1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 #include <linux/usb/midi.h> 51 #include <linux/module.h> 52 53 #include <sound/core.h> 54 #include <sound/control.h> 55 #include <sound/rawmidi.h> 56 #include <sound/asequencer.h> 57 #include "usbaudio.h" 58 #include "midi.h" 59 #include "power.h" 60 #include "helper.h" 61 62 /* 63 * define this to log all USB packets 64 */ 65 /* #define DUMP_PACKETS */ 66 67 /* 68 * how long to wait after some USB errors, so that hub_wq can disconnect() us 69 * without too many spurious errors 70 */ 71 #define ERROR_DELAY_JIFFIES (HZ / 10) 72 73 #define OUTPUT_URBS 7 74 #define INPUT_URBS 7 75 76 77 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 78 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 79 MODULE_LICENSE("Dual BSD/GPL"); 80 81 struct snd_usb_midi_in_endpoint; 82 struct snd_usb_midi_out_endpoint; 83 struct snd_usb_midi_endpoint; 84 85 struct usb_protocol_ops { 86 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 87 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 88 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 89 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *); 90 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *); 91 }; 92 93 struct snd_usb_midi { 94 struct usb_device *dev; 95 struct snd_card *card; 96 struct usb_interface *iface; 97 const struct snd_usb_audio_quirk *quirk; 98 struct snd_rawmidi *rmidi; 99 const struct usb_protocol_ops *usb_protocol_ops; 100 struct list_head list; 101 struct timer_list error_timer; 102 spinlock_t disc_lock; 103 struct rw_semaphore disc_rwsem; 104 struct mutex mutex; 105 u32 usb_id; 106 int next_midi_device; 107 108 struct snd_usb_midi_endpoint { 109 struct snd_usb_midi_out_endpoint *out; 110 struct snd_usb_midi_in_endpoint *in; 111 } endpoints[MIDI_MAX_ENDPOINTS]; 112 unsigned long input_triggered; 113 unsigned int opened[2]; 114 unsigned char disconnected; 115 unsigned char input_running; 116 117 struct snd_kcontrol *roland_load_ctl; 118 }; 119 120 struct snd_usb_midi_out_endpoint { 121 struct snd_usb_midi *umidi; 122 struct out_urb_context { 123 struct urb *urb; 124 struct snd_usb_midi_out_endpoint *ep; 125 } urbs[OUTPUT_URBS]; 126 unsigned int active_urbs; 127 unsigned int drain_urbs; 128 int max_transfer; /* size of urb buffer */ 129 struct work_struct work; 130 unsigned int next_urb; 131 spinlock_t buffer_lock; 132 133 struct usbmidi_out_port { 134 struct snd_usb_midi_out_endpoint *ep; 135 struct snd_rawmidi_substream *substream; 136 int active; 137 uint8_t cable; /* cable number << 4 */ 138 uint8_t state; 139 #define STATE_UNKNOWN 0 140 #define STATE_1PARAM 1 141 #define STATE_2PARAM_1 2 142 #define STATE_2PARAM_2 3 143 #define STATE_SYSEX_0 4 144 #define STATE_SYSEX_1 5 145 #define STATE_SYSEX_2 6 146 uint8_t data[2]; 147 } ports[0x10]; 148 int current_port; 149 150 wait_queue_head_t drain_wait; 151 }; 152 153 struct snd_usb_midi_in_endpoint { 154 struct snd_usb_midi *umidi; 155 struct urb *urbs[INPUT_URBS]; 156 struct usbmidi_in_port { 157 struct snd_rawmidi_substream *substream; 158 u8 running_status_length; 159 } ports[0x10]; 160 u8 seen_f5; 161 bool in_sysex; 162 u8 last_cin; 163 u8 error_resubmit; 164 int current_port; 165 }; 166 167 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep); 168 169 static const uint8_t snd_usbmidi_cin_length[] = { 170 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 171 }; 172 173 /* 174 * Submits the URB, with error handling. 175 */ 176 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags) 177 { 178 int err = usb_submit_urb(urb, flags); 179 if (err < 0 && err != -ENODEV) 180 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err); 181 return err; 182 } 183 184 /* 185 * Error handling for URB completion functions. 186 */ 187 static int snd_usbmidi_urb_error(const struct urb *urb) 188 { 189 switch (urb->status) { 190 /* manually unlinked, or device gone */ 191 case -ENOENT: 192 case -ECONNRESET: 193 case -ESHUTDOWN: 194 case -ENODEV: 195 return -ENODEV; 196 /* errors that might occur during unplugging */ 197 case -EPROTO: 198 case -ETIME: 199 case -EILSEQ: 200 return -EIO; 201 default: 202 dev_err(&urb->dev->dev, "urb status %d\n", urb->status); 203 return 0; /* continue */ 204 } 205 } 206 207 /* 208 * Receives a chunk of MIDI data. 209 */ 210 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep, 211 int portidx, uint8_t *data, int length) 212 { 213 struct usbmidi_in_port *port = &ep->ports[portidx]; 214 215 if (!port->substream) { 216 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx); 217 return; 218 } 219 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 220 return; 221 snd_rawmidi_receive(port->substream, data, length); 222 } 223 224 #ifdef DUMP_PACKETS 225 static void dump_urb(const char *type, const u8 *data, int length) 226 { 227 pr_debug("%s packet: [", type); 228 for (; length > 0; ++data, --length) 229 pr_cont(" %02x", *data); 230 pr_cont(" ]\n"); 231 } 232 #else 233 #define dump_urb(type, data, length) /* nothing */ 234 #endif 235 236 /* 237 * Processes the data read from the device. 238 */ 239 static void snd_usbmidi_in_urb_complete(struct urb *urb) 240 { 241 struct snd_usb_midi_in_endpoint *ep = urb->context; 242 243 if (urb->status == 0) { 244 dump_urb("received", urb->transfer_buffer, urb->actual_length); 245 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 246 urb->actual_length); 247 } else { 248 int err = snd_usbmidi_urb_error(urb); 249 if (err < 0) { 250 if (err != -ENODEV) { 251 ep->error_resubmit = 1; 252 mod_timer(&ep->umidi->error_timer, 253 jiffies + ERROR_DELAY_JIFFIES); 254 } 255 return; 256 } 257 } 258 259 urb->dev = ep->umidi->dev; 260 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 261 } 262 263 static void snd_usbmidi_out_urb_complete(struct urb *urb) 264 { 265 struct out_urb_context *context = urb->context; 266 struct snd_usb_midi_out_endpoint *ep = context->ep; 267 unsigned int urb_index; 268 269 scoped_guard(spinlock_irqsave, &ep->buffer_lock) { 270 urb_index = context - ep->urbs; 271 ep->active_urbs &= ~(1 << urb_index); 272 if (unlikely(ep->drain_urbs)) { 273 ep->drain_urbs &= ~(1 << urb_index); 274 wake_up(&ep->drain_wait); 275 } 276 } 277 if (urb->status < 0) { 278 int err = snd_usbmidi_urb_error(urb); 279 if (err < 0) { 280 if (err != -ENODEV) 281 mod_timer(&ep->umidi->error_timer, 282 jiffies + ERROR_DELAY_JIFFIES); 283 return; 284 } 285 } 286 snd_usbmidi_do_output(ep); 287 } 288 289 /* 290 * This is called when some data should be transferred to the device 291 * (from one or more substreams). 292 */ 293 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep) 294 { 295 unsigned int urb_index; 296 struct urb *urb; 297 298 guard(spinlock_irqsave)(&ep->buffer_lock); 299 if (ep->umidi->disconnected) 300 return; 301 302 urb_index = ep->next_urb; 303 for (;;) { 304 if (!(ep->active_urbs & (1 << urb_index))) { 305 urb = ep->urbs[urb_index].urb; 306 urb->transfer_buffer_length = 0; 307 ep->umidi->usb_protocol_ops->output(ep, urb); 308 if (urb->transfer_buffer_length == 0) 309 break; 310 311 dump_urb("sending", urb->transfer_buffer, 312 urb->transfer_buffer_length); 313 urb->dev = ep->umidi->dev; 314 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 315 break; 316 ep->active_urbs |= 1 << urb_index; 317 } 318 if (++urb_index >= OUTPUT_URBS) 319 urb_index = 0; 320 if (urb_index == ep->next_urb) 321 break; 322 } 323 ep->next_urb = urb_index; 324 } 325 326 static void snd_usbmidi_out_work(struct work_struct *work) 327 { 328 struct snd_usb_midi_out_endpoint *ep = 329 container_of(work, struct snd_usb_midi_out_endpoint, work); 330 331 snd_usbmidi_do_output(ep); 332 } 333 334 /* called after transfers had been interrupted due to some USB error */ 335 static void snd_usbmidi_error_timer(struct timer_list *t) 336 { 337 struct snd_usb_midi *umidi = timer_container_of(umidi, t, error_timer); 338 unsigned int i, j; 339 340 guard(spinlock)(&umidi->disc_lock); 341 if (umidi->disconnected) { 342 return; 343 } 344 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 345 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 346 if (in && in->error_resubmit) { 347 in->error_resubmit = 0; 348 for (j = 0; j < INPUT_URBS; ++j) { 349 if (atomic_read(&in->urbs[j]->use_count)) 350 continue; 351 in->urbs[j]->dev = umidi->dev; 352 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 353 } 354 } 355 if (umidi->endpoints[i].out) 356 snd_usbmidi_do_output(umidi->endpoints[i].out); 357 } 358 } 359 360 /* helper function to send static data that may not DMA-able */ 361 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep, 362 const void *data, int len) 363 { 364 int err = 0; 365 void *buf = kmemdup(data, len, GFP_KERNEL); 366 if (!buf) 367 return -ENOMEM; 368 dump_urb("sending", buf, len); 369 if (ep->urbs[0].urb) 370 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 371 buf, len, NULL, 250); 372 kfree(buf); 373 return err; 374 } 375 376 /* 377 * Standard USB MIDI protocol: see the spec. 378 * Midiman protocol: like the standard protocol, but the control byte is the 379 * fourth byte in each packet, and uses length instead of CIN. 380 */ 381 382 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep, 383 uint8_t *buffer, int buffer_length) 384 { 385 int i; 386 387 for (i = 0; i + 3 < buffer_length; i += 4) 388 if (buffer[i] != 0) { 389 int cable = buffer[i] >> 4; 390 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 391 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 392 length); 393 } 394 } 395 396 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep, 397 uint8_t *buffer, int buffer_length) 398 { 399 int i; 400 401 for (i = 0; i + 3 < buffer_length; i += 4) 402 if (buffer[i + 3] != 0) { 403 int port = buffer[i + 3] >> 4; 404 int length = buffer[i + 3] & 3; 405 snd_usbmidi_input_data(ep, port, &buffer[i], length); 406 } 407 } 408 409 /* 410 * Buggy M-Audio device: running status on input results in a packet that has 411 * the data bytes but not the status byte and that is marked with CIN 4. 412 */ 413 static void snd_usbmidi_maudio_broken_running_status_input( 414 struct snd_usb_midi_in_endpoint *ep, 415 uint8_t *buffer, int buffer_length) 416 { 417 int i; 418 419 for (i = 0; i + 3 < buffer_length; i += 4) 420 if (buffer[i] != 0) { 421 int cable = buffer[i] >> 4; 422 u8 cin = buffer[i] & 0x0f; 423 struct usbmidi_in_port *port = &ep->ports[cable]; 424 int length; 425 426 length = snd_usbmidi_cin_length[cin]; 427 if (cin == 0xf && buffer[i + 1] >= 0xf8) 428 ; /* realtime msg: no running status change */ 429 else if (cin >= 0x8 && cin <= 0xe) 430 /* channel msg */ 431 port->running_status_length = length - 1; 432 else if (cin == 0x4 && 433 port->running_status_length != 0 && 434 buffer[i + 1] < 0x80) 435 /* CIN 4 that is not a SysEx */ 436 length = port->running_status_length; 437 else 438 /* 439 * All other msgs cannot begin running status. 440 * (A channel msg sent as two or three CIN 0xF 441 * packets could in theory, but this device 442 * doesn't use this format.) 443 */ 444 port->running_status_length = 0; 445 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], 446 length); 447 } 448 } 449 450 /* 451 * QinHeng CH345 is buggy: every second packet inside a SysEx has not CIN 4 452 * but the previously seen CIN, but still with three data bytes. 453 */ 454 static void ch345_broken_sysex_input(struct snd_usb_midi_in_endpoint *ep, 455 uint8_t *buffer, int buffer_length) 456 { 457 unsigned int i, cin, length; 458 459 for (i = 0; i + 3 < buffer_length; i += 4) { 460 if (buffer[i] == 0 && i > 0) 461 break; 462 cin = buffer[i] & 0x0f; 463 if (ep->in_sysex && 464 cin == ep->last_cin && 465 (buffer[i + 1 + (cin == 0x6)] & 0x80) == 0) 466 cin = 0x4; 467 #if 0 468 if (buffer[i + 1] == 0x90) { 469 /* 470 * Either a corrupted running status or a real note-on 471 * message; impossible to detect reliably. 472 */ 473 } 474 #endif 475 length = snd_usbmidi_cin_length[cin]; 476 snd_usbmidi_input_data(ep, 0, &buffer[i + 1], length); 477 ep->in_sysex = cin == 0x4; 478 if (!ep->in_sysex) 479 ep->last_cin = cin; 480 } 481 } 482 483 /* 484 * CME protocol: like the standard protocol, but SysEx commands are sent as a 485 * single USB packet preceded by a 0x0F byte, as are system realtime 486 * messages and MIDI Active Sensing. 487 * Also, multiple messages can be sent in the same packet. 488 */ 489 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 490 uint8_t *buffer, int buffer_length) 491 { 492 int remaining = buffer_length; 493 494 /* 495 * CME send sysex, song position pointer, system realtime 496 * and active sensing using CIN 0x0f, which in the standard 497 * is only intended for single byte unparsed data. 498 * So we need to interpret these here before sending them on. 499 * By default, we assume single byte data, which is true 500 * for system realtime (midi clock, start, stop and continue) 501 * and active sensing, and handle the other (known) cases 502 * separately. 503 * In contrast to the standard, CME does not split sysex 504 * into multiple 4-byte packets, but lumps everything together 505 * into one. In addition, CME can string multiple messages 506 * together in the same packet; pressing the Record button 507 * on an UF6 sends a sysex message directly followed 508 * by a song position pointer in the same packet. 509 * For it to have any reasonable meaning, a sysex message 510 * needs to be at least 3 bytes in length (0xf0, id, 0xf7), 511 * corresponding to a packet size of 4 bytes, and the ones sent 512 * by CME devices are 6 or 7 bytes, making the packet fragments 513 * 7 or 8 bytes long (six or seven bytes plus preceding CN+CIN byte). 514 * For the other types, the packet size is always 4 bytes, 515 * as per the standard, with the data size being 3 for SPP 516 * and 1 for the others. 517 * Thus all packet fragments are at least 4 bytes long, so we can 518 * skip anything that is shorter; this also conveniantly skips 519 * packets with size 0, which CME devices continuously send when 520 * they have nothing better to do. 521 * Another quirk is that sometimes multiple messages are sent 522 * in the same packet. This has been observed for midi clock 523 * and active sensing i.e. 0x0f 0xf8 0x00 0x00 0x0f 0xfe 0x00 0x00, 524 * but also multiple note ons/offs, and control change together 525 * with MIDI clock. Similarly, some sysex messages are followed by 526 * the song position pointer in the same packet, and occasionally 527 * additionally by a midi clock or active sensing. 528 * We handle this by looping over all data and parsing it along the way. 529 */ 530 while (remaining >= 4) { 531 int source_length = 4; /* default */ 532 533 if ((buffer[0] & 0x0f) == 0x0f) { 534 int data_length = 1; /* default */ 535 536 if (buffer[1] == 0xf0) { 537 /* Sysex: Find EOX and send on whole message. */ 538 /* To kick off the search, skip the first 539 * two bytes (CN+CIN and SYSEX (0xf0). 540 */ 541 uint8_t *tmp_buf = buffer + 2; 542 int tmp_length = remaining - 2; 543 544 while (tmp_length > 1 && *tmp_buf != 0xf7) { 545 tmp_buf++; 546 tmp_length--; 547 } 548 data_length = tmp_buf - buffer; 549 source_length = data_length + 1; 550 } else if (buffer[1] == 0xf2) { 551 /* Three byte song position pointer */ 552 data_length = 3; 553 } 554 snd_usbmidi_input_data(ep, buffer[0] >> 4, 555 &buffer[1], data_length); 556 } else { 557 /* normal channel events */ 558 snd_usbmidi_standard_input(ep, buffer, source_length); 559 } 560 buffer += source_length; 561 remaining -= source_length; 562 } 563 } 564 565 /* 566 * Adds one USB MIDI packet to the output buffer. 567 */ 568 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0, 569 uint8_t p1, uint8_t p2, 570 uint8_t p3) 571 { 572 573 uint8_t *buf = 574 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 575 buf[0] = p0; 576 buf[1] = p1; 577 buf[2] = p2; 578 buf[3] = p3; 579 urb->transfer_buffer_length += 4; 580 } 581 582 /* 583 * Adds one Midiman packet to the output buffer. 584 */ 585 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0, 586 uint8_t p1, uint8_t p2, 587 uint8_t p3) 588 { 589 590 uint8_t *buf = 591 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length; 592 buf[0] = p1; 593 buf[1] = p2; 594 buf[2] = p3; 595 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 596 urb->transfer_buffer_length += 4; 597 } 598 599 /* 600 * Converts MIDI commands to USB MIDI packets. 601 */ 602 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port, 603 uint8_t b, struct urb *urb) 604 { 605 uint8_t p0 = port->cable; 606 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 607 port->ep->umidi->usb_protocol_ops->output_packet; 608 609 if (b >= 0xf8) { 610 output_packet(urb, p0 | 0x0f, b, 0, 0); 611 } else if (b >= 0xf0) { 612 switch (b) { 613 case 0xf0: 614 port->data[0] = b; 615 port->state = STATE_SYSEX_1; 616 break; 617 case 0xf1: 618 case 0xf3: 619 port->data[0] = b; 620 port->state = STATE_1PARAM; 621 break; 622 case 0xf2: 623 port->data[0] = b; 624 port->state = STATE_2PARAM_1; 625 break; 626 case 0xf4: 627 case 0xf5: 628 port->state = STATE_UNKNOWN; 629 break; 630 case 0xf6: 631 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 632 port->state = STATE_UNKNOWN; 633 break; 634 case 0xf7: 635 switch (port->state) { 636 case STATE_SYSEX_0: 637 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 638 break; 639 case STATE_SYSEX_1: 640 output_packet(urb, p0 | 0x06, port->data[0], 641 0xf7, 0); 642 break; 643 case STATE_SYSEX_2: 644 output_packet(urb, p0 | 0x07, port->data[0], 645 port->data[1], 0xf7); 646 break; 647 } 648 port->state = STATE_UNKNOWN; 649 break; 650 } 651 } else if (b >= 0x80) { 652 port->data[0] = b; 653 if (b >= 0xc0 && b <= 0xdf) 654 port->state = STATE_1PARAM; 655 else 656 port->state = STATE_2PARAM_1; 657 } else { /* b < 0x80 */ 658 switch (port->state) { 659 case STATE_1PARAM: 660 if (port->data[0] < 0xf0) { 661 p0 |= port->data[0] >> 4; 662 } else { 663 p0 |= 0x02; 664 port->state = STATE_UNKNOWN; 665 } 666 output_packet(urb, p0, port->data[0], b, 0); 667 break; 668 case STATE_2PARAM_1: 669 port->data[1] = b; 670 port->state = STATE_2PARAM_2; 671 break; 672 case STATE_2PARAM_2: 673 if (port->data[0] < 0xf0) { 674 p0 |= port->data[0] >> 4; 675 port->state = STATE_2PARAM_1; 676 } else { 677 p0 |= 0x03; 678 port->state = STATE_UNKNOWN; 679 } 680 output_packet(urb, p0, port->data[0], port->data[1], b); 681 break; 682 case STATE_SYSEX_0: 683 port->data[0] = b; 684 port->state = STATE_SYSEX_1; 685 break; 686 case STATE_SYSEX_1: 687 port->data[1] = b; 688 port->state = STATE_SYSEX_2; 689 break; 690 case STATE_SYSEX_2: 691 output_packet(urb, p0 | 0x04, port->data[0], 692 port->data[1], b); 693 port->state = STATE_SYSEX_0; 694 break; 695 } 696 } 697 } 698 699 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep, 700 struct urb *urb) 701 { 702 int p; 703 704 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 705 for (p = 0; p < 0x10; ++p) { 706 struct usbmidi_out_port *port = &ep->ports[p]; 707 if (!port->active) 708 continue; 709 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 710 uint8_t b; 711 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 712 port->active = 0; 713 break; 714 } 715 snd_usbmidi_transmit_byte(port, b, urb); 716 } 717 } 718 } 719 720 static const struct usb_protocol_ops snd_usbmidi_standard_ops = { 721 .input = snd_usbmidi_standard_input, 722 .output = snd_usbmidi_standard_output, 723 .output_packet = snd_usbmidi_output_standard_packet, 724 }; 725 726 static const struct usb_protocol_ops snd_usbmidi_midiman_ops = { 727 .input = snd_usbmidi_midiman_input, 728 .output = snd_usbmidi_standard_output, 729 .output_packet = snd_usbmidi_output_midiman_packet, 730 }; 731 732 static const 733 struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 734 .input = snd_usbmidi_maudio_broken_running_status_input, 735 .output = snd_usbmidi_standard_output, 736 .output_packet = snd_usbmidi_output_standard_packet, 737 }; 738 739 static const struct usb_protocol_ops snd_usbmidi_cme_ops = { 740 .input = snd_usbmidi_cme_input, 741 .output = snd_usbmidi_standard_output, 742 .output_packet = snd_usbmidi_output_standard_packet, 743 }; 744 745 static const struct usb_protocol_ops snd_usbmidi_ch345_broken_sysex_ops = { 746 .input = ch345_broken_sysex_input, 747 .output = snd_usbmidi_standard_output, 748 .output_packet = snd_usbmidi_output_standard_packet, 749 }; 750 751 /* 752 * AKAI MPD16 protocol: 753 * 754 * For control port (endpoint 1): 755 * ============================== 756 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 757 * SysEx message (msg_len=9 bytes long). 758 * 759 * For data port (endpoint 2): 760 * =========================== 761 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 762 * MIDI message (msg_len bytes long) 763 * 764 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 765 */ 766 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 767 uint8_t *buffer, int buffer_length) 768 { 769 unsigned int pos = 0; 770 unsigned int len = (unsigned int)buffer_length; 771 while (pos < len) { 772 unsigned int port = (buffer[pos] >> 4) - 1; 773 unsigned int msg_len = buffer[pos] & 0x0f; 774 pos++; 775 if (pos + msg_len <= len && port < 2) 776 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 777 pos += msg_len; 778 } 779 } 780 781 #define MAX_AKAI_SYSEX_LEN 9 782 783 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 784 struct urb *urb) 785 { 786 uint8_t *msg; 787 int pos, end, count, buf_end; 788 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 789 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 790 791 if (!ep->ports[0].active) 792 return; 793 794 msg = urb->transfer_buffer + urb->transfer_buffer_length; 795 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 796 797 /* only try adding more data when there's space for at least 1 SysEx */ 798 while (urb->transfer_buffer_length < buf_end) { 799 count = snd_rawmidi_transmit_peek(substream, 800 tmp, MAX_AKAI_SYSEX_LEN); 801 if (!count) { 802 ep->ports[0].active = 0; 803 return; 804 } 805 /* try to skip non-SysEx data */ 806 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 807 ; 808 809 if (pos > 0) { 810 snd_rawmidi_transmit_ack(substream, pos); 811 continue; 812 } 813 814 /* look for the start or end marker */ 815 for (end = 1; end < count && tmp[end] < 0xF0; end++) 816 ; 817 818 /* next SysEx started before the end of current one */ 819 if (end < count && tmp[end] == 0xF0) { 820 /* it's incomplete - drop it */ 821 snd_rawmidi_transmit_ack(substream, end); 822 continue; 823 } 824 /* SysEx complete */ 825 if (end < count && tmp[end] == 0xF7) { 826 /* queue it, ack it, and get the next one */ 827 count = end + 1; 828 msg[0] = 0x10 | count; 829 memcpy(&msg[1], tmp, count); 830 snd_rawmidi_transmit_ack(substream, count); 831 urb->transfer_buffer_length += count + 1; 832 msg += count + 1; 833 continue; 834 } 835 /* less than 9 bytes and no end byte - wait for more */ 836 if (count < MAX_AKAI_SYSEX_LEN) { 837 ep->ports[0].active = 0; 838 return; 839 } 840 /* 9 bytes and no end marker in sight - malformed, skip it */ 841 snd_rawmidi_transmit_ack(substream, count); 842 } 843 } 844 845 static const struct usb_protocol_ops snd_usbmidi_akai_ops = { 846 .input = snd_usbmidi_akai_input, 847 .output = snd_usbmidi_akai_output, 848 }; 849 850 /* 851 * Novation USB MIDI protocol: number of data bytes is in the first byte 852 * (when receiving) (+1!) or in the second byte (when sending); data begins 853 * at the third byte. 854 */ 855 856 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep, 857 uint8_t *buffer, int buffer_length) 858 { 859 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 860 return; 861 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 862 } 863 864 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep, 865 struct urb *urb) 866 { 867 uint8_t *transfer_buffer; 868 int count; 869 870 if (!ep->ports[0].active) 871 return; 872 transfer_buffer = urb->transfer_buffer; 873 count = snd_rawmidi_transmit(ep->ports[0].substream, 874 &transfer_buffer[2], 875 ep->max_transfer - 2); 876 if (count < 1) { 877 ep->ports[0].active = 0; 878 return; 879 } 880 transfer_buffer[0] = 0; 881 transfer_buffer[1] = count; 882 urb->transfer_buffer_length = 2 + count; 883 } 884 885 static const struct usb_protocol_ops snd_usbmidi_novation_ops = { 886 .input = snd_usbmidi_novation_input, 887 .output = snd_usbmidi_novation_output, 888 }; 889 890 /* 891 * "raw" protocol: just move raw MIDI bytes from/to the endpoint 892 */ 893 894 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep, 895 uint8_t *buffer, int buffer_length) 896 { 897 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 898 } 899 900 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep, 901 struct urb *urb) 902 { 903 int count; 904 905 if (!ep->ports[0].active) 906 return; 907 count = snd_rawmidi_transmit(ep->ports[0].substream, 908 urb->transfer_buffer, 909 ep->max_transfer); 910 if (count < 1) { 911 ep->ports[0].active = 0; 912 return; 913 } 914 urb->transfer_buffer_length = count; 915 } 916 917 static const struct usb_protocol_ops snd_usbmidi_raw_ops = { 918 .input = snd_usbmidi_raw_input, 919 .output = snd_usbmidi_raw_output, 920 }; 921 922 /* 923 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. 924 */ 925 926 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep, 927 uint8_t *buffer, int buffer_length) 928 { 929 if (buffer_length > 2) 930 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); 931 } 932 933 static const struct usb_protocol_ops snd_usbmidi_ftdi_ops = { 934 .input = snd_usbmidi_ftdi_input, 935 .output = snd_usbmidi_raw_output, 936 }; 937 938 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 939 uint8_t *buffer, int buffer_length) 940 { 941 if (buffer_length != 9) 942 return; 943 buffer_length = 8; 944 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 945 buffer_length--; 946 if (buffer_length) 947 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 948 } 949 950 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 951 struct urb *urb) 952 { 953 int count; 954 955 if (!ep->ports[0].active) 956 return; 957 switch (snd_usb_get_speed(ep->umidi->dev)) { 958 case USB_SPEED_HIGH: 959 case USB_SPEED_SUPER: 960 case USB_SPEED_SUPER_PLUS: 961 count = 1; 962 break; 963 default: 964 count = 2; 965 } 966 count = snd_rawmidi_transmit(ep->ports[0].substream, 967 urb->transfer_buffer, 968 count); 969 if (count < 1) { 970 ep->ports[0].active = 0; 971 return; 972 } 973 974 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); 975 urb->transfer_buffer_length = ep->max_transfer; 976 } 977 978 static const struct usb_protocol_ops snd_usbmidi_122l_ops = { 979 .input = snd_usbmidi_us122l_input, 980 .output = snd_usbmidi_us122l_output, 981 }; 982 983 /* 984 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 985 */ 986 987 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep) 988 { 989 static const u8 init_data[] = { 990 /* initialization magic: "get version" */ 991 0xf0, 992 0x00, 0x20, 0x31, /* Emagic */ 993 0x64, /* Unitor8 */ 994 0x0b, /* version number request */ 995 0x00, /* command version */ 996 0x00, /* EEPROM, box 0 */ 997 0xf7 998 }; 999 send_bulk_static_data(ep, init_data, sizeof(init_data)); 1000 /* while we're at it, pour on more magic */ 1001 send_bulk_static_data(ep, init_data, sizeof(init_data)); 1002 } 1003 1004 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep) 1005 { 1006 static const u8 finish_data[] = { 1007 /* switch to patch mode with last preset */ 1008 0xf0, 1009 0x00, 0x20, 0x31, /* Emagic */ 1010 0x64, /* Unitor8 */ 1011 0x10, /* patch switch command */ 1012 0x00, /* command version */ 1013 0x7f, /* to all boxes */ 1014 0x40, /* last preset in EEPROM */ 1015 0xf7 1016 }; 1017 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 1018 } 1019 1020 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep, 1021 uint8_t *buffer, int buffer_length) 1022 { 1023 int i; 1024 1025 /* FF indicates end of valid data */ 1026 for (i = 0; i < buffer_length; ++i) 1027 if (buffer[i] == 0xff) { 1028 buffer_length = i; 1029 break; 1030 } 1031 1032 /* handle F5 at end of last buffer */ 1033 if (ep->seen_f5) 1034 goto switch_port; 1035 1036 while (buffer_length > 0) { 1037 /* determine size of data until next F5 */ 1038 for (i = 0; i < buffer_length; ++i) 1039 if (buffer[i] == 0xf5) 1040 break; 1041 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 1042 buffer += i; 1043 buffer_length -= i; 1044 1045 if (buffer_length <= 0) 1046 break; 1047 /* assert(buffer[0] == 0xf5); */ 1048 ep->seen_f5 = 1; 1049 ++buffer; 1050 --buffer_length; 1051 1052 switch_port: 1053 if (buffer_length <= 0) 1054 break; 1055 if (buffer[0] < 0x80) { 1056 ep->current_port = (buffer[0] - 1) & 15; 1057 ++buffer; 1058 --buffer_length; 1059 } 1060 ep->seen_f5 = 0; 1061 } 1062 } 1063 1064 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep, 1065 struct urb *urb) 1066 { 1067 int port0 = ep->current_port; 1068 uint8_t *buf = urb->transfer_buffer; 1069 int buf_free = ep->max_transfer; 1070 int length, i; 1071 1072 for (i = 0; i < 0x10; ++i) { 1073 /* round-robin, starting at the last current port */ 1074 int portnum = (port0 + i) & 15; 1075 struct usbmidi_out_port *port = &ep->ports[portnum]; 1076 1077 if (!port->active) 1078 continue; 1079 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 1080 port->active = 0; 1081 continue; 1082 } 1083 1084 if (portnum != ep->current_port) { 1085 if (buf_free < 2) 1086 break; 1087 ep->current_port = portnum; 1088 buf[0] = 0xf5; 1089 buf[1] = (portnum + 1) & 15; 1090 buf += 2; 1091 buf_free -= 2; 1092 } 1093 1094 if (buf_free < 1) 1095 break; 1096 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 1097 if (length > 0) { 1098 buf += length; 1099 buf_free -= length; 1100 if (buf_free < 1) 1101 break; 1102 } 1103 } 1104 if (buf_free < ep->max_transfer && buf_free > 0) { 1105 *buf = 0xff; 1106 --buf_free; 1107 } 1108 urb->transfer_buffer_length = ep->max_transfer - buf_free; 1109 } 1110 1111 static const struct usb_protocol_ops snd_usbmidi_emagic_ops = { 1112 .input = snd_usbmidi_emagic_input, 1113 .output = snd_usbmidi_emagic_output, 1114 .init_out_endpoint = snd_usbmidi_emagic_init_out, 1115 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 1116 }; 1117 1118 1119 static void update_roland_altsetting(struct snd_usb_midi *umidi) 1120 { 1121 struct usb_interface *intf; 1122 struct usb_host_interface *hostif; 1123 struct usb_interface_descriptor *intfd; 1124 int is_light_load; 1125 1126 intf = umidi->iface; 1127 is_light_load = intf->cur_altsetting != intf->altsetting; 1128 if (umidi->roland_load_ctl->private_value == is_light_load) 1129 return; 1130 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1131 intfd = get_iface_desc(hostif); 1132 snd_usbmidi_input_stop(&umidi->list); 1133 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1134 intfd->bAlternateSetting); 1135 snd_usbmidi_input_start(&umidi->list); 1136 } 1137 1138 static int substream_open(struct snd_rawmidi_substream *substream, int dir, 1139 int open) 1140 { 1141 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1142 struct snd_kcontrol *ctl; 1143 1144 guard(rwsem_read)(&umidi->disc_rwsem); 1145 if (umidi->disconnected) 1146 return open ? -ENODEV : 0; 1147 1148 guard(mutex)(&umidi->mutex); 1149 if (open) { 1150 if (!umidi->opened[0] && !umidi->opened[1]) { 1151 if (umidi->roland_load_ctl) { 1152 ctl = umidi->roland_load_ctl; 1153 ctl->vd[0].access |= 1154 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1155 snd_ctl_notify(umidi->card, 1156 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1157 update_roland_altsetting(umidi); 1158 } 1159 } 1160 umidi->opened[dir]++; 1161 if (umidi->opened[1]) 1162 snd_usbmidi_input_start(&umidi->list); 1163 } else { 1164 umidi->opened[dir]--; 1165 if (!umidi->opened[1]) 1166 snd_usbmidi_input_stop(&umidi->list); 1167 if (!umidi->opened[0] && !umidi->opened[1]) { 1168 if (umidi->roland_load_ctl) { 1169 ctl = umidi->roland_load_ctl; 1170 ctl->vd[0].access &= 1171 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1172 snd_ctl_notify(umidi->card, 1173 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1174 } 1175 } 1176 } 1177 return 0; 1178 } 1179 1180 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1181 { 1182 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1183 struct usbmidi_out_port *port = NULL; 1184 int i, j; 1185 1186 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1187 if (umidi->endpoints[i].out) 1188 for (j = 0; j < 0x10; ++j) 1189 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1190 port = &umidi->endpoints[i].out->ports[j]; 1191 break; 1192 } 1193 if (!port) 1194 return -ENXIO; 1195 1196 substream->runtime->private_data = port; 1197 port->state = STATE_UNKNOWN; 1198 return substream_open(substream, 0, 1); 1199 } 1200 1201 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1202 { 1203 struct usbmidi_out_port *port = substream->runtime->private_data; 1204 1205 flush_work(&port->ep->work); 1206 return substream_open(substream, 0, 0); 1207 } 1208 1209 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, 1210 int up) 1211 { 1212 struct usbmidi_out_port *port = 1213 (struct usbmidi_out_port *)substream->runtime->private_data; 1214 1215 port->active = up; 1216 if (up) { 1217 if (port->ep->umidi->disconnected) { 1218 /* gobble up remaining bytes to prevent wait in 1219 * snd_rawmidi_drain_output */ 1220 snd_rawmidi_proceed(substream); 1221 return; 1222 } 1223 queue_work(system_highpri_wq, &port->ep->work); 1224 } 1225 } 1226 1227 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1228 { 1229 struct usbmidi_out_port *port = substream->runtime->private_data; 1230 struct snd_usb_midi_out_endpoint *ep = port->ep; 1231 unsigned int drain_urbs; 1232 DEFINE_WAIT(wait); 1233 long timeout = msecs_to_jiffies(50); 1234 1235 if (ep->umidi->disconnected) 1236 return; 1237 /* 1238 * The substream buffer is empty, but some data might still be in the 1239 * currently active URBs, so we have to wait for those to complete. 1240 */ 1241 spin_lock_irq(&ep->buffer_lock); 1242 drain_urbs = ep->active_urbs; 1243 if (drain_urbs) { 1244 ep->drain_urbs |= drain_urbs; 1245 do { 1246 prepare_to_wait(&ep->drain_wait, &wait, 1247 TASK_UNINTERRUPTIBLE); 1248 spin_unlock_irq(&ep->buffer_lock); 1249 timeout = schedule_timeout(timeout); 1250 spin_lock_irq(&ep->buffer_lock); 1251 drain_urbs &= ep->drain_urbs; 1252 } while (drain_urbs && timeout); 1253 finish_wait(&ep->drain_wait, &wait); 1254 } 1255 port->active = 0; 1256 spin_unlock_irq(&ep->buffer_lock); 1257 } 1258 1259 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1260 { 1261 return substream_open(substream, 1, 1); 1262 } 1263 1264 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1265 { 1266 return substream_open(substream, 1, 0); 1267 } 1268 1269 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, 1270 int up) 1271 { 1272 struct snd_usb_midi *umidi = substream->rmidi->private_data; 1273 1274 if (up) 1275 set_bit(substream->number, &umidi->input_triggered); 1276 else 1277 clear_bit(substream->number, &umidi->input_triggered); 1278 } 1279 1280 static const struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1281 .open = snd_usbmidi_output_open, 1282 .close = snd_usbmidi_output_close, 1283 .trigger = snd_usbmidi_output_trigger, 1284 .drain = snd_usbmidi_output_drain, 1285 }; 1286 1287 static const struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1288 .open = snd_usbmidi_input_open, 1289 .close = snd_usbmidi_input_close, 1290 .trigger = snd_usbmidi_input_trigger 1291 }; 1292 1293 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1294 unsigned int buffer_length) 1295 { 1296 usb_free_coherent(umidi->dev, buffer_length, 1297 urb->transfer_buffer, urb->transfer_dma); 1298 usb_free_urb(urb); 1299 } 1300 1301 /* 1302 * Frees an input endpoint. 1303 * May be called when ep hasn't been initialized completely. 1304 */ 1305 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep) 1306 { 1307 unsigned int i; 1308 1309 for (i = 0; i < INPUT_URBS; ++i) 1310 if (ep->urbs[i]) 1311 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1312 ep->urbs[i]->transfer_buffer_length); 1313 kfree(ep); 1314 } 1315 1316 /* 1317 * Creates an input endpoint. 1318 */ 1319 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi, 1320 struct snd_usb_midi_endpoint_info *ep_info, 1321 struct snd_usb_midi_endpoint *rep) 1322 { 1323 struct snd_usb_midi_in_endpoint *ep; 1324 void *buffer; 1325 unsigned int pipe; 1326 int length; 1327 unsigned int i; 1328 int err; 1329 1330 rep->in = NULL; 1331 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1332 if (!ep) 1333 return -ENOMEM; 1334 ep->umidi = umidi; 1335 1336 for (i = 0; i < INPUT_URBS; ++i) { 1337 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1338 if (!ep->urbs[i]) { 1339 err = -ENOMEM; 1340 goto error; 1341 } 1342 } 1343 if (ep_info->in_interval) 1344 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1345 else 1346 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1347 length = usb_maxpacket(umidi->dev, pipe); 1348 for (i = 0; i < INPUT_URBS; ++i) { 1349 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1350 &ep->urbs[i]->transfer_dma); 1351 if (!buffer) { 1352 err = -ENOMEM; 1353 goto error; 1354 } 1355 if (ep_info->in_interval) 1356 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1357 pipe, buffer, length, 1358 snd_usbmidi_in_urb_complete, 1359 ep, ep_info->in_interval); 1360 else 1361 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1362 pipe, buffer, length, 1363 snd_usbmidi_in_urb_complete, ep); 1364 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1365 err = usb_urb_ep_type_check(ep->urbs[i]); 1366 if (err < 0) { 1367 dev_err(&umidi->dev->dev, "invalid MIDI in EP %x\n", 1368 ep_info->in_ep); 1369 goto error; 1370 } 1371 } 1372 1373 rep->in = ep; 1374 return 0; 1375 1376 error: 1377 snd_usbmidi_in_endpoint_delete(ep); 1378 return err; 1379 } 1380 1381 /* 1382 * Frees an output endpoint. 1383 * May be called when ep hasn't been initialized completely. 1384 */ 1385 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1386 { 1387 unsigned int i; 1388 1389 for (i = 0; i < OUTPUT_URBS; ++i) 1390 if (ep->urbs[i].urb) { 1391 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1392 ep->max_transfer); 1393 ep->urbs[i].urb = NULL; 1394 } 1395 } 1396 1397 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1398 { 1399 snd_usbmidi_out_endpoint_clear(ep); 1400 kfree(ep); 1401 } 1402 1403 /* 1404 * Creates an output endpoint, and initializes output ports. 1405 */ 1406 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi, 1407 struct snd_usb_midi_endpoint_info *ep_info, 1408 struct snd_usb_midi_endpoint *rep) 1409 { 1410 struct snd_usb_midi_out_endpoint *ep; 1411 unsigned int i; 1412 unsigned int pipe; 1413 void *buffer; 1414 int err; 1415 1416 rep->out = NULL; 1417 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1418 if (!ep) 1419 return -ENOMEM; 1420 ep->umidi = umidi; 1421 1422 for (i = 0; i < OUTPUT_URBS; ++i) { 1423 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1424 if (!ep->urbs[i].urb) { 1425 err = -ENOMEM; 1426 goto error; 1427 } 1428 ep->urbs[i].ep = ep; 1429 } 1430 if (ep_info->out_interval) 1431 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1432 else 1433 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1434 switch (umidi->usb_id) { 1435 default: 1436 ep->max_transfer = usb_maxpacket(umidi->dev, pipe); 1437 break; 1438 /* 1439 * Various chips declare a packet size larger than 4 bytes, but 1440 * do not actually work with larger packets: 1441 */ 1442 case USB_ID(0x0a67, 0x5011): /* Medeli DD305 */ 1443 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1444 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1445 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1446 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1447 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1448 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ 1449 ep->max_transfer = 4; 1450 break; 1451 /* 1452 * Some devices only work with 9 bytes packet size: 1453 */ 1454 case USB_ID(0x0644, 0x800e): /* Tascam US-122L */ 1455 case USB_ID(0x0644, 0x800f): /* Tascam US-144 */ 1456 ep->max_transfer = 9; 1457 break; 1458 } 1459 for (i = 0; i < OUTPUT_URBS; ++i) { 1460 buffer = usb_alloc_coherent(umidi->dev, 1461 ep->max_transfer, GFP_KERNEL, 1462 &ep->urbs[i].urb->transfer_dma); 1463 if (!buffer) { 1464 err = -ENOMEM; 1465 goto error; 1466 } 1467 if (ep_info->out_interval) 1468 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1469 pipe, buffer, ep->max_transfer, 1470 snd_usbmidi_out_urb_complete, 1471 &ep->urbs[i], ep_info->out_interval); 1472 else 1473 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1474 pipe, buffer, ep->max_transfer, 1475 snd_usbmidi_out_urb_complete, 1476 &ep->urbs[i]); 1477 err = usb_urb_ep_type_check(ep->urbs[i].urb); 1478 if (err < 0) { 1479 dev_err(&umidi->dev->dev, "invalid MIDI out EP %x\n", 1480 ep_info->out_ep); 1481 goto error; 1482 } 1483 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1484 } 1485 1486 spin_lock_init(&ep->buffer_lock); 1487 INIT_WORK(&ep->work, snd_usbmidi_out_work); 1488 init_waitqueue_head(&ep->drain_wait); 1489 1490 for (i = 0; i < 0x10; ++i) 1491 if (ep_info->out_cables & (1 << i)) { 1492 ep->ports[i].ep = ep; 1493 ep->ports[i].cable = i << 4; 1494 } 1495 1496 if (umidi->usb_protocol_ops->init_out_endpoint) 1497 umidi->usb_protocol_ops->init_out_endpoint(ep); 1498 1499 rep->out = ep; 1500 return 0; 1501 1502 error: 1503 snd_usbmidi_out_endpoint_delete(ep); 1504 return err; 1505 } 1506 1507 /* 1508 * Frees everything. 1509 */ 1510 static void snd_usbmidi_free(struct snd_usb_midi *umidi) 1511 { 1512 int i; 1513 1514 if (!umidi->disconnected) 1515 snd_usbmidi_disconnect(&umidi->list); 1516 1517 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1518 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1519 kfree(ep->out); 1520 } 1521 mutex_destroy(&umidi->mutex); 1522 kfree(umidi); 1523 } 1524 1525 /* 1526 * Unlinks all URBs (must be done before the usb_device is deleted). 1527 */ 1528 void snd_usbmidi_disconnect(struct list_head *p) 1529 { 1530 struct snd_usb_midi *umidi; 1531 unsigned int i, j; 1532 1533 umidi = list_entry(p, struct snd_usb_midi, list); 1534 /* 1535 * an URB's completion handler may start the timer and 1536 * a timer may submit an URB. To reliably break the cycle 1537 * a flag under lock must be used 1538 */ 1539 scoped_guard(rwsem_write, &umidi->disc_rwsem) { 1540 guard(spinlock_irq)(&umidi->disc_lock); 1541 umidi->disconnected = 1; 1542 } 1543 1544 timer_shutdown_sync(&umidi->error_timer); 1545 1546 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1547 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 1548 if (ep->out) 1549 cancel_work_sync(&ep->out->work); 1550 if (ep->out) { 1551 for (j = 0; j < OUTPUT_URBS; ++j) 1552 usb_kill_urb(ep->out->urbs[j].urb); 1553 if (umidi->usb_protocol_ops->finish_out_endpoint) 1554 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1555 ep->out->active_urbs = 0; 1556 if (ep->out->drain_urbs) { 1557 ep->out->drain_urbs = 0; 1558 wake_up(&ep->out->drain_wait); 1559 } 1560 } 1561 if (ep->in) 1562 for (j = 0; j < INPUT_URBS; ++j) 1563 usb_kill_urb(ep->in->urbs[j]); 1564 /* free endpoints here; later call can result in Oops */ 1565 if (ep->out) 1566 snd_usbmidi_out_endpoint_clear(ep->out); 1567 if (ep->in) { 1568 snd_usbmidi_in_endpoint_delete(ep->in); 1569 ep->in = NULL; 1570 } 1571 } 1572 } 1573 EXPORT_SYMBOL(snd_usbmidi_disconnect); 1574 1575 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1576 { 1577 struct snd_usb_midi *umidi = rmidi->private_data; 1578 snd_usbmidi_free(umidi); 1579 } 1580 1581 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi, 1582 int stream, 1583 int number) 1584 { 1585 struct snd_rawmidi_substream *substream; 1586 1587 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams, 1588 list) { 1589 if (substream->number == number) 1590 return substream; 1591 } 1592 return NULL; 1593 } 1594 1595 /* 1596 * This list specifies names for ports that do not fit into the standard 1597 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1598 * such as internal control or synthesizer ports. 1599 */ 1600 static struct port_info { 1601 u32 id; 1602 short int port; 1603 short int voices; 1604 const char *name; 1605 unsigned int seq_flags; 1606 } snd_usbmidi_port_info[] = { 1607 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1608 { .id = USB_ID(vendor, product), \ 1609 .port = num, .voices = voices_, \ 1610 .name = name_, .seq_flags = flags } 1611 #define EXTERNAL_PORT(vendor, product, num, name) \ 1612 PORT_INFO(vendor, product, num, name, 0, \ 1613 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1614 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1615 SNDRV_SEQ_PORT_TYPE_PORT) 1616 #define CONTROL_PORT(vendor, product, num, name) \ 1617 PORT_INFO(vendor, product, num, name, 0, \ 1618 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1619 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1620 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \ 1621 PORT_INFO(vendor, product, num, name, voices, \ 1622 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1623 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1624 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1625 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1626 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1627 PORT_INFO(vendor, product, num, name, voices, \ 1628 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1629 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1630 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1631 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1632 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1633 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1634 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1635 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1636 PORT_INFO(vendor, product, num, name, voices, \ 1637 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1638 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1639 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1640 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1641 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1642 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1643 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1644 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1645 /* Yamaha MOTIF XF */ 1646 GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128), 1647 CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"), 1648 EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"), 1649 CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"), 1650 /* Roland UA-100 */ 1651 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1652 /* Roland SC-8850 */ 1653 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1654 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1655 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1656 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1657 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1658 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1659 /* Roland U-8 */ 1660 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1661 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1662 /* Roland SC-8820 */ 1663 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1664 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1665 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1666 /* Roland SK-500 */ 1667 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1668 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1669 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1670 /* Roland SC-D70 */ 1671 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1672 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1673 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1674 /* Edirol UM-880 */ 1675 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1676 /* Edirol SD-90 */ 1677 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1678 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1679 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1680 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1681 /* Edirol UM-550 */ 1682 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1683 /* Edirol SD-20 */ 1684 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1685 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1686 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1687 /* Edirol SD-80 */ 1688 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1689 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1690 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1691 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1692 /* Edirol UA-700 */ 1693 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1694 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1695 /* Roland VariOS */ 1696 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1697 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1698 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1699 /* Edirol PCR */ 1700 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1701 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1702 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1703 /* BOSS GS-10 */ 1704 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1705 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1706 /* Edirol UA-1000 */ 1707 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1708 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1709 /* Edirol UR-80 */ 1710 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1711 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1712 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1713 /* Edirol PCR-A */ 1714 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1715 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1716 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1717 /* BOSS GT-PRO */ 1718 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"), 1719 /* Edirol UM-3EX */ 1720 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1721 /* Roland VG-99 */ 1722 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"), 1723 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"), 1724 /* Cakewalk Sonar V-Studio 100 */ 1725 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"), 1726 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"), 1727 /* Roland VB-99 */ 1728 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"), 1729 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"), 1730 /* Roland A-PRO */ 1731 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"), 1732 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"), 1733 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"), 1734 /* Roland SD-50 */ 1735 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128), 1736 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"), 1737 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"), 1738 /* Roland OCTA-CAPTURE */ 1739 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"), 1740 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"), 1741 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"), 1742 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"), 1743 /* Roland SPD-SX */ 1744 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"), 1745 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"), 1746 /* Roland A-Series */ 1747 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"), 1748 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"), 1749 /* Roland INTEGRA-7 */ 1750 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128), 1751 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"), 1752 /* M-Audio MidiSport 8x8 */ 1753 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1754 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1755 /* MOTU Fastlane */ 1756 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1757 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1758 /* Emagic Unitor8/AMT8/MT4 */ 1759 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1760 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1761 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1762 /* Akai MPD16 */ 1763 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1764 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1765 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1766 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1767 /* Access Music Virus TI */ 1768 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1769 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1770 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1771 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1772 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1773 }; 1774 1775 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number) 1776 { 1777 int i; 1778 1779 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1780 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1781 snd_usbmidi_port_info[i].port == number) 1782 return &snd_usbmidi_port_info[i]; 1783 } 1784 return NULL; 1785 } 1786 1787 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1788 struct snd_seq_port_info *seq_port_info) 1789 { 1790 struct snd_usb_midi *umidi = rmidi->private_data; 1791 struct port_info *port_info; 1792 1793 /* TODO: read port flags from descriptors */ 1794 port_info = find_port_info(umidi, number); 1795 if (port_info) { 1796 seq_port_info->type = port_info->seq_flags; 1797 seq_port_info->midi_voices = port_info->voices; 1798 } 1799 } 1800 1801 /* return iJack for the corresponding jackID */ 1802 static int find_usb_ijack(struct usb_host_interface *hostif, uint8_t jack_id) 1803 { 1804 unsigned char *extra = hostif->extra; 1805 int extralen = hostif->extralen; 1806 struct usb_descriptor_header *h; 1807 struct usb_midi_out_jack_descriptor *outjd; 1808 struct usb_midi_in_jack_descriptor *injd; 1809 size_t sz; 1810 1811 while (extralen > 4) { 1812 h = (struct usb_descriptor_header *)extra; 1813 if (h->bDescriptorType != USB_DT_CS_INTERFACE) 1814 goto next; 1815 1816 outjd = (struct usb_midi_out_jack_descriptor *)h; 1817 if (h->bLength >= sizeof(*outjd) && 1818 outjd->bDescriptorSubtype == UAC_MIDI_OUT_JACK && 1819 outjd->bJackID == jack_id) { 1820 sz = USB_DT_MIDI_OUT_SIZE(outjd->bNrInputPins); 1821 if (outjd->bLength < sz) 1822 goto next; 1823 return *(extra + sz - 1); 1824 } 1825 1826 injd = (struct usb_midi_in_jack_descriptor *)h; 1827 if (injd->bLength >= sizeof(*injd) && 1828 injd->bDescriptorSubtype == UAC_MIDI_IN_JACK && 1829 injd->bJackID == jack_id) 1830 return injd->iJack; 1831 1832 next: 1833 if (!extra[0]) 1834 break; 1835 extralen -= extra[0]; 1836 extra += extra[0]; 1837 } 1838 return 0; 1839 } 1840 1841 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi, 1842 int stream, int number, int jack_id, 1843 struct snd_rawmidi_substream **rsubstream) 1844 { 1845 struct port_info *port_info; 1846 const char *name_format; 1847 struct usb_interface *intf; 1848 struct usb_host_interface *hostif; 1849 uint8_t jack_name_buf[32]; 1850 uint8_t *default_jack_name = "MIDI"; 1851 uint8_t *jack_name = default_jack_name; 1852 uint8_t iJack; 1853 int res; 1854 1855 struct snd_rawmidi_substream *substream = 1856 snd_usbmidi_find_substream(umidi, stream, number); 1857 if (!substream) { 1858 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream, 1859 number); 1860 return; 1861 } 1862 1863 intf = umidi->iface; 1864 if (intf && jack_id >= 0) { 1865 hostif = intf->cur_altsetting; 1866 iJack = find_usb_ijack(hostif, jack_id); 1867 if (iJack != 0) { 1868 res = usb_string(umidi->dev, iJack, jack_name_buf, 1869 ARRAY_SIZE(jack_name_buf)); 1870 if (res) 1871 jack_name = jack_name_buf; 1872 } 1873 } 1874 1875 port_info = find_port_info(umidi, number); 1876 if (port_info || jack_name == default_jack_name || 1877 strncmp(umidi->card->shortname, jack_name, strlen(umidi->card->shortname)) != 0) { 1878 name_format = port_info ? port_info->name : 1879 (jack_name != default_jack_name ? "%s %s" : "%s %s %d"); 1880 snprintf(substream->name, sizeof(substream->name), 1881 name_format, umidi->card->shortname, jack_name, number + 1); 1882 } else { 1883 /* The manufacturer included the iProduct name in the jack 1884 * name, do not use both 1885 */ 1886 strscpy(substream->name, jack_name); 1887 } 1888 1889 *rsubstream = substream; 1890 } 1891 1892 /* 1893 * Creates the endpoints and their ports. 1894 */ 1895 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi, 1896 struct snd_usb_midi_endpoint_info *endpoints) 1897 { 1898 int i, j, err; 1899 int out_ports = 0, in_ports = 0; 1900 1901 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1902 if (endpoints[i].out_cables) { 1903 err = snd_usbmidi_out_endpoint_create(umidi, 1904 &endpoints[i], 1905 &umidi->endpoints[i]); 1906 if (err < 0) 1907 return err; 1908 } 1909 if (endpoints[i].in_cables) { 1910 err = snd_usbmidi_in_endpoint_create(umidi, 1911 &endpoints[i], 1912 &umidi->endpoints[i]); 1913 if (err < 0) 1914 return err; 1915 } 1916 1917 for (j = 0; j < 0x10; ++j) { 1918 if (endpoints[i].out_cables & (1 << j)) { 1919 snd_usbmidi_init_substream(umidi, 1920 SNDRV_RAWMIDI_STREAM_OUTPUT, 1921 out_ports, 1922 endpoints[i].assoc_out_jacks[j], 1923 &umidi->endpoints[i].out->ports[j].substream); 1924 ++out_ports; 1925 } 1926 if (endpoints[i].in_cables & (1 << j)) { 1927 snd_usbmidi_init_substream(umidi, 1928 SNDRV_RAWMIDI_STREAM_INPUT, 1929 in_ports, 1930 endpoints[i].assoc_in_jacks[j], 1931 &umidi->endpoints[i].in->ports[j].substream); 1932 ++in_ports; 1933 } 1934 } 1935 } 1936 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n", 1937 out_ports, in_ports); 1938 return 0; 1939 } 1940 1941 static struct usb_ms_endpoint_descriptor *find_usb_ms_endpoint_descriptor( 1942 struct usb_host_endpoint *hostep) 1943 { 1944 unsigned char *extra = hostep->extra; 1945 int extralen = hostep->extralen; 1946 1947 while (extralen > 3) { 1948 struct usb_ms_endpoint_descriptor *ms_ep = 1949 (struct usb_ms_endpoint_descriptor *)extra; 1950 1951 if (ms_ep->bLength > 3 && 1952 ms_ep->bDescriptorType == USB_DT_CS_ENDPOINT && 1953 ms_ep->bDescriptorSubtype == UAC_MS_GENERAL) 1954 return ms_ep; 1955 if (!extra[0]) 1956 break; 1957 extralen -= extra[0]; 1958 extra += extra[0]; 1959 } 1960 return NULL; 1961 } 1962 1963 /* 1964 * Returns MIDIStreaming device capabilities. 1965 */ 1966 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi, 1967 struct snd_usb_midi_endpoint_info *endpoints) 1968 { 1969 struct usb_interface *intf; 1970 struct usb_host_interface *hostif; 1971 struct usb_interface_descriptor *intfd; 1972 struct usb_ms_header_descriptor *ms_header; 1973 struct usb_host_endpoint *hostep; 1974 struct usb_endpoint_descriptor *ep; 1975 struct usb_ms_endpoint_descriptor *ms_ep; 1976 int i, j, epidx; 1977 1978 intf = umidi->iface; 1979 if (!intf) 1980 return -ENXIO; 1981 hostif = &intf->altsetting[0]; 1982 intfd = get_iface_desc(hostif); 1983 ms_header = (struct usb_ms_header_descriptor *)hostif->extra; 1984 if (hostif->extralen >= 7 && 1985 ms_header->bLength >= 7 && 1986 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1987 ms_header->bDescriptorSubtype == UAC_HEADER) 1988 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n", 1989 ((uint8_t *)&ms_header->bcdMSC)[1], ((uint8_t *)&ms_header->bcdMSC)[0]); 1990 else 1991 dev_warn(&umidi->dev->dev, 1992 "MIDIStreaming interface descriptor not found\n"); 1993 1994 epidx = 0; 1995 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1996 hostep = &hostif->endpoint[i]; 1997 ep = get_ep_desc(hostep); 1998 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1999 continue; 2000 ms_ep = find_usb_ms_endpoint_descriptor(hostep); 2001 if (!ms_ep) 2002 continue; 2003 if (ms_ep->bLength <= sizeof(*ms_ep)) 2004 continue; 2005 if (ms_ep->bNumEmbMIDIJack > 0x10) 2006 continue; 2007 if (ms_ep->bLength < sizeof(*ms_ep) + ms_ep->bNumEmbMIDIJack) 2008 continue; 2009 if (usb_endpoint_dir_out(ep)) { 2010 if (endpoints[epidx].out_ep) { 2011 if (++epidx >= MIDI_MAX_ENDPOINTS) { 2012 dev_warn(&umidi->dev->dev, 2013 "too many endpoints\n"); 2014 break; 2015 } 2016 } 2017 endpoints[epidx].out_ep = usb_endpoint_num(ep); 2018 if (usb_endpoint_xfer_int(ep)) 2019 endpoints[epidx].out_interval = ep->bInterval; 2020 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 2021 /* 2022 * Low speed bulk transfers don't exist, so 2023 * force interrupt transfers for devices like 2024 * ESI MIDI Mate that try to use them anyway. 2025 */ 2026 endpoints[epidx].out_interval = 1; 2027 endpoints[epidx].out_cables = 2028 (1 << ms_ep->bNumEmbMIDIJack) - 1; 2029 for (j = 0; j < ms_ep->bNumEmbMIDIJack; ++j) 2030 endpoints[epidx].assoc_out_jacks[j] = ms_ep->baAssocJackID[j]; 2031 for (; j < ARRAY_SIZE(endpoints[epidx].assoc_out_jacks); ++j) 2032 endpoints[epidx].assoc_out_jacks[j] = -1; 2033 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 2034 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 2035 } else { 2036 if (endpoints[epidx].in_ep) { 2037 if (++epidx >= MIDI_MAX_ENDPOINTS) { 2038 dev_warn(&umidi->dev->dev, 2039 "too many endpoints\n"); 2040 break; 2041 } 2042 } 2043 endpoints[epidx].in_ep = usb_endpoint_num(ep); 2044 if (usb_endpoint_xfer_int(ep)) 2045 endpoints[epidx].in_interval = ep->bInterval; 2046 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 2047 endpoints[epidx].in_interval = 1; 2048 endpoints[epidx].in_cables = 2049 (1 << ms_ep->bNumEmbMIDIJack) - 1; 2050 for (j = 0; j < ms_ep->bNumEmbMIDIJack; ++j) 2051 endpoints[epidx].assoc_in_jacks[j] = ms_ep->baAssocJackID[j]; 2052 for (; j < ARRAY_SIZE(endpoints[epidx].assoc_in_jacks); ++j) 2053 endpoints[epidx].assoc_in_jacks[j] = -1; 2054 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n", 2055 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 2056 } 2057 } 2058 return 0; 2059 } 2060 2061 static int roland_load_info(struct snd_kcontrol *kcontrol, 2062 struct snd_ctl_elem_info *info) 2063 { 2064 static const char *const names[] = { "High Load", "Light Load" }; 2065 2066 return snd_ctl_enum_info(info, 1, 2, names); 2067 } 2068 2069 static int roland_load_get(struct snd_kcontrol *kcontrol, 2070 struct snd_ctl_elem_value *value) 2071 { 2072 value->value.enumerated.item[0] = kcontrol->private_value; 2073 return 0; 2074 } 2075 2076 static int roland_load_put(struct snd_kcontrol *kcontrol, 2077 struct snd_ctl_elem_value *value) 2078 { 2079 struct snd_usb_midi *umidi = snd_kcontrol_chip(kcontrol); 2080 int changed; 2081 2082 if (value->value.enumerated.item[0] > 1) 2083 return -EINVAL; 2084 guard(mutex)(&umidi->mutex); 2085 changed = value->value.enumerated.item[0] != kcontrol->private_value; 2086 if (changed) 2087 kcontrol->private_value = value->value.enumerated.item[0]; 2088 return changed; 2089 } 2090 2091 static const struct snd_kcontrol_new roland_load_ctl = { 2092 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2093 .name = "MIDI Input Mode", 2094 .info = roland_load_info, 2095 .get = roland_load_get, 2096 .put = roland_load_put, 2097 .private_value = 1, 2098 }; 2099 2100 /* 2101 * On Roland devices, use the second alternate setting to be able to use 2102 * the interrupt input endpoint. 2103 */ 2104 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi) 2105 { 2106 struct usb_interface *intf; 2107 struct usb_host_interface *hostif; 2108 struct usb_interface_descriptor *intfd; 2109 2110 intf = umidi->iface; 2111 if (!intf || intf->num_altsetting != 2) 2112 return; 2113 2114 hostif = &intf->altsetting[1]; 2115 intfd = get_iface_desc(hostif); 2116 /* If either or both of the endpoints support interrupt transfer, 2117 * then use the alternate setting 2118 */ 2119 if (intfd->bNumEndpoints != 2 || 2120 !((get_endpoint(hostif, 0)->bmAttributes & 2121 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT || 2122 (get_endpoint(hostif, 1)->bmAttributes & 2123 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) 2124 return; 2125 2126 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n", 2127 intfd->bAlternateSetting); 2128 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 2129 intfd->bAlternateSetting); 2130 2131 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 2132 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 2133 umidi->roland_load_ctl = NULL; 2134 } 2135 2136 /* 2137 * Try to find any usable endpoints in the interface. 2138 */ 2139 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi, 2140 struct snd_usb_midi_endpoint_info *endpoint, 2141 int max_endpoints) 2142 { 2143 struct usb_interface *intf; 2144 struct usb_host_interface *hostif; 2145 struct usb_interface_descriptor *intfd; 2146 struct usb_endpoint_descriptor *epd; 2147 int i, out_eps = 0, in_eps = 0; 2148 2149 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 2150 snd_usbmidi_switch_roland_altsetting(umidi); 2151 2152 if (endpoint[0].out_ep || endpoint[0].in_ep) 2153 return 0; 2154 2155 intf = umidi->iface; 2156 if (!intf || intf->num_altsetting < 1) 2157 return -ENOENT; 2158 hostif = intf->cur_altsetting; 2159 intfd = get_iface_desc(hostif); 2160 2161 for (i = 0; i < intfd->bNumEndpoints; ++i) { 2162 epd = get_endpoint(hostif, i); 2163 if (!usb_endpoint_xfer_bulk(epd) && 2164 !usb_endpoint_xfer_int(epd)) 2165 continue; 2166 if (out_eps < max_endpoints && 2167 usb_endpoint_dir_out(epd)) { 2168 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 2169 if (usb_endpoint_xfer_int(epd)) 2170 endpoint[out_eps].out_interval = epd->bInterval; 2171 ++out_eps; 2172 } 2173 if (in_eps < max_endpoints && 2174 usb_endpoint_dir_in(epd)) { 2175 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 2176 if (usb_endpoint_xfer_int(epd)) 2177 endpoint[in_eps].in_interval = epd->bInterval; 2178 ++in_eps; 2179 } 2180 } 2181 return (out_eps || in_eps) ? 0 : -ENOENT; 2182 } 2183 2184 /* 2185 * Detects the endpoints for one-port-per-endpoint protocols. 2186 */ 2187 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi, 2188 struct snd_usb_midi_endpoint_info *endpoints) 2189 { 2190 int err, i; 2191 2192 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 2193 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2194 if (endpoints[i].out_ep) 2195 endpoints[i].out_cables = 0x0001; 2196 if (endpoints[i].in_ep) 2197 endpoints[i].in_cables = 0x0001; 2198 } 2199 return err; 2200 } 2201 2202 /* 2203 * Detects the endpoints and ports of Yamaha devices. 2204 */ 2205 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi, 2206 struct snd_usb_midi_endpoint_info *endpoint) 2207 { 2208 struct usb_interface *intf; 2209 struct usb_host_interface *hostif; 2210 struct usb_interface_descriptor *intfd; 2211 uint8_t *cs_desc; 2212 2213 intf = umidi->iface; 2214 if (!intf) 2215 return -ENOENT; 2216 hostif = intf->altsetting; 2217 intfd = get_iface_desc(hostif); 2218 if (intfd->bNumEndpoints < 1) 2219 return -ENOENT; 2220 2221 /* 2222 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 2223 * necessarily with any useful contents. So simply count 'em. 2224 */ 2225 for (cs_desc = hostif->extra; 2226 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2227 cs_desc += cs_desc[0]) { 2228 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 2229 if (cs_desc[2] == UAC_MIDI_IN_JACK) 2230 endpoint->in_cables = 2231 (endpoint->in_cables << 1) | 1; 2232 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 2233 endpoint->out_cables = 2234 (endpoint->out_cables << 1) | 1; 2235 } 2236 } 2237 if (!endpoint->in_cables && !endpoint->out_cables) 2238 return -ENOENT; 2239 2240 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2241 } 2242 2243 /* 2244 * Detects the endpoints and ports of Roland devices. 2245 */ 2246 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi, 2247 struct snd_usb_midi_endpoint_info *endpoint) 2248 { 2249 struct usb_interface *intf; 2250 struct usb_host_interface *hostif; 2251 u8 *cs_desc; 2252 2253 intf = umidi->iface; 2254 if (!intf) 2255 return -ENOENT; 2256 hostif = intf->altsetting; 2257 /* 2258 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>, 2259 * some have standard class descriptors, or both kinds, or neither. 2260 */ 2261 for (cs_desc = hostif->extra; 2262 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 2263 cs_desc += cs_desc[0]) { 2264 if (cs_desc[0] >= 6 && 2265 cs_desc[1] == USB_DT_CS_INTERFACE && 2266 cs_desc[2] == 0xf1 && 2267 cs_desc[3] == 0x02) { 2268 if (cs_desc[4] > 0x10 || cs_desc[5] > 0x10) 2269 continue; 2270 endpoint->in_cables = (1 << cs_desc[4]) - 1; 2271 endpoint->out_cables = (1 << cs_desc[5]) - 1; 2272 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 2273 } else if (cs_desc[0] >= 7 && 2274 cs_desc[1] == USB_DT_CS_INTERFACE && 2275 cs_desc[2] == UAC_HEADER) { 2276 return snd_usbmidi_get_ms_info(umidi, endpoint); 2277 } 2278 } 2279 2280 return -ENODEV; 2281 } 2282 2283 /* 2284 * Creates the endpoints and their ports for Midiman devices. 2285 */ 2286 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi, 2287 struct snd_usb_midi_endpoint_info *endpoint) 2288 { 2289 struct snd_usb_midi_endpoint_info ep_info; 2290 struct usb_interface *intf; 2291 struct usb_host_interface *hostif; 2292 struct usb_interface_descriptor *intfd; 2293 struct usb_endpoint_descriptor *epd; 2294 int cable, err; 2295 2296 intf = umidi->iface; 2297 if (!intf) 2298 return -ENOENT; 2299 hostif = intf->altsetting; 2300 intfd = get_iface_desc(hostif); 2301 /* 2302 * The various MidiSport devices have more or less random endpoint 2303 * numbers, so we have to identify the endpoints by their index in 2304 * the descriptor array, like the driver for that other OS does. 2305 * 2306 * There is one interrupt input endpoint for all input ports, one 2307 * bulk output endpoint for even-numbered ports, and one for odd- 2308 * numbered ports. Both bulk output endpoints have corresponding 2309 * input bulk endpoints (at indices 1 and 3) which aren't used. 2310 */ 2311 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 2312 dev_dbg(&umidi->dev->dev, "not enough endpoints\n"); 2313 return -ENOENT; 2314 } 2315 2316 epd = get_endpoint(hostif, 0); 2317 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 2318 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n"); 2319 return -ENXIO; 2320 } 2321 epd = get_endpoint(hostif, 2); 2322 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 2323 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n"); 2324 return -ENXIO; 2325 } 2326 if (endpoint->out_cables > 0x0001) { 2327 epd = get_endpoint(hostif, 4); 2328 if (!usb_endpoint_dir_out(epd) || 2329 !usb_endpoint_xfer_bulk(epd)) { 2330 dev_dbg(&umidi->dev->dev, 2331 "endpoint[4] isn't bulk output\n"); 2332 return -ENXIO; 2333 } 2334 } 2335 2336 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & 2337 USB_ENDPOINT_NUMBER_MASK; 2338 ep_info.out_interval = 0; 2339 ep_info.out_cables = endpoint->out_cables & 0x5555; 2340 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2341 &umidi->endpoints[0]); 2342 if (err < 0) 2343 return err; 2344 2345 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & 2346 USB_ENDPOINT_NUMBER_MASK; 2347 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 2348 ep_info.in_cables = endpoint->in_cables; 2349 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, 2350 &umidi->endpoints[0]); 2351 if (err < 0) 2352 return err; 2353 2354 if (endpoint->out_cables > 0x0001) { 2355 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & 2356 USB_ENDPOINT_NUMBER_MASK; 2357 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 2358 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, 2359 &umidi->endpoints[1]); 2360 if (err < 0) 2361 return err; 2362 } 2363 2364 for (cable = 0; cable < 0x10; ++cable) { 2365 if (endpoint->out_cables & (1 << cable)) 2366 snd_usbmidi_init_substream(umidi, 2367 SNDRV_RAWMIDI_STREAM_OUTPUT, 2368 cable, 2369 -1 /* prevent trying to find jack */, 2370 &umidi->endpoints[cable & 1].out->ports[cable].substream); 2371 if (endpoint->in_cables & (1 << cable)) 2372 snd_usbmidi_init_substream(umidi, 2373 SNDRV_RAWMIDI_STREAM_INPUT, 2374 cable, 2375 -1 /* prevent trying to find jack */, 2376 &umidi->endpoints[0].in->ports[cable].substream); 2377 } 2378 return 0; 2379 } 2380 2381 static const struct snd_rawmidi_global_ops snd_usbmidi_ops = { 2382 .get_port_info = snd_usbmidi_get_port_info, 2383 }; 2384 2385 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi, 2386 int out_ports, int in_ports) 2387 { 2388 struct snd_rawmidi *rmidi; 2389 int err; 2390 2391 err = snd_rawmidi_new(umidi->card, "USB MIDI", 2392 umidi->next_midi_device++, 2393 out_ports, in_ports, &rmidi); 2394 if (err < 0) 2395 return err; 2396 strscpy(rmidi->name, umidi->card->shortname); 2397 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2398 SNDRV_RAWMIDI_INFO_INPUT | 2399 SNDRV_RAWMIDI_INFO_DUPLEX; 2400 rmidi->ops = &snd_usbmidi_ops; 2401 rmidi->private_data = umidi; 2402 rmidi->private_free = snd_usbmidi_rawmidi_free; 2403 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, 2404 &snd_usbmidi_output_ops); 2405 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, 2406 &snd_usbmidi_input_ops); 2407 2408 umidi->rmidi = rmidi; 2409 return 0; 2410 } 2411 2412 /* 2413 * Temporarily stop input. 2414 */ 2415 void snd_usbmidi_input_stop(struct list_head *p) 2416 { 2417 struct snd_usb_midi *umidi; 2418 unsigned int i, j; 2419 2420 umidi = list_entry(p, struct snd_usb_midi, list); 2421 if (!umidi->input_running) 2422 return; 2423 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2424 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i]; 2425 if (ep->in) 2426 for (j = 0; j < INPUT_URBS; ++j) 2427 usb_kill_urb(ep->in->urbs[j]); 2428 } 2429 umidi->input_running = 0; 2430 } 2431 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2432 2433 static void snd_usbmidi_input_start_ep(struct snd_usb_midi *umidi, 2434 struct snd_usb_midi_in_endpoint *ep) 2435 { 2436 unsigned int i; 2437 2438 if (!ep) 2439 return; 2440 for (i = 0; i < INPUT_URBS; ++i) { 2441 struct urb *urb = ep->urbs[i]; 2442 scoped_guard(spinlock_irqsave, &umidi->disc_lock) { 2443 if (!atomic_read(&urb->use_count)) { 2444 urb->dev = ep->umidi->dev; 2445 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 2446 } 2447 } 2448 } 2449 } 2450 2451 /* 2452 * Resume input after a call to snd_usbmidi_input_stop(). 2453 */ 2454 void snd_usbmidi_input_start(struct list_head *p) 2455 { 2456 struct snd_usb_midi *umidi; 2457 int i; 2458 2459 umidi = list_entry(p, struct snd_usb_midi, list); 2460 if (umidi->input_running || !umidi->opened[1]) 2461 return; 2462 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2463 snd_usbmidi_input_start_ep(umidi, umidi->endpoints[i].in); 2464 umidi->input_running = 1; 2465 } 2466 EXPORT_SYMBOL(snd_usbmidi_input_start); 2467 2468 /* 2469 * Prepare for suspend. Typically called from the USB suspend callback. 2470 */ 2471 void snd_usbmidi_suspend(struct list_head *p) 2472 { 2473 struct snd_usb_midi *umidi; 2474 2475 umidi = list_entry(p, struct snd_usb_midi, list); 2476 guard(mutex)(&umidi->mutex); 2477 snd_usbmidi_input_stop(p); 2478 } 2479 EXPORT_SYMBOL(snd_usbmidi_suspend); 2480 2481 /* 2482 * Resume. Typically called from the USB resume callback. 2483 */ 2484 void snd_usbmidi_resume(struct list_head *p) 2485 { 2486 struct snd_usb_midi *umidi; 2487 2488 umidi = list_entry(p, struct snd_usb_midi, list); 2489 guard(mutex)(&umidi->mutex); 2490 snd_usbmidi_input_start(p); 2491 } 2492 EXPORT_SYMBOL(snd_usbmidi_resume); 2493 2494 /* 2495 * Creates and registers everything needed for a MIDI streaming interface. 2496 */ 2497 int __snd_usbmidi_create(struct snd_card *card, 2498 struct usb_interface *iface, 2499 struct list_head *midi_list, 2500 const struct snd_usb_audio_quirk *quirk, 2501 unsigned int usb_id, 2502 unsigned int *num_rawmidis) 2503 { 2504 struct snd_usb_midi *umidi; 2505 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2506 int out_ports, in_ports; 2507 int i, err; 2508 2509 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2510 if (!umidi) 2511 return -ENOMEM; 2512 umidi->dev = interface_to_usbdev(iface); 2513 umidi->card = card; 2514 umidi->iface = iface; 2515 umidi->quirk = quirk; 2516 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2517 if (num_rawmidis) 2518 umidi->next_midi_device = *num_rawmidis; 2519 spin_lock_init(&umidi->disc_lock); 2520 init_rwsem(&umidi->disc_rwsem); 2521 mutex_init(&umidi->mutex); 2522 if (!usb_id) 2523 usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2524 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2525 umidi->usb_id = usb_id; 2526 timer_setup(&umidi->error_timer, snd_usbmidi_error_timer, 0); 2527 2528 /* detect the endpoint(s) to use */ 2529 memset(endpoints, 0, sizeof(endpoints)); 2530 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2531 case QUIRK_MIDI_STANDARD_INTERFACE: 2532 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2533 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2534 umidi->usb_protocol_ops = 2535 &snd_usbmidi_maudio_broken_running_status_ops; 2536 break; 2537 case QUIRK_MIDI_US122L: 2538 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2539 fallthrough; 2540 case QUIRK_MIDI_FIXED_ENDPOINT: 2541 memcpy(&endpoints[0], quirk->data, 2542 sizeof(struct snd_usb_midi_endpoint_info)); 2543 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2544 break; 2545 case QUIRK_MIDI_YAMAHA: 2546 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2547 break; 2548 case QUIRK_MIDI_ROLAND: 2549 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]); 2550 break; 2551 case QUIRK_MIDI_MIDIMAN: 2552 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2553 memcpy(&endpoints[0], quirk->data, 2554 sizeof(struct snd_usb_midi_endpoint_info)); 2555 err = 0; 2556 break; 2557 case QUIRK_MIDI_NOVATION: 2558 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2559 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2560 break; 2561 case QUIRK_MIDI_RAW_BYTES: 2562 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2563 /* 2564 * Interface 1 contains isochronous endpoints, but with the same 2565 * numbers as in interface 0. Since it is interface 1 that the 2566 * USB core has most recently seen, these descriptors are now 2567 * associated with the endpoint numbers. This will foul up our 2568 * attempts to submit bulk/interrupt URBs to the endpoints in 2569 * interface 0, so we have to make sure that the USB core looks 2570 * again at interface 0 by calling usb_set_interface() on it. 2571 */ 2572 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ 2573 usb_set_interface(umidi->dev, 0, 0); 2574 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2575 break; 2576 case QUIRK_MIDI_EMAGIC: 2577 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2578 memcpy(&endpoints[0], quirk->data, 2579 sizeof(struct snd_usb_midi_endpoint_info)); 2580 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2581 break; 2582 case QUIRK_MIDI_CME: 2583 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2584 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2585 break; 2586 case QUIRK_MIDI_AKAI: 2587 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2588 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2589 /* endpoint 1 is input-only */ 2590 endpoints[1].out_cables = 0; 2591 break; 2592 case QUIRK_MIDI_FTDI: 2593 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; 2594 2595 /* set baud rate to 31250 (48 MHz / 16 / 96) */ 2596 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 2597 3, 0x40, 0x60, 0, NULL, 0, 1000); 2598 if (err < 0) 2599 break; 2600 2601 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2602 break; 2603 case QUIRK_MIDI_CH345: 2604 umidi->usb_protocol_ops = &snd_usbmidi_ch345_broken_sysex_ops; 2605 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2606 break; 2607 default: 2608 dev_err(&umidi->dev->dev, "invalid quirk type %d\n", 2609 quirk->type); 2610 err = -ENXIO; 2611 break; 2612 } 2613 if (err < 0) 2614 goto free_midi; 2615 2616 /* create rawmidi device */ 2617 out_ports = 0; 2618 in_ports = 0; 2619 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2620 out_ports += hweight16(endpoints[i].out_cables); 2621 in_ports += hweight16(endpoints[i].in_cables); 2622 } 2623 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2624 if (err < 0) 2625 goto free_midi; 2626 2627 /* create endpoint/port structures */ 2628 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2629 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2630 else 2631 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2632 if (err < 0) 2633 goto exit; 2634 2635 usb_autopm_get_interface_no_resume(umidi->iface); 2636 2637 list_add_tail(&umidi->list, midi_list); 2638 if (num_rawmidis) 2639 *num_rawmidis = umidi->next_midi_device; 2640 return 0; 2641 2642 free_midi: 2643 kfree(umidi); 2644 exit: 2645 return err; 2646 } 2647 EXPORT_SYMBOL(__snd_usbmidi_create); 2648