xref: /linux/include/linux/blkdev.h (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29 
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44 
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48 
49 /*
50  * Maximum number of blkcg policies allowed to be registered concurrently.
51  * Defined here to simplify include dependency.
52  */
53 #define BLKCG_MAX_POLS		6
54 
55 #define DISK_MAX_PARTS			256
56 #define DISK_NAME_LEN			32
57 
58 #define PARTITION_META_INFO_VOLNAMELTH	64
59 /*
60  * Enough for the string representation of any kind of UUID plus NULL.
61  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62  */
63 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
64 
65 struct partition_meta_info {
66 	char uuid[PARTITION_META_INFO_UUIDLTH];
67 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69 
70 /**
71  * DOC: genhd capability flags
72  *
73  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74  * removable media.  When set, the device remains present even when media is not
75  * inserted.  Shall not be set for devices which are removed entirely when the
76  * media is removed.
77  *
78  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79  * doesn't appear in sysfs, and can't be opened from userspace or using
80  * blkdev_get*. Used for the underlying components of multipath devices.
81  *
82  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
83  * scan for partitions from add_disk, and users can't add partitions manually.
84  *
85  */
86 enum {
87 	GENHD_FL_REMOVABLE			= 1 << 0,
88 	GENHD_FL_HIDDEN				= 1 << 1,
89 	GENHD_FL_NO_PART			= 1 << 2,
90 };
91 
92 enum {
93 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
94 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
95 };
96 
97 enum {
98 	/* Poll even if events_poll_msecs is unset */
99 	DISK_EVENT_FLAG_POLL			= 1 << 0,
100 	/* Forward events to udev */
101 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
102 	/* Block event polling when open for exclusive write */
103 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
104 };
105 
106 struct disk_events;
107 struct badblocks;
108 
109 enum blk_integrity_checksum {
110 	BLK_INTEGRITY_CSUM_NONE		= 0,
111 	BLK_INTEGRITY_CSUM_IP		= 1,
112 	BLK_INTEGRITY_CSUM_CRC		= 2,
113 	BLK_INTEGRITY_CSUM_CRC64	= 3,
114 } __packed ;
115 
116 struct blk_integrity {
117 	unsigned char				flags;
118 	enum blk_integrity_checksum		csum_type;
119 	unsigned char				tuple_size;
120 	unsigned char				pi_offset;
121 	unsigned char				interval_exp;
122 	unsigned char				tag_size;
123 };
124 
125 typedef unsigned int __bitwise blk_mode_t;
126 
127 /* open for reading */
128 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
141 
142 struct gendisk {
143 	/*
144 	 * major/first_minor/minors should not be set by any new driver, the
145 	 * block core will take care of allocating them automatically.
146 	 */
147 	int major;
148 	int first_minor;
149 	int minors;
150 
151 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
152 
153 	unsigned short events;		/* supported events */
154 	unsigned short event_flags;	/* flags related to event processing */
155 
156 	struct xarray part_tbl;
157 	struct block_device *part0;
158 
159 	const struct block_device_operations *fops;
160 	struct request_queue *queue;
161 	void *private_data;
162 
163 	struct bio_set bio_split;
164 
165 	int flags;
166 	unsigned long state;
167 #define GD_NEED_PART_SCAN		0
168 #define GD_READ_ONLY			1
169 #define GD_DEAD				2
170 #define GD_NATIVE_CAPACITY		3
171 #define GD_ADDED			4
172 #define GD_SUPPRESS_PART_SCAN		5
173 #define GD_OWNS_QUEUE			6
174 
175 	struct mutex open_mutex;	/* open/close mutex */
176 	unsigned open_partitions;	/* number of open partitions */
177 
178 	struct backing_dev_info	*bdi;
179 	struct kobject queue_kobj;	/* the queue/ directory */
180 	struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 	struct list_head slave_bdevs;
183 #endif
184 	struct timer_rand_state *random;
185 	atomic_t sync_io;		/* RAID */
186 	struct disk_events *ev;
187 
188 #ifdef CONFIG_BLK_DEV_ZONED
189 	/*
190 	 * Zoned block device information. Reads of this information must be
191 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 	 * information is only allowed while no requests are being processed.
193 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 	 */
195 	unsigned int		nr_zones;
196 	unsigned int		zone_capacity;
197 	unsigned int		last_zone_capacity;
198 	unsigned long __rcu	*conv_zones_bitmap;
199 	unsigned int		zone_wplugs_hash_bits;
200 	atomic_t		nr_zone_wplugs;
201 	spinlock_t		zone_wplugs_lock;
202 	struct mempool_s	*zone_wplugs_pool;
203 	struct hlist_head	*zone_wplugs_hash;
204 	struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206 
207 #if IS_ENABLED(CONFIG_CDROM)
208 	struct cdrom_device_info *cdi;
209 #endif
210 	int node_id;
211 	struct badblocks *bb;
212 	struct lockdep_map lockdep_map;
213 	u64 diskseq;
214 	blk_mode_t open_mode;
215 
216 	/*
217 	 * Independent sector access ranges. This is always NULL for
218 	 * devices that do not have multiple independent access ranges.
219 	 */
220 	struct blk_independent_access_ranges *ia_ranges;
221 };
222 
223 /**
224  * disk_openers - returns how many openers are there for a disk
225  * @disk: disk to check
226  *
227  * This returns the number of openers for a disk.  Note that this value is only
228  * stable if disk->open_mutex is held.
229  *
230  * Note: Due to a quirk in the block layer open code, each open partition is
231  * only counted once even if there are multiple openers.
232  */
disk_openers(struct gendisk * disk)233 static inline unsigned int disk_openers(struct gendisk *disk)
234 {
235 	return atomic_read(&disk->part0->bd_openers);
236 }
237 
238 /**
239  * disk_has_partscan - return %true if partition scanning is enabled on a disk
240  * @disk: disk to check
241  *
242  * Returns %true if partitions scanning is enabled for @disk, or %false if
243  * partition scanning is disabled either permanently or temporarily.
244  */
disk_has_partscan(struct gendisk * disk)245 static inline bool disk_has_partscan(struct gendisk *disk)
246 {
247 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
248 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
249 }
250 
251 /*
252  * The gendisk is refcounted by the part0 block_device, and the bd_device
253  * therein is also used for device model presentation in sysfs.
254  */
255 #define dev_to_disk(device) \
256 	(dev_to_bdev(device)->bd_disk)
257 #define disk_to_dev(disk) \
258 	(&((disk)->part0->bd_device))
259 
260 #if IS_REACHABLE(CONFIG_CDROM)
261 #define disk_to_cdi(disk)	((disk)->cdi)
262 #else
263 #define disk_to_cdi(disk)	NULL
264 #endif
265 
disk_devt(struct gendisk * disk)266 static inline dev_t disk_devt(struct gendisk *disk)
267 {
268 	return MKDEV(disk->major, disk->first_minor);
269 }
270 
271 /*
272  * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
273  * however we constrain this to what we can validate and test.
274  */
275 #define BLK_MAX_BLOCK_SIZE      SZ_64K
276 
277 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)278 static inline int blk_validate_block_size(unsigned long bsize)
279 {
280 	if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
281 		return -EINVAL;
282 
283 	return 0;
284 }
285 
blk_op_is_passthrough(blk_opf_t op)286 static inline bool blk_op_is_passthrough(blk_opf_t op)
287 {
288 	op &= REQ_OP_MASK;
289 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
290 }
291 
292 /* flags set by the driver in queue_limits.features */
293 typedef unsigned int __bitwise blk_features_t;
294 
295 /* supports a volatile write cache */
296 #define BLK_FEAT_WRITE_CACHE		((__force blk_features_t)(1u << 0))
297 
298 /* supports passing on the FUA bit */
299 #define BLK_FEAT_FUA			((__force blk_features_t)(1u << 1))
300 
301 /* rotational device (hard drive or floppy) */
302 #define BLK_FEAT_ROTATIONAL		((__force blk_features_t)(1u << 2))
303 
304 /* contributes to the random number pool */
305 #define BLK_FEAT_ADD_RANDOM		((__force blk_features_t)(1u << 3))
306 
307 /* do disk/partitions IO accounting */
308 #define BLK_FEAT_IO_STAT		((__force blk_features_t)(1u << 4))
309 
310 /* don't modify data until writeback is done */
311 #define BLK_FEAT_STABLE_WRITES		((__force blk_features_t)(1u << 5))
312 
313 /* always completes in submit context */
314 #define BLK_FEAT_SYNCHRONOUS		((__force blk_features_t)(1u << 6))
315 
316 /* supports REQ_NOWAIT */
317 #define BLK_FEAT_NOWAIT			((__force blk_features_t)(1u << 7))
318 
319 /* supports DAX */
320 #define BLK_FEAT_DAX			((__force blk_features_t)(1u << 8))
321 
322 /* supports I/O polling */
323 #define BLK_FEAT_POLL			((__force blk_features_t)(1u << 9))
324 
325 /* is a zoned device */
326 #define BLK_FEAT_ZONED			((__force blk_features_t)(1u << 10))
327 
328 /* supports PCI(e) p2p requests */
329 #define BLK_FEAT_PCI_P2PDMA		((__force blk_features_t)(1u << 12))
330 
331 /* skip this queue in blk_mq_(un)quiesce_tagset */
332 #define BLK_FEAT_SKIP_TAGSET_QUIESCE	((__force blk_features_t)(1u << 13))
333 
334 /* bounce all highmem pages */
335 #define BLK_FEAT_BOUNCE_HIGH		((__force blk_features_t)(1u << 14))
336 
337 /* undocumented magic for bcache */
338 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
339 	((__force blk_features_t)(1u << 15))
340 
341 /* atomic writes enabled */
342 #define BLK_FEAT_ATOMIC_WRITES \
343 	((__force blk_features_t)(1u << 16))
344 
345 /*
346  * Flags automatically inherited when stacking limits.
347  */
348 #define BLK_FEAT_INHERIT_MASK \
349 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
350 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
351 	 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
352 
353 /* internal flags in queue_limits.flags */
354 typedef unsigned int __bitwise blk_flags_t;
355 
356 /* do not send FLUSH/FUA commands despite advertising a write cache */
357 #define BLK_FLAG_WRITE_CACHE_DISABLED	((__force blk_flags_t)(1u << 0))
358 
359 /* I/O topology is misaligned */
360 #define BLK_FLAG_MISALIGNED		((__force blk_flags_t)(1u << 1))
361 
362 /* passthrough command IO accounting */
363 #define BLK_FLAG_IOSTATS_PASSTHROUGH	((__force blk_flags_t)(1u << 2))
364 
365 struct queue_limits {
366 	blk_features_t		features;
367 	blk_flags_t		flags;
368 	unsigned long		seg_boundary_mask;
369 	unsigned long		virt_boundary_mask;
370 
371 	unsigned int		max_hw_sectors;
372 	unsigned int		max_dev_sectors;
373 	unsigned int		chunk_sectors;
374 	unsigned int		max_sectors;
375 	unsigned int		max_user_sectors;
376 	unsigned int		max_segment_size;
377 	unsigned int		min_segment_size;
378 	unsigned int		physical_block_size;
379 	unsigned int		logical_block_size;
380 	unsigned int		alignment_offset;
381 	unsigned int		io_min;
382 	unsigned int		io_opt;
383 	unsigned int		max_discard_sectors;
384 	unsigned int		max_hw_discard_sectors;
385 	unsigned int		max_user_discard_sectors;
386 	unsigned int		max_secure_erase_sectors;
387 	unsigned int		max_write_zeroes_sectors;
388 	unsigned int		max_hw_zone_append_sectors;
389 	unsigned int		max_zone_append_sectors;
390 	unsigned int		discard_granularity;
391 	unsigned int		discard_alignment;
392 	unsigned int		zone_write_granularity;
393 
394 	/* atomic write limits */
395 	unsigned int		atomic_write_hw_max;
396 	unsigned int		atomic_write_max_sectors;
397 	unsigned int		atomic_write_hw_boundary;
398 	unsigned int		atomic_write_boundary_sectors;
399 	unsigned int		atomic_write_hw_unit_min;
400 	unsigned int		atomic_write_unit_min;
401 	unsigned int		atomic_write_hw_unit_max;
402 	unsigned int		atomic_write_unit_max;
403 
404 	unsigned short		max_segments;
405 	unsigned short		max_integrity_segments;
406 	unsigned short		max_discard_segments;
407 
408 	unsigned int		max_open_zones;
409 	unsigned int		max_active_zones;
410 
411 	/*
412 	 * Drivers that set dma_alignment to less than 511 must be prepared to
413 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
414 	 * due to possible offsets.
415 	 */
416 	unsigned int		dma_alignment;
417 	unsigned int		dma_pad_mask;
418 
419 	struct blk_integrity	integrity;
420 };
421 
422 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
423 			       void *data);
424 
425 #define BLK_ALL_ZONES  ((unsigned int)-1)
426 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
427 		unsigned int nr_zones, report_zones_cb cb, void *data);
428 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
429 		sector_t sectors, sector_t nr_sectors);
430 int blk_revalidate_disk_zones(struct gendisk *disk);
431 
432 /*
433  * Independent access ranges: struct blk_independent_access_range describes
434  * a range of contiguous sectors that can be accessed using device command
435  * execution resources that are independent from the resources used for
436  * other access ranges. This is typically found with single-LUN multi-actuator
437  * HDDs where each access range is served by a different set of heads.
438  * The set of independent ranges supported by the device is defined using
439  * struct blk_independent_access_ranges. The independent ranges must not overlap
440  * and must include all sectors within the disk capacity (no sector holes
441  * allowed).
442  * For a device with multiple ranges, requests targeting sectors in different
443  * ranges can be executed in parallel. A request can straddle an access range
444  * boundary.
445  */
446 struct blk_independent_access_range {
447 	struct kobject		kobj;
448 	sector_t		sector;
449 	sector_t		nr_sectors;
450 };
451 
452 struct blk_independent_access_ranges {
453 	struct kobject				kobj;
454 	bool					sysfs_registered;
455 	unsigned int				nr_ia_ranges;
456 	struct blk_independent_access_range	ia_range[];
457 };
458 
459 struct request_queue {
460 	/*
461 	 * The queue owner gets to use this for whatever they like.
462 	 * ll_rw_blk doesn't touch it.
463 	 */
464 	void			*queuedata;
465 
466 	struct elevator_queue	*elevator;
467 
468 	const struct blk_mq_ops	*mq_ops;
469 
470 	/* sw queues */
471 	struct blk_mq_ctx __percpu	*queue_ctx;
472 
473 	/*
474 	 * various queue flags, see QUEUE_* below
475 	 */
476 	unsigned long		queue_flags;
477 
478 	unsigned int		rq_timeout;
479 
480 	unsigned int		queue_depth;
481 
482 	refcount_t		refs;
483 
484 	/* hw dispatch queues */
485 	unsigned int		nr_hw_queues;
486 	struct xarray		hctx_table;
487 
488 	struct percpu_ref	q_usage_counter;
489 	struct lock_class_key	io_lock_cls_key;
490 	struct lockdep_map	io_lockdep_map;
491 
492 	struct lock_class_key	q_lock_cls_key;
493 	struct lockdep_map	q_lockdep_map;
494 
495 	struct request		*last_merge;
496 
497 	spinlock_t		queue_lock;
498 
499 	int			quiesce_depth;
500 
501 	struct gendisk		*disk;
502 
503 	/*
504 	 * mq queue kobject
505 	 */
506 	struct kobject *mq_kobj;
507 
508 	struct queue_limits	limits;
509 
510 #ifdef CONFIG_PM
511 	struct device		*dev;
512 	enum rpm_status		rpm_status;
513 #endif
514 
515 	/*
516 	 * Number of contexts that have called blk_set_pm_only(). If this
517 	 * counter is above zero then only RQF_PM requests are processed.
518 	 */
519 	atomic_t		pm_only;
520 
521 	struct blk_queue_stats	*stats;
522 	struct rq_qos		*rq_qos;
523 	struct mutex		rq_qos_mutex;
524 
525 	/*
526 	 * ida allocated id for this queue.  Used to index queues from
527 	 * ioctx.
528 	 */
529 	int			id;
530 
531 	/*
532 	 * queue settings
533 	 */
534 	unsigned long		nr_requests;	/* Max # of requests */
535 
536 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
537 	struct blk_crypto_profile *crypto_profile;
538 	struct kobject *crypto_kobject;
539 #endif
540 
541 	struct timer_list	timeout;
542 	struct work_struct	timeout_work;
543 
544 	atomic_t		nr_active_requests_shared_tags;
545 
546 	struct blk_mq_tags	*sched_shared_tags;
547 
548 	struct list_head	icq_list;
549 #ifdef CONFIG_BLK_CGROUP
550 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
551 	struct blkcg_gq		*root_blkg;
552 	struct list_head	blkg_list;
553 	struct mutex		blkcg_mutex;
554 #endif
555 
556 	int			node;
557 
558 	spinlock_t		requeue_lock;
559 	struct list_head	requeue_list;
560 	struct delayed_work	requeue_work;
561 
562 #ifdef CONFIG_BLK_DEV_IO_TRACE
563 	struct blk_trace __rcu	*blk_trace;
564 #endif
565 	/*
566 	 * for flush operations
567 	 */
568 	struct blk_flush_queue	*fq;
569 	struct list_head	flush_list;
570 
571 	/*
572 	 * Protects against I/O scheduler switching, particularly when updating
573 	 * q->elevator. Since the elevator update code path may also modify q->
574 	 * nr_requests and wbt latency, this lock also protects the sysfs attrs
575 	 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update
576 	 * may modify hctx tags, reserved-tags and cpumask, so this lock also
577 	 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking
578 	 * order during an elevator or nr_hw_queue update, first freeze the
579 	 * queue, then acquire ->elevator_lock.
580 	 */
581 	struct mutex		elevator_lock;
582 
583 	struct mutex		sysfs_lock;
584 	/*
585 	 * Protects queue limits and also sysfs attribute read_ahead_kb.
586 	 */
587 	struct mutex		limits_lock;
588 
589 	/*
590 	 * for reusing dead hctx instance in case of updating
591 	 * nr_hw_queues
592 	 */
593 	struct list_head	unused_hctx_list;
594 	spinlock_t		unused_hctx_lock;
595 
596 	int			mq_freeze_depth;
597 
598 #ifdef CONFIG_BLK_DEV_THROTTLING
599 	/* Throttle data */
600 	struct throtl_data *td;
601 #endif
602 	struct rcu_head		rcu_head;
603 #ifdef CONFIG_LOCKDEP
604 	struct task_struct	*mq_freeze_owner;
605 	int			mq_freeze_owner_depth;
606 	/*
607 	 * Records disk & queue state in current context, used in unfreeze
608 	 * queue
609 	 */
610 	bool			mq_freeze_disk_dead;
611 	bool			mq_freeze_queue_dying;
612 #endif
613 	wait_queue_head_t	mq_freeze_wq;
614 	/*
615 	 * Protect concurrent access to q_usage_counter by
616 	 * percpu_ref_kill() and percpu_ref_reinit().
617 	 */
618 	struct mutex		mq_freeze_lock;
619 
620 	struct blk_mq_tag_set	*tag_set;
621 	struct list_head	tag_set_list;
622 
623 	struct dentry		*debugfs_dir;
624 	struct dentry		*sched_debugfs_dir;
625 	struct dentry		*rqos_debugfs_dir;
626 	/*
627 	 * Serializes all debugfs metadata operations using the above dentries.
628 	 */
629 	struct mutex		debugfs_mutex;
630 };
631 
632 /* Keep blk_queue_flag_name[] in sync with the definitions below */
633 enum {
634 	QUEUE_FLAG_DYING,		/* queue being torn down */
635 	QUEUE_FLAG_NOMERGES,		/* disable merge attempts */
636 	QUEUE_FLAG_SAME_COMP,		/* complete on same CPU-group */
637 	QUEUE_FLAG_FAIL_IO,		/* fake timeout */
638 	QUEUE_FLAG_NOXMERGES,		/* No extended merges */
639 	QUEUE_FLAG_SAME_FORCE,		/* force complete on same CPU */
640 	QUEUE_FLAG_INIT_DONE,		/* queue is initialized */
641 	QUEUE_FLAG_STATS,		/* track IO start and completion times */
642 	QUEUE_FLAG_REGISTERED,		/* queue has been registered to a disk */
643 	QUEUE_FLAG_QUIESCED,		/* queue has been quiesced */
644 	QUEUE_FLAG_RQ_ALLOC_TIME,	/* record rq->alloc_time_ns */
645 	QUEUE_FLAG_HCTX_ACTIVE,		/* at least one blk-mq hctx is active */
646 	QUEUE_FLAG_SQ_SCHED,		/* single queue style io dispatch */
647 	QUEUE_FLAG_MAX
648 };
649 
650 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
651 
652 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
653 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
654 
655 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
656 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
657 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
658 #define blk_queue_noxmerges(q)	\
659 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
660 #define blk_queue_nonrot(q)	(!((q)->limits.features & BLK_FEAT_ROTATIONAL))
661 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
662 #define blk_queue_passthrough_stat(q)	\
663 	((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
664 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
665 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
666 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
667 #define blk_queue_rq_alloc_time(q)	\
668 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
669 #else
670 #define blk_queue_rq_alloc_time(q)	false
671 #endif
672 
673 #define blk_noretry_request(rq) \
674 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
675 			     REQ_FAILFAST_DRIVER))
676 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
677 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
678 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
679 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
680 #define blk_queue_skip_tagset_quiesce(q) \
681 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
682 
683 extern void blk_set_pm_only(struct request_queue *q);
684 extern void blk_clear_pm_only(struct request_queue *q);
685 
686 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
687 
688 #define dma_map_bvec(dev, bv, dir, attrs) \
689 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
690 	(dir), (attrs))
691 
queue_is_mq(struct request_queue * q)692 static inline bool queue_is_mq(struct request_queue *q)
693 {
694 	return q->mq_ops;
695 }
696 
697 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)698 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
699 {
700 	return q->rpm_status;
701 }
702 #else
queue_rpm_status(struct request_queue * q)703 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
704 {
705 	return RPM_ACTIVE;
706 }
707 #endif
708 
blk_queue_is_zoned(struct request_queue * q)709 static inline bool blk_queue_is_zoned(struct request_queue *q)
710 {
711 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
712 		(q->limits.features & BLK_FEAT_ZONED);
713 }
714 
715 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)716 static inline unsigned int disk_nr_zones(struct gendisk *disk)
717 {
718 	return disk->nr_zones;
719 }
720 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
721 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)722 static inline unsigned int disk_nr_zones(struct gendisk *disk)
723 {
724 	return 0;
725 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)726 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
727 {
728 	return false;
729 }
730 #endif /* CONFIG_BLK_DEV_ZONED */
731 
disk_zone_no(struct gendisk * disk,sector_t sector)732 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
733 {
734 	if (!blk_queue_is_zoned(disk->queue))
735 		return 0;
736 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
737 }
738 
bdev_nr_zones(struct block_device * bdev)739 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
740 {
741 	return disk_nr_zones(bdev->bd_disk);
742 }
743 
bdev_max_open_zones(struct block_device * bdev)744 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
745 {
746 	return bdev->bd_disk->queue->limits.max_open_zones;
747 }
748 
bdev_max_active_zones(struct block_device * bdev)749 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
750 {
751 	return bdev->bd_disk->queue->limits.max_active_zones;
752 }
753 
blk_queue_depth(struct request_queue * q)754 static inline unsigned int blk_queue_depth(struct request_queue *q)
755 {
756 	if (q->queue_depth)
757 		return q->queue_depth;
758 
759 	return q->nr_requests;
760 }
761 
762 /*
763  * default timeout for SG_IO if none specified
764  */
765 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
766 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
767 
768 /* This should not be used directly - use rq_for_each_segment */
769 #define for_each_bio(_bio)		\
770 	for (; _bio; _bio = _bio->bi_next)
771 
772 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
773 				 const struct attribute_group **groups,
774 				 struct fwnode_handle *fwnode);
775 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
776 				 const struct attribute_group **groups);
add_disk(struct gendisk * disk)777 static inline int __must_check add_disk(struct gendisk *disk)
778 {
779 	return device_add_disk(NULL, disk, NULL);
780 }
781 void del_gendisk(struct gendisk *gp);
782 void invalidate_disk(struct gendisk *disk);
783 void set_disk_ro(struct gendisk *disk, bool read_only);
784 void disk_uevent(struct gendisk *disk, enum kobject_action action);
785 
bdev_partno(const struct block_device * bdev)786 static inline u8 bdev_partno(const struct block_device *bdev)
787 {
788 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
789 }
790 
bdev_test_flag(const struct block_device * bdev,unsigned flag)791 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
792 {
793 	return atomic_read(&bdev->__bd_flags) & flag;
794 }
795 
bdev_set_flag(struct block_device * bdev,unsigned flag)796 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
797 {
798 	atomic_or(flag, &bdev->__bd_flags);
799 }
800 
bdev_clear_flag(struct block_device * bdev,unsigned flag)801 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
802 {
803 	atomic_andnot(flag, &bdev->__bd_flags);
804 }
805 
get_disk_ro(struct gendisk * disk)806 static inline bool get_disk_ro(struct gendisk *disk)
807 {
808 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
809 		test_bit(GD_READ_ONLY, &disk->state);
810 }
811 
bdev_read_only(struct block_device * bdev)812 static inline bool bdev_read_only(struct block_device *bdev)
813 {
814 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
815 }
816 
817 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
818 void disk_force_media_change(struct gendisk *disk);
819 void bdev_mark_dead(struct block_device *bdev, bool surprise);
820 
821 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
822 void rand_initialize_disk(struct gendisk *disk);
823 
get_start_sect(struct block_device * bdev)824 static inline sector_t get_start_sect(struct block_device *bdev)
825 {
826 	return bdev->bd_start_sect;
827 }
828 
bdev_nr_sectors(struct block_device * bdev)829 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
830 {
831 	return bdev->bd_nr_sectors;
832 }
833 
bdev_nr_bytes(struct block_device * bdev)834 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
835 {
836 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
837 }
838 
get_capacity(struct gendisk * disk)839 static inline sector_t get_capacity(struct gendisk *disk)
840 {
841 	return bdev_nr_sectors(disk->part0);
842 }
843 
sb_bdev_nr_blocks(struct super_block * sb)844 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
845 {
846 	return bdev_nr_sectors(sb->s_bdev) >>
847 		(sb->s_blocksize_bits - SECTOR_SHIFT);
848 }
849 
850 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
851 
852 void put_disk(struct gendisk *disk);
853 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
854 		struct lock_class_key *lkclass);
855 
856 /**
857  * blk_alloc_disk - allocate a gendisk structure
858  * @lim: queue limits to be used for this disk.
859  * @node_id: numa node to allocate on
860  *
861  * Allocate and pre-initialize a gendisk structure for use with BIO based
862  * drivers.
863  *
864  * Returns an ERR_PTR on error, else the allocated disk.
865  *
866  * Context: can sleep
867  */
868 #define blk_alloc_disk(lim, node_id)					\
869 ({									\
870 	static struct lock_class_key __key;				\
871 									\
872 	__blk_alloc_disk(lim, node_id, &__key);				\
873 })
874 
875 int __register_blkdev(unsigned int major, const char *name,
876 		void (*probe)(dev_t devt));
877 #define register_blkdev(major, name) \
878 	__register_blkdev(major, name, NULL)
879 void unregister_blkdev(unsigned int major, const char *name);
880 
881 bool disk_check_media_change(struct gendisk *disk);
882 void set_capacity(struct gendisk *disk, sector_t size);
883 
884 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
885 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
886 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
887 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)888 static inline int bd_link_disk_holder(struct block_device *bdev,
889 				      struct gendisk *disk)
890 {
891 	return 0;
892 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)893 static inline void bd_unlink_disk_holder(struct block_device *bdev,
894 					 struct gendisk *disk)
895 {
896 }
897 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
898 
899 dev_t part_devt(struct gendisk *disk, u8 partno);
900 void inc_diskseq(struct gendisk *disk);
901 void blk_request_module(dev_t devt);
902 
903 extern int blk_register_queue(struct gendisk *disk);
904 extern void blk_unregister_queue(struct gendisk *disk);
905 void submit_bio_noacct(struct bio *bio);
906 struct bio *bio_split_to_limits(struct bio *bio);
907 
908 extern int blk_lld_busy(struct request_queue *q);
909 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
910 extern void blk_queue_exit(struct request_queue *q);
911 extern void blk_sync_queue(struct request_queue *q);
912 
913 /* Helper to convert REQ_OP_XXX to its string format XXX */
914 extern const char *blk_op_str(enum req_op op);
915 
916 int blk_status_to_errno(blk_status_t status);
917 blk_status_t errno_to_blk_status(int errno);
918 const char *blk_status_to_str(blk_status_t status);
919 
920 /* only poll the hardware once, don't continue until a completion was found */
921 #define BLK_POLL_ONESHOT		(1 << 0)
922 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
923 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
924 			unsigned int flags);
925 
bdev_get_queue(struct block_device * bdev)926 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
927 {
928 	return bdev->bd_queue;	/* this is never NULL */
929 }
930 
931 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
932 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
933 
bio_zone_no(struct bio * bio)934 static inline unsigned int bio_zone_no(struct bio *bio)
935 {
936 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
937 }
938 
bio_straddles_zones(struct bio * bio)939 static inline bool bio_straddles_zones(struct bio *bio)
940 {
941 	return bio_sectors(bio) &&
942 		bio_zone_no(bio) !=
943 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
944 }
945 
946 /*
947  * Return how much within the boundary is left to be used for I/O at a given
948  * offset.
949  */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)950 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
951 		unsigned int boundary_sectors)
952 {
953 	if (unlikely(!is_power_of_2(boundary_sectors)))
954 		return boundary_sectors - sector_div(offset, boundary_sectors);
955 	return boundary_sectors - (offset & (boundary_sectors - 1));
956 }
957 
958 /**
959  * queue_limits_start_update - start an atomic update of queue limits
960  * @q:		queue to update
961  *
962  * This functions starts an atomic update of the queue limits.  It takes a lock
963  * to prevent other updates and returns a snapshot of the current limits that
964  * the caller can modify.  The caller must call queue_limits_commit_update()
965  * to finish the update.
966  *
967  * Context: process context.
968  */
969 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)970 queue_limits_start_update(struct request_queue *q)
971 {
972 	mutex_lock(&q->limits_lock);
973 	return q->limits;
974 }
975 int queue_limits_commit_update_frozen(struct request_queue *q,
976 		struct queue_limits *lim);
977 int queue_limits_commit_update(struct request_queue *q,
978 		struct queue_limits *lim);
979 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
980 int blk_validate_limits(struct queue_limits *lim);
981 
982 /**
983  * queue_limits_cancel_update - cancel an atomic update of queue limits
984  * @q:		queue to update
985  *
986  * This functions cancels an atomic update of the queue limits started by
987  * queue_limits_start_update() and should be used when an error occurs after
988  * starting update.
989  */
queue_limits_cancel_update(struct request_queue * q)990 static inline void queue_limits_cancel_update(struct request_queue *q)
991 {
992 	mutex_unlock(&q->limits_lock);
993 }
994 
995 /*
996  * These helpers are for drivers that have sloppy feature negotiation and might
997  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
998  * completion handler when the device returned an indicator that the respective
999  * feature is not actually supported.  They are racy and the driver needs to
1000  * cope with that.  Try to avoid this scheme if you can.
1001  */
blk_queue_disable_discard(struct request_queue * q)1002 static inline void blk_queue_disable_discard(struct request_queue *q)
1003 {
1004 	q->limits.max_discard_sectors = 0;
1005 }
1006 
blk_queue_disable_secure_erase(struct request_queue * q)1007 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1008 {
1009 	q->limits.max_secure_erase_sectors = 0;
1010 }
1011 
blk_queue_disable_write_zeroes(struct request_queue * q)1012 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1013 {
1014 	q->limits.max_write_zeroes_sectors = 0;
1015 }
1016 
1017 /*
1018  * Access functions for manipulating queue properties
1019  */
1020 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1021 extern void blk_set_stacking_limits(struct queue_limits *lim);
1022 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1023 			    sector_t offset);
1024 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1025 		sector_t offset, const char *pfx);
1026 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1027 
1028 struct blk_independent_access_ranges *
1029 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1030 void disk_set_independent_access_ranges(struct gendisk *disk,
1031 				struct blk_independent_access_ranges *iars);
1032 
1033 bool __must_check blk_get_queue(struct request_queue *);
1034 extern void blk_put_queue(struct request_queue *);
1035 
1036 void blk_mark_disk_dead(struct gendisk *disk);
1037 
1038 struct rq_list {
1039 	struct request *head;
1040 	struct request *tail;
1041 };
1042 
1043 #ifdef CONFIG_BLOCK
1044 /*
1045  * blk_plug permits building a queue of related requests by holding the I/O
1046  * fragments for a short period. This allows merging of sequential requests
1047  * into single larger request. As the requests are moved from a per-task list to
1048  * the device's request_queue in a batch, this results in improved scalability
1049  * as the lock contention for request_queue lock is reduced.
1050  *
1051  * It is ok not to disable preemption when adding the request to the plug list
1052  * or when attempting a merge. For details, please see schedule() where
1053  * blk_flush_plug() is called.
1054  */
1055 struct blk_plug {
1056 	struct rq_list mq_list; /* blk-mq requests */
1057 
1058 	/* if ios_left is > 1, we can batch tag/rq allocations */
1059 	struct rq_list cached_rqs;
1060 	u64 cur_ktime;
1061 	unsigned short nr_ios;
1062 
1063 	unsigned short rq_count;
1064 
1065 	bool multiple_queues;
1066 	bool has_elevator;
1067 
1068 	struct list_head cb_list; /* md requires an unplug callback */
1069 };
1070 
1071 struct blk_plug_cb;
1072 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1073 struct blk_plug_cb {
1074 	struct list_head list;
1075 	blk_plug_cb_fn callback;
1076 	void *data;
1077 };
1078 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1079 					     void *data, int size);
1080 extern void blk_start_plug(struct blk_plug *);
1081 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1082 extern void blk_finish_plug(struct blk_plug *);
1083 
1084 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1085 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1086 {
1087 	if (plug)
1088 		__blk_flush_plug(plug, async);
1089 }
1090 
1091 /*
1092  * tsk == current here
1093  */
blk_plug_invalidate_ts(struct task_struct * tsk)1094 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1095 {
1096 	struct blk_plug *plug = tsk->plug;
1097 
1098 	if (plug)
1099 		plug->cur_ktime = 0;
1100 	current->flags &= ~PF_BLOCK_TS;
1101 }
1102 
1103 int blkdev_issue_flush(struct block_device *bdev);
1104 long nr_blockdev_pages(void);
1105 #else /* CONFIG_BLOCK */
1106 struct blk_plug {
1107 };
1108 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1109 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1110 					 unsigned short nr_ios)
1111 {
1112 }
1113 
blk_start_plug(struct blk_plug * plug)1114 static inline void blk_start_plug(struct blk_plug *plug)
1115 {
1116 }
1117 
blk_finish_plug(struct blk_plug * plug)1118 static inline void blk_finish_plug(struct blk_plug *plug)
1119 {
1120 }
1121 
blk_flush_plug(struct blk_plug * plug,bool async)1122 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1123 {
1124 }
1125 
blk_plug_invalidate_ts(struct task_struct * tsk)1126 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1127 {
1128 }
1129 
blkdev_issue_flush(struct block_device * bdev)1130 static inline int blkdev_issue_flush(struct block_device *bdev)
1131 {
1132 	return 0;
1133 }
1134 
nr_blockdev_pages(void)1135 static inline long nr_blockdev_pages(void)
1136 {
1137 	return 0;
1138 }
1139 #endif /* CONFIG_BLOCK */
1140 
1141 extern void blk_io_schedule(void);
1142 
1143 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1144 		sector_t nr_sects, gfp_t gfp_mask);
1145 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1146 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1147 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1148 		sector_t nr_sects, gfp_t gfp);
1149 
1150 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1151 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1152 #define BLKDEV_ZERO_KILLABLE	(1 << 2)  /* interruptible by fatal signals */
1153 
1154 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1155 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1156 		unsigned flags);
1157 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1158 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1159 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1160 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1161 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1162 {
1163 	return blkdev_issue_discard(sb->s_bdev,
1164 				    block << (sb->s_blocksize_bits -
1165 					      SECTOR_SHIFT),
1166 				    nr_blocks << (sb->s_blocksize_bits -
1167 						  SECTOR_SHIFT),
1168 				    gfp_mask);
1169 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1170 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1171 		sector_t nr_blocks, gfp_t gfp_mask)
1172 {
1173 	return blkdev_issue_zeroout(sb->s_bdev,
1174 				    block << (sb->s_blocksize_bits -
1175 					      SECTOR_SHIFT),
1176 				    nr_blocks << (sb->s_blocksize_bits -
1177 						  SECTOR_SHIFT),
1178 				    gfp_mask, 0);
1179 }
1180 
bdev_is_partition(struct block_device * bdev)1181 static inline bool bdev_is_partition(struct block_device *bdev)
1182 {
1183 	return bdev_partno(bdev) != 0;
1184 }
1185 
1186 enum blk_default_limits {
1187 	BLK_MAX_SEGMENTS	= 128,
1188 	BLK_SAFE_MAX_SECTORS	= 255,
1189 	BLK_MAX_SEGMENT_SIZE	= 65536,
1190 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1191 };
1192 
1193 /*
1194  * Default upper limit for the software max_sectors limit used for
1195  * regular file system I/O.  This can be increased through sysfs.
1196  *
1197  * Not to be confused with the max_hw_sector limit that is entirely
1198  * controlled by the driver, usually based on hardware limits.
1199  */
1200 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1201 
bdev_limits(struct block_device * bdev)1202 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1203 {
1204 	return &bdev_get_queue(bdev)->limits;
1205 }
1206 
queue_segment_boundary(const struct request_queue * q)1207 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1208 {
1209 	return q->limits.seg_boundary_mask;
1210 }
1211 
queue_virt_boundary(const struct request_queue * q)1212 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1213 {
1214 	return q->limits.virt_boundary_mask;
1215 }
1216 
queue_max_sectors(const struct request_queue * q)1217 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1218 {
1219 	return q->limits.max_sectors;
1220 }
1221 
queue_max_bytes(struct request_queue * q)1222 static inline unsigned int queue_max_bytes(struct request_queue *q)
1223 {
1224 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1225 }
1226 
queue_max_hw_sectors(const struct request_queue * q)1227 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1228 {
1229 	return q->limits.max_hw_sectors;
1230 }
1231 
queue_max_segments(const struct request_queue * q)1232 static inline unsigned short queue_max_segments(const struct request_queue *q)
1233 {
1234 	return q->limits.max_segments;
1235 }
1236 
queue_max_discard_segments(const struct request_queue * q)1237 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1238 {
1239 	return q->limits.max_discard_segments;
1240 }
1241 
queue_max_segment_size(const struct request_queue * q)1242 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1243 {
1244 	return q->limits.max_segment_size;
1245 }
1246 
queue_emulates_zone_append(struct request_queue * q)1247 static inline bool queue_emulates_zone_append(struct request_queue *q)
1248 {
1249 	return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1250 }
1251 
bdev_emulates_zone_append(struct block_device * bdev)1252 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1253 {
1254 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1255 }
1256 
1257 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1258 bdev_max_zone_append_sectors(struct block_device *bdev)
1259 {
1260 	return bdev_limits(bdev)->max_zone_append_sectors;
1261 }
1262 
bdev_max_segments(struct block_device * bdev)1263 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1264 {
1265 	return queue_max_segments(bdev_get_queue(bdev));
1266 }
1267 
queue_logical_block_size(const struct request_queue * q)1268 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1269 {
1270 	return q->limits.logical_block_size;
1271 }
1272 
bdev_logical_block_size(struct block_device * bdev)1273 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1274 {
1275 	return queue_logical_block_size(bdev_get_queue(bdev));
1276 }
1277 
queue_physical_block_size(const struct request_queue * q)1278 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1279 {
1280 	return q->limits.physical_block_size;
1281 }
1282 
bdev_physical_block_size(struct block_device * bdev)1283 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1284 {
1285 	return queue_physical_block_size(bdev_get_queue(bdev));
1286 }
1287 
queue_io_min(const struct request_queue * q)1288 static inline unsigned int queue_io_min(const struct request_queue *q)
1289 {
1290 	return q->limits.io_min;
1291 }
1292 
bdev_io_min(struct block_device * bdev)1293 static inline unsigned int bdev_io_min(struct block_device *bdev)
1294 {
1295 	return queue_io_min(bdev_get_queue(bdev));
1296 }
1297 
queue_io_opt(const struct request_queue * q)1298 static inline unsigned int queue_io_opt(const struct request_queue *q)
1299 {
1300 	return q->limits.io_opt;
1301 }
1302 
bdev_io_opt(struct block_device * bdev)1303 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1304 {
1305 	return queue_io_opt(bdev_get_queue(bdev));
1306 }
1307 
1308 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1309 queue_zone_write_granularity(const struct request_queue *q)
1310 {
1311 	return q->limits.zone_write_granularity;
1312 }
1313 
1314 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1315 bdev_zone_write_granularity(struct block_device *bdev)
1316 {
1317 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1318 }
1319 
1320 int bdev_alignment_offset(struct block_device *bdev);
1321 unsigned int bdev_discard_alignment(struct block_device *bdev);
1322 
bdev_max_discard_sectors(struct block_device * bdev)1323 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1324 {
1325 	return bdev_limits(bdev)->max_discard_sectors;
1326 }
1327 
bdev_discard_granularity(struct block_device * bdev)1328 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1329 {
1330 	return bdev_limits(bdev)->discard_granularity;
1331 }
1332 
1333 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1334 bdev_max_secure_erase_sectors(struct block_device *bdev)
1335 {
1336 	return bdev_limits(bdev)->max_secure_erase_sectors;
1337 }
1338 
bdev_write_zeroes_sectors(struct block_device * bdev)1339 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1340 {
1341 	return bdev_limits(bdev)->max_write_zeroes_sectors;
1342 }
1343 
bdev_nonrot(struct block_device * bdev)1344 static inline bool bdev_nonrot(struct block_device *bdev)
1345 {
1346 	return blk_queue_nonrot(bdev_get_queue(bdev));
1347 }
1348 
bdev_synchronous(struct block_device * bdev)1349 static inline bool bdev_synchronous(struct block_device *bdev)
1350 {
1351 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1352 }
1353 
bdev_stable_writes(struct block_device * bdev)1354 static inline bool bdev_stable_writes(struct block_device *bdev)
1355 {
1356 	struct request_queue *q = bdev_get_queue(bdev);
1357 
1358 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1359 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1360 		return true;
1361 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1362 }
1363 
blk_queue_write_cache(struct request_queue * q)1364 static inline bool blk_queue_write_cache(struct request_queue *q)
1365 {
1366 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1367 		!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1368 }
1369 
bdev_write_cache(struct block_device * bdev)1370 static inline bool bdev_write_cache(struct block_device *bdev)
1371 {
1372 	return blk_queue_write_cache(bdev_get_queue(bdev));
1373 }
1374 
bdev_fua(struct block_device * bdev)1375 static inline bool bdev_fua(struct block_device *bdev)
1376 {
1377 	return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1378 }
1379 
bdev_nowait(struct block_device * bdev)1380 static inline bool bdev_nowait(struct block_device *bdev)
1381 {
1382 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1383 }
1384 
bdev_is_zoned(struct block_device * bdev)1385 static inline bool bdev_is_zoned(struct block_device *bdev)
1386 {
1387 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1388 }
1389 
bdev_zone_no(struct block_device * bdev,sector_t sec)1390 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1391 {
1392 	return disk_zone_no(bdev->bd_disk, sec);
1393 }
1394 
bdev_zone_sectors(struct block_device * bdev)1395 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1396 {
1397 	struct request_queue *q = bdev_get_queue(bdev);
1398 
1399 	if (!blk_queue_is_zoned(q))
1400 		return 0;
1401 	return q->limits.chunk_sectors;
1402 }
1403 
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1404 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1405 						   sector_t sector)
1406 {
1407 	return sector & (bdev_zone_sectors(bdev) - 1);
1408 }
1409 
bio_offset_from_zone_start(struct bio * bio)1410 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1411 {
1412 	return bdev_offset_from_zone_start(bio->bi_bdev,
1413 					   bio->bi_iter.bi_sector);
1414 }
1415 
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1416 static inline bool bdev_is_zone_start(struct block_device *bdev,
1417 				      sector_t sector)
1418 {
1419 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1420 }
1421 
1422 /**
1423  * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1424  * @bdev:	block device to check
1425  * @sector:	sector number
1426  *
1427  * Check if @sector on @bdev is contained in a sequential write required zone.
1428  */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1429 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1430 {
1431 	bool is_seq = false;
1432 
1433 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1434 	if (bdev_is_zoned(bdev)) {
1435 		struct gendisk *disk = bdev->bd_disk;
1436 		unsigned long *bitmap;
1437 
1438 		rcu_read_lock();
1439 		bitmap = rcu_dereference(disk->conv_zones_bitmap);
1440 		is_seq = !bitmap ||
1441 			!test_bit(disk_zone_no(disk, sector), bitmap);
1442 		rcu_read_unlock();
1443 	}
1444 #endif
1445 
1446 	return is_seq;
1447 }
1448 
1449 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1450 			   sector_t nr_sects, gfp_t gfp_mask);
1451 
queue_dma_alignment(const struct request_queue * q)1452 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1453 {
1454 	return q->limits.dma_alignment;
1455 }
1456 
1457 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1458 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1459 {
1460 	return q->limits.atomic_write_unit_max;
1461 }
1462 
1463 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1464 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1465 {
1466 	return q->limits.atomic_write_unit_min;
1467 }
1468 
1469 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1470 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1471 {
1472 	return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1473 }
1474 
1475 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1476 queue_atomic_write_max_bytes(const struct request_queue *q)
1477 {
1478 	return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1479 }
1480 
bdev_dma_alignment(struct block_device * bdev)1481 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1482 {
1483 	return queue_dma_alignment(bdev_get_queue(bdev));
1484 }
1485 
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1486 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1487 					struct iov_iter *iter)
1488 {
1489 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1490 				   bdev_logical_block_size(bdev) - 1);
1491 }
1492 
1493 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1494 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1495 {
1496 	return lim->dma_alignment | lim->dma_pad_mask;
1497 }
1498 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1499 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1500 				 unsigned int len)
1501 {
1502 	unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1503 
1504 	return !(addr & alignment) && !(len & alignment);
1505 }
1506 
1507 /* assumes size > 256 */
blksize_bits(unsigned int size)1508 static inline unsigned int blksize_bits(unsigned int size)
1509 {
1510 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1511 }
1512 
1513 int kblockd_schedule_work(struct work_struct *work);
1514 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1515 
1516 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1517 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1518 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1519 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1520 
1521 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1522 
1523 bool blk_crypto_register(struct blk_crypto_profile *profile,
1524 			 struct request_queue *q);
1525 
1526 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1527 
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1528 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1529 				       struct request_queue *q)
1530 {
1531 	return true;
1532 }
1533 
1534 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1535 
1536 enum blk_unique_id {
1537 	/* these match the Designator Types specified in SPC */
1538 	BLK_UID_T10	= 1,
1539 	BLK_UID_EUI64	= 2,
1540 	BLK_UID_NAA	= 3,
1541 };
1542 
1543 struct block_device_operations {
1544 	void (*submit_bio)(struct bio *bio);
1545 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1546 			unsigned int flags);
1547 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1548 	void (*release)(struct gendisk *disk);
1549 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1550 			unsigned cmd, unsigned long arg);
1551 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1552 			unsigned cmd, unsigned long arg);
1553 	unsigned int (*check_events) (struct gendisk *disk,
1554 				      unsigned int clearing);
1555 	void (*unlock_native_capacity) (struct gendisk *);
1556 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1557 	int (*set_read_only)(struct block_device *bdev, bool ro);
1558 	void (*free_disk)(struct gendisk *disk);
1559 	/* this callback is with swap_lock and sometimes page table lock held */
1560 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1561 	int (*report_zones)(struct gendisk *, sector_t sector,
1562 			unsigned int nr_zones, report_zones_cb cb, void *data);
1563 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1564 	/* returns the length of the identifier or a negative errno: */
1565 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1566 			enum blk_unique_id id_type);
1567 	struct module *owner;
1568 	const struct pr_ops *pr_ops;
1569 
1570 	/*
1571 	 * Special callback for probing GPT entry at a given sector.
1572 	 * Needed by Android devices, used by GPT scanner and MMC blk
1573 	 * driver.
1574 	 */
1575 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1576 };
1577 
1578 #ifdef CONFIG_COMPAT
1579 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1580 				      unsigned int, unsigned long);
1581 #else
1582 #define blkdev_compat_ptr_ioctl NULL
1583 #endif
1584 
blk_wake_io_task(struct task_struct * waiter)1585 static inline void blk_wake_io_task(struct task_struct *waiter)
1586 {
1587 	/*
1588 	 * If we're polling, the task itself is doing the completions. For
1589 	 * that case, we don't need to signal a wakeup, it's enough to just
1590 	 * mark us as RUNNING.
1591 	 */
1592 	if (waiter == current)
1593 		__set_current_state(TASK_RUNNING);
1594 	else
1595 		wake_up_process(waiter);
1596 }
1597 
1598 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1599 				 unsigned long start_time);
1600 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1601 		      unsigned int sectors, unsigned long start_time);
1602 
1603 unsigned long bio_start_io_acct(struct bio *bio);
1604 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1605 		struct block_device *orig_bdev);
1606 
1607 /**
1608  * bio_end_io_acct - end I/O accounting for bio based drivers
1609  * @bio:	bio to end account for
1610  * @start_time:	start time returned by bio_start_io_acct()
1611  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1612 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1613 {
1614 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1615 }
1616 
1617 int set_blocksize(struct file *file, int size);
1618 
1619 int lookup_bdev(const char *pathname, dev_t *dev);
1620 
1621 void blkdev_show(struct seq_file *seqf, off_t offset);
1622 
1623 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1624 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1625 #ifdef CONFIG_BLOCK
1626 #define BLKDEV_MAJOR_MAX	512
1627 #else
1628 #define BLKDEV_MAJOR_MAX	0
1629 #endif
1630 
1631 struct blk_holder_ops {
1632 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1633 
1634 	/*
1635 	 * Sync the file system mounted on the block device.
1636 	 */
1637 	void (*sync)(struct block_device *bdev);
1638 
1639 	/*
1640 	 * Freeze the file system mounted on the block device.
1641 	 */
1642 	int (*freeze)(struct block_device *bdev);
1643 
1644 	/*
1645 	 * Thaw the file system mounted on the block device.
1646 	 */
1647 	int (*thaw)(struct block_device *bdev);
1648 };
1649 
1650 /*
1651  * For filesystems using @fs_holder_ops, the @holder argument passed to
1652  * helpers used to open and claim block devices via
1653  * bd_prepare_to_claim() must point to a superblock.
1654  */
1655 extern const struct blk_holder_ops fs_holder_ops;
1656 
1657 /*
1658  * Return the correct open flags for blkdev_get_by_* for super block flags
1659  * as stored in sb->s_flags.
1660  */
1661 #define sb_open_mode(flags) \
1662 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1663 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1664 
1665 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1666 		const struct blk_holder_ops *hops);
1667 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1668 		void *holder, const struct blk_holder_ops *hops);
1669 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1670 		const struct blk_holder_ops *hops);
1671 void bd_abort_claiming(struct block_device *bdev, void *holder);
1672 
1673 /* just for blk-cgroup, don't use elsewhere */
1674 struct block_device *blkdev_get_no_open(dev_t dev);
1675 void blkdev_put_no_open(struct block_device *bdev);
1676 
1677 struct block_device *I_BDEV(struct inode *inode);
1678 struct block_device *file_bdev(struct file *bdev_file);
1679 bool disk_live(struct gendisk *disk);
1680 unsigned int block_size(struct block_device *bdev);
1681 
1682 #ifdef CONFIG_BLOCK
1683 void invalidate_bdev(struct block_device *bdev);
1684 int sync_blockdev(struct block_device *bdev);
1685 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1686 int sync_blockdev_nowait(struct block_device *bdev);
1687 void sync_bdevs(bool wait);
1688 void bdev_statx(struct path *, struct kstat *, u32);
1689 void printk_all_partitions(void);
1690 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1691 #else
invalidate_bdev(struct block_device * bdev)1692 static inline void invalidate_bdev(struct block_device *bdev)
1693 {
1694 }
sync_blockdev(struct block_device * bdev)1695 static inline int sync_blockdev(struct block_device *bdev)
1696 {
1697 	return 0;
1698 }
sync_blockdev_nowait(struct block_device * bdev)1699 static inline int sync_blockdev_nowait(struct block_device *bdev)
1700 {
1701 	return 0;
1702 }
sync_bdevs(bool wait)1703 static inline void sync_bdevs(bool wait)
1704 {
1705 }
bdev_statx(struct path * path,struct kstat * stat,u32 request_mask)1706 static inline void bdev_statx(struct path *path, struct kstat *stat,
1707 				u32 request_mask)
1708 {
1709 }
printk_all_partitions(void)1710 static inline void printk_all_partitions(void)
1711 {
1712 }
early_lookup_bdev(const char * pathname,dev_t * dev)1713 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1714 {
1715 	return -EINVAL;
1716 }
1717 #endif /* CONFIG_BLOCK */
1718 
1719 int bdev_freeze(struct block_device *bdev);
1720 int bdev_thaw(struct block_device *bdev);
1721 void bdev_fput(struct file *bdev_file);
1722 
1723 struct io_comp_batch {
1724 	struct rq_list req_list;
1725 	bool need_ts;
1726 	void (*complete)(struct io_comp_batch *);
1727 };
1728 
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1729 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1730 						struct queue_limits *limits)
1731 {
1732 	unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1733 				limits->atomic_write_hw_boundary);
1734 
1735 	return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1736 }
1737 
bdev_can_atomic_write(struct block_device * bdev)1738 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1739 {
1740 	struct request_queue *bd_queue = bdev->bd_queue;
1741 	struct queue_limits *limits = &bd_queue->limits;
1742 
1743 	if (!limits->atomic_write_unit_min)
1744 		return false;
1745 
1746 	if (bdev_is_partition(bdev))
1747 		return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1748 							limits);
1749 
1750 	return true;
1751 }
1752 
1753 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1754 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1755 {
1756 	if (!bdev_can_atomic_write(bdev))
1757 		return 0;
1758 	return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1759 }
1760 
1761 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1762 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1763 {
1764 	if (!bdev_can_atomic_write(bdev))
1765 		return 0;
1766 	return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1767 }
1768 
1769 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1770 
1771 #endif /* _LINUX_BLKDEV_H */
1772