xref: /freebsd/libexec/rtld-elf/rtld.c (revision bf3fbf74d12cc6dff54ed17acf4a680cc0c9cdee)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74 
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79 
80 struct dlerror_save {
81 	int seen;
82 	char *msg;
83 };
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void dump_auxv(Elf_Auxinfo **aux_info);
104 static void errmsg_restore(struct dlerror_save *);
105 static struct dlerror_save *errmsg_save(void);
106 static void *fill_search_info(const char *, size_t, void *);
107 static char *find_library(const char *, const Obj_Entry *, int *);
108 static const char *gethints(bool);
109 static void hold_object(Obj_Entry *);
110 static void unhold_object(Obj_Entry *);
111 static void init_dag(Obj_Entry *);
112 static void init_marker(Obj_Entry *);
113 static void init_pagesizes(Elf_Auxinfo **aux_info);
114 static void init_rtld(caddr_t, Elf_Auxinfo **);
115 static void initlist_add_neededs(Needed_Entry *, Objlist *);
116 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
117 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
118 static void linkmap_add(Obj_Entry *);
119 static void linkmap_delete(Obj_Entry *);
120 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
121 static void unload_filtees(Obj_Entry *, RtldLockState *);
122 static int load_needed_objects(Obj_Entry *, int);
123 static int load_preload_objects(const char *, bool);
124 static int load_kpreload(const void *addr);
125 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
126 static void map_stacks_exec(RtldLockState *);
127 static int obj_disable_relro(Obj_Entry *);
128 static int obj_enforce_relro(Obj_Entry *);
129 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
130 static void objlist_call_init(Objlist *, RtldLockState *);
131 static void objlist_clear(Objlist *);
132 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
133 static void objlist_init(Objlist *);
134 static void objlist_push_head(Objlist *, Obj_Entry *);
135 static void objlist_push_tail(Objlist *, Obj_Entry *);
136 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
137 static void objlist_remove(Objlist *, Obj_Entry *);
138 static int open_binary_fd(const char *argv0, bool search_in_path,
139     const char **binpath_res);
140 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
141     const char **argv0, bool *dir_ignore);
142 static int parse_integer(const char *);
143 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
144 static void print_usage(const char *argv0);
145 static void release_object(Obj_Entry *);
146 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
147     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
148 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
149     int flags, RtldLockState *lockstate);
150 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
151     RtldLockState *);
152 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
153 static int rtld_dirname(const char *, char *);
154 static int rtld_dirname_abs(const char *, char *);
155 static void *rtld_dlopen(const char *name, int fd, int mode);
156 static void rtld_exit(void);
157 static void rtld_nop_exit(void);
158 static char *search_library_path(const char *, const char *, const char *,
159     int *);
160 static char *search_library_pathfds(const char *, const char *, int *);
161 static const void **get_program_var_addr(const char *, RtldLockState *);
162 static void set_program_var(const char *, const void *);
163 static int symlook_default(SymLook *, const Obj_Entry *refobj);
164 static int symlook_global(SymLook *, DoneList *);
165 static void symlook_init_from_req(SymLook *, const SymLook *);
166 static int symlook_list(SymLook *, const Objlist *, DoneList *);
167 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
168 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
169 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
170 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
171 static void trace_loaded_objects(Obj_Entry *, bool);
172 static void unlink_object(Obj_Entry *);
173 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
174 static void unref_dag(Obj_Entry *);
175 static void ref_dag(Obj_Entry *);
176 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
177     bool);
178 static char *origin_subst(Obj_Entry *, const char *);
179 static bool obj_resolve_origin(Obj_Entry *obj);
180 static void preinit_main(void);
181 static int rtld_verify_versions(const Objlist *);
182 static int rtld_verify_object_versions(Obj_Entry *);
183 static void object_add_name(Obj_Entry *, const char *);
184 static int object_match_name(const Obj_Entry *, const char *);
185 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
186 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
187     struct dl_phdr_info *phdr_info);
188 static uint32_t gnu_hash(const char *);
189 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
190     const unsigned long);
191 
192 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
193 void _r_debug_postinit(struct link_map *) __noinline __exported;
194 
195 int __sys_openat(int, const char *, int, ...);
196 
197 /*
198  * Data declarations.
199  */
200 struct r_debug r_debug __exported;  /* for GDB; */
201 static bool libmap_disable;	    /* Disable libmap */
202 static bool ld_loadfltr;	    /* Immediate filters processing */
203 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
204 static bool trust;		    /* False for setuid and setgid programs */
205 static bool dangerous_ld_env;	    /* True if environment variables have been
206 				       used to affect the libraries loaded */
207 bool ld_bind_not;		    /* Disable PLT update */
208 static const char *ld_bind_now; /* Environment variable for immediate binding */
209 static const char *ld_debug;	/* Environment variable for debugging */
210 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
211 				       weak definition */
212 static const char *ld_library_path; /* Environment variable for search path */
213 static const char
214     *ld_library_dirs; /* Environment variable for library descriptors */
215 static const char *ld_preload;	   /* Environment variable for libraries to
216 				      load first */
217 static const char *ld_preload_fds; /* Environment variable for libraries
218 				    represented by descriptors */
219 static const char
220     *ld_elf_hints_path; /* Environment variable for alternative hints path */
221 static const char *ld_tracing;	    /* Called from ldd to print libs */
222 static const char *ld_utrace;	    /* Use utrace() to log events. */
223 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
224 static Obj_Entry *obj_main;	    /* The main program shared object */
225 static Obj_Entry obj_rtld;	    /* The dynamic linker shared object */
226 static unsigned int obj_count;	    /* Number of objects in obj_list */
227 static unsigned int obj_loads;	    /* Number of loads of objects (gen count) */
228 size_t ld_static_tls_extra =	    /* Static TLS extra space (bytes) */
229     RTLD_STATIC_TLS_EXTRA;
230 
231 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
232     STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main = /* Objects loaded at program startup */
234     STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini = /* Objects needing fini() calls */
236     STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s, m)      \
241 	r_debug.r_state = s; \
242 	r_debug_state(&r_debug, m);
243 
244 extern Elf_Dyn _DYNAMIC;
245 #pragma weak _DYNAMIC
246 
247 int dlclose(void *) __exported;
248 char *dlerror(void) __exported;
249 void *dlopen(const char *, int) __exported;
250 void *fdlopen(int, int) __exported;
251 void *dlsym(void *, const char *) __exported;
252 dlfunc_t dlfunc(void *, const char *) __exported;
253 void *dlvsym(void *, const char *, const char *) __exported;
254 int dladdr(const void *, Dl_info *) __exported;
255 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
256     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
257 int dlinfo(void *, int, void *) __exported;
258 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
259 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
260 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
261 int _rtld_get_stack_prot(void) __exported;
262 int _rtld_is_dlopened(void *) __exported;
263 void _rtld_error(const char *, ...) __exported;
264 const char *rtld_get_var(const char *name) __exported;
265 int rtld_set_var(const char *name, const char *val) __exported;
266 
267 /* Only here to fix -Wmissing-prototypes warnings */
268 int __getosreldate(void);
269 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
270 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
271 
272 int npagesizes;
273 static int osreldate;
274 size_t *pagesizes;
275 size_t page_size;
276 
277 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
278 static int max_stack_flags;
279 
280 /*
281  * Global declarations normally provided by crt1.  The dynamic linker is
282  * not built with crt1, so we have to provide them ourselves.
283  */
284 char *__progname;
285 char **environ;
286 
287 /*
288  * Used to pass argc, argv to init functions.
289  */
290 int main_argc;
291 char **main_argv;
292 
293 /*
294  * Globals to control TLS allocation.
295  */
296 size_t tls_last_offset;	 /* Static TLS offset of last module */
297 size_t tls_last_size;	 /* Static TLS size of last module */
298 size_t tls_static_space; /* Static TLS space allocated */
299 static size_t tls_static_max_align;
300 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
301 int tls_max_index = 1;		 /* Largest module index allocated */
302 
303 static bool ld_library_path_rpath = false;
304 bool ld_fast_sigblock = false;
305 
306 /*
307  * Globals for path names, and such
308  */
309 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
310 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
311 const char *ld_path_rtld = _PATH_RTLD;
312 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
313 const char *ld_env_prefix = LD_;
314 
315 static void (*rtld_exit_ptr)(void);
316 
317 /*
318  * Fill in a DoneList with an allocation large enough to hold all of
319  * the currently-loaded objects.  Keep this as a macro since it calls
320  * alloca and we want that to occur within the scope of the caller.
321  */
322 #define donelist_init(dlp)                                             \
323 	((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]),       \
324 	    assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
325 	    (dlp)->num_used = 0)
326 
327 #define LD_UTRACE(e, h, mb, ms, r, n)                      \
328 	do {                                               \
329 		if (ld_utrace != NULL)                     \
330 			ld_utrace_log(e, h, mb, ms, r, n); \
331 	} while (0)
332 
333 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)334 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
335     int refcnt, const char *name)
336 {
337 	struct utrace_rtld ut;
338 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
339 
340 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
341 	ut.event = event;
342 	ut.handle = handle;
343 	ut.mapbase = mapbase;
344 	ut.mapsize = mapsize;
345 	ut.refcnt = refcnt;
346 	bzero(ut.name, sizeof(ut.name));
347 	if (name)
348 		strlcpy(ut.name, name, sizeof(ut.name));
349 	utrace(&ut, sizeof(ut));
350 }
351 
352 struct ld_env_var_desc {
353 	const char *const n;
354 	const char *val;
355 	const bool unsecure : 1;
356 	const bool can_update : 1;
357 	const bool debug : 1;
358 	bool owned : 1;
359 };
360 #define LD_ENV_DESC(var, unsec, ...) \
361 	[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
362 
363 static struct ld_env_var_desc ld_env_vars[] = {
364 	LD_ENV_DESC(BIND_NOW, false),
365 	LD_ENV_DESC(PRELOAD, true),
366 	LD_ENV_DESC(LIBMAP, true),
367 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
368 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
369 	LD_ENV_DESC(LIBMAP_DISABLE, true),
370 	LD_ENV_DESC(BIND_NOT, true),
371 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
372 	LD_ENV_DESC(ELF_HINTS_PATH, true),
373 	LD_ENV_DESC(LOADFLTR, true),
374 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
375 	LD_ENV_DESC(PRELOAD_FDS, true),
376 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
377 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
378 	LD_ENV_DESC(UTRACE, false, .can_update = true),
379 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
380 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
381 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
382 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
383 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
384 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
385 	LD_ENV_DESC(SHOW_AUXV, false),
386 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
387 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
388 };
389 
390 const char *
ld_get_env_var(int idx)391 ld_get_env_var(int idx)
392 {
393 	return (ld_env_vars[idx].val);
394 }
395 
396 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)397 rtld_get_env_val(char **env, const char *name, size_t name_len)
398 {
399 	char **m, *n, *v;
400 
401 	for (m = env; *m != NULL; m++) {
402 		n = *m;
403 		v = strchr(n, '=');
404 		if (v == NULL) {
405 			/* corrupt environment? */
406 			continue;
407 		}
408 		if (v - n == (ptrdiff_t)name_len &&
409 		    strncmp(name, n, name_len) == 0)
410 			return (v + 1);
411 	}
412 	return (NULL);
413 }
414 
415 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)416 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
417 {
418 	struct ld_env_var_desc *lvd;
419 	size_t prefix_len, nlen;
420 	char **m, *n, *v;
421 	int i;
422 
423 	prefix_len = strlen(env_prefix);
424 	for (m = env; *m != NULL; m++) {
425 		n = *m;
426 		if (strncmp(env_prefix, n, prefix_len) != 0) {
427 			/* Not a rtld environment variable. */
428 			continue;
429 		}
430 		n += prefix_len;
431 		v = strchr(n, '=');
432 		if (v == NULL) {
433 			/* corrupt environment? */
434 			continue;
435 		}
436 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
437 			lvd = &ld_env_vars[i];
438 			if (lvd->val != NULL) {
439 				/* Saw higher-priority variable name already. */
440 				continue;
441 			}
442 			nlen = strlen(lvd->n);
443 			if (v - n == (ptrdiff_t)nlen &&
444 			    strncmp(lvd->n, n, nlen) == 0) {
445 				lvd->val = v + 1;
446 				break;
447 			}
448 		}
449 	}
450 }
451 
452 static void
rtld_init_env_vars(char ** env)453 rtld_init_env_vars(char **env)
454 {
455 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
456 }
457 
458 static void
set_ld_elf_hints_path(void)459 set_ld_elf_hints_path(void)
460 {
461 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
462 		ld_elf_hints_path = ld_elf_hints_default;
463 }
464 
465 uintptr_t
rtld_round_page(uintptr_t x)466 rtld_round_page(uintptr_t x)
467 {
468 	return (roundup2(x, page_size));
469 }
470 
471 uintptr_t
rtld_trunc_page(uintptr_t x)472 rtld_trunc_page(uintptr_t x)
473 {
474 	return (rounddown2(x, page_size));
475 }
476 
477 /*
478  * Main entry point for dynamic linking.  The first argument is the
479  * stack pointer.  The stack is expected to be laid out as described
480  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
481  * Specifically, the stack pointer points to a word containing
482  * ARGC.  Following that in the stack is a null-terminated sequence
483  * of pointers to argument strings.  Then comes a null-terminated
484  * sequence of pointers to environment strings.  Finally, there is a
485  * sequence of "auxiliary vector" entries.
486  *
487  * The second argument points to a place to store the dynamic linker's
488  * exit procedure pointer and the third to a place to store the main
489  * program's object.
490  *
491  * The return value is the main program's entry point.
492  */
493 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)494 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
495 {
496 	Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
497 	Objlist_Entry *entry;
498 	Obj_Entry *last_interposer, *obj, *preload_tail;
499 	const Elf_Phdr *phdr;
500 	Objlist initlist;
501 	RtldLockState lockstate;
502 	struct stat st;
503 	Elf_Addr *argcp;
504 	char **argv, **env, **envp, *kexecpath;
505 	const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
506 	struct ld_env_var_desc *lvd;
507 	caddr_t imgentry;
508 	char buf[MAXPATHLEN];
509 	int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
510 	size_t sz;
511 #ifdef __powerpc__
512 	int old_auxv_format = 1;
513 #endif
514 	bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
515 
516 	/*
517 	 * On entry, the dynamic linker itself has not been relocated yet.
518 	 * Be very careful not to reference any global data until after
519 	 * init_rtld has returned.  It is OK to reference file-scope statics
520 	 * and string constants, and to call static and global functions.
521 	 */
522 
523 	/* Find the auxiliary vector on the stack. */
524 	argcp = sp;
525 	argc = *sp++;
526 	argv = (char **)sp;
527 	sp += argc + 1; /* Skip over arguments and NULL terminator */
528 	env = (char **)sp;
529 	while (*sp++ != 0) /* Skip over environment, and NULL terminator */
530 		;
531 	aux = (Elf_Auxinfo *)sp;
532 
533 	/* Digest the auxiliary vector. */
534 	for (i = 0; i < AT_COUNT; i++)
535 		aux_info[i] = NULL;
536 	for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
537 		if (auxp->a_type < AT_COUNT)
538 			aux_info[auxp->a_type] = auxp;
539 #ifdef __powerpc__
540 		if (auxp->a_type == 23) /* AT_STACKPROT */
541 			old_auxv_format = 0;
542 #endif
543 	}
544 
545 #ifdef __powerpc__
546 	if (old_auxv_format) {
547 		/* Remap from old-style auxv numbers. */
548 		aux_info[23] = aux_info[21]; /* AT_STACKPROT */
549 		aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */
550 		aux_info[19] = aux_info[17]; /* AT_NCPUS */
551 		aux_info[17] = aux_info[15]; /* AT_CANARYLEN */
552 		aux_info[15] = aux_info[13]; /* AT_EXECPATH */
553 		aux_info[13] = NULL;	     /* AT_GID */
554 
555 		aux_info[20] = aux_info[18]; /* AT_PAGESIZES */
556 		aux_info[18] = aux_info[16]; /* AT_OSRELDATE */
557 		aux_info[16] = aux_info[14]; /* AT_CANARY */
558 		aux_info[14] = NULL;	     /* AT_EGID */
559 	}
560 #endif
561 
562 	/* Initialize and relocate ourselves. */
563 	assert(aux_info[AT_BASE] != NULL);
564 	init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
565 
566 	dlerror_dflt_init();
567 
568 	__progname = obj_rtld.path;
569 	argv0 = argv[0] != NULL ? argv[0] : "(null)";
570 	environ = env;
571 	main_argc = argc;
572 	main_argv = argv;
573 
574 	if (aux_info[AT_BSDFLAGS] != NULL &&
575 	    (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
576 		ld_fast_sigblock = true;
577 
578 	trust = !issetugid();
579 	direct_exec = false;
580 
581 	md_abi_variant_hook(aux_info);
582 	rtld_init_env_vars(env);
583 
584 	fd = -1;
585 	if (aux_info[AT_EXECFD] != NULL) {
586 		fd = aux_info[AT_EXECFD]->a_un.a_val;
587 	} else {
588 		assert(aux_info[AT_PHDR] != NULL);
589 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
590 		if (phdr == obj_rtld.phdr) {
591 			if (!trust) {
592 				_rtld_error(
593 				    "Tainted process refusing to run binary %s",
594 				    argv0);
595 				rtld_die();
596 			}
597 			direct_exec = true;
598 
599 			dbg("opening main program in direct exec mode");
600 			if (argc >= 2) {
601 				rtld_argc = parse_args(argv, argc,
602 				    &search_in_path, &fd, &argv0, &dir_ignore);
603 				explicit_fd = (fd != -1);
604 				binpath = NULL;
605 				if (!explicit_fd)
606 					fd = open_binary_fd(argv0,
607 					    search_in_path, &binpath);
608 				if (fstat(fd, &st) == -1) {
609 					_rtld_error(
610 					    "Failed to fstat FD %d (%s): %s",
611 					    fd,
612 					    explicit_fd ?
613 						"user-provided descriptor" :
614 						argv0,
615 					    rtld_strerror(errno));
616 					rtld_die();
617 				}
618 
619 				/*
620 				 * Rough emulation of the permission checks done
621 				 * by execve(2), only Unix DACs are checked,
622 				 * ACLs are ignored.  Preserve the semantic of
623 				 * disabling owner to execute if owner x bit is
624 				 * cleared, even if others x bit is enabled.
625 				 * mmap(2) does not allow to mmap with PROT_EXEC
626 				 * if binary' file comes from noexec mount.  We
627 				 * cannot set a text reference on the binary.
628 				 */
629 				dir_enable = false;
630 				if (st.st_uid == geteuid()) {
631 					if ((st.st_mode & S_IXUSR) != 0)
632 						dir_enable = true;
633 				} else if (st.st_gid == getegid()) {
634 					if ((st.st_mode & S_IXGRP) != 0)
635 						dir_enable = true;
636 				} else if ((st.st_mode & S_IXOTH) != 0) {
637 					dir_enable = true;
638 				}
639 				if (!dir_enable && !dir_ignore) {
640 					_rtld_error(
641 				    "No execute permission for binary %s",
642 					    argv0);
643 					rtld_die();
644 				}
645 
646 				/*
647 				 * For direct exec mode, argv[0] is the
648 				 * interpreter name, we must remove it and shift
649 				 * arguments left before invoking binary main.
650 				 * Since stack layout places environment
651 				 * pointers and aux vectors right after the
652 				 * terminating NULL, we must shift environment
653 				 * and aux as well.
654 				 */
655 				main_argc = argc - rtld_argc;
656 				for (i = 0; i <= main_argc; i++)
657 					argv[i] = argv[i + rtld_argc];
658 				*argcp -= rtld_argc;
659 				environ = env = envp = argv + main_argc + 1;
660 				dbg("move env from %p to %p", envp + rtld_argc,
661 				    envp);
662 				do {
663 					*envp = *(envp + rtld_argc);
664 				} while (*envp++ != NULL);
665 				aux = auxp = (Elf_Auxinfo *)envp;
666 				auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
667 				dbg("move aux from %p to %p", auxpf, aux);
668 				/* XXXKIB insert place for AT_EXECPATH if not
669 				 * present */
670 				for (;; auxp++, auxpf++) {
671 					*auxp = *auxpf;
672 					if (auxp->a_type == AT_NULL)
673 						break;
674 				}
675 				/* Since the auxiliary vector has moved,
676 				 * redigest it. */
677 				for (i = 0; i < AT_COUNT; i++)
678 					aux_info[i] = NULL;
679 				for (auxp = aux; auxp->a_type != AT_NULL;
680 				    auxp++) {
681 					if (auxp->a_type < AT_COUNT)
682 						aux_info[auxp->a_type] = auxp;
683 				}
684 
685 				/* Point AT_EXECPATH auxv and aux_info to the
686 				 * binary path. */
687 				if (binpath == NULL) {
688 					aux_info[AT_EXECPATH] = NULL;
689 				} else {
690 					if (aux_info[AT_EXECPATH] == NULL) {
691 						aux_info[AT_EXECPATH] = xmalloc(
692 						    sizeof(Elf_Auxinfo));
693 						aux_info[AT_EXECPATH]->a_type =
694 						    AT_EXECPATH;
695 					}
696 					aux_info[AT_EXECPATH]->a_un.a_ptr =
697 					    __DECONST(void *, binpath);
698 				}
699 			} else {
700 				_rtld_error("No binary");
701 				rtld_die();
702 			}
703 		}
704 	}
705 
706 	ld_bind_now = ld_get_env_var(LD_BIND_NOW);
707 
708 	/*
709 	 * If the process is tainted, then we un-set the dangerous environment
710 	 * variables.  The process will be marked as tainted until setuid(2)
711 	 * is called.  If any child process calls setuid(2) we do not want any
712 	 * future processes to honor the potentially un-safe variables.
713 	 */
714 	if (!trust) {
715 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
716 			lvd = &ld_env_vars[i];
717 			if (lvd->unsecure)
718 				lvd->val = NULL;
719 		}
720 	}
721 
722 	ld_debug = ld_get_env_var(LD_DEBUG);
723 	if (ld_bind_now == NULL)
724 		ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
725 	ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
726 	libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
727 	libmap_override = ld_get_env_var(LD_LIBMAP);
728 	ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
729 	ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
730 	ld_preload = ld_get_env_var(LD_PRELOAD);
731 	ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
732 	ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
733 	ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
734 	library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
735 	if (library_path_rpath != NULL) {
736 		if (library_path_rpath[0] == 'y' ||
737 		    library_path_rpath[0] == 'Y' ||
738 		    library_path_rpath[0] == '1')
739 			ld_library_path_rpath = true;
740 		else
741 			ld_library_path_rpath = false;
742 	}
743 	static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
744 	if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
745 		sz = parse_integer(static_tls_extra);
746 		if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
747 			ld_static_tls_extra = sz;
748 	}
749 	dangerous_ld_env = libmap_disable || libmap_override != NULL ||
750 	    ld_library_path != NULL || ld_preload != NULL ||
751 	    ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
752 	    static_tls_extra != NULL;
753 	ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
754 	ld_utrace = ld_get_env_var(LD_UTRACE);
755 
756 	set_ld_elf_hints_path();
757 	if (ld_debug != NULL && *ld_debug != '\0')
758 		debug = 1;
759 	dbg("%s is initialized, base address = %p", __progname,
760 	    (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
761 	dbg("RTLD dynamic = %p", obj_rtld.dynamic);
762 	dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
763 
764 	dbg("initializing thread locks");
765 	lockdflt_init();
766 
767 	/*
768 	 * Load the main program, or process its program header if it is
769 	 * already loaded.
770 	 */
771 	if (fd != -1) { /* Load the main program. */
772 		dbg("loading main program");
773 		obj_main = map_object(fd, argv0, NULL);
774 		close(fd);
775 		if (obj_main == NULL)
776 			rtld_die();
777 		max_stack_flags = obj_main->stack_flags;
778 	} else { /* Main program already loaded. */
779 		dbg("processing main program's program header");
780 		assert(aux_info[AT_PHDR] != NULL);
781 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
782 		assert(aux_info[AT_PHNUM] != NULL);
783 		phnum = aux_info[AT_PHNUM]->a_un.a_val;
784 		assert(aux_info[AT_PHENT] != NULL);
785 		assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
786 		assert(aux_info[AT_ENTRY] != NULL);
787 		imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
788 		if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
789 		    NULL)
790 			rtld_die();
791 	}
792 
793 	if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
794 		kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
795 		dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
796 		if (kexecpath[0] == '/')
797 			obj_main->path = kexecpath;
798 		else if (getcwd(buf, sizeof(buf)) == NULL ||
799 		    strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
800 		    strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
801 			obj_main->path = xstrdup(argv0);
802 		else
803 			obj_main->path = xstrdup(buf);
804 	} else {
805 		dbg("No AT_EXECPATH or direct exec");
806 		obj_main->path = xstrdup(argv0);
807 	}
808 	dbg("obj_main path %s", obj_main->path);
809 	obj_main->mainprog = true;
810 
811 	if (aux_info[AT_STACKPROT] != NULL &&
812 	    aux_info[AT_STACKPROT]->a_un.a_val != 0)
813 		stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
814 
815 #ifndef COMPAT_libcompat
816 	/*
817 	 * Get the actual dynamic linker pathname from the executable if
818 	 * possible.  (It should always be possible.)  That ensures that
819 	 * gdb will find the right dynamic linker even if a non-standard
820 	 * one is being used.
821 	 */
822 	if (obj_main->interp != NULL &&
823 	    strcmp(obj_main->interp, obj_rtld.path) != 0) {
824 		free(obj_rtld.path);
825 		obj_rtld.path = xstrdup(obj_main->interp);
826 		__progname = obj_rtld.path;
827 	}
828 #endif
829 
830 	if (!digest_dynamic(obj_main, 0))
831 		rtld_die();
832 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
833 	    obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
834 	    obj_main->dynsymcount);
835 
836 	linkmap_add(obj_main);
837 	linkmap_add(&obj_rtld);
838 
839 	/* Link the main program into the list of objects. */
840 	TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
841 	obj_count++;
842 	obj_loads++;
843 
844 	/* Initialize a fake symbol for resolving undefined weak references. */
845 	sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
846 	sym_zero.st_shndx = SHN_UNDEF;
847 	sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
848 
849 	if (!libmap_disable)
850 		libmap_disable = (bool)lm_init(libmap_override);
851 
852 	if (aux_info[AT_KPRELOAD] != NULL &&
853 	    aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
854 		dbg("loading kernel vdso");
855 		if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
856 			rtld_die();
857 	}
858 
859 	dbg("loading LD_PRELOAD_FDS libraries");
860 	if (load_preload_objects(ld_preload_fds, true) == -1)
861 		rtld_die();
862 
863 	dbg("loading LD_PRELOAD libraries");
864 	if (load_preload_objects(ld_preload, false) == -1)
865 		rtld_die();
866 	preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
867 
868 	dbg("loading needed objects");
869 	if (load_needed_objects(obj_main,
870 		ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
871 		rtld_die();
872 
873 	/* Make a list of all objects loaded at startup. */
874 	last_interposer = obj_main;
875 	TAILQ_FOREACH(obj, &obj_list, next) {
876 		if (obj->marker)
877 			continue;
878 		if (obj->z_interpose && obj != obj_main) {
879 			objlist_put_after(&list_main, last_interposer, obj);
880 			last_interposer = obj;
881 		} else {
882 			objlist_push_tail(&list_main, obj);
883 		}
884 		obj->refcount++;
885 	}
886 
887 	dbg("checking for required versions");
888 	if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
889 		rtld_die();
890 
891 	if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
892 		dump_auxv(aux_info);
893 
894 	if (ld_tracing) { /* We're done */
895 		trace_loaded_objects(obj_main, true);
896 		exit(0);
897 	}
898 
899 	if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
900 		dump_relocations(obj_main);
901 		exit(0);
902 	}
903 
904 	/*
905 	 * Processing tls relocations requires having the tls offsets
906 	 * initialized.  Prepare offsets before starting initial
907 	 * relocation processing.
908 	 */
909 	dbg("initializing initial thread local storage offsets");
910 	STAILQ_FOREACH(entry, &list_main, link) {
911 		/*
912 		 * Allocate all the initial objects out of the static TLS
913 		 * block even if they didn't ask for it.
914 		 */
915 		allocate_tls_offset(entry->obj);
916 	}
917 
918 	if (relocate_objects(obj_main,
919 		ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
920 		SYMLOOK_EARLY, NULL) == -1)
921 		rtld_die();
922 
923 	dbg("doing copy relocations");
924 	if (do_copy_relocations(obj_main) == -1)
925 		rtld_die();
926 
927 	if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
928 		dump_relocations(obj_main);
929 		exit(0);
930 	}
931 
932 	ifunc_init(aux_info);
933 
934 	/*
935 	 * Setup TLS for main thread.  This must be done after the
936 	 * relocations are processed, since tls initialization section
937 	 * might be the subject for relocations.
938 	 */
939 	dbg("initializing initial thread local storage");
940 	allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
941 
942 	dbg("initializing key program variables");
943 	set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
944 	set_program_var("environ", env);
945 	set_program_var("__elf_aux_vector", aux);
946 
947 	/* Make a list of init functions to call. */
948 	objlist_init(&initlist);
949 	initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
950 	    preload_tail, &initlist);
951 
952 	r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
953 
954 	map_stacks_exec(NULL);
955 
956 	if (!obj_main->crt_no_init) {
957 		/*
958 		 * Make sure we don't call the main program's init and fini
959 		 * functions for binaries linked with old crt1 which calls
960 		 * _init itself.
961 		 */
962 		obj_main->init = obj_main->fini = (Elf_Addr)NULL;
963 		obj_main->preinit_array = obj_main->init_array =
964 		    obj_main->fini_array = (Elf_Addr)NULL;
965 	}
966 
967 	if (direct_exec) {
968 		/* Set osrel for direct-execed binary */
969 		mib[0] = CTL_KERN;
970 		mib[1] = KERN_PROC;
971 		mib[2] = KERN_PROC_OSREL;
972 		mib[3] = getpid();
973 		osrel = obj_main->osrel;
974 		sz = sizeof(old_osrel);
975 		dbg("setting osrel to %d", osrel);
976 		(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
977 	}
978 
979 	wlock_acquire(rtld_bind_lock, &lockstate);
980 
981 	dbg("resolving ifuncs");
982 	if (initlist_objects_ifunc(&initlist,
983 		ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
984 		&lockstate) == -1)
985 		rtld_die();
986 
987 	rtld_exit_ptr = rtld_exit;
988 	if (obj_main->crt_no_init)
989 		preinit_main();
990 	objlist_call_init(&initlist, &lockstate);
991 	_r_debug_postinit(&obj_main->linkmap);
992 	objlist_clear(&initlist);
993 	dbg("loading filtees");
994 	TAILQ_FOREACH(obj, &obj_list, next) {
995 		if (obj->marker)
996 			continue;
997 		if (ld_loadfltr || obj->z_loadfltr)
998 			load_filtees(obj, 0, &lockstate);
999 	}
1000 
1001 	dbg("enforcing main obj relro");
1002 	if (obj_enforce_relro(obj_main) == -1)
1003 		rtld_die();
1004 
1005 	lock_release(rtld_bind_lock, &lockstate);
1006 
1007 	dbg("transferring control to program entry point = %p",
1008 	    obj_main->entry);
1009 
1010 	/* Return the exit procedure and the program entry point. */
1011 	*exit_proc = rtld_exit_ptr;
1012 	*objp = obj_main;
1013 	return ((func_ptr_type)obj_main->entry);
1014 }
1015 
1016 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1017 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1018 {
1019 	void *ptr;
1020 	Elf_Addr target;
1021 
1022 	ptr = (void *)make_function_pointer(def, obj);
1023 	target = call_ifunc_resolver(ptr);
1024 	return ((void *)target);
1025 }
1026 
1027 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1028 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1029 {
1030 	const Elf_Rel *rel;
1031 	const Elf_Sym *def;
1032 	const Obj_Entry *defobj;
1033 	Elf_Addr *where;
1034 	Elf_Addr target;
1035 	RtldLockState lockstate;
1036 
1037 	rlock_acquire(rtld_bind_lock, &lockstate);
1038 	if (sigsetjmp(lockstate.env, 0) != 0)
1039 		lock_upgrade(rtld_bind_lock, &lockstate);
1040 	if (obj->pltrel)
1041 		rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1042 	else
1043 		rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1044 
1045 	where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1046 	def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1047 	    NULL, &lockstate);
1048 	if (def == NULL)
1049 		rtld_die();
1050 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1051 		target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1052 	else
1053 		target = (Elf_Addr)(defobj->relocbase + def->st_value);
1054 
1055 	dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1056 	    obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1057 	    defobj->path == NULL ? NULL : basename(defobj->path));
1058 
1059 	/*
1060 	 * Write the new contents for the jmpslot. Note that depending on
1061 	 * architecture, the value which we need to return back to the
1062 	 * lazy binding trampoline may or may not be the target
1063 	 * address. The value returned from reloc_jmpslot() is the value
1064 	 * that the trampoline needs.
1065 	 */
1066 	target = reloc_jmpslot(where, target, defobj, obj, rel);
1067 	lock_release(rtld_bind_lock, &lockstate);
1068 	return (target);
1069 }
1070 
1071 /*
1072  * Error reporting function.  Use it like printf.  If formats the message
1073  * into a buffer, and sets things up so that the next call to dlerror()
1074  * will return the message.
1075  */
1076 void
_rtld_error(const char * fmt,...)1077 _rtld_error(const char *fmt, ...)
1078 {
1079 	va_list ap;
1080 
1081 	va_start(ap, fmt);
1082 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1083 	    ap);
1084 	va_end(ap);
1085 	*lockinfo.dlerror_seen() = 0;
1086 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1087 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1088 }
1089 
1090 /*
1091  * Return a dynamically-allocated copy of the current error message, if any.
1092  */
1093 static struct dlerror_save *
errmsg_save(void)1094 errmsg_save(void)
1095 {
1096 	struct dlerror_save *res;
1097 
1098 	res = xmalloc(sizeof(*res));
1099 	res->seen = *lockinfo.dlerror_seen();
1100 	if (res->seen == 0)
1101 		res->msg = xstrdup(lockinfo.dlerror_loc());
1102 	return (res);
1103 }
1104 
1105 /*
1106  * Restore the current error message from a copy which was previously saved
1107  * by errmsg_save().  The copy is freed.
1108  */
1109 static void
errmsg_restore(struct dlerror_save * saved_msg)1110 errmsg_restore(struct dlerror_save *saved_msg)
1111 {
1112 	if (saved_msg == NULL || saved_msg->seen == 1) {
1113 		*lockinfo.dlerror_seen() = 1;
1114 	} else {
1115 		*lockinfo.dlerror_seen() = 0;
1116 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1117 		    lockinfo.dlerror_loc_sz);
1118 		free(saved_msg->msg);
1119 	}
1120 	free(saved_msg);
1121 }
1122 
1123 static const char *
basename(const char * name)1124 basename(const char *name)
1125 {
1126 	const char *p;
1127 
1128 	p = strrchr(name, '/');
1129 	return (p != NULL ? p + 1 : name);
1130 }
1131 
1132 static struct utsname uts;
1133 
1134 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1135 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1136     bool may_free)
1137 {
1138 	char *p, *p1, *res, *resp;
1139 	int subst_len, kw_len, subst_count, old_len, new_len;
1140 
1141 	kw_len = strlen(kw);
1142 
1143 	/*
1144 	 * First, count the number of the keyword occurrences, to
1145 	 * preallocate the final string.
1146 	 */
1147 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1148 		p1 = strstr(p, kw);
1149 		if (p1 == NULL)
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * If the keyword is not found, just return.
1155 	 *
1156 	 * Return non-substituted string if resolution failed.  We
1157 	 * cannot do anything more reasonable, the failure mode of the
1158 	 * caller is unresolved library anyway.
1159 	 */
1160 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1161 		return (may_free ? real : xstrdup(real));
1162 	if (obj != NULL)
1163 		subst = obj->origin_path;
1164 
1165 	/*
1166 	 * There is indeed something to substitute.  Calculate the
1167 	 * length of the resulting string, and allocate it.
1168 	 */
1169 	subst_len = strlen(subst);
1170 	old_len = strlen(real);
1171 	new_len = old_len + (subst_len - kw_len) * subst_count;
1172 	res = xmalloc(new_len + 1);
1173 
1174 	/*
1175 	 * Now, execute the substitution loop.
1176 	 */
1177 	for (p = real, resp = res, *resp = '\0';;) {
1178 		p1 = strstr(p, kw);
1179 		if (p1 != NULL) {
1180 			/* Copy the prefix before keyword. */
1181 			memcpy(resp, p, p1 - p);
1182 			resp += p1 - p;
1183 			/* Keyword replacement. */
1184 			memcpy(resp, subst, subst_len);
1185 			resp += subst_len;
1186 			*resp = '\0';
1187 			p = p1 + kw_len;
1188 		} else
1189 			break;
1190 	}
1191 
1192 	/* Copy to the end of string and finish. */
1193 	strcat(resp, p);
1194 	if (may_free)
1195 		free(real);
1196 	return (res);
1197 }
1198 
1199 static const struct {
1200 	const char *kw;
1201 	bool pass_obj;
1202 	const char *subst;
1203 } tokens[] = {
1204 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1205 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1206 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1207 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1208 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1209 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1210 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1211 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1212 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1213 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1214 };
1215 
1216 static char *
origin_subst(Obj_Entry * obj,const char * real)1217 origin_subst(Obj_Entry *obj, const char *real)
1218 {
1219 	char *res;
1220 	int i;
1221 
1222 	if (obj == NULL || !trust)
1223 		return (xstrdup(real));
1224 	if (uts.sysname[0] == '\0') {
1225 		if (uname(&uts) != 0) {
1226 			_rtld_error("utsname failed: %d", errno);
1227 			return (NULL);
1228 		}
1229 	}
1230 
1231 	/* __DECONST is safe here since without may_free real is unchanged */
1232 	res = __DECONST(char *, real);
1233 	for (i = 0; i < (int)nitems(tokens); i++) {
1234 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1235 		    tokens[i].kw, tokens[i].subst, i != 0);
1236 	}
1237 	return (res);
1238 }
1239 
1240 void
rtld_die(void)1241 rtld_die(void)
1242 {
1243 	const char *msg = dlerror();
1244 
1245 	if (msg == NULL)
1246 		msg = "Fatal error";
1247 	rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1248 	rtld_fdputstr(STDERR_FILENO, msg);
1249 	rtld_fdputchar(STDERR_FILENO, '\n');
1250 	_exit(1);
1251 }
1252 
1253 /*
1254  * Process a shared object's DYNAMIC section, and save the important
1255  * information in its Obj_Entry structure.
1256  */
1257 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1258 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1259     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1260 {
1261 	const Elf_Dyn *dynp;
1262 	Needed_Entry **needed_tail = &obj->needed;
1263 	Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1264 	Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1265 	const Elf_Hashelt *hashtab;
1266 	const Elf32_Word *hashval;
1267 	Elf32_Word bkt, nmaskwords;
1268 	int bloom_size32;
1269 	int plttype = DT_REL;
1270 
1271 	*dyn_rpath = NULL;
1272 	*dyn_soname = NULL;
1273 	*dyn_runpath = NULL;
1274 
1275 	obj->bind_now = false;
1276 	dynp = obj->dynamic;
1277 	if (dynp == NULL)
1278 		return;
1279 	for (; dynp->d_tag != DT_NULL; dynp++) {
1280 		switch (dynp->d_tag) {
1281 		case DT_REL:
1282 			obj->rel = (const Elf_Rel *)(obj->relocbase +
1283 			    dynp->d_un.d_ptr);
1284 			break;
1285 
1286 		case DT_RELSZ:
1287 			obj->relsize = dynp->d_un.d_val;
1288 			break;
1289 
1290 		case DT_RELENT:
1291 			assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1292 			break;
1293 
1294 		case DT_JMPREL:
1295 			obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1296 			    dynp->d_un.d_ptr);
1297 			break;
1298 
1299 		case DT_PLTRELSZ:
1300 			obj->pltrelsize = dynp->d_un.d_val;
1301 			break;
1302 
1303 		case DT_RELA:
1304 			obj->rela = (const Elf_Rela *)(obj->relocbase +
1305 			    dynp->d_un.d_ptr);
1306 			break;
1307 
1308 		case DT_RELASZ:
1309 			obj->relasize = dynp->d_un.d_val;
1310 			break;
1311 
1312 		case DT_RELAENT:
1313 			assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1314 			break;
1315 
1316 		case DT_RELR:
1317 			obj->relr = (const Elf_Relr *)(obj->relocbase +
1318 			    dynp->d_un.d_ptr);
1319 			break;
1320 
1321 		case DT_RELRSZ:
1322 			obj->relrsize = dynp->d_un.d_val;
1323 			break;
1324 
1325 		case DT_RELRENT:
1326 			assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1327 			break;
1328 
1329 		case DT_PLTREL:
1330 			plttype = dynp->d_un.d_val;
1331 			assert(
1332 			    dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1333 			break;
1334 
1335 		case DT_SYMTAB:
1336 			obj->symtab = (const Elf_Sym *)(obj->relocbase +
1337 			    dynp->d_un.d_ptr);
1338 			break;
1339 
1340 		case DT_SYMENT:
1341 			assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1342 			break;
1343 
1344 		case DT_STRTAB:
1345 			obj->strtab = (const char *)(obj->relocbase +
1346 			    dynp->d_un.d_ptr);
1347 			break;
1348 
1349 		case DT_STRSZ:
1350 			obj->strsize = dynp->d_un.d_val;
1351 			break;
1352 
1353 		case DT_VERNEED:
1354 			obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1355 			    dynp->d_un.d_val);
1356 			break;
1357 
1358 		case DT_VERNEEDNUM:
1359 			obj->verneednum = dynp->d_un.d_val;
1360 			break;
1361 
1362 		case DT_VERDEF:
1363 			obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1364 			    dynp->d_un.d_val);
1365 			break;
1366 
1367 		case DT_VERDEFNUM:
1368 			obj->verdefnum = dynp->d_un.d_val;
1369 			break;
1370 
1371 		case DT_VERSYM:
1372 			obj->versyms = (const Elf_Versym *)(obj->relocbase +
1373 			    dynp->d_un.d_val);
1374 			break;
1375 
1376 		case DT_HASH: {
1377 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1378 			    dynp->d_un.d_ptr);
1379 			obj->nbuckets = hashtab[0];
1380 			obj->nchains = hashtab[1];
1381 			obj->buckets = hashtab + 2;
1382 			obj->chains = obj->buckets + obj->nbuckets;
1383 			obj->valid_hash_sysv = obj->nbuckets > 0 &&
1384 			    obj->nchains > 0 && obj->buckets != NULL;
1385 		} break;
1386 
1387 		case DT_GNU_HASH: {
1388 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1389 			    dynp->d_un.d_ptr);
1390 			obj->nbuckets_gnu = hashtab[0];
1391 			obj->symndx_gnu = hashtab[1];
1392 			nmaskwords = hashtab[2];
1393 			bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1394 			obj->maskwords_bm_gnu = nmaskwords - 1;
1395 			obj->shift2_gnu = hashtab[3];
1396 			obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1397 			obj->buckets_gnu = hashtab + 4 + bloom_size32;
1398 			obj->chain_zero_gnu = obj->buckets_gnu +
1399 			    obj->nbuckets_gnu - obj->symndx_gnu;
1400 			/* Number of bitmask words is required to be power of 2
1401 			 */
1402 			obj->valid_hash_gnu = powerof2(nmaskwords) &&
1403 			    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1404 		} break;
1405 
1406 		case DT_NEEDED:
1407 			if (!obj->rtld) {
1408 				Needed_Entry *nep = NEW(Needed_Entry);
1409 				nep->name = dynp->d_un.d_val;
1410 				nep->obj = NULL;
1411 				nep->next = NULL;
1412 
1413 				*needed_tail = nep;
1414 				needed_tail = &nep->next;
1415 			}
1416 			break;
1417 
1418 		case DT_FILTER:
1419 			if (!obj->rtld) {
1420 				Needed_Entry *nep = NEW(Needed_Entry);
1421 				nep->name = dynp->d_un.d_val;
1422 				nep->obj = NULL;
1423 				nep->next = NULL;
1424 
1425 				*needed_filtees_tail = nep;
1426 				needed_filtees_tail = &nep->next;
1427 
1428 				if (obj->linkmap.l_refname == NULL)
1429 					obj->linkmap.l_refname =
1430 					    (char *)dynp->d_un.d_val;
1431 			}
1432 			break;
1433 
1434 		case DT_AUXILIARY:
1435 			if (!obj->rtld) {
1436 				Needed_Entry *nep = NEW(Needed_Entry);
1437 				nep->name = dynp->d_un.d_val;
1438 				nep->obj = NULL;
1439 				nep->next = NULL;
1440 
1441 				*needed_aux_filtees_tail = nep;
1442 				needed_aux_filtees_tail = &nep->next;
1443 			}
1444 			break;
1445 
1446 		case DT_PLTGOT:
1447 			obj->pltgot = (Elf_Addr *)(obj->relocbase +
1448 			    dynp->d_un.d_ptr);
1449 			break;
1450 
1451 		case DT_TEXTREL:
1452 			obj->textrel = true;
1453 			break;
1454 
1455 		case DT_SYMBOLIC:
1456 			obj->symbolic = true;
1457 			break;
1458 
1459 		case DT_RPATH:
1460 			/*
1461 			 * We have to wait until later to process this, because
1462 			 * we might not have gotten the address of the string
1463 			 * table yet.
1464 			 */
1465 			*dyn_rpath = dynp;
1466 			break;
1467 
1468 		case DT_SONAME:
1469 			*dyn_soname = dynp;
1470 			break;
1471 
1472 		case DT_RUNPATH:
1473 			*dyn_runpath = dynp;
1474 			break;
1475 
1476 		case DT_INIT:
1477 			obj->init = (Elf_Addr)(obj->relocbase +
1478 			    dynp->d_un.d_ptr);
1479 			break;
1480 
1481 		case DT_PREINIT_ARRAY:
1482 			obj->preinit_array = (Elf_Addr)(obj->relocbase +
1483 			    dynp->d_un.d_ptr);
1484 			break;
1485 
1486 		case DT_PREINIT_ARRAYSZ:
1487 			obj->preinit_array_num = dynp->d_un.d_val /
1488 			    sizeof(Elf_Addr);
1489 			break;
1490 
1491 		case DT_INIT_ARRAY:
1492 			obj->init_array = (Elf_Addr)(obj->relocbase +
1493 			    dynp->d_un.d_ptr);
1494 			break;
1495 
1496 		case DT_INIT_ARRAYSZ:
1497 			obj->init_array_num = dynp->d_un.d_val /
1498 			    sizeof(Elf_Addr);
1499 			break;
1500 
1501 		case DT_FINI:
1502 			obj->fini = (Elf_Addr)(obj->relocbase +
1503 			    dynp->d_un.d_ptr);
1504 			break;
1505 
1506 		case DT_FINI_ARRAY:
1507 			obj->fini_array = (Elf_Addr)(obj->relocbase +
1508 			    dynp->d_un.d_ptr);
1509 			break;
1510 
1511 		case DT_FINI_ARRAYSZ:
1512 			obj->fini_array_num = dynp->d_un.d_val /
1513 			    sizeof(Elf_Addr);
1514 			break;
1515 
1516 		case DT_DEBUG:
1517 			if (!early)
1518 				dbg("Filling in DT_DEBUG entry");
1519 			(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1520 			    (Elf_Addr)&r_debug;
1521 			break;
1522 
1523 		case DT_FLAGS:
1524 			if (dynp->d_un.d_val & DF_ORIGIN)
1525 				obj->z_origin = true;
1526 			if (dynp->d_un.d_val & DF_SYMBOLIC)
1527 				obj->symbolic = true;
1528 			if (dynp->d_un.d_val & DF_TEXTREL)
1529 				obj->textrel = true;
1530 			if (dynp->d_un.d_val & DF_BIND_NOW)
1531 				obj->bind_now = true;
1532 			if (dynp->d_un.d_val & DF_STATIC_TLS)
1533 				obj->static_tls = true;
1534 			break;
1535 
1536 		case DT_FLAGS_1:
1537 			if (dynp->d_un.d_val & DF_1_NOOPEN)
1538 				obj->z_noopen = true;
1539 			if (dynp->d_un.d_val & DF_1_ORIGIN)
1540 				obj->z_origin = true;
1541 			if (dynp->d_un.d_val & DF_1_GLOBAL)
1542 				obj->z_global = true;
1543 			if (dynp->d_un.d_val & DF_1_BIND_NOW)
1544 				obj->bind_now = true;
1545 			if (dynp->d_un.d_val & DF_1_NODELETE)
1546 				obj->z_nodelete = true;
1547 			if (dynp->d_un.d_val & DF_1_LOADFLTR)
1548 				obj->z_loadfltr = true;
1549 			if (dynp->d_un.d_val & DF_1_INTERPOSE)
1550 				obj->z_interpose = true;
1551 			if (dynp->d_un.d_val & DF_1_NODEFLIB)
1552 				obj->z_nodeflib = true;
1553 			if (dynp->d_un.d_val & DF_1_PIE)
1554 				obj->z_pie = true;
1555 			break;
1556 
1557 		default:
1558 			if (arch_digest_dynamic(obj, dynp))
1559 				break;
1560 
1561 			if (!early) {
1562 				dbg("Ignoring d_tag %ld = %#lx",
1563 				    (long)dynp->d_tag, (long)dynp->d_tag);
1564 			}
1565 			break;
1566 		}
1567 	}
1568 
1569 	obj->traced = false;
1570 
1571 	if (plttype == DT_RELA) {
1572 		obj->pltrela = (const Elf_Rela *)obj->pltrel;
1573 		obj->pltrel = NULL;
1574 		obj->pltrelasize = obj->pltrelsize;
1575 		obj->pltrelsize = 0;
1576 	}
1577 
1578 	/* Determine size of dynsym table (equal to nchains of sysv hash) */
1579 	if (obj->valid_hash_sysv)
1580 		obj->dynsymcount = obj->nchains;
1581 	else if (obj->valid_hash_gnu) {
1582 		obj->dynsymcount = 0;
1583 		for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1584 			if (obj->buckets_gnu[bkt] == 0)
1585 				continue;
1586 			hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1587 			do
1588 				obj->dynsymcount++;
1589 			while ((*hashval++ & 1u) == 0);
1590 		}
1591 		obj->dynsymcount += obj->symndx_gnu;
1592 	}
1593 
1594 	if (obj->linkmap.l_refname != NULL)
1595 		obj->linkmap.l_refname = obj->strtab +
1596 		    (unsigned long)obj->linkmap.l_refname;
1597 }
1598 
1599 static bool
obj_resolve_origin(Obj_Entry * obj)1600 obj_resolve_origin(Obj_Entry *obj)
1601 {
1602 	if (obj->origin_path != NULL)
1603 		return (true);
1604 	obj->origin_path = xmalloc(PATH_MAX);
1605 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1606 }
1607 
1608 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1609 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1610     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1611 {
1612 	if (obj->z_origin && !obj_resolve_origin(obj))
1613 		return (false);
1614 
1615 	if (dyn_runpath != NULL) {
1616 		obj->runpath = (const char *)obj->strtab +
1617 		    dyn_runpath->d_un.d_val;
1618 		obj->runpath = origin_subst(obj, obj->runpath);
1619 	} else if (dyn_rpath != NULL) {
1620 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1621 		obj->rpath = origin_subst(obj, obj->rpath);
1622 	}
1623 	if (dyn_soname != NULL)
1624 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1625 	return (true);
1626 }
1627 
1628 static bool
digest_dynamic(Obj_Entry * obj,int early)1629 digest_dynamic(Obj_Entry *obj, int early)
1630 {
1631 	const Elf_Dyn *dyn_rpath;
1632 	const Elf_Dyn *dyn_soname;
1633 	const Elf_Dyn *dyn_runpath;
1634 
1635 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1636 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1637 }
1638 
1639 /*
1640  * Process a shared object's program header.  This is used only for the
1641  * main program, when the kernel has already loaded the main program
1642  * into memory before calling the dynamic linker.  It creates and
1643  * returns an Obj_Entry structure.
1644  */
1645 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1646 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1647 {
1648 	Obj_Entry *obj;
1649 	const Elf_Phdr *phlimit = phdr + phnum;
1650 	const Elf_Phdr *ph;
1651 	Elf_Addr note_start, note_end;
1652 	int nsegs = 0;
1653 
1654 	obj = obj_new();
1655 	for (ph = phdr; ph < phlimit; ph++) {
1656 		if (ph->p_type != PT_PHDR)
1657 			continue;
1658 
1659 		obj->phdr = phdr;
1660 		obj->phsize = ph->p_memsz;
1661 		obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1662 		break;
1663 	}
1664 
1665 	obj->stack_flags = PF_X | PF_R | PF_W;
1666 
1667 	for (ph = phdr; ph < phlimit; ph++) {
1668 		switch (ph->p_type) {
1669 		case PT_INTERP:
1670 			obj->interp = (const char *)(ph->p_vaddr +
1671 			    obj->relocbase);
1672 			break;
1673 
1674 		case PT_LOAD:
1675 			if (nsegs == 0) { /* First load segment */
1676 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1677 				obj->mapbase = obj->vaddrbase + obj->relocbase;
1678 			} else { /* Last load segment */
1679 				obj->mapsize = rtld_round_page(
1680 						   ph->p_vaddr + ph->p_memsz) -
1681 				    obj->vaddrbase;
1682 			}
1683 			nsegs++;
1684 			break;
1685 
1686 		case PT_DYNAMIC:
1687 			obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1688 			    obj->relocbase);
1689 			break;
1690 
1691 		case PT_TLS:
1692 			obj->tlsindex = 1;
1693 			obj->tlssize = ph->p_memsz;
1694 			obj->tlsalign = ph->p_align;
1695 			obj->tlsinitsize = ph->p_filesz;
1696 			obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1697 			obj->tlspoffset = ph->p_offset;
1698 			break;
1699 
1700 		case PT_GNU_STACK:
1701 			obj->stack_flags = ph->p_flags;
1702 			break;
1703 
1704 		case PT_NOTE:
1705 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1706 			note_end = note_start + ph->p_filesz;
1707 			digest_notes(obj, note_start, note_end);
1708 			break;
1709 		}
1710 	}
1711 	if (nsegs < 1) {
1712 		_rtld_error("%s: too few PT_LOAD segments", path);
1713 		return (NULL);
1714 	}
1715 
1716 	obj->entry = entry;
1717 	return (obj);
1718 }
1719 
1720 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1721 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1722 {
1723 	const Elf_Note *note;
1724 	const char *note_name;
1725 	uintptr_t p;
1726 
1727 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1728 	    note = (const Elf_Note *)((const char *)(note + 1) +
1729 		roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1730 		roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1731 		if (arch_digest_note(obj, note))
1732 			continue;
1733 
1734 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1735 		    note->n_descsz != sizeof(int32_t))
1736 			continue;
1737 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1738 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1739 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1740 			continue;
1741 		note_name = (const char *)(note + 1);
1742 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1743 			sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1744 			continue;
1745 		switch (note->n_type) {
1746 		case NT_FREEBSD_ABI_TAG:
1747 			/* FreeBSD osrel note */
1748 			p = (uintptr_t)(note + 1);
1749 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1750 			obj->osrel = *(const int32_t *)(p);
1751 			dbg("note osrel %d", obj->osrel);
1752 			break;
1753 		case NT_FREEBSD_FEATURE_CTL:
1754 			/* FreeBSD ABI feature control note */
1755 			p = (uintptr_t)(note + 1);
1756 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1757 			obj->fctl0 = *(const uint32_t *)(p);
1758 			dbg("note fctl0 %#x", obj->fctl0);
1759 			break;
1760 		case NT_FREEBSD_NOINIT_TAG:
1761 			/* FreeBSD 'crt does not call init' note */
1762 			obj->crt_no_init = true;
1763 			dbg("note crt_no_init");
1764 			break;
1765 		}
1766 	}
1767 }
1768 
1769 static Obj_Entry *
dlcheck(void * handle)1770 dlcheck(void *handle)
1771 {
1772 	Obj_Entry *obj;
1773 
1774 	TAILQ_FOREACH(obj, &obj_list, next) {
1775 		if (obj == (Obj_Entry *)handle)
1776 			break;
1777 	}
1778 
1779 	if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1780 		_rtld_error("Invalid shared object handle %p", handle);
1781 		return (NULL);
1782 	}
1783 	return (obj);
1784 }
1785 
1786 /*
1787  * If the given object is already in the donelist, return true.  Otherwise
1788  * add the object to the list and return false.
1789  */
1790 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1791 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1792 {
1793 	unsigned int i;
1794 
1795 	for (i = 0; i < dlp->num_used; i++)
1796 		if (dlp->objs[i] == obj)
1797 			return (true);
1798 	/*
1799 	 * Our donelist allocation should always be sufficient.  But if
1800 	 * our threads locking isn't working properly, more shared objects
1801 	 * could have been loaded since we allocated the list.  That should
1802 	 * never happen, but we'll handle it properly just in case it does.
1803 	 */
1804 	if (dlp->num_used < dlp->num_alloc)
1805 		dlp->objs[dlp->num_used++] = obj;
1806 	return (false);
1807 }
1808 
1809 /*
1810  * SysV hash function for symbol table lookup.  It is a slightly optimized
1811  * version of the hash specified by the System V ABI.
1812  */
1813 Elf32_Word
elf_hash(const char * name)1814 elf_hash(const char *name)
1815 {
1816 	const unsigned char *p = (const unsigned char *)name;
1817 	Elf32_Word h = 0;
1818 
1819 	while (*p != '\0') {
1820 		h = (h << 4) + *p++;
1821 		h ^= (h >> 24) & 0xf0;
1822 	}
1823 	return (h & 0x0fffffff);
1824 }
1825 
1826 /*
1827  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1828  * unsigned in case it's implemented with a wider type.
1829  */
1830 static uint32_t
gnu_hash(const char * s)1831 gnu_hash(const char *s)
1832 {
1833 	uint32_t h;
1834 	unsigned char c;
1835 
1836 	h = 5381;
1837 	for (c = *s; c != '\0'; c = *++s)
1838 		h = h * 33 + c;
1839 	return (h & 0xffffffff);
1840 }
1841 
1842 /*
1843  * Find the library with the given name, and return its full pathname.
1844  * The returned string is dynamically allocated.  Generates an error
1845  * message and returns NULL if the library cannot be found.
1846  *
1847  * If the second argument is non-NULL, then it refers to an already-
1848  * loaded shared object, whose library search path will be searched.
1849  *
1850  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1851  * descriptor (which is close-on-exec) will be passed out via the third
1852  * argument.
1853  *
1854  * The search order is:
1855  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1856  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1857  *   LD_LIBRARY_PATH
1858  *   DT_RUNPATH in the referencing file
1859  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1860  *	 from list)
1861  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1862  *
1863  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1864  */
1865 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1866 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1867 {
1868 	char *pathname, *refobj_path;
1869 	const char *name;
1870 	bool nodeflib, objgiven;
1871 
1872 	objgiven = refobj != NULL;
1873 
1874 	if (libmap_disable || !objgiven ||
1875 	    (name = lm_find(refobj->path, xname)) == NULL)
1876 		name = xname;
1877 
1878 	if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1879 		if (name[0] != '/' && !trust) {
1880 			_rtld_error("Absolute pathname required "
1881 				    "for shared object \"%s\"",
1882 			    name);
1883 			return (NULL);
1884 		}
1885 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1886 		    __DECONST(char *, name)));
1887 	}
1888 
1889 	dbg(" Searching for \"%s\"", name);
1890 	refobj_path = objgiven ? refobj->path : NULL;
1891 
1892 	/*
1893 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1894 	 * back to pre-conforming behaviour if user requested so with
1895 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1896 	 * nodeflib.
1897 	 */
1898 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1899 		pathname = search_library_path(name, ld_library_path,
1900 		    refobj_path, fdp);
1901 		if (pathname != NULL)
1902 			return (pathname);
1903 		if (refobj != NULL) {
1904 			pathname = search_library_path(name, refobj->rpath,
1905 			    refobj_path, fdp);
1906 			if (pathname != NULL)
1907 				return (pathname);
1908 		}
1909 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1910 		if (pathname != NULL)
1911 			return (pathname);
1912 		pathname = search_library_path(name, gethints(false),
1913 		    refobj_path, fdp);
1914 		if (pathname != NULL)
1915 			return (pathname);
1916 		pathname = search_library_path(name, ld_standard_library_path,
1917 		    refobj_path, fdp);
1918 		if (pathname != NULL)
1919 			return (pathname);
1920 	} else {
1921 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1922 		if (objgiven) {
1923 			pathname = search_library_path(name, refobj->rpath,
1924 			    refobj->path, fdp);
1925 			if (pathname != NULL)
1926 				return (pathname);
1927 		}
1928 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1929 			pathname = search_library_path(name, obj_main->rpath,
1930 			    refobj_path, fdp);
1931 			if (pathname != NULL)
1932 				return (pathname);
1933 		}
1934 		pathname = search_library_path(name, ld_library_path,
1935 		    refobj_path, fdp);
1936 		if (pathname != NULL)
1937 			return (pathname);
1938 		if (objgiven) {
1939 			pathname = search_library_path(name, refobj->runpath,
1940 			    refobj_path, fdp);
1941 			if (pathname != NULL)
1942 				return (pathname);
1943 		}
1944 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1945 		if (pathname != NULL)
1946 			return (pathname);
1947 		pathname = search_library_path(name, gethints(nodeflib),
1948 		    refobj_path, fdp);
1949 		if (pathname != NULL)
1950 			return (pathname);
1951 		if (objgiven && !nodeflib) {
1952 			pathname = search_library_path(name,
1953 			    ld_standard_library_path, refobj_path, fdp);
1954 			if (pathname != NULL)
1955 				return (pathname);
1956 		}
1957 	}
1958 
1959 	if (objgiven && refobj->path != NULL) {
1960 		_rtld_error("Shared object \"%s\" not found, "
1961 			    "required by \"%s\"",
1962 		    name, basename(refobj->path));
1963 	} else {
1964 		_rtld_error("Shared object \"%s\" not found", name);
1965 	}
1966 	return (NULL);
1967 }
1968 
1969 /*
1970  * Given a symbol number in a referencing object, find the corresponding
1971  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1972  * no definition was found.  Returns a pointer to the Obj_Entry of the
1973  * defining object via the reference parameter DEFOBJ_OUT.
1974  */
1975 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1976 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1977     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1978     RtldLockState *lockstate)
1979 {
1980 	const Elf_Sym *ref;
1981 	const Elf_Sym *def;
1982 	const Obj_Entry *defobj;
1983 	const Ver_Entry *ve;
1984 	SymLook req;
1985 	const char *name;
1986 	int res;
1987 
1988 	/*
1989 	 * If we have already found this symbol, get the information from
1990 	 * the cache.
1991 	 */
1992 	if (symnum >= refobj->dynsymcount)
1993 		return (NULL); /* Bad object */
1994 	if (cache != NULL && cache[symnum].sym != NULL) {
1995 		*defobj_out = cache[symnum].obj;
1996 		return (cache[symnum].sym);
1997 	}
1998 
1999 	ref = refobj->symtab + symnum;
2000 	name = refobj->strtab + ref->st_name;
2001 	def = NULL;
2002 	defobj = NULL;
2003 	ve = NULL;
2004 
2005 	/*
2006 	 * We don't have to do a full scale lookup if the symbol is local.
2007 	 * We know it will bind to the instance in this load module; to
2008 	 * which we already have a pointer (ie ref). By not doing a lookup,
2009 	 * we not only improve performance, but it also avoids unresolvable
2010 	 * symbols when local symbols are not in the hash table. This has
2011 	 * been seen with the ia64 toolchain.
2012 	 */
2013 	if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2014 		if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2015 			_rtld_error("%s: Bogus symbol table entry %lu",
2016 			    refobj->path, symnum);
2017 		}
2018 		symlook_init(&req, name);
2019 		req.flags = flags;
2020 		ve = req.ventry = fetch_ventry(refobj, symnum);
2021 		req.lockstate = lockstate;
2022 		res = symlook_default(&req, refobj);
2023 		if (res == 0) {
2024 			def = req.sym_out;
2025 			defobj = req.defobj_out;
2026 		}
2027 	} else {
2028 		def = ref;
2029 		defobj = refobj;
2030 	}
2031 
2032 	/*
2033 	 * If we found no definition and the reference is weak, treat the
2034 	 * symbol as having the value zero.
2035 	 */
2036 	if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2037 		def = &sym_zero;
2038 		defobj = obj_main;
2039 	}
2040 
2041 	if (def != NULL) {
2042 		*defobj_out = defobj;
2043 		/* Record the information in the cache to avoid subsequent
2044 		 * lookups. */
2045 		if (cache != NULL) {
2046 			cache[symnum].sym = def;
2047 			cache[symnum].obj = defobj;
2048 		}
2049 	} else {
2050 		if (refobj != &obj_rtld)
2051 			_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2052 			    refobj->path, name, ve != NULL ? "@" : "",
2053 			    ve != NULL ? ve->name : "");
2054 	}
2055 	return (def);
2056 }
2057 
2058 /* Convert between native byte order and forced little resp. big endian. */
2059 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2060 
2061 /*
2062  * Return the search path from the ldconfig hints file, reading it if
2063  * necessary.  If nostdlib is true, then the default search paths are
2064  * not added to result.
2065  *
2066  * Returns NULL if there are problems with the hints file,
2067  * or if the search path there is empty.
2068  */
2069 static const char *
gethints(bool nostdlib)2070 gethints(bool nostdlib)
2071 {
2072 	static char *filtered_path;
2073 	static const char *hints;
2074 	static struct elfhints_hdr hdr;
2075 	struct fill_search_info_args sargs, hargs;
2076 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2077 	struct dl_serpath *SLPpath, *hintpath;
2078 	char *p;
2079 	struct stat hint_stat;
2080 	unsigned int SLPndx, hintndx, fndx, fcount;
2081 	int fd;
2082 	size_t flen;
2083 	uint32_t dl;
2084 	uint32_t magic;	     /* Magic number */
2085 	uint32_t version;    /* File version (1) */
2086 	uint32_t strtab;     /* Offset of string table in file */
2087 	uint32_t dirlist;    /* Offset of directory list in string table */
2088 	uint32_t dirlistlen; /* strlen(dirlist) */
2089 	bool is_le;	     /* Does the hints file use little endian */
2090 	bool skip;
2091 
2092 	/* First call, read the hints file */
2093 	if (hints == NULL) {
2094 		/* Keep from trying again in case the hints file is bad. */
2095 		hints = "";
2096 
2097 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2098 		    -1) {
2099 			dbg("failed to open hints file \"%s\"",
2100 			    ld_elf_hints_path);
2101 			return (NULL);
2102 		}
2103 
2104 		/*
2105 		 * Check of hdr.dirlistlen value against type limit
2106 		 * intends to pacify static analyzers.  Further
2107 		 * paranoia leads to checks that dirlist is fully
2108 		 * contained in the file range.
2109 		 */
2110 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2111 			dbg("failed to read %lu bytes from hints file \"%s\"",
2112 			    (u_long)sizeof hdr, ld_elf_hints_path);
2113 		cleanup1:
2114 			close(fd);
2115 			hdr.dirlistlen = 0;
2116 			return (NULL);
2117 		}
2118 		dbg("host byte-order: %s-endian",
2119 		    le32toh(1) == 1 ? "little" : "big");
2120 		dbg("hints file byte-order: %s-endian",
2121 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2122 		is_le = /*htole32(1) == 1 || */ hdr.magic ==
2123 		    htole32(ELFHINTS_MAGIC);
2124 		magic = COND_SWAP(hdr.magic);
2125 		version = COND_SWAP(hdr.version);
2126 		strtab = COND_SWAP(hdr.strtab);
2127 		dirlist = COND_SWAP(hdr.dirlist);
2128 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2129 		if (magic != ELFHINTS_MAGIC) {
2130 			dbg("invalid magic number %#08x (expected: %#08x)",
2131 			    magic, ELFHINTS_MAGIC);
2132 			goto cleanup1;
2133 		}
2134 		if (version != 1) {
2135 			dbg("hints file version %d (expected: 1)", version);
2136 			goto cleanup1;
2137 		}
2138 		if (dirlistlen > UINT_MAX / 2) {
2139 			dbg("directory list is to long: %d > %d", dirlistlen,
2140 			    UINT_MAX / 2);
2141 			goto cleanup1;
2142 		}
2143 		if (fstat(fd, &hint_stat) == -1) {
2144 			dbg("failed to find length of hints file \"%s\"",
2145 			    ld_elf_hints_path);
2146 			goto cleanup1;
2147 		}
2148 		dl = strtab;
2149 		if (dl + dirlist < dl) {
2150 			dbg("invalid string table position %d", dl);
2151 			goto cleanup1;
2152 		}
2153 		dl += dirlist;
2154 		if (dl + dirlistlen < dl) {
2155 			dbg("invalid directory list offset %d", dirlist);
2156 			goto cleanup1;
2157 		}
2158 		dl += dirlistlen;
2159 		if (dl > hint_stat.st_size) {
2160 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2161 			    ld_elf_hints_path, dl,
2162 			    (uintmax_t)hint_stat.st_size);
2163 			goto cleanup1;
2164 		}
2165 		p = xmalloc(dirlistlen + 1);
2166 		if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2167 			(ssize_t)dirlistlen + 1 ||
2168 		    p[dirlistlen] != '\0') {
2169 			free(p);
2170 	dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2171 			    dirlistlen + 1, strtab + dirlist,
2172 			    ld_elf_hints_path);
2173 			goto cleanup1;
2174 		}
2175 		hints = p;
2176 		close(fd);
2177 	}
2178 
2179 	/*
2180 	 * If caller agreed to receive list which includes the default
2181 	 * paths, we are done. Otherwise, if we still did not
2182 	 * calculated filtered result, do it now.
2183 	 */
2184 	if (!nostdlib)
2185 		return (hints[0] != '\0' ? hints : NULL);
2186 	if (filtered_path != NULL)
2187 		goto filt_ret;
2188 
2189 	/*
2190 	 * Obtain the list of all configured search paths, and the
2191 	 * list of the default paths.
2192 	 *
2193 	 * First estimate the size of the results.
2194 	 */
2195 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2196 	smeta.dls_cnt = 0;
2197 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2198 	hmeta.dls_cnt = 0;
2199 
2200 	sargs.request = RTLD_DI_SERINFOSIZE;
2201 	sargs.serinfo = &smeta;
2202 	hargs.request = RTLD_DI_SERINFOSIZE;
2203 	hargs.serinfo = &hmeta;
2204 
2205 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2206 	    &sargs);
2207 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2208 
2209 	SLPinfo = xmalloc(smeta.dls_size);
2210 	hintinfo = xmalloc(hmeta.dls_size);
2211 
2212 	/*
2213 	 * Next fetch both sets of paths.
2214 	 */
2215 	sargs.request = RTLD_DI_SERINFO;
2216 	sargs.serinfo = SLPinfo;
2217 	sargs.serpath = &SLPinfo->dls_serpath[0];
2218 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2219 
2220 	hargs.request = RTLD_DI_SERINFO;
2221 	hargs.serinfo = hintinfo;
2222 	hargs.serpath = &hintinfo->dls_serpath[0];
2223 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2224 
2225 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2226 	    &sargs);
2227 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2228 
2229 	/*
2230 	 * Now calculate the difference between two sets, by excluding
2231 	 * standard paths from the full set.
2232 	 */
2233 	fndx = 0;
2234 	fcount = 0;
2235 	filtered_path = xmalloc(dirlistlen + 1);
2236 	hintpath = &hintinfo->dls_serpath[0];
2237 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2238 		skip = false;
2239 		SLPpath = &SLPinfo->dls_serpath[0];
2240 		/*
2241 		 * Check each standard path against current.
2242 		 */
2243 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2244 			/* matched, skip the path */
2245 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2246 				skip = true;
2247 				break;
2248 			}
2249 		}
2250 		if (skip)
2251 			continue;
2252 		/*
2253 		 * Not matched against any standard path, add the path
2254 		 * to result. Separate consequtive paths with ':'.
2255 		 */
2256 		if (fcount > 0) {
2257 			filtered_path[fndx] = ':';
2258 			fndx++;
2259 		}
2260 		fcount++;
2261 		flen = strlen(hintpath->dls_name);
2262 		strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2263 		fndx += flen;
2264 	}
2265 	filtered_path[fndx] = '\0';
2266 
2267 	free(SLPinfo);
2268 	free(hintinfo);
2269 
2270 filt_ret:
2271 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2272 }
2273 
2274 static void
init_dag(Obj_Entry * root)2275 init_dag(Obj_Entry *root)
2276 {
2277 	const Needed_Entry *needed;
2278 	const Objlist_Entry *elm;
2279 	DoneList donelist;
2280 
2281 	if (root->dag_inited)
2282 		return;
2283 	donelist_init(&donelist);
2284 
2285 	/* Root object belongs to own DAG. */
2286 	objlist_push_tail(&root->dldags, root);
2287 	objlist_push_tail(&root->dagmembers, root);
2288 	donelist_check(&donelist, root);
2289 
2290 	/*
2291 	 * Add dependencies of root object to DAG in breadth order
2292 	 * by exploiting the fact that each new object get added
2293 	 * to the tail of the dagmembers list.
2294 	 */
2295 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2296 		for (needed = elm->obj->needed; needed != NULL;
2297 		    needed = needed->next) {
2298 			if (needed->obj == NULL ||
2299 			    donelist_check(&donelist, needed->obj))
2300 				continue;
2301 			objlist_push_tail(&needed->obj->dldags, root);
2302 			objlist_push_tail(&root->dagmembers, needed->obj);
2303 		}
2304 	}
2305 	root->dag_inited = true;
2306 }
2307 
2308 static void
init_marker(Obj_Entry * marker)2309 init_marker(Obj_Entry *marker)
2310 {
2311 	bzero(marker, sizeof(*marker));
2312 	marker->marker = true;
2313 }
2314 
2315 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2316 globallist_curr(const Obj_Entry *obj)
2317 {
2318 	for (;;) {
2319 		if (obj == NULL)
2320 			return (NULL);
2321 		if (!obj->marker)
2322 			return (__DECONST(Obj_Entry *, obj));
2323 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2324 	}
2325 }
2326 
2327 Obj_Entry *
globallist_next(const Obj_Entry * obj)2328 globallist_next(const Obj_Entry *obj)
2329 {
2330 	for (;;) {
2331 		obj = TAILQ_NEXT(obj, next);
2332 		if (obj == NULL)
2333 			return (NULL);
2334 		if (!obj->marker)
2335 			return (__DECONST(Obj_Entry *, obj));
2336 	}
2337 }
2338 
2339 /* Prevent the object from being unmapped while the bind lock is dropped. */
2340 static void
hold_object(Obj_Entry * obj)2341 hold_object(Obj_Entry *obj)
2342 {
2343 	obj->holdcount++;
2344 }
2345 
2346 static void
unhold_object(Obj_Entry * obj)2347 unhold_object(Obj_Entry *obj)
2348 {
2349 	assert(obj->holdcount > 0);
2350 	if (--obj->holdcount == 0 && obj->unholdfree)
2351 		release_object(obj);
2352 }
2353 
2354 static void
process_z(Obj_Entry * root)2355 process_z(Obj_Entry *root)
2356 {
2357 	const Objlist_Entry *elm;
2358 	Obj_Entry *obj;
2359 
2360 	/*
2361 	 * Walk over object DAG and process every dependent object
2362 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2363 	 * to grow their own DAG.
2364 	 *
2365 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2366 	 * symlook_global() to work.
2367 	 *
2368 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2369 	 */
2370 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2371 		obj = elm->obj;
2372 		if (obj == NULL)
2373 			continue;
2374 		if (obj->z_nodelete && !obj->ref_nodel) {
2375 			dbg("obj %s -z nodelete", obj->path);
2376 			init_dag(obj);
2377 			ref_dag(obj);
2378 			obj->ref_nodel = true;
2379 		}
2380 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2381 			dbg("obj %s -z global", obj->path);
2382 			objlist_push_tail(&list_global, obj);
2383 			init_dag(obj);
2384 		}
2385 	}
2386 }
2387 
2388 static void
parse_rtld_phdr(Obj_Entry * obj)2389 parse_rtld_phdr(Obj_Entry *obj)
2390 {
2391 	const Elf_Phdr *ph;
2392 	Elf_Addr note_start, note_end;
2393 
2394 	obj->stack_flags = PF_X | PF_R | PF_W;
2395 	for (ph = obj->phdr;
2396 	    (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2397 		switch (ph->p_type) {
2398 		case PT_GNU_STACK:
2399 			obj->stack_flags = ph->p_flags;
2400 			break;
2401 		case PT_NOTE:
2402 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2403 			note_end = note_start + ph->p_filesz;
2404 			digest_notes(obj, note_start, note_end);
2405 			break;
2406 		}
2407 	}
2408 }
2409 
2410 /*
2411  * Initialize the dynamic linker.  The argument is the address at which
2412  * the dynamic linker has been mapped into memory.  The primary task of
2413  * this function is to relocate the dynamic linker.
2414  */
2415 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2416 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2417 {
2418 	Obj_Entry objtmp; /* Temporary rtld object */
2419 	const Elf_Ehdr *ehdr;
2420 	const Elf_Dyn *dyn_rpath;
2421 	const Elf_Dyn *dyn_soname;
2422 	const Elf_Dyn *dyn_runpath;
2423 
2424 	/*
2425 	 * Conjure up an Obj_Entry structure for the dynamic linker.
2426 	 *
2427 	 * The "path" member can't be initialized yet because string constants
2428 	 * cannot yet be accessed. Below we will set it correctly.
2429 	 */
2430 	memset(&objtmp, 0, sizeof(objtmp));
2431 	objtmp.path = NULL;
2432 	objtmp.rtld = true;
2433 	objtmp.mapbase = mapbase;
2434 #ifdef PIC
2435 	objtmp.relocbase = mapbase;
2436 #endif
2437 
2438 	objtmp.dynamic = rtld_dynamic(&objtmp);
2439 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2440 	assert(objtmp.needed == NULL);
2441 	assert(!objtmp.textrel);
2442 	/*
2443 	 * Temporarily put the dynamic linker entry into the object list, so
2444 	 * that symbols can be found.
2445 	 */
2446 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2447 
2448 	ehdr = (Elf_Ehdr *)mapbase;
2449 	objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2450 	objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2451 
2452 	/* Initialize the object list. */
2453 	TAILQ_INIT(&obj_list);
2454 
2455 	/* Now that non-local variables can be accesses, copy out obj_rtld. */
2456 	memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2457 
2458 	/* The page size is required by the dynamic memory allocator. */
2459 	init_pagesizes(aux_info);
2460 
2461 	if (aux_info[AT_OSRELDATE] != NULL)
2462 		osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2463 
2464 	digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2465 
2466 	/* Replace the path with a dynamically allocated copy. */
2467 	obj_rtld.path = xstrdup(ld_path_rtld);
2468 
2469 	parse_rtld_phdr(&obj_rtld);
2470 	if (obj_enforce_relro(&obj_rtld) == -1)
2471 		rtld_die();
2472 
2473 	r_debug.r_version = R_DEBUG_VERSION;
2474 	r_debug.r_brk = r_debug_state;
2475 	r_debug.r_state = RT_CONSISTENT;
2476 	r_debug.r_ldbase = obj_rtld.relocbase;
2477 }
2478 
2479 /*
2480  * Retrieve the array of supported page sizes.  The kernel provides the page
2481  * sizes in increasing order.
2482  */
2483 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2484 init_pagesizes(Elf_Auxinfo **aux_info)
2485 {
2486 	static size_t psa[MAXPAGESIZES];
2487 	int mib[2];
2488 	size_t len, size;
2489 
2490 	if (aux_info[AT_PAGESIZES] != NULL &&
2491 	    aux_info[AT_PAGESIZESLEN] != NULL) {
2492 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2493 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2494 	} else {
2495 		len = 2;
2496 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2497 			size = sizeof(psa);
2498 		else {
2499 			/* As a fallback, retrieve the base page size. */
2500 			size = sizeof(psa[0]);
2501 			if (aux_info[AT_PAGESZ] != NULL) {
2502 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2503 				goto psa_filled;
2504 			} else {
2505 				mib[0] = CTL_HW;
2506 				mib[1] = HW_PAGESIZE;
2507 				len = 2;
2508 			}
2509 		}
2510 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2511 			_rtld_error("sysctl for hw.pagesize(s) failed");
2512 			rtld_die();
2513 		}
2514 	psa_filled:
2515 		pagesizes = psa;
2516 	}
2517 	npagesizes = size / sizeof(pagesizes[0]);
2518 	/* Discard any invalid entries at the end of the array. */
2519 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2520 		npagesizes--;
2521 
2522 	page_size = pagesizes[0];
2523 }
2524 
2525 /*
2526  * Add the init functions from a needed object list (and its recursive
2527  * needed objects) to "list".  This is not used directly; it is a helper
2528  * function for initlist_add_objects().  The write lock must be held
2529  * when this function is called.
2530  */
2531 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2532 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2533 {
2534 	/* Recursively process the successor needed objects. */
2535 	if (needed->next != NULL)
2536 		initlist_add_neededs(needed->next, list);
2537 
2538 	/* Process the current needed object. */
2539 	if (needed->obj != NULL)
2540 		initlist_add_objects(needed->obj, needed->obj, list);
2541 }
2542 
2543 /*
2544  * Scan all of the DAGs rooted in the range of objects from "obj" to
2545  * "tail" and add their init functions to "list".  This recurses over
2546  * the DAGs and ensure the proper init ordering such that each object's
2547  * needed libraries are initialized before the object itself.  At the
2548  * same time, this function adds the objects to the global finalization
2549  * list "list_fini" in the opposite order.  The write lock must be
2550  * held when this function is called.
2551  */
2552 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2553 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2554 {
2555 	Obj_Entry *nobj;
2556 
2557 	if (obj->init_scanned || obj->init_done)
2558 		return;
2559 	obj->init_scanned = true;
2560 
2561 	/* Recursively process the successor objects. */
2562 	nobj = globallist_next(obj);
2563 	if (nobj != NULL && obj != tail)
2564 		initlist_add_objects(nobj, tail, list);
2565 
2566 	/* Recursively process the needed objects. */
2567 	if (obj->needed != NULL)
2568 		initlist_add_neededs(obj->needed, list);
2569 	if (obj->needed_filtees != NULL)
2570 		initlist_add_neededs(obj->needed_filtees, list);
2571 	if (obj->needed_aux_filtees != NULL)
2572 		initlist_add_neededs(obj->needed_aux_filtees, list);
2573 
2574 	/* Add the object to the init list. */
2575 	objlist_push_tail(list, obj);
2576 
2577 	/* Add the object to the global fini list in the reverse order. */
2578 	if ((obj->fini != (Elf_Addr)NULL ||
2579 		obj->fini_array != (Elf_Addr)NULL) &&
2580 	    !obj->on_fini_list) {
2581 		objlist_push_head(&list_fini, obj);
2582 		obj->on_fini_list = true;
2583 	}
2584 }
2585 
2586 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2587 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2588 {
2589 	Needed_Entry *needed, *needed1;
2590 
2591 	for (needed = n; needed != NULL; needed = needed->next) {
2592 		if (needed->obj != NULL) {
2593 			dlclose_locked(needed->obj, lockstate);
2594 			needed->obj = NULL;
2595 		}
2596 	}
2597 	for (needed = n; needed != NULL; needed = needed1) {
2598 		needed1 = needed->next;
2599 		free(needed);
2600 	}
2601 }
2602 
2603 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2604 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2605 {
2606 	free_needed_filtees(obj->needed_filtees, lockstate);
2607 	obj->needed_filtees = NULL;
2608 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2609 	obj->needed_aux_filtees = NULL;
2610 	obj->filtees_loaded = false;
2611 }
2612 
2613 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2614 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2615     RtldLockState *lockstate)
2616 {
2617 	for (; needed != NULL; needed = needed->next) {
2618 		needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2619 		    flags,
2620 		    ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2621 			RTLD_LOCAL,
2622 		    lockstate);
2623 	}
2624 }
2625 
2626 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2627 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2628 {
2629 	if (obj->filtees_loaded || obj->filtees_loading)
2630 		return;
2631 	lock_restart_for_upgrade(lockstate);
2632 	obj->filtees_loading = true;
2633 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2634 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2635 	obj->filtees_loaded = true;
2636 	obj->filtees_loading = false;
2637 }
2638 
2639 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2640 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2641 {
2642 	Obj_Entry *obj1;
2643 
2644 	for (; needed != NULL; needed = needed->next) {
2645 		obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2646 		    obj, flags & ~RTLD_LO_NOLOAD);
2647 		if (obj1 == NULL && !ld_tracing &&
2648 		    (flags & RTLD_LO_FILTEES) == 0)
2649 			return (-1);
2650 	}
2651 	return (0);
2652 }
2653 
2654 /*
2655  * Given a shared object, traverse its list of needed objects, and load
2656  * each of them.  Returns 0 on success.  Generates an error message and
2657  * returns -1 on failure.
2658  */
2659 static int
load_needed_objects(Obj_Entry * first,int flags)2660 load_needed_objects(Obj_Entry *first, int flags)
2661 {
2662 	Obj_Entry *obj;
2663 
2664 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2665 		if (obj->marker)
2666 			continue;
2667 		if (process_needed(obj, obj->needed, flags) == -1)
2668 			return (-1);
2669 	}
2670 	return (0);
2671 }
2672 
2673 static int
load_preload_objects(const char * penv,bool isfd)2674 load_preload_objects(const char *penv, bool isfd)
2675 {
2676 	Obj_Entry *obj;
2677 	const char *name;
2678 	size_t len;
2679 	char savech, *p, *psave;
2680 	int fd;
2681 	static const char delim[] = " \t:;";
2682 
2683 	if (penv == NULL)
2684 		return (0);
2685 
2686 	p = psave = xstrdup(penv);
2687 	p += strspn(p, delim);
2688 	while (*p != '\0') {
2689 		len = strcspn(p, delim);
2690 
2691 		savech = p[len];
2692 		p[len] = '\0';
2693 		if (isfd) {
2694 			name = NULL;
2695 			fd = parse_integer(p);
2696 			if (fd == -1) {
2697 				free(psave);
2698 				return (-1);
2699 			}
2700 		} else {
2701 			name = p;
2702 			fd = -1;
2703 		}
2704 
2705 		obj = load_object(name, fd, NULL, 0);
2706 		if (obj == NULL) {
2707 			free(psave);
2708 			return (-1); /* XXX - cleanup */
2709 		}
2710 		obj->z_interpose = true;
2711 		p[len] = savech;
2712 		p += len;
2713 		p += strspn(p, delim);
2714 	}
2715 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2716 
2717 	free(psave);
2718 	return (0);
2719 }
2720 
2721 static const char *
printable_path(const char * path)2722 printable_path(const char *path)
2723 {
2724 	return (path == NULL ? "<unknown>" : path);
2725 }
2726 
2727 /*
2728  * Load a shared object into memory, if it is not already loaded.  The
2729  * object may be specified by name or by user-supplied file descriptor
2730  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2731  * duplicate is.
2732  *
2733  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2734  * on failure.
2735  */
2736 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2737 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2738 {
2739 	Obj_Entry *obj;
2740 	int fd;
2741 	struct stat sb;
2742 	char *path;
2743 
2744 	fd = -1;
2745 	if (name != NULL) {
2746 		TAILQ_FOREACH(obj, &obj_list, next) {
2747 			if (obj->marker || obj->doomed)
2748 				continue;
2749 			if (object_match_name(obj, name))
2750 				return (obj);
2751 		}
2752 
2753 		path = find_library(name, refobj, &fd);
2754 		if (path == NULL)
2755 			return (NULL);
2756 	} else
2757 		path = NULL;
2758 
2759 	if (fd >= 0) {
2760 		/*
2761 		 * search_library_pathfds() opens a fresh file descriptor for
2762 		 * the library, so there is no need to dup().
2763 		 */
2764 	} else if (fd_u == -1) {
2765 		/*
2766 		 * If we didn't find a match by pathname, or the name is not
2767 		 * supplied, open the file and check again by device and inode.
2768 		 * This avoids false mismatches caused by multiple links or ".."
2769 		 * in pathnames.
2770 		 *
2771 		 * To avoid a race, we open the file and use fstat() rather than
2772 		 * using stat().
2773 		 */
2774 		if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2775 			_rtld_error("Cannot open \"%s\"", path);
2776 			free(path);
2777 			return (NULL);
2778 		}
2779 	} else {
2780 		fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2781 		if (fd == -1) {
2782 			_rtld_error("Cannot dup fd");
2783 			free(path);
2784 			return (NULL);
2785 		}
2786 	}
2787 	if (fstat(fd, &sb) == -1) {
2788 		_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2789 		close(fd);
2790 		free(path);
2791 		return (NULL);
2792 	}
2793 	TAILQ_FOREACH(obj, &obj_list, next) {
2794 		if (obj->marker || obj->doomed)
2795 			continue;
2796 		if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2797 			break;
2798 	}
2799 	if (obj != NULL) {
2800 		if (name != NULL)
2801 			object_add_name(obj, name);
2802 		free(path);
2803 		close(fd);
2804 		return (obj);
2805 	}
2806 	if (flags & RTLD_LO_NOLOAD) {
2807 		free(path);
2808 		close(fd);
2809 		return (NULL);
2810 	}
2811 
2812 	/* First use of this object, so we must map it in */
2813 	obj = do_load_object(fd, name, path, &sb, flags);
2814 	if (obj == NULL)
2815 		free(path);
2816 	close(fd);
2817 
2818 	return (obj);
2819 }
2820 
2821 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2822 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2823     int flags)
2824 {
2825 	Obj_Entry *obj;
2826 	struct statfs fs;
2827 
2828 	/*
2829 	 * First, make sure that environment variables haven't been
2830 	 * used to circumvent the noexec flag on a filesystem.
2831 	 * We ignore fstatfs(2) failures, since fd might reference
2832 	 * not a file, e.g. shmfd.
2833 	 */
2834 	if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2835 	    (fs.f_flags & MNT_NOEXEC) != 0) {
2836 		_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2837 		return (NULL);
2838 	}
2839 
2840 	dbg("loading \"%s\"", printable_path(path));
2841 	obj = map_object(fd, printable_path(path), sbp);
2842 	if (obj == NULL)
2843 		return (NULL);
2844 
2845 	/*
2846 	 * If DT_SONAME is present in the object, digest_dynamic2 already
2847 	 * added it to the object names.
2848 	 */
2849 	if (name != NULL)
2850 		object_add_name(obj, name);
2851 	obj->path = path;
2852 	if (!digest_dynamic(obj, 0))
2853 		goto errp;
2854 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2855 	    obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2856 	if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2857 		dbg("refusing to load PIE executable \"%s\"", obj->path);
2858 		_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2859 		goto errp;
2860 	}
2861 	if (obj->z_noopen &&
2862 	    (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2863 		dbg("refusing to load non-loadable \"%s\"", obj->path);
2864 		_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2865 		goto errp;
2866 	}
2867 
2868 	obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2869 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2870 	obj_count++;
2871 	obj_loads++;
2872 	linkmap_add(obj); /* for GDB & dlinfo() */
2873 	max_stack_flags |= obj->stack_flags;
2874 
2875 	dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2876 	    obj->path);
2877 	if (obj->textrel)
2878 		dbg("  WARNING: %s has impure text", obj->path);
2879 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2880 	    obj->path);
2881 
2882 	return (obj);
2883 
2884 errp:
2885 	munmap(obj->mapbase, obj->mapsize);
2886 	obj_free(obj);
2887 	return (NULL);
2888 }
2889 
2890 static int
load_kpreload(const void * addr)2891 load_kpreload(const void *addr)
2892 {
2893 	Obj_Entry *obj;
2894 	const Elf_Ehdr *ehdr;
2895 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2896 	static const char kname[] = "[vdso]";
2897 
2898 	ehdr = addr;
2899 	if (!check_elf_headers(ehdr, "kpreload"))
2900 		return (-1);
2901 	obj = obj_new();
2902 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2903 	obj->phdr = phdr;
2904 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2905 	phlimit = phdr + ehdr->e_phnum;
2906 	seg0 = segn = NULL;
2907 
2908 	for (; phdr < phlimit; phdr++) {
2909 		switch (phdr->p_type) {
2910 		case PT_DYNAMIC:
2911 			phdyn = phdr;
2912 			break;
2913 		case PT_GNU_STACK:
2914 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2915 			obj->stack_flags = phdr->p_flags;
2916 			break;
2917 		case PT_LOAD:
2918 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2919 				seg0 = phdr;
2920 			if (segn == NULL ||
2921 			    segn->p_vaddr + segn->p_memsz <
2922 				phdr->p_vaddr + phdr->p_memsz)
2923 				segn = phdr;
2924 			break;
2925 		}
2926 	}
2927 
2928 	obj->mapbase = __DECONST(caddr_t, addr);
2929 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2930 	obj->vaddrbase = 0;
2931 	obj->relocbase = obj->mapbase;
2932 
2933 	object_add_name(obj, kname);
2934 	obj->path = xstrdup(kname);
2935 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2936 
2937 	if (!digest_dynamic(obj, 0)) {
2938 		obj_free(obj);
2939 		return (-1);
2940 	}
2941 
2942 	/*
2943 	 * We assume that kernel-preloaded object does not need
2944 	 * relocation.  It is currently written into read-only page,
2945 	 * handling relocations would mean we need to allocate at
2946 	 * least one additional page per AS.
2947 	 */
2948 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2949 	    obj->path, obj->mapbase, obj->phdr, seg0,
2950 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2951 
2952 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2953 	obj_count++;
2954 	obj_loads++;
2955 	linkmap_add(obj); /* for GDB & dlinfo() */
2956 	max_stack_flags |= obj->stack_flags;
2957 
2958 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2959 	return (0);
2960 }
2961 
2962 Obj_Entry *
obj_from_addr(const void * addr)2963 obj_from_addr(const void *addr)
2964 {
2965 	Obj_Entry *obj;
2966 
2967 	TAILQ_FOREACH(obj, &obj_list, next) {
2968 		if (obj->marker)
2969 			continue;
2970 		if (addr < (void *)obj->mapbase)
2971 			continue;
2972 		if (addr < (void *)(obj->mapbase + obj->mapsize))
2973 			return obj;
2974 	}
2975 	return (NULL);
2976 }
2977 
2978 static void
preinit_main(void)2979 preinit_main(void)
2980 {
2981 	Elf_Addr *preinit_addr;
2982 	int index;
2983 
2984 	preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2985 	if (preinit_addr == NULL)
2986 		return;
2987 
2988 	for (index = 0; index < obj_main->preinit_array_num; index++) {
2989 		if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2990 			dbg("calling preinit function for %s at %p",
2991 			    obj_main->path, (void *)preinit_addr[index]);
2992 			LD_UTRACE(UTRACE_INIT_CALL, obj_main,
2993 			    (void *)preinit_addr[index], 0, 0, obj_main->path);
2994 			call_init_pointer(obj_main, preinit_addr[index]);
2995 		}
2996 	}
2997 }
2998 
2999 /*
3000  * Call the finalization functions for each of the objects in "list"
3001  * belonging to the DAG of "root" and referenced once. If NULL "root"
3002  * is specified, every finalization function will be called regardless
3003  * of the reference count and the list elements won't be freed. All of
3004  * the objects are expected to have non-NULL fini functions.
3005  */
3006 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3007 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3008 {
3009 	Objlist_Entry *elm;
3010 	struct dlerror_save *saved_msg;
3011 	Elf_Addr *fini_addr;
3012 	int index;
3013 
3014 	assert(root == NULL || root->refcount == 1);
3015 
3016 	if (root != NULL)
3017 		root->doomed = true;
3018 
3019 	/*
3020 	 * Preserve the current error message since a fini function might
3021 	 * call into the dynamic linker and overwrite it.
3022 	 */
3023 	saved_msg = errmsg_save();
3024 	do {
3025 		STAILQ_FOREACH(elm, list, link) {
3026 			if (root != NULL &&
3027 			    (elm->obj->refcount != 1 ||
3028 				objlist_find(&root->dagmembers, elm->obj) ==
3029 				    NULL))
3030 				continue;
3031 			/* Remove object from fini list to prevent recursive
3032 			 * invocation. */
3033 			STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3034 			/* Ensure that new references cannot be acquired. */
3035 			elm->obj->doomed = true;
3036 
3037 			hold_object(elm->obj);
3038 			lock_release(rtld_bind_lock, lockstate);
3039 			/*
3040 			 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3041 			 * defined. When this happens, DT_FINI_ARRAY is
3042 			 * processed first.
3043 			 */
3044 			fini_addr = (Elf_Addr *)elm->obj->fini_array;
3045 			if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3046 				for (index = elm->obj->fini_array_num - 1;
3047 				    index >= 0; index--) {
3048 					if (fini_addr[index] != 0 &&
3049 					    fini_addr[index] != 1) {
3050 				dbg("calling fini function for %s at %p",
3051 						    elm->obj->path,
3052 						    (void *)fini_addr[index]);
3053 						LD_UTRACE(UTRACE_FINI_CALL,
3054 						    elm->obj,
3055 						    (void *)fini_addr[index], 0,
3056 						    0, elm->obj->path);
3057 						call_initfini_pointer(elm->obj,
3058 						    fini_addr[index]);
3059 					}
3060 				}
3061 			}
3062 			if (elm->obj->fini != (Elf_Addr)NULL) {
3063 				dbg("calling fini function for %s at %p",
3064 				    elm->obj->path, (void *)elm->obj->fini);
3065 				LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3066 				    (void *)elm->obj->fini, 0, 0,
3067 				    elm->obj->path);
3068 				call_initfini_pointer(elm->obj, elm->obj->fini);
3069 			}
3070 			wlock_acquire(rtld_bind_lock, lockstate);
3071 			unhold_object(elm->obj);
3072 			/* No need to free anything if process is going down. */
3073 			if (root != NULL)
3074 				free(elm);
3075 			/*
3076 			 * We must restart the list traversal after every fini
3077 			 * call because a dlclose() call from the fini function
3078 			 * or from another thread might have modified the
3079 			 * reference counts.
3080 			 */
3081 			break;
3082 		}
3083 	} while (elm != NULL);
3084 	errmsg_restore(saved_msg);
3085 }
3086 
3087 /*
3088  * Call the initialization functions for each of the objects in
3089  * "list".  All of the objects are expected to have non-NULL init
3090  * functions.
3091  */
3092 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3093 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3094 {
3095 	Objlist_Entry *elm;
3096 	Obj_Entry *obj;
3097 	struct dlerror_save *saved_msg;
3098 	Elf_Addr *init_addr;
3099 	void (*reg)(void (*)(void));
3100 	int index;
3101 
3102 	/*
3103 	 * Clean init_scanned flag so that objects can be rechecked and
3104 	 * possibly initialized earlier if any of vectors called below
3105 	 * cause the change by using dlopen.
3106 	 */
3107 	TAILQ_FOREACH(obj, &obj_list, next) {
3108 		if (obj->marker)
3109 			continue;
3110 		obj->init_scanned = false;
3111 	}
3112 
3113 	/*
3114 	 * Preserve the current error message since an init function might
3115 	 * call into the dynamic linker and overwrite it.
3116 	 */
3117 	saved_msg = errmsg_save();
3118 	STAILQ_FOREACH(elm, list, link) {
3119 		if (elm->obj->init_done) /* Initialized early. */
3120 			continue;
3121 		/*
3122 		 * Race: other thread might try to use this object before
3123 		 * current one completes the initialization. Not much can be
3124 		 * done here without better locking.
3125 		 */
3126 		elm->obj->init_done = true;
3127 		hold_object(elm->obj);
3128 		reg = NULL;
3129 		if (elm->obj == obj_main && obj_main->crt_no_init) {
3130 			reg = (void (*)(void (*)(void)))
3131 			    get_program_var_addr("__libc_atexit", lockstate);
3132 		}
3133 		lock_release(rtld_bind_lock, lockstate);
3134 		if (reg != NULL) {
3135 			reg(rtld_exit);
3136 			rtld_exit_ptr = rtld_nop_exit;
3137 		}
3138 
3139 		/*
3140 		 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3141 		 * When this happens, DT_INIT is processed first.
3142 		 */
3143 		if (elm->obj->init != (Elf_Addr)NULL) {
3144 			dbg("calling init function for %s at %p",
3145 			    elm->obj->path, (void *)elm->obj->init);
3146 			LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3147 			    (void *)elm->obj->init, 0, 0, elm->obj->path);
3148 			call_init_pointer(elm->obj, elm->obj->init);
3149 		}
3150 		init_addr = (Elf_Addr *)elm->obj->init_array;
3151 		if (init_addr != NULL) {
3152 			for (index = 0; index < elm->obj->init_array_num;
3153 			    index++) {
3154 				if (init_addr[index] != 0 &&
3155 				    init_addr[index] != 1) {
3156 				dbg("calling init function for %s at %p",
3157 					    elm->obj->path,
3158 					    (void *)init_addr[index]);
3159 					LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3160 					    (void *)init_addr[index], 0, 0,
3161 					    elm->obj->path);
3162 					call_init_pointer(elm->obj,
3163 					    init_addr[index]);
3164 				}
3165 			}
3166 		}
3167 		wlock_acquire(rtld_bind_lock, lockstate);
3168 		unhold_object(elm->obj);
3169 	}
3170 	errmsg_restore(saved_msg);
3171 }
3172 
3173 static void
objlist_clear(Objlist * list)3174 objlist_clear(Objlist *list)
3175 {
3176 	Objlist_Entry *elm;
3177 
3178 	while (!STAILQ_EMPTY(list)) {
3179 		elm = STAILQ_FIRST(list);
3180 		STAILQ_REMOVE_HEAD(list, link);
3181 		free(elm);
3182 	}
3183 }
3184 
3185 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3186 objlist_find(Objlist *list, const Obj_Entry *obj)
3187 {
3188 	Objlist_Entry *elm;
3189 
3190 	STAILQ_FOREACH(elm, list, link)
3191 		if (elm->obj == obj)
3192 			return elm;
3193 	return (NULL);
3194 }
3195 
3196 static void
objlist_init(Objlist * list)3197 objlist_init(Objlist *list)
3198 {
3199 	STAILQ_INIT(list);
3200 }
3201 
3202 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3203 objlist_push_head(Objlist *list, Obj_Entry *obj)
3204 {
3205 	Objlist_Entry *elm;
3206 
3207 	elm = NEW(Objlist_Entry);
3208 	elm->obj = obj;
3209 	STAILQ_INSERT_HEAD(list, elm, link);
3210 }
3211 
3212 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3213 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3214 {
3215 	Objlist_Entry *elm;
3216 
3217 	elm = NEW(Objlist_Entry);
3218 	elm->obj = obj;
3219 	STAILQ_INSERT_TAIL(list, elm, link);
3220 }
3221 
3222 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3223 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3224 {
3225 	Objlist_Entry *elm, *listelm;
3226 
3227 	STAILQ_FOREACH(listelm, list, link) {
3228 		if (listelm->obj == listobj)
3229 			break;
3230 	}
3231 	elm = NEW(Objlist_Entry);
3232 	elm->obj = obj;
3233 	if (listelm != NULL)
3234 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3235 	else
3236 		STAILQ_INSERT_TAIL(list, elm, link);
3237 }
3238 
3239 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3240 objlist_remove(Objlist *list, Obj_Entry *obj)
3241 {
3242 	Objlist_Entry *elm;
3243 
3244 	if ((elm = objlist_find(list, obj)) != NULL) {
3245 		STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3246 		free(elm);
3247 	}
3248 }
3249 
3250 /*
3251  * Relocate dag rooted in the specified object.
3252  * Returns 0 on success, or -1 on failure.
3253  */
3254 
3255 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3256 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3257     int flags, RtldLockState *lockstate)
3258 {
3259 	Objlist_Entry *elm;
3260 	int error;
3261 
3262 	error = 0;
3263 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3264 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3265 		    lockstate);
3266 		if (error == -1)
3267 			break;
3268 	}
3269 	return (error);
3270 }
3271 
3272 /*
3273  * Prepare for, or clean after, relocating an object marked with
3274  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3275  * segments are remapped read-write.  After relocations are done, the
3276  * segment's permissions are returned back to the modes specified in
3277  * the phdrs.  If any relocation happened, or always for wired
3278  * program, COW is triggered.
3279  */
3280 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3281 reloc_textrel_prot(Obj_Entry *obj, bool before)
3282 {
3283 	const Elf_Phdr *ph;
3284 	void *base;
3285 	size_t l, sz;
3286 	int prot;
3287 
3288 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3289 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3290 			continue;
3291 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3292 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3293 		    rtld_trunc_page(ph->p_vaddr);
3294 		prot = before ? (PROT_READ | PROT_WRITE) :
3295 		    convert_prot(ph->p_flags);
3296 		if (mprotect(base, sz, prot) == -1) {
3297 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3298 			    obj->path, before ? "en" : "dis",
3299 			    rtld_strerror(errno));
3300 			return (-1);
3301 		}
3302 	}
3303 	return (0);
3304 }
3305 
3306 /* Process RELR relative relocations. */
3307 static void
reloc_relr(Obj_Entry * obj)3308 reloc_relr(Obj_Entry *obj)
3309 {
3310 	const Elf_Relr *relr, *relrlim;
3311 	Elf_Addr *where;
3312 
3313 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3314 	for (relr = obj->relr; relr < relrlim; relr++) {
3315 		Elf_Relr entry = *relr;
3316 
3317 		if ((entry & 1) == 0) {
3318 			where = (Elf_Addr *)(obj->relocbase + entry);
3319 			*where++ += (Elf_Addr)obj->relocbase;
3320 		} else {
3321 			for (long i = 0; (entry >>= 1) != 0; i++)
3322 				if ((entry & 1) != 0)
3323 					where[i] += (Elf_Addr)obj->relocbase;
3324 			where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3325 		}
3326 	}
3327 }
3328 
3329 /*
3330  * Relocate single object.
3331  * Returns 0 on success, or -1 on failure.
3332  */
3333 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3334 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3335     RtldLockState *lockstate)
3336 {
3337 	if (obj->relocated)
3338 		return (0);
3339 	obj->relocated = true;
3340 	if (obj != rtldobj)
3341 		dbg("relocating \"%s\"", obj->path);
3342 
3343 	if (obj->symtab == NULL || obj->strtab == NULL ||
3344 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3345 		dbg("object %s has no run-time symbol table", obj->path);
3346 
3347 	/* There are relocations to the write-protected text segment. */
3348 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3349 		return (-1);
3350 
3351 	/* Process the non-PLT non-IFUNC relocations. */
3352 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3353 		return (-1);
3354 	reloc_relr(obj);
3355 
3356 	/* Re-protected the text segment. */
3357 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3358 		return (-1);
3359 
3360 	/* Set the special PLT or GOT entries. */
3361 	init_pltgot(obj);
3362 
3363 	/* Process the PLT relocations. */
3364 	if (reloc_plt(obj, flags, lockstate) == -1)
3365 		return (-1);
3366 	/* Relocate the jump slots if we are doing immediate binding. */
3367 	if ((obj->bind_now || bind_now) &&
3368 	    reloc_jmpslots(obj, flags, lockstate) == -1)
3369 		return (-1);
3370 
3371 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3372 		return (-1);
3373 
3374 	/*
3375 	 * Set up the magic number and version in the Obj_Entry.  These
3376 	 * were checked in the crt1.o from the original ElfKit, so we
3377 	 * set them for backward compatibility.
3378 	 */
3379 	obj->magic = RTLD_MAGIC;
3380 	obj->version = RTLD_VERSION;
3381 
3382 	return (0);
3383 }
3384 
3385 /*
3386  * Relocate newly-loaded shared objects.  The argument is a pointer to
3387  * the Obj_Entry for the first such object.  All objects from the first
3388  * to the end of the list of objects are relocated.  Returns 0 on success,
3389  * or -1 on failure.
3390  */
3391 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3392 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3393     RtldLockState *lockstate)
3394 {
3395 	Obj_Entry *obj;
3396 	int error;
3397 
3398 	for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3399 		if (obj->marker)
3400 			continue;
3401 		error = relocate_object(obj, bind_now, rtldobj, flags,
3402 		    lockstate);
3403 		if (error == -1)
3404 			break;
3405 	}
3406 	return (error);
3407 }
3408 
3409 /*
3410  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3411  * referencing STT_GNU_IFUNC symbols is postponed till the other
3412  * relocations are done.  The indirect functions specified as
3413  * ifunc are allowed to call other symbols, so we need to have
3414  * objects relocated before asking for resolution from indirects.
3415  *
3416  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3417  * instead of the usual lazy handling of PLT slots.  It is
3418  * consistent with how GNU does it.
3419  */
3420 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3421 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3422     RtldLockState *lockstate)
3423 {
3424 	if (obj->ifuncs_resolved)
3425 		return (0);
3426 	obj->ifuncs_resolved = true;
3427 	if (!obj->irelative && !obj->irelative_nonplt &&
3428 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3429 	    !obj->non_plt_gnu_ifunc)
3430 		return (0);
3431 	if (obj_disable_relro(obj) == -1 ||
3432 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3433 	    (obj->irelative_nonplt &&
3434 		reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3435 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3436 		reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3437 	    (obj->non_plt_gnu_ifunc &&
3438 		reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3439 		    lockstate) == -1) ||
3440 	    obj_enforce_relro(obj) == -1)
3441 		return (-1);
3442 	return (0);
3443 }
3444 
3445 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3446 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3447     RtldLockState *lockstate)
3448 {
3449 	Objlist_Entry *elm;
3450 	Obj_Entry *obj;
3451 
3452 	STAILQ_FOREACH(elm, list, link) {
3453 		obj = elm->obj;
3454 		if (obj->marker)
3455 			continue;
3456 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3457 			return (-1);
3458 	}
3459 	return (0);
3460 }
3461 
3462 /*
3463  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3464  * before the process exits.
3465  */
3466 static void
rtld_exit(void)3467 rtld_exit(void)
3468 {
3469 	RtldLockState lockstate;
3470 
3471 	wlock_acquire(rtld_bind_lock, &lockstate);
3472 	dbg("rtld_exit()");
3473 	objlist_call_fini(&list_fini, NULL, &lockstate);
3474 	/* No need to remove the items from the list, since we are exiting. */
3475 	if (!libmap_disable)
3476 		lm_fini();
3477 	lock_release(rtld_bind_lock, &lockstate);
3478 }
3479 
3480 static void
rtld_nop_exit(void)3481 rtld_nop_exit(void)
3482 {
3483 }
3484 
3485 /*
3486  * Iterate over a search path, translate each element, and invoke the
3487  * callback on the result.
3488  */
3489 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3490 path_enumerate(const char *path, path_enum_proc callback,
3491     const char *refobj_path, void *arg)
3492 {
3493 	const char *trans;
3494 	if (path == NULL)
3495 		return (NULL);
3496 
3497 	path += strspn(path, ":;");
3498 	while (*path != '\0') {
3499 		size_t len;
3500 		char *res;
3501 
3502 		len = strcspn(path, ":;");
3503 		trans = lm_findn(refobj_path, path, len);
3504 		if (trans)
3505 			res = callback(trans, strlen(trans), arg);
3506 		else
3507 			res = callback(path, len, arg);
3508 
3509 		if (res != NULL)
3510 			return (res);
3511 
3512 		path += len;
3513 		path += strspn(path, ":;");
3514 	}
3515 
3516 	return (NULL);
3517 }
3518 
3519 struct try_library_args {
3520 	const char *name;
3521 	size_t namelen;
3522 	char *buffer;
3523 	size_t buflen;
3524 	int fd;
3525 };
3526 
3527 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3528 try_library_path(const char *dir, size_t dirlen, void *param)
3529 {
3530 	struct try_library_args *arg;
3531 	int fd;
3532 
3533 	arg = param;
3534 	if (*dir == '/' || trust) {
3535 		char *pathname;
3536 
3537 		if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3538 			return (NULL);
3539 
3540 		pathname = arg->buffer;
3541 		strncpy(pathname, dir, dirlen);
3542 		pathname[dirlen] = '/';
3543 		strcpy(pathname + dirlen + 1, arg->name);
3544 
3545 		dbg("  Trying \"%s\"", pathname);
3546 		fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3547 		if (fd >= 0) {
3548 			dbg("  Opened \"%s\", fd %d", pathname, fd);
3549 			pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3550 			strcpy(pathname, arg->buffer);
3551 			arg->fd = fd;
3552 			return (pathname);
3553 		} else {
3554 			dbg("  Failed to open \"%s\": %s", pathname,
3555 			    rtld_strerror(errno));
3556 		}
3557 	}
3558 	return (NULL);
3559 }
3560 
3561 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3562 search_library_path(const char *name, const char *path, const char *refobj_path,
3563     int *fdp)
3564 {
3565 	char *p;
3566 	struct try_library_args arg;
3567 
3568 	if (path == NULL)
3569 		return (NULL);
3570 
3571 	arg.name = name;
3572 	arg.namelen = strlen(name);
3573 	arg.buffer = xmalloc(PATH_MAX);
3574 	arg.buflen = PATH_MAX;
3575 	arg.fd = -1;
3576 
3577 	p = path_enumerate(path, try_library_path, refobj_path, &arg);
3578 	*fdp = arg.fd;
3579 
3580 	free(arg.buffer);
3581 
3582 	return (p);
3583 }
3584 
3585 /*
3586  * Finds the library with the given name using the directory descriptors
3587  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3588  *
3589  * Returns a freshly-opened close-on-exec file descriptor for the library,
3590  * or -1 if the library cannot be found.
3591  */
3592 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3593 search_library_pathfds(const char *name, const char *path, int *fdp)
3594 {
3595 	char *envcopy, *fdstr, *found, *last_token;
3596 	size_t len;
3597 	int dirfd, fd;
3598 
3599 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3600 
3601 	/* Don't load from user-specified libdirs into setuid binaries. */
3602 	if (!trust)
3603 		return (NULL);
3604 
3605 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3606 	if (path == NULL)
3607 		return (NULL);
3608 
3609 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3610 	if (name[0] == '/') {
3611 		dbg("Absolute path (%s) passed to %s", name, __func__);
3612 		return (NULL);
3613 	}
3614 
3615 	/*
3616 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3617 	 * copy of the path, as strtok_r rewrites separator tokens
3618 	 * with '\0'.
3619 	 */
3620 	found = NULL;
3621 	envcopy = xstrdup(path);
3622 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3623 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3624 		dirfd = parse_integer(fdstr);
3625 		if (dirfd < 0) {
3626 			_rtld_error("failed to parse directory FD: '%s'",
3627 			    fdstr);
3628 			break;
3629 		}
3630 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3631 		if (fd >= 0) {
3632 			*fdp = fd;
3633 			len = strlen(fdstr) + strlen(name) + 3;
3634 			found = xmalloc(len);
3635 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3636 			    0) {
3637 				_rtld_error("error generating '%d/%s'", dirfd,
3638 				    name);
3639 				rtld_die();
3640 			}
3641 			dbg("open('%s') => %d", found, fd);
3642 			break;
3643 		}
3644 	}
3645 	free(envcopy);
3646 
3647 	return (found);
3648 }
3649 
3650 int
dlclose(void * handle)3651 dlclose(void *handle)
3652 {
3653 	RtldLockState lockstate;
3654 	int error;
3655 
3656 	wlock_acquire(rtld_bind_lock, &lockstate);
3657 	error = dlclose_locked(handle, &lockstate);
3658 	lock_release(rtld_bind_lock, &lockstate);
3659 	return (error);
3660 }
3661 
3662 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3663 dlclose_locked(void *handle, RtldLockState *lockstate)
3664 {
3665 	Obj_Entry *root;
3666 
3667 	root = dlcheck(handle);
3668 	if (root == NULL)
3669 		return (-1);
3670 	LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3671 	    root->path);
3672 
3673 	/* Unreference the object and its dependencies. */
3674 	root->dl_refcount--;
3675 
3676 	if (root->refcount == 1) {
3677 		/*
3678 		 * The object will be no longer referenced, so we must unload
3679 		 * it. First, call the fini functions.
3680 		 */
3681 		objlist_call_fini(&list_fini, root, lockstate);
3682 
3683 		unref_dag(root);
3684 
3685 		/* Finish cleaning up the newly-unreferenced objects. */
3686 		GDB_STATE(RT_DELETE, &root->linkmap);
3687 		unload_object(root, lockstate);
3688 		GDB_STATE(RT_CONSISTENT, NULL);
3689 	} else
3690 		unref_dag(root);
3691 
3692 	LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3693 	return (0);
3694 }
3695 
3696 char *
dlerror(void)3697 dlerror(void)
3698 {
3699 	if (*(lockinfo.dlerror_seen()) != 0)
3700 		return (NULL);
3701 	*lockinfo.dlerror_seen() = 1;
3702 	return (lockinfo.dlerror_loc());
3703 }
3704 
3705 /*
3706  * This function is deprecated and has no effect.
3707  */
3708 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3709 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3710     void (*_rlock_acquire)(void *lock) __unused,
3711     void (*_wlock_acquire)(void *lock) __unused,
3712     void (*_lock_release)(void *lock) __unused,
3713     void (*_lock_destroy)(void *lock) __unused,
3714     void (*context_destroy)(void *context))
3715 {
3716 	static void *cur_context;
3717 	static void (*cur_context_destroy)(void *);
3718 
3719 	/* Just destroy the context from the previous call, if necessary. */
3720 	if (cur_context_destroy != NULL)
3721 		cur_context_destroy(cur_context);
3722 	cur_context = context;
3723 	cur_context_destroy = context_destroy;
3724 }
3725 
3726 void *
dlopen(const char * name,int mode)3727 dlopen(const char *name, int mode)
3728 {
3729 	return (rtld_dlopen(name, -1, mode));
3730 }
3731 
3732 void *
fdlopen(int fd,int mode)3733 fdlopen(int fd, int mode)
3734 {
3735 	return (rtld_dlopen(NULL, fd, mode));
3736 }
3737 
3738 static void *
rtld_dlopen(const char * name,int fd,int mode)3739 rtld_dlopen(const char *name, int fd, int mode)
3740 {
3741 	RtldLockState lockstate;
3742 	int lo_flags;
3743 
3744 	LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3745 	ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3746 	if (ld_tracing != NULL) {
3747 		rlock_acquire(rtld_bind_lock, &lockstate);
3748 		if (sigsetjmp(lockstate.env, 0) != 0)
3749 			lock_upgrade(rtld_bind_lock, &lockstate);
3750 		environ = __DECONST(char **,
3751 		    *get_program_var_addr("environ", &lockstate));
3752 		lock_release(rtld_bind_lock, &lockstate);
3753 	}
3754 	lo_flags = RTLD_LO_DLOPEN;
3755 	if (mode & RTLD_NODELETE)
3756 		lo_flags |= RTLD_LO_NODELETE;
3757 	if (mode & RTLD_NOLOAD)
3758 		lo_flags |= RTLD_LO_NOLOAD;
3759 	if (mode & RTLD_DEEPBIND)
3760 		lo_flags |= RTLD_LO_DEEPBIND;
3761 	if (ld_tracing != NULL)
3762 		lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3763 
3764 	return (dlopen_object(name, fd, obj_main, lo_flags,
3765 	    mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3766 }
3767 
3768 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3769 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3770 {
3771 	obj->dl_refcount--;
3772 	unref_dag(obj);
3773 	if (obj->refcount == 0)
3774 		unload_object(obj, lockstate);
3775 }
3776 
3777 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3778 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3779     int mode, RtldLockState *lockstate)
3780 {
3781 	Obj_Entry *obj;
3782 	Objlist initlist;
3783 	RtldLockState mlockstate;
3784 	int result;
3785 
3786 	dbg(
3787     "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3788 	    name != NULL ? name : "<null>", fd,
3789 	    refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3790 	objlist_init(&initlist);
3791 
3792 	if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3793 		wlock_acquire(rtld_bind_lock, &mlockstate);
3794 		lockstate = &mlockstate;
3795 	}
3796 	GDB_STATE(RT_ADD, NULL);
3797 
3798 	obj = NULL;
3799 	if (name == NULL && fd == -1) {
3800 		obj = obj_main;
3801 		obj->refcount++;
3802 	} else {
3803 		obj = load_object(name, fd, refobj, lo_flags);
3804 	}
3805 
3806 	if (obj) {
3807 		obj->dl_refcount++;
3808 		if (mode & RTLD_GLOBAL &&
3809 		    objlist_find(&list_global, obj) == NULL)
3810 			objlist_push_tail(&list_global, obj);
3811 
3812 		if (!obj->init_done) {
3813 			/* We loaded something new and have to init something.
3814 			 */
3815 			if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3816 				obj->deepbind = true;
3817 			result = 0;
3818 			if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) ==
3819 				0 &&
3820 			    obj->static_tls && !allocate_tls_offset(obj)) {
3821 				_rtld_error("%s: No space available "
3822 					    "for static Thread Local Storage",
3823 				    obj->path);
3824 				result = -1;
3825 			}
3826 			if (result != -1)
3827 				result = load_needed_objects(obj,
3828 				    lo_flags &
3829 					(RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3830 					    RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3831 			init_dag(obj);
3832 			ref_dag(obj);
3833 			if (result != -1)
3834 				result = rtld_verify_versions(&obj->dagmembers);
3835 			if (result != -1 && ld_tracing)
3836 				goto trace;
3837 			if (result == -1 ||
3838 			    relocate_object_dag(obj,
3839 				(mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3840 				(lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3841 				lockstate) == -1) {
3842 				dlopen_cleanup(obj, lockstate);
3843 				obj = NULL;
3844 			} else if (lo_flags & RTLD_LO_EARLY) {
3845 				/*
3846 				 * Do not call the init functions for early
3847 				 * loaded filtees.  The image is still not
3848 				 * initialized enough for them to work.
3849 				 *
3850 				 * Our object is found by the global object list
3851 				 * and will be ordered among all init calls done
3852 				 * right before transferring control to main.
3853 				 */
3854 			} else {
3855 				/* Make list of init functions to call. */
3856 				initlist_add_objects(obj, obj, &initlist);
3857 			}
3858 			/*
3859 			 * Process all no_delete or global objects here, given
3860 			 * them own DAGs to prevent their dependencies from
3861 			 * being unloaded.  This has to be done after we have
3862 			 * loaded all of the dependencies, so that we do not
3863 			 * miss any.
3864 			 */
3865 			if (obj != NULL)
3866 				process_z(obj);
3867 		} else {
3868 			/*
3869 			 * Bump the reference counts for objects on this DAG. If
3870 			 * this is the first dlopen() call for the object that
3871 			 * was already loaded as a dependency, initialize the
3872 			 * dag starting at it.
3873 			 */
3874 			init_dag(obj);
3875 			ref_dag(obj);
3876 
3877 			if ((lo_flags & RTLD_LO_TRACE) != 0)
3878 				goto trace;
3879 		}
3880 		if (obj != NULL &&
3881 		    ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3882 		    !obj->ref_nodel) {
3883 			dbg("obj %s nodelete", obj->path);
3884 			ref_dag(obj);
3885 			obj->z_nodelete = obj->ref_nodel = true;
3886 		}
3887 	}
3888 
3889 	LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3890 	    name);
3891 	GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3892 
3893 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
3894 		map_stacks_exec(lockstate);
3895 		if (obj != NULL)
3896 			distribute_static_tls(&initlist, lockstate);
3897 	}
3898 
3899 	if (initlist_objects_ifunc(&initlist,
3900 		(mode & RTLD_MODEMASK) == RTLD_NOW,
3901 		(lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3902 		lockstate) == -1) {
3903 		objlist_clear(&initlist);
3904 		dlopen_cleanup(obj, lockstate);
3905 		if (lockstate == &mlockstate)
3906 			lock_release(rtld_bind_lock, lockstate);
3907 		return (NULL);
3908 	}
3909 
3910 	if (!(lo_flags & RTLD_LO_EARLY)) {
3911 		/* Call the init functions. */
3912 		objlist_call_init(&initlist, lockstate);
3913 	}
3914 	objlist_clear(&initlist);
3915 	if (lockstate == &mlockstate)
3916 		lock_release(rtld_bind_lock, lockstate);
3917 	return (obj);
3918 trace:
3919 	trace_loaded_objects(obj, false);
3920 	if (lockstate == &mlockstate)
3921 		lock_release(rtld_bind_lock, lockstate);
3922 	exit(0);
3923 }
3924 
3925 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3926 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3927     int flags)
3928 {
3929 	DoneList donelist;
3930 	const Obj_Entry *obj, *defobj;
3931 	const Elf_Sym *def;
3932 	SymLook req;
3933 	RtldLockState lockstate;
3934 	tls_index ti;
3935 	void *sym;
3936 	int res;
3937 
3938 	def = NULL;
3939 	defobj = NULL;
3940 	symlook_init(&req, name);
3941 	req.ventry = ve;
3942 	req.flags = flags | SYMLOOK_IN_PLT;
3943 	req.lockstate = &lockstate;
3944 
3945 	LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3946 	rlock_acquire(rtld_bind_lock, &lockstate);
3947 	if (sigsetjmp(lockstate.env, 0) != 0)
3948 		lock_upgrade(rtld_bind_lock, &lockstate);
3949 	if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
3950 	    handle == RTLD_SELF) {
3951 		if ((obj = obj_from_addr(retaddr)) == NULL) {
3952 			_rtld_error("Cannot determine caller's shared object");
3953 			lock_release(rtld_bind_lock, &lockstate);
3954 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3955 			return (NULL);
3956 		}
3957 		if (handle == NULL) { /* Just the caller's shared object. */
3958 			res = symlook_obj(&req, obj);
3959 			if (res == 0) {
3960 				def = req.sym_out;
3961 				defobj = req.defobj_out;
3962 			}
3963 		} else if (handle == RTLD_NEXT || /* Objects after caller's */
3964 		    handle == RTLD_SELF) {	  /* ... caller included */
3965 			if (handle == RTLD_NEXT)
3966 				obj = globallist_next(obj);
3967 			for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3968 				if (obj->marker)
3969 					continue;
3970 				res = symlook_obj(&req, obj);
3971 				if (res == 0) {
3972 					if (def == NULL ||
3973 					    (ld_dynamic_weak &&
3974 						ELF_ST_BIND(
3975 						    req.sym_out->st_info) !=
3976 						    STB_WEAK)) {
3977 						def = req.sym_out;
3978 						defobj = req.defobj_out;
3979 						if (!ld_dynamic_weak ||
3980 						    ELF_ST_BIND(def->st_info) !=
3981 							STB_WEAK)
3982 							break;
3983 					}
3984 				}
3985 			}
3986 			/*
3987 			 * Search the dynamic linker itself, and possibly
3988 			 * resolve the symbol from there.  This is how the
3989 			 * application links to dynamic linker services such as
3990 			 * dlopen. Note that we ignore ld_dynamic_weak == false
3991 			 * case, always overriding weak symbols by rtld
3992 			 * definitions.
3993 			 */
3994 			if (def == NULL ||
3995 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
3996 				res = symlook_obj(&req, &obj_rtld);
3997 				if (res == 0) {
3998 					def = req.sym_out;
3999 					defobj = req.defobj_out;
4000 				}
4001 			}
4002 		} else {
4003 			assert(handle == RTLD_DEFAULT);
4004 			res = symlook_default(&req, obj);
4005 			if (res == 0) {
4006 				defobj = req.defobj_out;
4007 				def = req.sym_out;
4008 			}
4009 		}
4010 	} else {
4011 		if ((obj = dlcheck(handle)) == NULL) {
4012 			lock_release(rtld_bind_lock, &lockstate);
4013 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4014 			return (NULL);
4015 		}
4016 
4017 		donelist_init(&donelist);
4018 		if (obj->mainprog) {
4019 			/* Handle obtained by dlopen(NULL, ...) implies global
4020 			 * scope. */
4021 			res = symlook_global(&req, &donelist);
4022 			if (res == 0) {
4023 				def = req.sym_out;
4024 				defobj = req.defobj_out;
4025 			}
4026 			/*
4027 			 * Search the dynamic linker itself, and possibly
4028 			 * resolve the symbol from there.  This is how the
4029 			 * application links to dynamic linker services such as
4030 			 * dlopen.
4031 			 */
4032 			if (def == NULL ||
4033 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4034 				res = symlook_obj(&req, &obj_rtld);
4035 				if (res == 0) {
4036 					def = req.sym_out;
4037 					defobj = req.defobj_out;
4038 				}
4039 			}
4040 		} else {
4041 			/* Search the whole DAG rooted at the given object. */
4042 			res = symlook_list(&req, &obj->dagmembers, &donelist);
4043 			if (res == 0) {
4044 				def = req.sym_out;
4045 				defobj = req.defobj_out;
4046 			}
4047 		}
4048 	}
4049 
4050 	if (def != NULL) {
4051 		lock_release(rtld_bind_lock, &lockstate);
4052 
4053 		/*
4054 		 * The value required by the caller is derived from the value
4055 		 * of the symbol. this is simply the relocated value of the
4056 		 * symbol.
4057 		 */
4058 		if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4059 			sym = make_function_pointer(def, defobj);
4060 		else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4061 			sym = rtld_resolve_ifunc(defobj, def);
4062 		else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4063 			ti.ti_module = defobj->tlsindex;
4064 			ti.ti_offset = def->st_value;
4065 			sym = __tls_get_addr(&ti);
4066 		} else
4067 			sym = defobj->relocbase + def->st_value;
4068 		LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4069 		return (sym);
4070 	}
4071 
4072 	_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4073 	    ve != NULL ? ve->name : "");
4074 	lock_release(rtld_bind_lock, &lockstate);
4075 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4076 	return (NULL);
4077 }
4078 
4079 void *
dlsym(void * handle,const char * name)4080 dlsym(void *handle, const char *name)
4081 {
4082 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4083 	    SYMLOOK_DLSYM));
4084 }
4085 
4086 dlfunc_t
dlfunc(void * handle,const char * name)4087 dlfunc(void *handle, const char *name)
4088 {
4089 	union {
4090 		void *d;
4091 		dlfunc_t f;
4092 	} rv;
4093 
4094 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4095 	    SYMLOOK_DLSYM);
4096 	return (rv.f);
4097 }
4098 
4099 void *
dlvsym(void * handle,const char * name,const char * version)4100 dlvsym(void *handle, const char *name, const char *version)
4101 {
4102 	Ver_Entry ventry;
4103 
4104 	ventry.name = version;
4105 	ventry.file = NULL;
4106 	ventry.hash = elf_hash(version);
4107 	ventry.flags = 0;
4108 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4109 	    SYMLOOK_DLSYM));
4110 }
4111 
4112 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4113 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4114 {
4115 	const Obj_Entry *obj;
4116 	RtldLockState lockstate;
4117 
4118 	rlock_acquire(rtld_bind_lock, &lockstate);
4119 	obj = obj_from_addr(addr);
4120 	if (obj == NULL) {
4121 		_rtld_error("No shared object contains address");
4122 		lock_release(rtld_bind_lock, &lockstate);
4123 		return (0);
4124 	}
4125 	rtld_fill_dl_phdr_info(obj, phdr_info);
4126 	lock_release(rtld_bind_lock, &lockstate);
4127 	return (1);
4128 }
4129 
4130 int
dladdr(const void * addr,Dl_info * info)4131 dladdr(const void *addr, Dl_info *info)
4132 {
4133 	const Obj_Entry *obj;
4134 	const Elf_Sym *def;
4135 	void *symbol_addr;
4136 	unsigned long symoffset;
4137 	RtldLockState lockstate;
4138 
4139 	rlock_acquire(rtld_bind_lock, &lockstate);
4140 	obj = obj_from_addr(addr);
4141 	if (obj == NULL) {
4142 		_rtld_error("No shared object contains address");
4143 		lock_release(rtld_bind_lock, &lockstate);
4144 		return (0);
4145 	}
4146 	info->dli_fname = obj->path;
4147 	info->dli_fbase = obj->mapbase;
4148 	info->dli_saddr = (void *)0;
4149 	info->dli_sname = NULL;
4150 
4151 	/*
4152 	 * Walk the symbol list looking for the symbol whose address is
4153 	 * closest to the address sent in.
4154 	 */
4155 	for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4156 		def = obj->symtab + symoffset;
4157 
4158 		/*
4159 		 * For skip the symbol if st_shndx is either SHN_UNDEF or
4160 		 * SHN_COMMON.
4161 		 */
4162 		if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4163 			continue;
4164 
4165 		/*
4166 		 * If the symbol is greater than the specified address, or if it
4167 		 * is further away from addr than the current nearest symbol,
4168 		 * then reject it.
4169 		 */
4170 		symbol_addr = obj->relocbase + def->st_value;
4171 		if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4172 			continue;
4173 
4174 		/* Update our idea of the nearest symbol. */
4175 		info->dli_sname = obj->strtab + def->st_name;
4176 		info->dli_saddr = symbol_addr;
4177 
4178 		/* Exact match? */
4179 		if (info->dli_saddr == addr)
4180 			break;
4181 	}
4182 	lock_release(rtld_bind_lock, &lockstate);
4183 	return (1);
4184 }
4185 
4186 int
dlinfo(void * handle,int request,void * p)4187 dlinfo(void *handle, int request, void *p)
4188 {
4189 	const Obj_Entry *obj;
4190 	RtldLockState lockstate;
4191 	int error;
4192 
4193 	rlock_acquire(rtld_bind_lock, &lockstate);
4194 
4195 	if (handle == NULL || handle == RTLD_SELF) {
4196 		void *retaddr;
4197 
4198 		retaddr = __builtin_return_address(0); /* __GNUC__ only */
4199 		if ((obj = obj_from_addr(retaddr)) == NULL)
4200 			_rtld_error("Cannot determine caller's shared object");
4201 	} else
4202 		obj = dlcheck(handle);
4203 
4204 	if (obj == NULL) {
4205 		lock_release(rtld_bind_lock, &lockstate);
4206 		return (-1);
4207 	}
4208 
4209 	error = 0;
4210 	switch (request) {
4211 	case RTLD_DI_LINKMAP:
4212 		*((struct link_map const **)p) = &obj->linkmap;
4213 		break;
4214 	case RTLD_DI_ORIGIN:
4215 		error = rtld_dirname(obj->path, p);
4216 		break;
4217 
4218 	case RTLD_DI_SERINFOSIZE:
4219 	case RTLD_DI_SERINFO:
4220 		error = do_search_info(obj, request, (struct dl_serinfo *)p);
4221 		break;
4222 
4223 	default:
4224 		_rtld_error("Invalid request %d passed to dlinfo()", request);
4225 		error = -1;
4226 	}
4227 
4228 	lock_release(rtld_bind_lock, &lockstate);
4229 
4230 	return (error);
4231 }
4232 
4233 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4234 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4235 {
4236 	uintptr_t **dtvp;
4237 
4238 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4239 	phdr_info->dlpi_name = obj->path;
4240 	phdr_info->dlpi_phdr = obj->phdr;
4241 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4242 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4243 	dtvp = &_tcb_get()->tcb_dtv;
4244 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4245 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4246 	phdr_info->dlpi_adds = obj_loads;
4247 	phdr_info->dlpi_subs = obj_loads - obj_count;
4248 }
4249 
4250 /*
4251  * It's completely UB to actually use this, so extreme caution is advised.  It's
4252  * probably not what you want.
4253  */
4254 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4255 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4256 {
4257 	struct dl_phdr_info phdr_info;
4258 	Obj_Entry *obj;
4259 	int error;
4260 
4261 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4262 	    obj = globallist_next(obj)) {
4263 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4264 		error = callback(&phdr_info, sizeof(phdr_info), param);
4265 		if (error != 0)
4266 			return (error);
4267 	}
4268 
4269 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4270 	return (callback(&phdr_info, sizeof(phdr_info), param));
4271 }
4272 
4273 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4274 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4275 {
4276 	struct dl_phdr_info phdr_info;
4277 	Obj_Entry *obj, marker;
4278 	RtldLockState bind_lockstate, phdr_lockstate;
4279 	int error;
4280 
4281 	init_marker(&marker);
4282 	error = 0;
4283 
4284 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4285 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4286 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4287 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4288 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4289 		hold_object(obj);
4290 		lock_release(rtld_bind_lock, &bind_lockstate);
4291 
4292 		error = callback(&phdr_info, sizeof phdr_info, param);
4293 
4294 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4295 		unhold_object(obj);
4296 		obj = globallist_next(&marker);
4297 		TAILQ_REMOVE(&obj_list, &marker, next);
4298 		if (error != 0) {
4299 			lock_release(rtld_bind_lock, &bind_lockstate);
4300 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4301 			return (error);
4302 		}
4303 	}
4304 
4305 	if (error == 0) {
4306 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4307 		lock_release(rtld_bind_lock, &bind_lockstate);
4308 		error = callback(&phdr_info, sizeof(phdr_info), param);
4309 	}
4310 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4311 	return (error);
4312 }
4313 
4314 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4315 fill_search_info(const char *dir, size_t dirlen, void *param)
4316 {
4317 	struct fill_search_info_args *arg;
4318 
4319 	arg = param;
4320 
4321 	if (arg->request == RTLD_DI_SERINFOSIZE) {
4322 		arg->serinfo->dls_cnt++;
4323 		arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4324 		    1;
4325 	} else {
4326 		struct dl_serpath *s_entry;
4327 
4328 		s_entry = arg->serpath;
4329 		s_entry->dls_name = arg->strspace;
4330 		s_entry->dls_flags = arg->flags;
4331 
4332 		strncpy(arg->strspace, dir, dirlen);
4333 		arg->strspace[dirlen] = '\0';
4334 
4335 		arg->strspace += dirlen + 1;
4336 		arg->serpath++;
4337 	}
4338 
4339 	return (NULL);
4340 }
4341 
4342 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4343 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4344 {
4345 	struct dl_serinfo _info;
4346 	struct fill_search_info_args args;
4347 
4348 	args.request = RTLD_DI_SERINFOSIZE;
4349 	args.serinfo = &_info;
4350 
4351 	_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4352 	_info.dls_cnt = 0;
4353 
4354 	path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4355 	path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4356 	path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4357 	path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4358 	    &args);
4359 	if (!obj->z_nodeflib)
4360 		path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4361 		    &args);
4362 
4363 	if (request == RTLD_DI_SERINFOSIZE) {
4364 		info->dls_size = _info.dls_size;
4365 		info->dls_cnt = _info.dls_cnt;
4366 		return (0);
4367 	}
4368 
4369 	if (info->dls_cnt != _info.dls_cnt ||
4370 	    info->dls_size != _info.dls_size) {
4371 		_rtld_error(
4372 		    "Uninitialized Dl_serinfo struct passed to dlinfo()");
4373 		return (-1);
4374 	}
4375 
4376 	args.request = RTLD_DI_SERINFO;
4377 	args.serinfo = info;
4378 	args.serpath = &info->dls_serpath[0];
4379 	args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4380 
4381 	args.flags = LA_SER_RUNPATH;
4382 	if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4383 		return (-1);
4384 
4385 	args.flags = LA_SER_LIBPATH;
4386 	if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4387 	    NULL)
4388 		return (-1);
4389 
4390 	args.flags = LA_SER_RUNPATH;
4391 	if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4392 		return (-1);
4393 
4394 	args.flags = LA_SER_CONFIG;
4395 	if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4396 		&args) != NULL)
4397 		return (-1);
4398 
4399 	args.flags = LA_SER_DEFAULT;
4400 	if (!obj->z_nodeflib &&
4401 	    path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4402 		&args) != NULL)
4403 		return (-1);
4404 	return (0);
4405 }
4406 
4407 static int
rtld_dirname(const char * path,char * bname)4408 rtld_dirname(const char *path, char *bname)
4409 {
4410 	const char *endp;
4411 
4412 	/* Empty or NULL string gets treated as "." */
4413 	if (path == NULL || *path == '\0') {
4414 		bname[0] = '.';
4415 		bname[1] = '\0';
4416 		return (0);
4417 	}
4418 
4419 	/* Strip trailing slashes */
4420 	endp = path + strlen(path) - 1;
4421 	while (endp > path && *endp == '/')
4422 		endp--;
4423 
4424 	/* Find the start of the dir */
4425 	while (endp > path && *endp != '/')
4426 		endp--;
4427 
4428 	/* Either the dir is "/" or there are no slashes */
4429 	if (endp == path) {
4430 		bname[0] = *endp == '/' ? '/' : '.';
4431 		bname[1] = '\0';
4432 		return (0);
4433 	} else {
4434 		do {
4435 			endp--;
4436 		} while (endp > path && *endp == '/');
4437 	}
4438 
4439 	if (endp - path + 2 > PATH_MAX) {
4440 		_rtld_error("Filename is too long: %s", path);
4441 		return (-1);
4442 	}
4443 
4444 	strncpy(bname, path, endp - path + 1);
4445 	bname[endp - path + 1] = '\0';
4446 	return (0);
4447 }
4448 
4449 static int
rtld_dirname_abs(const char * path,char * base)4450 rtld_dirname_abs(const char *path, char *base)
4451 {
4452 	char *last;
4453 
4454 	if (realpath(path, base) == NULL) {
4455 		_rtld_error("realpath \"%s\" failed (%s)", path,
4456 		    rtld_strerror(errno));
4457 		return (-1);
4458 	}
4459 	dbg("%s -> %s", path, base);
4460 	last = strrchr(base, '/');
4461 	if (last == NULL) {
4462 		_rtld_error("non-abs result from realpath \"%s\"", path);
4463 		return (-1);
4464 	}
4465 	if (last != base)
4466 		*last = '\0';
4467 	return (0);
4468 }
4469 
4470 static void
linkmap_add(Obj_Entry * obj)4471 linkmap_add(Obj_Entry *obj)
4472 {
4473 	struct link_map *l, *prev;
4474 
4475 	l = &obj->linkmap;
4476 	l->l_name = obj->path;
4477 	l->l_base = obj->mapbase;
4478 	l->l_ld = obj->dynamic;
4479 	l->l_addr = obj->relocbase;
4480 
4481 	if (r_debug.r_map == NULL) {
4482 		r_debug.r_map = l;
4483 		return;
4484 	}
4485 
4486 	/*
4487 	 * Scan to the end of the list, but not past the entry for the
4488 	 * dynamic linker, which we want to keep at the very end.
4489 	 */
4490 	for (prev = r_debug.r_map;
4491 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4492 	    prev = prev->l_next)
4493 		;
4494 
4495 	/* Link in the new entry. */
4496 	l->l_prev = prev;
4497 	l->l_next = prev->l_next;
4498 	if (l->l_next != NULL)
4499 		l->l_next->l_prev = l;
4500 	prev->l_next = l;
4501 }
4502 
4503 static void
linkmap_delete(Obj_Entry * obj)4504 linkmap_delete(Obj_Entry *obj)
4505 {
4506 	struct link_map *l;
4507 
4508 	l = &obj->linkmap;
4509 	if (l->l_prev == NULL) {
4510 		if ((r_debug.r_map = l->l_next) != NULL)
4511 			l->l_next->l_prev = NULL;
4512 		return;
4513 	}
4514 
4515 	if ((l->l_prev->l_next = l->l_next) != NULL)
4516 		l->l_next->l_prev = l->l_prev;
4517 }
4518 
4519 /*
4520  * Function for the debugger to set a breakpoint on to gain control.
4521  *
4522  * The two parameters allow the debugger to easily find and determine
4523  * what the runtime loader is doing and to whom it is doing it.
4524  *
4525  * When the loadhook trap is hit (r_debug_state, set at program
4526  * initialization), the arguments can be found on the stack:
4527  *
4528  *  +8   struct link_map *m
4529  *  +4   struct r_debug  *rd
4530  *  +0   RetAddr
4531  */
4532 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4533 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4534 {
4535 	/*
4536 	 * The following is a hack to force the compiler to emit calls to
4537 	 * this function, even when optimizing.  If the function is empty,
4538 	 * the compiler is not obliged to emit any code for calls to it,
4539 	 * even when marked __noinline.  However, gdb depends on those
4540 	 * calls being made.
4541 	 */
4542 	__compiler_membar();
4543 }
4544 
4545 /*
4546  * A function called after init routines have completed. This can be used to
4547  * break before a program's entry routine is called, and can be used when
4548  * main is not available in the symbol table.
4549  */
4550 void
_r_debug_postinit(struct link_map * m __unused)4551 _r_debug_postinit(struct link_map *m __unused)
4552 {
4553 	/* See r_debug_state(). */
4554 	__compiler_membar();
4555 }
4556 
4557 static void
release_object(Obj_Entry * obj)4558 release_object(Obj_Entry *obj)
4559 {
4560 	if (obj->holdcount > 0) {
4561 		obj->unholdfree = true;
4562 		return;
4563 	}
4564 	munmap(obj->mapbase, obj->mapsize);
4565 	linkmap_delete(obj);
4566 	obj_free(obj);
4567 }
4568 
4569 /*
4570  * Get address of the pointer variable in the main program.
4571  * Prefer non-weak symbol over the weak one.
4572  */
4573 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4574 get_program_var_addr(const char *name, RtldLockState *lockstate)
4575 {
4576 	SymLook req;
4577 	DoneList donelist;
4578 
4579 	symlook_init(&req, name);
4580 	req.lockstate = lockstate;
4581 	donelist_init(&donelist);
4582 	if (symlook_global(&req, &donelist) != 0)
4583 		return (NULL);
4584 	if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4585 		return ((const void **)make_function_pointer(req.sym_out,
4586 		    req.defobj_out));
4587 	else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4588 		return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4589 		    req.sym_out));
4590 	else
4591 		return ((const void **)(req.defobj_out->relocbase +
4592 		    req.sym_out->st_value));
4593 }
4594 
4595 /*
4596  * Set a pointer variable in the main program to the given value.  This
4597  * is used to set key variables such as "environ" before any of the
4598  * init functions are called.
4599  */
4600 static void
set_program_var(const char * name,const void * value)4601 set_program_var(const char *name, const void *value)
4602 {
4603 	const void **addr;
4604 
4605 	if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4606 		dbg("\"%s\": *%p <-- %p", name, addr, value);
4607 		*addr = value;
4608 	}
4609 }
4610 
4611 /*
4612  * Search the global objects, including dependencies and main object,
4613  * for the given symbol.
4614  */
4615 static int
symlook_global(SymLook * req,DoneList * donelist)4616 symlook_global(SymLook *req, DoneList *donelist)
4617 {
4618 	SymLook req1;
4619 	const Objlist_Entry *elm;
4620 	int res;
4621 
4622 	symlook_init_from_req(&req1, req);
4623 
4624 	/* Search all objects loaded at program start up. */
4625 	if (req->defobj_out == NULL || (ld_dynamic_weak &&
4626 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4627 		res = symlook_list(&req1, &list_main, donelist);
4628 		if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4629 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4630 			req->sym_out = req1.sym_out;
4631 			req->defobj_out = req1.defobj_out;
4632 			assert(req->defobj_out != NULL);
4633 		}
4634 	}
4635 
4636 	/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4637 	STAILQ_FOREACH(elm, &list_global, link) {
4638 		if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4639 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4640 			break;
4641 		res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4642 		if (res == 0 && (req->defobj_out == NULL ||
4643 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4644 			req->sym_out = req1.sym_out;
4645 			req->defobj_out = req1.defobj_out;
4646 			assert(req->defobj_out != NULL);
4647 		}
4648 	}
4649 
4650 	return (req->sym_out != NULL ? 0 : ESRCH);
4651 }
4652 
4653 /*
4654  * Given a symbol name in a referencing object, find the corresponding
4655  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4656  * no definition was found.  Returns a pointer to the Obj_Entry of the
4657  * defining object via the reference parameter DEFOBJ_OUT.
4658  */
4659 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4660 symlook_default(SymLook *req, const Obj_Entry *refobj)
4661 {
4662 	DoneList donelist;
4663 	const Objlist_Entry *elm;
4664 	SymLook req1;
4665 	int res;
4666 
4667 	donelist_init(&donelist);
4668 	symlook_init_from_req(&req1, req);
4669 
4670 	/*
4671 	 * Look first in the referencing object if linked symbolically,
4672 	 * and similarly handle protected symbols.
4673 	 */
4674 	res = symlook_obj(&req1, refobj);
4675 	if (res == 0 && (refobj->symbolic ||
4676 	    ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4677 		req->sym_out = req1.sym_out;
4678 		req->defobj_out = req1.defobj_out;
4679 		assert(req->defobj_out != NULL);
4680 	}
4681 	if (refobj->symbolic || req->defobj_out != NULL)
4682 		donelist_check(&donelist, refobj);
4683 
4684 	if (!refobj->deepbind)
4685 		symlook_global(req, &donelist);
4686 
4687 	/* Search all dlopened DAGs containing the referencing object. */
4688 	STAILQ_FOREACH(elm, &refobj->dldags, link) {
4689 		if (req->sym_out != NULL && (!ld_dynamic_weak ||
4690 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4691 			break;
4692 		res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4693 		if (res == 0 && (req->sym_out == NULL ||
4694 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4695 			req->sym_out = req1.sym_out;
4696 			req->defobj_out = req1.defobj_out;
4697 			assert(req->defobj_out != NULL);
4698 		}
4699 	}
4700 
4701 	if (refobj->deepbind)
4702 		symlook_global(req, &donelist);
4703 
4704 	/*
4705 	 * Search the dynamic linker itself, and possibly resolve the
4706 	 * symbol from there.  This is how the application links to
4707 	 * dynamic linker services such as dlopen.
4708 	 */
4709 	if (req->sym_out == NULL ||
4710 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4711 		res = symlook_obj(&req1, &obj_rtld);
4712 		if (res == 0) {
4713 			req->sym_out = req1.sym_out;
4714 			req->defobj_out = req1.defobj_out;
4715 			assert(req->defobj_out != NULL);
4716 		}
4717 	}
4718 
4719 	return (req->sym_out != NULL ? 0 : ESRCH);
4720 }
4721 
4722 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4723 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4724 {
4725 	const Elf_Sym *def;
4726 	const Obj_Entry *defobj;
4727 	const Objlist_Entry *elm;
4728 	SymLook req1;
4729 	int res;
4730 
4731 	def = NULL;
4732 	defobj = NULL;
4733 	STAILQ_FOREACH(elm, objlist, link) {
4734 		if (donelist_check(dlp, elm->obj))
4735 			continue;
4736 		symlook_init_from_req(&req1, req);
4737 		if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4738 			if (def == NULL || (ld_dynamic_weak &&
4739 			    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4740 				def = req1.sym_out;
4741 				defobj = req1.defobj_out;
4742 				if (!ld_dynamic_weak ||
4743 				    ELF_ST_BIND(def->st_info) != STB_WEAK)
4744 					break;
4745 			}
4746 		}
4747 	}
4748 	if (def != NULL) {
4749 		req->sym_out = def;
4750 		req->defobj_out = defobj;
4751 		return (0);
4752 	}
4753 	return (ESRCH);
4754 }
4755 
4756 /*
4757  * Search the chain of DAGS cointed to by the given Needed_Entry
4758  * for a symbol of the given name.  Each DAG is scanned completely
4759  * before advancing to the next one.  Returns a pointer to the symbol,
4760  * or NULL if no definition was found.
4761  */
4762 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4763 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4764 {
4765 	const Elf_Sym *def;
4766 	const Needed_Entry *n;
4767 	const Obj_Entry *defobj;
4768 	SymLook req1;
4769 	int res;
4770 
4771 	def = NULL;
4772 	defobj = NULL;
4773 	symlook_init_from_req(&req1, req);
4774 	for (n = needed; n != NULL; n = n->next) {
4775 		if (n->obj == NULL || (res = symlook_list(&req1,
4776 		    &n->obj->dagmembers, dlp)) != 0)
4777 			continue;
4778 		if (def == NULL || (ld_dynamic_weak &&
4779 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4780 			def = req1.sym_out;
4781 			defobj = req1.defobj_out;
4782 			if (!ld_dynamic_weak ||
4783 			    ELF_ST_BIND(def->st_info) != STB_WEAK)
4784 				break;
4785 		}
4786 	}
4787 	if (def != NULL) {
4788 		req->sym_out = def;
4789 		req->defobj_out = defobj;
4790 		return (0);
4791 	}
4792 	return (ESRCH);
4793 }
4794 
4795 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4796 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4797     Needed_Entry *needed)
4798 {
4799 	DoneList donelist;
4800 	int flags;
4801 
4802 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4803 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4804 	donelist_init(&donelist);
4805 	symlook_init_from_req(req1, req);
4806 	return (symlook_needed(req1, needed, &donelist));
4807 }
4808 
4809 /*
4810  * Search the symbol table of a single shared object for a symbol of
4811  * the given name and version, if requested.  Returns a pointer to the
4812  * symbol, or NULL if no definition was found.  If the object is
4813  * filter, return filtered symbol from filtee.
4814  *
4815  * The symbol's hash value is passed in for efficiency reasons; that
4816  * eliminates many recomputations of the hash value.
4817  */
4818 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4819 symlook_obj(SymLook *req, const Obj_Entry *obj)
4820 {
4821 	SymLook req1;
4822 	int res, mres;
4823 
4824 	/*
4825 	 * If there is at least one valid hash at this point, we prefer to
4826 	 * use the faster GNU version if available.
4827 	 */
4828 	if (obj->valid_hash_gnu)
4829 		mres = symlook_obj1_gnu(req, obj);
4830 	else if (obj->valid_hash_sysv)
4831 		mres = symlook_obj1_sysv(req, obj);
4832 	else
4833 		return (EINVAL);
4834 
4835 	if (mres == 0) {
4836 		if (obj->needed_filtees != NULL) {
4837 			res = symlook_obj_load_filtees(req, &req1, obj,
4838 			    obj->needed_filtees);
4839 			if (res == 0) {
4840 				req->sym_out = req1.sym_out;
4841 				req->defobj_out = req1.defobj_out;
4842 			}
4843 			return (res);
4844 		}
4845 		if (obj->needed_aux_filtees != NULL) {
4846 			res = symlook_obj_load_filtees(req, &req1, obj,
4847 			    obj->needed_aux_filtees);
4848 			if (res == 0) {
4849 				req->sym_out = req1.sym_out;
4850 				req->defobj_out = req1.defobj_out;
4851 				return (res);
4852 			}
4853 		}
4854 	}
4855 	return (mres);
4856 }
4857 
4858 /* Symbol match routine common to both hash functions */
4859 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4860 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4861     const unsigned long symnum)
4862 {
4863 	Elf_Versym verndx;
4864 	const Elf_Sym *symp;
4865 	const char *strp;
4866 
4867 	symp = obj->symtab + symnum;
4868 	strp = obj->strtab + symp->st_name;
4869 
4870 	switch (ELF_ST_TYPE(symp->st_info)) {
4871 	case STT_FUNC:
4872 	case STT_NOTYPE:
4873 	case STT_OBJECT:
4874 	case STT_COMMON:
4875 	case STT_GNU_IFUNC:
4876 		if (symp->st_value == 0)
4877 			return (false);
4878 		/* fallthrough */
4879 	case STT_TLS:
4880 		if (symp->st_shndx != SHN_UNDEF)
4881 			break;
4882 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4883 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4884 			break;
4885 		/* fallthrough */
4886 	default:
4887 		return (false);
4888 	}
4889 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4890 		return (false);
4891 
4892 	if (req->ventry == NULL) {
4893 		if (obj->versyms != NULL) {
4894 			verndx = VER_NDX(obj->versyms[symnum]);
4895 			if (verndx > obj->vernum) {
4896 				_rtld_error(
4897 				    "%s: symbol %s references wrong version %d",
4898 				    obj->path, obj->strtab + symnum, verndx);
4899 				return (false);
4900 			}
4901 			/*
4902 			 * If we are not called from dlsym (i.e. this
4903 			 * is a normal relocation from unversioned
4904 			 * binary), accept the symbol immediately if
4905 			 * it happens to have first version after this
4906 			 * shared object became versioned.  Otherwise,
4907 			 * if symbol is versioned and not hidden,
4908 			 * remember it. If it is the only symbol with
4909 			 * this name exported by the shared object, it
4910 			 * will be returned as a match by the calling
4911 			 * function. If symbol is global (verndx < 2)
4912 			 * accept it unconditionally.
4913 			 */
4914 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4915 			    verndx == VER_NDX_GIVEN) {
4916 				result->sym_out = symp;
4917 				return (true);
4918 			} else if (verndx >= VER_NDX_GIVEN) {
4919 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
4920 				    0) {
4921 					if (result->vsymp == NULL)
4922 						result->vsymp = symp;
4923 					result->vcount++;
4924 				}
4925 				return (false);
4926 			}
4927 		}
4928 		result->sym_out = symp;
4929 		return (true);
4930 	}
4931 	if (obj->versyms == NULL) {
4932 		if (object_match_name(obj, req->ventry->name)) {
4933 			_rtld_error(
4934 		    "%s: object %s should provide version %s for symbol %s",
4935 			    obj_rtld.path, obj->path, req->ventry->name,
4936 			    obj->strtab + symnum);
4937 			return (false);
4938 		}
4939 	} else {
4940 		verndx = VER_NDX(obj->versyms[symnum]);
4941 		if (verndx > obj->vernum) {
4942 			_rtld_error("%s: symbol %s references wrong version %d",
4943 			    obj->path, obj->strtab + symnum, verndx);
4944 			return (false);
4945 		}
4946 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4947 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4948 			/*
4949 			 * Version does not match. Look if this is a
4950 			 * global symbol and if it is not hidden. If
4951 			 * global symbol (verndx < 2) is available,
4952 			 * use it. Do not return symbol if we are
4953 			 * called by dlvsym, because dlvsym looks for
4954 			 * a specific version and default one is not
4955 			 * what dlvsym wants.
4956 			 */
4957 			if ((req->flags & SYMLOOK_DLSYM) ||
4958 			    (verndx >= VER_NDX_GIVEN) ||
4959 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4960 				return (false);
4961 		}
4962 	}
4963 	result->sym_out = symp;
4964 	return (true);
4965 }
4966 
4967 /*
4968  * Search for symbol using SysV hash function.
4969  * obj->buckets is known not to be NULL at this point; the test for this was
4970  * performed with the obj->valid_hash_sysv assignment.
4971  */
4972 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4973 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4974 {
4975 	unsigned long symnum;
4976 	Sym_Match_Result matchres;
4977 
4978 	matchres.sym_out = NULL;
4979 	matchres.vsymp = NULL;
4980 	matchres.vcount = 0;
4981 
4982 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4983 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4984 		if (symnum >= obj->nchains)
4985 			return (ESRCH); /* Bad object */
4986 
4987 		if (matched_symbol(req, obj, &matchres, symnum)) {
4988 			req->sym_out = matchres.sym_out;
4989 			req->defobj_out = obj;
4990 			return (0);
4991 		}
4992 	}
4993 	if (matchres.vcount == 1) {
4994 		req->sym_out = matchres.vsymp;
4995 		req->defobj_out = obj;
4996 		return (0);
4997 	}
4998 	return (ESRCH);
4999 }
5000 
5001 /* Search for symbol using GNU hash function */
5002 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5003 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5004 {
5005 	Elf_Addr bloom_word;
5006 	const Elf32_Word *hashval;
5007 	Elf32_Word bucket;
5008 	Sym_Match_Result matchres;
5009 	unsigned int h1, h2;
5010 	unsigned long symnum;
5011 
5012 	matchres.sym_out = NULL;
5013 	matchres.vsymp = NULL;
5014 	matchres.vcount = 0;
5015 
5016 	/* Pick right bitmask word from Bloom filter array */
5017 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5018 	    obj->maskwords_bm_gnu];
5019 
5020 	/* Calculate modulus word size of gnu hash and its derivative */
5021 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5022 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5023 
5024 	/* Filter out the "definitely not in set" queries */
5025 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5026 		return (ESRCH);
5027 
5028 	/* Locate hash chain and corresponding value element*/
5029 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5030 	if (bucket == 0)
5031 		return (ESRCH);
5032 	hashval = &obj->chain_zero_gnu[bucket];
5033 	do {
5034 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5035 			symnum = hashval - obj->chain_zero_gnu;
5036 			if (matched_symbol(req, obj, &matchres, symnum)) {
5037 				req->sym_out = matchres.sym_out;
5038 				req->defobj_out = obj;
5039 				return (0);
5040 			}
5041 		}
5042 	} while ((*hashval++ & 1) == 0);
5043 	if (matchres.vcount == 1) {
5044 		req->sym_out = matchres.vsymp;
5045 		req->defobj_out = obj;
5046 		return (0);
5047 	}
5048 	return (ESRCH);
5049 }
5050 
5051 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5052 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5053 {
5054 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5055 	if (*main_local == NULL)
5056 		*main_local = "";
5057 
5058 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5059 	if (*fmt1 == NULL)
5060 		*fmt1 = "\t%o => %p (%x)\n";
5061 
5062 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5063 	if (*fmt2 == NULL)
5064 		*fmt2 = "\t%o (%x)\n";
5065 }
5066 
5067 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5068 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5069     const char *main_local, const char *fmt1, const char *fmt2)
5070 {
5071 	const char *fmt;
5072 	int c;
5073 
5074 	if (fmt1 == NULL)
5075 		fmt = fmt2;
5076 	else
5077 		/* XXX bogus */
5078 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5079 
5080 	while ((c = *fmt++) != '\0') {
5081 		switch (c) {
5082 		default:
5083 			rtld_putchar(c);
5084 			continue;
5085 		case '\\':
5086 			switch (c = *fmt) {
5087 			case '\0':
5088 				continue;
5089 			case 'n':
5090 				rtld_putchar('\n');
5091 				break;
5092 			case 't':
5093 				rtld_putchar('\t');
5094 				break;
5095 			}
5096 			break;
5097 		case '%':
5098 			switch (c = *fmt) {
5099 			case '\0':
5100 				continue;
5101 			case '%':
5102 			default:
5103 				rtld_putchar(c);
5104 				break;
5105 			case 'A':
5106 				rtld_putstr(main_local);
5107 				break;
5108 			case 'a':
5109 				rtld_putstr(obj_main->path);
5110 				break;
5111 			case 'o':
5112 				rtld_putstr(name);
5113 				break;
5114 			case 'p':
5115 				rtld_putstr(path);
5116 				break;
5117 			case 'x':
5118 				rtld_printf("%p",
5119 				    obj != NULL ? obj->mapbase : NULL);
5120 				break;
5121 			}
5122 			break;
5123 		}
5124 		++fmt;
5125 	}
5126 }
5127 
5128 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5129 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5130 {
5131 	const char *fmt1, *fmt2, *main_local;
5132 	const char *name, *path;
5133 	bool first_spurious, list_containers;
5134 
5135 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5136 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5137 
5138 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5139 		Needed_Entry *needed;
5140 
5141 		if (obj->marker)
5142 			continue;
5143 		if (list_containers && obj->needed != NULL)
5144 			rtld_printf("%s:\n", obj->path);
5145 		for (needed = obj->needed; needed; needed = needed->next) {
5146 			if (needed->obj != NULL) {
5147 				if (needed->obj->traced && !list_containers)
5148 					continue;
5149 				needed->obj->traced = true;
5150 				path = needed->obj->path;
5151 			} else
5152 				path = "not found";
5153 
5154 			name = obj->strtab + needed->name;
5155 			trace_print_obj(needed->obj, name, path, main_local,
5156 			    fmt1, fmt2);
5157 		}
5158 	}
5159 
5160 	if (show_preload) {
5161 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5162 			fmt2 = "\t%p (%x)\n";
5163 		first_spurious = true;
5164 
5165 		TAILQ_FOREACH(obj, &obj_list, next) {
5166 			if (obj->marker || obj == obj_main || obj->traced)
5167 				continue;
5168 
5169 			if (list_containers && first_spurious) {
5170 				rtld_printf("[preloaded]\n");
5171 				first_spurious = false;
5172 			}
5173 
5174 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5175 			name = fname == NULL ? "<unknown>" : fname->name;
5176 			trace_print_obj(obj, name, obj->path, main_local, NULL,
5177 			    fmt2);
5178 		}
5179 	}
5180 }
5181 
5182 /*
5183  * Unload a dlopened object and its dependencies from memory and from
5184  * our data structures.  It is assumed that the DAG rooted in the
5185  * object has already been unreferenced, and that the object has a
5186  * reference count of 0.
5187  */
5188 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5189 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5190 {
5191 	Obj_Entry marker, *obj, *next;
5192 
5193 	assert(root->refcount == 0);
5194 
5195 	/*
5196 	 * Pass over the DAG removing unreferenced objects from
5197 	 * appropriate lists.
5198 	 */
5199 	unlink_object(root);
5200 
5201 	/* Unmap all objects that are no longer referenced. */
5202 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5203 		next = TAILQ_NEXT(obj, next);
5204 		if (obj->marker || obj->refcount != 0)
5205 			continue;
5206 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5207 		    0, obj->path);
5208 		dbg("unloading \"%s\"", obj->path);
5209 		/*
5210 		 * Unlink the object now to prevent new references from
5211 		 * being acquired while the bind lock is dropped in
5212 		 * recursive dlclose() invocations.
5213 		 */
5214 		TAILQ_REMOVE(&obj_list, obj, next);
5215 		obj_count--;
5216 
5217 		if (obj->filtees_loaded) {
5218 			if (next != NULL) {
5219 				init_marker(&marker);
5220 				TAILQ_INSERT_BEFORE(next, &marker, next);
5221 				unload_filtees(obj, lockstate);
5222 				next = TAILQ_NEXT(&marker, next);
5223 				TAILQ_REMOVE(&obj_list, &marker, next);
5224 			} else
5225 				unload_filtees(obj, lockstate);
5226 		}
5227 		release_object(obj);
5228 	}
5229 }
5230 
5231 static void
unlink_object(Obj_Entry * root)5232 unlink_object(Obj_Entry *root)
5233 {
5234 	Objlist_Entry *elm;
5235 
5236 	if (root->refcount == 0) {
5237 		/* Remove the object from the RTLD_GLOBAL list. */
5238 		objlist_remove(&list_global, root);
5239 
5240 		/* Remove the object from all objects' DAG lists. */
5241 		STAILQ_FOREACH(elm, &root->dagmembers, link) {
5242 			objlist_remove(&elm->obj->dldags, root);
5243 			if (elm->obj != root)
5244 				unlink_object(elm->obj);
5245 		}
5246 	}
5247 }
5248 
5249 static void
ref_dag(Obj_Entry * root)5250 ref_dag(Obj_Entry *root)
5251 {
5252 	Objlist_Entry *elm;
5253 
5254 	assert(root->dag_inited);
5255 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5256 		elm->obj->refcount++;
5257 }
5258 
5259 static void
unref_dag(Obj_Entry * root)5260 unref_dag(Obj_Entry *root)
5261 {
5262 	Objlist_Entry *elm;
5263 
5264 	assert(root->dag_inited);
5265 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5266 		elm->obj->refcount--;
5267 }
5268 
5269 /*
5270  * Common code for MD __tls_get_addr().
5271  */
5272 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5273 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5274 {
5275 	Elf_Addr *newdtv, *dtv;
5276 	RtldLockState lockstate;
5277 	int to_copy;
5278 
5279 	dtv = *dtvp;
5280 	/* Check dtv generation in case new modules have arrived */
5281 	if (dtv[0] != tls_dtv_generation) {
5282 		if (!locked)
5283 			wlock_acquire(rtld_bind_lock, &lockstate);
5284 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5285 		to_copy = dtv[1];
5286 		if (to_copy > tls_max_index)
5287 			to_copy = tls_max_index;
5288 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5289 		newdtv[0] = tls_dtv_generation;
5290 		newdtv[1] = tls_max_index;
5291 		free(dtv);
5292 		if (!locked)
5293 			lock_release(rtld_bind_lock, &lockstate);
5294 		dtv = *dtvp = newdtv;
5295 	}
5296 
5297 	/* Dynamically allocate module TLS if necessary */
5298 	if (dtv[index + 1] == 0) {
5299 		/* Signal safe, wlock will block out signals. */
5300 		if (!locked)
5301 			wlock_acquire(rtld_bind_lock, &lockstate);
5302 		if (!dtv[index + 1])
5303 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5304 		if (!locked)
5305 			lock_release(rtld_bind_lock, &lockstate);
5306 	}
5307 	return ((void *)(dtv[index + 1] + offset));
5308 }
5309 
5310 void *
tls_get_addr_common(uintptr_t ** dtvp,int index,size_t offset)5311 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5312 {
5313 	uintptr_t *dtv;
5314 
5315 	dtv = *dtvp;
5316 	/* Check dtv generation in case new modules have arrived */
5317 	if (__predict_true(dtv[0] == tls_dtv_generation && dtv[index + 1] != 0))
5318 		return ((void *)(dtv[index + 1] + offset));
5319 	return (tls_get_addr_slow(dtvp, index, offset, false));
5320 }
5321 
5322 #ifdef TLS_VARIANT_I
5323 
5324 /*
5325  * Return pointer to allocated TLS block
5326  */
5327 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5328 get_tls_block_ptr(void *tcb, size_t tcbsize)
5329 {
5330 	size_t extra_size, post_size, pre_size, tls_block_size;
5331 	size_t tls_init_align;
5332 
5333 	tls_init_align = MAX(obj_main->tlsalign, 1);
5334 
5335 	/* Compute fragments sizes. */
5336 	extra_size = tcbsize - TLS_TCB_SIZE;
5337 	post_size = calculate_tls_post_size(tls_init_align);
5338 	tls_block_size = tcbsize + post_size;
5339 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5340 
5341 	return ((char *)tcb - pre_size - extra_size);
5342 }
5343 
5344 /*
5345  * Allocate Static TLS using the Variant I method.
5346  *
5347  * For details on the layout, see lib/libc/gen/tls.c.
5348  *
5349  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5350  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5351  *     offsets, whereas libc's tls_static_space is just the executable's static
5352  *     TLS segment.
5353  */
5354 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5355 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5356 {
5357 	Obj_Entry *obj;
5358 	char *tls_block;
5359 	Elf_Addr *dtv, **tcb;
5360 	Elf_Addr addr;
5361 	Elf_Addr i;
5362 	size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5363 	size_t tls_init_align, tls_init_offset;
5364 
5365 	if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5366 		return (oldtcb);
5367 
5368 	assert(tcbsize >= TLS_TCB_SIZE);
5369 	maxalign = MAX(tcbalign, tls_static_max_align);
5370 	tls_init_align = MAX(obj_main->tlsalign, 1);
5371 
5372 	/* Compute fragments sizes. */
5373 	extra_size = tcbsize - TLS_TCB_SIZE;
5374 	post_size = calculate_tls_post_size(tls_init_align);
5375 	tls_block_size = tcbsize + post_size;
5376 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5377 	tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5378 	    post_size;
5379 
5380 	/* Allocate whole TLS block */
5381 	tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5382 	tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5383 
5384 	if (oldtcb != NULL) {
5385 		memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5386 		    tls_static_space);
5387 		free(get_tls_block_ptr(oldtcb, tcbsize));
5388 
5389 		/* Adjust the DTV. */
5390 		dtv = tcb[0];
5391 		for (i = 0; i < dtv[1]; i++) {
5392 			if (dtv[i + 2] >= (Elf_Addr)oldtcb &&
5393 			    dtv[i + 2] < (Elf_Addr)oldtcb + tls_static_space) {
5394 				dtv[i + 2] = dtv[i + 2] - (Elf_Addr)oldtcb +
5395 				    (Elf_Addr)tcb;
5396 			}
5397 		}
5398 	} else {
5399 		dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5400 		tcb[0] = dtv;
5401 		dtv[0] = tls_dtv_generation;
5402 		dtv[1] = tls_max_index;
5403 
5404 		for (obj = globallist_curr(objs); obj != NULL;
5405 		    obj = globallist_next(obj)) {
5406 			if (obj->tlsoffset == 0)
5407 				continue;
5408 			tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5409 			addr = (Elf_Addr)tcb + obj->tlsoffset;
5410 			if (tls_init_offset > 0)
5411 				memset((void *)addr, 0, tls_init_offset);
5412 			if (obj->tlsinitsize > 0) {
5413 				memcpy((void *)(addr + tls_init_offset),
5414 				    obj->tlsinit, obj->tlsinitsize);
5415 			}
5416 			if (obj->tlssize > obj->tlsinitsize) {
5417 				memset((void *)(addr + tls_init_offset +
5418 					   obj->tlsinitsize),
5419 				    0,
5420 				    obj->tlssize - obj->tlsinitsize -
5421 					tls_init_offset);
5422 			}
5423 			dtv[obj->tlsindex + 1] = addr;
5424 		}
5425 	}
5426 
5427 	return (tcb);
5428 }
5429 
5430 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5431 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5432 {
5433 	Elf_Addr *dtv;
5434 	Elf_Addr tlsstart, tlsend;
5435 	size_t post_size;
5436 	size_t dtvsize, i, tls_init_align __unused;
5437 
5438 	assert(tcbsize >= TLS_TCB_SIZE);
5439 	tls_init_align = MAX(obj_main->tlsalign, 1);
5440 
5441 	/* Compute fragments sizes. */
5442 	post_size = calculate_tls_post_size(tls_init_align);
5443 
5444 	tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5445 	tlsend = (Elf_Addr)tcb + tls_static_space;
5446 
5447 	dtv = *(Elf_Addr **)tcb;
5448 	dtvsize = dtv[1];
5449 	for (i = 0; i < dtvsize; i++) {
5450 		if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5451 		    dtv[i + 2] >= tlsend)) {
5452 			free((void *)dtv[i + 2]);
5453 		}
5454 	}
5455 	free(dtv);
5456 	free(get_tls_block_ptr(tcb, tcbsize));
5457 }
5458 
5459 #endif /* TLS_VARIANT_I */
5460 
5461 #ifdef TLS_VARIANT_II
5462 
5463 /*
5464  * Allocate Static TLS using the Variant II method.
5465  */
5466 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5467 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5468 {
5469 	Obj_Entry *obj;
5470 	size_t size, ralign;
5471 	char *tls;
5472 	Elf_Addr *dtv, *olddtv;
5473 	Elf_Addr segbase, oldsegbase, addr;
5474 	size_t i;
5475 
5476 	ralign = tcbalign;
5477 	if (tls_static_max_align > ralign)
5478 		ralign = tls_static_max_align;
5479 	size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5480 
5481 	assert(tcbsize >= 2 * sizeof(Elf_Addr));
5482 	tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5483 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5484 
5485 	segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5486 	((Elf_Addr *)segbase)[0] = segbase;
5487 	((Elf_Addr *)segbase)[1] = (Elf_Addr)dtv;
5488 
5489 	dtv[0] = tls_dtv_generation;
5490 	dtv[1] = tls_max_index;
5491 
5492 	if (oldtls != NULL) {
5493 		/*
5494 		 * Copy the static TLS block over whole.
5495 		 */
5496 		oldsegbase = (Elf_Addr)oldtls;
5497 		memcpy((void *)(segbase - tls_static_space),
5498 		    (const void *)(oldsegbase - tls_static_space),
5499 		    tls_static_space);
5500 
5501 		/*
5502 		 * If any dynamic TLS blocks have been created tls_get_addr(),
5503 		 * move them over.
5504 		 */
5505 		olddtv = ((Elf_Addr **)oldsegbase)[1];
5506 		for (i = 0; i < olddtv[1]; i++) {
5507 			if (olddtv[i + 2] < oldsegbase - size ||
5508 			    olddtv[i + 2] > oldsegbase) {
5509 				dtv[i + 2] = olddtv[i + 2];
5510 				olddtv[i + 2] = 0;
5511 			}
5512 		}
5513 
5514 		/*
5515 		 * We assume that this block was the one we created with
5516 		 * allocate_initial_tls().
5517 		 */
5518 		free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5519 	} else {
5520 		for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5521 			if (obj->marker || obj->tlsoffset == 0)
5522 				continue;
5523 			addr = segbase - obj->tlsoffset;
5524 			memset((void *)(addr + obj->tlsinitsize), 0,
5525 			    obj->tlssize - obj->tlsinitsize);
5526 			if (obj->tlsinit) {
5527 				memcpy((void *)addr, obj->tlsinit,
5528 				    obj->tlsinitsize);
5529 				obj->static_tls_copied = true;
5530 			}
5531 			dtv[obj->tlsindex + 1] = addr;
5532 		}
5533 	}
5534 
5535 	return ((void *)segbase);
5536 }
5537 
5538 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5539 free_tls(void *tls, size_t tcbsize __unused, size_t tcbalign)
5540 {
5541 	Elf_Addr *dtv;
5542 	size_t size, ralign;
5543 	int dtvsize, i;
5544 	Elf_Addr tlsstart, tlsend;
5545 
5546 	/*
5547 	 * Figure out the size of the initial TLS block so that we can
5548 	 * find stuff which ___tls_get_addr() allocated dynamically.
5549 	 */
5550 	ralign = tcbalign;
5551 	if (tls_static_max_align > ralign)
5552 		ralign = tls_static_max_align;
5553 	size = roundup(tls_static_space, ralign);
5554 
5555 	dtv = ((Elf_Addr **)tls)[1];
5556 	dtvsize = dtv[1];
5557 	tlsend = (Elf_Addr)tls;
5558 	tlsstart = tlsend - size;
5559 	for (i = 0; i < dtvsize; i++) {
5560 		if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5561 		    dtv[i + 2] > tlsend)) {
5562 			free((void *)dtv[i + 2]);
5563 		}
5564 	}
5565 
5566 	free((void *)tlsstart);
5567 	free((void *)dtv);
5568 }
5569 
5570 #endif /* TLS_VARIANT_II */
5571 
5572 /*
5573  * Allocate TLS block for module with given index.
5574  */
5575 void *
allocate_module_tls(int index)5576 allocate_module_tls(int index)
5577 {
5578 	Obj_Entry *obj;
5579 	char *p;
5580 
5581 	TAILQ_FOREACH(obj, &obj_list, next) {
5582 		if (obj->marker)
5583 			continue;
5584 		if (obj->tlsindex == index)
5585 			break;
5586 	}
5587 	if (obj == NULL) {
5588 		_rtld_error("Can't find module with TLS index %d", index);
5589 		rtld_die();
5590 	}
5591 
5592 	if (obj->tls_static) {
5593 #ifdef TLS_VARIANT_I
5594 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5595 #else
5596 		p = (char *)_tcb_get() - obj->tlsoffset;
5597 #endif
5598 		return (p);
5599 	}
5600 
5601 	obj->tls_dynamic = true;
5602 
5603 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5604 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5605 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5606 	return (p);
5607 }
5608 
5609 bool
allocate_tls_offset(Obj_Entry * obj)5610 allocate_tls_offset(Obj_Entry *obj)
5611 {
5612 	size_t off;
5613 
5614 	if (obj->tls_dynamic)
5615 		return (false);
5616 
5617 	if (obj->tls_static)
5618 		return (true);
5619 
5620 	if (obj->tlssize == 0) {
5621 		obj->tls_static = true;
5622 		return (true);
5623 	}
5624 
5625 	if (tls_last_offset == 0)
5626 		off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5627 		    obj->tlspoffset);
5628 	else
5629 		off = calculate_tls_offset(tls_last_offset, tls_last_size,
5630 		    obj->tlssize, obj->tlsalign, obj->tlspoffset);
5631 
5632 	obj->tlsoffset = off;
5633 #ifdef TLS_VARIANT_I
5634 	off += obj->tlssize;
5635 #endif
5636 
5637 	/*
5638 	 * If we have already fixed the size of the static TLS block, we
5639 	 * must stay within that size. When allocating the static TLS, we
5640 	 * leave a small amount of space spare to be used for dynamically
5641 	 * loading modules which use static TLS.
5642 	 */
5643 	if (tls_static_space != 0) {
5644 		if (off > tls_static_space)
5645 			return (false);
5646 	} else if (obj->tlsalign > tls_static_max_align) {
5647 		tls_static_max_align = obj->tlsalign;
5648 	}
5649 
5650 	tls_last_offset = off;
5651 	tls_last_size = obj->tlssize;
5652 	obj->tls_static = true;
5653 
5654 	return (true);
5655 }
5656 
5657 void
free_tls_offset(Obj_Entry * obj)5658 free_tls_offset(Obj_Entry *obj)
5659 {
5660 	/*
5661 	 * If we were the last thing to allocate out of the static TLS
5662 	 * block, we give our space back to the 'allocator'. This is a
5663 	 * simplistic workaround to allow libGL.so.1 to be loaded and
5664 	 * unloaded multiple times.
5665 	 */
5666 	size_t off = obj->tlsoffset;
5667 
5668 #ifdef TLS_VARIANT_I
5669 	off += obj->tlssize;
5670 #endif
5671 	if (off == tls_last_offset) {
5672 		tls_last_offset -= obj->tlssize;
5673 		tls_last_size = 0;
5674 	}
5675 }
5676 
5677 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5678 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5679 {
5680 	void *ret;
5681 	RtldLockState lockstate;
5682 
5683 	wlock_acquire(rtld_bind_lock, &lockstate);
5684 	ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5685 	    tcbsize, tcbalign);
5686 	lock_release(rtld_bind_lock, &lockstate);
5687 	return (ret);
5688 }
5689 
5690 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5691 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5692 {
5693 	RtldLockState lockstate;
5694 
5695 	wlock_acquire(rtld_bind_lock, &lockstate);
5696 	free_tls(tcb, tcbsize, tcbalign);
5697 	lock_release(rtld_bind_lock, &lockstate);
5698 }
5699 
5700 static void
object_add_name(Obj_Entry * obj,const char * name)5701 object_add_name(Obj_Entry *obj, const char *name)
5702 {
5703 	Name_Entry *entry;
5704 	size_t len;
5705 
5706 	len = strlen(name);
5707 	entry = malloc(sizeof(Name_Entry) + len);
5708 
5709 	if (entry != NULL) {
5710 		strcpy(entry->name, name);
5711 		STAILQ_INSERT_TAIL(&obj->names, entry, link);
5712 	}
5713 }
5714 
5715 static int
object_match_name(const Obj_Entry * obj,const char * name)5716 object_match_name(const Obj_Entry *obj, const char *name)
5717 {
5718 	Name_Entry *entry;
5719 
5720 	STAILQ_FOREACH(entry, &obj->names, link) {
5721 		if (strcmp(name, entry->name) == 0)
5722 			return (1);
5723 	}
5724 	return (0);
5725 }
5726 
5727 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5728 locate_dependency(const Obj_Entry *obj, const char *name)
5729 {
5730 	const Objlist_Entry *entry;
5731 	const Needed_Entry *needed;
5732 
5733 	STAILQ_FOREACH(entry, &list_main, link) {
5734 		if (object_match_name(entry->obj, name))
5735 			return (entry->obj);
5736 	}
5737 
5738 	for (needed = obj->needed; needed != NULL; needed = needed->next) {
5739 		if (strcmp(obj->strtab + needed->name, name) == 0 ||
5740 		    (needed->obj != NULL && object_match_name(needed->obj,
5741 		    name))) {
5742 			/*
5743 			 * If there is DT_NEEDED for the name we are looking
5744 			 * for, we are all set.  Note that object might not be
5745 			 * found if dependency was not loaded yet, so the
5746 			 * function can return NULL here.  This is expected and
5747 			 * handled properly by the caller.
5748 			 */
5749 			return (needed->obj);
5750 		}
5751 	}
5752 	_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5753 	    obj->path, name);
5754 	rtld_die();
5755 }
5756 
5757 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5758 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5759     const Elf_Vernaux *vna)
5760 {
5761 	const Elf_Verdef *vd;
5762 	const char *vername;
5763 
5764 	vername = refobj->strtab + vna->vna_name;
5765 	vd = depobj->verdef;
5766 	if (vd == NULL) {
5767 		_rtld_error("%s: version %s required by %s not defined",
5768 		    depobj->path, vername, refobj->path);
5769 		return (-1);
5770 	}
5771 	for (;;) {
5772 		if (vd->vd_version != VER_DEF_CURRENT) {
5773 			_rtld_error(
5774 			    "%s: Unsupported version %d of Elf_Verdef entry",
5775 			    depobj->path, vd->vd_version);
5776 			return (-1);
5777 		}
5778 		if (vna->vna_hash == vd->vd_hash) {
5779 			const Elf_Verdaux *aux =
5780 			    (const Elf_Verdaux *)((const char *)vd +
5781 				vd->vd_aux);
5782 			if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5783 			    0)
5784 				return (0);
5785 		}
5786 		if (vd->vd_next == 0)
5787 			break;
5788 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5789 	}
5790 	if (vna->vna_flags & VER_FLG_WEAK)
5791 		return (0);
5792 	_rtld_error("%s: version %s required by %s not found", depobj->path,
5793 	    vername, refobj->path);
5794 	return (-1);
5795 }
5796 
5797 static int
rtld_verify_object_versions(Obj_Entry * obj)5798 rtld_verify_object_versions(Obj_Entry *obj)
5799 {
5800 	const Elf_Verneed *vn;
5801 	const Elf_Verdef *vd;
5802 	const Elf_Verdaux *vda;
5803 	const Elf_Vernaux *vna;
5804 	const Obj_Entry *depobj;
5805 	int maxvernum, vernum;
5806 
5807 	if (obj->ver_checked)
5808 		return (0);
5809 	obj->ver_checked = true;
5810 
5811 	maxvernum = 0;
5812 	/*
5813 	 * Walk over defined and required version records and figure out
5814 	 * max index used by any of them. Do very basic sanity checking
5815 	 * while there.
5816 	 */
5817 	vn = obj->verneed;
5818 	while (vn != NULL) {
5819 		if (vn->vn_version != VER_NEED_CURRENT) {
5820 			_rtld_error(
5821 			    "%s: Unsupported version %d of Elf_Verneed entry",
5822 			    obj->path, vn->vn_version);
5823 			return (-1);
5824 		}
5825 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5826 		for (;;) {
5827 			vernum = VER_NEED_IDX(vna->vna_other);
5828 			if (vernum > maxvernum)
5829 				maxvernum = vernum;
5830 			if (vna->vna_next == 0)
5831 				break;
5832 			vna = (const Elf_Vernaux *)((const char *)vna +
5833 			    vna->vna_next);
5834 		}
5835 		if (vn->vn_next == 0)
5836 			break;
5837 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5838 	}
5839 
5840 	vd = obj->verdef;
5841 	while (vd != NULL) {
5842 		if (vd->vd_version != VER_DEF_CURRENT) {
5843 			_rtld_error(
5844 			    "%s: Unsupported version %d of Elf_Verdef entry",
5845 			    obj->path, vd->vd_version);
5846 			return (-1);
5847 		}
5848 		vernum = VER_DEF_IDX(vd->vd_ndx);
5849 		if (vernum > maxvernum)
5850 			maxvernum = vernum;
5851 		if (vd->vd_next == 0)
5852 			break;
5853 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5854 	}
5855 
5856 	if (maxvernum == 0)
5857 		return (0);
5858 
5859 	/*
5860 	 * Store version information in array indexable by version index.
5861 	 * Verify that object version requirements are satisfied along the
5862 	 * way.
5863 	 */
5864 	obj->vernum = maxvernum + 1;
5865 	obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5866 
5867 	vd = obj->verdef;
5868 	while (vd != NULL) {
5869 		if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5870 			vernum = VER_DEF_IDX(vd->vd_ndx);
5871 			assert(vernum <= maxvernum);
5872 			vda = (const Elf_Verdaux *)((const char *)vd +
5873 			    vd->vd_aux);
5874 			obj->vertab[vernum].hash = vd->vd_hash;
5875 			obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5876 			obj->vertab[vernum].file = NULL;
5877 			obj->vertab[vernum].flags = 0;
5878 		}
5879 		if (vd->vd_next == 0)
5880 			break;
5881 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5882 	}
5883 
5884 	vn = obj->verneed;
5885 	while (vn != NULL) {
5886 		depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5887 		if (depobj == NULL)
5888 			return (-1);
5889 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5890 		for (;;) {
5891 			if (check_object_provided_version(obj, depobj, vna))
5892 				return (-1);
5893 			vernum = VER_NEED_IDX(vna->vna_other);
5894 			assert(vernum <= maxvernum);
5895 			obj->vertab[vernum].hash = vna->vna_hash;
5896 			obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5897 			obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5898 			obj->vertab[vernum].flags = (vna->vna_other &
5899 			    VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
5900 			if (vna->vna_next == 0)
5901 				break;
5902 			vna = (const Elf_Vernaux *)((const char *)vna +
5903 			    vna->vna_next);
5904 		}
5905 		if (vn->vn_next == 0)
5906 			break;
5907 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5908 	}
5909 	return (0);
5910 }
5911 
5912 static int
rtld_verify_versions(const Objlist * objlist)5913 rtld_verify_versions(const Objlist *objlist)
5914 {
5915 	Objlist_Entry *entry;
5916 	int rc;
5917 
5918 	rc = 0;
5919 	STAILQ_FOREACH(entry, objlist, link) {
5920 		/*
5921 		 * Skip dummy objects or objects that have their version
5922 		 * requirements already checked.
5923 		 */
5924 		if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5925 			continue;
5926 		if (rtld_verify_object_versions(entry->obj) == -1) {
5927 			rc = -1;
5928 			if (ld_tracing == NULL)
5929 				break;
5930 		}
5931 	}
5932 	if (rc == 0 || ld_tracing != NULL)
5933 		rc = rtld_verify_object_versions(&obj_rtld);
5934 	return (rc);
5935 }
5936 
5937 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5938 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5939 {
5940 	Elf_Versym vernum;
5941 
5942 	if (obj->vertab) {
5943 		vernum = VER_NDX(obj->versyms[symnum]);
5944 		if (vernum >= obj->vernum) {
5945 			_rtld_error("%s: symbol %s has wrong verneed value %d",
5946 			    obj->path, obj->strtab + symnum, vernum);
5947 		} else if (obj->vertab[vernum].hash != 0) {
5948 			return (&obj->vertab[vernum]);
5949 		}
5950 	}
5951 	return (NULL);
5952 }
5953 
5954 int
_rtld_get_stack_prot(void)5955 _rtld_get_stack_prot(void)
5956 {
5957 	return (stack_prot);
5958 }
5959 
5960 int
_rtld_is_dlopened(void * arg)5961 _rtld_is_dlopened(void *arg)
5962 {
5963 	Obj_Entry *obj;
5964 	RtldLockState lockstate;
5965 	int res;
5966 
5967 	rlock_acquire(rtld_bind_lock, &lockstate);
5968 	obj = dlcheck(arg);
5969 	if (obj == NULL)
5970 		obj = obj_from_addr(arg);
5971 	if (obj == NULL) {
5972 		_rtld_error("No shared object contains address");
5973 		lock_release(rtld_bind_lock, &lockstate);
5974 		return (-1);
5975 	}
5976 	res = obj->dlopened ? 1 : 0;
5977 	lock_release(rtld_bind_lock, &lockstate);
5978 	return (res);
5979 }
5980 
5981 static int
obj_remap_relro(Obj_Entry * obj,int prot)5982 obj_remap_relro(Obj_Entry *obj, int prot)
5983 {
5984 	const Elf_Phdr *ph;
5985 	caddr_t relro_page;
5986 	size_t relro_size;
5987 
5988 	for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
5989 	    obj->phsize; ph++) {
5990 		if (ph->p_type != PT_GNU_RELRO)
5991 			continue;
5992 		relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
5993 		relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
5994 		    rtld_trunc_page(ph->p_vaddr);
5995 		if (mprotect(relro_page, relro_size, prot) == -1) {
5996 			_rtld_error(
5997 			    "%s: Cannot set relro protection to %#x: %s",
5998 			    obj->path, prot, rtld_strerror(errno));
5999 			return (-1);
6000 		}
6001 		break;
6002 	}
6003 	return (0);
6004 }
6005 
6006 static int
obj_disable_relro(Obj_Entry * obj)6007 obj_disable_relro(Obj_Entry *obj)
6008 {
6009 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6010 }
6011 
6012 static int
obj_enforce_relro(Obj_Entry * obj)6013 obj_enforce_relro(Obj_Entry *obj)
6014 {
6015 	return (obj_remap_relro(obj, PROT_READ));
6016 }
6017 
6018 static void
map_stacks_exec(RtldLockState * lockstate)6019 map_stacks_exec(RtldLockState *lockstate)
6020 {
6021 	void (*thr_map_stacks_exec)(void);
6022 
6023 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6024 		return;
6025 	thr_map_stacks_exec = (void (*)(void))(
6026 	    uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6027 	    lockstate);
6028 	if (thr_map_stacks_exec != NULL) {
6029 		stack_prot |= PROT_EXEC;
6030 		thr_map_stacks_exec();
6031 	}
6032 }
6033 
6034 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)6035 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
6036 {
6037 	Objlist_Entry *elm;
6038 	Obj_Entry *obj;
6039 	void (*distrib)(size_t, void *, size_t, size_t);
6040 
6041 	distrib = (void (*)(size_t, void *, size_t, size_t))(
6042 	    uintptr_t)get_program_var_addr("__pthread_distribute_static_tls",
6043 	    lockstate);
6044 	if (distrib == NULL)
6045 		return;
6046 	STAILQ_FOREACH(elm, list, link) {
6047 		obj = elm->obj;
6048 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6049 			continue;
6050 		lock_release(rtld_bind_lock, lockstate);
6051 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
6052 		    obj->tlssize);
6053 		wlock_acquire(rtld_bind_lock, lockstate);
6054 		obj->static_tls_copied = true;
6055 	}
6056 }
6057 
6058 void
symlook_init(SymLook * dst,const char * name)6059 symlook_init(SymLook *dst, const char *name)
6060 {
6061 	bzero(dst, sizeof(*dst));
6062 	dst->name = name;
6063 	dst->hash = elf_hash(name);
6064 	dst->hash_gnu = gnu_hash(name);
6065 }
6066 
6067 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6068 symlook_init_from_req(SymLook *dst, const SymLook *src)
6069 {
6070 	dst->name = src->name;
6071 	dst->hash = src->hash;
6072 	dst->hash_gnu = src->hash_gnu;
6073 	dst->ventry = src->ventry;
6074 	dst->flags = src->flags;
6075 	dst->defobj_out = NULL;
6076 	dst->sym_out = NULL;
6077 	dst->lockstate = src->lockstate;
6078 }
6079 
6080 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6081 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6082 {
6083 	char *binpath, *pathenv, *pe, *res1;
6084 	const char *res;
6085 	int fd;
6086 
6087 	binpath = NULL;
6088 	res = NULL;
6089 	if (search_in_path && strchr(argv0, '/') == NULL) {
6090 		binpath = xmalloc(PATH_MAX);
6091 		pathenv = getenv("PATH");
6092 		if (pathenv == NULL) {
6093 			_rtld_error("-p and no PATH environment variable");
6094 			rtld_die();
6095 		}
6096 		pathenv = strdup(pathenv);
6097 		if (pathenv == NULL) {
6098 			_rtld_error("Cannot allocate memory");
6099 			rtld_die();
6100 		}
6101 		fd = -1;
6102 		errno = ENOENT;
6103 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6104 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6105 				continue;
6106 			if (binpath[0] != '\0' &&
6107 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6108 				continue;
6109 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6110 				continue;
6111 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6112 			if (fd != -1 || errno != ENOENT) {
6113 				res = binpath;
6114 				break;
6115 			}
6116 		}
6117 		free(pathenv);
6118 	} else {
6119 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6120 		res = argv0;
6121 	}
6122 
6123 	if (fd == -1) {
6124 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6125 		rtld_die();
6126 	}
6127 	if (res != NULL && res[0] != '/') {
6128 		res1 = xmalloc(PATH_MAX);
6129 		if (realpath(res, res1) != NULL) {
6130 			if (res != argv0)
6131 				free(__DECONST(char *, res));
6132 			res = res1;
6133 		} else {
6134 			free(res1);
6135 		}
6136 	}
6137 	*binpath_res = res;
6138 	return (fd);
6139 }
6140 
6141 /*
6142  * Parse a set of command-line arguments.
6143  */
6144 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6145 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6146     const char **argv0, bool *dir_ignore)
6147 {
6148 	const char *arg;
6149 	char machine[64];
6150 	size_t sz;
6151 	int arglen, fd, i, j, mib[2];
6152 	char opt;
6153 	bool seen_b, seen_f;
6154 
6155 	dbg("Parsing command-line arguments");
6156 	*use_pathp = false;
6157 	*fdp = -1;
6158 	*dir_ignore = false;
6159 	seen_b = seen_f = false;
6160 
6161 	for (i = 1; i < argc; i++) {
6162 		arg = argv[i];
6163 		dbg("argv[%d]: '%s'", i, arg);
6164 
6165 		/*
6166 		 * rtld arguments end with an explicit "--" or with the first
6167 		 * non-prefixed argument.
6168 		 */
6169 		if (strcmp(arg, "--") == 0) {
6170 			i++;
6171 			break;
6172 		}
6173 		if (arg[0] != '-')
6174 			break;
6175 
6176 		/*
6177 		 * All other arguments are single-character options that can
6178 		 * be combined, so we need to search through `arg` for them.
6179 		 */
6180 		arglen = strlen(arg);
6181 		for (j = 1; j < arglen; j++) {
6182 			opt = arg[j];
6183 			if (opt == 'h') {
6184 				print_usage(argv[0]);
6185 				_exit(0);
6186 			} else if (opt == 'b') {
6187 				if (seen_f) {
6188 					_rtld_error("Both -b and -f specified");
6189 					rtld_die();
6190 				}
6191 				if (j != arglen - 1) {
6192 					_rtld_error("Invalid options: %s", arg);
6193 					rtld_die();
6194 				}
6195 				i++;
6196 				*argv0 = argv[i];
6197 				seen_b = true;
6198 				break;
6199 			} else if (opt == 'd') {
6200 				*dir_ignore = true;
6201 			} else if (opt == 'f') {
6202 				if (seen_b) {
6203 					_rtld_error("Both -b and -f specified");
6204 					rtld_die();
6205 				}
6206 
6207 				/*
6208 				 * -f XX can be used to specify a
6209 				 * descriptor for the binary named at
6210 				 * the command line (i.e., the later
6211 				 * argument will specify the process
6212 				 * name but the descriptor is what
6213 				 * will actually be executed).
6214 				 *
6215 				 * -f must be the last option in the
6216 				 * group, e.g., -abcf <fd>.
6217 				 */
6218 				if (j != arglen - 1) {
6219 					_rtld_error("Invalid options: %s", arg);
6220 					rtld_die();
6221 				}
6222 				i++;
6223 				fd = parse_integer(argv[i]);
6224 				if (fd == -1) {
6225 					_rtld_error(
6226 					    "Invalid file descriptor: '%s'",
6227 					    argv[i]);
6228 					rtld_die();
6229 				}
6230 				*fdp = fd;
6231 				seen_f = true;
6232 				break;
6233 			} else if (opt == 'o') {
6234 				struct ld_env_var_desc *l;
6235 				char *n, *v;
6236 				u_int ll;
6237 
6238 				if (j != arglen - 1) {
6239 					_rtld_error("Invalid options: %s", arg);
6240 					rtld_die();
6241 				}
6242 				i++;
6243 				n = argv[i];
6244 				v = strchr(n, '=');
6245 				if (v == NULL) {
6246 					_rtld_error("No '=' in -o parameter");
6247 					rtld_die();
6248 				}
6249 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6250 					l = &ld_env_vars[ll];
6251 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6252 					    strncmp(n, l->n, v - n) == 0) {
6253 						l->val = v + 1;
6254 						break;
6255 					}
6256 				}
6257 				if (ll == nitems(ld_env_vars)) {
6258 					_rtld_error("Unknown LD_ option %s", n);
6259 					rtld_die();
6260 				}
6261 			} else if (opt == 'p') {
6262 				*use_pathp = true;
6263 			} else if (opt == 'u') {
6264 				u_int ll;
6265 
6266 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6267 					ld_env_vars[ll].val = NULL;
6268 			} else if (opt == 'v') {
6269 				machine[0] = '\0';
6270 				mib[0] = CTL_HW;
6271 				mib[1] = HW_MACHINE;
6272 				sz = sizeof(machine);
6273 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6274 				ld_elf_hints_path = ld_get_env_var(
6275 				    LD_ELF_HINTS_PATH);
6276 				set_ld_elf_hints_path();
6277 				rtld_printf(
6278 				    "FreeBSD ld-elf.so.1 %s\n"
6279 				    "FreeBSD_version %d\n"
6280 				    "Default lib path %s\n"
6281 				    "Hints lib path %s\n"
6282 				    "Env prefix %s\n"
6283 				    "Default hint file %s\n"
6284 				    "Hint file %s\n"
6285 				    "libmap file %s\n"
6286 				    "Optional static TLS size %zd bytes\n",
6287 				    machine, __FreeBSD_version,
6288 				    ld_standard_library_path, gethints(false),
6289 				    ld_env_prefix, ld_elf_hints_default,
6290 				    ld_elf_hints_path, ld_path_libmap_conf,
6291 				    ld_static_tls_extra);
6292 				_exit(0);
6293 			} else {
6294 				_rtld_error("Invalid argument: '%s'", arg);
6295 				print_usage(argv[0]);
6296 				rtld_die();
6297 			}
6298 		}
6299 	}
6300 
6301 	if (!seen_b)
6302 		*argv0 = argv[i];
6303 	return (i);
6304 }
6305 
6306 /*
6307  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6308  */
6309 static int
parse_integer(const char * str)6310 parse_integer(const char *str)
6311 {
6312 	static const int RADIX = 10; /* XXXJA: possibly support hex? */
6313 	const char *orig;
6314 	int n;
6315 	char c;
6316 
6317 	orig = str;
6318 	n = 0;
6319 	for (c = *str; c != '\0'; c = *++str) {
6320 		if (c < '0' || c > '9')
6321 			return (-1);
6322 
6323 		n *= RADIX;
6324 		n += c - '0';
6325 	}
6326 
6327 	/* Make sure we actually parsed something. */
6328 	if (str == orig)
6329 		return (-1);
6330 	return (n);
6331 }
6332 
6333 static void
print_usage(const char * argv0)6334 print_usage(const char *argv0)
6335 {
6336 	rtld_printf(
6337 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6338 	    "\n"
6339 	    "Options:\n"
6340 	    "  -h        Display this help message\n"
6341 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6342 	    "  -d        Ignore lack of exec permissions for the binary\n"
6343 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6344 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6345 	    "  -p        Search in PATH for named binary\n"
6346 	    "  -u        Ignore LD_ environment variables\n"
6347 	    "  -v        Display identification information\n"
6348 	    "  --        End of RTLD options\n"
6349 	    "  <binary>  Name of process to execute\n"
6350 	    "  <args>    Arguments to the executed process\n",
6351 	    argv0);
6352 }
6353 
6354 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6355 static const struct auxfmt {
6356 	const char *name;
6357 	const char *fmt;
6358 } auxfmts[] = {
6359 	AUXFMT(AT_NULL, NULL),
6360 	AUXFMT(AT_IGNORE, NULL),
6361 	AUXFMT(AT_EXECFD, "%ld"),
6362 	AUXFMT(AT_PHDR, "%p"),
6363 	AUXFMT(AT_PHENT, "%lu"),
6364 	AUXFMT(AT_PHNUM, "%lu"),
6365 	AUXFMT(AT_PAGESZ, "%lu"),
6366 	AUXFMT(AT_BASE, "%#lx"),
6367 	AUXFMT(AT_FLAGS, "%#lx"),
6368 	AUXFMT(AT_ENTRY, "%p"),
6369 	AUXFMT(AT_NOTELF, NULL),
6370 	AUXFMT(AT_UID, "%ld"),
6371 	AUXFMT(AT_EUID, "%ld"),
6372 	AUXFMT(AT_GID, "%ld"),
6373 	AUXFMT(AT_EGID, "%ld"),
6374 	AUXFMT(AT_EXECPATH, "%s"),
6375 	AUXFMT(AT_CANARY, "%p"),
6376 	AUXFMT(AT_CANARYLEN, "%lu"),
6377 	AUXFMT(AT_OSRELDATE, "%lu"),
6378 	AUXFMT(AT_NCPUS, "%lu"),
6379 	AUXFMT(AT_PAGESIZES, "%p"),
6380 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6381 	AUXFMT(AT_TIMEKEEP, "%p"),
6382 	AUXFMT(AT_STACKPROT, "%#lx"),
6383 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6384 	AUXFMT(AT_HWCAP, "%#lx"),
6385 	AUXFMT(AT_HWCAP2, "%#lx"),
6386 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6387 	AUXFMT(AT_ARGC, "%lu"),
6388 	AUXFMT(AT_ARGV, "%p"),
6389 	AUXFMT(AT_ENVC, "%p"),
6390 	AUXFMT(AT_ENVV, "%p"),
6391 	AUXFMT(AT_PS_STRINGS, "%p"),
6392 	AUXFMT(AT_FXRNG, "%p"),
6393 	AUXFMT(AT_KPRELOAD, "%p"),
6394 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6395 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6396 };
6397 
6398 static bool
is_ptr_fmt(const char * fmt)6399 is_ptr_fmt(const char *fmt)
6400 {
6401 	char last;
6402 
6403 	last = fmt[strlen(fmt) - 1];
6404 	return (last == 'p' || last == 's');
6405 }
6406 
6407 static void
dump_auxv(Elf_Auxinfo ** aux_info)6408 dump_auxv(Elf_Auxinfo **aux_info)
6409 {
6410 	Elf_Auxinfo *auxp;
6411 	const struct auxfmt *fmt;
6412 	int i;
6413 
6414 	for (i = 0; i < AT_COUNT; i++) {
6415 		auxp = aux_info[i];
6416 		if (auxp == NULL)
6417 			continue;
6418 		fmt = &auxfmts[i];
6419 		if (fmt->fmt == NULL)
6420 			continue;
6421 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6422 		if (is_ptr_fmt(fmt->fmt)) {
6423 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6424 			    auxp->a_un.a_ptr);
6425 		} else {
6426 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6427 			    auxp->a_un.a_val);
6428 		}
6429 		rtld_fdprintf(STDOUT_FILENO, "\n");
6430 	}
6431 }
6432 
6433 const char *
rtld_get_var(const char * name)6434 rtld_get_var(const char *name)
6435 {
6436 	const struct ld_env_var_desc *lvd;
6437 	u_int i;
6438 
6439 	for (i = 0; i < nitems(ld_env_vars); i++) {
6440 		lvd = &ld_env_vars[i];
6441 		if (strcmp(lvd->n, name) == 0)
6442 			return (lvd->val);
6443 	}
6444 	return (NULL);
6445 }
6446 
6447 int
rtld_set_var(const char * name,const char * val)6448 rtld_set_var(const char *name, const char *val)
6449 {
6450 	struct ld_env_var_desc *lvd;
6451 	u_int i;
6452 
6453 	for (i = 0; i < nitems(ld_env_vars); i++) {
6454 		lvd = &ld_env_vars[i];
6455 		if (strcmp(lvd->n, name) != 0)
6456 			continue;
6457 		if (!lvd->can_update || (lvd->unsecure && !trust))
6458 			return (EPERM);
6459 		if (lvd->owned)
6460 			free(__DECONST(char *, lvd->val));
6461 		if (val != NULL)
6462 			lvd->val = xstrdup(val);
6463 		else
6464 			lvd->val = NULL;
6465 		lvd->owned = true;
6466 		if (lvd->debug)
6467 			debug = lvd->val != NULL && *lvd->val != '\0';
6468 		return (0);
6469 	}
6470 	return (ENOENT);
6471 }
6472 
6473 /*
6474  * Overrides for libc_pic-provided functions.
6475  */
6476 
6477 int
__getosreldate(void)6478 __getosreldate(void)
6479 {
6480 	size_t len;
6481 	int oid[2];
6482 	int error, osrel;
6483 
6484 	if (osreldate != 0)
6485 		return (osreldate);
6486 
6487 	oid[0] = CTL_KERN;
6488 	oid[1] = KERN_OSRELDATE;
6489 	osrel = 0;
6490 	len = sizeof(osrel);
6491 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6492 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6493 		osreldate = osrel;
6494 	return (osreldate);
6495 }
6496 const char *
rtld_strerror(int errnum)6497 rtld_strerror(int errnum)
6498 {
6499 	if (errnum < 0 || errnum >= sys_nerr)
6500 		return ("Unknown error");
6501 	return (sys_errlist[errnum]);
6502 }
6503 
6504 char *
getenv(const char * name)6505 getenv(const char *name)
6506 {
6507 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6508 	    strlen(name))));
6509 }
6510 
6511 /* malloc */
6512 void *
malloc(size_t nbytes)6513 malloc(size_t nbytes)
6514 {
6515 	return (__crt_malloc(nbytes));
6516 }
6517 
6518 void *
calloc(size_t num,size_t size)6519 calloc(size_t num, size_t size)
6520 {
6521 	return (__crt_calloc(num, size));
6522 }
6523 
6524 void
free(void * cp)6525 free(void *cp)
6526 {
6527 	__crt_free(cp);
6528 }
6529 
6530 void *
realloc(void * cp,size_t nbytes)6531 realloc(void *cp, size_t nbytes)
6532 {
6533 	return (__crt_realloc(cp, nbytes));
6534 }
6535 
6536 extern int _rtld_version__FreeBSD_version __exported;
6537 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6538 
6539 extern char _rtld_version_laddr_offset __exported;
6540 char _rtld_version_laddr_offset;
6541 
6542 extern char _rtld_version_dlpi_tls_data __exported;
6543 char _rtld_version_dlpi_tls_data;
6544