
602 }
603
604 /**
605 * @brief Create a device class
606 *
607 * If a device class with the name @p classname exists, return it,
608 * otherwise create and return a new device class.
609 *
610 * @param classname the devclass name to find or create
611 */
612 devclass_t
devclass_create(const char * classname)613 devclass_create(const char *classname)
614 {
615 return (devclass_find_internal(classname, NULL, TRUE));
616 }
617
618 /**
619 * @brief Find a device class
620 *
621 * If a device class with the name @p classname exists, return it,
622 * otherwise return @c NULL.
623 *
624 * @param classname the devclass name to find
625 */
626 devclass_t
devclass_find(const char * classname)627 devclass_find(const char *classname)
628 {
629 return (devclass_find_internal(classname, NULL, FALSE));
630 }
631
632 /**
633 * @brief Register that a device driver has been added to a devclass
634 *
635 * Register that a device driver has been added to a devclass. This
636 * is called by devclass_add_driver to accomplish the recursive
637 * notification of all the children classes of dc, as well as dc.
638 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
639 * the devclass.
640 *
641 * We do a full search here of the devclass list at each iteration
642 * level to save storing children-lists in the devclass structure. If
643 * we ever move beyond a few dozen devices doing this, we may need to
644 * reevaluate...
645 *
646 * @param dc the devclass to edit
647 * @param driver the driver that was just added
648 */
649 static void
devclass_driver_added(devclass_t dc,driver_t * driver)650 devclass_driver_added(devclass_t dc, driver_t *driver)
651 {
652 devclass_t parent;
653 int i;
654
655 /*
656 * Call BUS_DRIVER_ADDED for any existing buses in this class.
657 */
658 for (i = 0; i < dc->maxunit; i++)
659 if (dc->devices[i] && device_is_attached(dc->devices[i]))
660 BUS_DRIVER_ADDED(dc->devices[i], driver);
661
662 /*
663 * Walk through the children classes. Since we only keep a
664 * single parent pointer around, we walk the entire list of
665 * devclasses looking for children. We set the
666 * DC_HAS_CHILDREN flag when a child devclass is created on
667 * the parent, so we only walk the list for those devclasses
668 * that have children.
669 */
670 if (!(dc->flags & DC_HAS_CHILDREN))
671 return;
672 parent = dc;
673 TAILQ_FOREACH(dc, &devclasses, link) {
674 if (dc->parent == parent)
675 devclass_driver_added(dc, driver);
676 }
677 }
678
679 static void
device_handle_nomatch(device_t dev)680 device_handle_nomatch(device_t dev)
681 {
682 BUS_PROBE_NOMATCH(dev->parent, dev);
683 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
684 dev->flags |= DF_DONENOMATCH;
685 }
686
687 /**
688 * @brief Add a device driver to a device class
689 *
690 * Add a device driver to a devclass. This is normally called
691 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
692 * all devices in the devclass will be called to allow them to attempt
693 * to re-probe any unmatched children.
694 *
695 * @param dc the devclass to edit
696 * @param driver the driver to register
697 */
698 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
700 {
701 driverlink_t dl;
702 devclass_t child_dc;
703 const char *parentname;
704
705 PDEBUG(("%s", DRIVERNAME(driver)));
706
707 /* Don't allow invalid pass values. */
708 if (pass <= BUS_PASS_ROOT)
709 return (EINVAL);
710
711 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
712 if (!dl)
713 return (ENOMEM);
714
715 /*
716 * Compile the driver's methods. Also increase the reference count
717 * so that the class doesn't get freed when the last instance
718 * goes. This means we can safely use static methods and avoids a
719 * double-free in devclass_delete_driver.
720 */
721 kobj_class_compile((kobj_class_t) driver);
722
723 /*
724 * If the driver has any base classes, make the
725 * devclass inherit from the devclass of the driver's
726 * first base class. This will allow the system to
727 * search for drivers in both devclasses for children
728 * of a device using this driver.
729 */
730 if (driver->baseclasses)
731 parentname = driver->baseclasses[0]->name;
732 else
733 parentname = NULL;
734 child_dc = devclass_find_internal(driver->name, parentname, TRUE);
735 if (dcp != NULL)
736 *dcp = child_dc;
737
738 dl->driver = driver;
739 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
740 driver->refs++; /* XXX: kobj_mtx */
741 dl->pass = pass;
742 driver_register_pass(dl);
743
744 if (device_frozen) {
745 dl->flags |= DL_DEFERRED_PROBE;
746 } else {
747 devclass_driver_added(dc, driver);
748 }
749 bus_data_generation_update();
750 return (0);
751 }
752
753 /**
754 * @brief Register that a device driver has been deleted from a devclass
755 *
756 * Register that a device driver has been removed from a devclass.
757 * This is called by devclass_delete_driver to accomplish the
758 * recursive notification of all the children classes of busclass, as
759 * well as busclass. Each layer will attempt to detach the driver
760 * from any devices that are children of the bus's devclass. The function
761 * will return an error if a device fails to detach.
762 *
763 * We do a full search here of the devclass list at each iteration
764 * level to save storing children-lists in the devclass structure. If
765 * we ever move beyond a few dozen devices doing this, we may need to
766 * reevaluate...
767 *
768 * @param busclass the devclass of the parent bus
769 * @param dc the devclass of the driver being deleted
770 * @param driver the driver being deleted
771 */
772 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
774 {
775 devclass_t parent;
776 device_t dev;
777 int error, i;
778
779 /*
780 * Disassociate from any devices. We iterate through all the
781 * devices in the devclass of the driver and detach any which are
782 * using the driver and which have a parent in the devclass which
783 * we are deleting from.
784 *
785 * Note that since a driver can be in multiple devclasses, we
786 * should not detach devices which are not children of devices in
787 * the affected devclass.
788 *
789 * If we're frozen, we don't generate NOMATCH events. Mark to
790 * generate later.
791 */
792 for (i = 0; i < dc->maxunit; i++) {
793 if (dc->devices[i]) {
794 dev = dc->devices[i];
795 if (dev->driver == driver && dev->parent &&
796 dev->parent->devclass == busclass) {
797 if ((error = device_detach(dev)) != 0)
798 return (error);
799 if (device_frozen) {
800 dev->flags &= ~DF_DONENOMATCH;
801 dev->flags |= DF_NEEDNOMATCH;
802 } else {
803 device_handle_nomatch(dev);
804 }
805 }
806 }
807 }
808
809 /*
810 * Walk through the children classes. Since we only keep a
811 * single parent pointer around, we walk the entire list of
812 * devclasses looking for children. We set the
813 * DC_HAS_CHILDREN flag when a child devclass is created on
814 * the parent, so we only walk the list for those devclasses
815 * that have children.
816 */
817 if (!(busclass->flags & DC_HAS_CHILDREN))
818 return (0);
819 parent = busclass;
820 TAILQ_FOREACH(busclass, &devclasses, link) {
821 if (busclass->parent == parent) {
822 error = devclass_driver_deleted(busclass, dc, driver);
823 if (error)
824 return (error);
825 }
826 }
827 return (0);
828 }
829
830 /**
831 * @brief Delete a device driver from a device class
832 *
833 * Delete a device driver from a devclass. This is normally called
834 * automatically by DRIVER_MODULE().
835 *
836 * If the driver is currently attached to any devices,
837 * devclass_delete_driver() will first attempt to detach from each
838 * device. If one of the detach calls fails, the driver will not be
839 * deleted.
840 *
841 * @param dc the devclass to edit
842 * @param driver the driver to unregister
843 */
844 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)845 devclass_delete_driver(devclass_t busclass, driver_t *driver)
846 {
847 devclass_t dc = devclass_find(driver->name);
848 driverlink_t dl;
849 int error;
850
851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852
853 if (!dc)
854 return (0);
855
856 /*
857 * Find the link structure in the bus' list of drivers.
858 */
859 TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 if (dl->driver == driver)
861 break;
862 }
863
864 if (!dl) {
865 PDEBUG(("%s not found in %s list", driver->name,
866 busclass->name));
867 return (ENOENT);
868 }
869
870 error = devclass_driver_deleted(busclass, dc, driver);
871 if (error != 0)
872 return (error);
873
874 TAILQ_REMOVE(&busclass->drivers, dl, link);
875 free(dl, M_BUS);
876
877 /* XXX: kobj_mtx */
878 driver->refs--;
879 if (driver->refs == 0)
880 kobj_class_free((kobj_class_t) driver);
881
882 bus_data_generation_update();
883 return (0);
884 }
885
886 /**
887 * @brief Quiesces a set of device drivers from a device class
888 *
889 * Quiesce a device driver from a devclass. This is normally called
890 * automatically by DRIVER_MODULE().
891 *
892 * If the driver is currently attached to any devices,
893 * devclass_quiesece_driver() will first attempt to quiesce each
894 * device.
895 *
896 * @param dc the devclass to edit
897 * @param driver the driver to unregister
898 */
899 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
901 {
902 devclass_t dc = devclass_find(driver->name);
903 driverlink_t dl;
904 device_t dev;
905 int i;
906 int error;
907
908 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
909
910 if (!dc)
911 return (0);
912
913 /*
914 * Find the link structure in the bus' list of drivers.
915 */
916 TAILQ_FOREACH(dl, &busclass->drivers, link) {
917 if (dl->driver == driver)
918 break;
919 }
920
921 if (!dl) {
922 PDEBUG(("%s not found in %s list", driver->name,
923 busclass->name));
924 return (ENOENT);
925 }
926
927 /*
928 * Quiesce all devices. We iterate through all the devices in
929 * the devclass of the driver and quiesce any which are using
930 * the driver and which have a parent in the devclass which we
931 * are quiescing.
932 *
933 * Note that since a driver can be in multiple devclasses, we
934 * should not quiesce devices which are not children of
935 * devices in the affected devclass.
936 */
937 for (i = 0; i < dc->maxunit; i++) {
938 if (dc->devices[i]) {
939 dev = dc->devices[i];
940 if (dev->driver == driver && dev->parent &&
941 dev->parent->devclass == busclass) {
942 if ((error = device_quiesce(dev)) != 0)
943 return (error);
944 }
945 }
946 }
947
948 return (0);
949 }
950
951 /**
952 * @internal
953 */
954 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)955 devclass_find_driver_internal(devclass_t dc, const char *classname)
956 {
957 driverlink_t dl;
958
959 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
960
961 TAILQ_FOREACH(dl, &dc->drivers, link) {
962 if (!strcmp(dl->driver->name, classname))
963 return (dl);
964 }
965
966 PDEBUG(("not found"));
967 return (NULL);
968 }
969
970 /**
971 * @brief Return the name of the devclass
972 */
973 const char *
devclass_get_name(devclass_t dc)974 devclass_get_name(devclass_t dc)
975 {
976 return (dc->name);
977 }
978
979 /**
980 * @brief Find a device given a unit number
981 *
982 * @param dc the devclass to search
983 * @param unit the unit number to search for
984 *
985 * @returns the device with the given unit number or @c
986 * NULL if there is no such device
987 */
988 device_t
devclass_get_device(devclass_t dc,int unit)989 devclass_get_device(devclass_t dc, int unit)
990 {
991 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
992 return (NULL);
993 return (dc->devices[unit]);
994 }
995
996 /**
997 * @brief Find the softc field of a device given a unit number
998 *
999 * @param dc the devclass to search
1000 * @param unit the unit number to search for
1001 *
1002 * @returns the softc field of the device with the given
1003 * unit number or @c NULL if there is no such
1004 * device
1005 */
1006 void *
devclass_get_softc(devclass_t dc,int unit)1007 devclass_get_softc(devclass_t dc, int unit)
1008 {
1009 device_t dev;
1010
1011 dev = devclass_get_device(dc, unit);
1012 if (!dev)
1013 return (NULL);
1014
1015 return (device_get_softc(dev));
1016 }
1017
1018 /**
1019 * @brief Get a list of devices in the devclass
1020 *
1021 * An array containing a list of all the devices in the given devclass
1022 * is allocated and returned in @p *devlistp. The number of devices
1023 * in the array is returned in @p *devcountp. The caller should free
1024 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1025 *
1026 * @param dc the devclass to examine
1027 * @param devlistp points at location for array pointer return
1028 * value
1029 * @param devcountp points at location for array size return value
1030 *
1031 * @retval 0 success
1032 * @retval ENOMEM the array allocation failed
1033 */
1034 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1036 {
1037 int count, i;
1038 device_t *list;
1039
1040 count = devclass_get_count(dc);
1041 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1042 if (!list)
1043 return (ENOMEM);
1044
1045 count = 0;
1046 for (i = 0; i < dc->maxunit; i++) {
1047 if (dc->devices[i]) {
1048 list[count] = dc->devices[i];
1049 count++;
1050 }
1051 }
1052
1053 *devlistp = list;
1054 *devcountp = count;
1055
1056 return (0);
1057 }
1058
1059 /**
1060 * @brief Get a list of drivers in the devclass
1061 *
1062 * An array containing a list of pointers to all the drivers in the
1063 * given devclass is allocated and returned in @p *listp. The number
1064 * of drivers in the array is returned in @p *countp. The caller should
1065 * free the array using @c free(p, M_TEMP).
1066 *
1067 * @param dc the devclass to examine
1068 * @param listp gives location for array pointer return value
1069 * @param countp gives location for number of array elements
1070 * return value
1071 *
1072 * @retval 0 success
1073 * @retval ENOMEM the array allocation failed
1074 */
1075 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1077 {
1078 driverlink_t dl;
1079 driver_t **list;
1080 int count;
1081
1082 count = 0;
1083 TAILQ_FOREACH(dl, &dc->drivers, link)
1084 count++;
1085 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1086 if (list == NULL)
1087 return (ENOMEM);
1088
1089 count = 0;
1090 TAILQ_FOREACH(dl, &dc->drivers, link) {
1091 list[count] = dl->driver;
1092 count++;
1093 }
1094 *listp = list;
1095 *countp = count;
1096
1097 return (0);
1098 }
1099
1100 /**
1101 * @brief Get the number of devices in a devclass
1102 *
1103 * @param dc the devclass to examine
1104 */
1105 int
devclass_get_count(devclass_t dc)1106 devclass_get_count(devclass_t dc)
1107 {
1108 int count, i;
1109
1110 count = 0;
1111 for (i = 0; i < dc->maxunit; i++)
1112 if (dc->devices[i])
1113 count++;
1114 return (count);
1115 }
1116
1117 /**
1118 * @brief Get the maximum unit number used in a devclass
1119 *
1120 * Note that this is one greater than the highest currently-allocated unit. If
1121 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1122 * been allocated yet.
1123 *
1124 * @param dc the devclass to examine
1125 */
1126 int
devclass_get_maxunit(devclass_t dc)1127 devclass_get_maxunit(devclass_t dc)
1128 {
1129 if (dc == NULL)
1130 return (-1);
1131 return (dc->maxunit);
1132 }
1133
1134 /**
1135 * @brief Find a free unit number in a devclass
1136 *
1137 * This function searches for the first unused unit number greater
1138 * that or equal to @p unit. Note: This can return INT_MAX which
1139 * may be rejected elsewhere.
1140 *
1141 * @param dc the devclass to examine
1142 * @param unit the first unit number to check
1143 */
1144 int
devclass_find_free_unit(devclass_t dc,int unit)1145 devclass_find_free_unit(devclass_t dc, int unit)
1146 {
1147 if (dc == NULL)
1148 return (unit);
1149 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1150 unit++;
1151 return (unit);
1152 }
1153
1154 /**
1155 * @brief Set the parent of a devclass
1156 *
1157 * The parent class is normally initialised automatically by
1158 * DRIVER_MODULE().
1159 *
1160 * @param dc the devclass to edit
1161 * @param pdc the new parent devclass
1162 */
1163 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1164 devclass_set_parent(devclass_t dc, devclass_t pdc)
1165 {
1166 dc->parent = pdc;
1167 }
1168
1169 /**
1170 * @brief Get the parent of a devclass
1171 *
1172 * @param dc the devclass to examine
1173 */
1174 devclass_t
devclass_get_parent(devclass_t dc)1175 devclass_get_parent(devclass_t dc)
1176 {
1177 return (dc->parent);
1178 }
1179
1180 struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)1181 devclass_get_sysctl_ctx(devclass_t dc)
1182 {
1183 return (&dc->sysctl_ctx);
1184 }
1185
1186 struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)1187 devclass_get_sysctl_tree(devclass_t dc)
1188 {
1189 return (dc->sysctl_tree);
1190 }
1191
1192 /**
1193 * @internal
1194 * @brief Allocate a unit number
1195 *
1196 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1197 * will do). The allocated unit number is returned in @p *unitp.
1198 *
1199 * @param dc the devclass to allocate from
1200 * @param unitp points at the location for the allocated unit
1201 * number
1202 *
1203 * @retval 0 success
1204 * @retval EEXIST the requested unit number is already allocated
1205 * @retval ENOMEM memory allocation failure
1206 * @retval EINVAL unit is negative or we've run out of units
1207 */
1208 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1210 {
1211 const char *s;
1212 int unit = *unitp;
1213
1214 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1215
1216 /* Ask the parent bus if it wants to wire this device. */
1217 if (unit == DEVICE_UNIT_ANY)
1218 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1219 &unit);
1220
1221 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1222 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1223 return (EINVAL);
1224
1225 /* If we were given a wired unit number, check for existing device */
1226 if (unit != DEVICE_UNIT_ANY) {
1227 if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1228 if (bootverbose)
1229 printf("%s: %s%d already exists; skipping it\n",
1230 dc->name, dc->name, *unitp);
1231 return (EEXIST);
1232 }
1233 } else {
1234 /* Unwired device, find the next available slot for it */
1235 unit = 0;
1236 for (unit = 0; unit < INT_MAX; unit++) {
1237 /* If this device slot is already in use, skip it. */
1238 if (unit < dc->maxunit && dc->devices[unit] != NULL)
1239 continue;
1240
1241 /* If there is an "at" hint for a unit then skip it. */
1242 if (resource_string_value(dc->name, unit, "at", &s) ==
1243 0)
1244 continue;
1245
1246 break;
1247 }
1248 }
1249
1250 /*
1251 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1252 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1253 * can treat unit and maxunit as normal integers with normal math
1254 * everywhere and we only have to flag INT_MAX as invalid.
1255 */
1256 if (unit == INT_MAX)
1257 return (EINVAL);
1258
1259 /*
1260 * We've selected a unit beyond the length of the table, so let's extend
1261 * the table to make room for all units up to and including this one.
1262 */
1263 if (unit >= dc->maxunit) {
1264 int newsize;
1265
1266 newsize = unit + 1;
1267 dc->devices = reallocf(dc->devices,
1268 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1269 memset(dc->devices + dc->maxunit, 0,
1270 sizeof(device_t) * (newsize - dc->maxunit));
1271 dc->maxunit = newsize;
1272 }
1273 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1274
1275 *unitp = unit;
1276 return (0);
1277 }
1278
1279 /**
1280 * @internal
1281 * @brief Add a device to a devclass
1282 *
1283 * A unit number is allocated for the device (using the device's
1284 * preferred unit number if any) and the device is registered in the
1285 * devclass. This allows the device to be looked up by its unit
1286 * number, e.g. by decoding a dev_t minor number.
1287 *
1288 * @param dc the devclass to add to
1289 * @param dev the device to add
1290 *
1291 * @retval 0 success
1292 * @retval EEXIST the requested unit number is already allocated
1293 * @retval ENOMEM memory allocation failure
1294 * @retval EINVAL Unit number invalid or too many units
1295 */
1296 static int
devclass_add_device(devclass_t dc,device_t dev)1297 devclass_add_device(devclass_t dc, device_t dev)
1298 {
1299 int buflen, error;
1300
1301 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1302
1303 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1304 if (buflen < 0)
1305 return (ENOMEM);
1306 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1307 if (!dev->nameunit)
1308 return (ENOMEM);
1309
1310 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1311 free(dev->nameunit, M_BUS);
1312 dev->nameunit = NULL;
1313 return (error);
1314 }
1315 dc->devices[dev->unit] = dev;
1316 dev->devclass = dc;
1317 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1318
1319 return (0);
1320 }
1321
1322 /**
1323 * @internal
1324 * @brief Delete a device from a devclass
1325 *
1326 * The device is removed from the devclass's device list and its unit
1327 * number is freed.
1328
1329 * @param dc the devclass to delete from
1330 * @param dev the device to delete
1331 *
1332 * @retval 0 success
1333 */
1334 static int
devclass_delete_device(devclass_t dc,device_t dev)1335 devclass_delete_device(devclass_t dc, device_t dev)
1336 {
1337 if (!dc || !dev)
1338 return (0);
1339
1340 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1341
1342 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1343 panic("devclass_delete_device: inconsistent device class");
1344 dc->devices[dev->unit] = NULL;
1345 if (dev->flags & DF_WILDCARD)
1346 dev->unit = DEVICE_UNIT_ANY;
1347 dev->devclass = NULL;
1348 free(dev->nameunit, M_BUS);
1349 dev->nameunit = NULL;
1350
1351 return (0);
1352 }
1353
1354 /**
1355 * @internal
1356 * @brief Make a new device and add it as a child of @p parent
1357 *
1358 * @param parent the parent of the new device
1359 * @param name the devclass name of the new device or @c NULL
1360 * to leave the devclass unspecified
1361 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY
1362 * to leave the unit number unspecified
1363 *
1364 * @returns the new device
1365 */
1366 static device_t
make_device(device_t parent,const char * name,int unit)1367 make_device(device_t parent, const char *name, int unit)
1368 {
1369 device_t dev;
1370 devclass_t dc;
1371
1372 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1373
1374 if (name) {
1375 dc = devclass_find_internal(name, NULL, TRUE);
1376 if (!dc) {
1377 printf("make_device: can't find device class %s\n",
1378 name);
1379 return (NULL);
1380 }
1381 } else {
1382 dc = NULL;
1383 }
1384
1385 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1386 if (!dev)
1387 return (NULL);
1388
1389 dev->parent = parent;
1390 TAILQ_INIT(&dev->children);
1391 kobj_init((kobj_t) dev, &null_class);
1392 dev->driver = NULL;
1393 dev->devclass = NULL;
1394 dev->unit = unit;
1395 dev->nameunit = NULL;
1396 dev->desc = NULL;
1397 dev->busy = 0;
1398 dev->devflags = 0;
1399 dev->flags = DF_ENABLED;
1400 dev->order = 0;
1401 if (unit == DEVICE_UNIT_ANY)
1402 dev->flags |= DF_WILDCARD;
1403 if (name) {
1404 dev->flags |= DF_FIXEDCLASS;
1405 if (devclass_add_device(dc, dev)) {
1406 kobj_delete((kobj_t) dev, M_BUS);
1407 return (NULL);
1408 }
1409 }
1410 if (parent != NULL && device_has_quiet_children(parent))
1411 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1412 dev->ivars = NULL;
1413 dev->softc = NULL;
1414 LIST_INIT(&dev->props);
1415
1416 dev->state = DS_NOTPRESENT;
1417
1418 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1419 bus_data_generation_update();
1420
1421 return (dev);
1422 }
1423
1424 /**
1425 * @internal
1426 * @brief Print a description of a device.
1427 */
1428 static int
device_print_child(device_t dev,device_t child)1429 device_print_child(device_t dev, device_t child)
1430 {
1431 int retval = 0;
1432
1433 if (device_is_alive(child))
1434 retval += BUS_PRINT_CHILD(dev, child);
1435 else
1436 retval += device_printf(child, " not found\n");
1437
1438 return (retval);
1439 }
1440
1441 /**
1442 * @brief Create a new device
1443 *
1444 * This creates a new device and adds it as a child of an existing
1445 * parent device. The new device will be added after the last existing
1446 * child with order zero.
1447 *
1448 * @param dev the device which will be the parent of the
1449 * new child device
1450 * @param name devclass name for new device or @c NULL if not
1451 * specified
1452 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1453 * specified
1454 *
1455 * @returns the new device
1456 */
1457 device_t
device_add_child(device_t dev,const char * name,int unit)1458 device_add_child(device_t dev, const char *name, int unit)
1459 {
1460 return (device_add_child_ordered(dev, 0, name, unit));
1461 }
1462
1463 /**
1464 * @brief Create a new device
1465 *
1466 * This creates a new device and adds it as a child of an existing
1467 * parent device. The new device will be added after the last existing
1468 * child with the same order.
1469 *
1470 * @param dev the device which will be the parent of the
1471 * new child device
1472 * @param order a value which is used to partially sort the
1473 * children of @p dev - devices created using
1474 * lower values of @p order appear first in @p
1475 * dev's list of children
1476 * @param name devclass name for new device or @c NULL if not
1477 * specified
1478 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1479 * specified
1480 *
1481 * @returns the new device
1482 */
1483 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1485 {
1486 device_t child;
1487 device_t place;
1488
1489 PDEBUG(("%s at %s with order %u as unit %d",
1490 name, DEVICENAME(dev), order, unit));
1491 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1492 ("child device with wildcard name and specific unit number"));
1493
1494 child = make_device(dev, name, unit);
1495 if (child == NULL)
1496 return (child);
1497 child->order = order;
1498
1499 TAILQ_FOREACH(place, &dev->children, link) {
1500 if (place->order > order)
1501 break;
1502 }
1503
1504 if (place) {
1505 /*
1506 * The device 'place' is the first device whose order is
1507 * greater than the new child.
1508 */
1509 TAILQ_INSERT_BEFORE(place, child, link);
1510 } else {
1511 /*
1512 * The new child's order is greater or equal to the order of
1513 * any existing device. Add the child to the tail of the list.
1514 */
1515 TAILQ_INSERT_TAIL(&dev->children, child, link);
1516 }
1517
1518 bus_data_generation_update();
1519 return (child);
1520 }
1521
1522 /**
1523 * @brief Delete a device
1524 *
1525 * This function deletes a device along with all of its children. If
1526 * the device currently has a driver attached to it, the device is
1527 * detached first using device_detach().
1528 *
1529 * @param dev the parent device
1530 * @param child the device to delete
1531 *
1532 * @retval 0 success
1533 * @retval non-zero a unit error code describing the error
1534 */
1535 int
device_delete_child(device_t dev,device_t child)1536 device_delete_child(device_t dev, device_t child)
1537 {
1538 int error;
1539 device_t grandchild;
1540
1541 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1542
1543 /*
1544 * Detach child. Ideally this cleans up any grandchild
1545 * devices.
1546 */
1547 if ((error = device_detach(child)) != 0)
1548 return (error);
1549
1550 /* Delete any grandchildren left after detach. */
1551 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1552 error = device_delete_child(child, grandchild);
1553 if (error)
1554 return (error);
1555 }
1556
1557 device_destroy_props(dev);
1558 if (child->devclass)
1559 devclass_delete_device(child->devclass, child);
1560 if (child->parent)
1561 BUS_CHILD_DELETED(dev, child);
1562 TAILQ_REMOVE(&dev->children, child, link);
1563 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1564 kobj_delete((kobj_t) child, M_BUS);
1565
1566 bus_data_generation_update();
1567 return (0);
1568 }
1569
1570 /**
1571 * @brief Delete all children devices of the given device, if any.
1572 *
1573 * This function deletes all children devices of the given device, if
1574 * any, using the device_delete_child() function for each device it
1575 * finds. If a child device cannot be deleted, this function will
1576 * return an error code.
1577 *
1578 * @param dev the parent device
1579 *
1580 * @retval 0 success
1581 * @retval non-zero a device would not detach
1582 */
1583 int
device_delete_children(device_t dev)1584 device_delete_children(device_t dev)
1585 {
1586 device_t child;
1587 int error;
1588
1589 PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1590
1591 error = 0;
1592
1593 while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1594 error = device_delete_child(dev, child);
1595 if (error) {
1596 PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1597 break;
1598 }
1599 }
1600 return (error);
1601 }
1602
1603 /**
1604 * @brief Find a device given a unit number
1605 *
1606 * This is similar to devclass_get_devices() but only searches for
1607 * devices which have @p dev as a parent.
1608 *
1609 * @param dev the parent device to search
1610 * @param unit the unit number to search for. If the unit is
1611 * @c DEVICE_UNIT_ANY, return the first child of @p dev
1612 * which has name @p classname (that is, the one with the
1613 * lowest unit.)
1614 *
1615 * @returns the device with the given unit number or @c
1616 * NULL if there is no such device
1617 */
1618 device_t
device_find_child(device_t dev,const char * classname,int unit)1619 device_find_child(device_t dev, const char *classname, int unit)
1620 {
1621 devclass_t dc;
1622 device_t child;
1623
1624 dc = devclass_find(classname);
1625 if (!dc)
1626 return (NULL);
1627
1628 if (unit != DEVICE_UNIT_ANY) {
1629 child = devclass_get_device(dc, unit);
1630 if (child && child->parent == dev)
1631 return (child);
1632 } else {
1633 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1634 child = devclass_get_device(dc, unit);
1635 if (child && child->parent == dev)
1636 return (child);
1637 }
1638 }
1639 return (NULL);
1640 }
1641
1642 /**
1643 * @internal
1644 */
1645 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1646 first_matching_driver(devclass_t dc, device_t dev)
1647 {
1648 if (dev->devclass)
1649 return (devclass_find_driver_internal(dc, dev->devclass->name));
1650 return (TAILQ_FIRST(&dc->drivers));
1651 }
1652
1653 /**
1654 * @internal
1655 */
1656 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1658 {
1659 if (dev->devclass) {
1660 driverlink_t dl;
1661 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1662 if (!strcmp(dev->devclass->name, dl->driver->name))
1663 return (dl);
1664 return (NULL);
1665 }
1666 return (TAILQ_NEXT(last, link));
1667 }
1668
1669 /**
1670 * @internal
1671 */
1672 int
device_probe_child(device_t dev,device_t child)1673 device_probe_child(device_t dev, device_t child)
1674 {
1675 devclass_t dc;
1676 driverlink_t best = NULL;
1677 driverlink_t dl;
1678 int result, pri = 0;
1679 /* We should preserve the devclass (or lack of) set by the bus. */
1680 int hasclass = (child->devclass != NULL);
1681
1682 bus_topo_assert();
1683
1684 dc = dev->devclass;
1685 if (!dc)
1686 panic("device_probe_child: parent device has no devclass");
1687
1688 /*
1689 * If the state is already probed, then return.
1690 */
1691 if (child->state == DS_ALIVE)
1692 return (0);
1693
1694 for (; dc; dc = dc->parent) {
1695 for (dl = first_matching_driver(dc, child);
1696 dl;
1697 dl = next_matching_driver(dc, child, dl)) {
1698 /* If this driver's pass is too high, then ignore it. */
1699 if (dl->pass > bus_current_pass)
1700 continue;
1701
1702 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1703 result = device_set_driver(child, dl->driver);
1704 if (result == ENOMEM)
1705 return (result);
1706 else if (result != 0)
1707 continue;
1708 if (!hasclass) {
1709 if (device_set_devclass(child,
1710 dl->driver->name) != 0) {
1711 char const * devname =
1712 device_get_name(child);
1713 if (devname == NULL)
1714 devname = "(unknown)";
1715 printf("driver bug: Unable to set "
1716 "devclass (class: %s "
1717 "devname: %s)\n",
1718 dl->driver->name,
1719 devname);
1720 (void)device_set_driver(child, NULL);
1721 continue;
1722 }
1723 }
1724
1725 /* Fetch any flags for the device before probing. */
1726 resource_int_value(dl->driver->name, child->unit,
1727 "flags", &child->devflags);
1728
1729 result = DEVICE_PROBE(child);
1730
1731 /*
1732 * If probe returns 0, this is the driver that wins this
1733 * device.
1734 */
1735 if (result == 0) {
1736 best = dl;
1737 pri = 0;
1738 goto exact_match; /* C doesn't have break 2 */
1739 }
1740
1741 /* Reset flags and devclass before the next probe. */
1742 child->devflags = 0;
1743 if (!hasclass)
1744 (void)device_set_devclass(child, NULL);
1745
1746 /*
1747 * Reset DF_QUIET in case this driver doesn't
1748 * end up as the best driver.
1749 */
1750 device_verbose(child);
1751
1752 /*
1753 * Probes that return BUS_PROBE_NOWILDCARD or lower
1754 * only match on devices whose driver was explicitly
1755 * specified.
1756 */
1757 if (result <= BUS_PROBE_NOWILDCARD &&
1758 !(child->flags & DF_FIXEDCLASS)) {
1759 result = ENXIO;
1760 }
1761
1762 /*
1763 * The driver returned an error so it
1764 * certainly doesn't match.
1765 */
1766 if (result > 0) {
1767 (void)device_set_driver(child, NULL);
1768 continue;
1769 }
1770
1771 /*
1772 * A priority lower than SUCCESS, remember the
1773 * best matching driver. Initialise the value
1774 * of pri for the first match.
1775 */
1776 if (best == NULL || result > pri) {
1777 best = dl;
1778 pri = result;
1779 continue;
1780 }
1781 }
1782 }
1783
1784 if (best == NULL)
1785 return (ENXIO);
1786
1787 /*
1788 * If we found a driver, change state and initialise the devclass.
1789 * Set the winning driver, devclass, and flags.
1790 */
1791 result = device_set_driver(child, best->driver);
1792 if (result != 0)
1793 return (result);
1794 if (!child->devclass) {
1795 result = device_set_devclass(child, best->driver->name);
1796 if (result != 0) {
1797 (void)device_set_driver(child, NULL);
1798 return (result);
1799 }
1800 }
1801 resource_int_value(best->driver->name, child->unit,
1802 "flags", &child->devflags);
1803
1804 /*
1805 * A bit bogus. Call the probe method again to make sure that we have
1806 * the right description for the device.
1807 */
1808 result = DEVICE_PROBE(child);
1809 if (result > 0) {
1810 if (!hasclass)
1811 (void)device_set_devclass(child, NULL);
1812 (void)device_set_driver(child, NULL);
1813 return (result);
1814 }
1815
1816 exact_match:
1817 child->state = DS_ALIVE;
1818 bus_data_generation_update();
1819 return (0);
1820 }
1821
1822 /**
1823 * @brief Return the parent of a device
1824 */
1825 device_t
device_get_parent(device_t dev)1826 device_get_parent(device_t dev)
1827 {
1828 return (dev->parent);
1829 }
1830
1831 /**
1832 * @brief Get a list of children of a device
1833 *
1834 * An array containing a list of all the children of the given device
1835 * is allocated and returned in @p *devlistp. The number of devices
1836 * in the array is returned in @p *devcountp. The caller should free
1837 * the array using @c free(p, M_TEMP).
1838 *
1839 * @param dev the device to examine
1840 * @param devlistp points at location for array pointer return
1841 * value
1842 * @param devcountp points at location for array size return value
1843 *
1844 * @retval 0 success
1845 * @retval ENOMEM the array allocation failed
1846 */
1847 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1849 {
1850 int count;
1851 device_t child;
1852 device_t *list;
1853
1854 count = 0;
1855 TAILQ_FOREACH(child, &dev->children, link) {
1856 count++;
1857 }
1858 if (count == 0) {
1859 *devlistp = NULL;
1860 *devcountp = 0;
1861 return (0);
1862 }
1863
1864 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1865 if (!list)
1866 return (ENOMEM);
1867
1868 count = 0;
1869 TAILQ_FOREACH(child, &dev->children, link) {
1870 list[count] = child;
1871 count++;
1872 }
1873
1874 *devlistp = list;
1875 *devcountp = count;
1876
1877 return (0);
1878 }
1879
1880 /**
1881 * @brief Return the current driver for the device or @c NULL if there
1882 * is no driver currently attached
1883 */
1884 driver_t *
device_get_driver(device_t dev)1885 device_get_driver(device_t dev)
1886 {
1887 return (dev->driver);
1888 }
1889
1890 /**
1891 * @brief Return the current devclass for the device or @c NULL if
1892 * there is none.
1893 */
1894 devclass_t
device_get_devclass(device_t dev)1895 device_get_devclass(device_t dev)
1896 {
1897 return (dev->devclass);
1898 }
1899
1900 /**
1901 * @brief Return the name of the device's devclass or @c NULL if there
1902 * is none.
1903 */
1904 const char *
device_get_name(device_t dev)1905 device_get_name(device_t dev)
1906 {
1907 if (dev != NULL && dev->devclass)
1908 return (devclass_get_name(dev->devclass));
1909 return (NULL);
1910 }
1911
1912 /**
1913 * @brief Return a string containing the device's devclass name
1914 * followed by an ascii representation of the device's unit number
1915 * (e.g. @c "foo2").
1916 */
1917 const char *
device_get_nameunit(device_t dev)1918 device_get_nameunit(device_t dev)
1919 {
1920 return (dev->nameunit);
1921 }
1922
1923 /**
1924 * @brief Return the device's unit number.
1925 */
1926 int
device_get_unit(device_t dev)1927 device_get_unit(device_t dev)
1928 {
1929 return (dev->unit);
1930 }
1931
1932 /**
1933 * @brief Return the device's description string
1934 */
1935 const char *
device_get_desc(device_t dev)1936 device_get_desc(device_t dev)
1937 {
1938 return (dev->desc);
1939 }
1940
1941 /**
1942 * @brief Return the device's flags
1943 */
1944 uint32_t
device_get_flags(device_t dev)1945 device_get_flags(device_t dev)
1946 {
1947 return (dev->devflags);
1948 }
1949
1950 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1951 device_get_sysctl_ctx(device_t dev)
1952 {
1953 return (&dev->sysctl_ctx);
1954 }
1955
1956 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1957 device_get_sysctl_tree(device_t dev)
1958 {
1959 return (dev->sysctl_tree);
1960 }
1961
1962 /**
1963 * @brief Print the name of the device followed by a colon and a space
1964 *
1965 * @returns the number of characters printed
1966 */
1967 int
device_print_prettyname(device_t dev)1968 device_print_prettyname(device_t dev)
1969 {
1970 const char *name = device_get_name(dev);
1971
1972 if (name == NULL)
1973 return (printf("unknown: "));
1974 return (printf("%s%d: ", name, device_get_unit(dev)));
1975 }
1976
1977 /**
1978 * @brief Print the name of the device followed by a colon, a space
1979 * and the result of calling vprintf() with the value of @p fmt and
1980 * the following arguments.
1981 *
1982 * @returns the number of characters printed
1983 */
1984 int
device_printf(device_t dev,const char * fmt,...)1985 device_printf(device_t dev, const char * fmt, ...)
1986 {
1987 char buf[128];
1988 struct sbuf sb;
1989 const char *name;
1990 va_list ap;
1991 size_t retval;
1992
1993 retval = 0;
1994
1995 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1996 sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1997
1998 name = device_get_name(dev);
1999
2000 if (name == NULL)
2001 sbuf_cat(&sb, "unknown: ");
2002 else
2003 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2004
2005 va_start(ap, fmt);
2006 sbuf_vprintf(&sb, fmt, ap);
2007 va_end(ap);
2008
2009 sbuf_finish(&sb);
2010 sbuf_delete(&sb);
2011
2012 return (retval);
2013 }
2014
2015 /**
2016 * @brief Print the name of the device followed by a colon, a space
2017 * and the result of calling log() with the value of @p fmt and
2018 * the following arguments.
2019 *
2020 * @returns the number of characters printed
2021 */
2022 int
device_log(device_t dev,int pri,const char * fmt,...)2023 device_log(device_t dev, int pri, const char * fmt, ...)
2024 {
2025 char buf[128];
2026 struct sbuf sb;
2027 const char *name;
2028 va_list ap;
2029 size_t retval;
2030
2031 retval = 0;
2032
2033 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2034
2035 name = device_get_name(dev);
2036
2037 if (name == NULL)
2038 sbuf_cat(&sb, "unknown: ");
2039 else
2040 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2041
2042 va_start(ap, fmt);
2043 sbuf_vprintf(&sb, fmt, ap);
2044 va_end(ap);
2045
2046 sbuf_finish(&sb);
2047
2048 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2049 retval = sbuf_len(&sb);
2050
2051 sbuf_delete(&sb);
2052
2053 return (retval);
2054 }
2055
2056 /**
2057 * @internal
2058 */
2059 static void
device_set_desc_internal(device_t dev,const char * desc,bool allocated)2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2061 {
2062 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2063 free(dev->desc, M_BUS);
2064 dev->flags &= ~DF_DESCMALLOCED;
2065 dev->desc = NULL;
2066 }
2067
2068 if (allocated && desc)
2069 dev->flags |= DF_DESCMALLOCED;
2070 dev->desc = __DECONST(char *, desc);
2071
2072 bus_data_generation_update();
2073 }
2074
2075 /**
2076 * @brief Set the device's description
2077 *
2078 * The value of @c desc should be a string constant that will not
2079 * change (at least until the description is changed in a subsequent
2080 * call to device_set_desc() or device_set_desc_copy()).
2081 */
2082 void
device_set_desc(device_t dev,const char * desc)2083 device_set_desc(device_t dev, const char *desc)
2084 {
2085 device_set_desc_internal(dev, desc, false);
2086 }
2087
2088 /**
2089 * @brief Set the device's description
2090 *
2091 * A printf-like version of device_set_desc().
2092 */
2093 void
device_set_descf(device_t dev,const char * fmt,...)2094 device_set_descf(device_t dev, const char *fmt, ...)
2095 {
2096 va_list ap;
2097 char *buf = NULL;
2098
2099 va_start(ap, fmt);
2100 vasprintf(&buf, M_BUS, fmt, ap);
2101 va_end(ap);
2102 device_set_desc_internal(dev, buf, true);
2103 }
2104
2105 /**
2106 * @brief Set the device's description
2107 *
2108 * The string pointed to by @c desc is copied. Use this function if
2109 * the device description is generated, (e.g. with sprintf()).
2110 */
2111 void
device_set_desc_copy(device_t dev,const char * desc)2112 device_set_desc_copy(device_t dev, const char *desc)
2113 {
2114 char *buf;
2115
2116 buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2117 device_set_desc_internal(dev, buf, true);
2118 }
2119
2120 /**
2121 * @brief Set the device's flags
2122 */
2123 void
device_set_flags(device_t dev,uint32_t flags)2124 device_set_flags(device_t dev, uint32_t flags)
2125 {
2126 dev->devflags = flags;
2127 }
2128
2129 /**
2130 * @brief Return the device's softc field
2131 *
2132 * The softc is allocated and zeroed when a driver is attached, based
2133 * on the size field of the driver.
2134 */
2135 void *
device_get_softc(device_t dev)2136 device_get_softc(device_t dev)
2137 {
2138 return (dev->softc);
2139 }
2140
2141 /**
2142 * @brief Set the device's softc field
2143 *
2144 * Most drivers do not need to use this since the softc is allocated
2145 * automatically when the driver is attached.
2146 */
2147 void
device_set_softc(device_t dev,void * softc)2148 device_set_softc(device_t dev, void *softc)
2149 {
2150 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2151 free(dev->softc, M_BUS_SC);
2152 dev->softc = softc;
2153 if (dev->softc)
2154 dev->flags |= DF_EXTERNALSOFTC;
2155 else
2156 dev->flags &= ~DF_EXTERNALSOFTC;
2157 }
2158
2159 /**
2160 * @brief Free claimed softc
2161 *
2162 * Most drivers do not need to use this since the softc is freed
2163 * automatically when the driver is detached.
2164 */
2165 void
device_free_softc(void * softc)2166 device_free_softc(void *softc)
2167 {
2168 free(softc, M_BUS_SC);
2169 }
2170
2171 /**
2172 * @brief Claim softc
2173 *
2174 * This function can be used to let the driver free the automatically
2175 * allocated softc using "device_free_softc()". This function is
2176 * useful when the driver is refcounting the softc and the softc
2177 * cannot be freed when the "device_detach" method is called.
2178 */
2179 void
device_claim_softc(device_t dev)2180 device_claim_softc(device_t dev)
2181 {
2182 if (dev->softc)
2183 dev->flags |= DF_EXTERNALSOFTC;
2184 else
2185 dev->flags &= ~DF_EXTERNALSOFTC;
2186 }
2187
2188 /**
2189 * @brief Get the device's ivars field
2190 *
2191 * The ivars field is used by the parent device to store per-device
2192 * state (e.g. the physical location of the device or a list of
2193 * resources).
2194 */
2195 void *
device_get_ivars(device_t dev)2196 device_get_ivars(device_t dev)
2197 {
2198 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2199 return (dev->ivars);
2200 }
2201
2202 /**
2203 * @brief Set the device's ivars field
2204 */
2205 void
device_set_ivars(device_t dev,void * ivars)2206 device_set_ivars(device_t dev, void * ivars)
2207 {
2208 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2209 dev->ivars = ivars;
2210 }
2211
2212 /**
2213 * @brief Return the device's state
2214 */
2215 device_state_t
device_get_state(device_t dev)2216 device_get_state(device_t dev)
2217 {
2218 return (dev->state);
2219 }
2220
2221 /**
2222 * @brief Set the DF_ENABLED flag for the device
2223 */
2224 void
device_enable(device_t dev)2225 device_enable(device_t dev)
2226 {
2227 dev->flags |= DF_ENABLED;
2228 }
2229
2230 /**
2231 * @brief Clear the DF_ENABLED flag for the device
2232 */
2233 void
device_disable(device_t dev)2234 device_disable(device_t dev)
2235 {
2236 dev->flags &= ~DF_ENABLED;
2237 }
2238
2239 /**
2240 * @brief Increment the busy counter for the device
2241 */
2242 void
device_busy(device_t dev)2243 device_busy(device_t dev)
2244 {
2245
2246 /*
2247 * Mark the device as busy, recursively up the tree if this busy count
2248 * goes 0->1.
2249 */
2250 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2251 device_busy(dev->parent);
2252 }
2253
2254 /**
2255 * @brief Decrement the busy counter for the device
2256 */
2257 void
device_unbusy(device_t dev)2258 device_unbusy(device_t dev)
2259 {
2260
2261 /*
2262 * Mark the device as unbsy, recursively if this is the last busy count.
2263 */
2264 if (refcount_release(&dev->busy) && dev->parent != NULL)
2265 device_unbusy(dev->parent);
2266 }
2267
2268 /**
2269 * @brief Set the DF_QUIET flag for the device
2270 */
2271 void
device_quiet(device_t dev)2272 device_quiet(device_t dev)
2273 {
2274 dev->flags |= DF_QUIET;
2275 }
2276
2277 /**
2278 * @brief Set the DF_QUIET_CHILDREN flag for the device
2279 */
2280 void
device_quiet_children(device_t dev)2281 device_quiet_children(device_t dev)
2282 {
2283 dev->flags |= DF_QUIET_CHILDREN;
2284 }
2285
2286 /**
2287 * @brief Clear the DF_QUIET flag for the device
2288 */
2289 void
device_verbose(device_t dev)2290 device_verbose(device_t dev)
2291 {
2292 dev->flags &= ~DF_QUIET;
2293 }
2294
2295 ssize_t
device_get_property(device_t dev,const char * prop,void * val,size_t sz,device_property_type_t type)2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2297 device_property_type_t type)
2298 {
2299 device_t bus = device_get_parent(dev);
2300
2301 switch (type) {
2302 case DEVICE_PROP_ANY:
2303 case DEVICE_PROP_BUFFER:
2304 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */
2305 break;
2306 case DEVICE_PROP_UINT32:
2307 if (sz % 4 != 0)
2308 return (-1);
2309 break;
2310 case DEVICE_PROP_UINT64:
2311 if (sz % 8 != 0)
2312 return (-1);
2313 break;
2314 default:
2315 return (-1);
2316 }
2317
2318 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2319 }
2320
2321 bool
device_has_property(device_t dev,const char * prop)2322 device_has_property(device_t dev, const char *prop)
2323 {
2324 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2325 }
2326
2327 /**
2328 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2329 */
2330 int
device_has_quiet_children(device_t dev)2331 device_has_quiet_children(device_t dev)
2332 {
2333 return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2334 }
2335
2336 /**
2337 * @brief Return non-zero if the DF_QUIET flag is set on the device
2338 */
2339 int
device_is_quiet(device_t dev)2340 device_is_quiet(device_t dev)
2341 {
2342 return ((dev->flags & DF_QUIET) != 0);
2343 }
2344
2345 /**
2346 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2347 */
2348 int
device_is_enabled(device_t dev)2349 device_is_enabled(device_t dev)
2350 {
2351 return ((dev->flags & DF_ENABLED) != 0);
2352 }
2353
2354 /**
2355 * @brief Return non-zero if the device was successfully probed
2356 */
2357 int
device_is_alive(device_t dev)2358 device_is_alive(device_t dev)
2359 {
2360 return (dev->state >= DS_ALIVE);
2361 }
2362
2363 /**
2364 * @brief Return non-zero if the device currently has a driver
2365 * attached to it
2366 */
2367 int
device_is_attached(device_t dev)2368 device_is_attached(device_t dev)
2369 {
2370 return (dev->state >= DS_ATTACHED);
2371 }
2372
2373 /**
2374 * @brief Return non-zero if the device is currently suspended.
2375 */
2376 int
device_is_suspended(device_t dev)2377 device_is_suspended(device_t dev)
2378 {
2379 return ((dev->flags & DF_SUSPENDED) != 0);
2380 }
2381
2382 /**
2383 * @brief Set the devclass of a device
2384 * @see devclass_add_device().
2385 */
2386 int
device_set_devclass(device_t dev,const char * classname)2387 device_set_devclass(device_t dev, const char *classname)
2388 {
2389 devclass_t dc;
2390 int error;
2391
2392 if (!classname) {
2393 if (dev->devclass)
2394 devclass_delete_device(dev->devclass, dev);
2395 return (0);
2396 }
2397
2398 if (dev->devclass) {
2399 printf("device_set_devclass: device class already set\n");
2400 return (EINVAL);
2401 }
2402
2403 dc = devclass_find_internal(classname, NULL, TRUE);
2404 if (!dc)
2405 return (ENOMEM);
2406
2407 error = devclass_add_device(dc, dev);
2408
2409 bus_data_generation_update();
2410 return (error);
2411 }
2412
2413 /**
2414 * @brief Set the devclass of a device and mark the devclass fixed.
2415 * @see device_set_devclass()
2416 */
2417 int
device_set_devclass_fixed(device_t dev,const char * classname)2418 device_set_devclass_fixed(device_t dev, const char *classname)
2419 {
2420 int error;
2421
2422 if (classname == NULL)
2423 return (EINVAL);
2424
2425 error = device_set_devclass(dev, classname);
2426 if (error)
2427 return (error);
2428 dev->flags |= DF_FIXEDCLASS;
2429 return (0);
2430 }
2431
2432 /**
2433 * @brief Query the device to determine if it's of a fixed devclass
2434 * @see device_set_devclass_fixed()
2435 */
2436 bool
device_is_devclass_fixed(device_t dev)2437 device_is_devclass_fixed(device_t dev)
2438 {
2439 return ((dev->flags & DF_FIXEDCLASS) != 0);
2440 }
2441
2442 /**
2443 * @brief Set the driver of a device
2444 *
2445 * @retval 0 success
2446 * @retval EBUSY the device already has a driver attached
2447 * @retval ENOMEM a memory allocation failure occurred
2448 */
2449 int
device_set_driver(device_t dev,driver_t * driver)2450 device_set_driver(device_t dev, driver_t *driver)
2451 {
2452 int domain;
2453 struct domainset *policy;
2454
2455 if (dev->state >= DS_ATTACHED)
2456 return (EBUSY);
2457
2458 if (dev->driver == driver)
2459 return (0);
2460
2461 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2462 free(dev->softc, M_BUS_SC);
2463 dev->softc = NULL;
2464 }
2465 device_set_desc(dev, NULL);
2466 kobj_delete((kobj_t) dev, NULL);
2467 dev->driver = driver;
2468 if (driver) {
2469 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2470 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2471 if (bus_get_domain(dev, &domain) == 0)
2472 policy = DOMAINSET_PREF(domain);
2473 else
2474 policy = DOMAINSET_RR();
2475 dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2476 policy, M_NOWAIT | M_ZERO);
2477 if (!dev->softc) {
2478 kobj_delete((kobj_t) dev, NULL);
2479 kobj_init((kobj_t) dev, &null_class);
2480 dev->driver = NULL;
2481 return (ENOMEM);
2482 }
2483 }
2484 } else {
2485 kobj_init((kobj_t) dev, &null_class);
2486 }
2487
2488 bus_data_generation_update();
2489 return (0);
2490 }
2491
2492 /**
2493 * @brief Probe a device, and return this status.
2494 *
2495 * This function is the core of the device autoconfiguration
2496 * system. Its purpose is to select a suitable driver for a device and
2497 * then call that driver to initialise the hardware appropriately. The
2498 * driver is selected by calling the DEVICE_PROBE() method of a set of
2499 * candidate drivers and then choosing the driver which returned the
2500 * best value. This driver is then attached to the device using
2501 * device_attach().
2502 *
2503 * The set of suitable drivers is taken from the list of drivers in
2504 * the parent device's devclass. If the device was originally created
2505 * with a specific class name (see device_add_child()), only drivers
2506 * with that name are probed, otherwise all drivers in the devclass
2507 * are probed. If no drivers return successful probe values in the
2508 * parent devclass, the search continues in the parent of that
2509 * devclass (see devclass_get_parent()) if any.
2510 *
2511 * @param dev the device to initialise
2512 *
2513 * @retval 0 success
2514 * @retval ENXIO no driver was found
2515 * @retval ENOMEM memory allocation failure
2516 * @retval non-zero some other unix error code
2517 * @retval -1 Device already attached
2518 */
2519 int
device_probe(device_t dev)2520 device_probe(device_t dev)
2521 {
2522 int error;
2523
2524 bus_topo_assert();
2525
2526 if (dev->state >= DS_ALIVE)
2527 return (-1);
2528
2529 if (!(dev->flags & DF_ENABLED)) {
2530 if (bootverbose && device_get_name(dev) != NULL) {
2531 device_print_prettyname(dev);
2532 printf("not probed (disabled)\n");
2533 }
2534 return (-1);
2535 }
2536 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2537 if (bus_current_pass == BUS_PASS_DEFAULT &&
2538 !(dev->flags & DF_DONENOMATCH)) {
2539 device_handle_nomatch(dev);
2540 }
2541 return (error);
2542 }
2543 return (0);
2544 }
2545
2546 /**
2547 * @brief Probe a device and attach a driver if possible
2548 *
2549 * calls device_probe() and attaches if that was successful.
2550 */
2551 int
device_probe_and_attach(device_t dev)2552 device_probe_and_attach(device_t dev)
2553 {
2554 int error;
2555
2556 bus_topo_assert();
2557
2558 error = device_probe(dev);
2559 if (error == -1)
2560 return (0);
2561 else if (error != 0)
2562 return (error);
2563
2564 return (device_attach(dev));
2565 }
2566
2567 /**
2568 * @brief Attach a device driver to a device
2569 *
2570 * This function is a wrapper around the DEVICE_ATTACH() driver
2571 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2572 * device's sysctl tree, optionally prints a description of the device
2573 * and queues a notification event for user-based device management
2574 * services.
2575 *
2576 * Normally this function is only called internally from
2577 * device_probe_and_attach().
2578 *
2579 * @param dev the device to initialise
2580 *
2581 * @retval 0 success
2582 * @retval ENXIO no driver was found
2583 * @retval ENOMEM memory allocation failure
2584 * @retval non-zero some other unix error code
2585 */
2586 int
device_attach(device_t dev)2587 device_attach(device_t dev)
2588 {
2589 uint64_t attachtime;
2590 uint16_t attachentropy;
2591 int error;
2592
2593 if (resource_disabled(dev->driver->name, dev->unit)) {
2594 /*
2595 * Mostly detach the device, but leave it attached to
2596 * the devclass to reserve the name and unit.
2597 */
2598 device_disable(dev);
2599 (void)device_set_driver(dev, NULL);
2600 dev->state = DS_NOTPRESENT;
2601 if (bootverbose)
2602 device_printf(dev, "disabled via hints entry\n");
2603 return (ENXIO);
2604 }
2605
2606 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2607 ("device_attach: curthread is not in default vnet"));
2608 CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2609
2610 device_sysctl_init(dev);
2611 if (!device_is_quiet(dev))
2612 device_print_child(dev->parent, dev);
2613 attachtime = get_cyclecount();
2614 dev->state = DS_ATTACHING;
2615 if ((error = DEVICE_ATTACH(dev)) != 0) {
2616 printf("device_attach: %s%d attach returned %d\n",
2617 dev->driver->name, dev->unit, error);
2618 BUS_CHILD_DETACHED(dev->parent, dev);
2619 if (disable_failed_devs) {
2620 /*
2621 * When the user has asked to disable failed devices, we
2622 * directly disable the device, but leave it in the
2623 * attaching state. It will not try to probe/attach the
2624 * device further. This leaves the device numbering
2625 * intact for other similar devices in the system. It
2626 * can be removed from this state with devctl.
2627 */
2628 device_disable(dev);
2629 } else {
2630 /*
2631 * Otherwise, when attach fails, tear down the state
2632 * around that so we can retry when, for example, new
2633 * drivers are loaded.
2634 */
2635 if (!(dev->flags & DF_FIXEDCLASS))
2636 devclass_delete_device(dev->devclass, dev);
2637 (void)device_set_driver(dev, NULL);
2638 device_sysctl_fini(dev);
2639 KASSERT(dev->busy == 0, ("attach failed but busy"));
2640 dev->state = DS_NOTPRESENT;
2641 }
2642 CURVNET_RESTORE();
2643 return (error);
2644 }
2645 CURVNET_RESTORE();
2646 dev->flags |= DF_ATTACHED_ONCE;
2647 /*
2648 * We only need the low bits of this time, but ranges from tens to thousands
2649 * have been seen, so keep 2 bytes' worth.
2650 */
2651 attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2652 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2653 device_sysctl_update(dev);
2654 dev->state = DS_ATTACHED;
2655 dev->flags &= ~DF_DONENOMATCH;
2656 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2657 return (0);
2658 }
2659
2660 /**
2661 * @brief Detach a driver from a device
2662 *
2663 * This function is a wrapper around the DEVICE_DETACH() driver
2664 * method. If the call to DEVICE_DETACH() succeeds, it calls
2665 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2666 * notification event for user-based device management services and
2667 * cleans up the device's sysctl tree.
2668 *
2669 * @param dev the device to un-initialise
2670 *
2671 * @retval 0 success
2672 * @retval ENXIO no driver was found
2673 * @retval ENOMEM memory allocation failure
2674 * @retval non-zero some other unix error code
2675 */
2676 int
device_detach(device_t dev)2677 device_detach(device_t dev)
2678 {
2679 int error;
2680
2681 bus_topo_assert();
2682
2683 PDEBUG(("%s", DEVICENAME(dev)));
2684 if (dev->busy > 0)
2685 return (EBUSY);
2686 if (dev->state == DS_ATTACHING) {
2687 device_printf(dev, "device in attaching state! Deferring detach.\n");
2688 return (EBUSY);
2689 }
2690 if (dev->state != DS_ATTACHED)
2691 return (0);
2692
2693 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2694 if ((error = DEVICE_DETACH(dev)) != 0) {
2695 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2696 EVHDEV_DETACH_FAILED);
2697 return (error);
2698 } else {
2699 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2700 EVHDEV_DETACH_COMPLETE);
2701 }
2702 if (!device_is_quiet(dev))
2703 device_printf(dev, "detached\n");
2704 if (dev->parent)
2705 BUS_CHILD_DETACHED(dev->parent, dev);
2706
2707 if (!(dev->flags & DF_FIXEDCLASS))
2708 devclass_delete_device(dev->devclass, dev);
2709
2710 device_verbose(dev);
2711 dev->state = DS_NOTPRESENT;
2712 (void)device_set_driver(dev, NULL);
2713 device_sysctl_fini(dev);
2714
2715 return (0);
2716 }
2717
2718 /**
2719 * @brief Tells a driver to quiesce itself.
2720 *
2721 * This function is a wrapper around the DEVICE_QUIESCE() driver
2722 * method. If the call to DEVICE_QUIESCE() succeeds.
2723 *
2724 * @param dev the device to quiesce
2725 *
2726 * @retval 0 success
2727 * @retval ENXIO no driver was found
2728 * @retval ENOMEM memory allocation failure
2729 * @retval non-zero some other unix error code
2730 */
2731 int
device_quiesce(device_t dev)2732 device_quiesce(device_t dev)
2733 {
2734 PDEBUG(("%s", DEVICENAME(dev)));
2735 if (dev->busy > 0)
2736 return (EBUSY);
2737 if (dev->state != DS_ATTACHED)
2738 return (0);
2739
2740 return (DEVICE_QUIESCE(dev));
2741 }
2742
2743 /**
2744 * @brief Notify a device of system shutdown
2745 *
2746 * This function calls the DEVICE_SHUTDOWN() driver method if the
2747 * device currently has an attached driver.
2748 *
2749 * @returns the value returned by DEVICE_SHUTDOWN()
2750 */
2751 int
device_shutdown(device_t dev)2752 device_shutdown(device_t dev)
2753 {
2754 if (dev->state < DS_ATTACHED)
2755 return (0);
2756 return (DEVICE_SHUTDOWN(dev));
2757 }
2758
2759 /**
2760 * @brief Set the unit number of a device
2761 *
2762 * This function can be used to override the unit number used for a
2763 * device (e.g. to wire a device to a pre-configured unit number).
2764 */
2765 int
device_set_unit(device_t dev,int unit)2766 device_set_unit(device_t dev, int unit)
2767 {
2768 devclass_t dc;
2769 int err;
2770
2771 if (unit == dev->unit)
2772 return (0);
2773 dc = device_get_devclass(dev);
2774 if (unit < dc->maxunit && dc->devices[unit])
2775 return (EBUSY);
2776 err = devclass_delete_device(dc, dev);
2777 if (err)
2778 return (err);
2779 dev->unit = unit;
2780 err = devclass_add_device(dc, dev);
2781 if (err)
2782 return (err);
2783
2784 bus_data_generation_update();
2785 return (0);
2786 }
2787
2788 /*======================================*/
2789 /*
2790 * Some useful method implementations to make life easier for bus drivers.
2791 */
2792
2793 /**
2794 * @brief Initialize a resource mapping request
2795 *
2796 * This is the internal implementation of the public API
2797 * resource_init_map_request. Callers may be using a different layout
2798 * of struct resource_map_request than the kernel, so callers pass in
2799 * the size of the structure they are using to identify the structure
2800 * layout.
2801 */
2802 void
resource_init_map_request_impl(struct resource_map_request * args,size_t sz)2803 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2804 {
2805 bzero(args, sz);
2806 args->size = sz;
2807 args->memattr = VM_MEMATTR_DEVICE;
2808 }
2809
2810 /**
2811 * @brief Validate a resource mapping request
2812 *
2813 * Translate a device driver's mapping request (@p in) to a struct
2814 * resource_map_request using the current structure layout (@p out).
2815 * In addition, validate the offset and length from the mapping
2816 * request against the bounds of the resource @p r. If the offset or
2817 * length are invalid, fail with EINVAL. If the offset and length are
2818 * valid, the absolute starting address of the requested mapping is
2819 * returned in @p startp and the length of the requested mapping is
2820 * returned in @p lengthp.
2821 */
2822 int
resource_validate_map_request(struct resource * r,struct resource_map_request * in,struct resource_map_request * out,rman_res_t * startp,rman_res_t * lengthp)2823 resource_validate_map_request(struct resource *r,
2824 struct resource_map_request *in, struct resource_map_request *out,
2825 rman_res_t *startp, rman_res_t *lengthp)
2826 {
2827 rman_res_t end, length, start;
2828
2829 /*
2830 * This assumes that any callers of this function are compiled
2831 * into the kernel and use the same version of the structure
2832 * as this file.
2833 */
2834 MPASS(out->size == sizeof(struct resource_map_request));
2835
2836 if (in != NULL)
2837 bcopy(in, out, imin(in->size, out->size));
2838 start = rman_get_start(r) + out->offset;
2839 if (out->length == 0)
2840 length = rman_get_size(r);
2841 else
2842 length = out->length;
2843 end = start + length - 1;
2844 if (start > rman_get_end(r) || start < rman_get_start(r))
2845 return (EINVAL);
2846 if (end > rman_get_end(r) || end < start)
2847 return (EINVAL);
2848 *lengthp = length;
2849 *startp = start;
2850 return (0);
2851 }
2852
2853 /**
2854 * @brief Initialise a resource list.
2855 *
2856 * @param rl the resource list to initialise
2857 */
2858 void
resource_list_init(struct resource_list * rl)2859 resource_list_init(struct resource_list *rl)
2860 {
2861 STAILQ_INIT(rl);
2862 }
2863
2864 /**
2865 * @brief Reclaim memory used by a resource list.
2866 *
2867 * This function frees the memory for all resource entries on the list
2868 * (if any).
2869 *
2870 * @param rl the resource list to free
2871 */
2872 void
resource_list_free(struct resource_list * rl)2873 resource_list_free(struct resource_list *rl)
2874 {
2875 struct resource_list_entry *rle;
2876
2877 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2878 if (rle->res)
2879 panic("resource_list_free: resource entry is busy");
2880 STAILQ_REMOVE_HEAD(rl, link);
2881 free(rle, M_BUS);
2882 }
2883 }
2884
2885 /**
2886 * @brief Add a resource entry.
2887 *
2888 * This function adds a resource entry using the given @p type, @p
2889 * start, @p end and @p count values. A rid value is chosen by
2890 * searching sequentially for the first unused rid starting at zero.
2891 *
2892 * @param rl the resource list to edit
2893 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2894 * @param start the start address of the resource
2895 * @param end the end address of the resource
2896 * @param count XXX end-start+1
2897 */
2898 int
resource_list_add_next(struct resource_list * rl,int type,rman_res_t start,rman_res_t end,rman_res_t count)2899 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2900 rman_res_t end, rman_res_t count)
2901 {
2902 int rid;
2903
2904 rid = 0;
2905 while (resource_list_find(rl, type, rid) != NULL)
2906 rid++;
2907 resource_list_add(rl, type, rid, start, end, count);
2908 return (rid);
2909 }
2910
2911 /**
2912 * @brief Add or modify a resource entry.
2913 *
2914 * If an existing entry exists with the same type and rid, it will be
2915 * modified using the given values of @p start, @p end and @p
2916 * count. If no entry exists, a new one will be created using the
2917 * given values. The resource list entry that matches is then returned.
2918 *
2919 * @param rl the resource list to edit
2920 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2921 * @param rid the resource identifier
2922 * @param start the start address of the resource
2923 * @param end the end address of the resource
2924 * @param count XXX end-start+1
2925 */
2926 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2927 resource_list_add(struct resource_list *rl, int type, int rid,
2928 rman_res_t start, rman_res_t end, rman_res_t count)
2929 {
2930 struct resource_list_entry *rle;
2931
2932 rle = resource_list_find(rl, type, rid);
2933 if (!rle) {
2934 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2935 M_NOWAIT);
2936 if (!rle)
2937 panic("resource_list_add: can't record entry");
2938 STAILQ_INSERT_TAIL(rl, rle, link);
2939 rle->type = type;
2940 rle->rid = rid;
2941 rle->res = NULL;
2942 rle->flags = 0;
2943 }
2944
2945 if (rle->res)
2946 panic("resource_list_add: resource entry is busy");
2947
2948 rle->start = start;
2949 rle->end = end;
2950 rle->count = count;
2951 return (rle);
2952 }
2953
2954 /**
2955 * @brief Determine if a resource entry is busy.
2956 *
2957 * Returns true if a resource entry is busy meaning that it has an
2958 * associated resource that is not an unallocated "reserved" resource.
2959 *
2960 * @param rl the resource list to search
2961 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2962 * @param rid the resource identifier
2963 *
2964 * @returns Non-zero if the entry is busy, zero otherwise.
2965 */
2966 int
resource_list_busy(struct resource_list * rl,int type,int rid)2967 resource_list_busy(struct resource_list *rl, int type, int rid)
2968 {
2969 struct resource_list_entry *rle;
2970
2971 rle = resource_list_find(rl, type, rid);
2972 if (rle == NULL || rle->res == NULL)
2973 return (0);
2974 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2975 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2976 ("reserved resource is active"));
2977 return (0);
2978 }
2979 return (1);
2980 }
2981
2982 /**
2983 * @brief Determine if a resource entry is reserved.
2984 *
2985 * Returns true if a resource entry is reserved meaning that it has an
2986 * associated "reserved" resource. The resource can either be
2987 * allocated or unallocated.
2988 *
2989 * @param rl the resource list to search
2990 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2991 * @param rid the resource identifier
2992 *
2993 * @returns Non-zero if the entry is reserved, zero otherwise.
2994 */
2995 int
resource_list_reserved(struct resource_list * rl,int type,int rid)2996 resource_list_reserved(struct resource_list *rl, int type, int rid)
2997 {
2998 struct resource_list_entry *rle;
2999
3000 rle = resource_list_find(rl, type, rid);
3001 if (rle != NULL && rle->flags & RLE_RESERVED)
3002 return (1);
3003 return (0);
3004 }
3005
3006 /**
3007 * @brief Find a resource entry by type and rid.
3008 *
3009 * @param rl the resource list to search
3010 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3011 * @param rid the resource identifier
3012 *
3013 * @returns the resource entry pointer or NULL if there is no such
3014 * entry.
3015 */
3016 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)3017 resource_list_find(struct resource_list *rl, int type, int rid)
3018 {
3019 struct resource_list_entry *rle;
3020
3021 STAILQ_FOREACH(rle, rl, link) {
3022 if (rle->type == type && rle->rid == rid)
3023 return (rle);
3024 }
3025 return (NULL);
3026 }
3027
3028 /**
3029 * @brief Delete a resource entry.
3030 *
3031 * @param rl the resource list to edit
3032 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3033 * @param rid the resource identifier
3034 */
3035 void
resource_list_delete(struct resource_list * rl,int type,int rid)3036 resource_list_delete(struct resource_list *rl, int type, int rid)
3037 {
3038 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3039
3040 if (rle) {
3041 if (rle->res != NULL)
3042 panic("resource_list_delete: resource has not been released");
3043 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3044 free(rle, M_BUS);
3045 }
3046 }
3047
3048 /**
3049 * @brief Allocate a reserved resource
3050 *
3051 * This can be used by buses to force the allocation of resources
3052 * that are always active in the system even if they are not allocated
3053 * by a driver (e.g. PCI BARs). This function is usually called when
3054 * adding a new child to the bus. The resource is allocated from the
3055 * parent bus when it is reserved. The resource list entry is marked
3056 * with RLE_RESERVED to note that it is a reserved resource.
3057 *
3058 * Subsequent attempts to allocate the resource with
3059 * resource_list_alloc() will succeed the first time and will set
3060 * RLE_ALLOCATED to note that it has been allocated. When a reserved
3061 * resource that has been allocated is released with
3062 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3063 * the actual resource remains allocated. The resource can be released to
3064 * the parent bus by calling resource_list_unreserve().
3065 *
3066 * @param rl the resource list to allocate from
3067 * @param bus the parent device of @p child
3068 * @param child the device for which the resource is being reserved
3069 * @param type the type of resource to allocate
3070 * @param rid a pointer to the resource identifier
3071 * @param start hint at the start of the resource range - pass
3072 * @c 0 for any start address
3073 * @param end hint at the end of the resource range - pass
3074 * @c ~0 for any end address
3075 * @param count hint at the size of range required - pass @c 1
3076 * for any size
3077 * @param flags any extra flags to control the resource
3078 * allocation - see @c RF_XXX flags in
3079 * <sys/rman.h> for details
3080 *
3081 * @returns the resource which was allocated or @c NULL if no
3082 * resource could be allocated
3083 */
3084 struct resource *
resource_list_reserve(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3085 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3086 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3087 {
3088 struct resource_list_entry *rle = NULL;
3089 int passthrough = (device_get_parent(child) != bus);
3090 struct resource *r;
3091
3092 if (passthrough)
3093 panic(
3094 "resource_list_reserve() should only be called for direct children");
3095 if (flags & RF_ACTIVE)
3096 panic(
3097 "resource_list_reserve() should only reserve inactive resources");
3098
3099 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3100 flags);
3101 if (r != NULL) {
3102 rle = resource_list_find(rl, type, *rid);
3103 rle->flags |= RLE_RESERVED;
3104 }
3105 return (r);
3106 }
3107
3108 /**
3109 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3110 *
3111 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3112 * and passing the allocation up to the parent of @p bus. This assumes
3113 * that the first entry of @c device_get_ivars(child) is a struct
3114 * resource_list. This also handles 'passthrough' allocations where a
3115 * child is a remote descendant of bus by passing the allocation up to
3116 * the parent of bus.
3117 *
3118 * Typically, a bus driver would store a list of child resources
3119 * somewhere in the child device's ivars (see device_get_ivars()) and
3120 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3121 * then call resource_list_alloc() to perform the allocation.
3122 *
3123 * @param rl the resource list to allocate from
3124 * @param bus the parent device of @p child
3125 * @param child the device which is requesting an allocation
3126 * @param type the type of resource to allocate
3127 * @param rid a pointer to the resource identifier
3128 * @param start hint at the start of the resource range - pass
3129 * @c 0 for any start address
3130 * @param end hint at the end of the resource range - pass
3131 * @c ~0 for any end address
3132 * @param count hint at the size of range required - pass @c 1
3133 * for any size
3134 * @param flags any extra flags to control the resource
3135 * allocation - see @c RF_XXX flags in
3136 * <sys/rman.h> for details
3137 *
3138 * @returns the resource which was allocated or @c NULL if no
3139 * resource could be allocated
3140 */
3141 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3142 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3143 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3144 {
3145 struct resource_list_entry *rle = NULL;
3146 int passthrough = (device_get_parent(child) != bus);
3147 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3148
3149 if (passthrough) {
3150 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3151 type, rid, start, end, count, flags));
3152 }
3153
3154 rle = resource_list_find(rl, type, *rid);
3155
3156 if (!rle)
3157 return (NULL); /* no resource of that type/rid */
3158
3159 if (rle->res) {
3160 if (rle->flags & RLE_RESERVED) {
3161 if (rle->flags & RLE_ALLOCATED)
3162 return (NULL);
3163 if ((flags & RF_ACTIVE) &&
3164 bus_activate_resource(child, type, *rid,
3165 rle->res) != 0)
3166 return (NULL);
3167 rle->flags |= RLE_ALLOCATED;
3168 return (rle->res);
3169 }
3170 device_printf(bus,
3171 "resource entry %#x type %d for child %s is busy\n", *rid,
3172 type, device_get_nameunit(child));
3173 return (NULL);
3174 }
3175
3176 if (isdefault) {
3177 start = rle->start;
3178 count = ulmax(count, rle->count);
3179 end = ulmax(rle->end, start + count - 1);
3180 }
3181
3182 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3183 type, rid, start, end, count, flags);
3184
3185 /*
3186 * Record the new range.
3187 */
3188 if (rle->res) {
3189 rle->start = rman_get_start(rle->res);
3190 rle->end = rman_get_end(rle->res);
3191 rle->count = count;
3192 }
3193
3194 return (rle->res);
3195 }
3196
3197 /**
3198 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3199 *
3200 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3201 * used with resource_list_alloc().
3202 *
3203 * @param rl the resource list which was allocated from
3204 * @param bus the parent device of @p child
3205 * @param child the device which is requesting a release
3206 * @param res the resource to release
3207 *
3208 * @retval 0 success
3209 * @retval non-zero a standard unix error code indicating what
3210 * error condition prevented the operation
3211 */
3212 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,struct resource * res)3213 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3214 struct resource *res)
3215 {
3216 struct resource_list_entry *rle = NULL;
3217 int passthrough = (device_get_parent(child) != bus);
3218 int error;
3219
3220 if (passthrough) {
3221 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3222 res));
3223 }
3224
3225 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3226
3227 if (!rle)
3228 panic("resource_list_release: can't find resource");
3229 if (!rle->res)
3230 panic("resource_list_release: resource entry is not busy");
3231 if (rle->flags & RLE_RESERVED) {
3232 if (rle->flags & RLE_ALLOCATED) {
3233 if (rman_get_flags(res) & RF_ACTIVE) {
3234 error = bus_deactivate_resource(child, res);
3235 if (error)
3236 return (error);
3237 }
3238 rle->flags &= ~RLE_ALLOCATED;
3239 return (0);
3240 }
3241 return (EINVAL);
3242 }
3243
3244 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3245 if (error)
3246 return (error);
3247
3248 rle->res = NULL;
3249 return (0);
3250 }
3251
3252 /**
3253 * @brief Release all active resources of a given type
3254 *
3255 * Release all active resources of a specified type. This is intended
3256 * to be used to cleanup resources leaked by a driver after detach or
3257 * a failed attach.
3258 *
3259 * @param rl the resource list which was allocated from
3260 * @param bus the parent device of @p child
3261 * @param child the device whose active resources are being released
3262 * @param type the type of resources to release
3263 *
3264 * @retval 0 success
3265 * @retval EBUSY at least one resource was active
3266 */
3267 int
resource_list_release_active(struct resource_list * rl,device_t bus,device_t child,int type)3268 resource_list_release_active(struct resource_list *rl, device_t bus,
3269 device_t child, int type)
3270 {
3271 struct resource_list_entry *rle;
3272 int error, retval;
3273
3274 retval = 0;
3275 STAILQ_FOREACH(rle, rl, link) {
3276 if (rle->type != type)
3277 continue;
3278 if (rle->res == NULL)
3279 continue;
3280 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3281 RLE_RESERVED)
3282 continue;
3283 retval = EBUSY;
3284 error = resource_list_release(rl, bus, child, rle->res);
3285 if (error != 0)
3286 device_printf(bus,
3287 "Failed to release active resource: %d\n", error);
3288 }
3289 return (retval);
3290 }
3291
3292 /**
3293 * @brief Fully release a reserved resource
3294 *
3295 * Fully releases a resource reserved via resource_list_reserve().
3296 *
3297 * @param rl the resource list which was allocated from
3298 * @param bus the parent device of @p child
3299 * @param child the device whose reserved resource is being released
3300 * @param type the type of resource to release
3301 * @param rid the resource identifier
3302 * @param res the resource to release
3303 *
3304 * @retval 0 success
3305 * @retval non-zero a standard unix error code indicating what
3306 * error condition prevented the operation
3307 */
3308 int
resource_list_unreserve(struct resource_list * rl,device_t bus,device_t child,int type,int rid)3309 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3310 int type, int rid)
3311 {
3312 struct resource_list_entry *rle = NULL;
3313 int passthrough = (device_get_parent(child) != bus);
3314
3315 if (passthrough)
3316 panic(
3317 "resource_list_unreserve() should only be called for direct children");
3318
3319 rle = resource_list_find(rl, type, rid);
3320
3321 if (!rle)
3322 panic("resource_list_unreserve: can't find resource");
3323 if (!(rle->flags & RLE_RESERVED))
3324 return (EINVAL);
3325 if (rle->flags & RLE_ALLOCATED)
3326 return (EBUSY);
3327 rle->flags &= ~RLE_RESERVED;
3328 return (resource_list_release(rl, bus, child, rle->res));
3329 }
3330
3331 /**
3332 * @brief Print a description of resources in a resource list
3333 *
3334 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3335 * The name is printed if at least one resource of the given type is available.
3336 * The format is used to print resource start and end.
3337 *
3338 * @param rl the resource list to print
3339 * @param name the name of @p type, e.g. @c "memory"
3340 * @param type type type of resource entry to print
3341 * @param format printf(9) format string to print resource
3342 * start and end values
3343 *
3344 * @returns the number of characters printed
3345 */
3346 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)3347 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3348 const char *format)
3349 {
3350 struct resource_list_entry *rle;
3351 int printed, retval;
3352
3353 printed = 0;
3354 retval = 0;
3355 /* Yes, this is kinda cheating */
3356 STAILQ_FOREACH(rle, rl, link) {
3357 if (rle->type == type) {
3358 if (printed == 0)
3359 retval += printf(" %s ", name);
3360 else
3361 retval += printf(",");
3362 printed++;
3363 retval += printf(format, rle->start);
3364 if (rle->count > 1) {
3365 retval += printf("-");
3366 retval += printf(format, rle->start +
3367 rle->count - 1);
3368 }
3369 }
3370 }
3371 return (retval);
3372 }
3373
3374 /**
3375 * @brief Releases all the resources in a list.
3376 *
3377 * @param rl The resource list to purge.
3378 *
3379 * @returns nothing
3380 */
3381 void
resource_list_purge(struct resource_list * rl)3382 resource_list_purge(struct resource_list *rl)
3383 {
3384 struct resource_list_entry *rle;
3385
3386 while ((rle = STAILQ_FIRST(rl)) != NULL) {
3387 if (rle->res)
3388 bus_release_resource(rman_get_device(rle->res),
3389 rle->type, rle->rid, rle->res);
3390 STAILQ_REMOVE_HEAD(rl, link);
3391 free(rle, M_BUS);
3392 }
3393 }
3394
3395 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)3396 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3397 {
3398 return (device_add_child_ordered(dev, order, name, unit));
3399 }
3400
3401 /**
3402 * @brief Helper function for implementing DEVICE_PROBE()
3403 *
3404 * This function can be used to help implement the DEVICE_PROBE() for
3405 * a bus (i.e. a device which has other devices attached to it). It
3406 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3407 * devclass.
3408 */
3409 int
bus_generic_probe(device_t dev)3410 bus_generic_probe(device_t dev)
3411 {
3412 devclass_t dc = dev->devclass;
3413 driverlink_t dl;
3414
3415 TAILQ_FOREACH(dl, &dc->drivers, link) {
3416 /*
3417 * If this driver's pass is too high, then ignore it.
3418 * For most drivers in the default pass, this will
3419 * never be true. For early-pass drivers they will
3420 * only call the identify routines of eligible drivers
3421 * when this routine is called. Drivers for later
3422 * passes should have their identify routines called
3423 * on early-pass buses during BUS_NEW_PASS().
3424 */
3425 if (dl->pass > bus_current_pass)
3426 continue;
3427 DEVICE_IDENTIFY(dl->driver, dev);
3428 }
3429
3430 return (0);
3431 }
3432
3433 /**
3434 * @brief Helper function for implementing DEVICE_ATTACH()
3435 *
3436 * This function can be used to help implement the DEVICE_ATTACH() for
3437 * a bus. It calls device_probe_and_attach() for each of the device's
3438 * children.
3439 */
3440 int
bus_generic_attach(device_t dev)3441 bus_generic_attach(device_t dev)
3442 {
3443 device_t child;
3444
3445 TAILQ_FOREACH(child, &dev->children, link) {
3446 device_probe_and_attach(child);
3447 }
3448
3449 return (0);
3450 }
3451
3452 /**
3453 * @brief Helper function for delaying attaching children
3454 *
3455 * Many buses can't run transactions on the bus which children need to probe and
3456 * attach until after interrupts and/or timers are running. This function
3457 * delays their attach until interrupts and timers are enabled.
3458 */
3459 int
bus_delayed_attach_children(device_t dev)3460 bus_delayed_attach_children(device_t dev)
3461 {
3462 /* Probe and attach the bus children when interrupts are available */
3463 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3464
3465 return (0);
3466 }
3467
3468 /**
3469 * @brief Helper function for implementing DEVICE_DETACH()
3470 *
3471 * This function can be used to help implement the DEVICE_DETACH() for
3472 * a bus. It calls device_detach() for each of the device's
3473 * children.
3474 */
3475 int
bus_generic_detach(device_t dev)3476 bus_generic_detach(device_t dev)
3477 {
3478 device_t child;
3479 int error;
3480
3481 /*
3482 * Detach children in the reverse order.
3483 * See bus_generic_suspend for details.
3484 */
3485 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3486 if ((error = device_detach(child)) != 0)
3487 return (error);
3488 }
3489
3490 return (0);
3491 }
3492
3493 /**
3494 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3495 *
3496 * This function can be used to help implement the DEVICE_SHUTDOWN()
3497 * for a bus. It calls device_shutdown() for each of the device's
3498 * children.
3499 */
3500 int
bus_generic_shutdown(device_t dev)3501 bus_generic_shutdown(device_t dev)
3502 {
3503 device_t child;
3504
3505 /*
3506 * Shut down children in the reverse order.
3507 * See bus_generic_suspend for details.
3508 */
3509 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3510 device_shutdown(child);
3511 }
3512
3513 return (0);
3514 }
3515
3516 /**
3517 * @brief Default function for suspending a child device.
3518 *
3519 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3520 */
3521 int
bus_generic_suspend_child(device_t dev,device_t child)3522 bus_generic_suspend_child(device_t dev, device_t child)
3523 {
3524 int error;
3525
3526 error = DEVICE_SUSPEND(child);
3527
3528 if (error == 0) {
3529 child->flags |= DF_SUSPENDED;
3530 } else {
3531 printf("DEVICE_SUSPEND(%s) failed: %d\n",
3532 device_get_nameunit(child), error);
3533 }
3534
3535 return (error);
3536 }
3537
3538 /**
3539 * @brief Default function for resuming a child device.
3540 *
3541 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3542 */
3543 int
bus_generic_resume_child(device_t dev,device_t child)3544 bus_generic_resume_child(device_t dev, device_t child)
3545 {
3546 DEVICE_RESUME(child);
3547 child->flags &= ~DF_SUSPENDED;
3548
3549 return (0);
3550 }
3551
3552 /**
3553 * @brief Helper function for implementing DEVICE_SUSPEND()
3554 *
3555 * This function can be used to help implement the DEVICE_SUSPEND()
3556 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3557 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3558 * operation is aborted and any devices which were suspended are
3559 * resumed immediately by calling their DEVICE_RESUME() methods.
3560 */
3561 int
bus_generic_suspend(device_t dev)3562 bus_generic_suspend(device_t dev)
3563 {
3564 int error;
3565 device_t child;
3566
3567 /*
3568 * Suspend children in the reverse order.
3569 * For most buses all children are equal, so the order does not matter.
3570 * Other buses, such as acpi, carefully order their child devices to
3571 * express implicit dependencies between them. For such buses it is
3572 * safer to bring down devices in the reverse order.
3573 */
3574 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3575 error = BUS_SUSPEND_CHILD(dev, child);
3576 if (error != 0) {
3577 child = TAILQ_NEXT(child, link);
3578 if (child != NULL) {
3579 TAILQ_FOREACH_FROM(child, &dev->children, link)
3580 BUS_RESUME_CHILD(dev, child);
3581 }
3582 return (error);
3583 }
3584 }
3585 return (0);
3586 }
3587
3588 /**
3589 * @brief Helper function for implementing DEVICE_RESUME()
3590 *
3591 * This function can be used to help implement the DEVICE_RESUME() for
3592 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3593 */
3594 int
bus_generic_resume(device_t dev)3595 bus_generic_resume(device_t dev)
3596 {
3597 device_t child;
3598
3599 TAILQ_FOREACH(child, &dev->children, link) {
3600 BUS_RESUME_CHILD(dev, child);
3601 /* if resume fails, there's nothing we can usefully do... */
3602 }
3603 return (0);
3604 }
3605
3606 /**
3607 * @brief Helper function for implementing BUS_RESET_POST
3608 *
3609 * Bus can use this function to implement common operations of
3610 * re-attaching or resuming the children after the bus itself was
3611 * reset, and after restoring bus-unique state of children.
3612 *
3613 * @param dev The bus
3614 * #param flags DEVF_RESET_*
3615 */
3616 int
bus_helper_reset_post(device_t dev,int flags)3617 bus_helper_reset_post(device_t dev, int flags)
3618 {
3619 device_t child;
3620 int error, error1;
3621
3622 error = 0;
3623 TAILQ_FOREACH(child, &dev->children,link) {
3624 BUS_RESET_POST(dev, child);
3625 error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3626 device_probe_and_attach(child) :
3627 BUS_RESUME_CHILD(dev, child);
3628 if (error == 0 && error1 != 0)
3629 error = error1;
3630 }
3631 return (error);
3632 }
3633
3634 static void
bus_helper_reset_prepare_rollback(device_t dev,device_t child,int flags)3635 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3636 {
3637 child = TAILQ_NEXT(child, link);
3638 if (child == NULL)
3639 return;
3640 TAILQ_FOREACH_FROM(child, &dev->children,link) {
3641 BUS_RESET_POST(dev, child);
3642 if ((flags & DEVF_RESET_DETACH) != 0)
3643 device_probe_and_attach(child);
3644 else
3645 BUS_RESUME_CHILD(dev, child);
3646 }
3647 }
3648
3649 /**
3650 * @brief Helper function for implementing BUS_RESET_PREPARE
3651 *
3652 * Bus can use this function to implement common operations of
3653 * detaching or suspending the children before the bus itself is
3654 * reset, and then save bus-unique state of children that must
3655 * persists around reset.
3656 *
3657 * @param dev The bus
3658 * #param flags DEVF_RESET_*
3659 */
3660 int
bus_helper_reset_prepare(device_t dev,int flags)3661 bus_helper_reset_prepare(device_t dev, int flags)
3662 {
3663 device_t child;
3664 int error;
3665
3666 if (dev->state != DS_ATTACHED)
3667 return (EBUSY);
3668
3669 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3670 if ((flags & DEVF_RESET_DETACH) != 0) {
3671 error = device_get_state(child) == DS_ATTACHED ?
3672 device_detach(child) : 0;
3673 } else {
3674 error = BUS_SUSPEND_CHILD(dev, child);
3675 }
3676 if (error == 0) {
3677 error = BUS_RESET_PREPARE(dev, child);
3678 if (error != 0) {
3679 if ((flags & DEVF_RESET_DETACH) != 0)
3680 device_probe_and_attach(child);
3681 else
3682 BUS_RESUME_CHILD(dev, child);
3683 }
3684 }
3685 if (error != 0) {
3686 bus_helper_reset_prepare_rollback(dev, child, flags);
3687 return (error);
3688 }
3689 }
3690 return (0);
3691 }
3692
3693 /**
3694 * @brief Helper function for implementing BUS_PRINT_CHILD().
3695 *
3696 * This function prints the first part of the ascii representation of
3697 * @p child, including its name, unit and description (if any - see
3698 * device_set_desc()).
3699 *
3700 * @returns the number of characters printed
3701 */
3702 int
bus_print_child_header(device_t dev,device_t child)3703 bus_print_child_header(device_t dev, device_t child)
3704 {
3705 int retval = 0;
3706
3707 if (device_get_desc(child)) {
3708 retval += device_printf(child, "<%s>", device_get_desc(child));
3709 } else {
3710 retval += printf("%s", device_get_nameunit(child));
3711 }
3712
3713 return (retval);
3714 }
3715
3716 /**
3717 * @brief Helper function for implementing BUS_PRINT_CHILD().
3718 *
3719 * This function prints the last part of the ascii representation of
3720 * @p child, which consists of the string @c " on " followed by the
3721 * name and unit of the @p dev.
3722 *
3723 * @returns the number of characters printed
3724 */
3725 int
bus_print_child_footer(device_t dev,device_t child)3726 bus_print_child_footer(device_t dev, device_t child)
3727 {
3728 return (printf(" on %s\n", device_get_nameunit(dev)));
3729 }
3730
3731 /**
3732 * @brief Helper function for implementing BUS_PRINT_CHILD().
3733 *
3734 * This function prints out the VM domain for the given device.
3735 *
3736 * @returns the number of characters printed
3737 */
3738 int
bus_print_child_domain(device_t dev,device_t child)3739 bus_print_child_domain(device_t dev, device_t child)
3740 {
3741 int domain;
3742
3743 /* No domain? Don't print anything */
3744 if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3745 return (0);
3746
3747 return (printf(" numa-domain %d", domain));
3748 }
3749
3750 /**
3751 * @brief Helper function for implementing BUS_PRINT_CHILD().
3752 *
3753 * This function simply calls bus_print_child_header() followed by
3754 * bus_print_child_footer().
3755 *
3756 * @returns the number of characters printed
3757 */
3758 int
bus_generic_print_child(device_t dev,device_t child)3759 bus_generic_print_child(device_t dev, device_t child)
3760 {
3761 int retval = 0;
3762
3763 retval += bus_print_child_header(dev, child);
3764 retval += bus_print_child_domain(dev, child);
3765 retval += bus_print_child_footer(dev, child);
3766
3767 return (retval);
3768 }
3769
3770 /**
3771 * @brief Stub function for implementing BUS_READ_IVAR().
3772 *
3773 * @returns ENOENT
3774 */
3775 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)3776 bus_generic_read_ivar(device_t dev, device_t child, int index,
3777 uintptr_t * result)
3778 {
3779 return (ENOENT);
3780 }
3781
3782 /**
3783 * @brief Stub function for implementing BUS_WRITE_IVAR().
3784 *
3785 * @returns ENOENT
3786 */
3787 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)3788 bus_generic_write_ivar(device_t dev, device_t child, int index,
3789 uintptr_t value)
3790 {
3791 return (ENOENT);
3792 }
3793
3794 /**
3795 * @brief Helper function for implementing BUS_GET_PROPERTY().
3796 *
3797 * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3798 * until a non-default implementation is found.
3799 */
3800 ssize_t
bus_generic_get_property(device_t dev,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)3801 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3802 void *propvalue, size_t size, device_property_type_t type)
3803 {
3804 if (device_get_parent(dev) != NULL)
3805 return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3806 propname, propvalue, size, type));
3807
3808 return (-1);
3809 }
3810
3811 /**
3812 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3813 *
3814 * @returns NULL
3815 */
3816 struct resource_list *
bus_generic_get_resource_list(device_t dev,device_t child)3817 bus_generic_get_resource_list(device_t dev, device_t child)
3818 {
3819 return (NULL);
3820 }
3821
3822 /**
3823 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3824 *
3825 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3826 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3827 * and then calls device_probe_and_attach() for each unattached child.
3828 */
3829 void
bus_generic_driver_added(device_t dev,driver_t * driver)3830 bus_generic_driver_added(device_t dev, driver_t *driver)
3831 {
3832 device_t child;
3833
3834 DEVICE_IDENTIFY(driver, dev);
3835 TAILQ_FOREACH(child, &dev->children, link) {
3836 if (child->state == DS_NOTPRESENT)
3837 device_probe_and_attach(child);
3838 }
3839 }
3840
3841 /**
3842 * @brief Helper function for implementing BUS_NEW_PASS().
3843 *
3844 * This implementing of BUS_NEW_PASS() first calls the identify
3845 * routines for any drivers that probe at the current pass. Then it
3846 * walks the list of devices for this bus. If a device is already
3847 * attached, then it calls BUS_NEW_PASS() on that device. If the
3848 * device is not already attached, it attempts to attach a driver to
3849 * it.
3850 */
3851 void
bus_generic_new_pass(device_t dev)3852 bus_generic_new_pass(device_t dev)
3853 {
3854 driverlink_t dl;
3855 devclass_t dc;
3856 device_t child;
3857
3858 dc = dev->devclass;
3859 TAILQ_FOREACH(dl, &dc->drivers, link) {
3860 if (dl->pass == bus_current_pass)
3861 DEVICE_IDENTIFY(dl->driver, dev);
3862 }
3863 TAILQ_FOREACH(child, &dev->children, link) {
3864 if (child->state >= DS_ATTACHED)
3865 BUS_NEW_PASS(child);
3866 else if (child->state == DS_NOTPRESENT)
3867 device_probe_and_attach(child);
3868 }
3869 }
3870
3871 /**
3872 * @brief Helper function for implementing BUS_SETUP_INTR().
3873 *
3874 * This simple implementation of BUS_SETUP_INTR() simply calls the
3875 * BUS_SETUP_INTR() method of the parent of @p dev.
3876 */
3877 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)3878 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3879 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3880 void **cookiep)
3881 {
3882 /* Propagate up the bus hierarchy until someone handles it. */
3883 if (dev->parent)
3884 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3885 filter, intr, arg, cookiep));
3886 return (EINVAL);
3887 }
3888
3889 /**
3890 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3891 *
3892 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3893 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3894 */
3895 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3896 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3897 void *cookie)
3898 {
3899 /* Propagate up the bus hierarchy until someone handles it. */
3900 if (dev->parent)
3901 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3902 return (EINVAL);
3903 }
3904
3905 /**
3906 * @brief Helper function for implementing BUS_SUSPEND_INTR().
3907 *
3908 * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3909 * BUS_SUSPEND_INTR() method of the parent of @p dev.
3910 */
3911 int
bus_generic_suspend_intr(device_t dev,device_t child,struct resource * irq)3912 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3913 {
3914 /* Propagate up the bus hierarchy until someone handles it. */
3915 if (dev->parent)
3916 return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3917 return (EINVAL);
3918 }
3919
3920 /**
3921 * @brief Helper function for implementing BUS_RESUME_INTR().
3922 *
3923 * This simple implementation of BUS_RESUME_INTR() simply calls the
3924 * BUS_RESUME_INTR() method of the parent of @p dev.
3925 */
3926 int
bus_generic_resume_intr(device_t dev,device_t child,struct resource * irq)3927 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3928 {
3929 /* Propagate up the bus hierarchy until someone handles it. */
3930 if (dev->parent)
3931 return (BUS_RESUME_INTR(dev->parent, child, irq));
3932 return (EINVAL);
3933 }
3934
3935 /**
3936 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3937 *
3938 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3939 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3940 */
3941 int
bus_generic_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)3942 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3943 rman_res_t start, rman_res_t end)
3944 {
3945 /* Propagate up the bus hierarchy until someone handles it. */
3946 if (dev->parent)
3947 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3948 return (EINVAL);
3949 }
3950
3951 /*
3952 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3953 *
3954 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3955 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no
3956 * parent, no translation happens.
3957 */
3958 int
bus_generic_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)3959 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3960 rman_res_t *newstart)
3961 {
3962 if (dev->parent)
3963 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3964 newstart));
3965 *newstart = start;
3966 return (0);
3967 }
3968
3969 /**
3970 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3971 *
3972 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3973 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3974 */
3975 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3976 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3977 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3978 {
3979 /* Propagate up the bus hierarchy until someone handles it. */
3980 if (dev->parent)
3981 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3982 start, end, count, flags));
3983 return (NULL);
3984 }
3985
3986 /**
3987 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3988 *
3989 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3990 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3991 */
3992 int
bus_generic_release_resource(device_t dev,device_t child,struct resource * r)3993 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
3994 {
3995 /* Propagate up the bus hierarchy until someone handles it. */
3996 if (dev->parent)
3997 return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
3998 return (EINVAL);
3999 }
4000
4001 /**
4002 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4003 *
4004 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4005 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4006 */
4007 int
bus_generic_activate_resource(device_t dev,device_t child,struct resource * r)4008 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4009 {
4010 /* Propagate up the bus hierarchy until someone handles it. */
4011 if (dev->parent)
4012 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4013 return (EINVAL);
4014 }
4015
4016 /**
4017 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4018 *
4019 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4020 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4021 */
4022 int
bus_generic_deactivate_resource(device_t dev,device_t child,struct resource * r)4023 bus_generic_deactivate_resource(device_t dev, device_t child,
4024 struct resource *r)
4025 {
4026 /* Propagate up the bus hierarchy until someone handles it. */
4027 if (dev->parent)
4028 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4029 return (EINVAL);
4030 }
4031
4032 /**
4033 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4034 *
4035 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4036 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4037 */
4038 int
bus_generic_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * args,struct resource_map * map)4039 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4040 struct resource_map_request *args, struct resource_map *map)
4041 {
4042 /* Propagate up the bus hierarchy until someone handles it. */
4043 if (dev->parent)
4044 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4045 return (EINVAL);
4046 }
4047
4048 /**
4049 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4050 *
4051 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4052 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4053 */
4054 int
bus_generic_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)4055 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4056 struct resource_map *map)
4057 {
4058 /* Propagate up the bus hierarchy until someone handles it. */
4059 if (dev->parent)
4060 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4061 return (EINVAL);
4062 }
4063
4064 /**
4065 * @brief Helper function for implementing BUS_BIND_INTR().
4066 *
4067 * This simple implementation of BUS_BIND_INTR() simply calls the
4068 * BUS_BIND_INTR() method of the parent of @p dev.
4069 */
4070 int
bus_generic_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)4071 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4072 int cpu)
4073 {
4074 /* Propagate up the bus hierarchy until someone handles it. */
4075 if (dev->parent)
4076 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4077 return (EINVAL);
4078 }
4079
4080 /**
4081 * @brief Helper function for implementing BUS_CONFIG_INTR().
4082 *
4083 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4084 * BUS_CONFIG_INTR() method of the parent of @p dev.
4085 */
4086 int
bus_generic_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)4087 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4088 enum intr_polarity pol)
4089 {
4090 /* Propagate up the bus hierarchy until someone handles it. */
4091 if (dev->parent)
4092 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4093 return (EINVAL);
4094 }
4095
4096 /**
4097 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4098 *
4099 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4100 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4101 */
4102 int
bus_generic_describe_intr(device_t dev,device_t child,struct resource * irq,void * cookie,const char * descr)4103 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4104 void *cookie, const char *descr)
4105 {
4106 /* Propagate up the bus hierarchy until someone handles it. */
4107 if (dev->parent)
4108 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4109 descr));
4110 return (EINVAL);
4111 }
4112
4113 /**
4114 * @brief Helper function for implementing BUS_GET_CPUS().
4115 *
4116 * This simple implementation of BUS_GET_CPUS() simply calls the
4117 * BUS_GET_CPUS() method of the parent of @p dev.
4118 */
4119 int
bus_generic_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)4120 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4121 size_t setsize, cpuset_t *cpuset)
4122 {
4123 /* Propagate up the bus hierarchy until someone handles it. */
4124 if (dev->parent != NULL)
4125 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4126 return (EINVAL);
4127 }
4128
4129 /**
4130 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4131 *
4132 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4133 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4134 */
4135 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)4136 bus_generic_get_dma_tag(device_t dev, device_t child)
4137 {
4138 /* Propagate up the bus hierarchy until someone handles it. */
4139 if (dev->parent != NULL)
4140 return (BUS_GET_DMA_TAG(dev->parent, child));
4141 return (NULL);
4142 }
4143
4144 /**
4145 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4146 *
4147 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4148 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4149 */
4150 bus_space_tag_t
bus_generic_get_bus_tag(device_t dev,device_t child)4151 bus_generic_get_bus_tag(device_t dev, device_t child)
4152 {
4153 /* Propagate up the bus hierarchy until someone handles it. */
4154 if (dev->parent != NULL)
4155 return (BUS_GET_BUS_TAG(dev->parent, child));
4156 return ((bus_space_tag_t)0);
4157 }
4158
4159 /**
4160 * @brief Helper function for implementing BUS_GET_RESOURCE().
4161 *
4162 * This implementation of BUS_GET_RESOURCE() uses the
4163 * resource_list_find() function to do most of the work. It calls
4164 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4165 * search.
4166 */
4167 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,rman_res_t * startp,rman_res_t * countp)4168 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4169 rman_res_t *startp, rman_res_t *countp)
4170 {
4171 struct resource_list * rl = NULL;
4172 struct resource_list_entry * rle = NULL;
4173
4174 rl = BUS_GET_RESOURCE_LIST(dev, child);
4175 if (!rl)
4176 return (EINVAL);
4177
4178 rle = resource_list_find(rl, type, rid);
4179 if (!rle)
4180 return (ENOENT);
4181
4182 if (startp)
4183 *startp = rle->start;
4184 if (countp)
4185 *countp = rle->count;
4186
4187 return (0);
4188 }
4189
4190 /**
4191 * @brief Helper function for implementing BUS_SET_RESOURCE().
4192 *
4193 * This implementation of BUS_SET_RESOURCE() uses the
4194 * resource_list_add() function to do most of the work. It calls
4195 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4196 * edit.
4197 */
4198 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)4199 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4200 rman_res_t start, rman_res_t count)
4201 {
4202 struct resource_list * rl = NULL;
4203
4204 rl = BUS_GET_RESOURCE_LIST(dev, child);
4205 if (!rl)
4206 return (EINVAL);
4207
4208 resource_list_add(rl, type, rid, start, (start + count - 1), count);
4209
4210 return (0);
4211 }
4212
4213 /**
4214 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4215 *
4216 * This implementation of BUS_DELETE_RESOURCE() uses the
4217 * resource_list_delete() function to do most of the work. It calls
4218 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4219 * edit.
4220 */
4221 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)4222 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4223 {
4224 struct resource_list * rl = NULL;
4225
4226 rl = BUS_GET_RESOURCE_LIST(dev, child);
4227 if (!rl)
4228 return;
4229
4230 resource_list_delete(rl, type, rid);
4231
4232 return;
4233 }
4234
4235 /**
4236 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4237 *
4238 * This implementation of BUS_RELEASE_RESOURCE() uses the
4239 * resource_list_release() function to do most of the work. It calls
4240 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4241 */
4242 int
bus_generic_rl_release_resource(device_t dev,device_t child,struct resource * r)4243 bus_generic_rl_release_resource(device_t dev, device_t child,
4244 struct resource *r)
4245 {
4246 struct resource_list * rl = NULL;
4247
4248 if (device_get_parent(child) != dev)
4249 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4250
4251 rl = BUS_GET_RESOURCE_LIST(dev, child);
4252 if (!rl)
4253 return (EINVAL);
4254
4255 return (resource_list_release(rl, dev, child, r));
4256 }
4257
4258 /**
4259 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4260 *
4261 * This implementation of BUS_ALLOC_RESOURCE() uses the
4262 * resource_list_alloc() function to do most of the work. It calls
4263 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4264 */
4265 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4266 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4267 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4268 {
4269 struct resource_list * rl = NULL;
4270
4271 if (device_get_parent(child) != dev)
4272 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4273 type, rid, start, end, count, flags));
4274
4275 rl = BUS_GET_RESOURCE_LIST(dev, child);
4276 if (!rl)
4277 return (NULL);
4278
4279 return (resource_list_alloc(rl, dev, child, type, rid,
4280 start, end, count, flags));
4281 }
4282
4283 /**
4284 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4285 *
4286 * This implementation of BUS_ALLOC_RESOURCE() allocates a
4287 * resource from a resource manager. It uses BUS_GET_RMAN()
4288 * to obtain the resource manager.
4289 */
4290 struct resource *
bus_generic_rman_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4291 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4292 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4293 {
4294 struct resource *r;
4295 struct rman *rm;
4296
4297 rm = BUS_GET_RMAN(dev, type, flags);
4298 if (rm == NULL)
4299 return (NULL);
4300
4301 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4302 child);
4303 if (r == NULL)
4304 return (NULL);
4305 rman_set_rid(r, *rid);
4306 rman_set_type(r, type);
4307
4308 if (flags & RF_ACTIVE) {
4309 if (bus_activate_resource(child, type, *rid, r) != 0) {
4310 rman_release_resource(r);
4311 return (NULL);
4312 }
4313 }
4314
4315 return (r);
4316 }
4317
4318 /**
4319 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4320 *
4321 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4322 * if they were allocated from the resource manager returned by
4323 * BUS_GET_RMAN().
4324 */
4325 int
bus_generic_rman_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4326 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4327 struct resource *r, rman_res_t start, rman_res_t end)
4328 {
4329 struct rman *rm;
4330
4331 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4332 if (rm == NULL)
4333 return (ENXIO);
4334 if (!rman_is_region_manager(r, rm))
4335 return (EINVAL);
4336 return (rman_adjust_resource(r, start, end));
4337 }
4338
4339 /**
4340 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4341 *
4342 * This implementation of BUS_RELEASE_RESOURCE() releases resources
4343 * allocated by bus_generic_rman_alloc_resource.
4344 */
4345 int
bus_generic_rman_release_resource(device_t dev,device_t child,struct resource * r)4346 bus_generic_rman_release_resource(device_t dev, device_t child,
4347 struct resource *r)
4348 {
4349 #ifdef INVARIANTS
4350 struct rman *rm;
4351 #endif
4352 int error;
4353
4354 #ifdef INVARIANTS
4355 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4356 KASSERT(rman_is_region_manager(r, rm),
4357 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4358 #endif
4359
4360 if (rman_get_flags(r) & RF_ACTIVE) {
4361 error = bus_deactivate_resource(child, r);
4362 if (error != 0)
4363 return (error);
4364 }
4365 return (rman_release_resource(r));
4366 }
4367
4368 /**
4369 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4370 *
4371 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4372 * allocated by bus_generic_rman_alloc_resource.
4373 */
4374 int
bus_generic_rman_activate_resource(device_t dev,device_t child,struct resource * r)4375 bus_generic_rman_activate_resource(device_t dev, device_t child,
4376 struct resource *r)
4377 {
4378 struct resource_map map;
4379 #ifdef INVARIANTS
4380 struct rman *rm;
4381 #endif
4382 int error, type;
4383
4384 type = rman_get_type(r);
4385 #ifdef INVARIANTS
4386 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4387 KASSERT(rman_is_region_manager(r, rm),
4388 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4389 #endif
4390
4391 error = rman_activate_resource(r);
4392 if (error != 0)
4393 return (error);
4394
4395 switch (type) {
4396 case SYS_RES_IOPORT:
4397 case SYS_RES_MEMORY:
4398 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4399 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4400 if (error != 0)
4401 break;
4402
4403 rman_set_mapping(r, &map);
4404 }
4405 break;
4406 #ifdef INTRNG
4407 case SYS_RES_IRQ:
4408 error = intr_activate_irq(child, r);
4409 break;
4410 #endif
4411 }
4412 if (error != 0)
4413 rman_deactivate_resource(r);
4414 return (error);
4415 }
4416
4417 /**
4418 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4419 *
4420 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4421 * resources allocated by bus_generic_rman_alloc_resource.
4422 */
4423 int
bus_generic_rman_deactivate_resource(device_t dev,device_t child,struct resource * r)4424 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4425 struct resource *r)
4426 {
4427 struct resource_map map;
4428 #ifdef INVARIANTS
4429 struct rman *rm;
4430 #endif
4431 int error, type;
4432
4433 type = rman_get_type(r);
4434 #ifdef INVARIANTS
4435 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4436 KASSERT(rman_is_region_manager(r, rm),
4437 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4438 #endif
4439
4440 error = rman_deactivate_resource(r);
4441 if (error != 0)
4442 return (error);
4443
4444 switch (type) {
4445 case SYS_RES_IOPORT:
4446 case SYS_RES_MEMORY:
4447 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4448 rman_get_mapping(r, &map);
4449 BUS_UNMAP_RESOURCE(dev, child, r, &map);
4450 }
4451 break;
4452 #ifdef INTRNG
4453 case SYS_RES_IRQ:
4454 intr_deactivate_irq(child, r);
4455 break;
4456 #endif
4457 }
4458 return (0);
4459 }
4460
4461 /**
4462 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4463 *
4464 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4465 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4466 */
4467 int
bus_generic_child_present(device_t dev,device_t child)4468 bus_generic_child_present(device_t dev, device_t child)
4469 {
4470 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4471 }
4472
4473 /**
4474 * @brief Helper function for implementing BUS_GET_DOMAIN().
4475 *
4476 * This simple implementation of BUS_GET_DOMAIN() calls the
4477 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev
4478 * does not have a parent, the function fails with ENOENT.
4479 */
4480 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)4481 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4482 {
4483 if (dev->parent)
4484 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4485
4486 return (ENOENT);
4487 }
4488
4489 /**
4490 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4491 *
4492 * This function knows how to (a) pass the request up the tree if there's
4493 * a parent and (b) Knows how to supply a FreeBSD locator.
4494 *
4495 * @param bus bus in the walk up the tree
4496 * @param child leaf node to print information about
4497 * @param locator BUS_LOCATOR_xxx string for locator
4498 * @param sb Buffer to print information into
4499 */
4500 int
bus_generic_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)4501 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4502 struct sbuf *sb)
4503 {
4504 int rv = 0;
4505 device_t parent;
4506
4507 /*
4508 * We don't recurse on ACPI since either we know the handle for the
4509 * device or we don't. And if we're in the generic routine, we don't
4510 * have a ACPI override. All other locators build up a path by having
4511 * their parents create a path and then adding the path element for this
4512 * node. That's why we recurse with parent, bus rather than the typical
4513 * parent, child: each spot in the tree is independent of what our child
4514 * will do with this path.
4515 */
4516 parent = device_get_parent(bus);
4517 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4518 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4519 }
4520 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4521 if (rv == 0) {
4522 sbuf_printf(sb, "/%s", device_get_nameunit(child));
4523 }
4524 return (rv);
4525 }
4526 /*
4527 * Don't know what to do. So assume we do nothing. Not sure that's
4528 * the right thing, but keeps us from having a big list here.
4529 */
4530 return (0);
4531 }
4532
4533
4534 /**
4535 * @brief Helper function for implementing BUS_RESCAN().
4536 *
4537 * This null implementation of BUS_RESCAN() always fails to indicate
4538 * the bus does not support rescanning.
4539 */
4540 int
bus_null_rescan(device_t dev)4541 bus_null_rescan(device_t dev)
4542 {
4543 return (ENODEV);
4544 }
4545
4546 /*
4547 * Some convenience functions to make it easier for drivers to use the
4548 * resource-management functions. All these really do is hide the
4549 * indirection through the parent's method table, making for slightly
4550 * less-wordy code. In the future, it might make sense for this code
4551 * to maintain some sort of a list of resources allocated by each device.
4552 */
4553
4554 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)4555 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4556 struct resource **res)
4557 {
4558 int i;
4559
4560 for (i = 0; rs[i].type != -1; i++)
4561 res[i] = NULL;
4562 for (i = 0; rs[i].type != -1; i++) {
4563 res[i] = bus_alloc_resource_any(dev,
4564 rs[i].type, &rs[i].rid, rs[i].flags);
4565 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4566 bus_release_resources(dev, rs, res);
4567 return (ENXIO);
4568 }
4569 }
4570 return (0);
4571 }
4572
4573 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)4574 bus_release_resources(device_t dev, const struct resource_spec *rs,
4575 struct resource **res)
4576 {
4577 int i;
4578
4579 for (i = 0; rs[i].type != -1; i++)
4580 if (res[i] != NULL) {
4581 bus_release_resource(
4582 dev, rs[i].type, rs[i].rid, res[i]);
4583 res[i] = NULL;
4584 }
4585 }
4586
4587 /**
4588 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4589 *
4590 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4591 * parent of @p dev.
4592 */
4593 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4594 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4595 rman_res_t end, rman_res_t count, u_int flags)
4596 {
4597 struct resource *res;
4598
4599 if (dev->parent == NULL)
4600 return (NULL);
4601 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4602 count, flags);
4603 return (res);
4604 }
4605
4606 /**
4607 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4608 *
4609 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4610 * parent of @p dev.
4611 */
4612 int
bus_adjust_resource(device_t dev,struct resource * r,rman_res_t start,rman_res_t end)4613 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4614 rman_res_t end)
4615 {
4616 if (dev->parent == NULL)
4617 return (EINVAL);
4618 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4619 }
4620
4621 int
bus_adjust_resource_old(device_t dev,int type __unused,struct resource * r,rman_res_t start,rman_res_t end)4622 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4623 rman_res_t start, rman_res_t end)
4624 {
4625 return (bus_adjust_resource(dev, r, start, end));
4626 }
4627
4628 /**
4629 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4630 *
4631 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4632 * parent of @p dev.
4633 */
4634 int
bus_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4635 bus_translate_resource(device_t dev, int type, rman_res_t start,
4636 rman_res_t *newstart)
4637 {
4638 if (dev->parent == NULL)
4639 return (EINVAL);
4640 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4641 }
4642
4643 /**
4644 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4645 *
4646 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4647 * parent of @p dev.
4648 */
4649 int
bus_activate_resource(device_t dev,struct resource * r)4650 bus_activate_resource(device_t dev, struct resource *r)
4651 {
4652 if (dev->parent == NULL)
4653 return (EINVAL);
4654 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4655 }
4656
4657 int
bus_activate_resource_old(device_t dev,int type,int rid,struct resource * r)4658 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4659 {
4660 return (bus_activate_resource(dev, r));
4661 }
4662
4663 /**
4664 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4665 *
4666 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4667 * parent of @p dev.
4668 */
4669 int
bus_deactivate_resource(device_t dev,struct resource * r)4670 bus_deactivate_resource(device_t dev, struct resource *r)
4671 {
4672 if (dev->parent == NULL)
4673 return (EINVAL);
4674 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4675 }
4676
4677 int
bus_deactivate_resource_old(device_t dev,int type,int rid,struct resource * r)4678 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4679 {
4680 return (bus_deactivate_resource(dev, r));
4681 }
4682
4683 /**
4684 * @brief Wrapper function for BUS_MAP_RESOURCE().
4685 *
4686 * This function simply calls the BUS_MAP_RESOURCE() method of the
4687 * parent of @p dev.
4688 */
4689 int
bus_map_resource(device_t dev,struct resource * r,struct resource_map_request * args,struct resource_map * map)4690 bus_map_resource(device_t dev, struct resource *r,
4691 struct resource_map_request *args, struct resource_map *map)
4692 {
4693 if (dev->parent == NULL)
4694 return (EINVAL);
4695 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4696 }
4697
4698 int
bus_map_resource_old(device_t dev,int type,struct resource * r,struct resource_map_request * args,struct resource_map * map)4699 bus_map_resource_old(device_t dev, int type, struct resource *r,
4700 struct resource_map_request *args, struct resource_map *map)
4701 {
4702 return (bus_map_resource(dev, r, args, map));
4703 }
4704
4705 /**
4706 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4707 *
4708 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4709 * parent of @p dev.
4710 */
4711 int
bus_unmap_resource(device_t dev,struct resource * r,struct resource_map * map)4712 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4713 {
4714 if (dev->parent == NULL)
4715 return (EINVAL);
4716 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4717 }
4718
4719 int
bus_unmap_resource_old(device_t dev,int type,struct resource * r,struct resource_map * map)4720 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4721 struct resource_map *map)
4722 {
4723 return (bus_unmap_resource(dev, r, map));
4724 }
4725
4726 /**
4727 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4728 *
4729 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4730 * parent of @p dev.
4731 */
4732 int
bus_release_resource(device_t dev,struct resource * r)4733 bus_release_resource(device_t dev, struct resource *r)
4734 {
4735 int rv;
4736
4737 if (dev->parent == NULL)
4738 return (EINVAL);
4739 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4740 return (rv);
4741 }
4742
4743 int
bus_release_resource_old(device_t dev,int type,int rid,struct resource * r)4744 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4745 {
4746 return (bus_release_resource(dev, r));
4747 }
4748
4749 /**
4750 * @brief Wrapper function for BUS_SETUP_INTR().
4751 *
4752 * This function simply calls the BUS_SETUP_INTR() method of the
4753 * parent of @p dev.
4754 */
4755 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_filter_t filter,driver_intr_t handler,void * arg,void ** cookiep)4756 bus_setup_intr(device_t dev, struct resource *r, int flags,
4757 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4758 {
4759 int error;
4760
4761 if (dev->parent == NULL)
4762 return (EINVAL);
4763 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4764 arg, cookiep);
4765 if (error != 0)
4766 return (error);
4767 if (handler != NULL && !(flags & INTR_MPSAFE))
4768 device_printf(dev, "[GIANT-LOCKED]\n");
4769 return (0);
4770 }
4771
4772 /**
4773 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4774 *
4775 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4776 * parent of @p dev.
4777 */
4778 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)4779 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4780 {
4781 if (dev->parent == NULL)
4782 return (EINVAL);
4783 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4784 }
4785
4786 /**
4787 * @brief Wrapper function for BUS_SUSPEND_INTR().
4788 *
4789 * This function simply calls the BUS_SUSPEND_INTR() method of the
4790 * parent of @p dev.
4791 */
4792 int
bus_suspend_intr(device_t dev,struct resource * r)4793 bus_suspend_intr(device_t dev, struct resource *r)
4794 {
4795 if (dev->parent == NULL)
4796 return (EINVAL);
4797 return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4798 }
4799
4800 /**
4801 * @brief Wrapper function for BUS_RESUME_INTR().
4802 *
4803 * This function simply calls the BUS_RESUME_INTR() method of the
4804 * parent of @p dev.
4805 */
4806 int
bus_resume_intr(device_t dev,struct resource * r)4807 bus_resume_intr(device_t dev, struct resource *r)
4808 {
4809 if (dev->parent == NULL)
4810 return (EINVAL);
4811 return (BUS_RESUME_INTR(dev->parent, dev, r));
4812 }
4813
4814 /**
4815 * @brief Wrapper function for BUS_BIND_INTR().
4816 *
4817 * This function simply calls the BUS_BIND_INTR() method of the
4818 * parent of @p dev.
4819 */
4820 int
bus_bind_intr(device_t dev,struct resource * r,int cpu)4821 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4822 {
4823 if (dev->parent == NULL)
4824 return (EINVAL);
4825 return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4826 }
4827
4828 /**
4829 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4830 *
4831 * This function first formats the requested description into a
4832 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4833 * the parent of @p dev.
4834 */
4835 int
bus_describe_intr(device_t dev,struct resource * irq,void * cookie,const char * fmt,...)4836 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4837 const char *fmt, ...)
4838 {
4839 va_list ap;
4840 char descr[MAXCOMLEN + 1];
4841
4842 if (dev->parent == NULL)
4843 return (EINVAL);
4844 va_start(ap, fmt);
4845 vsnprintf(descr, sizeof(descr), fmt, ap);
4846 va_end(ap);
4847 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4848 }
4849
4850 /**
4851 * @brief Wrapper function for BUS_SET_RESOURCE().
4852 *
4853 * This function simply calls the BUS_SET_RESOURCE() method of the
4854 * parent of @p dev.
4855 */
4856 int
bus_set_resource(device_t dev,int type,int rid,rman_res_t start,rman_res_t count)4857 bus_set_resource(device_t dev, int type, int rid,
4858 rman_res_t start, rman_res_t count)
4859 {
4860 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4861 start, count));
4862 }
4863
4864 /**
4865 * @brief Wrapper function for BUS_GET_RESOURCE().
4866 *
4867 * This function simply calls the BUS_GET_RESOURCE() method of the
4868 * parent of @p dev.
4869 */
4870 int
bus_get_resource(device_t dev,int type,int rid,rman_res_t * startp,rman_res_t * countp)4871 bus_get_resource(device_t dev, int type, int rid,
4872 rman_res_t *startp, rman_res_t *countp)
4873 {
4874 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4875 startp, countp));
4876 }
4877
4878 /**
4879 * @brief Wrapper function for BUS_GET_RESOURCE().
4880 *
4881 * This function simply calls the BUS_GET_RESOURCE() method of the
4882 * parent of @p dev and returns the start value.
4883 */
4884 rman_res_t
bus_get_resource_start(device_t dev,int type,int rid)4885 bus_get_resource_start(device_t dev, int type, int rid)
4886 {
4887 rman_res_t start;
4888 rman_res_t count;
4889 int error;
4890
4891 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4892 &start, &count);
4893 if (error)
4894 return (0);
4895 return (start);
4896 }
4897
4898 /**
4899 * @brief Wrapper function for BUS_GET_RESOURCE().
4900 *
4901 * This function simply calls the BUS_GET_RESOURCE() method of the
4902 * parent of @p dev and returns the count value.
4903 */
4904 rman_res_t
bus_get_resource_count(device_t dev,int type,int rid)4905 bus_get_resource_count(device_t dev, int type, int rid)
4906 {
4907 rman_res_t start;
4908 rman_res_t count;
4909 int error;
4910
4911 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4912 &start, &count);
4913 if (error)
4914 return (0);
4915 return (count);
4916 }
4917
4918 /**
4919 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4920 *
4921 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4922 * parent of @p dev.
4923 */
4924 void
bus_delete_resource(device_t dev,int type,int rid)4925 bus_delete_resource(device_t dev, int type, int rid)
4926 {
4927 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4928 }
4929
4930 /**
4931 * @brief Wrapper function for BUS_CHILD_PRESENT().
4932 *
4933 * This function simply calls the BUS_CHILD_PRESENT() method of the
4934 * parent of @p dev.
4935 */
4936 int
bus_child_present(device_t child)4937 bus_child_present(device_t child)
4938 {
4939 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4940 }
4941
4942 /**
4943 * @brief Wrapper function for BUS_CHILD_PNPINFO().
4944 *
4945 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4946 * dev.
4947 */
4948 int
bus_child_pnpinfo(device_t child,struct sbuf * sb)4949 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4950 {
4951 device_t parent;
4952
4953 parent = device_get_parent(child);
4954 if (parent == NULL)
4955 return (0);
4956 return (BUS_CHILD_PNPINFO(parent, child, sb));
4957 }
4958
4959 /**
4960 * @brief Generic implementation that does nothing for bus_child_pnpinfo
4961 *
4962 * This function has the right signature and returns 0 since the sbuf is passed
4963 * to us to append to.
4964 */
4965 int
bus_generic_child_pnpinfo(device_t dev,device_t child,struct sbuf * sb)4966 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4967 {
4968 return (0);
4969 }
4970
4971 /**
4972 * @brief Wrapper function for BUS_CHILD_LOCATION().
4973 *
4974 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4975 * @p dev.
4976 */
4977 int
bus_child_location(device_t child,struct sbuf * sb)4978 bus_child_location(device_t child, struct sbuf *sb)
4979 {
4980 device_t parent;
4981
4982 parent = device_get_parent(child);
4983 if (parent == NULL)
4984 return (0);
4985 return (BUS_CHILD_LOCATION(parent, child, sb));
4986 }
4987
4988 /**
4989 * @brief Generic implementation that does nothing for bus_child_location
4990 *
4991 * This function has the right signature and returns 0 since the sbuf is passed
4992 * to us to append to.
4993 */
4994 int
bus_generic_child_location(device_t dev,device_t child,struct sbuf * sb)4995 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4996 {
4997 return (0);
4998 }
4999
5000 /**
5001 * @brief Wrapper function for BUS_GET_CPUS().
5002 *
5003 * This function simply calls the BUS_GET_CPUS() method of the
5004 * parent of @p dev.
5005 */
5006 int
bus_get_cpus(device_t dev,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5007 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5008 {
5009 device_t parent;
5010
5011 parent = device_get_parent(dev);
5012 if (parent == NULL)
5013 return (EINVAL);
5014 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5015 }
5016
5017 /**
5018 * @brief Wrapper function for BUS_GET_DMA_TAG().
5019 *
5020 * This function simply calls the BUS_GET_DMA_TAG() method of the
5021 * parent of @p dev.
5022 */
5023 bus_dma_tag_t
bus_get_dma_tag(device_t dev)5024 bus_get_dma_tag(device_t dev)
5025 {
5026 device_t parent;
5027
5028 parent = device_get_parent(dev);
5029 if (parent == NULL)
5030 return (NULL);
5031 return (BUS_GET_DMA_TAG(parent, dev));
5032 }
5033
5034 /**
5035 * @brief Wrapper function for BUS_GET_BUS_TAG().
5036 *
5037 * This function simply calls the BUS_GET_BUS_TAG() method of the
5038 * parent of @p dev.
5039 */
5040 bus_space_tag_t
bus_get_bus_tag(device_t dev)5041 bus_get_bus_tag(device_t dev)
5042 {
5043 device_t parent;
5044
5045 parent = device_get_parent(dev);
5046 if (parent == NULL)
5047 return ((bus_space_tag_t)0);
5048 return (BUS_GET_BUS_TAG(parent, dev));
5049 }
5050
5051 /**
5052 * @brief Wrapper function for BUS_GET_DOMAIN().
5053 *
5054 * This function simply calls the BUS_GET_DOMAIN() method of the
5055 * parent of @p dev.
5056 */
5057 int
bus_get_domain(device_t dev,int * domain)5058 bus_get_domain(device_t dev, int *domain)
5059 {
5060 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5061 }
5062
5063 /* Resume all devices and then notify userland that we're up again. */
5064 static int
root_resume(device_t dev)5065 root_resume(device_t dev)
5066 {
5067 int error;
5068
5069 error = bus_generic_resume(dev);
5070 if (error == 0) {
5071 devctl_notify("kernel", "power", "resume", NULL);
5072 }
5073 return (error);
5074 }
5075
5076 static int
root_print_child(device_t dev,device_t child)5077 root_print_child(device_t dev, device_t child)
5078 {
5079 int retval = 0;
5080
5081 retval += bus_print_child_header(dev, child);
5082 retval += printf("\n");
5083
5084 return (retval);
5085 }
5086
5087 static int
root_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)5088 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5089 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5090 {
5091 /*
5092 * If an interrupt mapping gets to here something bad has happened.
5093 */
5094 panic("root_setup_intr");
5095 }
5096
5097 /*
5098 * If we get here, assume that the device is permanent and really is
5099 * present in the system. Removable bus drivers are expected to intercept
5100 * this call long before it gets here. We return -1 so that drivers that
5101 * really care can check vs -1 or some ERRNO returned higher in the food
5102 * chain.
5103 */
5104 static int
root_child_present(device_t dev,device_t child)5105 root_child_present(device_t dev, device_t child)
5106 {
5107 return (-1);
5108 }
5109
5110 static int
root_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5111 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5112 cpuset_t *cpuset)
5113 {
5114 switch (op) {
5115 case INTR_CPUS:
5116 /* Default to returning the set of all CPUs. */
5117 if (setsize != sizeof(cpuset_t))
5118 return (EINVAL);
5119 *cpuset = all_cpus;
5120 return (0);
5121 default:
5122 return (EINVAL);
5123 }
5124 }
5125
5126 static kobj_method_t root_methods[] = {
5127 /* Device interface */
5128 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
5129 KOBJMETHOD(device_suspend, bus_generic_suspend),
5130 KOBJMETHOD(device_resume, root_resume),
5131
5132 /* Bus interface */
5133 KOBJMETHOD(bus_print_child, root_print_child),
5134 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
5135 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
5136 KOBJMETHOD(bus_setup_intr, root_setup_intr),
5137 KOBJMETHOD(bus_child_present, root_child_present),
5138 KOBJMETHOD(bus_get_cpus, root_get_cpus),
5139
5140 KOBJMETHOD_END
5141 };
5142
5143 static driver_t root_driver = {
5144 "root",
5145 root_methods,
5146 1, /* no softc */
5147 };
5148
5149 device_t root_bus;
5150 devclass_t root_devclass;
5151
5152 static int
root_bus_module_handler(module_t mod,int what,void * arg)5153 root_bus_module_handler(module_t mod, int what, void* arg)
5154 {
5155 switch (what) {
5156 case MOD_LOAD:
5157 TAILQ_INIT(&bus_data_devices);
5158 kobj_class_compile((kobj_class_t) &root_driver);
5159 root_bus = make_device(NULL, "root", 0);
5160 root_bus->desc = "System root bus";
5161 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5162 root_bus->driver = &root_driver;
5163 root_bus->state = DS_ATTACHED;
5164 root_devclass = devclass_find_internal("root", NULL, FALSE);
5165 devctl2_init();
5166 return (0);
5167
5168 case MOD_SHUTDOWN:
5169 device_shutdown(root_bus);
5170 return (0);
5171 default:
5172 return (EOPNOTSUPP);
5173 }
5174
5175 return (0);
5176 }
5177
5178 static moduledata_t root_bus_mod = {
5179 "rootbus",
5180 root_bus_module_handler,
5181 NULL
5182 };
5183 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5184
5185 /**
5186 * @brief Automatically configure devices
5187 *
5188 * This function begins the autoconfiguration process by calling
5189 * device_probe_and_attach() for each child of the @c root0 device.
5190 */
5191 void
root_bus_configure(void)5192 root_bus_configure(void)
5193 {
5194 PDEBUG(("."));
5195
5196 /* Eventually this will be split up, but this is sufficient for now. */
5197 bus_set_pass(BUS_PASS_DEFAULT);
5198 }
5199
5200 /**
5201 * @brief Module handler for registering device drivers
5202 *
5203 * This module handler is used to automatically register device
5204 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5205 * devclass_add_driver() for the driver described by the
5206 * driver_module_data structure pointed to by @p arg
5207 */
5208 int
driver_module_handler(module_t mod,int what,void * arg)5209 driver_module_handler(module_t mod, int what, void *arg)
5210 {
5211 struct driver_module_data *dmd;
5212 devclass_t bus_devclass;
5213 kobj_class_t driver;
5214 int error, pass;
5215
5216 dmd = (struct driver_module_data *)arg;
5217 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5218 error = 0;
5219
5220 switch (what) {
5221 case MOD_LOAD:
5222 if (dmd->dmd_chainevh)
5223 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5224
5225 pass = dmd->dmd_pass;
5226 driver = dmd->dmd_driver;
5227 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5228 DRIVERNAME(driver), dmd->dmd_busname, pass));
5229 error = devclass_add_driver(bus_devclass, driver, pass,
5230 dmd->dmd_devclass);
5231 break;
5232
5233 case MOD_UNLOAD:
5234 PDEBUG(("Unloading module: driver %s from bus %s",
5235 DRIVERNAME(dmd->dmd_driver),
5236 dmd->dmd_busname));
5237 error = devclass_delete_driver(bus_devclass,
5238 dmd->dmd_driver);
5239
5240 if (!error && dmd->dmd_chainevh)
5241 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5242 break;
5243 case MOD_QUIESCE:
5244 PDEBUG(("Quiesce module: driver %s from bus %s",
5245 DRIVERNAME(dmd->dmd_driver),
5246 dmd->dmd_busname));
5247 error = devclass_quiesce_driver(bus_devclass,
5248 dmd->dmd_driver);
5249
5250 if (!error && dmd->dmd_chainevh)
5251 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5252 break;
5253 default:
5254 error = EOPNOTSUPP;
5255 break;
5256 }
5257
5258 return (error);
5259 }
5260
5261 /**
5262 * @brief Enumerate all hinted devices for this bus.
5263 *
5264 * Walks through the hints for this bus and calls the bus_hinted_child
5265 * routine for each one it fines. It searches first for the specific
5266 * bus that's being probed for hinted children (eg isa0), and then for
5267 * generic children (eg isa).
5268 *
5269 * @param dev bus device to enumerate
5270 */
5271 void
bus_enumerate_hinted_children(device_t bus)5272 bus_enumerate_hinted_children(device_t bus)
5273 {
5274 int i;
5275 const char *dname, *busname;
5276 int dunit;
5277
5278 /*
5279 * enumerate all devices on the specific bus
5280 */
5281 busname = device_get_nameunit(bus);
5282 i = 0;
5283 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5284 BUS_HINTED_CHILD(bus, dname, dunit);
5285
5286 /*
5287 * and all the generic ones.
5288 */
5289 busname = device_get_name(bus);
5290 i = 0;
5291 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5292 BUS_HINTED_CHILD(bus, dname, dunit);
5293 }
5294
5295 #ifdef BUS_DEBUG
5296
5297 /* the _short versions avoid iteration by not calling anything that prints
5298 * more than oneliners. I love oneliners.
5299 */
5300
5301 static void
print_device_short(device_t dev,int indent)5302 print_device_short(device_t dev, int indent)
5303 {
5304 if (!dev)
5305 return;
5306
5307 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5308 dev->unit, dev->desc,
5309 (dev->parent? "":"no "),
5310 (TAILQ_EMPTY(&dev->children)? "no ":""),
5311 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5312 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5313 (dev->flags&DF_WILDCARD? "wildcard,":""),
5314 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5315 (dev->flags&DF_SUSPENDED? "suspended,":""),
5316 (dev->ivars? "":"no "),
5317 (dev->softc? "":"no "),
5318 dev->busy));
5319 }
5320
5321 static void
print_device(device_t dev,int indent)5322 print_device(device_t dev, int indent)
5323 {
5324 if (!dev)
5325 return;
5326
5327 print_device_short(dev, indent);
5328
5329 indentprintf(("Parent:\n"));
5330 print_device_short(dev->parent, indent+1);
5331 indentprintf(("Driver:\n"));
5332 print_driver_short(dev->driver, indent+1);
5333 indentprintf(("Devclass:\n"));
5334 print_devclass_short(dev->devclass, indent+1);
5335 }
5336
5337 void
print_device_tree_short(device_t dev,int indent)5338 print_device_tree_short(device_t dev, int indent)
5339 /* print the device and all its children (indented) */
5340 {
5341 device_t child;
5342
5343 if (!dev)
5344 return;
5345
5346 print_device_short(dev, indent);
5347
5348 TAILQ_FOREACH(child, &dev->children, link) {
5349 print_device_tree_short(child, indent+1);
5350 }
5351 }
5352
5353 void
print_device_tree(device_t dev,int indent)5354 print_device_tree(device_t dev, int indent)
5355 /* print the device and all its children (indented) */
5356 {
5357 device_t child;
5358
5359 if (!dev)
5360 return;
5361
5362 print_device(dev, indent);
5363
5364 TAILQ_FOREACH(child, &dev->children, link) {
5365 print_device_tree(child, indent+1);
5366 }
5367 }
5368
5369 static void
print_driver_short(driver_t * driver,int indent)5370 print_driver_short(driver_t *driver, int indent)
5371 {
5372 if (!driver)
5373 return;
5374
5375 indentprintf(("driver %s: softc size = %zd\n",
5376 driver->name, driver->size));
5377 }
5378
5379 static void
print_driver(driver_t * driver,int indent)5380 print_driver(driver_t *driver, int indent)
5381 {
5382 if (!driver)
5383 return;
5384
5385 print_driver_short(driver, indent);
5386 }
5387
5388 static void
print_driver_list(driver_list_t drivers,int indent)5389 print_driver_list(driver_list_t drivers, int indent)
5390 {
5391 driverlink_t driver;
5392
5393 TAILQ_FOREACH(driver, &drivers, link) {
5394 print_driver(driver->driver, indent);
5395 }
5396 }
5397
5398 static void
print_devclass_short(devclass_t dc,int indent)5399 print_devclass_short(devclass_t dc, int indent)
5400 {
5401 if ( !dc )
5402 return;
5403
5404 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5405 }
5406
5407 static void
print_devclass(devclass_t dc,int indent)5408 print_devclass(devclass_t dc, int indent)
5409 {
5410 int i;
5411
5412 if ( !dc )
5413 return;
5414
5415 print_devclass_short(dc, indent);
5416 indentprintf(("Drivers:\n"));
5417 print_driver_list(dc->drivers, indent+1);
5418
5419 indentprintf(("Devices:\n"));
5420 for (i = 0; i < dc->maxunit; i++)
5421 if (dc->devices[i])
5422 print_device(dc->devices[i], indent+1);
5423 }
5424
5425 void
print_devclass_list_short(void)5426 print_devclass_list_short(void)
5427 {
5428 devclass_t dc;
5429
5430 printf("Short listing of devclasses, drivers & devices:\n");
5431 TAILQ_FOREACH(dc, &devclasses, link) {
5432 print_devclass_short(dc, 0);
5433 }
5434 }
5435
5436 void
print_devclass_list(void)5437 print_devclass_list(void)
5438 {
5439 devclass_t dc;
5440
5441 printf("Full listing of devclasses, drivers & devices:\n");
5442 TAILQ_FOREACH(dc, &devclasses, link) {
5443 print_devclass(dc, 0);
5444 }
5445 }
5446
5447 #endif
5448
5449 /*
5450 * User-space access to the device tree.
5451 *
5452 * We implement a small set of nodes:
5453 *
5454 * hw.bus Single integer read method to obtain the
5455 * current generation count.
5456 * hw.bus.devices Reads the entire device tree in flat space.
5457 * hw.bus.rman Resource manager interface
5458 *
5459 * We might like to add the ability to scan devclasses and/or drivers to
5460 * determine what else is currently loaded/available.
5461 */
5462
5463 static int
sysctl_bus_info(SYSCTL_HANDLER_ARGS)5464 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5465 {
5466 struct u_businfo ubus;
5467
5468 ubus.ub_version = BUS_USER_VERSION;
5469 ubus.ub_generation = bus_data_generation;
5470
5471 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5472 }
5473 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5474 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5475 "bus-related data");
5476
5477 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)5478 sysctl_devices(SYSCTL_HANDLER_ARGS)
5479 {
5480 struct sbuf sb;
5481 int *name = (int *)arg1;
5482 u_int namelen = arg2;
5483 int index;
5484 device_t dev;
5485 struct u_device *udev;
5486 int error;
5487
5488 if (namelen != 2)
5489 return (EINVAL);
5490
5491 if (bus_data_generation_check(name[0]))
5492 return (EINVAL);
5493
5494 index = name[1];
5495
5496 /*
5497 * Scan the list of devices, looking for the requested index.
5498 */
5499 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5500 if (index-- == 0)
5501 break;
5502 }
5503 if (dev == NULL)
5504 return (ENOENT);
5505
5506 /*
5507 * Populate the return item, careful not to overflow the buffer.
5508 */
5509 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5510 udev->dv_handle = (uintptr_t)dev;
5511 udev->dv_parent = (uintptr_t)dev->parent;
5512 udev->dv_devflags = dev->devflags;
5513 udev->dv_flags = dev->flags;
5514 udev->dv_state = dev->state;
5515 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5516 if (dev->nameunit != NULL)
5517 sbuf_cat(&sb, dev->nameunit);
5518 sbuf_putc(&sb, '\0');
5519 if (dev->desc != NULL)
5520 sbuf_cat(&sb, dev->desc);
5521 sbuf_putc(&sb, '\0');
5522 if (dev->driver != NULL)
5523 sbuf_cat(&sb, dev->driver->name);
5524 sbuf_putc(&sb, '\0');
5525 bus_child_pnpinfo(dev, &sb);
5526 sbuf_putc(&sb, '\0');
5527 bus_child_location(dev, &sb);
5528 sbuf_putc(&sb, '\0');
5529 error = sbuf_finish(&sb);
5530 if (error == 0)
5531 error = SYSCTL_OUT(req, udev, sizeof(*udev));
5532 sbuf_delete(&sb);
5533 free(udev, M_BUS);
5534 return (error);
5535 }
5536
5537 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5538 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5539 "system device tree");
5540
5541 int
bus_data_generation_check(int generation)5542 bus_data_generation_check(int generation)
5543 {
5544 if (generation != bus_data_generation)
5545 return (1);
5546
5547 /* XXX generate optimised lists here? */
5548 return (0);
5549 }
5550
5551 void
bus_data_generation_update(void)5552 bus_data_generation_update(void)
5553 {
5554 atomic_add_int(&bus_data_generation, 1);
5555 }
5556
5557 int
bus_free_resource(device_t dev,int type,struct resource * r)5558 bus_free_resource(device_t dev, int type, struct resource *r)
5559 {
5560 if (r == NULL)
5561 return (0);
5562 return (bus_release_resource(dev, type, rman_get_rid(r), r));
5563 }
5564
5565 device_t
device_lookup_by_name(const char * name)5566 device_lookup_by_name(const char *name)
5567 {
5568 device_t dev;
5569
5570 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5571 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5572 return (dev);
5573 }
5574 return (NULL);
5575 }
5576
5577 /*
5578 * /dev/devctl2 implementation. The existing /dev/devctl device has
5579 * implicit semantics on open, so it could not be reused for this.
5580 * Another option would be to call this /dev/bus?
5581 */
5582 static int
find_device(struct devreq * req,device_t * devp)5583 find_device(struct devreq *req, device_t *devp)
5584 {
5585 device_t dev;
5586
5587 /*
5588 * First, ensure that the name is nul terminated.
5589 */
5590 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5591 return (EINVAL);
5592
5593 /*
5594 * Second, try to find an attached device whose name matches
5595 * 'name'.
5596 */
5597 dev = device_lookup_by_name(req->dr_name);
5598 if (dev != NULL) {
5599 *devp = dev;
5600 return (0);
5601 }
5602
5603 /* Finally, give device enumerators a chance. */
5604 dev = NULL;
5605 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5606 if (dev == NULL)
5607 return (ENOENT);
5608 *devp = dev;
5609 return (0);
5610 }
5611
5612 static bool
driver_exists(device_t bus,const char * driver)5613 driver_exists(device_t bus, const char *driver)
5614 {
5615 devclass_t dc;
5616
5617 for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5618 if (devclass_find_driver_internal(dc, driver) != NULL)
5619 return (true);
5620 }
5621 return (false);
5622 }
5623
5624 static void
device_gen_nomatch(device_t dev)5625 device_gen_nomatch(device_t dev)
5626 {
5627 device_t child;
5628
5629 if (dev->flags & DF_NEEDNOMATCH &&
5630 dev->state == DS_NOTPRESENT) {
5631 device_handle_nomatch(dev);
5632 }
5633 dev->flags &= ~DF_NEEDNOMATCH;
5634 TAILQ_FOREACH(child, &dev->children, link) {
5635 device_gen_nomatch(child);
5636 }
5637 }
5638
5639 static void
device_do_deferred_actions(void)5640 device_do_deferred_actions(void)
5641 {
5642 devclass_t dc;
5643 driverlink_t dl;
5644
5645 /*
5646 * Walk through the devclasses to find all the drivers we've tagged as
5647 * deferred during the freeze and call the driver added routines. They
5648 * have already been added to the lists in the background, so the driver
5649 * added routines that trigger a probe will have all the right bidders
5650 * for the probe auction.
5651 */
5652 TAILQ_FOREACH(dc, &devclasses, link) {
5653 TAILQ_FOREACH(dl, &dc->drivers, link) {
5654 if (dl->flags & DL_DEFERRED_PROBE) {
5655 devclass_driver_added(dc, dl->driver);
5656 dl->flags &= ~DL_DEFERRED_PROBE;
5657 }
5658 }
5659 }
5660
5661 /*
5662 * We also defer no-match events during a freeze. Walk the tree and
5663 * generate all the pent-up events that are still relevant.
5664 */
5665 device_gen_nomatch(root_bus);
5666 bus_data_generation_update();
5667 }
5668
5669 static int
device_get_path(device_t dev,const char * locator,struct sbuf * sb)5670 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5671 {
5672 device_t parent;
5673 int error;
5674
5675 KASSERT(sb != NULL, ("sb is NULL"));
5676 parent = device_get_parent(dev);
5677 if (parent == NULL) {
5678 error = sbuf_putc(sb, '/');
5679 } else {
5680 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5681 if (error == 0) {
5682 error = sbuf_error(sb);
5683 if (error == 0 && sbuf_len(sb) <= 1)
5684 error = EIO;
5685 }
5686 }
5687 sbuf_finish(sb);
5688 return (error);
5689 }
5690
5691 static int
devctl2_ioctl(struct cdev * cdev,u_long cmd,caddr_t data,int fflag,struct thread * td)5692 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5693 struct thread *td)
5694 {
5695 struct devreq *req;
5696 device_t dev;
5697 int error, old;
5698
5699 /* Locate the device to control. */
5700 bus_topo_lock();
5701 req = (struct devreq *)data;
5702 switch (cmd) {
5703 case DEV_ATTACH:
5704 case DEV_DETACH:
5705 case DEV_ENABLE:
5706 case DEV_DISABLE:
5707 case DEV_SUSPEND:
5708 case DEV_RESUME:
5709 case DEV_SET_DRIVER:
5710 case DEV_CLEAR_DRIVER:
5711 case DEV_RESCAN:
5712 case DEV_DELETE:
5713 case DEV_RESET:
5714 error = priv_check(td, PRIV_DRIVER);
5715 if (error == 0)
5716 error = find_device(req, &dev);
5717 break;
5718 case DEV_FREEZE:
5719 case DEV_THAW:
5720 error = priv_check(td, PRIV_DRIVER);
5721 break;
5722 case DEV_GET_PATH:
5723 error = find_device(req, &dev);
5724 break;
5725 default:
5726 error = ENOTTY;
5727 break;
5728 }
5729 if (error) {
5730 bus_topo_unlock();
5731 return (error);
5732 }
5733
5734 /* Perform the requested operation. */
5735 switch (cmd) {
5736 case DEV_ATTACH:
5737 if (device_is_attached(dev))
5738 error = EBUSY;
5739 else if (!device_is_enabled(dev))
5740 error = ENXIO;
5741 else
5742 error = device_probe_and_attach(dev);
5743 break;
5744 case DEV_DETACH:
5745 if (!device_is_attached(dev)) {
5746 error = ENXIO;
5747 break;
5748 }
5749 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5750 error = device_quiesce(dev);
5751 if (error)
5752 break;
5753 }
5754 error = device_detach(dev);
5755 break;
5756 case DEV_ENABLE:
5757 if (device_is_enabled(dev)) {
5758 error = EBUSY;
5759 break;
5760 }
5761
5762 /*
5763 * If the device has been probed but not attached (e.g.
5764 * when it has been disabled by a loader hint), just
5765 * attach the device rather than doing a full probe.
5766 */
5767 device_enable(dev);
5768 if (dev->devclass != NULL) {
5769 /*
5770 * If the device was disabled via a hint, clear
5771 * the hint.
5772 */
5773 if (resource_disabled(dev->devclass->name, dev->unit))
5774 resource_unset_value(dev->devclass->name,
5775 dev->unit, "disabled");
5776
5777 /* Allow any drivers to rebid. */
5778 if (!(dev->flags & DF_FIXEDCLASS))
5779 devclass_delete_device(dev->devclass, dev);
5780 }
5781 error = device_probe_and_attach(dev);
5782 break;
5783 case DEV_DISABLE:
5784 if (!device_is_enabled(dev)) {
5785 error = ENXIO;
5786 break;
5787 }
5788
5789 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5790 error = device_quiesce(dev);
5791 if (error)
5792 break;
5793 }
5794
5795 /*
5796 * Force DF_FIXEDCLASS on around detach to preserve
5797 * the existing name.
5798 */
5799 old = dev->flags;
5800 dev->flags |= DF_FIXEDCLASS;
5801 error = device_detach(dev);
5802 if (!(old & DF_FIXEDCLASS))
5803 dev->flags &= ~DF_FIXEDCLASS;
5804 if (error == 0)
5805 device_disable(dev);
5806 break;
5807 case DEV_SUSPEND:
5808 if (device_is_suspended(dev)) {
5809 error = EBUSY;
5810 break;
5811 }
5812 if (device_get_parent(dev) == NULL) {
5813 error = EINVAL;
5814 break;
5815 }
5816 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5817 break;
5818 case DEV_RESUME:
5819 if (!device_is_suspended(dev)) {
5820 error = EINVAL;
5821 break;
5822 }
5823 if (device_get_parent(dev) == NULL) {
5824 error = EINVAL;
5825 break;
5826 }
5827 error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5828 break;
5829 case DEV_SET_DRIVER: {
5830 devclass_t dc;
5831 char driver[128];
5832
5833 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5834 if (error)
5835 break;
5836 if (driver[0] == '\0') {
5837 error = EINVAL;
5838 break;
5839 }
5840 if (dev->devclass != NULL &&
5841 strcmp(driver, dev->devclass->name) == 0)
5842 /* XXX: Could possibly force DF_FIXEDCLASS on? */
5843 break;
5844
5845 /*
5846 * Scan drivers for this device's bus looking for at
5847 * least one matching driver.
5848 */
5849 if (dev->parent == NULL) {
5850 error = EINVAL;
5851 break;
5852 }
5853 if (!driver_exists(dev->parent, driver)) {
5854 error = ENOENT;
5855 break;
5856 }
5857 dc = devclass_create(driver);
5858 if (dc == NULL) {
5859 error = ENOMEM;
5860 break;
5861 }
5862
5863 /* Detach device if necessary. */
5864 if (device_is_attached(dev)) {
5865 if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5866 error = device_detach(dev);
5867 else
5868 error = EBUSY;
5869 if (error)
5870 break;
5871 }
5872
5873 /* Clear any previously-fixed device class and unit. */
5874 if (dev->flags & DF_FIXEDCLASS)
5875 devclass_delete_device(dev->devclass, dev);
5876 dev->flags |= DF_WILDCARD;
5877 dev->unit = DEVICE_UNIT_ANY;
5878
5879 /* Force the new device class. */
5880 error = devclass_add_device(dc, dev);
5881 if (error)
5882 break;
5883 dev->flags |= DF_FIXEDCLASS;
5884 error = device_probe_and_attach(dev);
5885 break;
5886 }
5887 case DEV_CLEAR_DRIVER:
5888 if (!(dev->flags & DF_FIXEDCLASS)) {
5889 error = 0;
5890 break;
5891 }
5892 if (device_is_attached(dev)) {
5893 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5894 error = device_detach(dev);
5895 else
5896 error = EBUSY;
5897 if (error)
5898 break;
5899 }
5900
5901 dev->flags &= ~DF_FIXEDCLASS;
5902 dev->flags |= DF_WILDCARD;
5903 devclass_delete_device(dev->devclass, dev);
5904 error = device_probe_and_attach(dev);
5905 break;
5906 case DEV_RESCAN:
5907 if (!device_is_attached(dev)) {
5908 error = ENXIO;
5909 break;
5910 }
5911 error = BUS_RESCAN(dev);
5912 break;
5913 case DEV_DELETE: {
5914 device_t parent;
5915
5916 parent = device_get_parent(dev);
5917 if (parent == NULL) {
5918 error = EINVAL;
5919 break;
5920 }
5921 if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5922 if (bus_child_present(dev) != 0) {
5923 error = EBUSY;
5924 break;
5925 }
5926 }
5927
5928 error = device_delete_child(parent, dev);
5929 break;
5930 }
5931 case DEV_FREEZE:
5932 if (device_frozen)
5933 error = EBUSY;
5934 else
5935 device_frozen = true;
5936 break;
5937 case DEV_THAW:
5938 if (!device_frozen)
5939 error = EBUSY;
5940 else {
5941 device_do_deferred_actions();
5942 device_frozen = false;
5943 }
5944 break;
5945 case DEV_RESET:
5946 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5947 error = EINVAL;
5948 break;
5949 }
5950 if (device_get_parent(dev) == NULL) {
5951 error = EINVAL;
5952 break;
5953 }
5954 error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5955 req->dr_flags);
5956 break;
5957 case DEV_GET_PATH: {
5958 struct sbuf *sb;
5959 char locator[64];
5960 ssize_t len;
5961
5962 error = copyinstr(req->dr_buffer.buffer, locator,
5963 sizeof(locator), NULL);
5964 if (error != 0)
5965 break;
5966 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5967 SBUF_INCLUDENUL /* | SBUF_WAITOK */);
5968 error = device_get_path(dev, locator, sb);
5969 if (error == 0) {
5970 len = sbuf_len(sb);
5971 if (req->dr_buffer.length < len) {
5972 error = ENAMETOOLONG;
5973 } else {
5974 error = copyout(sbuf_data(sb),
5975 req->dr_buffer.buffer, len);
5976 }
5977 req->dr_buffer.length = len;
5978 }
5979 sbuf_delete(sb);
5980 break;
5981 }
5982 }
5983 bus_topo_unlock();
5984 return (error);
5985 }
5986
5987 static struct cdevsw devctl2_cdevsw = {
5988 .d_version = D_VERSION,
5989 .d_ioctl = devctl2_ioctl,
5990 .d_name = "devctl2",
5991 };
5992
5993 static void
devctl2_init(void)5994 devctl2_init(void)
5995 {
5996 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5997 UID_ROOT, GID_WHEEL, 0644, "devctl2");
5998 }
5999
6000 /*
6001 * For maintaining device 'at' location info to avoid recomputing it
6002 */
6003 struct device_location_node {
6004 const char *dln_locator;
6005 const char *dln_path;
6006 TAILQ_ENTRY(device_location_node) dln_link;
6007 };
6008 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6009
6010 struct device_location_cache {
6011 device_location_list_t dlc_list;
6012 };
6013
6014
6015 /*
6016 * Location cache for wired devices.
6017 */
6018 device_location_cache_t *
dev_wired_cache_init(void)6019 dev_wired_cache_init(void)
6020 {
6021 device_location_cache_t *dcp;
6022
6023 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6024 TAILQ_INIT(&dcp->dlc_list);
6025
6026 return (dcp);
6027 }
6028
6029 void
dev_wired_cache_fini(device_location_cache_t * dcp)6030 dev_wired_cache_fini(device_location_cache_t *dcp)
6031 {
6032 struct device_location_node *dln, *tdln;
6033
6034 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6035 free(dln, M_BUS);
6036 }
6037 free(dcp, M_BUS);
6038 }
6039
6040 static struct device_location_node *
dev_wired_cache_lookup(device_location_cache_t * dcp,const char * locator)6041 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6042 {
6043 struct device_location_node *dln;
6044
6045 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6046 if (strcmp(locator, dln->dln_locator) == 0)
6047 return (dln);
6048 }
6049
6050 return (NULL);
6051 }
6052
6053 static struct device_location_node *
dev_wired_cache_add(device_location_cache_t * dcp,const char * locator,const char * path)6054 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6055 {
6056 struct device_location_node *dln;
6057 size_t loclen, pathlen;
6058
6059 loclen = strlen(locator) + 1;
6060 pathlen = strlen(path) + 1;
6061 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6062 dln->dln_locator = (char *)(dln + 1);
6063 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6064 dln->dln_path = dln->dln_locator + loclen;
6065 memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6066 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6067
6068 return (dln);
6069 }
6070
6071 bool
dev_wired_cache_match(device_location_cache_t * dcp,device_t dev,const char * at)6072 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6073 const char *at)
6074 {
6075 struct sbuf *sb;
6076 const char *cp;
6077 char locator[32];
6078 int error, len;
6079 struct device_location_node *res;
6080
6081 cp = strchr(at, ':');
6082 if (cp == NULL)
6083 return (false);
6084 len = cp - at;
6085 if (len > sizeof(locator) - 1) /* Skip too long locator */
6086 return (false);
6087 memcpy(locator, at, len);
6088 locator[len] = '\0';
6089 cp++;
6090
6091 error = 0;
6092 /* maybe cache this inside device_t and look that up, but not yet */
6093 res = dev_wired_cache_lookup(dcp, locator);
6094 if (res == NULL) {
6095 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6096 SBUF_INCLUDENUL | SBUF_NOWAIT);
6097 if (sb != NULL) {
6098 error = device_get_path(dev, locator, sb);
6099 if (error == 0) {
6100 res = dev_wired_cache_add(dcp, locator,
6101 sbuf_data(sb));
6102 }
6103 sbuf_delete(sb);
6104 }
6105 }
6106 if (error != 0 || res == NULL || res->dln_path == NULL)
6107 return (false);
6108
6109 return (strcmp(res->dln_path, cp) == 0);
6110 }
6111
6112 static struct device_prop_elm *
device_prop_find(device_t dev,const char * name)6113 device_prop_find(device_t dev, const char *name)
6114 {
6115 struct device_prop_elm *e;
6116
6117 bus_topo_assert();
6118
6119 LIST_FOREACH(e, &dev->props, link) {
6120 if (strcmp(name, e->name) == 0)
6121 return (e);
6122 }
6123 return (NULL);
6124 }
6125
6126 int
device_set_prop(device_t dev,const char * name,void * val,device_prop_dtr_t dtr,void * dtr_ctx)6127 device_set_prop(device_t dev, const char *name, void *val,
6128 device_prop_dtr_t dtr, void *dtr_ctx)
6129 {
6130 struct device_prop_elm *e, *e1;
6131
6132 bus_topo_assert();
6133
6134 e = device_prop_find(dev, name);
6135 if (e != NULL)
6136 goto found;
6137
6138 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6139 e = device_prop_find(dev, name);
6140 if (e != NULL) {
6141 free(e1, M_BUS);
6142 goto found;
6143 }
6144
6145 e1->name = name;
6146 e1->val = val;
6147 e1->dtr = dtr;
6148 e1->dtr_ctx = dtr_ctx;
6149 LIST_INSERT_HEAD(&dev->props, e1, link);
6150 return (0);
6151
6152 found:
6153 LIST_REMOVE(e, link);
6154 if (e->dtr != NULL)
6155 e->dtr(dev, name, e->val, e->dtr_ctx);
6156 e->val = val;
6157 e->dtr = dtr;
6158 e->dtr_ctx = dtr_ctx;
6159 LIST_INSERT_HEAD(&dev->props, e, link);
6160 return (EEXIST);
6161 }
6162
6163 int
device_get_prop(device_t dev,const char * name,void ** valp)6164 device_get_prop(device_t dev, const char *name, void **valp)
6165 {
6166 struct device_prop_elm *e;
6167
6168 bus_topo_assert();
6169
6170 e = device_prop_find(dev, name);
6171 if (e == NULL)
6172 return (ENOENT);
6173 *valp = e->val;
6174 return (0);
6175 }
6176
6177 int
device_clear_prop(device_t dev,const char * name)6178 device_clear_prop(device_t dev, const char *name)
6179 {
6180 struct device_prop_elm *e;
6181
6182 bus_topo_assert();
6183
6184 e = device_prop_find(dev, name);
6185 if (e == NULL)
6186 return (ENOENT);
6187 LIST_REMOVE(e, link);
6188 if (e->dtr != NULL)
6189 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6190 free(e, M_BUS);
6191 return (0);
6192 }
6193
6194 static void
device_destroy_props(device_t dev)6195 device_destroy_props(device_t dev)
6196 {
6197 struct device_prop_elm *e;
6198
6199 bus_topo_assert();
6200
6201 while ((e = LIST_FIRST(&dev->props)) != NULL) {
6202 LIST_REMOVE_HEAD(&dev->props, link);
6203 if (e->dtr != NULL)
6204 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6205 free(e, M_BUS);
6206 }
6207 }
6208
6209 void
device_clear_prop_alldev(const char * name)6210 device_clear_prop_alldev(const char *name)
6211 {
6212 device_t dev;
6213
6214 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6215 device_clear_prop(dev, name);
6216 }
6217 }
6218
6219 /*
6220 * APIs to manage deprecation and obsolescence.
6221 */
6222 static int obsolete_panic = 0;
6223 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6224 "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6225 "2 = if deprecated)");
6226
6227 static void
gone_panic(int major,int running,const char * msg)6228 gone_panic(int major, int running, const char *msg)
6229 {
6230 switch (obsolete_panic)
6231 {
6232 case 0:
6233 return;
6234 case 1:
6235 if (running < major)
6236 return;
6237 /* FALLTHROUGH */
6238 default:
6239 panic("%s", msg);
6240 }
6241 }
6242
6243 void
_gone_in(int major,const char * msg)6244 _gone_in(int major, const char *msg)
6245 {
6246 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6247 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6248 printf("Obsolete code will be removed soon: %s\n", msg);
6249 else
6250 printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6251 major, msg);
6252 }
6253
6254 void
_gone_in_dev(device_t dev,int major,const char * msg)6255 _gone_in_dev(device_t dev, int major, const char *msg)
6256 {
6257 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6258 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6259 device_printf(dev,
6260 "Obsolete code will be removed soon: %s\n", msg);
6261 else
6262 device_printf(dev,
6263 "Deprecated code (to be removed in FreeBSD %d): %s\n",
6264 major, msg);
6265 }
6266
6267 #ifdef DDB
DB_SHOW_COMMAND(device,db_show_device)6268 DB_SHOW_COMMAND(device, db_show_device)
6269 {
6270 device_t dev;
6271
6272 if (!have_addr)
6273 return;
6274
6275 dev = (device_t)addr;
6276
6277 db_printf("name: %s\n", device_get_nameunit(dev));
6278 db_printf(" driver: %s\n", DRIVERNAME(dev->driver));
6279 db_printf(" class: %s\n", DEVCLANAME(dev->devclass));
6280 db_printf(" addr: %p\n", dev);
6281 db_printf(" parent: %p\n", dev->parent);
6282 db_printf(" softc: %p\n", dev->softc);
6283 db_printf(" ivars: %p\n", dev->ivars);
6284 }
6285
DB_SHOW_ALL_COMMAND(devices,db_show_all_devices)6286 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6287 {
6288 device_t dev;
6289
6290 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6291 db_show_device((db_expr_t)dev, true, count, modif);
6292 }
6293 }
6294 #endif
6295