1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_dev.c
30 */
31 #include <sys/cdefs.h>
32 #include "bcm_osal.h"
33 #include "reg_addr.h"
34 #include "ecore_gtt_reg_addr.h"
35 #include "ecore.h"
36 #include "ecore_chain.h"
37 #include "ecore_status.h"
38 #include "ecore_hw.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_init_ops.h"
41 #include "ecore_int.h"
42 #include "ecore_cxt.h"
43 #include "ecore_spq.h"
44 #include "ecore_init_fw_funcs.h"
45 #include "ecore_sp_commands.h"
46 #include "ecore_dev_api.h"
47 #include "ecore_sriov.h"
48 #include "ecore_vf.h"
49 #include "ecore_ll2.h"
50 #include "ecore_fcoe.h"
51 #include "ecore_iscsi.h"
52 #include "ecore_ooo.h"
53 #include "ecore_mcp.h"
54 #include "ecore_hw_defs.h"
55 #include "mcp_public.h"
56 #include "ecore_rdma.h"
57 #include "ecore_iro.h"
58 #include "nvm_cfg.h"
59 #include "ecore_dev_api.h"
60 #include "ecore_dcbx.h"
61 #include "pcics_reg_driver.h"
62 #include "ecore_l2.h"
63 #ifndef LINUX_REMOVE
64 #include "ecore_tcp_ip.h"
65 #endif
66
67 #ifdef _NTDDK_
68 #pragma warning(push)
69 #pragma warning(disable : 28167)
70 #pragma warning(disable : 28123)
71 #endif
72
73 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
74 * registers involved are not split and thus configuration is a race where
75 * some of the PFs configuration might be lost.
76 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
77 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
78 * there's more than a single compiled ecore component in system].
79 */
80 static osal_spinlock_t qm_lock;
81 static u32 qm_lock_ref_cnt;
82
ecore_set_ilt_page_size(struct ecore_dev * p_dev,u8 ilt_page_size)83 void ecore_set_ilt_page_size(struct ecore_dev *p_dev, u8 ilt_page_size)
84 {
85 p_dev->ilt_page_size = ilt_page_size;
86 }
87
88 /******************** Doorbell Recovery *******************/
89 /* The doorbell recovery mechanism consists of a list of entries which represent
90 * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
91 * entity needs to register with the mechanism and provide the parameters
92 * describing it's doorbell, including a location where last used doorbell data
93 * can be found. The doorbell execute function will traverse the list and
94 * doorbell all of the registered entries.
95 */
96 struct ecore_db_recovery_entry {
97 osal_list_entry_t list_entry;
98 void OSAL_IOMEM *db_addr;
99 void *db_data;
100 enum ecore_db_rec_width db_width;
101 enum ecore_db_rec_space db_space;
102 u8 hwfn_idx;
103 };
104
105 /* display a single doorbell recovery entry */
ecore_db_recovery_dp_entry(struct ecore_hwfn * p_hwfn,struct ecore_db_recovery_entry * db_entry,char * action)106 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
107 struct ecore_db_recovery_entry *db_entry,
108 char *action)
109 {
110 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
111 action, db_entry, db_entry->db_addr, db_entry->db_data,
112 db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
113 db_entry->db_space == DB_REC_USER ? "user" : "kernel",
114 db_entry->hwfn_idx);
115 }
116
117 /* doorbell address sanity (address within doorbell bar range) */
ecore_db_rec_sanity(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr,void * db_data)118 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
119 void *db_data)
120 {
121 /* make sure doorbell address is within the doorbell bar */
122 if (db_addr < p_dev->doorbells || (u8 *)db_addr >
123 (u8 *)p_dev->doorbells + p_dev->db_size) {
124 OSAL_WARN(true,
125 "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
126 db_addr, p_dev->doorbells,
127 (u8 *)p_dev->doorbells + p_dev->db_size);
128 return false;
129 }
130
131 /* make sure doorbell data pointer is not null */
132 if (!db_data) {
133 OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
134 return false;
135 }
136
137 return true;
138 }
139
140 /* find hwfn according to the doorbell address */
ecore_db_rec_find_hwfn(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr)141 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
142 void OSAL_IOMEM *db_addr)
143 {
144 struct ecore_hwfn *p_hwfn;
145
146 /* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
147 if (ECORE_IS_CMT(p_dev))
148 p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
149 &p_dev->hwfns[0] : &p_dev->hwfns[1];
150 else
151 p_hwfn = ECORE_LEADING_HWFN(p_dev);
152
153 return p_hwfn;
154 }
155
156 /* add a new entry to the doorbell recovery mechanism */
ecore_db_recovery_add(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr,void * db_data,enum ecore_db_rec_width db_width,enum ecore_db_rec_space db_space)157 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
158 void OSAL_IOMEM *db_addr,
159 void *db_data,
160 enum ecore_db_rec_width db_width,
161 enum ecore_db_rec_space db_space)
162 {
163 struct ecore_db_recovery_entry *db_entry;
164 struct ecore_hwfn *p_hwfn;
165
166 /* shortcircuit VFs, for now */
167 if (IS_VF(p_dev)) {
168 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
169 return ECORE_SUCCESS;
170 }
171
172 /* sanitize doorbell address */
173 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
174 return ECORE_INVAL;
175
176 /* obtain hwfn from doorbell address */
177 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
178
179 /* create entry */
180 db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
181 if (!db_entry) {
182 DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
183 return ECORE_NOMEM;
184 }
185
186 /* populate entry */
187 db_entry->db_addr = db_addr;
188 db_entry->db_data = db_data;
189 db_entry->db_width = db_width;
190 db_entry->db_space = db_space;
191 db_entry->hwfn_idx = p_hwfn->my_id;
192
193 /* display */
194 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
195
196 /* protect the list */
197 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
198 OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
199 &p_hwfn->db_recovery_info.list);
200 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
201
202 return ECORE_SUCCESS;
203 }
204
205 /* remove an entry from the doorbell recovery mechanism */
ecore_db_recovery_del(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr,void * db_data)206 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
207 void OSAL_IOMEM *db_addr,
208 void *db_data)
209 {
210 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
211 enum _ecore_status_t rc = ECORE_INVAL;
212 struct ecore_hwfn *p_hwfn;
213
214 /* shortcircuit VFs, for now */
215 if (IS_VF(p_dev)) {
216 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
217 return ECORE_SUCCESS;
218 }
219
220 /* sanitize doorbell address */
221 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
222 return ECORE_INVAL;
223
224 /* obtain hwfn from doorbell address */
225 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
226
227 /* protect the list */
228 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
229 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
230 &p_hwfn->db_recovery_info.list,
231 list_entry,
232 struct ecore_db_recovery_entry) {
233 /* search according to db_data addr since db_addr is not unique (roce) */
234 if (db_entry->db_data == db_data) {
235 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
236 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
237 &p_hwfn->db_recovery_info.list);
238 rc = ECORE_SUCCESS;
239 break;
240 }
241 }
242
243 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
244
245 if (rc == ECORE_INVAL) {
246 /*OSAL_WARN(true,*/
247 DP_NOTICE(p_hwfn, false,
248 "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
249 db_data, db_addr);
250 } else
251 OSAL_FREE(p_dev, db_entry);
252
253 return rc;
254 }
255
256 /* initialize the doorbell recovery mechanism */
ecore_db_recovery_setup(struct ecore_hwfn * p_hwfn)257 static enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
258 {
259 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
260
261 /* make sure db_size was set in p_dev */
262 if (!p_hwfn->p_dev->db_size) {
263 DP_ERR(p_hwfn->p_dev, "db_size not set\n");
264 return ECORE_INVAL;
265 }
266
267 OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
268 #ifdef CONFIG_ECORE_LOCK_ALLOC
269 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
270 return ECORE_NOMEM;
271 #endif
272 OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
273 p_hwfn->db_recovery_info.db_recovery_counter = 0;
274
275 return ECORE_SUCCESS;
276 }
277
278 /* destroy the doorbell recovery mechanism */
ecore_db_recovery_teardown(struct ecore_hwfn * p_hwfn)279 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
280 {
281 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
282
283 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
284 if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
285 DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
286 while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
287 db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
288 struct ecore_db_recovery_entry,
289 list_entry);
290 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
291 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
292 &p_hwfn->db_recovery_info.list);
293 OSAL_FREE(p_hwfn->p_dev, db_entry);
294 }
295 }
296 #ifdef CONFIG_ECORE_LOCK_ALLOC
297 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
298 #endif
299 p_hwfn->db_recovery_info.db_recovery_counter = 0;
300 }
301
302 /* print the content of the doorbell recovery mechanism */
ecore_db_recovery_dp(struct ecore_hwfn * p_hwfn)303 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
304 {
305 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
306
307 DP_NOTICE(p_hwfn, false,
308 "Dispalying doorbell recovery database. Counter was %d\n",
309 p_hwfn->db_recovery_info.db_recovery_counter);
310
311 /* protect the list */
312 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
313 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
314 &p_hwfn->db_recovery_info.list,
315 list_entry,
316 struct ecore_db_recovery_entry) {
317 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
318 }
319
320 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
321 }
322
323 /* ring the doorbell of a single doorbell recovery entry */
ecore_db_recovery_ring(struct ecore_hwfn * p_hwfn,struct ecore_db_recovery_entry * db_entry,enum ecore_db_rec_exec db_exec)324 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
325 struct ecore_db_recovery_entry *db_entry,
326 enum ecore_db_rec_exec db_exec)
327 {
328 if (db_exec != DB_REC_ONCE) {
329 /* Print according to width */
330 if (db_entry->db_width == DB_REC_WIDTH_32B)
331 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
332 "%s doorbell address %p data %x\n",
333 db_exec == DB_REC_DRY_RUN ?
334 "would have rung" : "ringing",
335 db_entry->db_addr,
336 *(u32 *)db_entry->db_data);
337 else
338 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
339 "%s doorbell address %p data %llx\n",
340 db_exec == DB_REC_DRY_RUN ?
341 "would have rung" : "ringing",
342 db_entry->db_addr,
343 (unsigned long long)*(u64 *)(db_entry->db_data));
344 }
345
346 /* Sanity */
347 if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
348 db_entry->db_data))
349 return;
350
351 /* Flush the write combined buffer. Since there are multiple doorbelling
352 * entities using the same address, if we don't flush, a transaction
353 * could be lost.
354 */
355 OSAL_WMB(p_hwfn->p_dev);
356
357 /* Ring the doorbell */
358 if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
359 if (db_entry->db_width == DB_REC_WIDTH_32B)
360 DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
361 else
362 DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
363 }
364
365 /* Flush the write combined buffer. Next doorbell may come from a
366 * different entity to the same address...
367 */
368 OSAL_WMB(p_hwfn->p_dev);
369 }
370
371 /* traverse the doorbell recovery entry list and ring all the doorbells */
ecore_db_recovery_execute(struct ecore_hwfn * p_hwfn,enum ecore_db_rec_exec db_exec)372 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
373 enum ecore_db_rec_exec db_exec)
374 {
375 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
376
377 if (db_exec != DB_REC_ONCE) {
378 DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
379 p_hwfn->db_recovery_info.db_recovery_counter);
380
381 /* track amount of times recovery was executed */
382 p_hwfn->db_recovery_info.db_recovery_counter++;
383 }
384
385 /* protect the list */
386 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
387 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
388 &p_hwfn->db_recovery_info.list,
389 list_entry,
390 struct ecore_db_recovery_entry) {
391 ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
392 if (db_exec == DB_REC_ONCE)
393 break;
394 }
395
396 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
397 }
398 /******************** Doorbell Recovery end ****************/
399
400 /********************************** NIG LLH ***********************************/
401
402 enum ecore_llh_filter_type {
403 ECORE_LLH_FILTER_TYPE_MAC,
404 ECORE_LLH_FILTER_TYPE_PROTOCOL,
405 };
406
407 struct ecore_llh_mac_filter {
408 u8 addr[ETH_ALEN];
409 };
410
411 struct ecore_llh_protocol_filter {
412 enum ecore_llh_prot_filter_type_t type;
413 u16 source_port_or_eth_type;
414 u16 dest_port;
415 };
416
417 union ecore_llh_filter {
418 struct ecore_llh_mac_filter mac;
419 struct ecore_llh_protocol_filter protocol;
420 };
421
422 struct ecore_llh_filter_info {
423 bool b_enabled;
424 u32 ref_cnt;
425 enum ecore_llh_filter_type type;
426 union ecore_llh_filter filter;
427 };
428
429 struct ecore_llh_info {
430 /* Number of LLH filters banks */
431 u8 num_ppfid;
432
433 #define MAX_NUM_PPFID 8
434 u8 ppfid_array[MAX_NUM_PPFID];
435
436 /* Array of filters arrays:
437 * "num_ppfid" elements of filters banks, where each is an array of
438 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
439 */
440 struct ecore_llh_filter_info **pp_filters;
441 };
442
ecore_llh_free(struct ecore_dev * p_dev)443 static void ecore_llh_free(struct ecore_dev *p_dev)
444 {
445 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
446 u32 i;
447
448 if (p_llh_info != OSAL_NULL) {
449 if (p_llh_info->pp_filters != OSAL_NULL) {
450 for (i = 0; i < p_llh_info->num_ppfid; i++)
451 OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
452 }
453
454 OSAL_FREE(p_dev, p_llh_info->pp_filters);
455 }
456
457 OSAL_FREE(p_dev, p_llh_info);
458 p_dev->p_llh_info = OSAL_NULL;
459 }
460
ecore_llh_alloc(struct ecore_dev * p_dev)461 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
462 {
463 struct ecore_llh_info *p_llh_info;
464 u32 size; u8 i;
465
466 p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
467 if (!p_llh_info)
468 return ECORE_NOMEM;
469 p_dev->p_llh_info = p_llh_info;
470
471 for (i = 0; i < MAX_NUM_PPFID; i++) {
472 if (!(p_dev->ppfid_bitmap & (0x1 << i)))
473 continue;
474
475 p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
476 DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
477 p_llh_info->num_ppfid, i);
478 p_llh_info->num_ppfid++;
479 }
480
481 size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
482 p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
483 if (!p_llh_info->pp_filters)
484 return ECORE_NOMEM;
485
486 size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
487 sizeof(**p_llh_info->pp_filters);
488 for (i = 0; i < p_llh_info->num_ppfid; i++) {
489 p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
490 size);
491 if (!p_llh_info->pp_filters[i])
492 return ECORE_NOMEM;
493 }
494
495 return ECORE_SUCCESS;
496 }
497
ecore_llh_shadow_sanity(struct ecore_dev * p_dev,u8 ppfid,u8 filter_idx,const char * action)498 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
499 u8 ppfid, u8 filter_idx,
500 const char *action)
501 {
502 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
503
504 if (ppfid >= p_llh_info->num_ppfid) {
505 DP_NOTICE(p_dev, false,
506 "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
507 action, ppfid, p_llh_info->num_ppfid);
508 return ECORE_INVAL;
509 }
510
511 if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
512 DP_NOTICE(p_dev, false,
513 "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
514 action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
515 return ECORE_INVAL;
516 }
517
518 return ECORE_SUCCESS;
519 }
520
521 #define ECORE_LLH_INVALID_FILTER_IDX 0xff
522
523 static enum _ecore_status_t
ecore_llh_shadow_search_filter(struct ecore_dev * p_dev,u8 ppfid,union ecore_llh_filter * p_filter,u8 * p_filter_idx)524 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
525 union ecore_llh_filter *p_filter,
526 u8 *p_filter_idx)
527 {
528 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
529 struct ecore_llh_filter_info *p_filters;
530 enum _ecore_status_t rc;
531 u8 i;
532
533 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
534 if (rc != ECORE_SUCCESS)
535 return rc;
536
537 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
538
539 p_filters = p_llh_info->pp_filters[ppfid];
540 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
541 if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
542 sizeof(*p_filter))) {
543 *p_filter_idx = i;
544 break;
545 }
546 }
547
548 return ECORE_SUCCESS;
549 }
550
551 static enum _ecore_status_t
ecore_llh_shadow_get_free_idx(struct ecore_dev * p_dev,u8 ppfid,u8 * p_filter_idx)552 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
553 u8 *p_filter_idx)
554 {
555 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
556 struct ecore_llh_filter_info *p_filters;
557 enum _ecore_status_t rc;
558 u8 i;
559
560 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
561 if (rc != ECORE_SUCCESS)
562 return rc;
563
564 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
565
566 p_filters = p_llh_info->pp_filters[ppfid];
567 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
568 if (!p_filters[i].b_enabled) {
569 *p_filter_idx = i;
570 break;
571 }
572 }
573
574 return ECORE_SUCCESS;
575 }
576
577 static enum _ecore_status_t
__ecore_llh_shadow_add_filter(struct ecore_dev * p_dev,u8 ppfid,u8 filter_idx,enum ecore_llh_filter_type type,union ecore_llh_filter * p_filter,u32 * p_ref_cnt)578 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
579 enum ecore_llh_filter_type type,
580 union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
581 {
582 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
583 struct ecore_llh_filter_info *p_filters;
584 enum _ecore_status_t rc;
585
586 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
587 if (rc != ECORE_SUCCESS)
588 return rc;
589
590 p_filters = p_llh_info->pp_filters[ppfid];
591 if (!p_filters[filter_idx].ref_cnt) {
592 p_filters[filter_idx].b_enabled = true;
593 p_filters[filter_idx].type = type;
594 OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
595 sizeof(p_filters[filter_idx].filter));
596 }
597
598 *p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
599
600 return ECORE_SUCCESS;
601 }
602
603 static enum _ecore_status_t
ecore_llh_shadow_add_filter(struct ecore_dev * p_dev,u8 ppfid,enum ecore_llh_filter_type type,union ecore_llh_filter * p_filter,u8 * p_filter_idx,u32 * p_ref_cnt)604 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
605 enum ecore_llh_filter_type type,
606 union ecore_llh_filter *p_filter,
607 u8 *p_filter_idx, u32 *p_ref_cnt)
608 {
609 enum _ecore_status_t rc;
610
611 /* Check if the same filter already exist */
612 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
613 p_filter_idx);
614 if (rc != ECORE_SUCCESS)
615 return rc;
616
617 /* Find a new entry in case of a new filter */
618 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
619 rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
620 if (rc != ECORE_SUCCESS)
621 return rc;
622 }
623
624 /* No free entry was found */
625 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
626 DP_NOTICE(p_dev, false,
627 "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
628 ppfid);
629 return ECORE_NORESOURCES;
630 }
631
632 return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
633 p_filter, p_ref_cnt);
634 }
635
636 static enum _ecore_status_t
__ecore_llh_shadow_remove_filter(struct ecore_dev * p_dev,u8 ppfid,u8 filter_idx,u32 * p_ref_cnt)637 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
638 u8 filter_idx, u32 *p_ref_cnt)
639 {
640 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
641 struct ecore_llh_filter_info *p_filters;
642 enum _ecore_status_t rc;
643
644 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
645 if (rc != ECORE_SUCCESS)
646 return rc;
647
648 p_filters = p_llh_info->pp_filters[ppfid];
649 if (!p_filters[filter_idx].ref_cnt) {
650 DP_NOTICE(p_dev, false,
651 "LLH shadow: trying to remove a filter with ref_cnt=0\n");
652 return ECORE_INVAL;
653 }
654
655 *p_ref_cnt = --p_filters[filter_idx].ref_cnt;
656 if (!p_filters[filter_idx].ref_cnt)
657 OSAL_MEM_ZERO(&p_filters[filter_idx],
658 sizeof(p_filters[filter_idx]));
659
660 return ECORE_SUCCESS;
661 }
662
663 static enum _ecore_status_t
ecore_llh_shadow_remove_filter(struct ecore_dev * p_dev,u8 ppfid,union ecore_llh_filter * p_filter,u8 * p_filter_idx,u32 * p_ref_cnt)664 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
665 union ecore_llh_filter *p_filter,
666 u8 *p_filter_idx, u32 *p_ref_cnt)
667 {
668 enum _ecore_status_t rc;
669
670 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
671 p_filter_idx);
672 if (rc != ECORE_SUCCESS)
673 return rc;
674
675 /* No matching filter was found */
676 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
677 DP_NOTICE(p_dev, false,
678 "Failed to find a filter in the LLH shadow\n");
679 return ECORE_INVAL;
680 }
681
682 return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
683 p_ref_cnt);
684 }
685
686 static enum _ecore_status_t
ecore_llh_shadow_remove_all_filters(struct ecore_dev * p_dev,u8 ppfid)687 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
688 {
689 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
690 struct ecore_llh_filter_info *p_filters;
691 enum _ecore_status_t rc;
692
693 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
694 if (rc != ECORE_SUCCESS)
695 return rc;
696
697 p_filters = p_llh_info->pp_filters[ppfid];
698 OSAL_MEM_ZERO(p_filters,
699 NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
700
701 return ECORE_SUCCESS;
702 }
703
ecore_abs_ppfid(struct ecore_dev * p_dev,u8 rel_ppfid,u8 * p_abs_ppfid)704 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
705 u8 rel_ppfid, u8 *p_abs_ppfid)
706 {
707 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
708
709 if (rel_ppfid >= p_llh_info->num_ppfid) {
710 DP_NOTICE(p_dev, false,
711 "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
712 rel_ppfid, (u8)(p_llh_info->num_ppfid - 1));
713 return ECORE_INVAL;
714 }
715
716 *p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
717
718 return ECORE_SUCCESS;
719 }
720
721 static enum _ecore_status_t
__ecore_llh_set_engine_affin(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)722 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
723 {
724 struct ecore_dev *p_dev = p_hwfn->p_dev;
725 enum ecore_eng eng;
726 u8 ppfid;
727 enum _ecore_status_t rc;
728
729 rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
730 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
731 DP_NOTICE(p_hwfn, false,
732 "Failed to get the engine affinity configuration\n");
733 return rc;
734 }
735
736 /* RoCE PF is bound to a single engine */
737 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
738 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
739 rc = ecore_llh_set_roce_affinity(p_dev, eng);
740 if (rc != ECORE_SUCCESS) {
741 DP_NOTICE(p_dev, false,
742 "Failed to set the RoCE engine affinity\n");
743 return rc;
744 }
745
746 DP_VERBOSE(p_dev, ECORE_MSG_SP,
747 "LLH: Set the engine affinity of RoCE packets as %d\n",
748 eng);
749 }
750
751 /* Storage PF is bound to a single engine while L2 PF uses both */
752 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
753 ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
754 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
755 else /* L2_PERSONALITY */
756 eng = ECORE_BOTH_ENG;
757
758 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
759 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
760 if (rc != ECORE_SUCCESS) {
761 DP_NOTICE(p_dev, false,
762 "Failed to set the engine affinity of ppfid %d\n",
763 ppfid);
764 return rc;
765 }
766 }
767
768 DP_VERBOSE(p_dev, ECORE_MSG_SP,
769 "LLH: Set the engine affinity of non-RoCE packets as %d\n",
770 eng);
771
772 return ECORE_SUCCESS;
773 }
774
775 static enum _ecore_status_t
ecore_llh_set_engine_affin(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool avoid_eng_affin)776 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
777 bool avoid_eng_affin)
778 {
779 struct ecore_dev *p_dev = p_hwfn->p_dev;
780 enum _ecore_status_t rc;
781
782 /* Backwards compatible mode:
783 * - RoCE packets - Use engine 0.
784 * - Non-RoCE packets - Use connection based classification for L2 PFs,
785 * and engine 0 otherwise.
786 */
787 if (avoid_eng_affin) {
788 enum ecore_eng eng;
789 u8 ppfid;
790
791 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
792 eng = ECORE_ENG0;
793 rc = ecore_llh_set_roce_affinity(p_dev, eng);
794 if (rc != ECORE_SUCCESS) {
795 DP_NOTICE(p_dev, false,
796 "Failed to set the RoCE engine affinity\n");
797 return rc;
798 }
799
800 DP_VERBOSE(p_dev, ECORE_MSG_SP,
801 "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
802 eng);
803 }
804
805 eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
806 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
807 : ECORE_BOTH_ENG;
808 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
809 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
810 if (rc != ECORE_SUCCESS) {
811 DP_NOTICE(p_dev, false,
812 "Failed to set the engine affinity of ppfid %d\n",
813 ppfid);
814 return rc;
815 }
816 }
817
818 DP_VERBOSE(p_dev, ECORE_MSG_SP,
819 "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
820 eng);
821
822 return ECORE_SUCCESS;
823 }
824
825 return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
826 }
827
ecore_llh_hw_init_pf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool avoid_eng_affin)828 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
829 struct ecore_ptt *p_ptt,
830 bool avoid_eng_affin)
831 {
832 struct ecore_dev *p_dev = p_hwfn->p_dev;
833 u8 ppfid, abs_ppfid;
834 enum _ecore_status_t rc;
835
836 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
837 u32 addr;
838
839 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
840 if (rc != ECORE_SUCCESS)
841 return rc;
842
843 addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
844 ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
845 }
846
847 if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
848 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
849 rc = ecore_llh_add_mac_filter(p_dev, 0,
850 p_hwfn->hw_info.hw_mac_addr);
851 if (rc != ECORE_SUCCESS)
852 DP_NOTICE(p_dev, false,
853 "Failed to add an LLH filter with the primary MAC\n");
854 }
855
856 if (ECORE_IS_CMT(p_dev)) {
857 rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
858 if (rc != ECORE_SUCCESS)
859 return rc;
860 }
861
862 return ECORE_SUCCESS;
863 }
864
ecore_llh_get_num_ppfid(struct ecore_dev * p_dev)865 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
866 {
867 return p_dev->p_llh_info->num_ppfid;
868 }
869
ecore_llh_get_l2_affinity_hint(struct ecore_dev * p_dev)870 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
871 {
872 return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
873 }
874
875 /* TBD - should be removed when these definitions are available in reg_addr.h */
876 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3
877 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0
878 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3
879 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2
880
ecore_llh_set_ppfid_affinity(struct ecore_dev * p_dev,u8 ppfid,enum ecore_eng eng)881 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
882 u8 ppfid, enum ecore_eng eng)
883 {
884 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
885 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
886 u32 addr, val, eng_sel;
887 enum _ecore_status_t rc = ECORE_SUCCESS;
888 u8 abs_ppfid;
889
890 if (p_ptt == OSAL_NULL)
891 return ECORE_AGAIN;
892
893 if (!ECORE_IS_CMT(p_dev))
894 goto out;
895
896 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
897 if (rc != ECORE_SUCCESS)
898 goto out;
899
900 switch (eng) {
901 case ECORE_ENG0:
902 eng_sel = 0;
903 break;
904 case ECORE_ENG1:
905 eng_sel = 1;
906 break;
907 case ECORE_BOTH_ENG:
908 eng_sel = 2;
909 break;
910 default:
911 DP_NOTICE(p_dev, false,
912 "Invalid affinity value for ppfid [%d]\n", eng);
913 rc = ECORE_INVAL;
914 goto out;
915 }
916
917 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
918 val = ecore_rd(p_hwfn, p_ptt, addr);
919 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
920 ecore_wr(p_hwfn, p_ptt, addr, val);
921
922 /* The iWARP affinity is set as the affinity of ppfid 0 */
923 if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
924 p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
925 out:
926 ecore_ptt_release(p_hwfn, p_ptt);
927
928 return rc;
929 }
930
ecore_llh_set_roce_affinity(struct ecore_dev * p_dev,enum ecore_eng eng)931 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
932 enum ecore_eng eng)
933 {
934 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
935 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
936 u32 addr, val, eng_sel;
937 enum _ecore_status_t rc = ECORE_SUCCESS;
938 u8 ppfid, abs_ppfid;
939
940 if (p_ptt == OSAL_NULL)
941 return ECORE_AGAIN;
942
943 if (!ECORE_IS_CMT(p_dev))
944 goto out;
945
946 switch (eng) {
947 case ECORE_ENG0:
948 eng_sel = 0;
949 break;
950 case ECORE_ENG1:
951 eng_sel = 1;
952 break;
953 case ECORE_BOTH_ENG:
954 eng_sel = 2;
955 ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
956 0xf /* QP bit 15 */);
957 break;
958 default:
959 DP_NOTICE(p_dev, false,
960 "Invalid affinity value for RoCE [%d]\n", eng);
961 rc = ECORE_INVAL;
962 goto out;
963 }
964
965 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
966 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
967 if (rc != ECORE_SUCCESS)
968 goto out;
969
970 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
971 val = ecore_rd(p_hwfn, p_ptt, addr);
972 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
973 ecore_wr(p_hwfn, p_ptt, addr, val);
974 }
975 out:
976 ecore_ptt_release(p_hwfn, p_ptt);
977
978 return rc;
979 }
980
981 struct ecore_llh_filter_e4_details {
982 u64 value;
983 u32 mode;
984 u32 protocol_type;
985 u32 hdr_sel;
986 u32 enable;
987 };
988
989 static enum _ecore_status_t
ecore_llh_access_filter_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx,struct ecore_llh_filter_e4_details * p_details,bool b_write_access)990 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
991 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
992 struct ecore_llh_filter_e4_details *p_details,
993 bool b_write_access)
994 {
995 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
996 struct ecore_dmae_params params;
997 enum _ecore_status_t rc;
998 u32 addr;
999
1000 /* The NIG/LLH registers that are accessed in this function have only 16
1001 * rows which are exposed to a PF. I.e. only the 16 filters of its
1002 * default ppfid
1003 * Accessing filters of other ppfids requires pretending to other PFs,
1004 * and thus the usage of the ecore_ppfid_rd/wr() functions.
1005 */
1006
1007 /* Filter enable - should be done first when removing a filter */
1008 if (b_write_access && !p_details->enable) {
1009 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1010 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1011 p_details->enable);
1012 }
1013
1014 /* Filter value */
1015 addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
1016 OSAL_MEMSET(¶ms, 0, sizeof(params));
1017
1018 if (b_write_access) {
1019 params.flags = ECORE_DMAE_FLAG_PF_DST;
1020 params.dst_pfid = pfid;
1021 rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
1022 (u64)(osal_uintptr_t)&p_details->value,
1023 addr, 2 /* size_in_dwords */, ¶ms);
1024 } else {
1025 params.flags = ECORE_DMAE_FLAG_PF_SRC |
1026 ECORE_DMAE_FLAG_COMPLETION_DST;
1027 params.src_pfid = pfid;
1028 rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
1029 (u64)(osal_uintptr_t)&p_details->value,
1030 2 /* size_in_dwords */, ¶ms);
1031 }
1032
1033 if (rc != ECORE_SUCCESS)
1034 return rc;
1035
1036 /* Filter mode */
1037 addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
1038 if (b_write_access)
1039 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1040 else
1041 p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1042 addr);
1043
1044 /* Filter protocol type */
1045 addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1046 if (b_write_access)
1047 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1048 p_details->protocol_type);
1049 else
1050 p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1051 abs_ppfid, addr);
1052
1053 /* Filter header select */
1054 addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1055 if (b_write_access)
1056 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1057 p_details->hdr_sel);
1058 else
1059 p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1060 addr);
1061
1062 /* Filter enable - should be done last when adding a filter */
1063 if (!b_write_access || p_details->enable) {
1064 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1065 if (b_write_access)
1066 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1067 p_details->enable);
1068 else
1069 p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1070 abs_ppfid, addr);
1071 }
1072
1073 return ECORE_SUCCESS;
1074 }
1075
1076 static enum _ecore_status_t
ecore_llh_add_filter_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx,u8 filter_prot_type,u32 high,u32 low)1077 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1078 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1079 u32 high, u32 low)
1080 {
1081 struct ecore_llh_filter_e4_details filter_details;
1082
1083 filter_details.enable = 1;
1084 filter_details.value = ((u64)high << 32) | low;
1085 filter_details.hdr_sel = 0;
1086 filter_details.protocol_type = filter_prot_type;
1087 filter_details.mode = filter_prot_type ?
1088 1 : /* protocol-based classification */
1089 0; /* MAC-address based classification */
1090
1091 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1092 &filter_details,
1093 true /* write access */);
1094 }
1095
1096 static enum _ecore_status_t
ecore_llh_remove_filter_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx)1097 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1098 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1099 {
1100 struct ecore_llh_filter_e4_details filter_details;
1101
1102 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1103
1104 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1105 &filter_details,
1106 true /* write access */);
1107 }
1108
1109 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1110 * Should be removed when the function is implemented.
1111 */
1112 static enum _ecore_status_t
ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED * p_hwfn,struct ecore_ptt OSAL_UNUSED * p_ptt,u8 OSAL_UNUSED abs_ppfid,u8 OSAL_UNUSED filter_idx,u8 OSAL_UNUSED filter_prot_type,u32 OSAL_UNUSED high,u32 OSAL_UNUSED low)1113 ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1114 struct ecore_ptt OSAL_UNUSED *p_ptt,
1115 u8 OSAL_UNUSED abs_ppfid, u8 OSAL_UNUSED filter_idx,
1116 u8 OSAL_UNUSED filter_prot_type, u32 OSAL_UNUSED high,
1117 u32 OSAL_UNUSED low)
1118 {
1119 ECORE_E5_MISSING_CODE;
1120
1121 return ECORE_NOTIMPL;
1122 }
1123
1124 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1125 * Should be removed when the function is implemented.
1126 */
1127 static enum _ecore_status_t
ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED * p_hwfn,struct ecore_ptt OSAL_UNUSED * p_ptt,u8 OSAL_UNUSED abs_ppfid,u8 OSAL_UNUSED filter_idx)1128 ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1129 struct ecore_ptt OSAL_UNUSED *p_ptt,
1130 u8 OSAL_UNUSED abs_ppfid,
1131 u8 OSAL_UNUSED filter_idx)
1132 {
1133 ECORE_E5_MISSING_CODE;
1134
1135 return ECORE_NOTIMPL;
1136 }
1137
1138 static enum _ecore_status_t
ecore_llh_add_filter(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx,u8 filter_prot_type,u32 high,u32 low)1139 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1140 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1141 u32 low)
1142 {
1143 if (ECORE_IS_E4(p_hwfn->p_dev))
1144 return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1145 filter_idx, filter_prot_type,
1146 high, low);
1147 else /* E5 */
1148 return ecore_llh_add_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1149 filter_idx, filter_prot_type,
1150 high, low);
1151 }
1152
1153 static enum _ecore_status_t
ecore_llh_remove_filter(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx)1154 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1155 u8 abs_ppfid, u8 filter_idx)
1156 {
1157 if (ECORE_IS_E4(p_hwfn->p_dev))
1158 return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1159 filter_idx);
1160 else /* E5 */
1161 return ecore_llh_remove_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1162 filter_idx);
1163 }
1164
ecore_llh_add_mac_filter(struct ecore_dev * p_dev,u8 ppfid,u8 mac_addr[ETH_ALEN])1165 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1166 u8 mac_addr[ETH_ALEN])
1167 {
1168 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1169 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1170 union ecore_llh_filter filter;
1171 u8 filter_idx, abs_ppfid;
1172 u32 high, low, ref_cnt;
1173 enum _ecore_status_t rc = ECORE_SUCCESS;
1174
1175 if (p_ptt == OSAL_NULL)
1176 return ECORE_AGAIN;
1177
1178 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1179 goto out;
1180
1181 OSAL_MEM_ZERO(&filter, sizeof(filter));
1182 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1183 rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1184 ECORE_LLH_FILTER_TYPE_MAC,
1185 &filter, &filter_idx, &ref_cnt);
1186 if (rc != ECORE_SUCCESS)
1187 goto err;
1188
1189 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1190 if (rc != ECORE_SUCCESS)
1191 goto err;
1192
1193 /* Configure the LLH only in case of a new the filter */
1194 if (ref_cnt == 1) {
1195 high = mac_addr[1] | (mac_addr[0] << 8);
1196 low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1197 (mac_addr[2] << 24);
1198 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1199 0, high, low);
1200 if (rc != ECORE_SUCCESS)
1201 goto err;
1202 }
1203
1204 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1205 "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1206 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1207 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1208 ref_cnt);
1209
1210 goto out;
1211
1212 err:
1213 DP_NOTICE(p_dev, false,
1214 "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1215 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1216 mac_addr[4], mac_addr[5], ppfid);
1217 out:
1218 ecore_ptt_release(p_hwfn, p_ptt);
1219
1220 return rc;
1221 }
1222
1223 static enum _ecore_status_t
ecore_llh_protocol_filter_stringify(struct ecore_dev * p_dev,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port,u8 * str,osal_size_t str_len)1224 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1225 enum ecore_llh_prot_filter_type_t type,
1226 u16 source_port_or_eth_type, u16 dest_port,
1227 u8 *str, osal_size_t str_len)
1228 {
1229 switch (type) {
1230 case ECORE_LLH_FILTER_ETHERTYPE:
1231 OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1232 source_port_or_eth_type);
1233 break;
1234 case ECORE_LLH_FILTER_TCP_SRC_PORT:
1235 OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1236 source_port_or_eth_type);
1237 break;
1238 case ECORE_LLH_FILTER_UDP_SRC_PORT:
1239 OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1240 source_port_or_eth_type);
1241 break;
1242 case ECORE_LLH_FILTER_TCP_DEST_PORT:
1243 OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1244 break;
1245 case ECORE_LLH_FILTER_UDP_DEST_PORT:
1246 OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1247 break;
1248 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1249 OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1250 source_port_or_eth_type, dest_port);
1251 break;
1252 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1253 OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1254 source_port_or_eth_type, dest_port);
1255 break;
1256 default:
1257 DP_NOTICE(p_dev, true,
1258 "Non valid LLH protocol filter type %d\n", type);
1259 return ECORE_INVAL;
1260 }
1261
1262 return ECORE_SUCCESS;
1263 }
1264
1265 static enum _ecore_status_t
ecore_llh_protocol_filter_to_hilo(struct ecore_dev * p_dev,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port,u32 * p_high,u32 * p_low)1266 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1267 enum ecore_llh_prot_filter_type_t type,
1268 u16 source_port_or_eth_type, u16 dest_port,
1269 u32 *p_high, u32 *p_low)
1270 {
1271 *p_high = 0;
1272 *p_low = 0;
1273
1274 switch (type) {
1275 case ECORE_LLH_FILTER_ETHERTYPE:
1276 *p_high = source_port_or_eth_type;
1277 break;
1278 case ECORE_LLH_FILTER_TCP_SRC_PORT:
1279 case ECORE_LLH_FILTER_UDP_SRC_PORT:
1280 *p_low = source_port_or_eth_type << 16;
1281 break;
1282 case ECORE_LLH_FILTER_TCP_DEST_PORT:
1283 case ECORE_LLH_FILTER_UDP_DEST_PORT:
1284 *p_low = dest_port;
1285 break;
1286 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1287 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1288 *p_low = (source_port_or_eth_type << 16) | dest_port;
1289 break;
1290 default:
1291 DP_NOTICE(p_dev, true,
1292 "Non valid LLH protocol filter type %d\n", type);
1293 return ECORE_INVAL;
1294 }
1295
1296 return ECORE_SUCCESS;
1297 }
1298
1299 enum _ecore_status_t
ecore_llh_add_protocol_filter(struct ecore_dev * p_dev,u8 ppfid,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port)1300 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1301 enum ecore_llh_prot_filter_type_t type,
1302 u16 source_port_or_eth_type, u16 dest_port)
1303 {
1304 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1305 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1306 u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1307 union ecore_llh_filter filter;
1308 u32 high, low, ref_cnt;
1309 enum _ecore_status_t rc = ECORE_SUCCESS;
1310
1311 if (p_ptt == OSAL_NULL)
1312 return ECORE_AGAIN;
1313
1314 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1315 goto out;
1316
1317 rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1318 source_port_or_eth_type,
1319 dest_port, str, sizeof(str));
1320 if (rc != ECORE_SUCCESS)
1321 goto err;
1322
1323 OSAL_MEM_ZERO(&filter, sizeof(filter));
1324 filter.protocol.type = type;
1325 filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1326 filter.protocol.dest_port = dest_port;
1327 rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1328 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1329 &filter, &filter_idx, &ref_cnt);
1330 if (rc != ECORE_SUCCESS)
1331 goto err;
1332
1333 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1334 if (rc != ECORE_SUCCESS)
1335 goto err;
1336
1337 /* Configure the LLH only in case of a new the filter */
1338 if (ref_cnt == 1) {
1339 rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1340 source_port_or_eth_type,
1341 dest_port, &high, &low);
1342 if (rc != ECORE_SUCCESS)
1343 goto err;
1344
1345 type_bitmap = 0x1 << type;
1346 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1347 type_bitmap, high, low);
1348 if (rc != ECORE_SUCCESS)
1349 goto err;
1350 }
1351
1352 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1353 "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1354 str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1355
1356 goto out;
1357
1358 err:
1359 DP_NOTICE(p_hwfn, false,
1360 "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1361 str, ppfid);
1362 out:
1363 ecore_ptt_release(p_hwfn, p_ptt);
1364
1365 return rc;
1366 }
1367
ecore_llh_remove_mac_filter(struct ecore_dev * p_dev,u8 ppfid,u8 mac_addr[ETH_ALEN])1368 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1369 u8 mac_addr[ETH_ALEN])
1370 {
1371 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1372 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1373 union ecore_llh_filter filter;
1374 u8 filter_idx, abs_ppfid;
1375 enum _ecore_status_t rc = ECORE_SUCCESS;
1376 u32 ref_cnt;
1377
1378 if (p_ptt == OSAL_NULL)
1379 return;
1380
1381 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1382 goto out;
1383
1384 OSAL_MEM_ZERO(&filter, sizeof(filter));
1385 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1386 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1387 &ref_cnt);
1388 if (rc != ECORE_SUCCESS)
1389 goto err;
1390
1391 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1392 if (rc != ECORE_SUCCESS)
1393 goto err;
1394
1395 /* Remove from the LLH in case the filter is not in use */
1396 if (!ref_cnt) {
1397 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1398 filter_idx);
1399 if (rc != ECORE_SUCCESS)
1400 goto err;
1401 }
1402
1403 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1404 "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1405 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1406 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1407 ref_cnt);
1408
1409 goto out;
1410
1411 err:
1412 DP_NOTICE(p_dev, false,
1413 "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1414 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1415 mac_addr[4], mac_addr[5], ppfid);
1416 out:
1417 ecore_ptt_release(p_hwfn, p_ptt);
1418 }
1419
ecore_llh_remove_protocol_filter(struct ecore_dev * p_dev,u8 ppfid,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port)1420 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1421 enum ecore_llh_prot_filter_type_t type,
1422 u16 source_port_or_eth_type,
1423 u16 dest_port)
1424 {
1425 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1426 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1427 u8 filter_idx, abs_ppfid, str[32];
1428 union ecore_llh_filter filter;
1429 enum _ecore_status_t rc = ECORE_SUCCESS;
1430 u32 ref_cnt;
1431
1432 if (p_ptt == OSAL_NULL)
1433 return;
1434
1435 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1436 goto out;
1437
1438 rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1439 source_port_or_eth_type,
1440 dest_port, str, sizeof(str));
1441 if (rc != ECORE_SUCCESS)
1442 goto err;
1443
1444 OSAL_MEM_ZERO(&filter, sizeof(filter));
1445 filter.protocol.type = type;
1446 filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1447 filter.protocol.dest_port = dest_port;
1448 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1449 &ref_cnt);
1450 if (rc != ECORE_SUCCESS)
1451 goto err;
1452
1453 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1454 if (rc != ECORE_SUCCESS)
1455 goto err;
1456
1457 /* Remove from the LLH in case the filter is not in use */
1458 if (!ref_cnt) {
1459 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1460 filter_idx);
1461 if (rc != ECORE_SUCCESS)
1462 goto err;
1463 }
1464
1465 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1466 "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1467 str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1468
1469 goto out;
1470
1471 err:
1472 DP_NOTICE(p_dev, false,
1473 "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1474 str, ppfid);
1475 out:
1476 ecore_ptt_release(p_hwfn, p_ptt);
1477 }
1478
ecore_llh_clear_ppfid_filters(struct ecore_dev * p_dev,u8 ppfid)1479 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1480 {
1481 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1482 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1483 u8 filter_idx, abs_ppfid;
1484 enum _ecore_status_t rc = ECORE_SUCCESS;
1485
1486 if (p_ptt == OSAL_NULL)
1487 return;
1488
1489 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1490 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1491 goto out;
1492
1493 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1494 if (rc != ECORE_SUCCESS)
1495 goto out;
1496
1497 rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1498 if (rc != ECORE_SUCCESS)
1499 goto out;
1500
1501 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1502 filter_idx++) {
1503 if (ECORE_IS_E4(p_dev))
1504 rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1505 abs_ppfid, filter_idx);
1506 else /* E5 */
1507 rc = ecore_llh_remove_filter_e5(p_hwfn, p_ptt,
1508 abs_ppfid, filter_idx);
1509 if (rc != ECORE_SUCCESS)
1510 goto out;
1511 }
1512 out:
1513 ecore_ptt_release(p_hwfn, p_ptt);
1514 }
1515
ecore_llh_clear_all_filters(struct ecore_dev * p_dev)1516 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1517 {
1518 u8 ppfid;
1519
1520 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1521 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1522 return;
1523
1524 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1525 ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1526 }
1527
ecore_all_ppfids_wr(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 addr,u32 val)1528 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1529 struct ecore_ptt *p_ptt, u32 addr,
1530 u32 val)
1531 {
1532 struct ecore_dev *p_dev = p_hwfn->p_dev;
1533 u8 ppfid, abs_ppfid;
1534 enum _ecore_status_t rc;
1535
1536 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1537 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1538 if (rc != ECORE_SUCCESS)
1539 return rc;
1540
1541 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1542 }
1543
1544 return ECORE_SUCCESS;
1545 }
1546
1547 static enum _ecore_status_t
ecore_llh_dump_ppfid_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 ppfid)1548 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1549 u8 ppfid)
1550 {
1551 struct ecore_llh_filter_e4_details filter_details;
1552 u8 abs_ppfid, filter_idx;
1553 u32 addr;
1554 enum _ecore_status_t rc;
1555
1556 rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1557 if (rc != ECORE_SUCCESS)
1558 return rc;
1559
1560 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1561 DP_NOTICE(p_hwfn, false,
1562 "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1563 p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1564 ecore_rd(p_hwfn, p_ptt, addr));
1565
1566 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1567 filter_idx++) {
1568 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1569 rc = ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1570 filter_idx, &filter_details,
1571 false /* read access */);
1572 if (rc != ECORE_SUCCESS)
1573 return rc;
1574
1575 DP_NOTICE(p_hwfn, false,
1576 "filter %2hhd: enable %d, value 0x%016llx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1577 filter_idx, filter_details.enable,
1578 (unsigned long long)filter_details.value, filter_details.mode,
1579 filter_details.protocol_type, filter_details.hdr_sel);
1580 }
1581
1582 return ECORE_SUCCESS;
1583 }
1584
1585 static enum _ecore_status_t
ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED * p_hwfn,struct ecore_ptt OSAL_UNUSED * p_ptt,u8 OSAL_UNUSED ppfid)1586 ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1587 struct ecore_ptt OSAL_UNUSED *p_ptt,
1588 u8 OSAL_UNUSED ppfid)
1589 {
1590 ECORE_E5_MISSING_CODE;
1591
1592 return ECORE_NOTIMPL;
1593 }
1594
ecore_llh_dump_ppfid(struct ecore_dev * p_dev,u8 ppfid)1595 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1596 {
1597 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1598 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1599 enum _ecore_status_t rc;
1600
1601 if (p_ptt == OSAL_NULL)
1602 return ECORE_AGAIN;
1603
1604 if (ECORE_IS_E4(p_dev))
1605 rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1606 else /* E5 */
1607 rc = ecore_llh_dump_ppfid_e5(p_hwfn, p_ptt, ppfid);
1608
1609 ecore_ptt_release(p_hwfn, p_ptt);
1610
1611 return rc;
1612 }
1613
ecore_llh_dump_all(struct ecore_dev * p_dev)1614 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1615 {
1616 u8 ppfid;
1617 enum _ecore_status_t rc;
1618
1619 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1620 rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1621 if (rc != ECORE_SUCCESS)
1622 return rc;
1623 }
1624
1625 return ECORE_SUCCESS;
1626 }
1627
1628 /******************************* NIG LLH - End ********************************/
1629
1630 /* Configurable */
1631 #define ECORE_MIN_DPIS (4) /* The minimal number of DPIs required to
1632 * load the driver. The number was
1633 * arbitrarily set.
1634 */
1635
1636 /* Derived */
1637 #define ECORE_MIN_PWM_REGION (ECORE_WID_SIZE * ECORE_MIN_DPIS)
1638
ecore_hw_bar_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum BAR_ID bar_id)1639 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1640 struct ecore_ptt *p_ptt,
1641 enum BAR_ID bar_id)
1642 {
1643 u32 bar_reg = (bar_id == BAR_ID_0 ?
1644 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1645 u32 val;
1646
1647 if (IS_VF(p_hwfn->p_dev))
1648 return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1649
1650 val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1651 if (val)
1652 return 1 << (val + 15);
1653
1654 /* The above registers were updated in the past only in CMT mode. Since
1655 * they were found to be useful MFW started updating them from 8.7.7.0.
1656 * In older MFW versions they are set to 0 which means disabled.
1657 */
1658 if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1659 DP_INFO(p_hwfn,
1660 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1661 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1662 } else {
1663 DP_INFO(p_hwfn,
1664 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1665 return 512 * 1024;
1666 }
1667 }
1668
ecore_init_dp(struct ecore_dev * p_dev,u32 dp_module,u8 dp_level,void * dp_ctx)1669 void ecore_init_dp(struct ecore_dev *p_dev,
1670 u32 dp_module,
1671 u8 dp_level,
1672 void *dp_ctx)
1673 {
1674 u32 i;
1675
1676 p_dev->dp_level = dp_level;
1677 p_dev->dp_module = dp_module;
1678 p_dev->dp_ctx = dp_ctx;
1679 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1680 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1681
1682 p_hwfn->dp_level = dp_level;
1683 p_hwfn->dp_module = dp_module;
1684 p_hwfn->dp_ctx = dp_ctx;
1685 }
1686 }
1687
ecore_init_struct(struct ecore_dev * p_dev)1688 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1689 {
1690 u8 i;
1691
1692 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1693 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1694
1695 p_hwfn->p_dev = p_dev;
1696 p_hwfn->my_id = i;
1697 p_hwfn->b_active = false;
1698
1699 #ifdef CONFIG_ECORE_LOCK_ALLOC
1700 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1701 goto handle_err;
1702 #endif
1703 OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1704 }
1705
1706 /* hwfn 0 is always active */
1707 p_dev->hwfns[0].b_active = true;
1708
1709 /* set the default cache alignment to 128 (may be overridden later) */
1710 p_dev->cache_shift = 7;
1711
1712 p_dev->ilt_page_size = ECORE_DEFAULT_ILT_PAGE_SIZE;
1713
1714 return ECORE_SUCCESS;
1715 #ifdef CONFIG_ECORE_LOCK_ALLOC
1716 handle_err:
1717 while (--i) {
1718 struct ecore_hwfn *p_hwfn = OSAL_NULL;
1719
1720 p_hwfn = &p_dev->hwfns[i];
1721 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1722 }
1723 return ECORE_NOMEM;
1724 #endif
1725 }
1726
ecore_qm_info_free(struct ecore_hwfn * p_hwfn)1727 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1728 {
1729 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1730
1731 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1732 qm_info->qm_pq_params = OSAL_NULL;
1733 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1734 qm_info->qm_vport_params = OSAL_NULL;
1735 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1736 qm_info->qm_port_params = OSAL_NULL;
1737 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1738 qm_info->wfq_data = OSAL_NULL;
1739 }
1740
ecore_resc_free(struct ecore_dev * p_dev)1741 void ecore_resc_free(struct ecore_dev *p_dev)
1742 {
1743 int i;
1744
1745 if (IS_VF(p_dev)) {
1746 for_each_hwfn(p_dev, i)
1747 ecore_l2_free(&p_dev->hwfns[i]);
1748 return;
1749 }
1750
1751 OSAL_FREE(p_dev, p_dev->fw_data);
1752 p_dev->fw_data = OSAL_NULL;
1753
1754 OSAL_FREE(p_dev, p_dev->reset_stats);
1755 p_dev->reset_stats = OSAL_NULL;
1756
1757 ecore_llh_free(p_dev);
1758
1759 for_each_hwfn(p_dev, i) {
1760 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1761
1762 ecore_cxt_mngr_free(p_hwfn);
1763 ecore_qm_info_free(p_hwfn);
1764 ecore_spq_free(p_hwfn);
1765 ecore_eq_free(p_hwfn);
1766 ecore_consq_free(p_hwfn);
1767 ecore_int_free(p_hwfn);
1768 #ifdef CONFIG_ECORE_LL2
1769 ecore_ll2_free(p_hwfn);
1770 #endif
1771 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1772 ecore_fcoe_free(p_hwfn);
1773
1774 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1775 ecore_iscsi_free(p_hwfn);
1776 ecore_ooo_free(p_hwfn);
1777 }
1778
1779 #ifdef CONFIG_ECORE_ROCE
1780 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1781 ecore_rdma_info_free(p_hwfn);
1782 #endif
1783 ecore_iov_free(p_hwfn);
1784 ecore_l2_free(p_hwfn);
1785 ecore_dmae_info_free(p_hwfn);
1786 ecore_dcbx_info_free(p_hwfn);
1787 /* @@@TBD Flush work-queue ?*/
1788
1789 /* destroy doorbell recovery mechanism */
1790 ecore_db_recovery_teardown(p_hwfn);
1791 }
1792 }
1793
1794 /******************** QM initialization *******************/
1795 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
1796 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1797 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
1798
1799 /* determines the physical queue flags for a given PF. */
ecore_get_pq_flags(struct ecore_hwfn * p_hwfn)1800 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1801 {
1802 u32 flags;
1803
1804 /* common flags */
1805 flags = PQ_FLAGS_LB;
1806
1807 /* feature flags */
1808 if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1809 flags |= PQ_FLAGS_VFS;
1810 if (IS_ECORE_DCQCN(p_hwfn))
1811 flags |= PQ_FLAGS_RLS;
1812
1813 /* protocol flags */
1814 switch (p_hwfn->hw_info.personality) {
1815 case ECORE_PCI_ETH:
1816 flags |= PQ_FLAGS_MCOS;
1817 break;
1818 case ECORE_PCI_FCOE:
1819 flags |= PQ_FLAGS_OFLD;
1820 break;
1821 case ECORE_PCI_ISCSI:
1822 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1823 break;
1824 case ECORE_PCI_ETH_ROCE:
1825 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1826 break;
1827 case ECORE_PCI_ETH_IWARP:
1828 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1829 break;
1830 default:
1831 DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
1832 return 0;
1833 }
1834
1835 return flags;
1836 }
1837
1838 /* Getters for resource amounts necessary for qm initialization */
ecore_init_qm_get_num_tcs(struct ecore_hwfn * p_hwfn)1839 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1840 {
1841 return p_hwfn->hw_info.num_hw_tc;
1842 }
1843
ecore_init_qm_get_num_vfs(struct ecore_hwfn * p_hwfn)1844 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1845 {
1846 return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1847 }
1848
1849 #define NUM_DEFAULT_RLS 1
1850
ecore_init_qm_get_num_pf_rls(struct ecore_hwfn * p_hwfn)1851 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1852 {
1853 u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1854
1855 /* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
1856 num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1857 (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
1858 ROCE_DCQCN_RP_MAX_QPS));
1859
1860 /* make sure after we reserve the default and VF rls we'll have something left */
1861 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1862 if (IS_ECORE_DCQCN(p_hwfn))
1863 DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1864 return 0;
1865 }
1866
1867 /* subtract rls necessary for VFs and one default one for the PF */
1868 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1869
1870 return num_pf_rls;
1871 }
1872
ecore_init_qm_get_num_vports(struct ecore_hwfn * p_hwfn)1873 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1874 {
1875 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1876
1877 /* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
1878 return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1879 (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1880 }
1881
1882 /* calc amount of PQs according to the requested flags */
ecore_init_qm_get_num_pqs(struct ecore_hwfn * p_hwfn)1883 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1884 {
1885 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1886
1887 return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1888 (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
1889 (!!(PQ_FLAGS_LB & pq_flags)) +
1890 (!!(PQ_FLAGS_OOO & pq_flags)) +
1891 (!!(PQ_FLAGS_ACK & pq_flags)) +
1892 (!!(PQ_FLAGS_OFLD & pq_flags)) +
1893 (!!(PQ_FLAGS_LLT & pq_flags)) +
1894 (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
1895 }
1896
1897 /* initialize the top level QM params */
ecore_init_qm_params(struct ecore_hwfn * p_hwfn)1898 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1899 {
1900 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1901 bool four_port;
1902
1903 /* pq and vport bases for this PF */
1904 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1905 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1906
1907 /* rate limiting and weighted fair queueing are always enabled */
1908 qm_info->vport_rl_en = 1;
1909 qm_info->vport_wfq_en = 1;
1910
1911 /* TC config is different for AH 4 port */
1912 four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1913
1914 /* in AH 4 port we have fewer TCs per port */
1915 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
1916
1917 /* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
1918 if (!qm_info->ooo_tc)
1919 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
1920 }
1921
1922 /* initialize qm vport params */
ecore_init_qm_vport_params(struct ecore_hwfn * p_hwfn)1923 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1924 {
1925 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1926 u8 i;
1927
1928 /* all vports participate in weighted fair queueing */
1929 for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1930 qm_info->qm_vport_params[i].vport_wfq = 1;
1931 }
1932
1933 /* initialize qm port params */
ecore_init_qm_port_params(struct ecore_hwfn * p_hwfn)1934 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1935 {
1936 /* Initialize qm port parameters */
1937 u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1938
1939 /* indicate how ooo and high pri traffic is dealt with */
1940 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1941 ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1942
1943 for (i = 0; i < num_ports; i++) {
1944 struct init_qm_port_params *p_qm_port =
1945 &p_hwfn->qm_info.qm_port_params[i];
1946
1947 p_qm_port->active = 1;
1948 p_qm_port->active_phys_tcs = active_phys_tcs;
1949 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1950 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1951 }
1952 }
1953
1954 /* Reset the params which must be reset for qm init. QM init may be called as
1955 * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1956 * params may be affected by the init but would simply recalculate to the same
1957 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1958 * affected as these amounts stay the same.
1959 */
ecore_init_qm_reset_params(struct ecore_hwfn * p_hwfn)1960 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1961 {
1962 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1963
1964 qm_info->num_pqs = 0;
1965 qm_info->num_vports = 0;
1966 qm_info->num_pf_rls = 0;
1967 qm_info->num_vf_pqs = 0;
1968 qm_info->first_vf_pq = 0;
1969 qm_info->first_mcos_pq = 0;
1970 qm_info->first_rl_pq = 0;
1971 }
1972
ecore_init_qm_advance_vport(struct ecore_hwfn * p_hwfn)1973 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1974 {
1975 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1976
1977 qm_info->num_vports++;
1978
1979 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1980 DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
1981 }
1982
1983 /* initialize a single pq and manage qm_info resources accounting.
1984 * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
1985 * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
1986 */
1987
1988 /* flags for pq init */
1989 #define PQ_INIT_SHARE_VPORT (1 << 0)
1990 #define PQ_INIT_PF_RL (1 << 1)
1991 #define PQ_INIT_VF_RL (1 << 2)
1992
1993 /* defines for pq init */
1994 #define PQ_INIT_DEFAULT_WRR_GROUP 1
1995 #define PQ_INIT_DEFAULT_TC 0
1996 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc)
1997
ecore_init_qm_pq(struct ecore_hwfn * p_hwfn,struct ecore_qm_info * qm_info,u8 tc,u32 pq_init_flags)1998 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
1999 struct ecore_qm_info *qm_info,
2000 u8 tc, u32 pq_init_flags)
2001 {
2002 u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
2003
2004 if (pq_idx > max_pq)
2005 DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
2006
2007 /* init pq params */
2008 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
2009 qm_info->qm_pq_params[pq_idx].tc_id = tc;
2010 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
2011 qm_info->qm_pq_params[pq_idx].rl_valid =
2012 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
2013
2014 /* qm params accounting */
2015 qm_info->num_pqs++;
2016 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
2017 qm_info->num_vports++;
2018
2019 if (pq_init_flags & PQ_INIT_PF_RL)
2020 qm_info->num_pf_rls++;
2021
2022 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
2023 DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
2024
2025 if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
2026 DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
2027 }
2028
2029 /* get pq index according to PQ_FLAGS */
ecore_init_qm_get_idx_from_flags(struct ecore_hwfn * p_hwfn,u32 pq_flags)2030 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
2031 u32 pq_flags)
2032 {
2033 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2034
2035 /* Can't have multiple flags set here */
2036 if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
2037 goto err;
2038
2039 switch (pq_flags) {
2040 case PQ_FLAGS_RLS:
2041 return &qm_info->first_rl_pq;
2042 case PQ_FLAGS_MCOS:
2043 return &qm_info->first_mcos_pq;
2044 case PQ_FLAGS_LB:
2045 return &qm_info->pure_lb_pq;
2046 case PQ_FLAGS_OOO:
2047 return &qm_info->ooo_pq;
2048 case PQ_FLAGS_ACK:
2049 return &qm_info->pure_ack_pq;
2050 case PQ_FLAGS_OFLD:
2051 return &qm_info->offload_pq;
2052 case PQ_FLAGS_LLT:
2053 return &qm_info->low_latency_pq;
2054 case PQ_FLAGS_VFS:
2055 return &qm_info->first_vf_pq;
2056 default:
2057 goto err;
2058 }
2059
2060 err:
2061 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
2062 return OSAL_NULL;
2063 }
2064
2065 /* save pq index in qm info */
ecore_init_qm_set_idx(struct ecore_hwfn * p_hwfn,u32 pq_flags,u16 pq_val)2066 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2067 u32 pq_flags, u16 pq_val)
2068 {
2069 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2070
2071 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2072 }
2073
2074 /* get tx pq index, with the PQ TX base already set (ready for context init) */
ecore_get_cm_pq_idx(struct ecore_hwfn * p_hwfn,u32 pq_flags)2075 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2076 {
2077 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2078
2079 return *base_pq_idx + CM_TX_PQ_BASE;
2080 }
2081
ecore_get_cm_pq_idx_mcos(struct ecore_hwfn * p_hwfn,u8 tc)2082 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2083 {
2084 u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2085
2086 if (tc > max_tc)
2087 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2088
2089 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
2090 }
2091
ecore_get_cm_pq_idx_vf(struct ecore_hwfn * p_hwfn,u16 vf)2092 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2093 {
2094 u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2095
2096 if (vf > max_vf)
2097 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2098
2099 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
2100 }
2101
ecore_get_cm_pq_idx_rl(struct ecore_hwfn * p_hwfn,u8 rl)2102 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
2103 {
2104 u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2105
2106 if (rl > max_rl)
2107 DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
2108
2109 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
2110 }
2111
2112 /* Functions for creating specific types of pqs */
ecore_init_qm_lb_pq(struct ecore_hwfn * p_hwfn)2113 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2114 {
2115 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2116
2117 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2118 return;
2119
2120 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2121 ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2122 }
2123
ecore_init_qm_ooo_pq(struct ecore_hwfn * p_hwfn)2124 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2125 {
2126 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2127
2128 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2129 return;
2130
2131 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2132 ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2133 }
2134
ecore_init_qm_pure_ack_pq(struct ecore_hwfn * p_hwfn)2135 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2136 {
2137 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2138
2139 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2140 return;
2141
2142 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2143 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2144 }
2145
ecore_init_qm_offload_pq(struct ecore_hwfn * p_hwfn)2146 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2147 {
2148 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2149
2150 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2151 return;
2152
2153 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2154 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2155 }
2156
ecore_init_qm_low_latency_pq(struct ecore_hwfn * p_hwfn)2157 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
2158 {
2159 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2160
2161 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
2162 return;
2163
2164 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
2165 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2166 }
2167
ecore_init_qm_mcos_pqs(struct ecore_hwfn * p_hwfn)2168 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2169 {
2170 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2171 u8 tc_idx;
2172
2173 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2174 return;
2175
2176 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2177 for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2178 ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2179 }
2180
ecore_init_qm_vf_pqs(struct ecore_hwfn * p_hwfn)2181 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2182 {
2183 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2184 u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2185
2186 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2187 return;
2188
2189 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2190 qm_info->num_vf_pqs = num_vfs;
2191 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2192 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
2193 }
2194
ecore_init_qm_rl_pqs(struct ecore_hwfn * p_hwfn)2195 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2196 {
2197 u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2198 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2199
2200 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2201 return;
2202
2203 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2204 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2205 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
2206 }
2207
ecore_init_qm_pq_params(struct ecore_hwfn * p_hwfn)2208 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2209 {
2210 /* rate limited pqs, must come first (FW assumption) */
2211 ecore_init_qm_rl_pqs(p_hwfn);
2212
2213 /* pqs for multi cos */
2214 ecore_init_qm_mcos_pqs(p_hwfn);
2215
2216 /* pure loopback pq */
2217 ecore_init_qm_lb_pq(p_hwfn);
2218
2219 /* out of order pq */
2220 ecore_init_qm_ooo_pq(p_hwfn);
2221
2222 /* pure ack pq */
2223 ecore_init_qm_pure_ack_pq(p_hwfn);
2224
2225 /* pq for offloaded protocol */
2226 ecore_init_qm_offload_pq(p_hwfn);
2227
2228 /* low latency pq */
2229 ecore_init_qm_low_latency_pq(p_hwfn);
2230
2231 /* done sharing vports */
2232 ecore_init_qm_advance_vport(p_hwfn);
2233
2234 /* pqs for vfs */
2235 ecore_init_qm_vf_pqs(p_hwfn);
2236 }
2237
2238 /* compare values of getters against resources amounts */
ecore_init_qm_sanity(struct ecore_hwfn * p_hwfn)2239 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2240 {
2241 if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
2242 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2243 return ECORE_INVAL;
2244 }
2245
2246 if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2247 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2248 return ECORE_INVAL;
2249 }
2250
2251 return ECORE_SUCCESS;
2252 }
2253
2254 /*
2255 * Function for verbose printing of the qm initialization results
2256 */
ecore_dp_init_qm_params(struct ecore_hwfn * p_hwfn)2257 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2258 {
2259 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2260 struct init_qm_vport_params *vport;
2261 struct init_qm_port_params *port;
2262 struct init_qm_pq_params *pq;
2263 int i, tc;
2264
2265 /* top level params */
2266 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2267 qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
2268 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2269 qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2270 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2271 qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2272
2273 /* port table */
2274 for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2275 port = &(qm_info->qm_port_params[i]);
2276 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2277 i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
2278 }
2279
2280 /* vport table */
2281 for (i = 0; i < qm_info->num_vports; i++) {
2282 vport = &(qm_info->qm_vport_params[i]);
2283 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
2284 qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
2285 for (tc = 0; tc < NUM_OF_TCS; tc++)
2286 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
2287 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2288 }
2289
2290 /* pq table */
2291 for (i = 0; i < qm_info->num_pqs; i++) {
2292 pq = &(qm_info->qm_pq_params[i]);
2293 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2294 qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
2295 }
2296 }
2297
ecore_init_qm_info(struct ecore_hwfn * p_hwfn)2298 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2299 {
2300 /* reset params required for init run */
2301 ecore_init_qm_reset_params(p_hwfn);
2302
2303 /* init QM top level params */
2304 ecore_init_qm_params(p_hwfn);
2305
2306 /* init QM port params */
2307 ecore_init_qm_port_params(p_hwfn);
2308
2309 /* init QM vport params */
2310 ecore_init_qm_vport_params(p_hwfn);
2311
2312 /* init QM physical queue params */
2313 ecore_init_qm_pq_params(p_hwfn);
2314
2315 /* display all that init */
2316 ecore_dp_init_qm_params(p_hwfn);
2317 }
2318
2319 /* This function reconfigures the QM pf on the fly.
2320 * For this purpose we:
2321 * 1. reconfigure the QM database
2322 * 2. set new values to runtime array
2323 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2324 * 4. activate init tool in QM_PF stage
2325 * 5. send an sdm_qm_cmd through rbc interface to release the QM
2326 */
ecore_qm_reconf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2327 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2328 struct ecore_ptt *p_ptt)
2329 {
2330 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2331 bool b_rc;
2332 enum _ecore_status_t rc;
2333
2334 /* initialize ecore's qm data structure */
2335 ecore_init_qm_info(p_hwfn);
2336
2337 /* stop PF's qm queues */
2338 OSAL_SPIN_LOCK(&qm_lock);
2339 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2340 qm_info->start_pq, qm_info->num_pqs);
2341 OSAL_SPIN_UNLOCK(&qm_lock);
2342 if (!b_rc)
2343 return ECORE_INVAL;
2344
2345 /* clear the QM_PF runtime phase leftovers from previous init */
2346 ecore_init_clear_rt_data(p_hwfn);
2347
2348 /* prepare QM portion of runtime array */
2349 ecore_qm_init_pf(p_hwfn, p_ptt, false);
2350
2351 /* activate init tool on runtime array */
2352 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2353 p_hwfn->hw_info.hw_mode);
2354 if (rc != ECORE_SUCCESS)
2355 return rc;
2356
2357 /* start PF's qm queues */
2358 OSAL_SPIN_LOCK(&qm_lock);
2359 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2360 qm_info->start_pq, qm_info->num_pqs);
2361 OSAL_SPIN_UNLOCK(&qm_lock);
2362 if (!b_rc)
2363 return ECORE_INVAL;
2364
2365 return ECORE_SUCCESS;
2366 }
2367
ecore_alloc_qm_data(struct ecore_hwfn * p_hwfn)2368 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2369 {
2370 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2371 enum _ecore_status_t rc;
2372
2373 rc = ecore_init_qm_sanity(p_hwfn);
2374 if (rc != ECORE_SUCCESS)
2375 goto alloc_err;
2376
2377 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2378 sizeof(struct init_qm_pq_params) *
2379 ecore_init_qm_get_num_pqs(p_hwfn));
2380 if (!qm_info->qm_pq_params)
2381 goto alloc_err;
2382
2383 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2384 sizeof(struct init_qm_vport_params) *
2385 ecore_init_qm_get_num_vports(p_hwfn));
2386 if (!qm_info->qm_vport_params)
2387 goto alloc_err;
2388
2389 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2390 sizeof(struct init_qm_port_params) *
2391 p_hwfn->p_dev->num_ports_in_engine);
2392 if (!qm_info->qm_port_params)
2393 goto alloc_err;
2394
2395 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2396 sizeof(struct ecore_wfq_data) *
2397 ecore_init_qm_get_num_vports(p_hwfn));
2398 if (!qm_info->wfq_data)
2399 goto alloc_err;
2400
2401 return ECORE_SUCCESS;
2402
2403 alloc_err:
2404 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2405 ecore_qm_info_free(p_hwfn);
2406 return ECORE_NOMEM;
2407 }
2408 /******************** End QM initialization ***************/
2409
ecore_resc_alloc(struct ecore_dev * p_dev)2410 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2411 {
2412 u32 rdma_tasks, excess_tasks;
2413 u32 line_count;
2414 enum _ecore_status_t rc = ECORE_SUCCESS;
2415 int i;
2416
2417 if (IS_VF(p_dev)) {
2418 for_each_hwfn(p_dev, i) {
2419 rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2420 if (rc != ECORE_SUCCESS)
2421 return rc;
2422 }
2423 return rc;
2424 }
2425
2426 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2427 sizeof(*p_dev->fw_data));
2428 if (!p_dev->fw_data)
2429 return ECORE_NOMEM;
2430
2431 for_each_hwfn(p_dev, i) {
2432 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2433 u32 n_eqes, num_cons;
2434
2435 /* initialize the doorbell recovery mechanism */
2436 rc = ecore_db_recovery_setup(p_hwfn);
2437 if (rc)
2438 goto alloc_err;
2439
2440 /* First allocate the context manager structure */
2441 rc = ecore_cxt_mngr_alloc(p_hwfn);
2442 if (rc)
2443 goto alloc_err;
2444
2445 /* Set the HW cid/tid numbers (in the context manager)
2446 * Must be done prior to any further computations.
2447 */
2448 rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2449 if (rc)
2450 goto alloc_err;
2451
2452 rc = ecore_alloc_qm_data(p_hwfn);
2453 if (rc)
2454 goto alloc_err;
2455
2456 /* init qm info */
2457 ecore_init_qm_info(p_hwfn);
2458
2459 /* Compute the ILT client partition */
2460 rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2461 if (rc) {
2462 DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
2463 /* In case there are not enough ILT lines we reduce the
2464 * number of RDMA tasks and re-compute.
2465 */
2466 excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
2467 p_hwfn, line_count);
2468 if (!excess_tasks)
2469 goto alloc_err;
2470
2471 rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2472 rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
2473 if (rc)
2474 goto alloc_err;
2475
2476 rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2477 if (rc) {
2478 DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
2479 line_count);
2480
2481 goto alloc_err;
2482 }
2483 }
2484
2485 /* CID map / ILT shadow table / T2
2486 * The talbes sizes are determined by the computations above
2487 */
2488 rc = ecore_cxt_tables_alloc(p_hwfn);
2489 if (rc)
2490 goto alloc_err;
2491
2492 /* SPQ, must follow ILT because initializes SPQ context */
2493 rc = ecore_spq_alloc(p_hwfn);
2494 if (rc)
2495 goto alloc_err;
2496
2497 /* SP status block allocation */
2498 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2499 RESERVED_PTT_DPC);
2500
2501 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2502 if (rc)
2503 goto alloc_err;
2504
2505 rc = ecore_iov_alloc(p_hwfn);
2506 if (rc)
2507 goto alloc_err;
2508
2509 /* EQ */
2510 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2511 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2512 u32 n_srq = ecore_cxt_get_total_srq_count(p_hwfn);
2513
2514 /* Calculate the EQ size
2515 * ---------------------
2516 * Each ICID may generate up to one event at a time i.e.
2517 * the event must be handled/cleared before a new one
2518 * can be generated. We calculate the sum of events per
2519 * protocol and create an EQ deep enough to handle the
2520 * worst case:
2521 * - Core - according to SPQ.
2522 * - RoCE - per QP there are a couple of ICIDs, one
2523 * responder and one requester, each can
2524 * generate max 2 EQE (err+qp_destroyed) =>
2525 * n_eqes_qp = 4 * n_qp.
2526 * Each CQ can generate an EQE. There are 2 CQs
2527 * per QP => n_eqes_cq = 2 * n_qp.
2528 * Hence the RoCE total is 6 * n_qp or
2529 * 3 * num_cons.
2530 * On top of that one eqe shoule be added for
2531 * each XRC SRQ and SRQ.
2532 * - iWARP - can generate three async per QP (error
2533 * detected and qp in error) and an
2534 additional error per CQ. 4* num_cons.
2535 On top of that one eqe shoule be added for
2536 * each SRQ and XRC SRQ.
2537 * - ENet - There can be up to two events per VF. One
2538 * for VF-PF channel and another for VF FLR
2539 * initial cleanup. The number of VFs is
2540 * bounded by MAX_NUM_VFS_BB, and is much
2541 * smaller than RoCE's so we avoid exact
2542 * calculation.
2543 */
2544 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
2545 num_cons = ecore_cxt_get_proto_cid_count(
2546 p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
2547 num_cons *= 3;
2548 } else {
2549 num_cons = ecore_cxt_get_proto_cid_count(
2550 p_hwfn, PROTOCOLID_IWARP,
2551 OSAL_NULL);
2552 num_cons *= 4;
2553 }
2554 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2555 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2556 num_cons = ecore_cxt_get_proto_cid_count(
2557 p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
2558 n_eqes += 2 * num_cons;
2559 }
2560
2561 if (n_eqes > 0xFF00) {
2562 DP_ERR(p_hwfn, "EQs maxing out at 0xFF00 elements\n");
2563 n_eqes = 0xFF00;
2564 }
2565
2566 rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2567 if (rc)
2568 goto alloc_err;
2569
2570 rc = ecore_consq_alloc(p_hwfn);
2571 if (rc)
2572 goto alloc_err;
2573
2574 rc = ecore_l2_alloc(p_hwfn);
2575 if (rc != ECORE_SUCCESS)
2576 goto alloc_err;
2577
2578 #ifdef CONFIG_ECORE_LL2
2579 if (p_hwfn->using_ll2) {
2580 rc = ecore_ll2_alloc(p_hwfn);
2581 if (rc)
2582 goto alloc_err;
2583 }
2584 #endif
2585 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2586 rc = ecore_fcoe_alloc(p_hwfn);
2587 if (rc)
2588 goto alloc_err;
2589 }
2590
2591 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2592 rc = ecore_iscsi_alloc(p_hwfn);
2593 if (rc)
2594 goto alloc_err;
2595
2596 rc = ecore_ooo_alloc(p_hwfn);
2597 if (rc)
2598 goto alloc_err;
2599 }
2600 #ifdef CONFIG_ECORE_ROCE
2601 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2602 rc = ecore_rdma_info_alloc(p_hwfn);
2603 if (rc)
2604 goto alloc_err;
2605 }
2606 #endif
2607
2608 /* DMA info initialization */
2609 rc = ecore_dmae_info_alloc(p_hwfn);
2610 if (rc) {
2611 DP_NOTICE(p_hwfn, false,
2612 "Failed to allocate memory for dmae_info structure\n");
2613 goto alloc_err;
2614 }
2615
2616 /* DCBX initialization */
2617 rc = ecore_dcbx_info_alloc(p_hwfn);
2618 if (rc) {
2619 DP_NOTICE(p_hwfn, false,
2620 "Failed to allocate memory for dcbx structure\n");
2621 goto alloc_err;
2622 }
2623 }
2624
2625 rc = ecore_llh_alloc(p_dev);
2626 if (rc != ECORE_SUCCESS) {
2627 DP_NOTICE(p_dev, false,
2628 "Failed to allocate memory for the llh_info structure\n");
2629 goto alloc_err;
2630 }
2631
2632 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2633 sizeof(*p_dev->reset_stats));
2634 if (!p_dev->reset_stats) {
2635 DP_NOTICE(p_dev, false,
2636 "Failed to allocate reset statistics\n");
2637 goto alloc_no_mem;
2638 }
2639
2640 return ECORE_SUCCESS;
2641
2642 alloc_no_mem:
2643 rc = ECORE_NOMEM;
2644 alloc_err:
2645 ecore_resc_free(p_dev);
2646 return rc;
2647 }
2648
ecore_resc_setup(struct ecore_dev * p_dev)2649 void ecore_resc_setup(struct ecore_dev *p_dev)
2650 {
2651 int i;
2652
2653 if (IS_VF(p_dev)) {
2654 for_each_hwfn(p_dev, i)
2655 ecore_l2_setup(&p_dev->hwfns[i]);
2656 return;
2657 }
2658
2659 for_each_hwfn(p_dev, i) {
2660 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2661
2662 ecore_cxt_mngr_setup(p_hwfn);
2663 ecore_spq_setup(p_hwfn);
2664 ecore_eq_setup(p_hwfn);
2665 ecore_consq_setup(p_hwfn);
2666
2667 /* Read shadow of current MFW mailbox */
2668 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2669 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2670 p_hwfn->mcp_info->mfw_mb_cur,
2671 p_hwfn->mcp_info->mfw_mb_length);
2672
2673 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2674
2675 ecore_l2_setup(p_hwfn);
2676 ecore_iov_setup(p_hwfn);
2677 #ifdef CONFIG_ECORE_LL2
2678 if (p_hwfn->using_ll2)
2679 ecore_ll2_setup(p_hwfn);
2680 #endif
2681 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2682 ecore_fcoe_setup(p_hwfn);
2683
2684 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2685 ecore_iscsi_setup(p_hwfn);
2686 ecore_ooo_setup(p_hwfn);
2687 }
2688 }
2689 }
2690
2691 #define FINAL_CLEANUP_POLL_CNT (100)
2692 #define FINAL_CLEANUP_POLL_TIME (10)
ecore_final_cleanup(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 id,bool is_vf)2693 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2694 struct ecore_ptt *p_ptt,
2695 u16 id, bool is_vf)
2696 {
2697 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2698 enum _ecore_status_t rc = ECORE_TIMEOUT;
2699
2700 #ifndef ASIC_ONLY
2701 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2702 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2703 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2704 return ECORE_SUCCESS;
2705 }
2706 #endif
2707
2708 addr = GTT_BAR0_MAP_REG_USDM_RAM +
2709 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2710
2711 if (is_vf)
2712 id += 0x10;
2713
2714 command |= X_FINAL_CLEANUP_AGG_INT <<
2715 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2716 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2717 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2718 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2719
2720 /* Make sure notification is not set before initiating final cleanup */
2721 if (REG_RD(p_hwfn, addr)) {
2722 DP_NOTICE(p_hwfn, false,
2723 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2724 REG_WR(p_hwfn, addr, 0);
2725 }
2726
2727 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2728 "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2729 id, command);
2730
2731 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2732
2733 /* Poll until completion */
2734 while (!REG_RD(p_hwfn, addr) && count--)
2735 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2736
2737 if (REG_RD(p_hwfn, addr))
2738 rc = ECORE_SUCCESS;
2739 else
2740 DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
2741
2742 /* Cleanup afterwards */
2743 REG_WR(p_hwfn, addr, 0);
2744
2745 return rc;
2746 }
2747
ecore_calc_hw_mode(struct ecore_hwfn * p_hwfn)2748 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2749 {
2750 int hw_mode = 0;
2751
2752 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2753 hw_mode |= 1 << MODE_BB;
2754 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2755 hw_mode |= 1 << MODE_K2;
2756 } else if (ECORE_IS_E5(p_hwfn->p_dev)) {
2757 hw_mode |= 1 << MODE_E5;
2758 } else {
2759 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2760 p_hwfn->p_dev->type);
2761 return ECORE_INVAL;
2762 }
2763
2764 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
2765 switch (p_hwfn->p_dev->num_ports_in_engine) {
2766 case 1:
2767 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2768 break;
2769 case 2:
2770 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2771 break;
2772 case 4:
2773 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2774 break;
2775 default:
2776 DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
2777 p_hwfn->p_dev->num_ports_in_engine);
2778 return ECORE_INVAL;
2779 }
2780
2781 if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
2782 &p_hwfn->p_dev->mf_bits))
2783 hw_mode |= 1 << MODE_MF_SD;
2784 else
2785 hw_mode |= 1 << MODE_MF_SI;
2786
2787 #ifndef ASIC_ONLY
2788 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2789 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2790 hw_mode |= 1 << MODE_FPGA;
2791 } else {
2792 if (p_hwfn->p_dev->b_is_emul_full)
2793 hw_mode |= 1 << MODE_EMUL_FULL;
2794 else
2795 hw_mode |= 1 << MODE_EMUL_REDUCED;
2796 }
2797 } else
2798 #endif
2799 hw_mode |= 1 << MODE_ASIC;
2800
2801 if (ECORE_IS_CMT(p_hwfn->p_dev))
2802 hw_mode |= 1 << MODE_100G;
2803
2804 p_hwfn->hw_info.hw_mode = hw_mode;
2805
2806 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2807 "Configuring function for hw_mode: 0x%08x\n",
2808 p_hwfn->hw_info.hw_mode);
2809
2810 return ECORE_SUCCESS;
2811 }
2812
2813 #ifndef ASIC_ONLY
2814 /* MFW-replacement initializations for non-ASIC */
ecore_hw_init_chip(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2815 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2816 struct ecore_ptt *p_ptt)
2817 {
2818 struct ecore_dev *p_dev = p_hwfn->p_dev;
2819 u32 pl_hv = 1;
2820 int i;
2821
2822 if (CHIP_REV_IS_EMUL(p_dev)) {
2823 if (ECORE_IS_AH(p_dev))
2824 pl_hv |= 0x600;
2825 else if (ECORE_IS_E5(p_dev))
2826 ECORE_E5_MISSING_CODE;
2827 }
2828
2829 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2830
2831 if (CHIP_REV_IS_EMUL(p_dev) &&
2832 (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
2833 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2834 0x3ffffff);
2835
2836 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2837 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2838 if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2839 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2840
2841 if (CHIP_REV_IS_EMUL(p_dev)) {
2842 if (ECORE_IS_AH(p_dev)) {
2843 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2844 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2845 (p_dev->num_ports_in_engine >> 1));
2846
2847 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2848 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2849 } else if (ECORE_IS_E5(p_dev)) {
2850 ECORE_E5_MISSING_CODE;
2851 }
2852
2853 /* Poll on RBC */
2854 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2855 for (i = 0; i < 100; i++) {
2856 OSAL_UDELAY(50);
2857 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2858 break;
2859 }
2860 if (i == 100)
2861 DP_NOTICE(p_hwfn, true,
2862 "RBC done failed to complete in PSWRQ2\n");
2863 }
2864
2865 return ECORE_SUCCESS;
2866 }
2867 #endif
2868
2869 /* Init run time data for all PFs and their VFs on an engine.
2870 * TBD - for VFs - Once we have parent PF info for each VF in
2871 * shmem available as CAU requires knowledge of parent PF for each VF.
2872 */
ecore_init_cau_rt_data(struct ecore_dev * p_dev)2873 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2874 {
2875 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2876 int i, igu_sb_id;
2877
2878 for_each_hwfn(p_dev, i) {
2879 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2880 struct ecore_igu_info *p_igu_info;
2881 struct ecore_igu_block *p_block;
2882 struct cau_sb_entry sb_entry;
2883
2884 p_igu_info = p_hwfn->hw_info.p_igu_info;
2885
2886 for (igu_sb_id = 0;
2887 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2888 igu_sb_id++) {
2889 p_block = &p_igu_info->entry[igu_sb_id];
2890
2891 if (!p_block->is_pf)
2892 continue;
2893
2894 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2895 p_block->function_id,
2896 0, 0);
2897 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2898 sb_entry);
2899 }
2900 }
2901 }
2902
ecore_init_cache_line_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2903 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2904 struct ecore_ptt *p_ptt)
2905 {
2906 u32 val, wr_mbs, cache_line_size;
2907
2908 val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2909 switch (val) {
2910 case 0:
2911 wr_mbs = 128;
2912 break;
2913 case 1:
2914 wr_mbs = 256;
2915 break;
2916 case 2:
2917 wr_mbs = 512;
2918 break;
2919 default:
2920 DP_INFO(p_hwfn,
2921 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2922 val);
2923 return;
2924 }
2925
2926 cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2927 switch (cache_line_size) {
2928 case 32:
2929 val = 0;
2930 break;
2931 case 64:
2932 val = 1;
2933 break;
2934 case 128:
2935 val = 2;
2936 break;
2937 case 256:
2938 val = 3;
2939 break;
2940 default:
2941 DP_INFO(p_hwfn,
2942 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2943 cache_line_size);
2944 }
2945
2946 if (OSAL_CACHE_LINE_SIZE > wr_mbs)
2947 DP_INFO(p_hwfn,
2948 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2949 OSAL_CACHE_LINE_SIZE, wr_mbs);
2950
2951 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2952 if (val > 0) {
2953 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2954 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2955 }
2956 }
2957
ecore_hw_init_common(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,int hw_mode)2958 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2959 struct ecore_ptt *p_ptt,
2960 int hw_mode)
2961 {
2962 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2963 struct ecore_dev *p_dev = p_hwfn->p_dev;
2964 u8 vf_id, max_num_vfs;
2965 u16 num_pfs, pf_id;
2966 u32 concrete_fid;
2967 enum _ecore_status_t rc = ECORE_SUCCESS;
2968
2969 ecore_init_cau_rt_data(p_dev);
2970
2971 /* Program GTT windows */
2972 ecore_gtt_init(p_hwfn, p_ptt);
2973
2974 #ifndef ASIC_ONLY
2975 if (CHIP_REV_IS_EMUL(p_dev)) {
2976 rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2977 if (rc != ECORE_SUCCESS)
2978 return rc;
2979 }
2980 #endif
2981
2982 if (p_hwfn->mcp_info) {
2983 if (p_hwfn->mcp_info->func_info.bandwidth_max)
2984 qm_info->pf_rl_en = 1;
2985 if (p_hwfn->mcp_info->func_info.bandwidth_min)
2986 qm_info->pf_wfq_en = 1;
2987 }
2988
2989 ecore_qm_common_rt_init(p_hwfn,
2990 p_dev->num_ports_in_engine,
2991 qm_info->max_phys_tcs_per_port,
2992 qm_info->pf_rl_en, qm_info->pf_wfq_en,
2993 qm_info->vport_rl_en, qm_info->vport_wfq_en,
2994 qm_info->qm_port_params);
2995
2996 ecore_cxt_hw_init_common(p_hwfn);
2997
2998 ecore_init_cache_line_size(p_hwfn, p_ptt);
2999
3000 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
3001 hw_mode);
3002 if (rc != ECORE_SUCCESS)
3003 return rc;
3004
3005 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
3006 * need to decide with which value, maybe runtime
3007 */
3008 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
3009 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
3010
3011 if (ECORE_IS_BB(p_dev)) {
3012 /* Workaround clears ROCE search for all functions to prevent
3013 * involving non initialized function in processing ROCE packet.
3014 */
3015 num_pfs = NUM_OF_ENG_PFS(p_dev);
3016 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
3017 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
3018 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3019 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3020 }
3021 /* pretend to original PF */
3022 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3023 }
3024
3025 /* Workaround for avoiding CCFC execution error when getting packets
3026 * with CRC errors, and allowing instead the invoking of the FW error
3027 * handler.
3028 * This is not done inside the init tool since it currently can't
3029 * perform a pretending to VFs.
3030 */
3031 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
3032 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
3033 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
3034 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
3035 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
3036 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
3037 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
3038 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
3039 }
3040 /* pretend to original PF */
3041 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3042
3043 return rc;
3044 }
3045
3046 #ifndef ASIC_ONLY
3047 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
3048 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
3049
3050 #define PMEG_IF_BYTE_COUNT 8
3051
ecore_wr_nw_port(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 addr,u64 data,u8 reg_type,u8 port)3052 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
3053 struct ecore_ptt *p_ptt,
3054 u32 addr,
3055 u64 data,
3056 u8 reg_type,
3057 u8 port)
3058 {
3059 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3060 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
3061 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
3062 (8 << PMEG_IF_BYTE_COUNT),
3063 (reg_type << 25) | (addr << 8) | port,
3064 (u32)((data >> 32) & 0xffffffff),
3065 (u32)(data & 0xffffffff));
3066
3067 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
3068 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
3069 0xffff00fe) |
3070 (8 << PMEG_IF_BYTE_COUNT));
3071 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
3072 (reg_type << 25) | (addr << 8) | port);
3073 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
3074 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
3075 (data >> 32) & 0xffffffff);
3076 }
3077
3078 #define XLPORT_MODE_REG (0x20a)
3079 #define XLPORT_MAC_CONTROL (0x210)
3080 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3081 #define XLPORT_ENABLE_REG (0x20b)
3082
3083 #define XLMAC_CTRL (0x600)
3084 #define XLMAC_MODE (0x601)
3085 #define XLMAC_RX_MAX_SIZE (0x608)
3086 #define XLMAC_TX_CTRL (0x604)
3087 #define XLMAC_PAUSE_CTRL (0x60d)
3088 #define XLMAC_PFC_CTRL (0x60e)
3089
ecore_emul_link_init_bb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3090 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3091 struct ecore_ptt *p_ptt)
3092 {
3093 u8 loopback = 0, port = p_hwfn->port_id * 2;
3094
3095 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3096
3097 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
3098 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
3099 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3100 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3101 0x40, 0, port); /*XLMAC: SOFT RESET */
3102 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
3103 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
3104 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
3105 0x3fff, 0, port); /* XLMAC: Max Size */
3106 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3107 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3108 0, port);
3109 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
3110 0x7c000, 0, port);
3111 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3112 0x30ffffc000ULL, 0, port);
3113 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
3114 0, port); /* XLMAC: TX_EN, RX_EN */
3115 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
3116 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3117 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
3118 1, 0, port); /* Enabled Parallel PFC interface */
3119 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
3120 0xf, 1, port); /* XLPORT port enable */
3121 }
3122
ecore_emul_link_init_ah_e5(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3123 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3124 struct ecore_ptt *p_ptt)
3125 {
3126 u8 port = p_hwfn->port_id;
3127 u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3128
3129 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3130
3131 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3132 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3133 (port <<
3134 CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3135 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3136
3137 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3138 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3139
3140 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3141 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3142
3143 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3144 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3145
3146 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3147 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3148
3149 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3150 (0xA <<
3151 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3152 (8 <<
3153 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3154
3155 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3156 0xa853);
3157 }
3158
ecore_emul_link_init(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3159 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3160 struct ecore_ptt *p_ptt)
3161 {
3162 if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
3163 ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3164 else /* BB */
3165 ecore_emul_link_init_bb(p_hwfn, p_ptt);
3166
3167 return;
3168 }
3169
ecore_link_init_bb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 port)3170 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3171 struct ecore_ptt *p_ptt, u8 port)
3172 {
3173 int port_offset = port ? 0x800 : 0;
3174 u32 xmac_rxctrl = 0;
3175
3176 /* Reset of XMAC */
3177 /* FIXME: move to common start */
3178 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
3179 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
3180 OSAL_MSLEEP(1);
3181 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3182 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
3183
3184 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3185
3186 /* Set the number of ports on the Warp Core to 10G */
3187 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3188
3189 /* Soft reset of XMAC */
3190 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3191 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3192 OSAL_MSLEEP(1);
3193 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3194 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3195
3196 /* FIXME: move to common end */
3197 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3198 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3199
3200 /* Set Max packet size: initialize XMAC block register for port 0 */
3201 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3202
3203 /* CRC append for Tx packets: init XMAC block register for port 1 */
3204 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3205
3206 /* Enable TX and RX: initialize XMAC block register for port 1 */
3207 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3208 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3209 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3210 XMAC_REG_RX_CTRL_BB + port_offset);
3211 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3212 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3213 }
3214 #endif
3215
3216 static enum _ecore_status_t
ecore_hw_init_dpi_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 pwm_region_size,u32 n_cpus)3217 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3218 struct ecore_ptt *p_ptt,
3219 u32 pwm_region_size,
3220 u32 n_cpus)
3221 {
3222 u32 dpi_bit_shift, dpi_count, dpi_page_size;
3223 u32 min_dpis;
3224 u32 n_wids;
3225
3226 /* Calculate DPI size
3227 * ------------------
3228 * The PWM region contains Doorbell Pages. The first is reserverd for
3229 * the kernel for, e.g, L2. The others are free to be used by non-
3230 * trusted applications, typically from user space. Each page, called a
3231 * doorbell page is sectioned into windows that allow doorbells to be
3232 * issued in parallel by the kernel/application. The size of such a
3233 * window (a.k.a. WID) is 1kB.
3234 * Summary:
3235 * 1kB WID x N WIDS = DPI page size
3236 * DPI page size x N DPIs = PWM region size
3237 * Notes:
3238 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3239 * in order to ensure that two applications won't share the same page.
3240 * It also must contain at least one WID per CPU to allow parallelism.
3241 * It also must be a power of 2, since it is stored as a bit shift.
3242 *
3243 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3244 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3245 * containing 4 WIDs.
3246 */
3247 n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3248 dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3249 dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
3250 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3251 dpi_count = pwm_region_size / dpi_page_size;
3252
3253 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3254 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3255
3256 /* Update hwfn */
3257 p_hwfn->dpi_size = dpi_page_size;
3258 p_hwfn->dpi_count = dpi_count;
3259
3260 /* Update registers */
3261 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3262
3263 if (dpi_count < min_dpis)
3264 return ECORE_NORESOURCES;
3265
3266 return ECORE_SUCCESS;
3267 }
3268
3269 enum ECORE_ROCE_EDPM_MODE {
3270 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
3271 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
3272 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
3273 };
3274
3275 static enum _ecore_status_t
ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3276 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3277 struct ecore_ptt *p_ptt)
3278 {
3279 struct ecore_rdma_pf_params *p_rdma_pf_params;
3280 u32 pwm_regsize, norm_regsize;
3281 u32 non_pwm_conn, min_addr_reg1;
3282 u32 db_bar_size, n_cpus = 1;
3283 u32 roce_edpm_mode;
3284 u32 pf_dems_shift;
3285 enum _ecore_status_t rc = ECORE_SUCCESS;
3286 u8 cond;
3287
3288 db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3289 if (ECORE_IS_CMT(p_hwfn->p_dev))
3290 db_bar_size /= 2;
3291
3292 /* Calculate doorbell regions
3293 * -----------------------------------
3294 * The doorbell BAR is made of two regions. The first is called normal
3295 * region and the second is called PWM region. In the normal region
3296 * each ICID has its own set of addresses so that writing to that
3297 * specific address identifies the ICID. In the Process Window Mode
3298 * region the ICID is given in the data written to the doorbell. The
3299 * above per PF register denotes the offset in the doorbell BAR in which
3300 * the PWM region begins.
3301 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3302 * non-PWM connection. The calculation below computes the total non-PWM
3303 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3304 * in units of 4,096 bytes.
3305 */
3306 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3307 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3308 OSAL_NULL) +
3309 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3310 OSAL_NULL);
3311 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
3312 min_addr_reg1 = norm_regsize / 4096;
3313 pwm_regsize = db_bar_size - norm_regsize;
3314
3315 /* Check that the normal and PWM sizes are valid */
3316 if (db_bar_size < norm_regsize) {
3317 DP_ERR(p_hwfn->p_dev,
3318 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3319 db_bar_size, norm_regsize);
3320 return ECORE_NORESOURCES;
3321 }
3322 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3323 DP_ERR(p_hwfn->p_dev,
3324 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3325 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3326 norm_regsize);
3327 return ECORE_NORESOURCES;
3328 }
3329
3330 p_rdma_pf_params = &p_hwfn->pf_params.rdma_pf_params;
3331
3332 /* Calculate number of DPIs */
3333 if (ECORE_IS_IWARP_PERSONALITY(p_hwfn))
3334 p_rdma_pf_params->roce_edpm_mode = ECORE_ROCE_EDPM_MODE_DISABLE;
3335
3336 if (p_rdma_pf_params->roce_edpm_mode <= ECORE_ROCE_EDPM_MODE_DISABLE) {
3337 roce_edpm_mode = p_rdma_pf_params->roce_edpm_mode;
3338 } else {
3339 DP_ERR(p_hwfn->p_dev,
3340 "roce edpm mode was configured to an illegal value of %u. Resetting it to 0-Enable EDPM if BAR size is adequate\n",
3341 p_rdma_pf_params->roce_edpm_mode);
3342 roce_edpm_mode = 0;
3343 }
3344
3345 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3346 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3347 /* Either EDPM is mandatory, or we are attempting to allocate a
3348 * WID per CPU.
3349 */
3350 n_cpus = OSAL_NUM_CPUS();
3351 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3352 }
3353
3354 cond = ((rc != ECORE_SUCCESS) &&
3355 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3356 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3357 if (cond || p_hwfn->dcbx_no_edpm) {
3358 /* Either EDPM is disabled from user configuration, or it is
3359 * disabled via DCBx, or it is not mandatory and we failed to
3360 * allocated a WID per CPU.
3361 */
3362 n_cpus = 1;
3363 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3364
3365 #ifdef CONFIG_ECORE_ROCE
3366 /* If we entered this flow due to DCBX then the DPM register is
3367 * already configured.
3368 */
3369 if (cond)
3370 ecore_rdma_dpm_bar(p_hwfn, p_ptt);
3371 #endif
3372 }
3373
3374 p_hwfn->wid_count = (u16)n_cpus;
3375
3376 /* Check return codes from above calls */
3377 if (rc != ECORE_SUCCESS) {
3378 #ifndef LINUX_REMOVE
3379 DP_ERR(p_hwfn,
3380 "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via user configuration min_dpis or by disabling EDPM via user configuration roce_edpm_mode\n",
3381 p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3382 ECORE_MIN_DPIS);
3383 #else
3384 DP_ERR(p_hwfn,
3385 "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via the module parameter min_rdma_dpis or by disabling EDPM by setting the module parameter roce_edpm to 2\n",
3386 p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3387 ECORE_MIN_DPIS);
3388 #endif
3389 DP_ERR(p_hwfn,
3390 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3391 norm_regsize, pwm_regsize, p_hwfn->dpi_size,
3392 p_hwfn->dpi_count,
3393 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3394 "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3395
3396 return ECORE_NORESOURCES;
3397 }
3398
3399 DP_INFO(p_hwfn,
3400 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3401 norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
3402 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3403 "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3404
3405 /* Update hwfn */
3406 p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
3407 * calculate the doorbell
3408 * address
3409 */
3410
3411 /* Update registers */
3412 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3413 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3414 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3415 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3416
3417 return ECORE_SUCCESS;
3418 }
3419
ecore_hw_init_port(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,int hw_mode)3420 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3421 struct ecore_ptt *p_ptt,
3422 int hw_mode)
3423 {
3424 enum _ecore_status_t rc = ECORE_SUCCESS;
3425
3426 /* In CMT the gate should be cleared by the 2nd hwfn */
3427 if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3428 STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3429
3430 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3431 hw_mode);
3432 if (rc != ECORE_SUCCESS)
3433 return rc;
3434
3435 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3436
3437 #ifndef ASIC_ONLY
3438 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3439 return ECORE_SUCCESS;
3440
3441 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3442 if (ECORE_IS_AH(p_hwfn->p_dev))
3443 return ECORE_SUCCESS;
3444 else if (ECORE_IS_BB(p_hwfn->p_dev))
3445 ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3446 else /* E5 */
3447 ECORE_E5_MISSING_CODE;
3448 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3449 if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3450 /* Activate OPTE in CMT */
3451 u32 val;
3452
3453 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3454 val |= 0x10;
3455 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3456 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3457 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3458 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3459 ecore_wr(p_hwfn, p_ptt,
3460 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3461 ecore_wr(p_hwfn, p_ptt,
3462 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3463 ecore_wr(p_hwfn, p_ptt,
3464 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3465 0x55555555);
3466 }
3467
3468 ecore_emul_link_init(p_hwfn, p_ptt);
3469 } else {
3470 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3471 }
3472 #endif
3473
3474 return rc;
3475 }
3476
3477 static enum _ecore_status_t
ecore_hw_init_pf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,int hw_mode,struct ecore_hw_init_params * p_params)3478 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3479 int hw_mode, struct ecore_hw_init_params *p_params)
3480 {
3481 u8 rel_pf_id = p_hwfn->rel_pf_id;
3482 u32 prs_reg;
3483 enum _ecore_status_t rc = ECORE_SUCCESS;
3484 u16 ctrl;
3485 int pos;
3486
3487 if (p_hwfn->mcp_info) {
3488 struct ecore_mcp_function_info *p_info;
3489
3490 p_info = &p_hwfn->mcp_info->func_info;
3491 if (p_info->bandwidth_min)
3492 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3493
3494 /* Update rate limit once we'll actually have a link */
3495 p_hwfn->qm_info.pf_rl = 100000;
3496 }
3497 ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3498
3499 ecore_int_igu_init_rt(p_hwfn);
3500
3501 /* Set VLAN in NIG if needed */
3502 if (hw_mode & (1 << MODE_MF_SD)) {
3503 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3504 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3505 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3506 p_hwfn->hw_info.ovlan);
3507
3508 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3509 "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3510 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3511 1);
3512 }
3513
3514 /* Enable classification by MAC if needed */
3515 if (hw_mode & (1 << MODE_MF_SI)) {
3516 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
3517 STORE_RT_REG(p_hwfn,
3518 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
3519 }
3520
3521 /* Protocl Configuration - @@@TBD - should we set 0 otherwise?*/
3522 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3523 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3524 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3525 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3526 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3527
3528 /* perform debug configuration when chip is out of reset */
3529 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3530
3531 /* Sanity check before the PF init sequence that uses DMAE */
3532 rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3533 if (rc)
3534 return rc;
3535
3536 /* PF Init sequence */
3537 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3538 if (rc)
3539 return rc;
3540
3541 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3542 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3543 if (rc)
3544 return rc;
3545
3546 /* Pure runtime initializations - directly to the HW */
3547 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3548
3549 /* PCI relaxed ordering is generally beneficial for performance,
3550 * but can hurt performance or lead to instability on some setups.
3551 * If management FW is taking care of it go with that, otherwise
3552 * disable to be on the safe side.
3553 */
3554 pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3555 if (!pos) {
3556 DP_NOTICE(p_hwfn, true,
3557 "Failed to find the PCI Express Capability structure in the PCI config space\n");
3558 return ECORE_IO;
3559 }
3560
3561 OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3562
3563 if (p_params->pci_rlx_odr_mode == ECORE_ENABLE_RLX_ODR) {
3564 ctrl |= PCI_EXP_DEVCTL_RELAX_EN;
3565 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3566 pos + PCI_EXP_DEVCTL, ctrl);
3567 } else if (p_params->pci_rlx_odr_mode == ECORE_DISABLE_RLX_ODR) {
3568 ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3569 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3570 pos + PCI_EXP_DEVCTL, ctrl);
3571 } else if (ecore_mcp_rlx_odr_supported(p_hwfn)) {
3572 DP_INFO(p_hwfn, "PCI relax ordering configured by MFW\n");
3573 } else {
3574 ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3575 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3576 pos + PCI_EXP_DEVCTL, ctrl);
3577 }
3578
3579 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3580 if (rc != ECORE_SUCCESS)
3581 return rc;
3582
3583 /* Use the leading hwfn since in CMT only NIG #0 is operational */
3584 if (IS_LEAD_HWFN(p_hwfn)) {
3585 rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3586 p_params->avoid_eng_affin);
3587 if (rc != ECORE_SUCCESS)
3588 return rc;
3589 }
3590
3591 if (p_params->b_hw_start) {
3592 /* enable interrupts */
3593 rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3594 if (rc != ECORE_SUCCESS)
3595 return rc;
3596
3597 /* send function start command */
3598 rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3599 p_params->allow_npar_tx_switch);
3600 if (rc) {
3601 DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
3602 return rc;
3603 }
3604 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3605 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3606 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3607
3608 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3609 {
3610 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3611 (1 << 2));
3612 ecore_wr(p_hwfn, p_ptt,
3613 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3614 0x100);
3615 }
3616 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3617 "PRS_REG_SEARCH registers after start PFn\n");
3618 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3619 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3620 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3621 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3622 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3623 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3624 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3625 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3626 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3627 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3628 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3629 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3630 prs_reg = ecore_rd(p_hwfn, p_ptt,
3631 PRS_REG_SEARCH_TCP_FIRST_FRAG);
3632 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3633 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3634 prs_reg);
3635 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3636 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3637 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3638 }
3639 return ECORE_SUCCESS;
3640 }
3641
ecore_pglueb_set_pfid_enable(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool b_enable)3642 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3643 struct ecore_ptt *p_ptt,
3644 bool b_enable)
3645 {
3646 u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3647
3648 /* Configure the PF's internal FID_enable for master transactions */
3649 ecore_wr(p_hwfn, p_ptt,
3650 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3651
3652 /* Wait until value is set - try for 1 second every 50us */
3653 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3654 val = ecore_rd(p_hwfn, p_ptt,
3655 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3656 if (val == set_val)
3657 break;
3658
3659 OSAL_UDELAY(50);
3660 }
3661
3662 if (val != set_val) {
3663 DP_NOTICE(p_hwfn, true,
3664 "PFID_ENABLE_MASTER wasn't changed after a second\n");
3665 return ECORE_UNKNOWN_ERROR;
3666 }
3667
3668 return ECORE_SUCCESS;
3669 }
3670
ecore_reset_mb_shadow(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_main_ptt)3671 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3672 struct ecore_ptt *p_main_ptt)
3673 {
3674 /* Read shadow of current MFW mailbox */
3675 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3676 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3677 p_hwfn->mcp_info->mfw_mb_cur,
3678 p_hwfn->mcp_info->mfw_mb_length);
3679 }
3680
3681 static enum _ecore_status_t
ecore_fill_load_req_params(struct ecore_hwfn * p_hwfn,struct ecore_load_req_params * p_load_req,struct ecore_drv_load_params * p_drv_load)3682 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3683 struct ecore_load_req_params *p_load_req,
3684 struct ecore_drv_load_params *p_drv_load)
3685 {
3686 /* Make sure that if ecore-client didn't provide inputs, all the
3687 * expected defaults are indeed zero.
3688 */
3689 OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3690 OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3691 OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3692
3693 OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3694
3695 if (p_drv_load == OSAL_NULL)
3696 goto out;
3697
3698 p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3699 ECORE_DRV_ROLE_KDUMP :
3700 ECORE_DRV_ROLE_OS;
3701 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3702 p_load_req->override_force_load = p_drv_load->override_force_load;
3703
3704 /* Old MFW versions don't support timeout values other than default and
3705 * none, so these values are replaced according to the fall-back action.
3706 */
3707
3708 if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3709 p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3710 (p_hwfn->mcp_info->capabilities &
3711 FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3712 p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3713 goto out;
3714 }
3715
3716 switch (p_drv_load->mfw_timeout_fallback) {
3717 case ECORE_TO_FALLBACK_TO_NONE:
3718 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3719 break;
3720 case ECORE_TO_FALLBACK_TO_DEFAULT:
3721 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3722 break;
3723 case ECORE_TO_FALLBACK_FAIL_LOAD:
3724 DP_NOTICE(p_hwfn, false,
3725 "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3726 p_drv_load->mfw_timeout_val,
3727 ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3728 ECORE_LOAD_REQ_LOCK_TO_NONE);
3729 return ECORE_ABORTED;
3730 }
3731
3732 DP_INFO(p_hwfn,
3733 "Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3734 p_drv_load->mfw_timeout_val,
3735 (p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3736 "default" : "none",
3737 p_load_req->timeout_val);
3738 out:
3739 return ECORE_SUCCESS;
3740 }
3741
ecore_vf_start(struct ecore_hwfn * p_hwfn,struct ecore_hw_init_params * p_params)3742 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3743 struct ecore_hw_init_params *p_params)
3744 {
3745 if (p_params->p_tunn) {
3746 ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3747 ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3748 }
3749
3750 p_hwfn->b_int_enabled = 1;
3751
3752 return ECORE_SUCCESS;
3753 }
3754
ecore_pglueb_clear_err(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3755 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3756 struct ecore_ptt *p_ptt)
3757 {
3758 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3759 1 << p_hwfn->abs_pf_id);
3760 }
3761
ecore_hw_init(struct ecore_dev * p_dev,struct ecore_hw_init_params * p_params)3762 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3763 struct ecore_hw_init_params *p_params)
3764 {
3765 struct ecore_load_req_params load_req_params;
3766 u32 load_code, resp, param, drv_mb_param;
3767 bool b_default_mtu = true;
3768 struct ecore_hwfn *p_hwfn;
3769 enum _ecore_status_t rc = ECORE_SUCCESS, cancel_load;
3770 u16 ether_type;
3771 int i;
3772
3773 if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3774 DP_NOTICE(p_dev, false,
3775 "MSI mode is not supported for CMT devices\n");
3776 return ECORE_INVAL;
3777 }
3778
3779 if (IS_PF(p_dev)) {
3780 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3781 if (rc != ECORE_SUCCESS)
3782 return rc;
3783 }
3784
3785 for_each_hwfn(p_dev, i) {
3786 p_hwfn = &p_dev->hwfns[i];
3787
3788 /* If management didn't provide a default, set one of our own */
3789 if (!p_hwfn->hw_info.mtu) {
3790 p_hwfn->hw_info.mtu = 1500;
3791 b_default_mtu = false;
3792 }
3793
3794 if (IS_VF(p_dev)) {
3795 ecore_vf_start(p_hwfn, p_params);
3796 continue;
3797 }
3798
3799 rc = ecore_calc_hw_mode(p_hwfn);
3800 if (rc != ECORE_SUCCESS)
3801 return rc;
3802
3803 if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3804 &p_dev->mf_bits) ||
3805 OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3806 &p_dev->mf_bits))) {
3807 if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3808 &p_dev->mf_bits))
3809 ether_type = ETH_P_8021Q;
3810 else
3811 ether_type = ETH_P_8021AD;
3812 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3813 ether_type);
3814 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3815 ether_type);
3816 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3817 ether_type);
3818 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3819 ether_type);
3820 }
3821
3822 rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3823 p_params->p_drv_load_params);
3824 if (rc != ECORE_SUCCESS)
3825 return rc;
3826
3827 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3828 &load_req_params);
3829 if (rc != ECORE_SUCCESS) {
3830 DP_NOTICE(p_hwfn, false,
3831 "Failed sending a LOAD_REQ command\n");
3832 return rc;
3833 }
3834
3835 load_code = load_req_params.load_code;
3836 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3837 "Load request was sent. Load code: 0x%x\n",
3838 load_code);
3839
3840 ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3841
3842 /* CQ75580:
3843 * When coming back from hibernate state, the registers from
3844 * which shadow is read initially are not initialized. It turns
3845 * out that these registers get initialized during the call to
3846 * ecore_mcp_load_req request. So we need to reread them here
3847 * to get the proper shadow register value.
3848 * Note: This is a workaround for the missing MFW
3849 * initialization. It may be removed once the implementation
3850 * is done.
3851 */
3852 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3853
3854 /* Only relevant for recovery:
3855 * Clear the indication after the LOAD_REQ command is responded
3856 * by the MFW.
3857 */
3858 p_dev->recov_in_prog = false;
3859
3860 if (!qm_lock_ref_cnt) {
3861 #ifdef CONFIG_ECORE_LOCK_ALLOC
3862 rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3863 if (rc) {
3864 DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3865 goto qm_lock_fail;
3866 }
3867 #endif
3868 OSAL_SPIN_LOCK_INIT(&qm_lock);
3869 }
3870 ++qm_lock_ref_cnt;
3871
3872 /* Clean up chip from previous driver if such remains exist.
3873 * This is not needed when the PF is the first one on the
3874 * engine, since afterwards we are going to init the FW.
3875 */
3876 if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3877 rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3878 p_hwfn->rel_pf_id, false);
3879 if (rc != ECORE_SUCCESS) {
3880 ecore_hw_err_notify(p_hwfn,
3881 ECORE_HW_ERR_RAMROD_FAIL);
3882 goto load_err;
3883 }
3884 }
3885
3886 /* Log and clear previous pglue_b errors if such exist */
3887 ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3888
3889 /* Enable the PF's internal FID_enable in the PXP */
3890 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3891 true);
3892 if (rc != ECORE_SUCCESS)
3893 goto load_err;
3894
3895 /* Clear the pglue_b was_error indication.
3896 * In E4 it must be done after the BME and the internal
3897 * FID_enable for the PF are set, since VDMs may cause the
3898 * indication to be set again.
3899 */
3900 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3901
3902 switch (load_code) {
3903 case FW_MSG_CODE_DRV_LOAD_ENGINE:
3904 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3905 p_hwfn->hw_info.hw_mode);
3906 if (rc != ECORE_SUCCESS)
3907 break;
3908 /* Fall into */
3909 case FW_MSG_CODE_DRV_LOAD_PORT:
3910 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3911 p_hwfn->hw_info.hw_mode);
3912 if (rc != ECORE_SUCCESS)
3913 break;
3914 /* Fall into */
3915 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3916 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3917 p_hwfn->hw_info.hw_mode,
3918 p_params);
3919 break;
3920 default:
3921 DP_NOTICE(p_hwfn, false,
3922 "Unexpected load code [0x%08x]", load_code);
3923 rc = ECORE_NOTIMPL;
3924 break;
3925 }
3926
3927 if (rc != ECORE_SUCCESS) {
3928 DP_NOTICE(p_hwfn, false,
3929 "init phase failed for loadcode 0x%x (rc %d)\n",
3930 load_code, rc);
3931 goto load_err;
3932 }
3933
3934 rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3935 if (rc != ECORE_SUCCESS) {
3936 DP_NOTICE(p_hwfn, false, "Sending load done failed, rc = %d\n", rc);
3937 if (rc == ECORE_NOMEM) {
3938 DP_NOTICE(p_hwfn, false,
3939 "Sending load done was failed due to memory allocation failure\n");
3940 goto load_err;
3941 }
3942 return rc;
3943 }
3944
3945 /* send DCBX attention request command */
3946 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3947 "sending phony dcbx set command to trigger DCBx attention handling\n");
3948 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3949 DRV_MSG_CODE_SET_DCBX,
3950 1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3951 ¶m);
3952 if (rc != ECORE_SUCCESS) {
3953 DP_NOTICE(p_hwfn, false,
3954 "Failed to send DCBX attention request\n");
3955 return rc;
3956 }
3957
3958 p_hwfn->hw_init_done = true;
3959 }
3960
3961 if (IS_PF(p_dev)) {
3962 /* Get pre-negotiated values for stag, bandwidth etc. */
3963 p_hwfn = ECORE_LEADING_HWFN(p_dev);
3964 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3965 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3966 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3967 DRV_MSG_CODE_GET_OEM_UPDATES,
3968 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3969 &resp, ¶m);
3970 if (rc != ECORE_SUCCESS)
3971 DP_NOTICE(p_hwfn, false,
3972 "Failed to send GET_OEM_UPDATES attention request\n");
3973 }
3974
3975 if (IS_PF(p_dev)) {
3976 p_hwfn = ECORE_LEADING_HWFN(p_dev);
3977 drv_mb_param = STORM_FW_VERSION;
3978 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3979 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3980 drv_mb_param, &resp, ¶m);
3981 if (rc != ECORE_SUCCESS)
3982 DP_INFO(p_hwfn, "Failed to update firmware version\n");
3983
3984 if (!b_default_mtu) {
3985 rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3986 p_hwfn->hw_info.mtu);
3987 if (rc != ECORE_SUCCESS)
3988 DP_INFO(p_hwfn, "Failed to update default mtu\n");
3989 }
3990
3991 rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3992 p_hwfn->p_main_ptt,
3993 ECORE_OV_DRIVER_STATE_DISABLED);
3994 if (rc != ECORE_SUCCESS)
3995 DP_INFO(p_hwfn, "Failed to update driver state\n");
3996
3997 rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3998 ECORE_OV_ESWITCH_VEB);
3999 if (rc != ECORE_SUCCESS)
4000 DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
4001 }
4002
4003 return rc;
4004
4005 load_err:
4006 --qm_lock_ref_cnt;
4007 #ifdef CONFIG_ECORE_LOCK_ALLOC
4008 if (!qm_lock_ref_cnt)
4009 OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4010 qm_lock_fail:
4011 #endif
4012 /* The MFW load lock should be released also when initialization fails.
4013 * If supported, use a cancel_load request to update the MFW with the
4014 * load failure.
4015 */
4016 cancel_load = ecore_mcp_cancel_load_req(p_hwfn, p_hwfn->p_main_ptt);
4017 if (cancel_load == ECORE_NOTIMPL) {
4018 DP_INFO(p_hwfn,
4019 "Send a load done request instead of cancel load\n");
4020 ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
4021 }
4022 return rc;
4023 }
4024
4025 #define ECORE_HW_STOP_RETRY_LIMIT (10)
ecore_hw_timers_stop(struct ecore_dev * p_dev,struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4026 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
4027 struct ecore_hwfn *p_hwfn,
4028 struct ecore_ptt *p_ptt)
4029 {
4030 int i;
4031
4032 /* close timers */
4033 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
4034 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
4035 for (i = 0;
4036 i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
4037 i++) {
4038 if ((!ecore_rd(p_hwfn, p_ptt,
4039 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
4040 (!ecore_rd(p_hwfn, p_ptt,
4041 TM_REG_PF_SCAN_ACTIVE_TASK)))
4042 break;
4043
4044 /* Dependent on number of connection/tasks, possibly
4045 * 1ms sleep is required between polls
4046 */
4047 OSAL_MSLEEP(1);
4048 }
4049
4050 if (i < ECORE_HW_STOP_RETRY_LIMIT)
4051 return;
4052
4053 DP_NOTICE(p_hwfn, false,
4054 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
4055 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
4056 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
4057 }
4058
ecore_hw_timers_stop_all(struct ecore_dev * p_dev)4059 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
4060 {
4061 int j;
4062
4063 for_each_hwfn(p_dev, j) {
4064 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4065 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4066
4067 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4068 }
4069 }
4070
ecore_verify_reg_val(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 addr,u32 expected_val)4071 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4072 struct ecore_ptt *p_ptt,
4073 u32 addr, u32 expected_val)
4074 {
4075 u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4076
4077 if (val != expected_val) {
4078 DP_NOTICE(p_hwfn, true,
4079 "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4080 addr, val, expected_val);
4081 return ECORE_UNKNOWN_ERROR;
4082 }
4083
4084 return ECORE_SUCCESS;
4085 }
4086
ecore_hw_stop(struct ecore_dev * p_dev)4087 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4088 {
4089 struct ecore_hwfn *p_hwfn;
4090 struct ecore_ptt *p_ptt;
4091 enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4092 int j;
4093
4094 for_each_hwfn(p_dev, j) {
4095 p_hwfn = &p_dev->hwfns[j];
4096 p_ptt = p_hwfn->p_main_ptt;
4097
4098 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4099
4100 if (IS_VF(p_dev)) {
4101 ecore_vf_pf_int_cleanup(p_hwfn);
4102 rc = ecore_vf_pf_reset(p_hwfn);
4103 if (rc != ECORE_SUCCESS) {
4104 DP_NOTICE(p_hwfn, true,
4105 "ecore_vf_pf_reset failed. rc = %d.\n",
4106 rc);
4107 rc2 = ECORE_UNKNOWN_ERROR;
4108 }
4109 continue;
4110 }
4111
4112 /* mark the hw as uninitialized... */
4113 p_hwfn->hw_init_done = false;
4114
4115 /* Send unload command to MCP */
4116 if (!p_dev->recov_in_prog) {
4117 rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4118 if (rc != ECORE_SUCCESS) {
4119 DP_NOTICE(p_hwfn, false,
4120 "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4121 rc);
4122 rc2 = ECORE_UNKNOWN_ERROR;
4123 }
4124 }
4125
4126 OSAL_DPC_SYNC(p_hwfn);
4127
4128 /* After this point no MFW attentions are expected, e.g. prevent
4129 * race between pf stop and dcbx pf update.
4130 */
4131
4132 rc = ecore_sp_pf_stop(p_hwfn);
4133 if (rc != ECORE_SUCCESS) {
4134 DP_NOTICE(p_hwfn, false,
4135 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4136 rc);
4137 rc2 = ECORE_UNKNOWN_ERROR;
4138 }
4139
4140 /* perform debug action after PF stop was sent */
4141 OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4142
4143 /* close NIG to BRB gate */
4144 ecore_wr(p_hwfn, p_ptt,
4145 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4146
4147 /* close parser */
4148 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4149 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4150 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4151 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4152 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4153
4154 /* @@@TBD - clean transmission queues (5.b) */
4155 /* @@@TBD - clean BTB (5.c) */
4156
4157 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4158
4159 /* @@@TBD - verify DMAE requests are done (8) */
4160
4161 /* Disable Attention Generation */
4162 ecore_int_igu_disable_int(p_hwfn, p_ptt);
4163 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4164 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4165 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4166 rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4167 if (rc != ECORE_SUCCESS) {
4168 DP_NOTICE(p_hwfn, true,
4169 "Failed to return IGU CAM to default\n");
4170 rc2 = ECORE_UNKNOWN_ERROR;
4171 }
4172
4173 /* Need to wait 1ms to guarantee SBs are cleared */
4174 OSAL_MSLEEP(1);
4175
4176 if (!p_dev->recov_in_prog) {
4177 ecore_verify_reg_val(p_hwfn, p_ptt,
4178 QM_REG_USG_CNT_PF_TX, 0);
4179 ecore_verify_reg_val(p_hwfn, p_ptt,
4180 QM_REG_USG_CNT_PF_OTHER, 0);
4181 /* @@@TBD - assert on incorrect xCFC values (10.b) */
4182 }
4183
4184 /* Disable PF in HW blocks */
4185 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4186 ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4187
4188 if (IS_LEAD_HWFN(p_hwfn) &&
4189 OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4190 !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4191 ecore_llh_remove_mac_filter(p_dev, 0,
4192 p_hwfn->hw_info.hw_mac_addr);
4193
4194 --qm_lock_ref_cnt;
4195 #ifdef CONFIG_ECORE_LOCK_ALLOC
4196 if (!qm_lock_ref_cnt)
4197 OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4198 #endif
4199
4200 if (!p_dev->recov_in_prog) {
4201 rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4202 if (rc == ECORE_NOMEM) {
4203 DP_NOTICE(p_hwfn, false,
4204 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4205 rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4206 }
4207 if (rc != ECORE_SUCCESS) {
4208 DP_NOTICE(p_hwfn, false,
4209 "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4210 rc);
4211 rc2 = ECORE_UNKNOWN_ERROR;
4212 }
4213 }
4214 } /* hwfn loop */
4215
4216 if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4217 p_hwfn = ECORE_LEADING_HWFN(p_dev);
4218 p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4219
4220 /* Clear the PF's internal FID_enable in the PXP.
4221 * In CMT this should only be done for first hw-function, and
4222 * only after all transactions have stopped for all active
4223 * hw-functions.
4224 */
4225 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4226 false);
4227 if (rc != ECORE_SUCCESS) {
4228 DP_NOTICE(p_hwfn, true,
4229 "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4230 rc);
4231 rc2 = ECORE_UNKNOWN_ERROR;
4232 }
4233 }
4234
4235 return rc2;
4236 }
4237
ecore_hw_stop_fastpath(struct ecore_dev * p_dev)4238 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4239 {
4240 int j;
4241
4242 for_each_hwfn(p_dev, j) {
4243 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4244 struct ecore_ptt *p_ptt;
4245
4246 if (IS_VF(p_dev)) {
4247 ecore_vf_pf_int_cleanup(p_hwfn);
4248 continue;
4249 }
4250 p_ptt = ecore_ptt_acquire(p_hwfn);
4251 if (!p_ptt)
4252 return ECORE_AGAIN;
4253
4254 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
4255
4256 ecore_wr(p_hwfn, p_ptt,
4257 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4258
4259 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4260 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4261 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4262 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4263 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4264
4265 /* @@@TBD - clean transmission queues (5.b) */
4266 /* @@@TBD - clean BTB (5.c) */
4267
4268 /* @@@TBD - verify DMAE requests are done (8) */
4269
4270 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4271 /* Need to wait 1ms to guarantee SBs are cleared */
4272 OSAL_MSLEEP(1);
4273 ecore_ptt_release(p_hwfn, p_ptt);
4274 }
4275
4276 return ECORE_SUCCESS;
4277 }
4278
ecore_hw_start_fastpath(struct ecore_hwfn * p_hwfn)4279 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4280 {
4281 struct ecore_ptt *p_ptt;
4282
4283 if (IS_VF(p_hwfn->p_dev))
4284 return ECORE_SUCCESS;
4285
4286 p_ptt = ecore_ptt_acquire(p_hwfn);
4287 if (!p_ptt)
4288 return ECORE_AGAIN;
4289
4290 /* If roce info is allocated it means roce is initialized and should
4291 * be enabled in searcher.
4292 */
4293 if (p_hwfn->p_rdma_info &&
4294 p_hwfn->p_rdma_info->active &&
4295 p_hwfn->b_rdma_enabled_in_prs)
4296 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
4297
4298 /* Re-open incoming traffic */
4299 ecore_wr(p_hwfn, p_ptt,
4300 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4301 ecore_ptt_release(p_hwfn, p_ptt);
4302
4303 return ECORE_SUCCESS;
4304 }
4305
ecore_set_nwuf_reg(struct ecore_dev * p_dev,u32 reg_idx,u32 pattern_size,u32 crc)4306 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
4307 u32 pattern_size, u32 crc)
4308 {
4309 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4310 enum _ecore_status_t rc = ECORE_SUCCESS;
4311 struct ecore_ptt *p_ptt;
4312 u32 reg_len = 0;
4313 u32 reg_crc = 0;
4314
4315 p_ptt = ecore_ptt_acquire(p_hwfn);
4316 if (!p_ptt)
4317 return ECORE_AGAIN;
4318
4319 /* Get length and CRC register offsets */
4320 switch (reg_idx)
4321 {
4322 case 0:
4323 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
4324 WOL_REG_ACPI_PAT_0_LEN_K2_E5;
4325 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
4326 WOL_REG_ACPI_PAT_0_CRC_K2_E5;
4327 break;
4328 case 1:
4329 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
4330 WOL_REG_ACPI_PAT_1_LEN_K2_E5;
4331 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
4332 WOL_REG_ACPI_PAT_1_CRC_K2_E5;
4333 break;
4334 case 2:
4335 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
4336 WOL_REG_ACPI_PAT_2_LEN_K2_E5;
4337 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
4338 WOL_REG_ACPI_PAT_2_CRC_K2_E5;
4339 break;
4340 case 3:
4341 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
4342 WOL_REG_ACPI_PAT_3_LEN_K2_E5;
4343 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
4344 WOL_REG_ACPI_PAT_3_CRC_K2_E5;
4345 break;
4346 case 4:
4347 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
4348 WOL_REG_ACPI_PAT_4_LEN_K2_E5;
4349 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
4350 WOL_REG_ACPI_PAT_4_CRC_K2_E5;
4351 break;
4352 case 5:
4353 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
4354 WOL_REG_ACPI_PAT_5_LEN_K2_E5;
4355 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
4356 WOL_REG_ACPI_PAT_5_CRC_K2_E5;
4357 break;
4358 case 6:
4359 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
4360 WOL_REG_ACPI_PAT_6_LEN_K2_E5;
4361 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
4362 WOL_REG_ACPI_PAT_6_CRC_K2_E5;
4363 break;
4364 case 7:
4365 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
4366 WOL_REG_ACPI_PAT_7_LEN_K2_E5;
4367 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
4368 WOL_REG_ACPI_PAT_7_CRC_K2_E5;
4369 break;
4370 default:
4371 rc = ECORE_UNKNOWN_ERROR;
4372 goto out;
4373 }
4374
4375 /* Allign pattern size to 4 */
4376 while (pattern_size % 4)
4377 pattern_size++;
4378
4379 /* Write pattern length and crc value */
4380 if (ECORE_IS_BB(p_dev)) {
4381 rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4382 if (rc != ECORE_SUCCESS) {
4383 DP_NOTICE(p_hwfn, false,
4384 "Failed to update the ACPI pattern length\n");
4385 return rc;
4386 }
4387
4388 rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_crc, crc);
4389 if (rc != ECORE_SUCCESS) {
4390 DP_NOTICE(p_hwfn, false,
4391 "Failed to update the ACPI pattern crc value\n");
4392 return rc;
4393 }
4394 } else {
4395 ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4396 ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_crc, crc);
4397 }
4398
4399 DP_INFO(p_dev,
4400 "ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
4401 "reg_len[0x%x=0x%x]\n",
4402 reg_idx, reg_crc, crc, reg_len, pattern_size);
4403 out:
4404 ecore_ptt_release(p_hwfn, p_ptt);
4405
4406 return rc;
4407 }
4408
ecore_wol_buffer_clear(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4409 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
4410 struct ecore_ptt *p_ptt)
4411 {
4412 const u32 wake_buffer_clear_offset =
4413 ECORE_IS_BB(p_hwfn->p_dev) ?
4414 NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
4415
4416 DP_INFO(p_hwfn->p_dev,
4417 "ecore_wol_buffer_clear: reset "
4418 "REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
4419 wake_buffer_clear_offset);
4420
4421 if (ECORE_IS_BB(p_hwfn->p_dev)) {
4422 ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4423 ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4424 } else {
4425 ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4426 ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4427 }
4428 }
4429
ecore_get_wake_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_wake_info * wake_info)4430 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
4431 struct ecore_ptt *p_ptt,
4432 struct ecore_wake_info *wake_info)
4433 {
4434 struct ecore_dev *p_dev = p_hwfn->p_dev;
4435 u32 *buf = OSAL_NULL;
4436 u32 i = 0;
4437 const u32 reg_wake_buffer_offest =
4438 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
4439 WOL_REG_WAKE_BUFFER_K2_E5;
4440
4441 wake_info->wk_info = ecore_rd(p_hwfn, p_ptt,
4442 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
4443 WOL_REG_WAKE_INFO_K2_E5);
4444 wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
4445 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
4446 WOL_REG_WAKE_DETAILS_K2_E5);
4447 wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
4448 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
4449 WOL_REG_WAKE_PKT_LEN_K2_E5);
4450
4451 DP_INFO(p_dev,
4452 "ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
4453 "REG_WAKE_DETAILS=0x%08x "
4454 "REG_WAKE_PKT_LEN=0x%08x\n",
4455 wake_info->wk_info,
4456 wake_info->wk_details,
4457 wake_info->wk_pkt_len);
4458
4459 buf = (u32 *)wake_info->wk_buffer;
4460
4461 for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
4462 {
4463 if ((i*sizeof(u32)) >= sizeof(wake_info->wk_buffer))
4464 {
4465 DP_INFO(p_dev,
4466 "ecore_get_wake_info: i index to 0 high=%d\n",
4467 i);
4468 break;
4469 }
4470 buf[i] = ecore_rd(p_hwfn, p_ptt,
4471 reg_wake_buffer_offest + (i * sizeof(u32)));
4472 DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
4473 i, buf[i]);
4474 }
4475
4476 ecore_wol_buffer_clear(p_hwfn, p_ptt);
4477
4478 return ECORE_SUCCESS;
4479 }
4480
4481 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
ecore_hw_hwfn_free(struct ecore_hwfn * p_hwfn)4482 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4483 {
4484 ecore_ptt_pool_free(p_hwfn);
4485 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4486 p_hwfn->hw_info.p_igu_info = OSAL_NULL;
4487 }
4488
4489 /* Setup bar access */
ecore_hw_hwfn_prepare(struct ecore_hwfn * p_hwfn)4490 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4491 {
4492 /* clear indirect access */
4493 if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
4494 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4495 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4496 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4497 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4498 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4499 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4500 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4501 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4502 } else {
4503 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4504 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4505 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4506 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4507 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4508 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4509 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4510 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4511 }
4512
4513 /* Clean previous pglue_b errors if such exist */
4514 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4515
4516 /* enable internal target-read */
4517 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4518 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4519 }
4520
get_function_id(struct ecore_hwfn * p_hwfn)4521 static void get_function_id(struct ecore_hwfn *p_hwfn)
4522 {
4523 /* ME Register */
4524 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
4525 PXP_PF_ME_OPAQUE_ADDR);
4526
4527 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4528
4529 /* Bits 16-19 from the ME registers are the pf_num */
4530 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4531 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4532 PXP_CONCRETE_FID_PFID);
4533 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4534 PXP_CONCRETE_FID_PORT);
4535
4536 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4537 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4538 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4539 }
4540
ecore_hw_set_feat(struct ecore_hwfn * p_hwfn)4541 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4542 {
4543 u32 *feat_num = p_hwfn->hw_info.feat_num;
4544 struct ecore_sb_cnt_info sb_cnt;
4545 u32 non_l2_sbs = 0;
4546
4547 OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4548 ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4549
4550 #ifdef CONFIG_ECORE_ROCE
4551 /* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
4552 * status blocks equally between L2 / RoCE but with consideration as
4553 * to how many l2 queues / cnqs we have
4554 */
4555 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
4556 #ifndef __EXTRACT__LINUX__THROW__
4557 u32 max_cnqs;
4558 #endif
4559
4560 feat_num[ECORE_RDMA_CNQ] =
4561 OSAL_MIN_T(u32,
4562 sb_cnt.cnt / 2,
4563 RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
4564
4565 #ifndef __EXTRACT__LINUX__THROW__
4566 /* Upper layer might require less */
4567 max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
4568 if (max_cnqs) {
4569 if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
4570 max_cnqs = 0;
4571 feat_num[ECORE_RDMA_CNQ] =
4572 OSAL_MIN_T(u32,
4573 feat_num[ECORE_RDMA_CNQ],
4574 max_cnqs);
4575 }
4576 #endif
4577
4578 non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
4579 }
4580 #endif
4581
4582 /* L2 Queues require each: 1 status block. 1 L2 queue */
4583 if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4584 /* Start by allocating VF queues, then PF's */
4585 feat_num[ECORE_VF_L2_QUE] =
4586 OSAL_MIN_T(u32,
4587 RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4588 sb_cnt.iov_cnt);
4589 feat_num[ECORE_PF_L2_QUE] =
4590 OSAL_MIN_T(u32,
4591 sb_cnt.cnt - non_l2_sbs,
4592 RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4593 FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4594 }
4595
4596 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4597 feat_num[ECORE_FCOE_CQ] =
4598 OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4599 ECORE_CMDQS_CQS));
4600
4601 if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
4602 feat_num[ECORE_ISCSI_CQ] =
4603 OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4604 ECORE_CMDQS_CQS));
4605
4606 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4607 "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4608 (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4609 (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4610 (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4611 (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4612 (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4613 (int)sb_cnt.cnt);
4614 }
4615
ecore_hw_get_resc_name(enum ecore_resources res_id)4616 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4617 {
4618 switch (res_id) {
4619 case ECORE_L2_QUEUE:
4620 return "L2_QUEUE";
4621 case ECORE_VPORT:
4622 return "VPORT";
4623 case ECORE_RSS_ENG:
4624 return "RSS_ENG";
4625 case ECORE_PQ:
4626 return "PQ";
4627 case ECORE_RL:
4628 return "RL";
4629 case ECORE_MAC:
4630 return "MAC";
4631 case ECORE_VLAN:
4632 return "VLAN";
4633 case ECORE_RDMA_CNQ_RAM:
4634 return "RDMA_CNQ_RAM";
4635 case ECORE_ILT:
4636 return "ILT";
4637 case ECORE_LL2_QUEUE:
4638 return "LL2_QUEUE";
4639 case ECORE_CMDQS_CQS:
4640 return "CMDQS_CQS";
4641 case ECORE_RDMA_STATS_QUEUE:
4642 return "RDMA_STATS_QUEUE";
4643 case ECORE_BDQ:
4644 return "BDQ";
4645 case ECORE_SB:
4646 return "SB";
4647 default:
4648 return "UNKNOWN_RESOURCE";
4649 }
4650 }
4651
4652 static enum _ecore_status_t
__ecore_hw_set_soft_resc_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum ecore_resources res_id,u32 resc_max_val,u32 * p_mcp_resp)4653 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4654 struct ecore_ptt *p_ptt,
4655 enum ecore_resources res_id,
4656 u32 resc_max_val,
4657 u32 *p_mcp_resp)
4658 {
4659 enum _ecore_status_t rc;
4660
4661 rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4662 resc_max_val, p_mcp_resp);
4663 if (rc != ECORE_SUCCESS) {
4664 DP_NOTICE(p_hwfn, false,
4665 "MFW response failure for a max value setting of resource %d [%s]\n",
4666 res_id, ecore_hw_get_resc_name(res_id));
4667 return rc;
4668 }
4669
4670 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4671 DP_INFO(p_hwfn,
4672 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4673 res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4674
4675 return ECORE_SUCCESS;
4676 }
4677
4678 static enum _ecore_status_t
ecore_hw_set_soft_resc_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4679 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4680 struct ecore_ptt *p_ptt)
4681 {
4682 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4683 u32 resc_max_val, mcp_resp;
4684 u8 res_id;
4685 enum _ecore_status_t rc;
4686
4687 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4688 switch (res_id) {
4689 case ECORE_LL2_QUEUE:
4690 resc_max_val = MAX_NUM_LL2_RX_QUEUES;
4691 break;
4692 case ECORE_RDMA_CNQ_RAM:
4693 /* No need for a case for ECORE_CMDQS_CQS since
4694 * CNQ/CMDQS are the same resource.
4695 */
4696 resc_max_val = NUM_OF_GLOBAL_QUEUES;
4697 break;
4698 case ECORE_RDMA_STATS_QUEUE:
4699 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
4700 : RDMA_NUM_STATISTIC_COUNTERS_BB;
4701 break;
4702 case ECORE_BDQ:
4703 resc_max_val = BDQ_NUM_RESOURCES;
4704 break;
4705 default:
4706 continue;
4707 }
4708
4709 rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4710 resc_max_val, &mcp_resp);
4711 if (rc != ECORE_SUCCESS)
4712 return rc;
4713
4714 /* There's no point to continue to the next resource if the
4715 * command is not supported by the MFW.
4716 * We do continue if the command is supported but the resource
4717 * is unknown to the MFW. Such a resource will be later
4718 * configured with the default allocation values.
4719 */
4720 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4721 return ECORE_NOTIMPL;
4722 }
4723
4724 return ECORE_SUCCESS;
4725 }
4726
4727 static
ecore_hw_get_dflt_resc(struct ecore_hwfn * p_hwfn,enum ecore_resources res_id,u32 * p_resc_num,u32 * p_resc_start)4728 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4729 enum ecore_resources res_id,
4730 u32 *p_resc_num, u32 *p_resc_start)
4731 {
4732 u8 num_funcs = p_hwfn->num_funcs_on_engine;
4733 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4734
4735 switch (res_id) {
4736 case ECORE_L2_QUEUE:
4737 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4738 MAX_NUM_L2_QUEUES_BB) / num_funcs;
4739 break;
4740 case ECORE_VPORT:
4741 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4742 MAX_NUM_VPORTS_BB) / num_funcs;
4743 break;
4744 case ECORE_RSS_ENG:
4745 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4746 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4747 break;
4748 case ECORE_PQ:
4749 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4750 MAX_QM_TX_QUEUES_BB) / num_funcs;
4751 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4752 break;
4753 case ECORE_RL:
4754 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4755 break;
4756 case ECORE_MAC:
4757 case ECORE_VLAN:
4758 /* Each VFC resource can accommodate both a MAC and a VLAN */
4759 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4760 break;
4761 case ECORE_ILT:
4762 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4763 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4764 break;
4765 case ECORE_LL2_QUEUE:
4766 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4767 break;
4768 case ECORE_RDMA_CNQ_RAM:
4769 case ECORE_CMDQS_CQS:
4770 /* CNQ/CMDQS are the same resource */
4771 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
4772 break;
4773 case ECORE_RDMA_STATS_QUEUE:
4774 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
4775 RDMA_NUM_STATISTIC_COUNTERS_BB) /
4776 num_funcs;
4777 break;
4778 case ECORE_BDQ:
4779 if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
4780 p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
4781 *p_resc_num = 0;
4782 else
4783 *p_resc_num = 1;
4784 break;
4785 case ECORE_SB:
4786 /* Since we want its value to reflect whether MFW supports
4787 * the new scheme, have a default of 0.
4788 */
4789 *p_resc_num = 0;
4790 break;
4791 default:
4792 return ECORE_INVAL;
4793 }
4794
4795 switch (res_id) {
4796 case ECORE_BDQ:
4797 if (!*p_resc_num)
4798 *p_resc_start = 0;
4799 else if (p_hwfn->p_dev->num_ports_in_engine == 4)
4800 *p_resc_start = p_hwfn->port_id;
4801 else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
4802 *p_resc_start = p_hwfn->port_id;
4803 else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
4804 *p_resc_start = p_hwfn->port_id + 2;
4805 break;
4806 default:
4807 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4808 break;
4809 }
4810
4811 return ECORE_SUCCESS;
4812 }
4813
4814 static enum _ecore_status_t
__ecore_hw_set_resc_info(struct ecore_hwfn * p_hwfn,enum ecore_resources res_id,bool drv_resc_alloc)4815 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4816 bool drv_resc_alloc)
4817 {
4818 u32 dflt_resc_num = 0, dflt_resc_start = 0;
4819 u32 mcp_resp, *p_resc_num, *p_resc_start;
4820 enum _ecore_status_t rc;
4821
4822 p_resc_num = &RESC_NUM(p_hwfn, res_id);
4823 p_resc_start = &RESC_START(p_hwfn, res_id);
4824
4825 rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4826 &dflt_resc_start);
4827 if (rc != ECORE_SUCCESS) {
4828 DP_ERR(p_hwfn,
4829 "Failed to get default amount for resource %d [%s]\n",
4830 res_id, ecore_hw_get_resc_name(res_id));
4831 return rc;
4832 }
4833
4834 #ifndef ASIC_ONLY
4835 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4836 *p_resc_num = dflt_resc_num;
4837 *p_resc_start = dflt_resc_start;
4838 goto out;
4839 }
4840 #endif
4841
4842 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4843 &mcp_resp, p_resc_num, p_resc_start);
4844 if (rc != ECORE_SUCCESS) {
4845 DP_NOTICE(p_hwfn, false,
4846 "MFW response failure for an allocation request for resource %d [%s]\n",
4847 res_id, ecore_hw_get_resc_name(res_id));
4848 return rc;
4849 }
4850
4851 /* Default driver values are applied in the following cases:
4852 * - The resource allocation MB command is not supported by the MFW
4853 * - There is an internal error in the MFW while processing the request
4854 * - The resource ID is unknown to the MFW
4855 */
4856 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4857 DP_INFO(p_hwfn,
4858 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
4859 res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4860 dflt_resc_num, dflt_resc_start);
4861 *p_resc_num = dflt_resc_num;
4862 *p_resc_start = dflt_resc_start;
4863 goto out;
4864 }
4865
4866 if ((*p_resc_num != dflt_resc_num ||
4867 *p_resc_start != dflt_resc_start) &&
4868 res_id != ECORE_SB) {
4869 DP_INFO(p_hwfn,
4870 "MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4871 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4872 *p_resc_start, dflt_resc_num, dflt_resc_start,
4873 drv_resc_alloc ? " - Applying default values" : "");
4874 if (drv_resc_alloc) {
4875 *p_resc_num = dflt_resc_num;
4876 *p_resc_start = dflt_resc_start;
4877 }
4878 }
4879 out:
4880 /* PQs have to divide by 8 [that's the HW granularity].
4881 * Reduce number so it would fit.
4882 */
4883 if ((res_id == ECORE_PQ) &&
4884 ((*p_resc_num % 8) || (*p_resc_start % 8))) {
4885 DP_INFO(p_hwfn,
4886 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
4887 *p_resc_num, (*p_resc_num) & ~0x7,
4888 *p_resc_start, (*p_resc_start) & ~0x7);
4889 *p_resc_num &= ~0x7;
4890 *p_resc_start &= ~0x7;
4891 }
4892
4893 return ECORE_SUCCESS;
4894 }
4895
ecore_hw_set_resc_info(struct ecore_hwfn * p_hwfn,bool drv_resc_alloc)4896 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4897 bool drv_resc_alloc)
4898 {
4899 enum _ecore_status_t rc;
4900 u8 res_id;
4901
4902 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4903 rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4904 if (rc != ECORE_SUCCESS)
4905 return rc;
4906 }
4907
4908 return ECORE_SUCCESS;
4909 }
4910
ecore_hw_get_ppfid_bitmap(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4911 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4912 struct ecore_ptt *p_ptt)
4913 {
4914 u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn);
4915 struct ecore_dev *p_dev = p_hwfn->p_dev;
4916 enum _ecore_status_t rc;
4917
4918 rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4919 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4920 return rc;
4921 else if (rc == ECORE_NOTIMPL)
4922 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4923
4924 if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4925 DP_INFO(p_hwfn,
4926 "Fix the PPFID bitmap to inculde the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
4927 native_ppfid_idx, p_dev->ppfid_bitmap);
4928 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4929 }
4930
4931 return ECORE_SUCCESS;
4932 }
4933
ecore_hw_get_resc(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool drv_resc_alloc)4934 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4935 struct ecore_ptt *p_ptt,
4936 bool drv_resc_alloc)
4937 {
4938 struct ecore_resc_unlock_params resc_unlock_params;
4939 struct ecore_resc_lock_params resc_lock_params;
4940 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4941 u8 res_id;
4942 enum _ecore_status_t rc;
4943 #ifndef ASIC_ONLY
4944 u32 *resc_start = p_hwfn->hw_info.resc_start;
4945 u32 *resc_num = p_hwfn->hw_info.resc_num;
4946 /* For AH, an equal share of the ILT lines between the maximal number of
4947 * PFs is not enough for RoCE. This would be solved by the future
4948 * resource allocation scheme, but isn't currently present for
4949 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4950 * to work - the BB number of ILT lines divided by its max PFs number.
4951 */
4952 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4953 #endif
4954
4955 /* Setting the max values of the soft resources and the following
4956 * resources allocation queries should be atomic. Since several PFs can
4957 * run in parallel - a resource lock is needed.
4958 * If either the resource lock or resource set value commands are not
4959 * supported - skip the the max values setting, release the lock if
4960 * needed, and proceed to the queries. Other failures, including a
4961 * failure to acquire the lock, will cause this function to fail.
4962 * Old drivers that don't acquire the lock can run in parallel, and
4963 * their allocation values won't be affected by the updated max values.
4964 */
4965
4966 ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4967 ECORE_RESC_LOCK_RESC_ALLOC, false);
4968
4969 /* Changes on top of the default values to accommodate parallel attempts
4970 * of several PFs.
4971 * [10 x 10 msec by default ==> 20 x 50 msec]
4972 */
4973 resc_lock_params.retry_num *= 2;
4974 resc_lock_params.retry_interval *= 5;
4975
4976 rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4977 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4978 return rc;
4979 } else if (rc == ECORE_NOTIMPL) {
4980 DP_INFO(p_hwfn,
4981 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4982 } else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4983 DP_NOTICE(p_hwfn, false,
4984 "Failed to acquire the resource lock for the resource allocation commands\n");
4985 return ECORE_BUSY;
4986 } else {
4987 rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4988 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4989 DP_NOTICE(p_hwfn, false,
4990 "Failed to set the max values of the soft resources\n");
4991 goto unlock_and_exit;
4992 } else if (rc == ECORE_NOTIMPL) {
4993 DP_INFO(p_hwfn,
4994 "Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4995 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4996 &resc_unlock_params);
4997 if (rc != ECORE_SUCCESS)
4998 DP_INFO(p_hwfn,
4999 "Failed to release the resource lock for the resource allocation commands\n");
5000 }
5001 }
5002
5003 rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
5004 if (rc != ECORE_SUCCESS)
5005 goto unlock_and_exit;
5006
5007 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
5008 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5009 &resc_unlock_params);
5010 if (rc != ECORE_SUCCESS)
5011 DP_INFO(p_hwfn,
5012 "Failed to release the resource lock for the resource allocation commands\n");
5013 }
5014
5015 /* PPFID bitmap */
5016 if (IS_LEAD_HWFN(p_hwfn)) {
5017 rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
5018 if (rc != ECORE_SUCCESS)
5019 return rc;
5020 }
5021
5022 #ifndef ASIC_ONLY
5023 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
5024 /* Reduced build contains less PQs */
5025 if (!(p_hwfn->p_dev->b_is_emul_full)) {
5026 resc_num[ECORE_PQ] = 32;
5027 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
5028 p_hwfn->enabled_func_idx;
5029 }
5030
5031 /* For AH emulation, since we have a possible maximal number of
5032 * 16 enabled PFs, in case there are not enough ILT lines -
5033 * allocate only first PF as RoCE and have all the other ETH
5034 * only with less ILT lines.
5035 */
5036 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
5037 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
5038 resc_num[ECORE_ILT],
5039 roce_min_ilt_lines);
5040 }
5041
5042 /* Correct the common ILT calculation if PF0 has more */
5043 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
5044 p_hwfn->p_dev->b_is_emul_full &&
5045 p_hwfn->rel_pf_id &&
5046 resc_num[ECORE_ILT] < roce_min_ilt_lines)
5047 resc_start[ECORE_ILT] += roce_min_ilt_lines -
5048 resc_num[ECORE_ILT];
5049 #endif
5050
5051 /* Sanity for ILT */
5052 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
5053 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
5054 DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
5055 RESC_START(p_hwfn, ECORE_ILT),
5056 RESC_END(p_hwfn, ECORE_ILT) - 1);
5057 return ECORE_INVAL;
5058 }
5059
5060 /* This will also learn the number of SBs from MFW */
5061 if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
5062 return ECORE_INVAL;
5063
5064 ecore_hw_set_feat(p_hwfn);
5065
5066 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5067 "The numbers for each resource are:\n");
5068 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
5069 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
5070 ecore_hw_get_resc_name(res_id),
5071 RESC_NUM(p_hwfn, res_id),
5072 RESC_START(p_hwfn, res_id));
5073
5074 return ECORE_SUCCESS;
5075
5076 unlock_and_exit:
5077 if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
5078 ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5079 &resc_unlock_params);
5080 return rc;
5081 }
5082
5083 static enum _ecore_status_t
ecore_hw_get_nvm_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_hw_prepare_params * p_params)5084 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
5085 struct ecore_ptt *p_ptt,
5086 struct ecore_hw_prepare_params *p_params)
5087 {
5088 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
5089 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
5090 struct ecore_mcp_link_capabilities *p_caps;
5091 struct ecore_mcp_link_params *link;
5092 enum _ecore_status_t rc;
5093 u32 dcbx_mode; /* __LINUX__THROW__ */
5094
5095 /* Read global nvm_cfg address */
5096 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
5097
5098 /* Verify MCP has initialized it */
5099 if (!nvm_cfg_addr) {
5100 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
5101 if (p_params->b_relaxed_probe)
5102 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
5103 return ECORE_INVAL;
5104 }
5105
5106 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
5107 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
5108
5109 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5110 OFFSETOF(struct nvm_cfg1, glob) +
5111 OFFSETOF(struct nvm_cfg1_glob, core_cfg);
5112
5113 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
5114
5115 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
5116 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
5117 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
5118 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
5119 break;
5120 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
5121 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
5122 break;
5123 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
5124 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
5125 break;
5126 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
5127 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
5128 break;
5129 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
5130 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
5131 break;
5132 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
5133 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
5134 break;
5135 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
5136 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
5137 break;
5138 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
5139 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
5140 break;
5141 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
5142 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
5143 break;
5144 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
5145 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
5146 break;
5147 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
5148 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
5149 break;
5150 default:
5151 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
5152 core_cfg);
5153 break;
5154 }
5155
5156 #ifndef __EXTRACT__LINUX__THROW__
5157 /* Read DCBX configuration */
5158 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5159 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5160 dcbx_mode = ecore_rd(p_hwfn, p_ptt,
5161 port_cfg_addr +
5162 OFFSETOF(struct nvm_cfg1_port, generic_cont0));
5163 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
5164 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
5165 switch (dcbx_mode) {
5166 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
5167 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
5168 break;
5169 case NVM_CFG1_PORT_DCBX_MODE_CEE:
5170 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
5171 break;
5172 case NVM_CFG1_PORT_DCBX_MODE_IEEE:
5173 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
5174 break;
5175 default:
5176 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
5177 }
5178 #endif
5179
5180 /* Read default link configuration */
5181 link = &p_hwfn->mcp_info->link_input;
5182 p_caps = &p_hwfn->mcp_info->link_capabilities;
5183 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5184 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5185 link_temp = ecore_rd(p_hwfn, p_ptt,
5186 port_cfg_addr +
5187 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
5188 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
5189 link->speed.advertised_speeds = link_temp;
5190 p_caps->speed_capabilities = link->speed.advertised_speeds;
5191
5192 link_temp = ecore_rd(p_hwfn, p_ptt,
5193 port_cfg_addr +
5194 OFFSETOF(struct nvm_cfg1_port, link_settings));
5195 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5196 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5197 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5198 link->speed.autoneg = true;
5199 break;
5200 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5201 link->speed.forced_speed = 1000;
5202 break;
5203 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5204 link->speed.forced_speed = 10000;
5205 break;
5206 case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
5207 link->speed.forced_speed = 20000;
5208 break;
5209 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5210 link->speed.forced_speed = 25000;
5211 break;
5212 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5213 link->speed.forced_speed = 40000;
5214 break;
5215 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5216 link->speed.forced_speed = 50000;
5217 break;
5218 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5219 link->speed.forced_speed = 100000;
5220 break;
5221 default:
5222 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
5223 link_temp);
5224 }
5225
5226 p_caps->default_speed = link->speed.forced_speed; /* __LINUX__THROW__ */
5227 p_caps->default_speed_autoneg = link->speed.autoneg;
5228
5229 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5230 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5231 link->pause.autoneg = !!(link_temp &
5232 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5233 link->pause.forced_rx = !!(link_temp &
5234 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5235 link->pause.forced_tx = !!(link_temp &
5236 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5237 link->loopback_mode = 0;
5238
5239 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5240 link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5241 OFFSETOF(struct nvm_cfg1_port, ext_phy));
5242 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5243 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5244 p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5245 link->eee.enable = true;
5246 switch (link_temp) {
5247 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5248 p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5249 link->eee.enable = false;
5250 break;
5251 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5252 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5253 break;
5254 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5255 p_caps->eee_lpi_timer =
5256 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5257 break;
5258 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5259 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5260 break;
5261 }
5262
5263 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5264 link->eee.tx_lpi_enable = link->eee.enable;
5265 link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5266 } else {
5267 p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5268 }
5269
5270 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5271 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
5272 link->speed.forced_speed, link->speed.advertised_speeds,
5273 link->speed.autoneg, link->pause.autoneg,
5274 p_caps->default_eee, p_caps->eee_lpi_timer);
5275
5276 /* Read Multi-function information from shmem */
5277 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5278 OFFSETOF(struct nvm_cfg1, glob) +
5279 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5280
5281 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5282
5283 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5284 NVM_CFG1_GLOB_MF_MODE_OFFSET;
5285
5286 switch (mf_mode) {
5287 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5288 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5289 break;
5290 case NVM_CFG1_GLOB_MF_MODE_UFP:
5291 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5292 1 << ECORE_MF_LLH_PROTO_CLSS |
5293 1 << ECORE_MF_UFP_SPECIFIC |
5294 1 << ECORE_MF_8021Q_TAGGING;
5295 break;
5296 case NVM_CFG1_GLOB_MF_MODE_BD:
5297 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5298 1 << ECORE_MF_LLH_PROTO_CLSS |
5299 1 << ECORE_MF_8021AD_TAGGING;
5300 break;
5301 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5302 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5303 1 << ECORE_MF_LLH_PROTO_CLSS |
5304 1 << ECORE_MF_LL2_NON_UNICAST |
5305 1 << ECORE_MF_INTER_PF_SWITCH |
5306 1 << ECORE_MF_DISABLE_ARFS;
5307 break;
5308 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5309 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5310 1 << ECORE_MF_LLH_PROTO_CLSS |
5311 1 << ECORE_MF_LL2_NON_UNICAST;
5312 if (ECORE_IS_BB(p_hwfn->p_dev))
5313 p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5314 break;
5315 }
5316 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5317 p_hwfn->p_dev->mf_bits);
5318
5319 if (ECORE_IS_CMT(p_hwfn->p_dev))
5320 p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5321
5322 #ifndef __EXTRACT__LINUX__THROW__
5323 /* It's funny since we have another switch, but it's easier
5324 * to throw this away in linux this way. Long term, it might be
5325 * better to have have getters for needed ECORE_MF_* fields,
5326 * convert client code and eliminate this.
5327 */
5328 switch (mf_mode) {
5329 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5330 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5331 break;
5332 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5333 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5334 break;
5335 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5336 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5337 break;
5338 case NVM_CFG1_GLOB_MF_MODE_UFP:
5339 p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5340 break;
5341 }
5342 #endif
5343
5344 /* Read Multi-function information from shmem */
5345 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5346 OFFSETOF(struct nvm_cfg1, glob) +
5347 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5348
5349 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5350 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5351 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5352 &p_hwfn->hw_info.device_capabilities);
5353 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5354 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5355 &p_hwfn->hw_info.device_capabilities);
5356 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5357 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5358 &p_hwfn->hw_info.device_capabilities);
5359 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5360 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5361 &p_hwfn->hw_info.device_capabilities);
5362 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5363 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5364 &p_hwfn->hw_info.device_capabilities);
5365
5366 rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5367 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5368 rc = ECORE_SUCCESS;
5369 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5370 }
5371
5372 return rc;
5373 }
5374
ecore_get_num_funcs(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5375 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5376 struct ecore_ptt *p_ptt)
5377 {
5378 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5379 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5380 struct ecore_dev *p_dev = p_hwfn->p_dev;
5381
5382 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5383
5384 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5385 * in the other bits are selected.
5386 * Bits 1-15 are for functions 1-15, respectively, and their value is
5387 * '0' only for enabled functions (function 0 always exists and
5388 * enabled).
5389 * In case of CMT in BB, only the "even" functions are enabled, and thus
5390 * the number of functions for both hwfns is learnt from the same bits.
5391 */
5392 reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
5393
5394 if (reg_function_hide & 0x1) {
5395 if (ECORE_IS_BB(p_dev)) {
5396 if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5397 num_funcs = 0;
5398 eng_mask = 0xaaaa;
5399 } else {
5400 num_funcs = 1;
5401 eng_mask = 0x5554;
5402 }
5403 } else {
5404 num_funcs = 1;
5405 eng_mask = 0xfffe;
5406 }
5407
5408 /* Get the number of the enabled functions on the engine */
5409 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5410 while (tmp) {
5411 if (tmp & 0x1)
5412 num_funcs++;
5413 tmp >>= 0x1;
5414 }
5415
5416 /* Get the PF index within the enabled functions */
5417 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5418 tmp = reg_function_hide & eng_mask & low_pfs_mask;
5419 while (tmp) {
5420 if (tmp & 0x1)
5421 enabled_func_idx--;
5422 tmp >>= 0x1;
5423 }
5424 }
5425
5426 p_hwfn->num_funcs_on_engine = num_funcs;
5427 p_hwfn->enabled_func_idx = enabled_func_idx;
5428
5429 #ifndef ASIC_ONLY
5430 if (CHIP_REV_IS_FPGA(p_dev)) {
5431 DP_NOTICE(p_hwfn, false,
5432 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5433 p_hwfn->num_funcs_on_engine = 4;
5434 }
5435 #endif
5436
5437 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5438 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5439 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5440 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5441 }
5442
ecore_hw_info_port_num_bb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5443 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5444 struct ecore_ptt *p_ptt)
5445 {
5446 struct ecore_dev *p_dev = p_hwfn->p_dev;
5447 u32 port_mode;
5448
5449 #ifndef ASIC_ONLY
5450 /* Read the port mode */
5451 if (CHIP_REV_IS_FPGA(p_dev))
5452 port_mode = 4;
5453 else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5454 /* In CMT on emulation, assume 1 port */
5455 port_mode = 1;
5456 else
5457 #endif
5458 port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5459
5460 if (port_mode < 3) {
5461 p_dev->num_ports_in_engine = 1;
5462 } else if (port_mode <= 5) {
5463 p_dev->num_ports_in_engine = 2;
5464 } else {
5465 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5466 p_dev->num_ports_in_engine);
5467
5468 /* Default num_ports_in_engine to something */
5469 p_dev->num_ports_in_engine = 1;
5470 }
5471 }
5472
ecore_hw_info_port_num_ah_e5(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5473 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5474 struct ecore_ptt *p_ptt)
5475 {
5476 struct ecore_dev *p_dev = p_hwfn->p_dev;
5477 u32 port;
5478 int i;
5479
5480 p_dev->num_ports_in_engine = 0;
5481
5482 #ifndef ASIC_ONLY
5483 if (CHIP_REV_IS_EMUL(p_dev)) {
5484 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5485 switch ((port & 0xf000) >> 12) {
5486 case 1:
5487 p_dev->num_ports_in_engine = 1;
5488 break;
5489 case 3:
5490 p_dev->num_ports_in_engine = 2;
5491 break;
5492 case 0xf:
5493 p_dev->num_ports_in_engine = 4;
5494 break;
5495 default:
5496 DP_NOTICE(p_hwfn, false,
5497 "Unknown port mode in ECO_RESERVED %08x\n",
5498 port);
5499 }
5500 } else
5501 #endif
5502 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5503 port = ecore_rd(p_hwfn, p_ptt,
5504 CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
5505 if (port & 1)
5506 p_dev->num_ports_in_engine++;
5507 }
5508
5509 if (!p_dev->num_ports_in_engine) {
5510 DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5511
5512 /* Default num_ports_in_engine to something */
5513 p_dev->num_ports_in_engine = 1;
5514 }
5515 }
5516
ecore_hw_info_port_num(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5517 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5518 struct ecore_ptt *p_ptt)
5519 {
5520 struct ecore_dev *p_dev = p_hwfn->p_dev;
5521
5522 /* Determine the number of ports per engine */
5523 if (ECORE_IS_BB(p_dev))
5524 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5525 else
5526 ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5527
5528 /* Get the total number of ports of the device */
5529 if (ECORE_IS_CMT(p_dev)) {
5530 /* In CMT there is always only one port */
5531 p_dev->num_ports = 1;
5532 #ifndef ASIC_ONLY
5533 } else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5534 p_dev->num_ports = p_dev->num_ports_in_engine *
5535 ecore_device_num_engines(p_dev);
5536 #endif
5537 } else {
5538 u32 addr, global_offsize, global_addr;
5539
5540 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5541 PUBLIC_GLOBAL);
5542 global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5543 global_addr = SECTION_ADDR(global_offsize, 0);
5544 addr = global_addr + OFFSETOF(struct public_global, max_ports);
5545 p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5546 }
5547 }
5548
ecore_mcp_get_eee_caps(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5549 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5550 struct ecore_ptt *p_ptt)
5551 {
5552 struct ecore_mcp_link_capabilities *p_caps;
5553 u32 eee_status;
5554
5555 p_caps = &p_hwfn->mcp_info->link_capabilities;
5556 if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5557 return;
5558
5559 p_caps->eee_speed_caps = 0;
5560 eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5561 OFFSETOF(struct public_port, eee_status));
5562 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5563 EEE_SUPPORTED_SPEED_OFFSET;
5564 if (eee_status & EEE_1G_SUPPORTED)
5565 p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5566 if (eee_status & EEE_10G_ADV)
5567 p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5568 }
5569
5570 static enum _ecore_status_t
ecore_get_hw_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum ecore_pci_personality personality,struct ecore_hw_prepare_params * p_params)5571 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5572 enum ecore_pci_personality personality,
5573 struct ecore_hw_prepare_params *p_params)
5574 {
5575 bool drv_resc_alloc = p_params->drv_resc_alloc;
5576 enum _ecore_status_t rc;
5577
5578 /* Since all information is common, only first hwfns should do this */
5579 if (IS_LEAD_HWFN(p_hwfn)) {
5580 rc = ecore_iov_hw_info(p_hwfn);
5581 if (rc != ECORE_SUCCESS) {
5582 if (p_params->b_relaxed_probe)
5583 p_params->p_relaxed_res =
5584 ECORE_HW_PREPARE_BAD_IOV;
5585 else
5586 return rc;
5587 }
5588 }
5589
5590 if (IS_LEAD_HWFN(p_hwfn))
5591 ecore_hw_info_port_num(p_hwfn, p_ptt);
5592
5593 ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5594
5595 #ifndef ASIC_ONLY
5596 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5597 #endif
5598 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5599 if (rc != ECORE_SUCCESS)
5600 return rc;
5601 #ifndef ASIC_ONLY
5602 }
5603 #endif
5604
5605 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5606 if (rc != ECORE_SUCCESS) {
5607 if (p_params->b_relaxed_probe)
5608 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5609 else
5610 return rc;
5611 }
5612
5613 #ifndef ASIC_ONLY
5614 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5615 #endif
5616 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5617 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5618 #ifndef ASIC_ONLY
5619 } else {
5620 static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
5621
5622 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5623 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5624 }
5625 #endif
5626
5627 if (ecore_mcp_is_init(p_hwfn)) {
5628 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5629 p_hwfn->hw_info.ovlan =
5630 p_hwfn->mcp_info->func_info.ovlan;
5631
5632 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5633
5634 ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5635
5636 ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5637 }
5638
5639 if (personality != ECORE_PCI_DEFAULT) {
5640 p_hwfn->hw_info.personality = personality;
5641 } else if (ecore_mcp_is_init(p_hwfn)) {
5642 enum ecore_pci_personality protocol;
5643
5644 protocol = p_hwfn->mcp_info->func_info.protocol;
5645 p_hwfn->hw_info.personality = protocol;
5646 }
5647
5648 #ifndef ASIC_ONLY
5649 /* To overcome ILT lack for emulation, until at least until we'll have
5650 * a definite answer from system about it, allow only PF0 to be RoCE.
5651 */
5652 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5653 if (!p_hwfn->rel_pf_id)
5654 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5655 else
5656 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5657 }
5658 #endif
5659
5660 /* although in BB some constellations may support more than 4 tcs,
5661 * that can result in performance penalty in some cases. 4
5662 * represents a good tradeoff between performance and flexibility.
5663 */
5664 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5665
5666 /* start out with a single active tc. This can be increased either
5667 * by dcbx negotiation or by upper layer driver
5668 */
5669 p_hwfn->hw_info.num_active_tc = 1;
5670
5671 ecore_get_num_funcs(p_hwfn, p_ptt);
5672
5673 if (ecore_mcp_is_init(p_hwfn))
5674 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5675
5676 /* In case of forcing the driver's default resource allocation, calling
5677 * ecore_hw_get_resc() should come after initializing the personality
5678 * and after getting the number of functions, since the calculation of
5679 * the resources/features depends on them.
5680 * This order is not harmful if not forcing.
5681 */
5682 rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5683 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5684 rc = ECORE_SUCCESS;
5685 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5686 }
5687
5688 return rc;
5689 }
5690
5691 #define ECORE_MAX_DEVICE_NAME_LEN (8)
5692
ecore_get_dev_name(struct ecore_dev * p_dev,u8 * name,u8 max_chars)5693 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5694 {
5695 u8 n;
5696
5697 n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5698 OSAL_SNPRINTF(name, n, "%s %c%d", ECORE_IS_BB(p_dev) ? "BB" : "AH",
5699 'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5700 }
5701
ecore_get_dev_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5702 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5703 struct ecore_ptt *p_ptt)
5704 {
5705 struct ecore_dev *p_dev = p_hwfn->p_dev;
5706 u16 device_id_mask;
5707 u32 tmp;
5708
5709 /* Read Vendor Id / Device Id */
5710 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5711 &p_dev->vendor_id);
5712 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5713 &p_dev->device_id);
5714
5715 /* Determine type */
5716 device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5717 switch (device_id_mask) {
5718 case ECORE_DEV_ID_MASK_BB:
5719 p_dev->type = ECORE_DEV_TYPE_BB;
5720 break;
5721 case ECORE_DEV_ID_MASK_AH:
5722 p_dev->type = ECORE_DEV_TYPE_AH;
5723 break;
5724 case ECORE_DEV_ID_MASK_E5:
5725 p_dev->type = ECORE_DEV_TYPE_E5;
5726 break;
5727 default:
5728 DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5729 p_dev->device_id);
5730 return ECORE_ABORTED;
5731 }
5732
5733 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5734 p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5735 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5736 p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5737
5738 /* Learn number of HW-functions */
5739 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5740
5741 if (tmp & (1 << p_hwfn->rel_pf_id)) {
5742 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5743 p_dev->num_hwfns = 2;
5744 } else {
5745 p_dev->num_hwfns = 1;
5746 }
5747
5748 #ifndef ASIC_ONLY
5749 if (CHIP_REV_IS_EMUL(p_dev)) {
5750 /* For some reason we have problems with this register
5751 * in B0 emulation; Simply assume no CMT
5752 */
5753 DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
5754 p_dev->num_hwfns = 1;
5755 }
5756 #endif
5757
5758 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5759 p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5760 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5761 p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5762
5763 DP_INFO(p_dev->hwfns,
5764 "Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5765 ECORE_IS_BB(p_dev) ? "BB" : "AH",
5766 'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5767 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5768 p_dev->chip_metal);
5769
5770 if (ECORE_IS_BB_A0(p_dev)) {
5771 DP_NOTICE(p_dev->hwfns, false,
5772 "The chip type/rev (BB A0) is not supported!\n");
5773 return ECORE_ABORTED;
5774 }
5775
5776 #ifndef ASIC_ONLY
5777 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5778 ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5779
5780 if (CHIP_REV_IS_EMUL(p_dev)) {
5781 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5782 if (tmp & (1 << 29)) {
5783 DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
5784 p_dev->b_is_emul_full = true;
5785 } else {
5786 DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
5787 }
5788 }
5789 #endif
5790
5791 return ECORE_SUCCESS;
5792 }
5793
5794 #ifndef LINUX_REMOVE
ecore_hw_hibernate_prepare(struct ecore_dev * p_dev)5795 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
5796 {
5797 int j;
5798
5799 if (IS_VF(p_dev))
5800 return;
5801
5802 for_each_hwfn(p_dev, j) {
5803 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5804
5805 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
5806
5807 p_hwfn->hw_init_done = false;
5808
5809 ecore_ptt_invalidate(p_hwfn);
5810 }
5811 }
5812
ecore_hw_hibernate_resume(struct ecore_dev * p_dev)5813 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
5814 {
5815 int j = 0;
5816
5817 if (IS_VF(p_dev))
5818 return;
5819
5820 for_each_hwfn(p_dev, j) {
5821 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5822 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
5823
5824 ecore_hw_hwfn_prepare(p_hwfn);
5825
5826 if (!p_ptt)
5827 DP_NOTICE(p_hwfn, false, "ptt acquire failed\n");
5828 else {
5829 ecore_load_mcp_offsets(p_hwfn, p_ptt);
5830 ecore_ptt_release(p_hwfn, p_ptt);
5831 }
5832 DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
5833 }
5834 }
5835
5836 #endif
5837
5838 static enum _ecore_status_t
ecore_hw_prepare_single(struct ecore_hwfn * p_hwfn,void OSAL_IOMEM * p_regview,void OSAL_IOMEM * p_doorbells,u64 db_phys_addr,struct ecore_hw_prepare_params * p_params)5839 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5840 void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5841 struct ecore_hw_prepare_params *p_params)
5842 {
5843 struct ecore_mdump_retain_data mdump_retain;
5844 struct ecore_dev *p_dev = p_hwfn->p_dev;
5845 struct ecore_mdump_info mdump_info;
5846 enum _ecore_status_t rc = ECORE_SUCCESS;
5847
5848 /* Split PCI bars evenly between hwfns */
5849 p_hwfn->regview = p_regview;
5850 p_hwfn->doorbells = p_doorbells;
5851 p_hwfn->db_phys_addr = db_phys_addr;
5852
5853 #ifndef LINUX_REMOVE
5854 p_hwfn->reg_offset = (u8 *)p_hwfn->regview - (u8 *)p_hwfn->p_dev->regview;
5855 p_hwfn->db_offset = (u8 *)p_hwfn->doorbells - (u8 *)p_hwfn->p_dev->doorbells;
5856 #endif
5857
5858 if (IS_VF(p_dev))
5859 return ecore_vf_hw_prepare(p_hwfn);
5860
5861 /* Validate that chip access is feasible */
5862 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5863 DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
5864 if (p_params->b_relaxed_probe)
5865 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5866 return ECORE_INVAL;
5867 }
5868
5869 get_function_id(p_hwfn);
5870
5871 /* Allocate PTT pool */
5872 rc = ecore_ptt_pool_alloc(p_hwfn);
5873 if (rc) {
5874 DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5875 if (p_params->b_relaxed_probe)
5876 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5877 goto err0;
5878 }
5879
5880 /* Allocate the main PTT */
5881 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5882
5883 /* First hwfn learns basic information, e.g., number of hwfns */
5884 if (!p_hwfn->my_id) {
5885 rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5886 if (rc != ECORE_SUCCESS) {
5887 if (p_params->b_relaxed_probe)
5888 p_params->p_relaxed_res =
5889 ECORE_HW_PREPARE_FAILED_DEV;
5890 goto err1;
5891 }
5892 }
5893
5894 ecore_hw_hwfn_prepare(p_hwfn);
5895
5896 /* Initialize MCP structure */
5897 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5898 if (rc) {
5899 DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5900 if (p_params->b_relaxed_probe)
5901 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5902 goto err1;
5903 }
5904
5905 /* Read the device configuration information from the HW and SHMEM */
5906 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5907 p_params->personality, p_params);
5908 if (rc) {
5909 DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5910 goto err2;
5911 }
5912
5913 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5914 * called, since among others it sets the ports number in an engine.
5915 */
5916 if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5917 !p_dev->recov_in_prog) {
5918 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5919 if (rc != ECORE_SUCCESS)
5920 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5921 }
5922
5923 /* Check if mdump logs/data are present and update the epoch value */
5924 if (IS_LEAD_HWFN(p_hwfn)) {
5925 #ifndef ASIC_ONLY
5926 if (!CHIP_REV_IS_EMUL(p_dev)) {
5927 #endif
5928 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5929 &mdump_info);
5930 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5931 DP_NOTICE(p_hwfn, false,
5932 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5933
5934 rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5935 &mdump_retain);
5936 if (rc == ECORE_SUCCESS && mdump_retain.valid)
5937 DP_NOTICE(p_hwfn, false,
5938 "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5939 mdump_retain.epoch, mdump_retain.pf,
5940 mdump_retain.status);
5941
5942 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5943 p_params->epoch);
5944 #ifndef ASIC_ONLY
5945 }
5946 #endif
5947 }
5948
5949 /* Allocate the init RT array and initialize the init-ops engine */
5950 rc = ecore_init_alloc(p_hwfn);
5951 if (rc) {
5952 DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5953 if (p_params->b_relaxed_probe)
5954 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5955 goto err2;
5956 }
5957
5958 #ifndef ASIC_ONLY
5959 if (CHIP_REV_IS_FPGA(p_dev)) {
5960 DP_NOTICE(p_hwfn, false,
5961 "FPGA: workaround; Prevent DMAE parities\n");
5962 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5963 7);
5964
5965 DP_NOTICE(p_hwfn, false,
5966 "FPGA: workaround: Set VF bar0 size\n");
5967 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5968 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5969 }
5970 #endif
5971
5972 return rc;
5973 err2:
5974 if (IS_LEAD_HWFN(p_hwfn))
5975 ecore_iov_free_hw_info(p_dev);
5976 ecore_mcp_free(p_hwfn);
5977 err1:
5978 ecore_hw_hwfn_free(p_hwfn);
5979 err0:
5980 return rc;
5981 }
5982
ecore_hw_prepare(struct ecore_dev * p_dev,struct ecore_hw_prepare_params * p_params)5983 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5984 struct ecore_hw_prepare_params *p_params)
5985 {
5986 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5987 enum _ecore_status_t rc;
5988
5989 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5990 p_dev->allow_mdump = p_params->allow_mdump;
5991
5992 if (p_params->b_relaxed_probe)
5993 p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5994
5995 /* Store the precompiled init data ptrs */
5996 if (IS_PF(p_dev))
5997 ecore_init_iro_array(p_dev);
5998
5999 /* Initialize the first hwfn - will learn number of hwfns */
6000 rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
6001 p_dev->doorbells, p_dev->db_phys_addr,
6002 p_params);
6003 if (rc != ECORE_SUCCESS)
6004 return rc;
6005
6006 p_params->personality = p_hwfn->hw_info.personality;
6007
6008 /* initilalize 2nd hwfn if necessary */
6009 if (ECORE_IS_CMT(p_dev)) {
6010 void OSAL_IOMEM *p_regview, *p_doorbell;
6011 u8 OSAL_IOMEM *addr;
6012 u64 db_phys_addr;
6013 u32 offset;
6014
6015 /* adjust bar offset for second engine */
6016 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6017 BAR_ID_0) / 2;
6018 addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
6019 p_regview = (void OSAL_IOMEM *)addr;
6020
6021 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6022 BAR_ID_1) / 2;
6023 addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
6024 p_doorbell = (void OSAL_IOMEM *)addr;
6025 db_phys_addr = p_dev->db_phys_addr + offset;
6026
6027 /* prepare second hw function */
6028 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
6029 p_doorbell, db_phys_addr,
6030 p_params);
6031
6032 /* in case of error, need to free the previously
6033 * initiliazed hwfn 0.
6034 */
6035 if (rc != ECORE_SUCCESS) {
6036 if (p_params->b_relaxed_probe)
6037 p_params->p_relaxed_res =
6038 ECORE_HW_PREPARE_FAILED_ENG2;
6039
6040 if (IS_PF(p_dev)) {
6041 ecore_init_free(p_hwfn);
6042 ecore_mcp_free(p_hwfn);
6043 ecore_hw_hwfn_free(p_hwfn);
6044 } else {
6045 DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
6046 }
6047 return rc;
6048 }
6049 }
6050
6051 return rc;
6052 }
6053
ecore_hw_remove(struct ecore_dev * p_dev)6054 void ecore_hw_remove(struct ecore_dev *p_dev)
6055 {
6056 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
6057 int i;
6058
6059 if (IS_PF(p_dev))
6060 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
6061 ECORE_OV_DRIVER_STATE_NOT_LOADED);
6062
6063 for_each_hwfn(p_dev, i) {
6064 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6065
6066 if (IS_VF(p_dev)) {
6067 ecore_vf_pf_release(p_hwfn);
6068 continue;
6069 }
6070
6071 ecore_init_free(p_hwfn);
6072 ecore_hw_hwfn_free(p_hwfn);
6073 ecore_mcp_free(p_hwfn);
6074
6075 #ifdef CONFIG_ECORE_LOCK_ALLOC
6076 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
6077 #endif
6078 }
6079
6080 ecore_iov_free_hw_info(p_dev);
6081 }
6082
ecore_chain_free_next_ptr(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6083 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
6084 struct ecore_chain *p_chain)
6085 {
6086 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
6087 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
6088 struct ecore_chain_next *p_next;
6089 u32 size, i;
6090
6091 if (!p_virt)
6092 return;
6093
6094 size = p_chain->elem_size * p_chain->usable_per_page;
6095
6096 for (i = 0; i < p_chain->page_cnt; i++) {
6097 if (!p_virt)
6098 break;
6099
6100 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
6101 p_virt_next = p_next->next_virt;
6102 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
6103
6104 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
6105 ECORE_CHAIN_PAGE_SIZE);
6106
6107 p_virt = p_virt_next;
6108 p_phys = p_phys_next;
6109 }
6110 }
6111
ecore_chain_free_single(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6112 static void ecore_chain_free_single(struct ecore_dev *p_dev,
6113 struct ecore_chain *p_chain)
6114 {
6115 if (!p_chain->p_virt_addr)
6116 return;
6117
6118 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
6119 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
6120 }
6121
ecore_chain_free_pbl(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6122 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
6123 struct ecore_chain *p_chain)
6124 {
6125 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
6126 u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
6127 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
6128
6129 if (!pp_virt_addr_tbl)
6130 return;
6131
6132 if (!p_pbl_virt)
6133 goto out;
6134
6135 for (i = 0; i < page_cnt; i++) {
6136 if (!pp_virt_addr_tbl[i])
6137 break;
6138
6139 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
6140 *(dma_addr_t *)p_pbl_virt,
6141 ECORE_CHAIN_PAGE_SIZE);
6142
6143 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6144 }
6145
6146 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6147
6148 if (!p_chain->b_external_pbl) {
6149 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
6150 p_chain->pbl_sp.p_phys_table, pbl_size);
6151 }
6152 out:
6153 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
6154 p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
6155 }
6156
ecore_chain_free(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6157 void ecore_chain_free(struct ecore_dev *p_dev,
6158 struct ecore_chain *p_chain)
6159 {
6160 switch (p_chain->mode) {
6161 case ECORE_CHAIN_MODE_NEXT_PTR:
6162 ecore_chain_free_next_ptr(p_dev, p_chain);
6163 break;
6164 case ECORE_CHAIN_MODE_SINGLE:
6165 ecore_chain_free_single(p_dev, p_chain);
6166 break;
6167 case ECORE_CHAIN_MODE_PBL:
6168 ecore_chain_free_pbl(p_dev, p_chain);
6169 break;
6170 }
6171 }
6172
6173 static enum _ecore_status_t
ecore_chain_alloc_sanity_check(struct ecore_dev * p_dev,enum ecore_chain_cnt_type cnt_type,osal_size_t elem_size,u32 page_cnt)6174 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
6175 enum ecore_chain_cnt_type cnt_type,
6176 osal_size_t elem_size, u32 page_cnt)
6177 {
6178 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
6179
6180 /* The actual chain size can be larger than the maximal possible value
6181 * after rounding up the requested elements number to pages, and after
6182 * taking into acount the unusuable elements (next-ptr elements).
6183 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
6184 * size/capacity fields are of a u32 type.
6185 */
6186 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
6187 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
6188 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
6189 chain_size > ECORE_U32_MAX)) {
6190 DP_NOTICE(p_dev, true,
6191 "The actual chain size (0x%llx) is larger than the maximal possible value\n",
6192 (unsigned long long)chain_size);
6193 return ECORE_INVAL;
6194 }
6195
6196 return ECORE_SUCCESS;
6197 }
6198
6199 static enum _ecore_status_t
ecore_chain_alloc_next_ptr(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6200 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6201 {
6202 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
6203 dma_addr_t p_phys = 0;
6204 u32 i;
6205
6206 for (i = 0; i < p_chain->page_cnt; i++) {
6207 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6208 ECORE_CHAIN_PAGE_SIZE);
6209 if (!p_virt) {
6210 DP_NOTICE(p_dev, false,
6211 "Failed to allocate chain memory\n");
6212 return ECORE_NOMEM;
6213 }
6214
6215 if (i == 0) {
6216 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6217 ecore_chain_reset(p_chain);
6218 } else {
6219 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6220 p_virt, p_phys);
6221 }
6222
6223 p_virt_prev = p_virt;
6224 }
6225 /* Last page's next element should point to the beginning of the
6226 * chain.
6227 */
6228 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6229 p_chain->p_virt_addr,
6230 p_chain->p_phys_addr);
6231
6232 return ECORE_SUCCESS;
6233 }
6234
6235 static enum _ecore_status_t
ecore_chain_alloc_single(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6236 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6237 {
6238 dma_addr_t p_phys = 0;
6239 void *p_virt = OSAL_NULL;
6240
6241 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6242 if (!p_virt) {
6243 DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6244 return ECORE_NOMEM;
6245 }
6246
6247 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6248 ecore_chain_reset(p_chain);
6249
6250 return ECORE_SUCCESS;
6251 }
6252
6253 static enum _ecore_status_t
ecore_chain_alloc_pbl(struct ecore_dev * p_dev,struct ecore_chain * p_chain,struct ecore_chain_ext_pbl * ext_pbl)6254 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6255 struct ecore_chain *p_chain,
6256 struct ecore_chain_ext_pbl *ext_pbl)
6257 {
6258 u32 page_cnt = p_chain->page_cnt, size, i;
6259 dma_addr_t p_phys = 0, p_pbl_phys = 0;
6260 void **pp_virt_addr_tbl = OSAL_NULL;
6261 u8 *p_pbl_virt = OSAL_NULL;
6262 void *p_virt = OSAL_NULL;
6263
6264 size = page_cnt * sizeof(*pp_virt_addr_tbl);
6265 pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6266 if (!pp_virt_addr_tbl) {
6267 DP_NOTICE(p_dev, false,
6268 "Failed to allocate memory for the chain virtual addresses table\n");
6269 return ECORE_NOMEM;
6270 }
6271
6272 /* The allocation of the PBL table is done with its full size, since it
6273 * is expected to be successive.
6274 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6275 * failure, since pp_virt_addr_tbl was previously allocated, and it
6276 * should be saved to allow its freeing during the error flow.
6277 */
6278 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6279
6280 if (ext_pbl == OSAL_NULL) {
6281 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6282 } else {
6283 p_pbl_virt = ext_pbl->p_pbl_virt;
6284 p_pbl_phys = ext_pbl->p_pbl_phys;
6285 p_chain->b_external_pbl = true;
6286 }
6287
6288 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6289 pp_virt_addr_tbl);
6290 if (!p_pbl_virt) {
6291 DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6292 return ECORE_NOMEM;
6293 }
6294
6295 for (i = 0; i < page_cnt; i++) {
6296 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6297 ECORE_CHAIN_PAGE_SIZE);
6298 if (!p_virt) {
6299 DP_NOTICE(p_dev, false,
6300 "Failed to allocate chain memory\n");
6301 return ECORE_NOMEM;
6302 }
6303
6304 if (i == 0) {
6305 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6306 ecore_chain_reset(p_chain);
6307 }
6308
6309 /* Fill the PBL table with the physical address of the page */
6310 *(dma_addr_t *)p_pbl_virt = p_phys;
6311 /* Keep the virtual address of the page */
6312 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6313
6314 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6315 }
6316
6317 return ECORE_SUCCESS;
6318 }
6319
ecore_chain_alloc(struct ecore_dev * p_dev,enum ecore_chain_use_mode intended_use,enum ecore_chain_mode mode,enum ecore_chain_cnt_type cnt_type,u32 num_elems,osal_size_t elem_size,struct ecore_chain * p_chain,struct ecore_chain_ext_pbl * ext_pbl)6320 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6321 enum ecore_chain_use_mode intended_use,
6322 enum ecore_chain_mode mode,
6323 enum ecore_chain_cnt_type cnt_type,
6324 u32 num_elems, osal_size_t elem_size,
6325 struct ecore_chain *p_chain,
6326 struct ecore_chain_ext_pbl *ext_pbl)
6327 {
6328 u32 page_cnt;
6329 enum _ecore_status_t rc = ECORE_SUCCESS;
6330
6331 if (mode == ECORE_CHAIN_MODE_SINGLE)
6332 page_cnt = 1;
6333 else
6334 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6335
6336 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6337 page_cnt);
6338 if (rc) {
6339 DP_NOTICE(p_dev, false,
6340 "Cannot allocate a chain with the given arguments:\n"
6341 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6342 intended_use, mode, cnt_type, num_elems, elem_size);
6343 return rc;
6344 }
6345
6346 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6347 mode, cnt_type, p_dev->dp_ctx);
6348
6349 switch (mode) {
6350 case ECORE_CHAIN_MODE_NEXT_PTR:
6351 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6352 break;
6353 case ECORE_CHAIN_MODE_SINGLE:
6354 rc = ecore_chain_alloc_single(p_dev, p_chain);
6355 break;
6356 case ECORE_CHAIN_MODE_PBL:
6357 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6358 break;
6359 }
6360 if (rc)
6361 goto nomem;
6362
6363 return ECORE_SUCCESS;
6364
6365 nomem:
6366 ecore_chain_free(p_dev, p_chain);
6367 return rc;
6368 }
6369
ecore_fw_l2_queue(struct ecore_hwfn * p_hwfn,u16 src_id,u16 * dst_id)6370 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6371 u16 src_id, u16 *dst_id)
6372 {
6373 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6374 u16 min, max;
6375
6376 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6377 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6378 DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6379 src_id, min, max);
6380
6381 return ECORE_INVAL;
6382 }
6383
6384 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6385
6386 return ECORE_SUCCESS;
6387 }
6388
ecore_fw_vport(struct ecore_hwfn * p_hwfn,u8 src_id,u8 * dst_id)6389 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6390 u8 src_id, u8 *dst_id)
6391 {
6392 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6393 u8 min, max;
6394
6395 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6396 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6397 DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
6398 src_id, min, max);
6399
6400 return ECORE_INVAL;
6401 }
6402
6403 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6404
6405 return ECORE_SUCCESS;
6406 }
6407
ecore_fw_rss_eng(struct ecore_hwfn * p_hwfn,u8 src_id,u8 * dst_id)6408 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6409 u8 src_id, u8 *dst_id)
6410 {
6411 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6412 u8 min, max;
6413
6414 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6415 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6416 DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6417 src_id, min, max);
6418
6419 return ECORE_INVAL;
6420 }
6421
6422 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6423
6424 return ECORE_SUCCESS;
6425 }
6426
6427 enum _ecore_status_t
ecore_llh_set_function_as_default(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)6428 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6429 struct ecore_ptt *p_ptt)
6430 {
6431 if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6432 ecore_wr(p_hwfn, p_ptt,
6433 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6434 1 << p_hwfn->abs_pf_id / 2);
6435 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6436 return ECORE_SUCCESS;
6437 } else {
6438 DP_NOTICE(p_hwfn, false,
6439 "This function can't be set as default\n");
6440 return ECORE_INVAL;
6441 }
6442 }
6443
ecore_set_coalesce(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 hw_addr,void * p_eth_qzone,osal_size_t eth_qzone_size,u8 timeset)6444 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6445 struct ecore_ptt *p_ptt,
6446 u32 hw_addr, void *p_eth_qzone,
6447 osal_size_t eth_qzone_size,
6448 u8 timeset)
6449 {
6450 struct coalescing_timeset *p_coal_timeset;
6451
6452 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6453 DP_NOTICE(p_hwfn, true,
6454 "Coalescing configuration not enabled\n");
6455 return ECORE_INVAL;
6456 }
6457
6458 p_coal_timeset = p_eth_qzone;
6459 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6460 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6461 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6462 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6463
6464 return ECORE_SUCCESS;
6465 }
6466
ecore_set_queue_coalesce(struct ecore_hwfn * p_hwfn,u16 rx_coal,u16 tx_coal,void * p_handle)6467 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6468 u16 rx_coal, u16 tx_coal,
6469 void *p_handle)
6470 {
6471 struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6472 enum _ecore_status_t rc = ECORE_SUCCESS;
6473 struct ecore_ptt *p_ptt;
6474
6475 /* TODO - Configuring a single queue's coalescing but
6476 * claiming all queues are abiding same configuration
6477 * for PF and VF both.
6478 */
6479
6480 #ifdef CONFIG_ECORE_SRIOV
6481 if (IS_VF(p_hwfn->p_dev))
6482 return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6483 tx_coal, p_cid);
6484 #endif /* #ifdef CONFIG_ECORE_SRIOV */
6485
6486 p_ptt = ecore_ptt_acquire(p_hwfn);
6487 if (!p_ptt)
6488 return ECORE_AGAIN;
6489
6490 if (rx_coal) {
6491 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6492 if (rc)
6493 goto out;
6494 p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6495 }
6496
6497 if (tx_coal) {
6498 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6499 if (rc)
6500 goto out;
6501 p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6502 }
6503 out:
6504 ecore_ptt_release(p_hwfn, p_ptt);
6505
6506 return rc;
6507 }
6508
ecore_set_rxq_coalesce(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 coalesce,struct ecore_queue_cid * p_cid)6509 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6510 struct ecore_ptt *p_ptt,
6511 u16 coalesce,
6512 struct ecore_queue_cid *p_cid)
6513 {
6514 struct ustorm_eth_queue_zone eth_qzone;
6515 u8 timeset, timer_res;
6516 u32 address;
6517 enum _ecore_status_t rc;
6518
6519 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6520 if (coalesce <= 0x7F)
6521 timer_res = 0;
6522 else if (coalesce <= 0xFF)
6523 timer_res = 1;
6524 else if (coalesce <= 0x1FF)
6525 timer_res = 2;
6526 else {
6527 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6528 return ECORE_INVAL;
6529 }
6530 timeset = (u8)(coalesce >> timer_res);
6531
6532 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6533 p_cid->sb_igu_id, false);
6534 if (rc != ECORE_SUCCESS)
6535 goto out;
6536
6537 address = BAR0_MAP_REG_USDM_RAM +
6538 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6539
6540 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
6541 sizeof(struct ustorm_eth_queue_zone), timeset);
6542 if (rc != ECORE_SUCCESS)
6543 goto out;
6544
6545 out:
6546 return rc;
6547 }
6548
ecore_set_txq_coalesce(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 coalesce,struct ecore_queue_cid * p_cid)6549 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6550 struct ecore_ptt *p_ptt,
6551 u16 coalesce,
6552 struct ecore_queue_cid *p_cid)
6553 {
6554 struct xstorm_eth_queue_zone eth_qzone;
6555 u8 timeset, timer_res;
6556 u32 address;
6557 enum _ecore_status_t rc;
6558
6559 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6560 if (coalesce <= 0x7F)
6561 timer_res = 0;
6562 else if (coalesce <= 0xFF)
6563 timer_res = 1;
6564 else if (coalesce <= 0x1FF)
6565 timer_res = 2;
6566 else {
6567 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6568 return ECORE_INVAL;
6569 }
6570 timeset = (u8)(coalesce >> timer_res);
6571
6572 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6573 p_cid->sb_igu_id, true);
6574 if (rc != ECORE_SUCCESS)
6575 goto out;
6576
6577 address = BAR0_MAP_REG_XSDM_RAM +
6578 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6579
6580 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
6581 sizeof(struct xstorm_eth_queue_zone), timeset);
6582 out:
6583 return rc;
6584 }
6585
6586 /* Calculate final WFQ values for all vports and configure it.
6587 * After this configuration each vport must have
6588 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6589 */
ecore_configure_wfq_for_all_vports(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 min_pf_rate)6590 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6591 struct ecore_ptt *p_ptt,
6592 u32 min_pf_rate)
6593 {
6594 struct init_qm_vport_params *vport_params;
6595 int i;
6596
6597 vport_params = p_hwfn->qm_info.qm_vport_params;
6598
6599 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6600 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6601
6602 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6603 min_pf_rate;
6604 ecore_init_vport_wfq(p_hwfn, p_ptt,
6605 vport_params[i].first_tx_pq_id,
6606 vport_params[i].vport_wfq);
6607 }
6608 }
6609
ecore_init_wfq_default_param(struct ecore_hwfn * p_hwfn)6610 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6611
6612 {
6613 int i;
6614
6615 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6616 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6617 }
6618
ecore_disable_wfq_for_all_vports(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)6619 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6620 struct ecore_ptt *p_ptt)
6621 {
6622 struct init_qm_vport_params *vport_params;
6623 int i;
6624
6625 vport_params = p_hwfn->qm_info.qm_vport_params;
6626
6627 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6628 ecore_init_wfq_default_param(p_hwfn);
6629 ecore_init_vport_wfq(p_hwfn, p_ptt,
6630 vport_params[i].first_tx_pq_id,
6631 vport_params[i].vport_wfq);
6632 }
6633 }
6634
6635 /* This function performs several validations for WFQ
6636 * configuration and required min rate for a given vport
6637 * 1. req_rate must be greater than one percent of min_pf_rate.
6638 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6639 * rates to get less than one percent of min_pf_rate.
6640 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6641 */
ecore_init_wfq_param(struct ecore_hwfn * p_hwfn,u16 vport_id,u32 req_rate,u32 min_pf_rate)6642 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6643 u16 vport_id, u32 req_rate,
6644 u32 min_pf_rate)
6645 {
6646 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6647 int non_requested_count = 0, req_count = 0, i, num_vports;
6648
6649 num_vports = p_hwfn->qm_info.num_vports;
6650
6651 /* Accounting for the vports which are configured for WFQ explicitly */
6652 for (i = 0; i < num_vports; i++) {
6653 u32 tmp_speed;
6654
6655 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6656 req_count++;
6657 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6658 total_req_min_rate += tmp_speed;
6659 }
6660 }
6661
6662 /* Include current vport data as well */
6663 req_count++;
6664 total_req_min_rate += req_rate;
6665 non_requested_count = num_vports - req_count;
6666
6667 /* validate possible error cases */
6668 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6669 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6670 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6671 vport_id, req_rate, min_pf_rate);
6672 return ECORE_INVAL;
6673 }
6674
6675 /* TBD - for number of vports greater than 100 */
6676 if (num_vports > ECORE_WFQ_UNIT) {
6677 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6678 "Number of vports is greater than %d\n",
6679 ECORE_WFQ_UNIT);
6680 return ECORE_INVAL;
6681 }
6682
6683 if (total_req_min_rate > min_pf_rate) {
6684 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6685 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6686 total_req_min_rate, min_pf_rate);
6687 return ECORE_INVAL;
6688 }
6689
6690 /* Data left for non requested vports */
6691 total_left_rate = min_pf_rate - total_req_min_rate;
6692 left_rate_per_vp = total_left_rate / non_requested_count;
6693
6694 /* validate if non requested get < 1% of min bw */
6695 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6696 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6697 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6698 left_rate_per_vp, min_pf_rate);
6699 return ECORE_INVAL;
6700 }
6701
6702 /* now req_rate for given vport passes all scenarios.
6703 * assign final wfq rates to all vports.
6704 */
6705 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6706 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6707
6708 for (i = 0; i < num_vports; i++) {
6709 if (p_hwfn->qm_info.wfq_data[i].configured)
6710 continue;
6711
6712 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6713 }
6714
6715 return ECORE_SUCCESS;
6716 }
6717
__ecore_configure_vport_wfq(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 vp_id,u32 rate)6718 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6719 struct ecore_ptt *p_ptt,
6720 u16 vp_id, u32 rate)
6721 {
6722 struct ecore_mcp_link_state *p_link;
6723 int rc = ECORE_SUCCESS;
6724
6725 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6726
6727 if (!p_link->min_pf_rate) {
6728 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6729 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6730 return rc;
6731 }
6732
6733 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6734
6735 if (rc == ECORE_SUCCESS)
6736 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6737 p_link->min_pf_rate);
6738 else
6739 DP_NOTICE(p_hwfn, false,
6740 "Validation failed while configuring min rate\n");
6741
6742 return rc;
6743 }
6744
__ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 min_pf_rate)6745 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6746 struct ecore_ptt *p_ptt,
6747 u32 min_pf_rate)
6748 {
6749 bool use_wfq = false;
6750 int rc = ECORE_SUCCESS;
6751 u16 i;
6752
6753 /* Validate all pre configured vports for wfq */
6754 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6755 u32 rate;
6756
6757 if (!p_hwfn->qm_info.wfq_data[i].configured)
6758 continue;
6759
6760 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6761 use_wfq = true;
6762
6763 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6764 if (rc != ECORE_SUCCESS) {
6765 DP_NOTICE(p_hwfn, false,
6766 "WFQ validation failed while configuring min rate\n");
6767 break;
6768 }
6769 }
6770
6771 if (rc == ECORE_SUCCESS && use_wfq)
6772 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6773 else
6774 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6775
6776 return rc;
6777 }
6778
6779 /* Main API for ecore clients to configure vport min rate.
6780 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6781 * rate - Speed in Mbps needs to be assigned to a given vport.
6782 */
ecore_configure_vport_wfq(struct ecore_dev * p_dev,u16 vp_id,u32 rate)6783 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6784 {
6785 int i, rc = ECORE_INVAL;
6786
6787 /* TBD - for multiple hardware functions - that is 100 gig */
6788 if (ECORE_IS_CMT(p_dev)) {
6789 DP_NOTICE(p_dev, false,
6790 "WFQ configuration is not supported for this device\n");
6791 return rc;
6792 }
6793
6794 for_each_hwfn(p_dev, i) {
6795 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6796 struct ecore_ptt *p_ptt;
6797
6798 p_ptt = ecore_ptt_acquire(p_hwfn);
6799 if (!p_ptt)
6800 return ECORE_TIMEOUT;
6801
6802 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6803
6804 if (rc != ECORE_SUCCESS) {
6805 ecore_ptt_release(p_hwfn, p_ptt);
6806 return rc;
6807 }
6808
6809 ecore_ptt_release(p_hwfn, p_ptt);
6810 }
6811
6812 return rc;
6813 }
6814
6815 /* API to configure WFQ from mcp link change */
ecore_configure_vp_wfq_on_link_change(struct ecore_dev * p_dev,struct ecore_ptt * p_ptt,u32 min_pf_rate)6816 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6817 struct ecore_ptt *p_ptt,
6818 u32 min_pf_rate)
6819 {
6820 int i;
6821
6822 /* TBD - for multiple hardware functions - that is 100 gig */
6823 if (ECORE_IS_CMT(p_dev)) {
6824 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6825 "WFQ configuration is not supported for this device\n");
6826 return;
6827 }
6828
6829 for_each_hwfn(p_dev, i) {
6830 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6831
6832 __ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6833 min_pf_rate);
6834 }
6835 }
6836
__ecore_configure_pf_max_bandwidth(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_mcp_link_state * p_link,u8 max_bw)6837 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6838 struct ecore_ptt *p_ptt,
6839 struct ecore_mcp_link_state *p_link,
6840 u8 max_bw)
6841 {
6842 int rc = ECORE_SUCCESS;
6843
6844 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6845
6846 if (!p_link->line_speed && (max_bw != 100))
6847 return rc;
6848
6849 p_link->speed = (p_link->line_speed * max_bw) / 100;
6850 p_hwfn->qm_info.pf_rl = p_link->speed;
6851
6852 /* Since the limiter also affects Tx-switched traffic, we don't want it
6853 * to limit such traffic in case there's no actual limit.
6854 * In that case, set limit to imaginary high boundary.
6855 */
6856 if (max_bw == 100)
6857 p_hwfn->qm_info.pf_rl = 100000;
6858
6859 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6860 p_hwfn->qm_info.pf_rl);
6861
6862 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6863 "Configured MAX bandwidth to be %08x Mb/sec\n",
6864 p_link->speed);
6865
6866 return rc;
6867 }
6868
6869 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
ecore_configure_pf_max_bandwidth(struct ecore_dev * p_dev,u8 max_bw)6870 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6871 {
6872 int i, rc = ECORE_INVAL;
6873
6874 if (max_bw < 1 || max_bw > 100) {
6875 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6876 return rc;
6877 }
6878
6879 for_each_hwfn(p_dev, i) {
6880 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6881 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6882 struct ecore_mcp_link_state *p_link;
6883 struct ecore_ptt *p_ptt;
6884
6885 p_link = &p_lead->mcp_info->link_output;
6886
6887 p_ptt = ecore_ptt_acquire(p_hwfn);
6888 if (!p_ptt)
6889 return ECORE_TIMEOUT;
6890
6891 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6892 p_link, max_bw);
6893
6894 ecore_ptt_release(p_hwfn, p_ptt);
6895
6896 if (rc != ECORE_SUCCESS)
6897 break;
6898 }
6899
6900 return rc;
6901 }
6902
__ecore_configure_pf_min_bandwidth(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_mcp_link_state * p_link,u8 min_bw)6903 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6904 struct ecore_ptt *p_ptt,
6905 struct ecore_mcp_link_state *p_link,
6906 u8 min_bw)
6907 {
6908 int rc = ECORE_SUCCESS;
6909
6910 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6911 p_hwfn->qm_info.pf_wfq = min_bw;
6912
6913 if (!p_link->line_speed)
6914 return rc;
6915
6916 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6917
6918 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6919
6920 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6921 "Configured MIN bandwidth to be %d Mb/sec\n",
6922 p_link->min_pf_rate);
6923
6924 return rc;
6925 }
6926
6927 /* Main API to configure PF min bandwidth where bw range is [1-100] */
ecore_configure_pf_min_bandwidth(struct ecore_dev * p_dev,u8 min_bw)6928 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6929 {
6930 int i, rc = ECORE_INVAL;
6931
6932 if (min_bw < 1 || min_bw > 100) {
6933 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6934 return rc;
6935 }
6936
6937 for_each_hwfn(p_dev, i) {
6938 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6939 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6940 struct ecore_mcp_link_state *p_link;
6941 struct ecore_ptt *p_ptt;
6942
6943 p_link = &p_lead->mcp_info->link_output;
6944
6945 p_ptt = ecore_ptt_acquire(p_hwfn);
6946 if (!p_ptt)
6947 return ECORE_TIMEOUT;
6948
6949 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6950 p_link, min_bw);
6951 if (rc != ECORE_SUCCESS) {
6952 ecore_ptt_release(p_hwfn, p_ptt);
6953 return rc;
6954 }
6955
6956 if (p_link->min_pf_rate) {
6957 u32 min_rate = p_link->min_pf_rate;
6958
6959 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6960 p_ptt,
6961 min_rate);
6962 }
6963
6964 ecore_ptt_release(p_hwfn, p_ptt);
6965 }
6966
6967 return rc;
6968 }
6969
ecore_clean_wfq_db(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)6970 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6971 {
6972 struct ecore_mcp_link_state *p_link;
6973
6974 p_link = &p_hwfn->mcp_info->link_output;
6975
6976 if (p_link->min_pf_rate)
6977 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6978
6979 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6980 sizeof(*p_hwfn->qm_info.wfq_data) *
6981 p_hwfn->qm_info.num_vports);
6982 }
6983
ecore_device_num_engines(struct ecore_dev * p_dev)6984 int ecore_device_num_engines(struct ecore_dev *p_dev)
6985 {
6986 return ECORE_IS_BB(p_dev) ? 2 : 1;
6987 }
6988
ecore_device_num_ports(struct ecore_dev * p_dev)6989 int ecore_device_num_ports(struct ecore_dev *p_dev)
6990 {
6991 return p_dev->num_ports;
6992 }
6993
ecore_set_fw_mac_addr(__le16 * fw_msb,__le16 * fw_mid,__le16 * fw_lsb,u8 * mac)6994 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6995 __le16 *fw_mid,
6996 __le16 *fw_lsb,
6997 u8 *mac)
6998 {
6999 ((u8 *)fw_msb)[0] = mac[1];
7000 ((u8 *)fw_msb)[1] = mac[0];
7001 ((u8 *)fw_mid)[0] = mac[3];
7002 ((u8 *)fw_mid)[1] = mac[2];
7003 ((u8 *)fw_lsb)[0] = mac[5];
7004 ((u8 *)fw_lsb)[1] = mac[4];
7005 }
7006
ecore_set_dev_access_enable(struct ecore_dev * p_dev,bool b_enable)7007 void ecore_set_dev_access_enable(struct ecore_dev *p_dev, bool b_enable)
7008 {
7009 if (p_dev->recov_in_prog != !b_enable) {
7010 DP_INFO(p_dev, "%s access to the device\n",
7011 b_enable ? "Enable" : "Disable");
7012 p_dev->recov_in_prog = !b_enable;
7013 }
7014 }
7015
7016 #ifdef _NTDDK_
7017 #pragma warning(pop)
7018 #endif
7019