1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Copyright 2023 Oxide Computer Company
28 */
29
30 /*
31 * driver for accessing kernel devinfo tree.
32 */
33 #include <sys/types.h>
34 #include <sys/pathname.h>
35 #include <sys/debug.h>
36 #include <sys/autoconf.h>
37 #include <sys/vmsystm.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #include <sys/kmem.h>
41 #include <sys/modctl.h>
42 #include <sys/stat.h>
43 #include <sys/ddi.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi_impl.h>
46 #include <sys/sunndi.h>
47 #include <sys/esunddi.h>
48 #include <sys/sunmdi.h>
49 #include <sys/ddi_impldefs.h>
50 #include <sys/ndi_impldefs.h>
51 #include <sys/mdi_impldefs.h>
52 #include <sys/devinfo_impl.h>
53 #include <sys/thread.h>
54 #include <sys/modhash.h>
55 #include <sys/bitmap.h>
56 #include <util/qsort.h>
57 #include <sys/disp.h>
58 #include <sys/kobj.h>
59 #include <sys/crc32.h>
60 #include <sys/ddi_hp.h>
61 #include <sys/ddi_hp_impl.h>
62 #include <sys/sysmacros.h>
63 #include <sys/list.h>
64
65
66 #ifdef DEBUG
67 static int di_debug;
68 #define dcmn_err(args) if (di_debug >= 1) cmn_err args
69 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args
70 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args
71 #else
72 #define dcmn_err(args) /* nothing */
73 #define dcmn_err2(args) /* nothing */
74 #define dcmn_err3(args) /* nothing */
75 #endif
76
77 /*
78 * We partition the space of devinfo minor nodes equally between the full and
79 * unprivileged versions of the driver. The even-numbered minor nodes are the
80 * full version, while the odd-numbered ones are the read-only version.
81 */
82 static int di_max_opens = 32;
83
84 static int di_prop_dyn = 1; /* enable dynamic property support */
85
86 #define DI_FULL_PARENT 0
87 #define DI_READONLY_PARENT 1
88 #define DI_NODE_SPECIES 2
89 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0)
90
91 #define IOC_IDLE 0 /* snapshot ioctl states */
92 #define IOC_SNAP 1 /* snapshot in progress */
93 #define IOC_DONE 2 /* snapshot done, but not copied out */
94 #define IOC_COPY 3 /* copyout in progress */
95
96 /*
97 * Keep max alignment so we can move snapshot to different platforms.
98 *
99 * NOTE: Most callers should rely on the di_checkmem return value
100 * being aligned, and reestablish *off_p with aligned value, instead
101 * of trying to align size of their allocations: this approach will
102 * minimize memory use.
103 */
104 #define DI_ALIGN(addr) ((addr + 7l) & ~7l)
105
106 /*
107 * To avoid wasting memory, make a linked list of memory chunks.
108 * Size of each chunk is buf_size.
109 */
110 struct di_mem {
111 struct di_mem *next; /* link to next chunk */
112 char *buf; /* contiguous kernel memory */
113 size_t buf_size; /* size of buf in bytes */
114 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */
115 };
116
117 /*
118 * This is a stack for walking the tree without using recursion.
119 * When the devinfo tree height is above some small size, one
120 * gets watchdog resets on sun4m.
121 */
122 struct di_stack {
123 void *offset[MAX_TREE_DEPTH];
124 struct dev_info *dip[MAX_TREE_DEPTH];
125 int depth; /* depth of current node to be copied */
126 };
127
128 #define TOP_OFFSET(stack) \
129 ((di_off_t *)(stack)->offset[(stack)->depth - 1])
130 #define TOP_NODE(stack) \
131 ((stack)->dip[(stack)->depth - 1])
132 #define PARENT_OFFSET(stack) \
133 ((di_off_t *)(stack)->offset[(stack)->depth - 2])
134 #define EMPTY_STACK(stack) ((stack)->depth == 0)
135 #define POP_STACK(stack) { \
136 ndi_devi_exit((dev_info_t *)TOP_NODE(stack)); \
137 ((stack)->depth--); \
138 }
139 #define PUSH_STACK(stack, node, off_p) { \
140 ASSERT(node != NULL); \
141 ndi_devi_enter((dev_info_t *)node); \
142 (stack)->dip[(stack)->depth] = (node); \
143 (stack)->offset[(stack)->depth] = (void *)(off_p); \
144 ((stack)->depth)++; \
145 }
146
147 #define DI_ALL_PTR(s) DI_ALL(di_mem_addr((s), 0))
148
149 /*
150 * With devfs, the device tree has no global locks. The device tree is
151 * dynamic and dips may come and go if they are not locked locally. Under
152 * these conditions, pointers are no longer reliable as unique IDs.
153 * Specifically, these pointers cannot be used as keys for hash tables
154 * as the same devinfo structure may be freed in one part of the tree only
155 * to be allocated as the structure for a different device in another
156 * part of the tree. This can happen if DR and the snapshot are
157 * happening concurrently.
158 * The following data structures act as keys for devinfo nodes and
159 * pathinfo nodes.
160 */
161
162 enum di_ktype {
163 DI_DKEY = 1,
164 DI_PKEY = 2
165 };
166
167 struct di_dkey {
168 dev_info_t *dk_dip;
169 major_t dk_major;
170 int dk_inst;
171 pnode_t dk_nodeid;
172 };
173
174 struct di_pkey {
175 mdi_pathinfo_t *pk_pip;
176 char *pk_path_addr;
177 dev_info_t *pk_client;
178 dev_info_t *pk_phci;
179 };
180
181 struct di_key {
182 enum di_ktype k_type;
183 union {
184 struct di_dkey dkey;
185 struct di_pkey pkey;
186 } k_u;
187 };
188
189
190 struct i_lnode;
191
192 typedef struct i_link {
193 /*
194 * If a di_link struct representing this i_link struct makes it
195 * into the snapshot, then self will point to the offset of
196 * the di_link struct in the snapshot
197 */
198 di_off_t self;
199
200 int spec_type; /* block or char access type */
201 struct i_lnode *src_lnode; /* src i_lnode */
202 struct i_lnode *tgt_lnode; /* tgt i_lnode */
203 struct i_link *src_link_next; /* next src i_link /w same i_lnode */
204 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */
205 } i_link_t;
206
207 typedef struct i_lnode {
208 /*
209 * If a di_lnode struct representing this i_lnode struct makes it
210 * into the snapshot, then self will point to the offset of
211 * the di_lnode struct in the snapshot
212 */
213 di_off_t self;
214
215 /*
216 * used for hashing and comparing i_lnodes
217 */
218 int modid;
219
220 /*
221 * public information describing a link endpoint
222 */
223 struct di_node *di_node; /* di_node in snapshot */
224 dev_t devt; /* devt */
225
226 /*
227 * i_link ptr to links coming into this i_lnode node
228 * (this i_lnode is the target of these i_links)
229 */
230 i_link_t *link_in;
231
232 /*
233 * i_link ptr to links going out of this i_lnode node
234 * (this i_lnode is the source of these i_links)
235 */
236 i_link_t *link_out;
237 } i_lnode_t;
238
239 typedef struct i_hp {
240 di_off_t hp_off; /* Offset of di_hp_t in snapshot */
241 dev_info_t *hp_child; /* Child devinfo node of the di_hp_t */
242 list_node_t hp_link; /* List linkage */
243 } i_hp_t;
244
245 /*
246 * Soft state associated with each instance of driver open.
247 */
248 static struct di_state {
249 di_off_t mem_size; /* total # bytes in memlist */
250 struct di_mem *memlist; /* head of memlist */
251 uint_t command; /* command from ioctl */
252 int di_iocstate; /* snapshot ioctl state */
253 mod_hash_t *reg_dip_hash;
254 mod_hash_t *reg_pip_hash;
255 int lnode_count;
256 int link_count;
257
258 mod_hash_t *lnode_hash;
259 mod_hash_t *link_hash;
260
261 list_t hp_list;
262 } **di_states;
263
264 static kmutex_t di_lock; /* serialize instance assignment */
265
266 typedef enum {
267 DI_QUIET = 0, /* DI_QUIET must always be 0 */
268 DI_ERR,
269 DI_INFO,
270 DI_TRACE,
271 DI_TRACE1,
272 DI_TRACE2
273 } di_cache_debug_t;
274
275 static uint_t di_chunk = 32; /* I/O chunk size in pages */
276
277 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock))
278 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock))
279 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock))
280
281 /*
282 * Check that whole device tree is being configured as a pre-condition for
283 * cleaning up /etc/devices files.
284 */
285 #define DEVICES_FILES_CLEANABLE(st) \
286 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
287 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
288
289 #define CACHE_DEBUG(args) \
290 { if (di_cache_debug != DI_QUIET) di_cache_print args; }
291
292 typedef struct phci_walk_arg {
293 di_off_t off;
294 struct di_state *st;
295 } phci_walk_arg_t;
296
297 static int di_open(dev_t *, int, int, cred_t *);
298 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
299 static int di_close(dev_t, int, int, cred_t *);
300 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
301 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
302 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
303
304 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
305 static di_off_t di_snapshot_and_clean(struct di_state *);
306 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
307 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
308 static di_off_t di_copynode(struct dev_info *, struct di_stack *,
309 struct di_state *);
310 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
311 struct di_state *);
312 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
313 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
314 static di_off_t di_gethpdata(ddi_hp_cn_handle_t *, di_off_t *,
315 struct di_state *);
316 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *,
317 struct di_state *, struct dev_info *);
318 static void di_allocmem(struct di_state *, size_t);
319 static void di_freemem(struct di_state *);
320 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
321 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
322 static void *di_mem_addr(struct di_state *, di_off_t);
323 static int di_setstate(struct di_state *, int);
324 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
325 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
326 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
327 struct di_state *, int);
328 static di_off_t di_getlink_data(di_off_t, struct di_state *);
329 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
330
331 static int cache_args_valid(struct di_state *st, int *error);
332 static int snapshot_is_cacheable(struct di_state *st);
333 static int di_cache_lookup(struct di_state *st);
334 static int di_cache_update(struct di_state *st);
335 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
336 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
337 static int build_phci_list(dev_info_t *ph_devinfo, void *arg);
338 static void di_hotplug_children(struct di_state *st);
339
340 extern int modrootloaded;
341 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
342 extern void mdi_vhci_walk_phcis(dev_info_t *,
343 int (*)(dev_info_t *, void *), void *);
344
345
346 static struct cb_ops di_cb_ops = {
347 di_open, /* open */
348 di_close, /* close */
349 nodev, /* strategy */
350 nodev, /* print */
351 nodev, /* dump */
352 nodev, /* read */
353 nodev, /* write */
354 di_ioctl, /* ioctl */
355 nodev, /* devmap */
356 nodev, /* mmap */
357 nodev, /* segmap */
358 nochpoll, /* poll */
359 ddi_prop_op, /* prop_op */
360 NULL, /* streamtab */
361 D_NEW | D_MP /* Driver compatibility flag */
362 };
363
364 static struct dev_ops di_ops = {
365 DEVO_REV, /* devo_rev, */
366 0, /* refcnt */
367 di_info, /* info */
368 nulldev, /* identify */
369 nulldev, /* probe */
370 di_attach, /* attach */
371 di_detach, /* detach */
372 nodev, /* reset */
373 &di_cb_ops, /* driver operations */
374 NULL /* bus operations */
375 };
376
377 /*
378 * Module linkage information for the kernel.
379 */
380 static struct modldrv modldrv = {
381 &mod_driverops,
382 "DEVINFO Driver",
383 &di_ops
384 };
385
386 static struct modlinkage modlinkage = {
387 MODREV_1,
388 &modldrv,
389 NULL
390 };
391
392 int
_init(void)393 _init(void)
394 {
395 int error;
396
397 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
398
399 error = mod_install(&modlinkage);
400 if (error != 0) {
401 mutex_destroy(&di_lock);
402 return (error);
403 }
404
405 return (0);
406 }
407
408 int
_info(struct modinfo * modinfop)409 _info(struct modinfo *modinfop)
410 {
411 return (mod_info(&modlinkage, modinfop));
412 }
413
414 int
_fini(void)415 _fini(void)
416 {
417 int error;
418
419 error = mod_remove(&modlinkage);
420 if (error != 0) {
421 return (error);
422 }
423
424 mutex_destroy(&di_lock);
425 return (0);
426 }
427
428 static dev_info_t *di_dip;
429
430 /*ARGSUSED*/
431 static int
di_info(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)432 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
433 {
434 int error = DDI_FAILURE;
435
436 switch (infocmd) {
437 case DDI_INFO_DEVT2DEVINFO:
438 *result = (void *)di_dip;
439 error = DDI_SUCCESS;
440 break;
441 case DDI_INFO_DEVT2INSTANCE:
442 /*
443 * All dev_t's map to the same, single instance.
444 */
445 *result = (void *)0;
446 error = DDI_SUCCESS;
447 break;
448 default:
449 break;
450 }
451
452 return (error);
453 }
454
455 static int
di_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)456 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
457 {
458 int error = DDI_FAILURE;
459
460 switch (cmd) {
461 case DDI_ATTACH:
462 di_states = kmem_zalloc(
463 di_max_opens * sizeof (struct di_state *), KM_SLEEP);
464
465 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
466 DI_FULL_PARENT, DDI_PSEUDO, 0) == DDI_FAILURE ||
467 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
468 DI_READONLY_PARENT, DDI_PSEUDO, 0) == DDI_FAILURE) {
469 kmem_free(di_states,
470 di_max_opens * sizeof (struct di_state *));
471 ddi_remove_minor_node(dip, NULL);
472 error = DDI_FAILURE;
473 } else {
474 di_dip = dip;
475 ddi_report_dev(dip);
476
477 error = DDI_SUCCESS;
478 }
479 break;
480 default:
481 error = DDI_FAILURE;
482 break;
483 }
484
485 return (error);
486 }
487
488 static int
di_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)489 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
490 {
491 int error = DDI_FAILURE;
492
493 switch (cmd) {
494 case DDI_DETACH:
495 ddi_remove_minor_node(dip, NULL);
496 di_dip = NULL;
497 kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
498
499 error = DDI_SUCCESS;
500 break;
501 default:
502 error = DDI_FAILURE;
503 break;
504 }
505
506 return (error);
507 }
508
509 /*
510 * Allow multiple opens by tweaking the dev_t such that it looks like each
511 * open is getting a different minor device. Each minor gets a separate
512 * entry in the di_states[] table. Based on the original minor number, we
513 * discriminate opens of the full and read-only nodes. If all of the instances
514 * of the selected minor node are currently open, we return EAGAIN.
515 */
516 /*ARGSUSED*/
517 static int
di_open(dev_t * devp,int flag,int otyp,cred_t * credp)518 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
519 {
520 int m;
521 minor_t minor_parent = getminor(*devp);
522
523 if (minor_parent != DI_FULL_PARENT &&
524 minor_parent != DI_READONLY_PARENT)
525 return (ENXIO);
526
527 mutex_enter(&di_lock);
528
529 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
530 if (di_states[m] != NULL)
531 continue;
532
533 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
534 break; /* It's ours. */
535 }
536
537 if (m >= di_max_opens) {
538 /*
539 * maximum open instance for device reached
540 */
541 mutex_exit(&di_lock);
542 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
543 return (EAGAIN);
544 }
545 mutex_exit(&di_lock);
546
547 ASSERT(m < di_max_opens);
548 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
549
550 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
551 (void *)curthread, m + DI_NODE_SPECIES));
552
553 return (0);
554 }
555
556 /*ARGSUSED*/
557 static int
di_close(dev_t dev,int flag,int otype,cred_t * cred_p)558 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
559 {
560 struct di_state *st;
561 int m = (int)getminor(dev) - DI_NODE_SPECIES;
562
563 if (m < 0) {
564 cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
565 m + DI_NODE_SPECIES);
566 return (ENXIO);
567 }
568
569 st = di_states[m];
570 ASSERT(m < di_max_opens && st != NULL);
571
572 di_freemem(st);
573 kmem_free(st, sizeof (struct di_state));
574
575 /*
576 * empty slot in state table
577 */
578 mutex_enter(&di_lock);
579 di_states[m] = NULL;
580 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
581 (void *)curthread, m + DI_NODE_SPECIES));
582 mutex_exit(&di_lock);
583
584 return (0);
585 }
586
587
588 /*ARGSUSED*/
589 static int
di_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)590 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
591 {
592 int rv, error;
593 di_off_t off;
594 struct di_all *all;
595 struct di_state *st;
596 int m = (int)getminor(dev) - DI_NODE_SPECIES;
597 major_t i;
598 char *drv_name;
599 size_t map_size, size;
600 struct di_mem *dcp;
601 int ndi_flags;
602
603 if (m < 0 || m >= di_max_opens) {
604 return (ENXIO);
605 }
606
607 st = di_states[m];
608 ASSERT(st != NULL);
609
610 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
611
612 switch (cmd) {
613 case DINFOIDENT:
614 /*
615 * This is called from di_init to verify that the driver
616 * opened is indeed devinfo. The purpose is to guard against
617 * sending ioctl to an unknown driver in case of an
618 * unresolved major number conflict during bfu.
619 */
620 *rvalp = DI_MAGIC;
621 return (0);
622
623 case DINFOLODRV:
624 /*
625 * Hold an installed driver and return the result
626 */
627 if (DI_UNPRIVILEGED_NODE(m)) {
628 /*
629 * Only the fully enabled instances may issue
630 * DINFOLDDRV.
631 */
632 return (EACCES);
633 }
634
635 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
636 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
637 kmem_free(drv_name, MAXNAMELEN);
638 return (EFAULT);
639 }
640
641 /*
642 * Some 3rd party driver's _init() walks the device tree,
643 * so we load the driver module before configuring driver.
644 */
645 i = ddi_name_to_major(drv_name);
646 if (ddi_hold_driver(i) == NULL) {
647 kmem_free(drv_name, MAXNAMELEN);
648 return (ENXIO);
649 }
650
651 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
652
653 /*
654 * i_ddi_load_drvconf() below will trigger a reprobe
655 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
656 * needed here.
657 */
658 modunload_disable();
659 (void) i_ddi_load_drvconf(i);
660 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
661 kmem_free(drv_name, MAXNAMELEN);
662 ddi_rele_driver(i);
663 rv = i_ddi_devs_attached(i);
664 modunload_enable();
665
666 i_ddi_di_cache_invalidate();
667
668 return ((rv == DDI_SUCCESS)? 0 : ENXIO);
669
670 case DINFOUSRLD:
671 /*
672 * The case for copying snapshot to userland
673 */
674 if (di_setstate(st, IOC_COPY) == -1)
675 return (EBUSY);
676
677 map_size = DI_ALL_PTR(st)->map_size;
678 if (map_size == 0) {
679 (void) di_setstate(st, IOC_DONE);
680 return (EFAULT);
681 }
682
683 /*
684 * copyout the snapshot
685 */
686 map_size = (map_size + PAGEOFFSET) & PAGEMASK;
687
688 /*
689 * Return the map size, so caller may do a sanity
690 * check against the return value of snapshot ioctl()
691 */
692 *rvalp = (int)map_size;
693
694 /*
695 * Copy one chunk at a time
696 */
697 off = 0;
698 dcp = st->memlist;
699 while (map_size) {
700 size = dcp->buf_size;
701 if (map_size <= size) {
702 size = map_size;
703 }
704
705 if (ddi_copyout(di_mem_addr(st, off),
706 (void *)(arg + off), size, mode) != 0) {
707 (void) di_setstate(st, IOC_DONE);
708 return (EFAULT);
709 }
710
711 map_size -= size;
712 off += size;
713 dcp = dcp->next;
714 }
715
716 di_freemem(st);
717 (void) di_setstate(st, IOC_IDLE);
718 return (0);
719
720 default:
721 if ((cmd & ~DIIOC_MASK) != DIIOC) {
722 /*
723 * Invalid ioctl command
724 */
725 return (ENOTTY);
726 }
727 /*
728 * take a snapshot
729 */
730 st->command = cmd & DIIOC_MASK;
731 /*FALLTHROUGH*/
732 }
733
734 /*
735 * Obtain enough memory to hold header + rootpath. We prevent kernel
736 * memory exhaustion by freeing any previously allocated snapshot and
737 * refusing the operation; otherwise we would be allowing ioctl(),
738 * ioctl(), ioctl(), ..., panic.
739 */
740 if (di_setstate(st, IOC_SNAP) == -1)
741 return (EBUSY);
742
743 /*
744 * Initial memlist always holds di_all and the root_path - and
745 * is at least a page and size.
746 */
747 size = sizeof (struct di_all) +
748 sizeof (((struct dinfo_io *)(NULL))->root_path);
749 if (size < PAGESIZE)
750 size = PAGESIZE;
751 off = di_checkmem(st, 0, size);
752 all = DI_ALL_PTR(st);
753 off += sizeof (struct di_all); /* real length of di_all */
754
755 all->devcnt = devcnt;
756 all->command = st->command;
757 all->version = DI_SNAPSHOT_VERSION;
758 all->top_vhci_devinfo = 0; /* filled by build_vhci_list. */
759
760 /*
761 * Note the endianness in case we need to transport snapshot
762 * over the network.
763 */
764 #if defined(_LITTLE_ENDIAN)
765 all->endianness = DI_LITTLE_ENDIAN;
766 #else
767 all->endianness = DI_BIG_ENDIAN;
768 #endif
769
770 /* Copyin ioctl args, store in the snapshot. */
771 if (copyinstr((void *)arg, all->req_path,
772 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
773 di_freemem(st);
774 (void) di_setstate(st, IOC_IDLE);
775 return (EFAULT);
776 }
777 (void) strcpy(all->root_path, all->req_path);
778 off += size; /* real length of root_path */
779
780 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
781 di_freemem(st);
782 (void) di_setstate(st, IOC_IDLE);
783 return (EINVAL);
784 }
785
786 error = 0;
787 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
788 di_freemem(st);
789 (void) di_setstate(st, IOC_IDLE);
790 return (error);
791 }
792
793 /*
794 * Only the fully enabled version may force load drivers or read
795 * the parent private data from a driver.
796 */
797 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
798 DI_UNPRIVILEGED_NODE(m)) {
799 di_freemem(st);
800 (void) di_setstate(st, IOC_IDLE);
801 return (EACCES);
802 }
803
804 /* Do we need private data? */
805 if (st->command & DINFOPRIVDATA) {
806 arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
807
808 #ifdef _MULTI_DATAMODEL
809 switch (ddi_model_convert_from(mode & FMODELS)) {
810 case DDI_MODEL_ILP32: {
811 /*
812 * Cannot copy private data from 64-bit kernel
813 * to 32-bit app
814 */
815 di_freemem(st);
816 (void) di_setstate(st, IOC_IDLE);
817 return (EINVAL);
818 }
819 case DDI_MODEL_NONE:
820 if ((off = di_copyformat(off, st, arg, mode)) == 0) {
821 di_freemem(st);
822 (void) di_setstate(st, IOC_IDLE);
823 return (EFAULT);
824 }
825 break;
826 }
827 #else /* !_MULTI_DATAMODEL */
828 if ((off = di_copyformat(off, st, arg, mode)) == 0) {
829 di_freemem(st);
830 (void) di_setstate(st, IOC_IDLE);
831 return (EFAULT);
832 }
833 #endif /* _MULTI_DATAMODEL */
834 }
835
836 all->top_devinfo = DI_ALIGN(off);
837
838 /*
839 * For cache lookups we reallocate memory from scratch,
840 * so the value of "all" is no longer valid.
841 */
842 all = NULL;
843
844 if (st->command & DINFOCACHE) {
845 *rvalp = di_cache_lookup(st);
846 } else if (snapshot_is_cacheable(st)) {
847 DI_CACHE_LOCK(di_cache);
848 *rvalp = di_cache_update(st);
849 DI_CACHE_UNLOCK(di_cache);
850 } else
851 *rvalp = di_snapshot_and_clean(st);
852
853 if (*rvalp) {
854 DI_ALL_PTR(st)->map_size = *rvalp;
855 (void) di_setstate(st, IOC_DONE);
856 } else {
857 di_freemem(st);
858 (void) di_setstate(st, IOC_IDLE);
859 }
860
861 return (0);
862 }
863
864 /*
865 * Get a chunk of memory >= size, for the snapshot
866 */
867 static void
di_allocmem(struct di_state * st,size_t size)868 di_allocmem(struct di_state *st, size_t size)
869 {
870 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP);
871
872 /*
873 * Round up size to nearest power of 2. If it is less
874 * than st->mem_size, set it to st->mem_size (i.e.,
875 * the mem_size is doubled every time) to reduce the
876 * number of memory allocations.
877 */
878 size_t tmp = 1;
879 while (tmp < size) {
880 tmp <<= 1;
881 }
882 size = (tmp > st->mem_size) ? tmp : st->mem_size;
883
884 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
885 mem->buf_size = size;
886
887 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
888
889 if (st->mem_size == 0) { /* first chunk */
890 st->memlist = mem;
891 } else {
892 /*
893 * locate end of linked list and add a chunk at the end
894 */
895 struct di_mem *dcp = st->memlist;
896 while (dcp->next != NULL) {
897 dcp = dcp->next;
898 }
899
900 dcp->next = mem;
901 }
902
903 st->mem_size += size;
904 }
905
906 /*
907 * Copy upto bufsiz bytes of the memlist to buf
908 */
909 static void
di_copymem(struct di_state * st,caddr_t buf,size_t bufsiz)910 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
911 {
912 struct di_mem *dcp;
913 size_t copysz;
914
915 if (st->mem_size == 0) {
916 ASSERT(st->memlist == NULL);
917 return;
918 }
919
920 copysz = 0;
921 for (dcp = st->memlist; dcp; dcp = dcp->next) {
922
923 ASSERT(bufsiz > 0);
924
925 if (bufsiz <= dcp->buf_size)
926 copysz = bufsiz;
927 else
928 copysz = dcp->buf_size;
929
930 bcopy(dcp->buf, buf, copysz);
931
932 buf += copysz;
933 bufsiz -= copysz;
934
935 if (bufsiz == 0)
936 break;
937 }
938 }
939
940 /*
941 * Free all memory for the snapshot
942 */
943 static void
di_freemem(struct di_state * st)944 di_freemem(struct di_state *st)
945 {
946 struct di_mem *dcp, *tmp;
947
948 dcmn_err2((CE_CONT, "di_freemem\n"));
949
950 if (st->mem_size) {
951 dcp = st->memlist;
952 while (dcp) { /* traverse the linked list */
953 tmp = dcp;
954 dcp = dcp->next;
955 ddi_umem_free(tmp->cook);
956 kmem_free(tmp, sizeof (struct di_mem));
957 }
958 st->mem_size = 0;
959 st->memlist = NULL;
960 }
961
962 ASSERT(st->mem_size == 0);
963 ASSERT(st->memlist == NULL);
964 }
965
966 /*
967 * Copies cached data to the di_state structure.
968 * Returns:
969 * - size of data copied, on SUCCESS
970 * - 0 on failure
971 */
972 static int
di_cache2mem(struct di_cache * cache,struct di_state * st)973 di_cache2mem(struct di_cache *cache, struct di_state *st)
974 {
975 caddr_t pa;
976
977 ASSERT(st->mem_size == 0);
978 ASSERT(st->memlist == NULL);
979 ASSERT(!servicing_interrupt());
980 ASSERT(DI_CACHE_LOCKED(*cache));
981
982 if (cache->cache_size == 0) {
983 ASSERT(cache->cache_data == NULL);
984 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
985 return (0);
986 }
987
988 ASSERT(cache->cache_data);
989
990 di_allocmem(st, cache->cache_size);
991
992 pa = di_mem_addr(st, 0);
993
994 ASSERT(pa);
995
996 /*
997 * Verify that di_allocmem() allocates contiguous memory,
998 * so that it is safe to do straight bcopy()
999 */
1000 ASSERT(st->memlist != NULL);
1001 ASSERT(st->memlist->next == NULL);
1002 bcopy(cache->cache_data, pa, cache->cache_size);
1003
1004 return (cache->cache_size);
1005 }
1006
1007 /*
1008 * Copies a snapshot from di_state to the cache
1009 * Returns:
1010 * - 0 on failure
1011 * - size of copied data on success
1012 */
1013 static size_t
di_mem2cache(struct di_state * st,struct di_cache * cache)1014 di_mem2cache(struct di_state *st, struct di_cache *cache)
1015 {
1016 size_t map_size;
1017
1018 ASSERT(cache->cache_size == 0);
1019 ASSERT(cache->cache_data == NULL);
1020 ASSERT(!servicing_interrupt());
1021 ASSERT(DI_CACHE_LOCKED(*cache));
1022
1023 if (st->mem_size == 0) {
1024 ASSERT(st->memlist == NULL);
1025 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
1026 return (0);
1027 }
1028
1029 ASSERT(st->memlist);
1030
1031 /*
1032 * The size of the memory list may be much larger than the
1033 * size of valid data (map_size). Cache only the valid data
1034 */
1035 map_size = DI_ALL_PTR(st)->map_size;
1036 if (map_size == 0 || map_size < sizeof (struct di_all) ||
1037 map_size > st->mem_size) {
1038 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1039 return (0);
1040 }
1041
1042 cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1043 cache->cache_size = map_size;
1044 di_copymem(st, cache->cache_data, cache->cache_size);
1045
1046 return (map_size);
1047 }
1048
1049 /*
1050 * Make sure there is at least "size" bytes memory left before
1051 * going on. Otherwise, start on a new chunk.
1052 */
1053 static di_off_t
di_checkmem(struct di_state * st,di_off_t off,size_t size)1054 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1055 {
1056 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1057 off, (int)size));
1058
1059 /*
1060 * di_checkmem() shouldn't be called with a size of zero.
1061 * But in case it is, we want to make sure we return a valid
1062 * offset within the memlist and not an offset that points us
1063 * at the end of the memlist.
1064 */
1065 if (size == 0) {
1066 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1067 size = 1;
1068 }
1069
1070 off = DI_ALIGN(off);
1071 if ((st->mem_size - off) < size) {
1072 off = st->mem_size;
1073 di_allocmem(st, size);
1074 }
1075
1076 /* verify that return value is aligned */
1077 ASSERT(off == DI_ALIGN(off));
1078 return (off);
1079 }
1080
1081 /*
1082 * Copy the private data format from ioctl arg.
1083 * On success, the ending offset is returned. On error 0 is returned.
1084 */
1085 static di_off_t
di_copyformat(di_off_t off,struct di_state * st,intptr_t arg,int mode)1086 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1087 {
1088 di_off_t size;
1089 struct di_priv_data *priv;
1090 struct di_all *all = DI_ALL_PTR(st);
1091
1092 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1093 off, (void *)arg, mode));
1094
1095 /*
1096 * Copyin data and check version.
1097 * We only handle private data version 0.
1098 */
1099 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1100 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1101 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1102 kmem_free(priv, sizeof (struct di_priv_data));
1103 return (0);
1104 }
1105
1106 /*
1107 * Save di_priv_data copied from userland in snapshot.
1108 */
1109 all->pd_version = priv->version;
1110 all->n_ppdata = priv->n_parent;
1111 all->n_dpdata = priv->n_driver;
1112
1113 /*
1114 * copyin private data format, modify offset accordingly
1115 */
1116 if (all->n_ppdata) { /* parent private data format */
1117 /*
1118 * check memory
1119 */
1120 size = all->n_ppdata * sizeof (struct di_priv_format);
1121 all->ppdata_format = off = di_checkmem(st, off, size);
1122 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1123 mode) != 0) {
1124 kmem_free(priv, sizeof (struct di_priv_data));
1125 return (0);
1126 }
1127
1128 off += size;
1129 }
1130
1131 if (all->n_dpdata) { /* driver private data format */
1132 /*
1133 * check memory
1134 */
1135 size = all->n_dpdata * sizeof (struct di_priv_format);
1136 all->dpdata_format = off = di_checkmem(st, off, size);
1137 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1138 mode) != 0) {
1139 kmem_free(priv, sizeof (struct di_priv_data));
1140 return (0);
1141 }
1142
1143 off += size;
1144 }
1145
1146 kmem_free(priv, sizeof (struct di_priv_data));
1147 return (off);
1148 }
1149
1150 /*
1151 * Return the real address based on the offset (off) within snapshot
1152 */
1153 static void *
di_mem_addr(struct di_state * st,di_off_t off)1154 di_mem_addr(struct di_state *st, di_off_t off)
1155 {
1156 struct di_mem *dcp = st->memlist;
1157
1158 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1159 (void *)dcp, off));
1160
1161 ASSERT(off < st->mem_size);
1162
1163 while (off >= dcp->buf_size) {
1164 off -= dcp->buf_size;
1165 dcp = dcp->next;
1166 }
1167
1168 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1169 off, (void *)(dcp->buf + off)));
1170
1171 return (dcp->buf + off);
1172 }
1173
1174 /*
1175 * Ideally we would use the whole key to derive the hash
1176 * value. However, the probability that two keys will
1177 * have the same dip (or pip) is very low, so
1178 * hashing by dip (or pip) pointer should suffice.
1179 */
1180 static uint_t
di_hash_byptr(void * arg,mod_hash_key_t key)1181 di_hash_byptr(void *arg, mod_hash_key_t key)
1182 {
1183 struct di_key *dik = key;
1184 size_t rshift;
1185 void *ptr;
1186
1187 ASSERT(arg == NULL);
1188
1189 switch (dik->k_type) {
1190 case DI_DKEY:
1191 ptr = dik->k_u.dkey.dk_dip;
1192 rshift = highbit(sizeof (struct dev_info));
1193 break;
1194 case DI_PKEY:
1195 ptr = dik->k_u.pkey.pk_pip;
1196 rshift = highbit(sizeof (struct mdi_pathinfo));
1197 break;
1198 default:
1199 panic("devinfo: unknown key type");
1200 /*NOTREACHED*/
1201 }
1202 return (mod_hash_byptr((void *)rshift, ptr));
1203 }
1204
1205 static void
di_key_dtor(mod_hash_key_t key)1206 di_key_dtor(mod_hash_key_t key)
1207 {
1208 char *path_addr;
1209 struct di_key *dik = key;
1210
1211 switch (dik->k_type) {
1212 case DI_DKEY:
1213 break;
1214 case DI_PKEY:
1215 path_addr = dik->k_u.pkey.pk_path_addr;
1216 if (path_addr)
1217 kmem_free(path_addr, strlen(path_addr) + 1);
1218 break;
1219 default:
1220 panic("devinfo: unknown key type");
1221 /*NOTREACHED*/
1222 }
1223
1224 kmem_free(dik, sizeof (struct di_key));
1225 }
1226
1227 static int
di_dkey_cmp(struct di_dkey * dk1,struct di_dkey * dk2)1228 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1229 {
1230 if (dk1->dk_dip != dk2->dk_dip)
1231 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1232
1233 if (dk1->dk_major != DDI_MAJOR_T_NONE &&
1234 dk2->dk_major != DDI_MAJOR_T_NONE) {
1235 if (dk1->dk_major != dk2->dk_major)
1236 return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1237
1238 if (dk1->dk_inst != dk2->dk_inst)
1239 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1240 }
1241
1242 if (dk1->dk_nodeid != dk2->dk_nodeid)
1243 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1244
1245 return (0);
1246 }
1247
1248 static int
di_pkey_cmp(struct di_pkey * pk1,struct di_pkey * pk2)1249 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1250 {
1251 char *p1, *p2;
1252 int rv;
1253
1254 if (pk1->pk_pip != pk2->pk_pip)
1255 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1256
1257 p1 = pk1->pk_path_addr;
1258 p2 = pk2->pk_path_addr;
1259
1260 p1 = p1 ? p1 : "";
1261 p2 = p2 ? p2 : "";
1262
1263 rv = strcmp(p1, p2);
1264 if (rv)
1265 return (rv > 0 ? 1 : -1);
1266
1267 if (pk1->pk_client != pk2->pk_client)
1268 return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1269
1270 if (pk1->pk_phci != pk2->pk_phci)
1271 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1272
1273 return (0);
1274 }
1275
1276 static int
di_key_cmp(mod_hash_key_t key1,mod_hash_key_t key2)1277 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1278 {
1279 struct di_key *dik1, *dik2;
1280
1281 dik1 = key1;
1282 dik2 = key2;
1283
1284 if (dik1->k_type != dik2->k_type) {
1285 panic("devinfo: mismatched keys");
1286 /*NOTREACHED*/
1287 }
1288
1289 switch (dik1->k_type) {
1290 case DI_DKEY:
1291 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1292 case DI_PKEY:
1293 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1294 default:
1295 panic("devinfo: unknown key type");
1296 /*NOTREACHED*/
1297 }
1298 }
1299
1300 static void
di_copy_aliases(struct di_state * st,alias_pair_t * apair,di_off_t * offp)1301 di_copy_aliases(struct di_state *st, alias_pair_t *apair, di_off_t *offp)
1302 {
1303 di_off_t off;
1304 struct di_all *all = DI_ALL_PTR(st);
1305 struct di_alias *di_alias;
1306 di_off_t curroff;
1307 dev_info_t *currdip;
1308 size_t size;
1309
1310 currdip = NULL;
1311 if (resolve_pathname(apair->pair_alias, &currdip, NULL, NULL) != 0) {
1312 return;
1313 }
1314
1315 if (di_dip_find(st, currdip, &curroff) != 0) {
1316 ndi_rele_devi(currdip);
1317 return;
1318 }
1319 ndi_rele_devi(currdip);
1320
1321 off = *offp;
1322 size = sizeof (struct di_alias);
1323 size += strlen(apair->pair_alias) + 1;
1324 off = di_checkmem(st, off, size);
1325 di_alias = DI_ALIAS(di_mem_addr(st, off));
1326
1327 di_alias->self = off;
1328 di_alias->next = all->aliases;
1329 all->aliases = off;
1330 (void) strcpy(di_alias->alias, apair->pair_alias);
1331 di_alias->curroff = curroff;
1332
1333 off += size;
1334
1335 *offp = off;
1336 }
1337
1338 /*
1339 * This is the main function that takes a snapshot
1340 */
1341 static di_off_t
di_snapshot(struct di_state * st)1342 di_snapshot(struct di_state *st)
1343 {
1344 di_off_t off;
1345 struct di_all *all;
1346 dev_info_t *rootnode;
1347 char buf[80];
1348 int plen;
1349 char *path;
1350 vnode_t *vp;
1351 int i;
1352
1353 all = DI_ALL_PTR(st);
1354 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1355
1356 /*
1357 * Translate requested root path if an alias and snap-root != "/"
1358 */
1359 if (ddi_aliases_present == B_TRUE && strcmp(all->root_path, "/") != 0) {
1360 /* If there is no redirected alias, use root_path as is */
1361 rootnode = ddi_alias_redirect(all->root_path);
1362 if (rootnode) {
1363 (void) ddi_pathname(rootnode, all->root_path);
1364 goto got_root;
1365 }
1366 }
1367
1368 /*
1369 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1370 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1371 * path against an invalid path results in panic. The lookupnameat
1372 * is done relative to rootdir without a leading '/' on "devices/"
1373 * to force the lookup to occur in the global zone.
1374 */
1375 plen = strlen("devices/") + strlen(all->root_path) + 1;
1376 path = kmem_alloc(plen, KM_SLEEP);
1377 (void) snprintf(path, plen, "devices/%s", all->root_path);
1378 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1379 dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1380 all->root_path));
1381 kmem_free(path, plen);
1382 return (0);
1383 }
1384 kmem_free(path, plen);
1385 VN_RELE(vp);
1386
1387 /*
1388 * Hold the devinfo node referred by the path.
1389 */
1390 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1391 if (rootnode == NULL) {
1392 dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1393 all->root_path));
1394 return (0);
1395 }
1396
1397 got_root:
1398 (void) snprintf(buf, sizeof (buf),
1399 "devinfo registered dips (statep=%p)", (void *)st);
1400
1401 st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1402 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1403 NULL, di_key_cmp, KM_SLEEP);
1404
1405
1406 (void) snprintf(buf, sizeof (buf),
1407 "devinfo registered pips (statep=%p)", (void *)st);
1408
1409 st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1410 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1411 NULL, di_key_cmp, KM_SLEEP);
1412
1413 if (DINFOHP & st->command) {
1414 list_create(&st->hp_list, sizeof (i_hp_t),
1415 offsetof(i_hp_t, hp_link));
1416 }
1417
1418 /*
1419 * copy the device tree
1420 */
1421 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1422
1423 if (DINFOPATH & st->command) {
1424 mdi_walk_vhcis(build_vhci_list, st);
1425 }
1426
1427 if (DINFOHP & st->command) {
1428 di_hotplug_children(st);
1429 }
1430
1431 ddi_release_devi(rootnode);
1432
1433 /*
1434 * copy the devnames array
1435 */
1436 all->devnames = off;
1437 off = di_copydevnm(&all->devnames, st);
1438
1439
1440 /* initialize the hash tables */
1441 st->lnode_count = 0;
1442 st->link_count = 0;
1443
1444 if (DINFOLYR & st->command) {
1445 off = di_getlink_data(off, st);
1446 }
1447
1448 all->aliases = 0;
1449 if (ddi_aliases_present == B_FALSE)
1450 goto done;
1451
1452 for (i = 0; i < ddi_aliases.dali_num_pairs; i++) {
1453 di_copy_aliases(st, &(ddi_aliases.dali_alias_pairs[i]), &off);
1454 }
1455
1456 done:
1457 /*
1458 * Free up hash tables
1459 */
1460 mod_hash_destroy_hash(st->reg_dip_hash);
1461 mod_hash_destroy_hash(st->reg_pip_hash);
1462
1463 /*
1464 * Record the timestamp now that we are done with snapshot.
1465 *
1466 * We compute the checksum later and then only if we cache
1467 * the snapshot, since checksumming adds some overhead.
1468 * The checksum is checked later if we read the cache file.
1469 * from disk.
1470 *
1471 * Set checksum field to 0 as CRC is calculated with that
1472 * field set to 0.
1473 */
1474 all->snapshot_time = ddi_get_time();
1475 all->cache_checksum = 0;
1476
1477 ASSERT(all->snapshot_time != 0);
1478
1479 return (off);
1480 }
1481
1482 /*
1483 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1484 */
1485 static di_off_t
di_snapshot_and_clean(struct di_state * st)1486 di_snapshot_and_clean(struct di_state *st)
1487 {
1488 di_off_t off;
1489
1490 modunload_disable();
1491 off = di_snapshot(st);
1492 if (off != 0 && (st->command & DINFOCLEANUP)) {
1493 ASSERT(DEVICES_FILES_CLEANABLE(st));
1494 /*
1495 * Cleanup /etc/devices files:
1496 * In order to accurately account for the system configuration
1497 * in /etc/devices files, the appropriate drivers must be
1498 * fully configured before the cleanup starts.
1499 * So enable modunload only after the cleanup.
1500 */
1501 i_ddi_clean_devices_files();
1502 /*
1503 * Remove backing store nodes for unused devices,
1504 * which retain past permissions customizations
1505 * and may be undesired for newly configured devices.
1506 */
1507 dev_devices_cleanup();
1508 }
1509 modunload_enable();
1510
1511 return (off);
1512 }
1513
1514 /*
1515 * construct vhci linkage in the snapshot.
1516 */
1517 static int
build_vhci_list(dev_info_t * vh_devinfo,void * arg)1518 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1519 {
1520 struct di_all *all;
1521 struct di_node *me;
1522 struct di_state *st;
1523 di_off_t off;
1524 phci_walk_arg_t pwa;
1525
1526 dcmn_err3((CE_CONT, "build_vhci list\n"));
1527
1528 dcmn_err3((CE_CONT, "vhci node %s%d\n",
1529 ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo)));
1530
1531 st = (struct di_state *)arg;
1532 if (di_dip_find(st, vh_devinfo, &off) != 0) {
1533 dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1534 return (DDI_WALK_TERMINATE);
1535 }
1536
1537 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1538 st->mem_size, off));
1539
1540 all = DI_ALL_PTR(st);
1541 if (all->top_vhci_devinfo == 0) {
1542 all->top_vhci_devinfo = off;
1543 } else {
1544 me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo));
1545
1546 while (me->next_vhci != 0) {
1547 me = DI_NODE(di_mem_addr(st, me->next_vhci));
1548 }
1549
1550 me->next_vhci = off;
1551 }
1552
1553 pwa.off = off;
1554 pwa.st = st;
1555 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1556
1557 return (DDI_WALK_CONTINUE);
1558 }
1559
1560 /*
1561 * construct phci linkage for the given vhci in the snapshot.
1562 */
1563 static int
build_phci_list(dev_info_t * ph_devinfo,void * arg)1564 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1565 {
1566 struct di_node *vh_di_node;
1567 struct di_node *me;
1568 phci_walk_arg_t *pwa;
1569 di_off_t off;
1570
1571 pwa = (phci_walk_arg_t *)arg;
1572
1573 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1574 pwa->off));
1575
1576 vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off));
1577 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1578 dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1579 return (DDI_WALK_TERMINATE);
1580 }
1581
1582 dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n",
1583 ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off));
1584
1585 if (vh_di_node->top_phci == 0) {
1586 vh_di_node->top_phci = off;
1587 return (DDI_WALK_CONTINUE);
1588 }
1589
1590 me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci));
1591
1592 while (me->next_phci != 0) {
1593 me = DI_NODE(di_mem_addr(pwa->st, me->next_phci));
1594 }
1595 me->next_phci = off;
1596
1597 return (DDI_WALK_CONTINUE);
1598 }
1599
1600 /*
1601 * Assumes all devinfo nodes in device tree have been snapshotted
1602 */
1603 static void
snap_driver_list(struct di_state * st,struct devnames * dnp,di_off_t * off_p)1604 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p)
1605 {
1606 struct dev_info *node;
1607 struct di_node *me;
1608 di_off_t off;
1609
1610 ASSERT(mutex_owned(&dnp->dn_lock));
1611
1612 node = DEVI(dnp->dn_head);
1613 for (; node; node = node->devi_next) {
1614 if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1615 continue;
1616
1617 ASSERT(off > 0);
1618 me = DI_NODE(di_mem_addr(st, off));
1619 ASSERT(me->next == 0 || me->next == -1);
1620 /*
1621 * Only nodes which were BOUND when they were
1622 * snapshotted will be added to per-driver list.
1623 */
1624 if (me->next != -1)
1625 continue;
1626
1627 *off_p = off;
1628 off_p = &me->next;
1629 }
1630
1631 *off_p = 0;
1632 }
1633
1634 /*
1635 * Copy the devnames array, so we have a list of drivers in the snapshot.
1636 * Also makes it possible to locate the per-driver devinfo nodes.
1637 */
1638 static di_off_t
di_copydevnm(di_off_t * off_p,struct di_state * st)1639 di_copydevnm(di_off_t *off_p, struct di_state *st)
1640 {
1641 int i;
1642 di_off_t off;
1643 size_t size;
1644 struct di_devnm *dnp;
1645
1646 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1647
1648 /*
1649 * make sure there is some allocated memory
1650 */
1651 size = devcnt * sizeof (struct di_devnm);
1652 *off_p = off = di_checkmem(st, *off_p, size);
1653 dnp = DI_DEVNM(di_mem_addr(st, off));
1654 off += size;
1655
1656 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1657 devcnt, off));
1658
1659 for (i = 0; i < devcnt; i++) {
1660 if (devnamesp[i].dn_name == NULL) {
1661 continue;
1662 }
1663
1664 /*
1665 * dn_name is not freed during driver unload or removal.
1666 *
1667 * There is a race condition when make_devname() changes
1668 * dn_name during our strcpy. This should be rare since
1669 * only add_drv does this. At any rate, we never had a
1670 * problem with ddi_name_to_major(), which should have
1671 * the same problem.
1672 */
1673 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1674 devnamesp[i].dn_name, devnamesp[i].dn_instance, off));
1675
1676 size = strlen(devnamesp[i].dn_name) + 1;
1677 dnp[i].name = off = di_checkmem(st, off, size);
1678 (void) strcpy((char *)di_mem_addr(st, off),
1679 devnamesp[i].dn_name);
1680 off += size;
1681
1682 mutex_enter(&devnamesp[i].dn_lock);
1683
1684 /*
1685 * Snapshot per-driver node list
1686 */
1687 snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1688
1689 /*
1690 * This is not used by libdevinfo, leave it for now
1691 */
1692 dnp[i].flags = devnamesp[i].dn_flags;
1693 dnp[i].instance = devnamesp[i].dn_instance;
1694
1695 /*
1696 * get global properties
1697 */
1698 if ((DINFOPROP & st->command) &&
1699 devnamesp[i].dn_global_prop_ptr) {
1700 dnp[i].global_prop = off;
1701 off = di_getprop(DI_PROP_GLB_LIST,
1702 &devnamesp[i].dn_global_prop_ptr->prop_list,
1703 &dnp[i].global_prop, st, NULL);
1704 }
1705
1706 /*
1707 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1708 */
1709 if (CB_DRV_INSTALLED(devopsp[i])) {
1710 if (devopsp[i]->devo_cb_ops) {
1711 dnp[i].ops |= DI_CB_OPS;
1712 if (devopsp[i]->devo_cb_ops->cb_str)
1713 dnp[i].ops |= DI_STREAM_OPS;
1714 }
1715 if (NEXUS_DRV(devopsp[i])) {
1716 dnp[i].ops |= DI_BUS_OPS;
1717 }
1718 }
1719
1720 mutex_exit(&devnamesp[i].dn_lock);
1721 }
1722
1723 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1724
1725 return (off);
1726 }
1727
1728 /*
1729 * Copy the kernel devinfo tree. The tree and the devnames array forms
1730 * the entire snapshot (see also di_copydevnm).
1731 */
1732 static di_off_t
di_copytree(struct dev_info * root,di_off_t * off_p,struct di_state * st)1733 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1734 {
1735 di_off_t off;
1736 struct dev_info *node;
1737 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1738
1739 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1740 (void *)root, *off_p));
1741
1742 /* force attach drivers */
1743 if (i_ddi_devi_attached((dev_info_t *)root) &&
1744 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1745 (void) ndi_devi_config((dev_info_t *)root,
1746 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1747 NDI_DRV_CONF_REPROBE);
1748 }
1749
1750 /*
1751 * Push top_devinfo onto a stack
1752 *
1753 * The stack is necessary to avoid recursion, which can overrun
1754 * the kernel stack.
1755 */
1756 PUSH_STACK(dsp, root, off_p);
1757
1758 /*
1759 * As long as there is a node on the stack, copy the node.
1760 * di_copynode() is responsible for pushing and popping
1761 * child and sibling nodes on the stack.
1762 */
1763 while (!EMPTY_STACK(dsp)) {
1764 node = TOP_NODE(dsp);
1765 off = di_copynode(node, dsp, st);
1766 }
1767
1768 /*
1769 * Free the stack structure
1770 */
1771 kmem_free(dsp, sizeof (struct di_stack));
1772
1773 return (off);
1774 }
1775
1776 /*
1777 * This is the core function, which copies all data associated with a single
1778 * node into the snapshot. The amount of information is determined by the
1779 * ioctl command.
1780 */
1781 static di_off_t
di_copynode(struct dev_info * node,struct di_stack * dsp,struct di_state * st)1782 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st)
1783 {
1784 di_off_t off;
1785 struct di_node *me;
1786 size_t size;
1787 struct dev_info *n;
1788
1789 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth));
1790 ASSERT((node != NULL) && (node == TOP_NODE(dsp)));
1791
1792 /*
1793 * check memory usage, and fix offsets accordingly.
1794 */
1795 size = sizeof (struct di_node);
1796 *(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size);
1797 me = DI_NODE(di_mem_addr(st, off));
1798 me->self = off;
1799 off += size;
1800
1801 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1802 node->devi_node_name, node->devi_instance, off));
1803
1804 /*
1805 * Node parameters:
1806 * self -- offset of current node within snapshot
1807 * nodeid -- pointer to PROM node (tri-valued)
1808 * state -- hot plugging device state
1809 * node_state -- devinfo node state
1810 */
1811 me->instance = node->devi_instance;
1812 me->nodeid = node->devi_nodeid;
1813 me->node_class = node->devi_node_class;
1814 me->attributes = node->devi_node_attributes;
1815 me->state = node->devi_state;
1816 me->flags = node->devi_flags;
1817 me->node_state = node->devi_node_state;
1818 me->next_vhci = 0; /* Filled up by build_vhci_list. */
1819 me->top_phci = 0; /* Filled up by build_phci_list. */
1820 me->next_phci = 0; /* Filled up by build_phci_list. */
1821 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1822 me->user_private_data = 0;
1823
1824 /*
1825 * Get parent's offset in snapshot from the stack
1826 * and store it in the current node
1827 */
1828 if (dsp->depth > 1) {
1829 me->parent = *(PARENT_OFFSET(dsp));
1830 }
1831
1832 /*
1833 * Save the offset of this di_node in a hash table.
1834 * This is used later to resolve references to this
1835 * dip from other parts of the tree (per-driver list,
1836 * multipathing linkages, layered usage linkages).
1837 * The key used for the hash table is derived from
1838 * information in the dip.
1839 */
1840 di_register_dip(st, (dev_info_t *)node, me->self);
1841
1842 #ifdef DEVID_COMPATIBILITY
1843 /* check for devid as property marker */
1844 if (node->devi_devid_str) {
1845 ddi_devid_t devid;
1846
1847 /*
1848 * The devid is now represented as a property. For
1849 * compatibility with di_devid() interface in libdevinfo we
1850 * must return it as a binary structure in the snapshot. When
1851 * (if) di_devid() is removed from libdevinfo then the code
1852 * related to DEVID_COMPATIBILITY can be removed.
1853 */
1854 if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) ==
1855 DDI_SUCCESS) {
1856 size = ddi_devid_sizeof(devid);
1857 off = di_checkmem(st, off, size);
1858 me->devid = off;
1859 bcopy(devid, di_mem_addr(st, off), size);
1860 off += size;
1861 ddi_devid_free(devid);
1862 }
1863 }
1864 #endif /* DEVID_COMPATIBILITY */
1865
1866 if (node->devi_node_name) {
1867 size = strlen(node->devi_node_name) + 1;
1868 me->node_name = off = di_checkmem(st, off, size);
1869 (void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1870 off += size;
1871 }
1872
1873 if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1874 size = node->devi_compat_length;
1875 me->compat_names = off = di_checkmem(st, off, size);
1876 me->compat_length = (int)size;
1877 bcopy(node->devi_compat_names, di_mem_addr(st, off), size);
1878 off += size;
1879 }
1880
1881 if (node->devi_addr) {
1882 size = strlen(node->devi_addr) + 1;
1883 me->address = off = di_checkmem(st, off, size);
1884 (void) strcpy(di_mem_addr(st, off), node->devi_addr);
1885 off += size;
1886 }
1887
1888 if (node->devi_binding_name) {
1889 size = strlen(node->devi_binding_name) + 1;
1890 me->bind_name = off = di_checkmem(st, off, size);
1891 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1892 off += size;
1893 }
1894
1895 me->drv_major = node->devi_major;
1896
1897 /*
1898 * If the dip is BOUND, set the next pointer of the
1899 * per-instance list to -1, indicating that it is yet to be resolved.
1900 * This will be resolved later in snap_driver_list().
1901 */
1902 if (me->drv_major != -1) {
1903 me->next = -1;
1904 } else {
1905 me->next = 0;
1906 }
1907
1908 /*
1909 * An optimization to skip mutex_enter when not needed.
1910 */
1911 if (!((DINFOMINOR | DINFOPROP | DINFOPATH | DINFOHP) & st->command)) {
1912 goto priv_data;
1913 }
1914
1915 /*
1916 * LOCKING: We already have an active ndi_devi_enter to gather the
1917 * minor data, and we will take devi_lock to gather properties as
1918 * needed off di_getprop.
1919 */
1920 if (!(DINFOMINOR & st->command)) {
1921 goto path;
1922 }
1923
1924 ASSERT(DEVI_BUSY_OWNED(node));
1925 if (node->devi_minor) { /* minor data */
1926 me->minor_data = off;
1927 off = di_getmdata(node->devi_minor, &me->minor_data,
1928 me->self, st);
1929 }
1930
1931 path:
1932 if (!(DINFOPATH & st->command)) {
1933 goto property;
1934 }
1935
1936 if (MDI_VHCI(node)) {
1937 me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1938 }
1939
1940 if (MDI_CLIENT(node)) {
1941 me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1942 me->multipath_client = off;
1943 off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1944 me->self, st, 1);
1945 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1946 "component type = %d. off=%d",
1947 me->multipath_client,
1948 (void *)node, node->devi_mdi_component, off));
1949 }
1950
1951 if (MDI_PHCI(node)) {
1952 me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1953 me->multipath_phci = off;
1954 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1955 me->self, st, 0);
1956 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1957 "component type = %d. off=%d",
1958 me->multipath_phci,
1959 (void *)node, node->devi_mdi_component, off));
1960 }
1961
1962 property:
1963 if (!(DINFOPROP & st->command)) {
1964 goto hotplug_data;
1965 }
1966
1967 if (node->devi_drv_prop_ptr) { /* driver property list */
1968 me->drv_prop = off;
1969 off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr,
1970 &me->drv_prop, st, node);
1971 }
1972
1973 if (node->devi_sys_prop_ptr) { /* system property list */
1974 me->sys_prop = off;
1975 off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr,
1976 &me->sys_prop, st, node);
1977 }
1978
1979 if (node->devi_hw_prop_ptr) { /* hardware property list */
1980 me->hw_prop = off;
1981 off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr,
1982 &me->hw_prop, st, node);
1983 }
1984
1985 if (node->devi_global_prop_list == NULL) {
1986 me->glob_prop = (di_off_t)-1; /* not global property */
1987 } else {
1988 /*
1989 * Make copy of global property list if this devinfo refers
1990 * global properties different from what's on the devnames
1991 * array. It can happen if there has been a forced
1992 * driver.conf update. See update_drv(8).
1993 */
1994 ASSERT(me->drv_major != -1);
1995 if (node->devi_global_prop_list !=
1996 devnamesp[me->drv_major].dn_global_prop_ptr) {
1997 me->glob_prop = off;
1998 off = di_getprop(DI_PROP_GLB_LIST,
1999 &node->devi_global_prop_list->prop_list,
2000 &me->glob_prop, st, node);
2001 }
2002 }
2003
2004 hotplug_data:
2005 if (!(DINFOHP & st->command)) {
2006 goto priv_data;
2007 }
2008
2009 if (node->devi_hp_hdlp) { /* hotplug data */
2010 me->hp_data = off;
2011 off = di_gethpdata(node->devi_hp_hdlp, &me->hp_data, st);
2012 }
2013
2014 priv_data:
2015 if (!(DINFOPRIVDATA & st->command)) {
2016 goto pm_info;
2017 }
2018
2019 if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
2020 me->parent_data = off;
2021 off = di_getppdata(node, &me->parent_data, st);
2022 }
2023
2024 if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
2025 me->driver_data = off;
2026 off = di_getdpdata(node, &me->driver_data, st);
2027 }
2028
2029 pm_info: /* NOT implemented */
2030
2031 /* keep the stack aligned */
2032 off = DI_ALIGN(off);
2033
2034 if (!(DINFOSUBTREE & st->command)) {
2035 POP_STACK(dsp);
2036 return (off);
2037 }
2038
2039 /*
2040 * If there is a visible child--push child onto stack.
2041 * Hold the parent (me) busy while doing so.
2042 */
2043 if ((n = node->devi_child) != NULL) {
2044 /* skip hidden nodes */
2045 while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2046 n = n->devi_sibling;
2047 if (n) {
2048 me->child = off;
2049 PUSH_STACK(dsp, n, &me->child);
2050 return (me->child);
2051 }
2052 }
2053
2054 /*
2055 * Done with any child nodes, unroll the stack till a visible
2056 * sibling of a parent node is found or root node is reached.
2057 */
2058 POP_STACK(dsp);
2059 while (!EMPTY_STACK(dsp)) {
2060 if ((n = node->devi_sibling) != NULL) {
2061 /* skip hidden nodes */
2062 while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2063 n = n->devi_sibling;
2064 if (n) {
2065 me->sibling = DI_ALIGN(off);
2066 PUSH_STACK(dsp, n, &me->sibling);
2067 return (me->sibling);
2068 }
2069 }
2070 node = TOP_NODE(dsp);
2071 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
2072 POP_STACK(dsp);
2073 }
2074
2075 /*
2076 * DONE with all nodes
2077 */
2078 return (off);
2079 }
2080
2081 static i_lnode_t *
i_lnode_alloc(int modid)2082 i_lnode_alloc(int modid)
2083 {
2084 i_lnode_t *i_lnode;
2085
2086 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
2087
2088 ASSERT(modid != -1);
2089 i_lnode->modid = modid;
2090
2091 return (i_lnode);
2092 }
2093
2094 static void
i_lnode_free(i_lnode_t * i_lnode)2095 i_lnode_free(i_lnode_t *i_lnode)
2096 {
2097 kmem_free(i_lnode, sizeof (i_lnode_t));
2098 }
2099
2100 static void
i_lnode_check_free(i_lnode_t * i_lnode)2101 i_lnode_check_free(i_lnode_t *i_lnode)
2102 {
2103 /* This lnode and its dip must have been snapshotted */
2104 ASSERT(i_lnode->self > 0);
2105 ASSERT(i_lnode->di_node->self > 0);
2106
2107 /* at least 1 link (in or out) must exist for this lnode */
2108 ASSERT(i_lnode->link_in || i_lnode->link_out);
2109
2110 i_lnode_free(i_lnode);
2111 }
2112
2113 static i_link_t *
i_link_alloc(int spec_type)2114 i_link_alloc(int spec_type)
2115 {
2116 i_link_t *i_link;
2117
2118 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2119 i_link->spec_type = spec_type;
2120
2121 return (i_link);
2122 }
2123
2124 static void
i_link_check_free(i_link_t * i_link)2125 i_link_check_free(i_link_t *i_link)
2126 {
2127 /* This link must have been snapshotted */
2128 ASSERT(i_link->self > 0);
2129
2130 /* Both endpoint lnodes must exist for this link */
2131 ASSERT(i_link->src_lnode);
2132 ASSERT(i_link->tgt_lnode);
2133
2134 kmem_free(i_link, sizeof (i_link_t));
2135 }
2136
2137 /*ARGSUSED*/
2138 static uint_t
i_lnode_hashfunc(void * arg,mod_hash_key_t key)2139 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2140 {
2141 i_lnode_t *i_lnode = (i_lnode_t *)key;
2142 struct di_node *ptr;
2143 dev_t dev;
2144
2145 dev = i_lnode->devt;
2146 if (dev != DDI_DEV_T_NONE)
2147 return (i_lnode->modid + getminor(dev) + getmajor(dev));
2148
2149 ptr = i_lnode->di_node;
2150 ASSERT(ptr->self > 0);
2151 if (ptr) {
2152 uintptr_t k = (uintptr_t)ptr;
2153 k >>= (int)highbit(sizeof (struct di_node));
2154 return ((uint_t)k);
2155 }
2156
2157 return (i_lnode->modid);
2158 }
2159
2160 static int
i_lnode_cmp(void * arg1,void * arg2)2161 i_lnode_cmp(void *arg1, void *arg2)
2162 {
2163 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1;
2164 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2;
2165
2166 if (i_lnode1->modid != i_lnode2->modid) {
2167 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2168 }
2169
2170 if (i_lnode1->di_node != i_lnode2->di_node)
2171 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2172
2173 if (i_lnode1->devt != i_lnode2->devt)
2174 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2175
2176 return (0);
2177 }
2178
2179 /*
2180 * An lnode represents a {dip, dev_t} tuple. A link represents a
2181 * {src_lnode, tgt_lnode, spec_type} tuple.
2182 * The following callback assumes that LDI framework ref-counts the
2183 * src_dip and tgt_dip while invoking this callback.
2184 */
2185 static int
di_ldi_callback(const ldi_usage_t * ldi_usage,void * arg)2186 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2187 {
2188 struct di_state *st = (struct di_state *)arg;
2189 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode;
2190 i_link_t **i_link_next, *i_link;
2191 di_off_t soff, toff;
2192 mod_hash_val_t nodep = NULL;
2193 int res;
2194
2195 /*
2196 * if the source or target of this device usage information doesn't
2197 * correspond to a device node then we don't report it via
2198 * libdevinfo so return.
2199 */
2200 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2201 return (LDI_USAGE_CONTINUE);
2202
2203 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2204 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2205
2206 /*
2207 * Skip the ldi_usage if either src or tgt dip is not in the
2208 * snapshot. This saves us from pruning bad lnodes/links later.
2209 */
2210 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2211 return (LDI_USAGE_CONTINUE);
2212 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2213 return (LDI_USAGE_CONTINUE);
2214
2215 ASSERT(soff > 0);
2216 ASSERT(toff > 0);
2217
2218 /*
2219 * allocate an i_lnode and add it to the lnode hash
2220 * if it is not already present. For this particular
2221 * link the lnode is a source, but it may
2222 * participate as tgt or src in any number of layered
2223 * operations - so it may already be in the hash.
2224 */
2225 i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2226 i_lnode->di_node = DI_NODE(di_mem_addr(st, soff));
2227 i_lnode->devt = ldi_usage->src_devt;
2228
2229 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2230 if (res == MH_ERR_NOTFOUND) {
2231 /*
2232 * new i_lnode
2233 * add it to the hash and increment the lnode count
2234 */
2235 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2236 ASSERT(res == 0);
2237 st->lnode_count++;
2238 src_lnode = i_lnode;
2239 } else {
2240 /* this i_lnode already exists in the lnode_hash */
2241 i_lnode_free(i_lnode);
2242 src_lnode = (i_lnode_t *)nodep;
2243 }
2244
2245 /*
2246 * allocate a tgt i_lnode and add it to the lnode hash
2247 */
2248 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2249 i_lnode->di_node = DI_NODE(di_mem_addr(st, toff));
2250 i_lnode->devt = ldi_usage->tgt_devt;
2251
2252 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2253 if (res == MH_ERR_NOTFOUND) {
2254 /*
2255 * new i_lnode
2256 * add it to the hash and increment the lnode count
2257 */
2258 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2259 ASSERT(res == 0);
2260 st->lnode_count++;
2261 tgt_lnode = i_lnode;
2262 } else {
2263 /* this i_lnode already exists in the lnode_hash */
2264 i_lnode_free(i_lnode);
2265 tgt_lnode = (i_lnode_t *)nodep;
2266 }
2267
2268 /*
2269 * allocate a i_link
2270 */
2271 i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2272 i_link->src_lnode = src_lnode;
2273 i_link->tgt_lnode = tgt_lnode;
2274
2275 /*
2276 * add this link onto the src i_lnodes outbound i_link list
2277 */
2278 i_link_next = &(src_lnode->link_out);
2279 while (*i_link_next != NULL) {
2280 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2281 (i_link->spec_type == (*i_link_next)->spec_type)) {
2282 /* this link already exists */
2283 kmem_free(i_link, sizeof (i_link_t));
2284 return (LDI_USAGE_CONTINUE);
2285 }
2286 i_link_next = &((*i_link_next)->src_link_next);
2287 }
2288 *i_link_next = i_link;
2289
2290 /*
2291 * add this link onto the tgt i_lnodes inbound i_link list
2292 */
2293 i_link_next = &(tgt_lnode->link_in);
2294 while (*i_link_next != NULL) {
2295 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2296 i_link_next = &((*i_link_next)->tgt_link_next);
2297 }
2298 *i_link_next = i_link;
2299
2300 /*
2301 * add this i_link to the link hash
2302 */
2303 res = mod_hash_insert(st->link_hash, i_link, i_link);
2304 ASSERT(res == 0);
2305 st->link_count++;
2306
2307 return (LDI_USAGE_CONTINUE);
2308 }
2309
2310 struct i_layer_data {
2311 struct di_state *st;
2312 int lnode_count;
2313 int link_count;
2314 di_off_t lnode_off;
2315 di_off_t link_off;
2316 };
2317
2318 /*ARGSUSED*/
2319 static uint_t
i_link_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)2320 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2321 {
2322 i_link_t *i_link = (i_link_t *)key;
2323 struct i_layer_data *data = arg;
2324 struct di_link *me;
2325 struct di_lnode *melnode;
2326 struct di_node *medinode;
2327
2328 ASSERT(i_link->self == 0);
2329
2330 i_link->self = data->link_off +
2331 (data->link_count * sizeof (struct di_link));
2332 data->link_count++;
2333
2334 ASSERT(data->link_off > 0 && data->link_count > 0);
2335 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2336 ASSERT(data->link_count <= data->st->link_count);
2337
2338 /* fill in fields for the di_link snapshot */
2339 me = DI_LINK(di_mem_addr(data->st, i_link->self));
2340 me->self = i_link->self;
2341 me->spec_type = i_link->spec_type;
2342
2343 /*
2344 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2345 * are created during the LDI table walk. Since we are
2346 * walking the link hash, the lnode hash has already been
2347 * walked and the lnodes have been snapshotted. Save lnode
2348 * offsets.
2349 */
2350 me->src_lnode = i_link->src_lnode->self;
2351 me->tgt_lnode = i_link->tgt_lnode->self;
2352
2353 /*
2354 * Save this link's offset in the src_lnode snapshot's link_out
2355 * field
2356 */
2357 melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode));
2358 me->src_link_next = melnode->link_out;
2359 melnode->link_out = me->self;
2360
2361 /*
2362 * Put this link on the tgt_lnode's link_in field
2363 */
2364 melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode));
2365 me->tgt_link_next = melnode->link_in;
2366 melnode->link_in = me->self;
2367
2368 /*
2369 * An i_lnode_t is only created if the corresponding dip exists
2370 * in the snapshot. A pointer to the di_node is saved in the
2371 * i_lnode_t when it is allocated. For this link, get the di_node
2372 * for the source lnode. Then put the link on the di_node's list
2373 * of src links
2374 */
2375 medinode = i_link->src_lnode->di_node;
2376 me->src_node_next = medinode->src_links;
2377 medinode->src_links = me->self;
2378
2379 /*
2380 * Put this link on the tgt_links list of the target
2381 * dip.
2382 */
2383 medinode = i_link->tgt_lnode->di_node;
2384 me->tgt_node_next = medinode->tgt_links;
2385 medinode->tgt_links = me->self;
2386
2387 return (MH_WALK_CONTINUE);
2388 }
2389
2390 /*ARGSUSED*/
2391 static uint_t
i_lnode_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)2392 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2393 {
2394 i_lnode_t *i_lnode = (i_lnode_t *)key;
2395 struct i_layer_data *data = arg;
2396 struct di_lnode *me;
2397 struct di_node *medinode;
2398
2399 ASSERT(i_lnode->self == 0);
2400
2401 i_lnode->self = data->lnode_off +
2402 (data->lnode_count * sizeof (struct di_lnode));
2403 data->lnode_count++;
2404
2405 ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2406 ASSERT(data->link_count == 0); /* links not done yet */
2407 ASSERT(data->lnode_count <= data->st->lnode_count);
2408
2409 /* fill in fields for the di_lnode snapshot */
2410 me = DI_LNODE(di_mem_addr(data->st, i_lnode->self));
2411 me->self = i_lnode->self;
2412
2413 if (i_lnode->devt == DDI_DEV_T_NONE) {
2414 me->dev_major = DDI_MAJOR_T_NONE;
2415 me->dev_minor = DDI_MAJOR_T_NONE;
2416 } else {
2417 me->dev_major = getmajor(i_lnode->devt);
2418 me->dev_minor = getminor(i_lnode->devt);
2419 }
2420
2421 /*
2422 * The dip corresponding to this lnode must exist in
2423 * the snapshot or we wouldn't have created the i_lnode_t
2424 * during LDI walk. Save the offset of the dip.
2425 */
2426 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2427 me->node = i_lnode->di_node->self;
2428
2429 /*
2430 * There must be at least one link in or out of this lnode
2431 * or we wouldn't have created it. These fields will be set
2432 * during the link hash walk.
2433 */
2434 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2435
2436 /*
2437 * set the offset of the devinfo node associated with this
2438 * lnode. Also update the node_next next pointer. this pointer
2439 * is set if there are multiple lnodes associated with the same
2440 * devinfo node. (could occure when multiple minor nodes
2441 * are open for one device, etc.)
2442 */
2443 medinode = i_lnode->di_node;
2444 me->node_next = medinode->lnodes;
2445 medinode->lnodes = me->self;
2446
2447 return (MH_WALK_CONTINUE);
2448 }
2449
2450 static di_off_t
di_getlink_data(di_off_t off,struct di_state * st)2451 di_getlink_data(di_off_t off, struct di_state *st)
2452 {
2453 struct i_layer_data data = {0};
2454 size_t size;
2455
2456 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2457
2458 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2459 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2460 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2461
2462 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2463 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2464
2465 /* get driver layering information */
2466 (void) ldi_usage_walker(st, di_ldi_callback);
2467
2468 /* check if there is any link data to include in the snapshot */
2469 if (st->lnode_count == 0) {
2470 ASSERT(st->link_count == 0);
2471 goto out;
2472 }
2473
2474 ASSERT(st->link_count != 0);
2475
2476 /* get a pointer to snapshot memory for all the di_lnodes */
2477 size = sizeof (struct di_lnode) * st->lnode_count;
2478 data.lnode_off = off = di_checkmem(st, off, size);
2479 off += size;
2480
2481 /* get a pointer to snapshot memory for all the di_links */
2482 size = sizeof (struct di_link) * st->link_count;
2483 data.link_off = off = di_checkmem(st, off, size);
2484 off += size;
2485
2486 data.lnode_count = data.link_count = 0;
2487 data.st = st;
2488
2489 /*
2490 * We have lnodes and links that will go into the
2491 * snapshot, so let's walk the respective hashes
2492 * and snapshot them. The various linkages are
2493 * also set up during the walk.
2494 */
2495 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2496 ASSERT(data.lnode_count == st->lnode_count);
2497
2498 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2499 ASSERT(data.link_count == st->link_count);
2500
2501 out:
2502 /* free up the i_lnodes and i_links used to create the snapshot */
2503 mod_hash_destroy_hash(st->lnode_hash);
2504 mod_hash_destroy_hash(st->link_hash);
2505 st->lnode_count = 0;
2506 st->link_count = 0;
2507
2508 return (off);
2509 }
2510
2511
2512 /*
2513 * Copy all minor data nodes attached to a devinfo node into the snapshot.
2514 * It is called from di_copynode with active ndi_devi_enter to protect
2515 * the list of minor nodes.
2516 */
2517 static di_off_t
di_getmdata(struct ddi_minor_data * mnode,di_off_t * off_p,di_off_t node,struct di_state * st)2518 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2519 struct di_state *st)
2520 {
2521 di_off_t off;
2522 struct di_minor *me;
2523 size_t size;
2524
2525 dcmn_err2((CE_CONT, "di_getmdata:\n"));
2526
2527 /*
2528 * check memory first
2529 */
2530 off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2531 *off_p = off;
2532
2533 do {
2534 me = DI_MINOR(di_mem_addr(st, off));
2535 me->self = off;
2536 me->type = mnode->type;
2537 me->node = node;
2538 me->user_private_data = 0;
2539
2540 off += sizeof (struct di_minor);
2541
2542 /*
2543 * Split dev_t to major/minor, so it works for
2544 * both ILP32 and LP64 model
2545 */
2546 me->dev_major = getmajor(mnode->ddm_dev);
2547 me->dev_minor = getminor(mnode->ddm_dev);
2548 me->spec_type = mnode->ddm_spec_type;
2549
2550 if (mnode->ddm_name) {
2551 size = strlen(mnode->ddm_name) + 1;
2552 me->name = off = di_checkmem(st, off, size);
2553 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2554 off += size;
2555 }
2556
2557 if (mnode->ddm_node_type) {
2558 size = strlen(mnode->ddm_node_type) + 1;
2559 me->node_type = off = di_checkmem(st, off, size);
2560 (void) strcpy(di_mem_addr(st, off),
2561 mnode->ddm_node_type);
2562 off += size;
2563 }
2564
2565 off = di_checkmem(st, off, sizeof (struct di_minor));
2566 me->next = off;
2567 mnode = mnode->next;
2568 } while (mnode);
2569
2570 me->next = 0;
2571
2572 return (off);
2573 }
2574
2575 /*
2576 * di_register_dip(), di_find_dip(): The dip must be protected
2577 * from deallocation when using these routines - this can either
2578 * be a reference count, a busy hold or a per-driver lock.
2579 */
2580
2581 static void
di_register_dip(struct di_state * st,dev_info_t * dip,di_off_t off)2582 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2583 {
2584 struct dev_info *node = DEVI(dip);
2585 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2586 struct di_dkey *dk;
2587
2588 ASSERT(dip);
2589 ASSERT(off > 0);
2590
2591 key->k_type = DI_DKEY;
2592 dk = &(key->k_u.dkey);
2593
2594 dk->dk_dip = dip;
2595 dk->dk_major = node->devi_major;
2596 dk->dk_inst = node->devi_instance;
2597 dk->dk_nodeid = node->devi_nodeid;
2598
2599 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2600 (mod_hash_val_t)(uintptr_t)off) != 0) {
2601 panic(
2602 "duplicate devinfo (%p) registered during device "
2603 "tree walk", (void *)dip);
2604 }
2605 }
2606
2607
2608 static int
di_dip_find(struct di_state * st,dev_info_t * dip,di_off_t * off_p)2609 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2610 {
2611 /*
2612 * uintptr_t must be used because it matches the size of void *;
2613 * mod_hash expects clients to place results into pointer-size
2614 * containers; since di_off_t is always a 32-bit offset, alignment
2615 * would otherwise be broken on 64-bit kernels.
2616 */
2617 uintptr_t offset;
2618 struct di_key key = {0};
2619 struct di_dkey *dk;
2620
2621 ASSERT(st->reg_dip_hash);
2622 ASSERT(dip);
2623 ASSERT(off_p);
2624
2625
2626 key.k_type = DI_DKEY;
2627 dk = &(key.k_u.dkey);
2628
2629 dk->dk_dip = dip;
2630 dk->dk_major = DEVI(dip)->devi_major;
2631 dk->dk_inst = DEVI(dip)->devi_instance;
2632 dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2633
2634 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2635 (mod_hash_val_t *)&offset) == 0) {
2636 *off_p = (di_off_t)offset;
2637 return (0);
2638 } else {
2639 return (-1);
2640 }
2641 }
2642
2643 /*
2644 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2645 * when using these routines. The caller must do this by protecting the
2646 * client(or phci)<->pip linkage while traversing the list and then holding the
2647 * pip when it is found in the list.
2648 */
2649
2650 static void
di_register_pip(struct di_state * st,mdi_pathinfo_t * pip,di_off_t off)2651 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2652 {
2653 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2654 char *path_addr;
2655 struct di_pkey *pk;
2656
2657 ASSERT(pip);
2658 ASSERT(off > 0);
2659
2660 key->k_type = DI_PKEY;
2661 pk = &(key->k_u.pkey);
2662
2663 pk->pk_pip = pip;
2664 path_addr = mdi_pi_get_addr(pip);
2665 if (path_addr)
2666 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2667 pk->pk_client = mdi_pi_get_client(pip);
2668 pk->pk_phci = mdi_pi_get_phci(pip);
2669
2670 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2671 (mod_hash_val_t)(uintptr_t)off) != 0) {
2672 panic(
2673 "duplicate pathinfo (%p) registered during device "
2674 "tree walk", (void *)pip);
2675 }
2676 }
2677
2678 /*
2679 * As with di_register_pip, the caller must hold or lock the pip
2680 */
2681 static int
di_pip_find(struct di_state * st,mdi_pathinfo_t * pip,di_off_t * off_p)2682 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2683 {
2684 /*
2685 * uintptr_t must be used because it matches the size of void *;
2686 * mod_hash expects clients to place results into pointer-size
2687 * containers; since di_off_t is always a 32-bit offset, alignment
2688 * would otherwise be broken on 64-bit kernels.
2689 */
2690 uintptr_t offset;
2691 struct di_key key = {0};
2692 struct di_pkey *pk;
2693
2694 ASSERT(st->reg_pip_hash);
2695 ASSERT(off_p);
2696
2697 if (pip == NULL) {
2698 *off_p = 0;
2699 return (0);
2700 }
2701
2702 key.k_type = DI_PKEY;
2703 pk = &(key.k_u.pkey);
2704
2705 pk->pk_pip = pip;
2706 pk->pk_path_addr = mdi_pi_get_addr(pip);
2707 pk->pk_client = mdi_pi_get_client(pip);
2708 pk->pk_phci = mdi_pi_get_phci(pip);
2709
2710 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2711 (mod_hash_val_t *)&offset) == 0) {
2712 *off_p = (di_off_t)offset;
2713 return (0);
2714 } else {
2715 return (-1);
2716 }
2717 }
2718
2719 static di_path_state_t
path_state_convert(mdi_pathinfo_state_t st)2720 path_state_convert(mdi_pathinfo_state_t st)
2721 {
2722 switch (st) {
2723 case MDI_PATHINFO_STATE_ONLINE:
2724 return (DI_PATH_STATE_ONLINE);
2725 case MDI_PATHINFO_STATE_STANDBY:
2726 return (DI_PATH_STATE_STANDBY);
2727 case MDI_PATHINFO_STATE_OFFLINE:
2728 return (DI_PATH_STATE_OFFLINE);
2729 case MDI_PATHINFO_STATE_FAULT:
2730 return (DI_PATH_STATE_FAULT);
2731 default:
2732 return (DI_PATH_STATE_UNKNOWN);
2733 }
2734 }
2735
2736 static uint_t
path_flags_convert(uint_t pi_path_flags)2737 path_flags_convert(uint_t pi_path_flags)
2738 {
2739 uint_t di_path_flags = 0;
2740
2741 /* MDI_PATHINFO_FLAGS_HIDDEN nodes not in snapshot */
2742
2743 if (pi_path_flags & MDI_PATHINFO_FLAGS_DEVICE_REMOVED)
2744 di_path_flags |= DI_PATH_FLAGS_DEVICE_REMOVED;
2745
2746 return (di_path_flags);
2747 }
2748
2749
2750 static di_off_t
di_path_getprop(mdi_pathinfo_t * pip,di_off_t * off_p,struct di_state * st)2751 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p,
2752 struct di_state *st)
2753 {
2754 nvpair_t *prop = NULL;
2755 struct di_path_prop *me;
2756 int off;
2757 size_t size;
2758 char *str;
2759 uchar_t *buf;
2760 uint_t nelems;
2761
2762 off = *off_p;
2763 if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2764 *off_p = 0;
2765 return (off);
2766 }
2767
2768 off = di_checkmem(st, off, sizeof (struct di_path_prop));
2769 *off_p = off;
2770
2771 while (prop = mdi_pi_get_next_prop(pip, prop)) {
2772 me = DI_PATHPROP(di_mem_addr(st, off));
2773 me->self = off;
2774 off += sizeof (struct di_path_prop);
2775
2776 /*
2777 * property name
2778 */
2779 size = strlen(nvpair_name(prop)) + 1;
2780 me->prop_name = off = di_checkmem(st, off, size);
2781 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2782 off += size;
2783
2784 switch (nvpair_type(prop)) {
2785 case DATA_TYPE_BYTE:
2786 case DATA_TYPE_INT16:
2787 case DATA_TYPE_UINT16:
2788 case DATA_TYPE_INT32:
2789 case DATA_TYPE_UINT32:
2790 me->prop_type = DDI_PROP_TYPE_INT;
2791 size = sizeof (int32_t);
2792 off = di_checkmem(st, off, size);
2793 (void) nvpair_value_int32(prop,
2794 (int32_t *)di_mem_addr(st, off));
2795 break;
2796
2797 case DATA_TYPE_INT64:
2798 case DATA_TYPE_UINT64:
2799 me->prop_type = DDI_PROP_TYPE_INT64;
2800 size = sizeof (int64_t);
2801 off = di_checkmem(st, off, size);
2802 (void) nvpair_value_int64(prop,
2803 (int64_t *)di_mem_addr(st, off));
2804 break;
2805
2806 case DATA_TYPE_STRING:
2807 me->prop_type = DDI_PROP_TYPE_STRING;
2808 (void) nvpair_value_string(prop, &str);
2809 size = strlen(str) + 1;
2810 off = di_checkmem(st, off, size);
2811 (void) strcpy(di_mem_addr(st, off), str);
2812 break;
2813
2814 case DATA_TYPE_BYTE_ARRAY:
2815 case DATA_TYPE_INT16_ARRAY:
2816 case DATA_TYPE_UINT16_ARRAY:
2817 case DATA_TYPE_INT32_ARRAY:
2818 case DATA_TYPE_UINT32_ARRAY:
2819 case DATA_TYPE_INT64_ARRAY:
2820 case DATA_TYPE_UINT64_ARRAY:
2821 me->prop_type = DDI_PROP_TYPE_BYTE;
2822 (void) nvpair_value_byte_array(prop, &buf, &nelems);
2823 size = nelems;
2824 if (nelems != 0) {
2825 off = di_checkmem(st, off, size);
2826 bcopy(buf, di_mem_addr(st, off), size);
2827 }
2828 break;
2829
2830 default: /* Unknown or unhandled type; skip it */
2831 size = 0;
2832 break;
2833 }
2834
2835 if (size > 0) {
2836 me->prop_data = off;
2837 }
2838
2839 me->prop_len = (int)size;
2840 off += size;
2841
2842 off = di_checkmem(st, off, sizeof (struct di_path_prop));
2843 me->prop_next = off;
2844 }
2845
2846 me->prop_next = 0;
2847 return (off);
2848 }
2849
2850
2851 static void
di_path_one_endpoint(struct di_path * me,di_off_t noff,di_off_t ** off_pp,int get_client)2852 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2853 int get_client)
2854 {
2855 if (get_client) {
2856 ASSERT(me->path_client == 0);
2857 me->path_client = noff;
2858 ASSERT(me->path_c_link == 0);
2859 *off_pp = &me->path_c_link;
2860 me->path_snap_state &=
2861 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2862 } else {
2863 ASSERT(me->path_phci == 0);
2864 me->path_phci = noff;
2865 ASSERT(me->path_p_link == 0);
2866 *off_pp = &me->path_p_link;
2867 me->path_snap_state &=
2868 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2869 }
2870 }
2871
2872 /*
2873 * off_p: pointer to the linkage field. This links pips along the client|phci
2874 * linkage list.
2875 * noff : Offset for the endpoint dip snapshot.
2876 */
2877 static di_off_t
di_getpath_data(dev_info_t * dip,di_off_t * off_p,di_off_t noff,struct di_state * st,int get_client)2878 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff,
2879 struct di_state *st, int get_client)
2880 {
2881 di_off_t off;
2882 mdi_pathinfo_t *pip;
2883 struct di_path *me;
2884 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2885 size_t size;
2886
2887 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2888
2889 /*
2890 * The naming of the following mdi_xyz() is unfortunately
2891 * non-intuitive. mdi_get_next_phci_path() follows the
2892 * client_link i.e. the list of pip's belonging to the
2893 * given client dip.
2894 */
2895 if (get_client)
2896 next_pip = &mdi_get_next_phci_path;
2897 else
2898 next_pip = &mdi_get_next_client_path;
2899
2900 off = *off_p;
2901
2902 pip = NULL;
2903 while (pip = (*next_pip)(dip, pip)) {
2904 di_off_t stored_offset;
2905
2906 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2907
2908 mdi_pi_lock(pip);
2909
2910 /* We don't represent hidden paths in the snapshot */
2911 if (mdi_pi_ishidden(pip)) {
2912 dcmn_err((CE_WARN, "hidden, skip"));
2913 mdi_pi_unlock(pip);
2914 continue;
2915 }
2916
2917 if (di_pip_find(st, pip, &stored_offset) != -1) {
2918 /*
2919 * We've already seen this pathinfo node so we need to
2920 * take care not to snap it again; However, one endpoint
2921 * and linkage will be set here. The other endpoint
2922 * and linkage has already been set when the pip was
2923 * first snapshotted i.e. when the other endpoint dip
2924 * was snapshotted.
2925 */
2926 me = DI_PATH(di_mem_addr(st, stored_offset));
2927 *off_p = stored_offset;
2928
2929 di_path_one_endpoint(me, noff, &off_p, get_client);
2930
2931 /*
2932 * The other endpoint and linkage were set when this
2933 * pip was snapshotted. So we are done with both
2934 * endpoints and linkages.
2935 */
2936 ASSERT(!(me->path_snap_state &
2937 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2938 ASSERT(!(me->path_snap_state &
2939 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2940
2941 mdi_pi_unlock(pip);
2942 continue;
2943 }
2944
2945 /*
2946 * Now that we need to snapshot this pip, check memory
2947 */
2948 size = sizeof (struct di_path);
2949 *off_p = off = di_checkmem(st, off, size);
2950 me = DI_PATH(di_mem_addr(st, off));
2951 me->self = off;
2952 off += size;
2953
2954 me->path_snap_state =
2955 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2956 me->path_snap_state |=
2957 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2958
2959 /*
2960 * Zero out fields as di_checkmem() doesn't guarantee
2961 * zero-filled memory
2962 */
2963 me->path_client = me->path_phci = 0;
2964 me->path_c_link = me->path_p_link = 0;
2965
2966 di_path_one_endpoint(me, noff, &off_p, get_client);
2967
2968 /*
2969 * Note the existence of this pathinfo
2970 */
2971 di_register_pip(st, pip, me->self);
2972
2973 me->path_state = path_state_convert(mdi_pi_get_state(pip));
2974 me->path_flags = path_flags_convert(mdi_pi_get_flags(pip));
2975
2976 me->path_instance = mdi_pi_get_path_instance(pip);
2977
2978 /*
2979 * Get intermediate addressing info.
2980 */
2981 size = strlen(mdi_pi_get_addr(pip)) + 1;
2982 me->path_addr = off = di_checkmem(st, off, size);
2983 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2984 off += size;
2985
2986 /*
2987 * Get path properties if props are to be included in the
2988 * snapshot
2989 */
2990 if (DINFOPROP & st->command) {
2991 me->path_prop = off;
2992 off = di_path_getprop(pip, &me->path_prop, st);
2993 } else {
2994 me->path_prop = 0;
2995 }
2996
2997 mdi_pi_unlock(pip);
2998 }
2999
3000 *off_p = 0;
3001 return (off);
3002 }
3003
3004 /*
3005 * Return driver prop_op entry point for the specified devinfo node.
3006 *
3007 * To return a non-NULL value:
3008 * - driver must be attached and held:
3009 * If driver is not attached we ignore the driver property list.
3010 * No one should rely on such properties.
3011 * - driver "cb_prop_op != ddi_prop_op":
3012 * If "cb_prop_op == ddi_prop_op", framework does not need to call driver.
3013 * XXX or parent's bus_prop_op != ddi_bus_prop_op
3014 */
3015 static int
di_getprop_prop_op(struct dev_info * dip)3016 (*di_getprop_prop_op(struct dev_info *dip))
3017 (dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *)
3018 {
3019 struct dev_ops *ops;
3020
3021 /* If driver is not attached we ignore the driver property list. */
3022 if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip))
3023 return (NULL);
3024
3025 /*
3026 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev,
3027 * or even NULL.
3028 */
3029 ops = dip->devi_ops;
3030 if (ops && ops->devo_cb_ops &&
3031 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
3032 (ops->devo_cb_ops->cb_prop_op != nodev) &&
3033 (ops->devo_cb_ops->cb_prop_op != nulldev) &&
3034 (ops->devo_cb_ops->cb_prop_op != NULL))
3035 return (ops->devo_cb_ops->cb_prop_op);
3036 return (NULL);
3037 }
3038
3039 static di_off_t
di_getprop_add(int list,int dyn,struct di_state * st,struct dev_info * dip,int (* prop_op)(),char * name,dev_t devt,int aflags,int alen,caddr_t aval,di_off_t off,di_off_t ** off_pp)3040 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip,
3041 int (*prop_op)(),
3042 char *name, dev_t devt, int aflags, int alen, caddr_t aval,
3043 di_off_t off, di_off_t **off_pp)
3044 {
3045 int need_free = 0;
3046 dev_t pdevt;
3047 int pflags;
3048 int rv;
3049 caddr_t val;
3050 int len;
3051 size_t size;
3052 struct di_prop *pp;
3053
3054 /* If we have prop_op function, ask driver for latest value */
3055 if (prop_op) {
3056 ASSERT(dip);
3057
3058 /* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */
3059 pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt;
3060
3061 /*
3062 * We have type information in flags, but are invoking an
3063 * old non-typed prop_op(9E) interface. Since not all types are
3064 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64),
3065 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to
3066 * expand type bits beyond DDI_PROP_TYPE_ANY. This allows us
3067 * to use the legacy prop_op(9E) interface to obtain updates
3068 * non-DDI_PROP_TYPE_ANY dynamic properties.
3069 */
3070 pflags = aflags & ~DDI_PROP_TYPE_MASK;
3071 pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3072 DDI_PROP_CONSUMER_TYPED;
3073
3074 /*
3075 * Hold and exit across prop_op(9E) to avoid lock order
3076 * issues between
3077 * [ndi_devi_enter() ..prop_op(9E).. driver-lock]
3078 * .vs.
3079 * [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F)..
3080 * ndi_devi_enter()]
3081 * ordering.
3082 */
3083 ndi_hold_devi((dev_info_t *)dip);
3084 ndi_devi_exit((dev_info_t *)dip);
3085 rv = (*prop_op)(pdevt, (dev_info_t *)dip,
3086 PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len);
3087 ndi_devi_enter((dev_info_t *)dip);
3088 ndi_rele_devi((dev_info_t *)dip);
3089
3090 if (rv == DDI_PROP_SUCCESS) {
3091 need_free = 1; /* dynamic prop obtained */
3092 } else if (dyn) {
3093 /*
3094 * A dynamic property must succeed prop_op(9E) to show
3095 * up in the snapshot - that is the only source of its
3096 * value.
3097 */
3098 return (off); /* dynamic prop not supported */
3099 } else {
3100 /*
3101 * In case calling the driver caused an update off
3102 * prop_op(9E) of a non-dynamic property (code leading
3103 * to ddi_prop_change), we defer picking up val and
3104 * len informatiojn until after prop_op(9E) to ensure
3105 * that we snapshot the latest value.
3106 */
3107 val = aval;
3108 len = alen;
3109
3110 }
3111 } else {
3112 val = aval;
3113 len = alen;
3114 }
3115
3116 dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n",
3117 list, name ? name : "NULL", len, (void *)val));
3118
3119 size = sizeof (struct di_prop);
3120 **off_pp = off = di_checkmem(st, off, size);
3121 pp = DI_PROP(di_mem_addr(st, off));
3122 pp->self = off;
3123 off += size;
3124
3125 pp->dev_major = getmajor(devt);
3126 pp->dev_minor = getminor(devt);
3127 pp->prop_flags = aflags;
3128 pp->prop_list = list;
3129
3130 /* property name */
3131 if (name) {
3132 size = strlen(name) + 1;
3133 pp->prop_name = off = di_checkmem(st, off, size);
3134 (void) strcpy(di_mem_addr(st, off), name);
3135 off += size;
3136 } else {
3137 pp->prop_name = -1;
3138 }
3139
3140 pp->prop_len = len;
3141 if (val == NULL) {
3142 pp->prop_data = -1;
3143 } else if (len != 0) {
3144 size = len;
3145 pp->prop_data = off = di_checkmem(st, off, size);
3146 bcopy(val, di_mem_addr(st, off), size);
3147 off += size;
3148 }
3149
3150 pp->next = 0; /* assume tail for now */
3151 *off_pp = &pp->next; /* return pointer to our next */
3152
3153 if (need_free) /* free PROP_LEN_AND_VAL_ALLOC alloc */
3154 kmem_free(val, len);
3155 return (off);
3156 }
3157
3158
3159 /*
3160 * Copy a list of properties attached to a devinfo node. Called from
3161 * di_copynode with active ndi_devi_enter. The major number is passed in case
3162 * we need to call driver's prop_op entry. The value of list indicates
3163 * which list we are copying. Possible values are:
3164 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
3165 */
3166 static di_off_t
di_getprop(int list,struct ddi_prop ** pprop,di_off_t * off_p,struct di_state * st,struct dev_info * dip)3167 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p,
3168 struct di_state *st, struct dev_info *dip)
3169 {
3170 struct ddi_prop *prop;
3171 int (*prop_op)();
3172 int off;
3173 struct ddi_minor_data *mn;
3174 i_ddi_prop_dyn_t *dp;
3175 struct plist {
3176 struct plist *pl_next;
3177 char *pl_name;
3178 int pl_flags;
3179 dev_t pl_dev;
3180 int pl_len;
3181 caddr_t pl_val;
3182 } *pl, *pl0, **plp;
3183
3184 ASSERT(st != NULL);
3185
3186 off = *off_p;
3187 *off_p = 0;
3188 dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n",
3189 list, (void *)*pprop));
3190
3191 /* get pointer to driver's prop_op(9E) implementation if DRV_LIST */
3192 prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL;
3193
3194 /*
3195 * Form private list of properties, holding devi_lock for properties
3196 * that hang off the dip.
3197 */
3198 if (dip)
3199 mutex_enter(&(dip->devi_lock));
3200 for (pl0 = NULL, plp = &pl0, prop = *pprop;
3201 prop; plp = &pl->pl_next, prop = prop->prop_next) {
3202 pl = kmem_alloc(sizeof (*pl), KM_SLEEP);
3203 *plp = pl;
3204 pl->pl_next = NULL;
3205 if (prop->prop_name)
3206 pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP);
3207 else
3208 pl->pl_name = NULL;
3209 pl->pl_flags = prop->prop_flags;
3210 pl->pl_dev = prop->prop_dev;
3211 if (prop->prop_len) {
3212 pl->pl_len = prop->prop_len;
3213 pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP);
3214 bcopy(prop->prop_val, pl->pl_val, pl->pl_len);
3215 } else {
3216 pl->pl_len = 0;
3217 pl->pl_val = NULL;
3218 }
3219 }
3220 if (dip)
3221 mutex_exit(&(dip->devi_lock));
3222
3223 /*
3224 * Now that we have dropped devi_lock, perform a second-pass to
3225 * add properties to the snapshot. We do this as a second pass
3226 * because we may need to call prop_op(9E) and we can't hold
3227 * devi_lock across that call.
3228 */
3229 for (pl = pl0; pl; pl = pl0) {
3230 pl0 = pl->pl_next;
3231 off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name,
3232 pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val,
3233 off, &off_p);
3234 if (pl->pl_val)
3235 kmem_free(pl->pl_val, pl->pl_len);
3236 if (pl->pl_name)
3237 kmem_free(pl->pl_name, strlen(pl->pl_name) + 1);
3238 kmem_free(pl, sizeof (*pl));
3239 }
3240
3241 /*
3242 * If there is no prop_op or dynamic property support has been
3243 * disabled, we are done.
3244 */
3245 if ((prop_op == NULL) || (di_prop_dyn == 0)) {
3246 *off_p = 0;
3247 return (off);
3248 }
3249
3250 /* Add dynamic driver properties to snapshot */
3251 for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip);
3252 dp && dp->dp_name; dp++) {
3253 if (dp->dp_spec_type) {
3254 /* if spec_type, property of matching minor */
3255 ASSERT(DEVI_BUSY_OWNED(dip));
3256 for (mn = dip->devi_minor; mn; mn = mn->next) {
3257 if (mn->ddm_spec_type != dp->dp_spec_type)
3258 continue;
3259 off = di_getprop_add(list, 1, st, dip, prop_op,
3260 dp->dp_name, mn->ddm_dev, dp->dp_type,
3261 0, NULL, off, &off_p);
3262 }
3263 } else {
3264 /* property of devinfo node */
3265 off = di_getprop_add(list, 1, st, dip, prop_op,
3266 dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3267 0, NULL, off, &off_p);
3268 }
3269 }
3270
3271 /* Add dynamic parent properties to snapshot */
3272 for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip);
3273 dp && dp->dp_name; dp++) {
3274 if (dp->dp_spec_type) {
3275 /* if spec_type, property of matching minor */
3276 ASSERT(DEVI_BUSY_OWNED(dip));
3277 for (mn = dip->devi_minor; mn; mn = mn->next) {
3278 if (mn->ddm_spec_type != dp->dp_spec_type)
3279 continue;
3280 off = di_getprop_add(list, 1, st, dip, prop_op,
3281 dp->dp_name, mn->ddm_dev, dp->dp_type,
3282 0, NULL, off, &off_p);
3283 }
3284 } else {
3285 /* property of devinfo node */
3286 off = di_getprop_add(list, 1, st, dip, prop_op,
3287 dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3288 0, NULL, off, &off_p);
3289 }
3290 }
3291
3292 *off_p = 0;
3293 return (off);
3294 }
3295
3296 /*
3297 * find private data format attached to a dip
3298 * parent = 1 to match driver name of parent dip (for parent private data)
3299 * 0 to match driver name of current dip (for driver private data)
3300 */
3301 #define DI_MATCH_DRIVER 0
3302 #define DI_MATCH_PARENT 1
3303
3304 struct di_priv_format *
di_match_drv_name(struct dev_info * node,struct di_state * st,int match)3305 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3306 {
3307 int i, count, len;
3308 char *drv_name;
3309 major_t major;
3310 struct di_all *all;
3311 struct di_priv_format *form;
3312
3313 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3314 node->devi_node_name, match));
3315
3316 if (match == DI_MATCH_PARENT) {
3317 node = DEVI(node->devi_parent);
3318 }
3319
3320 if (node == NULL) {
3321 return (NULL);
3322 }
3323
3324 major = node->devi_major;
3325 if (major == (major_t)(-1)) {
3326 return (NULL);
3327 }
3328
3329 /*
3330 * Match the driver name.
3331 */
3332 drv_name = ddi_major_to_name(major);
3333 if ((drv_name == NULL) || *drv_name == '\0') {
3334 return (NULL);
3335 }
3336
3337 /* Now get the di_priv_format array */
3338 all = DI_ALL_PTR(st);
3339 if (match == DI_MATCH_PARENT) {
3340 count = all->n_ppdata;
3341 form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format));
3342 } else {
3343 count = all->n_dpdata;
3344 form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format));
3345 }
3346
3347 len = strlen(drv_name);
3348 for (i = 0; i < count; i++) {
3349 char *tmp;
3350
3351 tmp = form[i].drv_name;
3352 while (tmp && (*tmp != '\0')) {
3353 if (strncmp(drv_name, tmp, len) == 0) {
3354 return (&form[i]);
3355 }
3356 /*
3357 * Move to next driver name, skipping a white space
3358 */
3359 if (tmp = strchr(tmp, ' ')) {
3360 tmp++;
3361 }
3362 }
3363 }
3364
3365 return (NULL);
3366 }
3367
3368 /*
3369 * The following functions copy data as specified by the format passed in.
3370 * To prevent invalid format from panicing the system, we call on_fault().
3371 * A return value of 0 indicates an error. Otherwise, the total offset
3372 * is returned.
3373 */
3374 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */
3375
3376 static di_off_t
di_getprvdata(struct di_priv_format * pdp,struct dev_info * node,void * data,di_off_t * off_p,struct di_state * st)3377 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3378 void *data, di_off_t *off_p, struct di_state *st)
3379 {
3380 caddr_t pa;
3381 void *ptr;
3382 int i, size, repeat;
3383 di_off_t off, off0, *tmp;
3384 char *path;
3385 label_t ljb;
3386
3387 dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3388
3389 /*
3390 * check memory availability. Private data size is
3391 * limited to DI_MAX_PRIVDATA.
3392 */
3393 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3394 *off_p = off;
3395
3396 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3397 goto failure;
3398 }
3399
3400 if (!on_fault(&ljb)) {
3401 /* copy the struct */
3402 bcopy(data, di_mem_addr(st, off), pdp->bytes);
3403 off0 = DI_ALIGN(pdp->bytes); /* XXX remove DI_ALIGN */
3404
3405 /* dereferencing pointers */
3406 for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3407
3408 if (pdp->ptr[i].size == 0) {
3409 goto success; /* no more ptrs */
3410 }
3411
3412 /*
3413 * first, get the pointer content
3414 */
3415 if ((pdp->ptr[i].offset < 0) ||
3416 (pdp->ptr[i].offset > pdp->bytes - sizeof (char *)))
3417 goto failure; /* wrong offset */
3418
3419 pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3420
3421 /* save a tmp ptr to store off_t later */
3422 tmp = (di_off_t *)(intptr_t)pa;
3423
3424 /* get pointer value, if NULL continue */
3425 ptr = *((void **) (intptr_t)pa);
3426 if (ptr == NULL) {
3427 continue;
3428 }
3429
3430 /*
3431 * next, find the repeat count (array dimension)
3432 */
3433 repeat = pdp->ptr[i].len_offset;
3434
3435 /*
3436 * Positive value indicates a fixed sized array.
3437 * 0 or negative value indicates variable sized array.
3438 *
3439 * For variable sized array, the variable must be
3440 * an int member of the structure, with an offset
3441 * equal to the absolution value of struct member.
3442 */
3443 if (repeat > pdp->bytes - sizeof (int)) {
3444 goto failure; /* wrong offset */
3445 }
3446
3447 if (repeat >= 0) {
3448 repeat = *((int *)
3449 (intptr_t)((caddr_t)data + repeat));
3450 } else {
3451 repeat = -repeat;
3452 }
3453
3454 /*
3455 * next, get the size of the object to be copied
3456 */
3457 size = pdp->ptr[i].size * repeat;
3458
3459 /*
3460 * Arbitrarily limit the total size of object to be
3461 * copied (1 byte to 1/4 page).
3462 */
3463 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3464 goto failure; /* wrong size or too big */
3465 }
3466
3467 /*
3468 * Now copy the data
3469 */
3470 *tmp = off0;
3471 bcopy(ptr, di_mem_addr(st, off + off0), size);
3472 off0 += DI_ALIGN(size); /* XXX remove DI_ALIGN */
3473 }
3474 } else {
3475 goto failure;
3476 }
3477
3478 success:
3479 /*
3480 * success if reached here
3481 */
3482 no_fault();
3483 return (off + off0);
3484 /*NOTREACHED*/
3485
3486 failure:
3487 /*
3488 * fault occurred
3489 */
3490 no_fault();
3491 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3492 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3493 ddi_pathname((dev_info_t *)node, path), data);
3494 kmem_free(path, MAXPATHLEN);
3495 *off_p = -1; /* set private data to indicate error */
3496
3497 return (off);
3498 }
3499
3500 /*
3501 * get parent private data; on error, returns original offset
3502 */
3503 static di_off_t
di_getppdata(struct dev_info * node,di_off_t * off_p,struct di_state * st)3504 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3505 {
3506 int off;
3507 struct di_priv_format *ppdp;
3508
3509 dcmn_err2((CE_CONT, "di_getppdata:\n"));
3510
3511 /* find the parent data format */
3512 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3513 off = *off_p;
3514 *off_p = 0; /* set parent data to none */
3515 return (off);
3516 }
3517
3518 return (di_getprvdata(ppdp, node,
3519 ddi_get_parent_data((dev_info_t *)node), off_p, st));
3520 }
3521
3522 /*
3523 * get parent private data; returns original offset
3524 */
3525 static di_off_t
di_getdpdata(struct dev_info * node,di_off_t * off_p,struct di_state * st)3526 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3527 {
3528 int off;
3529 struct di_priv_format *dpdp;
3530
3531 dcmn_err2((CE_CONT, "di_getdpdata:"));
3532
3533 /* find the parent data format */
3534 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3535 off = *off_p;
3536 *off_p = 0; /* set driver data to none */
3537 return (off);
3538 }
3539
3540 return (di_getprvdata(dpdp, node,
3541 ddi_get_driver_private((dev_info_t *)node), off_p, st));
3542 }
3543
3544 /*
3545 * Copy hotplug data associated with a devinfo node into the snapshot.
3546 */
3547 static di_off_t
di_gethpdata(ddi_hp_cn_handle_t * hp_hdl,di_off_t * off_p,struct di_state * st)3548 di_gethpdata(ddi_hp_cn_handle_t *hp_hdl, di_off_t *off_p,
3549 struct di_state *st)
3550 {
3551 struct i_hp *hp;
3552 struct di_hp *me;
3553 size_t size;
3554 di_off_t off;
3555
3556 dcmn_err2((CE_CONT, "di_gethpdata:\n"));
3557
3558 /*
3559 * check memory first
3560 */
3561 off = di_checkmem(st, *off_p, sizeof (struct di_hp));
3562 *off_p = off;
3563
3564 do {
3565 me = DI_HP(di_mem_addr(st, off));
3566 me->self = off;
3567 me->hp_name = 0;
3568 me->hp_connection = (int)hp_hdl->cn_info.cn_num;
3569 me->hp_depends_on = (int)hp_hdl->cn_info.cn_num_dpd_on;
3570 (void) ddihp_cn_getstate(hp_hdl);
3571 me->hp_state = (int)hp_hdl->cn_info.cn_state;
3572 me->hp_type = (int)hp_hdl->cn_info.cn_type;
3573 me->hp_type_str = 0;
3574 me->hp_last_change = (uint32_t)hp_hdl->cn_info.cn_last_change;
3575 me->hp_child = 0;
3576
3577 /*
3578 * Child links are resolved later by di_hotplug_children().
3579 * Store a reference to this di_hp_t in the list used later
3580 * by di_hotplug_children().
3581 */
3582 hp = kmem_zalloc(sizeof (i_hp_t), KM_SLEEP);
3583 hp->hp_off = off;
3584 hp->hp_child = hp_hdl->cn_info.cn_child;
3585 list_insert_tail(&st->hp_list, hp);
3586
3587 off += sizeof (struct di_hp);
3588
3589 /* Add name of this di_hp_t to the snapshot */
3590 if (hp_hdl->cn_info.cn_name) {
3591 size = strlen(hp_hdl->cn_info.cn_name) + 1;
3592 me->hp_name = off = di_checkmem(st, off, size);
3593 (void) strcpy(di_mem_addr(st, off),
3594 hp_hdl->cn_info.cn_name);
3595 off += size;
3596 }
3597
3598 /* Add type description of this di_hp_t to the snapshot */
3599 if (hp_hdl->cn_info.cn_type_str) {
3600 size = strlen(hp_hdl->cn_info.cn_type_str) + 1;
3601 me->hp_type_str = off = di_checkmem(st, off, size);
3602 (void) strcpy(di_mem_addr(st, off),
3603 hp_hdl->cn_info.cn_type_str);
3604 off += size;
3605 }
3606
3607 /*
3608 * Set link to next in the chain of di_hp_t nodes,
3609 * or terminate the chain when processing the last node.
3610 */
3611 if (hp_hdl->next != NULL) {
3612 off = di_checkmem(st, off, sizeof (struct di_hp));
3613 me->next = off;
3614 } else {
3615 me->next = 0;
3616 }
3617
3618 /* Update pointer to next in the chain */
3619 hp_hdl = hp_hdl->next;
3620
3621 } while (hp_hdl);
3622
3623 return (off);
3624 }
3625
3626 /*
3627 * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3628 * This function encapsulates the state machine:
3629 *
3630 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3631 * | SNAPSHOT USRLD |
3632 * --------------------------------------------------
3633 *
3634 * Returns 0 on success and -1 on failure
3635 */
3636 static int
di_setstate(struct di_state * st,int new_state)3637 di_setstate(struct di_state *st, int new_state)
3638 {
3639 int ret = 0;
3640
3641 mutex_enter(&di_lock);
3642 switch (new_state) {
3643 case IOC_IDLE:
3644 case IOC_DONE:
3645 break;
3646 case IOC_SNAP:
3647 if (st->di_iocstate != IOC_IDLE)
3648 ret = -1;
3649 break;
3650 case IOC_COPY:
3651 if (st->di_iocstate != IOC_DONE)
3652 ret = -1;
3653 break;
3654 default:
3655 ret = -1;
3656 }
3657
3658 if (ret == 0)
3659 st->di_iocstate = new_state;
3660 else
3661 cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3662 st->di_iocstate, new_state);
3663 mutex_exit(&di_lock);
3664 return (ret);
3665 }
3666
3667 /*
3668 * We cannot assume the presence of the entire
3669 * snapshot in this routine. All we are guaranteed
3670 * is the di_all struct + 1 byte (for root_path)
3671 */
3672 static int
header_plus_one_ok(struct di_all * all)3673 header_plus_one_ok(struct di_all *all)
3674 {
3675 /*
3676 * Refuse to read old versions
3677 */
3678 if (all->version != DI_SNAPSHOT_VERSION) {
3679 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3680 return (0);
3681 }
3682
3683 if (all->cache_magic != DI_CACHE_MAGIC) {
3684 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3685 return (0);
3686 }
3687
3688 if (all->snapshot_time == 0) {
3689 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3690 return (0);
3691 }
3692
3693 if (all->top_devinfo == 0) {
3694 CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3695 return (0);
3696 }
3697
3698 if (all->map_size < sizeof (*all) + 1) {
3699 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3700 return (0);
3701 }
3702
3703 if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3704 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3705 all->root_path[0], all->root_path[1]));
3706 return (0);
3707 }
3708
3709 /*
3710 * We can't check checksum here as we just have the header
3711 */
3712
3713 return (1);
3714 }
3715
3716 static int
chunk_write(struct vnode * vp,offset_t off,caddr_t buf,size_t len)3717 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3718 {
3719 rlim64_t rlimit;
3720 ssize_t resid;
3721 int error = 0;
3722
3723
3724 rlimit = RLIM64_INFINITY;
3725
3726 while (len) {
3727 resid = 0;
3728 error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3729 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3730
3731 if (error || resid < 0) {
3732 error = error ? error : EIO;
3733 CACHE_DEBUG((DI_ERR, "write error: %d", error));
3734 break;
3735 }
3736
3737 /*
3738 * Check if we are making progress
3739 */
3740 if (resid >= len) {
3741 error = ENOSPC;
3742 break;
3743 }
3744 buf += len - resid;
3745 off += len - resid;
3746 len = resid;
3747 }
3748
3749 return (error);
3750 }
3751
3752 static void
di_cache_write(struct di_cache * cache)3753 di_cache_write(struct di_cache *cache)
3754 {
3755 struct di_all *all;
3756 struct vnode *vp;
3757 int oflags;
3758 size_t map_size;
3759 size_t chunk;
3760 offset_t off;
3761 int error;
3762 char *buf;
3763
3764 ASSERT(DI_CACHE_LOCKED(*cache));
3765 ASSERT(!servicing_interrupt());
3766
3767 if (cache->cache_size == 0) {
3768 ASSERT(cache->cache_data == NULL);
3769 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3770 return;
3771 }
3772
3773 ASSERT(cache->cache_size > 0);
3774 ASSERT(cache->cache_data);
3775
3776 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3777 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3778 return;
3779 }
3780
3781 all = (struct di_all *)cache->cache_data;
3782
3783 if (!header_plus_one_ok(all)) {
3784 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3785 return;
3786 }
3787
3788 ASSERT(strcmp(all->root_path, "/") == 0);
3789
3790 /*
3791 * The cache_size is the total allocated memory for the cache.
3792 * The map_size is the actual size of valid data in the cache.
3793 * map_size may be smaller than cache_size but cannot exceed
3794 * cache_size.
3795 */
3796 if (all->map_size > cache->cache_size) {
3797 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3798 " Skipping write", all->map_size, cache->cache_size));
3799 return;
3800 }
3801
3802 /*
3803 * First unlink the temp file
3804 */
3805 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3806 if (error && error != ENOENT) {
3807 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3808 DI_CACHE_TEMP, error));
3809 }
3810
3811 if (error == EROFS) {
3812 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3813 return;
3814 }
3815
3816 vp = NULL;
3817 oflags = (FCREAT|FWRITE);
3818 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3819 DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3820 CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3821 DI_CACHE_TEMP, error));
3822 return;
3823 }
3824
3825 ASSERT(vp);
3826
3827 /*
3828 * Paranoid: Check if the file is on a read-only FS
3829 */
3830 if (vn_is_readonly(vp)) {
3831 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3832 goto fail;
3833 }
3834
3835 /*
3836 * Note that we only write map_size bytes to disk - this saves
3837 * space as the actual cache size may be larger than size of
3838 * valid data in the cache.
3839 * Another advantage is that it makes verification of size
3840 * easier when the file is read later.
3841 */
3842 map_size = all->map_size;
3843 off = 0;
3844 buf = cache->cache_data;
3845
3846 while (map_size) {
3847 ASSERT(map_size > 0);
3848 /*
3849 * Write in chunks so that VM system
3850 * is not overwhelmed
3851 */
3852 if (map_size > di_chunk * PAGESIZE)
3853 chunk = di_chunk * PAGESIZE;
3854 else
3855 chunk = map_size;
3856
3857 error = chunk_write(vp, off, buf, chunk);
3858 if (error) {
3859 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3860 off, error));
3861 goto fail;
3862 }
3863
3864 off += chunk;
3865 buf += chunk;
3866 map_size -= chunk;
3867
3868 /* If low on memory, give pageout a chance to run */
3869 if (freemem < desfree)
3870 delay(1);
3871 }
3872
3873 /*
3874 * Now sync the file and close it
3875 */
3876 if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) {
3877 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3878 }
3879
3880 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) {
3881 CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3882 VN_RELE(vp);
3883 return;
3884 }
3885
3886 VN_RELE(vp);
3887
3888 /*
3889 * Now do the rename
3890 */
3891 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3892 CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3893 return;
3894 }
3895
3896 CACHE_DEBUG((DI_INFO, "Cache write successful."));
3897
3898 return;
3899
3900 fail:
3901 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL);
3902 VN_RELE(vp);
3903 }
3904
3905
3906 /*
3907 * Since we could be called early in boot,
3908 * use kobj_read_file()
3909 */
3910 static void
di_cache_read(struct di_cache * cache)3911 di_cache_read(struct di_cache *cache)
3912 {
3913 struct _buf *file;
3914 struct di_all *all;
3915 int n;
3916 size_t map_size, sz, chunk;
3917 offset_t off;
3918 caddr_t buf;
3919 uint32_t saved_crc, crc;
3920
3921 ASSERT(modrootloaded);
3922 ASSERT(DI_CACHE_LOCKED(*cache));
3923 ASSERT(cache->cache_data == NULL);
3924 ASSERT(cache->cache_size == 0);
3925 ASSERT(!servicing_interrupt());
3926
3927 file = kobj_open_file(DI_CACHE_FILE);
3928 if (file == (struct _buf *)-1) {
3929 CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3930 DI_CACHE_FILE, ENOENT));
3931 return;
3932 }
3933
3934 /*
3935 * Read in the header+root_path first. The root_path must be "/"
3936 */
3937 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3938 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3939
3940 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3941 kmem_free(all, sizeof (*all) + 1);
3942 kobj_close_file(file);
3943 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3944 return;
3945 }
3946
3947 map_size = all->map_size;
3948
3949 kmem_free(all, sizeof (*all) + 1);
3950
3951 ASSERT(map_size >= sizeof (*all) + 1);
3952
3953 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3954 sz = map_size;
3955 off = 0;
3956 while (sz) {
3957 /* Don't overload VM with large reads */
3958 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3959 n = kobj_read_file(file, buf, chunk, off);
3960 if (n != chunk) {
3961 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3962 DI_CACHE_FILE, off));
3963 goto fail;
3964 }
3965 off += chunk;
3966 buf += chunk;
3967 sz -= chunk;
3968 }
3969
3970 ASSERT(off == map_size);
3971
3972 /*
3973 * Read past expected EOF to verify size.
3974 */
3975 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3976 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3977 goto fail;
3978 }
3979
3980 all = (struct di_all *)di_cache.cache_data;
3981 if (!header_plus_one_ok(all)) {
3982 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3983 goto fail;
3984 }
3985
3986 /*
3987 * Compute CRC with checksum field in the cache data set to 0
3988 */
3989 saved_crc = all->cache_checksum;
3990 all->cache_checksum = 0;
3991 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3992 all->cache_checksum = saved_crc;
3993
3994 if (crc != all->cache_checksum) {
3995 CACHE_DEBUG((DI_ERR,
3996 "%s: checksum error: expected=0x%x actual=0x%x",
3997 DI_CACHE_FILE, all->cache_checksum, crc));
3998 goto fail;
3999 }
4000
4001 if (all->map_size != map_size) {
4002 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
4003 goto fail;
4004 }
4005
4006 kobj_close_file(file);
4007
4008 di_cache.cache_size = map_size;
4009
4010 return;
4011
4012 fail:
4013 kmem_free(di_cache.cache_data, map_size);
4014 kobj_close_file(file);
4015 di_cache.cache_data = NULL;
4016 di_cache.cache_size = 0;
4017 }
4018
4019
4020 /*
4021 * Checks if arguments are valid for using the cache.
4022 */
4023 static int
cache_args_valid(struct di_state * st,int * error)4024 cache_args_valid(struct di_state *st, int *error)
4025 {
4026 ASSERT(error);
4027 ASSERT(st->mem_size > 0);
4028 ASSERT(st->memlist != NULL);
4029
4030 if (!modrootloaded || !i_ddi_io_initialized()) {
4031 CACHE_DEBUG((DI_ERR,
4032 "cache lookup failure: I/O subsystem not inited"));
4033 *error = ENOTACTIVE;
4034 return (0);
4035 }
4036
4037 /*
4038 * No other flags allowed with DINFOCACHE
4039 */
4040 if (st->command != (DINFOCACHE & DIIOC_MASK)) {
4041 CACHE_DEBUG((DI_ERR,
4042 "cache lookup failure: bad flags: 0x%x",
4043 st->command));
4044 *error = EINVAL;
4045 return (0);
4046 }
4047
4048 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4049 CACHE_DEBUG((DI_ERR,
4050 "cache lookup failure: bad root: %s",
4051 DI_ALL_PTR(st)->root_path));
4052 *error = EINVAL;
4053 return (0);
4054 }
4055
4056 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
4057
4058 *error = 0;
4059
4060 return (1);
4061 }
4062
4063 static int
snapshot_is_cacheable(struct di_state * st)4064 snapshot_is_cacheable(struct di_state *st)
4065 {
4066 ASSERT(st->mem_size > 0);
4067 ASSERT(st->memlist != NULL);
4068
4069 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
4070 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
4071 CACHE_DEBUG((DI_INFO,
4072 "not cacheable: incompatible flags: 0x%x",
4073 st->command));
4074 return (0);
4075 }
4076
4077 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4078 CACHE_DEBUG((DI_INFO,
4079 "not cacheable: incompatible root path: %s",
4080 DI_ALL_PTR(st)->root_path));
4081 return (0);
4082 }
4083
4084 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
4085
4086 return (1);
4087 }
4088
4089 static int
di_cache_lookup(struct di_state * st)4090 di_cache_lookup(struct di_state *st)
4091 {
4092 size_t rval;
4093 int cache_valid;
4094
4095 ASSERT(cache_args_valid(st, &cache_valid));
4096 ASSERT(modrootloaded);
4097
4098 DI_CACHE_LOCK(di_cache);
4099
4100 /*
4101 * The following assignment determines the validity
4102 * of the cache as far as this snapshot is concerned.
4103 */
4104 cache_valid = di_cache.cache_valid;
4105
4106 if (cache_valid && di_cache.cache_data == NULL) {
4107 di_cache_read(&di_cache);
4108 /* check for read or file error */
4109 if (di_cache.cache_data == NULL)
4110 cache_valid = 0;
4111 }
4112
4113 if (cache_valid) {
4114 /*
4115 * Ok, the cache was valid as of this particular
4116 * snapshot. Copy the cached snapshot. This is safe
4117 * to do as the cache cannot be freed (we hold the
4118 * cache lock). Free the memory allocated in di_state
4119 * up until this point - we will simply copy everything
4120 * in the cache.
4121 */
4122
4123 ASSERT(di_cache.cache_data != NULL);
4124 ASSERT(di_cache.cache_size > 0);
4125
4126 di_freemem(st);
4127
4128 rval = 0;
4129 if (di_cache2mem(&di_cache, st) > 0) {
4130 /*
4131 * map_size is size of valid data in the
4132 * cached snapshot and may be less than
4133 * size of the cache.
4134 */
4135 ASSERT(DI_ALL_PTR(st));
4136 rval = DI_ALL_PTR(st)->map_size;
4137
4138 ASSERT(rval >= sizeof (struct di_all));
4139 ASSERT(rval <= di_cache.cache_size);
4140 }
4141 } else {
4142 /*
4143 * The cache isn't valid, we need to take a snapshot.
4144 * Set the command flags appropriately
4145 */
4146 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
4147 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
4148 rval = di_cache_update(st);
4149 st->command = (DINFOCACHE & DIIOC_MASK);
4150 }
4151
4152 DI_CACHE_UNLOCK(di_cache);
4153
4154 /*
4155 * For cached snapshots, the devinfo driver always returns
4156 * a snapshot rooted at "/".
4157 */
4158 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
4159
4160 return ((int)rval);
4161 }
4162
4163 /*
4164 * This is a forced update of the cache - the previous state of the cache
4165 * may be:
4166 * - unpopulated
4167 * - populated and invalid
4168 * - populated and valid
4169 */
4170 static int
di_cache_update(struct di_state * st)4171 di_cache_update(struct di_state *st)
4172 {
4173 int rval;
4174 uint32_t crc;
4175 struct di_all *all;
4176
4177 ASSERT(DI_CACHE_LOCKED(di_cache));
4178 ASSERT(snapshot_is_cacheable(st));
4179
4180 /*
4181 * Free the in-core cache and the on-disk file (if they exist)
4182 */
4183 i_ddi_di_cache_free(&di_cache);
4184
4185 /*
4186 * Set valid flag before taking the snapshot,
4187 * so that any invalidations that arrive
4188 * during or after the snapshot are not
4189 * removed by us.
4190 */
4191 atomic_or_32(&di_cache.cache_valid, 1);
4192
4193 rval = di_snapshot_and_clean(st);
4194
4195 if (rval == 0) {
4196 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
4197 return (0);
4198 }
4199
4200 DI_ALL_PTR(st)->map_size = rval;
4201 if (di_mem2cache(st, &di_cache) == 0) {
4202 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
4203 return (0);
4204 }
4205
4206 ASSERT(di_cache.cache_data);
4207 ASSERT(di_cache.cache_size > 0);
4208
4209 /*
4210 * Now that we have cached the snapshot, compute its checksum.
4211 * The checksum is only computed over the valid data in the
4212 * cache, not the entire cache.
4213 * Also, set all the fields (except checksum) before computing
4214 * checksum.
4215 */
4216 all = (struct di_all *)di_cache.cache_data;
4217 all->cache_magic = DI_CACHE_MAGIC;
4218 all->map_size = rval;
4219
4220 ASSERT(all->cache_checksum == 0);
4221 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
4222 all->cache_checksum = crc;
4223
4224 di_cache_write(&di_cache);
4225
4226 return (rval);
4227 }
4228
4229 static void
di_cache_print(di_cache_debug_t msglevel,char * fmt,...)4230 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
4231 {
4232 va_list ap;
4233
4234 if (di_cache_debug <= DI_QUIET)
4235 return;
4236
4237 if (di_cache_debug < msglevel)
4238 return;
4239
4240 switch (msglevel) {
4241 case DI_ERR:
4242 msglevel = CE_WARN;
4243 break;
4244 case DI_INFO:
4245 case DI_TRACE:
4246 default:
4247 msglevel = CE_NOTE;
4248 break;
4249 }
4250
4251 va_start(ap, fmt);
4252 vcmn_err(msglevel, fmt, ap);
4253 va_end(ap);
4254 }
4255
4256 static void
di_hotplug_children(struct di_state * st)4257 di_hotplug_children(struct di_state *st)
4258 {
4259 di_off_t off;
4260 struct di_hp *hp;
4261 struct i_hp *hp_list_node;
4262
4263 while (hp_list_node = (struct i_hp *)list_remove_head(&st->hp_list)) {
4264
4265 if ((hp_list_node->hp_child != NULL) &&
4266 (di_dip_find(st, hp_list_node->hp_child, &off) == 0)) {
4267 hp = DI_HP(di_mem_addr(st, hp_list_node->hp_off));
4268 hp->hp_child = off;
4269 }
4270
4271 kmem_free(hp_list_node, sizeof (i_hp_t));
4272 }
4273
4274 list_destroy(&st->hp_list);
4275 }
4276