xref: /linux/drivers/base/devres.c (revision 9d230d500b0e5f7be863e2bf2386be5f80dd18aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/devres.c - device resource management
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/sections.h>
15 
16 #include "base.h"
17 #include "trace.h"
18 
19 struct devres_node {
20 	struct list_head		entry;
21 	dr_release_t			release;
22 	const char			*name;
23 	size_t				size;
24 };
25 
26 struct devres {
27 	struct devres_node		node;
28 	/*
29 	 * Some archs want to perform DMA into kmalloc caches
30 	 * and need a guaranteed alignment larger than
31 	 * the alignment of a 64-bit integer.
32 	 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
33 	 * alignment for struct devres when allocated by kmalloc().
34 	 */
35 	u8 __aligned(ARCH_DMA_MINALIGN) data[];
36 };
37 
38 struct devres_group {
39 	struct devres_node		node[2];
40 	void				*id;
41 	int				color;
42 	/* -- 8 pointers */
43 };
44 
set_node_dbginfo(struct devres_node * node,const char * name,size_t size)45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 			     size_t size)
47 {
48 	node->name = name;
49 	node->size = size;
50 }
51 
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55 
devres_dbg(struct device * dev,struct devres_node * node,const char * op)56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 		       const char *op)
58 {
59 	if (unlikely(log_devres))
60 		dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 			op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op)	do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66 
devres_log(struct device * dev,struct devres_node * node,const char * op)67 static void devres_log(struct device *dev, struct devres_node *node,
68 		       const char *op)
69 {
70 	trace_devres_log(dev, op, node, node->name, node->size);
71 	devres_dbg(dev, node, op);
72 }
73 
74 /*
75  * Release functions for devres group.  These callbacks are used only
76  * for identification.
77  */
group_open_release(struct device * dev,void * res)78 static void group_open_release(struct device *dev, void *res)
79 {
80 	/* noop */
81 }
82 
group_close_release(struct device * dev,void * res)83 static void group_close_release(struct device *dev, void *res)
84 {
85 	/* noop */
86 }
87 
node_to_group(struct devres_node * node)88 static struct devres_group *node_to_group(struct devres_node *node)
89 {
90 	if (node->release == &group_open_release)
91 		return container_of(node, struct devres_group, node[0]);
92 	if (node->release == &group_close_release)
93 		return container_of(node, struct devres_group, node[1]);
94 	return NULL;
95 }
96 
check_dr_size(size_t size,size_t * tot_size)97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 	/* We must catch any near-SIZE_MAX cases that could overflow. */
100 	if (unlikely(check_add_overflow(sizeof(struct devres),
101 					size, tot_size)))
102 		return false;
103 
104 	/* Actually allocate the full kmalloc bucket size. */
105 	*tot_size = kmalloc_size_roundup(*tot_size);
106 
107 	return true;
108 }
109 
alloc_dr(dr_release_t release,size_t size,gfp_t gfp,int nid)110 static __always_inline struct devres *alloc_dr(dr_release_t release,
111 					       size_t size, gfp_t gfp, int nid)
112 {
113 	size_t tot_size;
114 	struct devres *dr;
115 
116 	if (!check_dr_size(size, &tot_size))
117 		return NULL;
118 
119 	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
120 	if (unlikely(!dr))
121 		return NULL;
122 
123 	/* No need to clear memory twice */
124 	if (!(gfp & __GFP_ZERO))
125 		memset(dr, 0, offsetof(struct devres, data));
126 
127 	INIT_LIST_HEAD(&dr->node.entry);
128 	dr->node.release = release;
129 	return dr;
130 }
131 
add_dr(struct device * dev,struct devres_node * node)132 static void add_dr(struct device *dev, struct devres_node *node)
133 {
134 	devres_log(dev, node, "ADD");
135 	BUG_ON(!list_empty(&node->entry));
136 	list_add_tail(&node->entry, &dev->devres_head);
137 }
138 
replace_dr(struct device * dev,struct devres_node * old,struct devres_node * new)139 static void replace_dr(struct device *dev,
140 		       struct devres_node *old, struct devres_node *new)
141 {
142 	devres_log(dev, old, "REPLACE");
143 	BUG_ON(!list_empty(&new->entry));
144 	list_replace(&old->entry, &new->entry);
145 }
146 
147 /**
148  * __devres_alloc_node - Allocate device resource data
149  * @release: Release function devres will be associated with
150  * @size: Allocation size
151  * @gfp: Allocation flags
152  * @nid: NUMA node
153  * @name: Name of the resource
154  *
155  * Allocate devres of @size bytes.  The allocated area is zeroed, then
156  * associated with @release.  The returned pointer can be passed to
157  * other devres_*() functions.
158  *
159  * RETURNS:
160  * Pointer to allocated devres on success, NULL on failure.
161  */
__devres_alloc_node(dr_release_t release,size_t size,gfp_t gfp,int nid,const char * name)162 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
163 			  const char *name)
164 {
165 	struct devres *dr;
166 
167 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
168 	if (unlikely(!dr))
169 		return NULL;
170 	set_node_dbginfo(&dr->node, name, size);
171 	return dr->data;
172 }
173 EXPORT_SYMBOL_GPL(__devres_alloc_node);
174 
175 /**
176  * devres_for_each_res - Resource iterator
177  * @dev: Device to iterate resource from
178  * @release: Look for resources associated with this release function
179  * @match: Match function (optional)
180  * @match_data: Data for the match function
181  * @fn: Function to be called for each matched resource.
182  * @data: Data for @fn, the 3rd parameter of @fn
183  *
184  * Call @fn for each devres of @dev which is associated with @release
185  * and for which @match returns 1.
186  *
187  * RETURNS:
188  * 	void
189  */
devres_for_each_res(struct device * dev,dr_release_t release,dr_match_t match,void * match_data,void (* fn)(struct device *,void *,void *),void * data)190 void devres_for_each_res(struct device *dev, dr_release_t release,
191 			dr_match_t match, void *match_data,
192 			void (*fn)(struct device *, void *, void *),
193 			void *data)
194 {
195 	struct devres_node *node;
196 	struct devres_node *tmp;
197 	unsigned long flags;
198 
199 	if (!fn)
200 		return;
201 
202 	spin_lock_irqsave(&dev->devres_lock, flags);
203 	list_for_each_entry_safe_reverse(node, tmp,
204 			&dev->devres_head, entry) {
205 		struct devres *dr = container_of(node, struct devres, node);
206 
207 		if (node->release != release)
208 			continue;
209 		if (match && !match(dev, dr->data, match_data))
210 			continue;
211 		fn(dev, dr->data, data);
212 	}
213 	spin_unlock_irqrestore(&dev->devres_lock, flags);
214 }
215 EXPORT_SYMBOL_GPL(devres_for_each_res);
216 
217 /**
218  * devres_free - Free device resource data
219  * @res: Pointer to devres data to free
220  *
221  * Free devres created with devres_alloc().
222  */
devres_free(void * res)223 void devres_free(void *res)
224 {
225 	if (res) {
226 		struct devres *dr = container_of(res, struct devres, data);
227 
228 		BUG_ON(!list_empty(&dr->node.entry));
229 		kfree(dr);
230 	}
231 }
232 EXPORT_SYMBOL_GPL(devres_free);
233 
234 /**
235  * devres_add - Register device resource
236  * @dev: Device to add resource to
237  * @res: Resource to register
238  *
239  * Register devres @res to @dev.  @res should have been allocated
240  * using devres_alloc().  On driver detach, the associated release
241  * function will be invoked and devres will be freed automatically.
242  */
devres_add(struct device * dev,void * res)243 void devres_add(struct device *dev, void *res)
244 {
245 	struct devres *dr = container_of(res, struct devres, data);
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&dev->devres_lock, flags);
249 	add_dr(dev, &dr->node);
250 	spin_unlock_irqrestore(&dev->devres_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(devres_add);
253 
find_dr(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)254 static struct devres *find_dr(struct device *dev, dr_release_t release,
255 			      dr_match_t match, void *match_data)
256 {
257 	struct devres_node *node;
258 
259 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
260 		struct devres *dr = container_of(node, struct devres, node);
261 
262 		if (node->release != release)
263 			continue;
264 		if (match && !match(dev, dr->data, match_data))
265 			continue;
266 		return dr;
267 	}
268 
269 	return NULL;
270 }
271 
272 /**
273  * devres_find - Find device resource
274  * @dev: Device to lookup resource from
275  * @release: Look for resources associated with this release function
276  * @match: Match function (optional)
277  * @match_data: Data for the match function
278  *
279  * Find the latest devres of @dev which is associated with @release
280  * and for which @match returns 1.  If @match is NULL, it's considered
281  * to match all.
282  *
283  * RETURNS:
284  * Pointer to found devres, NULL if not found.
285  */
devres_find(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)286 void *devres_find(struct device *dev, dr_release_t release,
287 		  dr_match_t match, void *match_data)
288 {
289 	struct devres *dr;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&dev->devres_lock, flags);
293 	dr = find_dr(dev, release, match, match_data);
294 	spin_unlock_irqrestore(&dev->devres_lock, flags);
295 
296 	if (dr)
297 		return dr->data;
298 	return NULL;
299 }
300 EXPORT_SYMBOL_GPL(devres_find);
301 
302 /**
303  * devres_get - Find devres, if non-existent, add one atomically
304  * @dev: Device to lookup or add devres for
305  * @new_res: Pointer to new initialized devres to add if not found
306  * @match: Match function (optional)
307  * @match_data: Data for the match function
308  *
309  * Find the latest devres of @dev which has the same release function
310  * as @new_res and for which @match return 1.  If found, @new_res is
311  * freed; otherwise, @new_res is added atomically.
312  *
313  * RETURNS:
314  * Pointer to found or added devres.
315  */
devres_get(struct device * dev,void * new_res,dr_match_t match,void * match_data)316 void *devres_get(struct device *dev, void *new_res,
317 		 dr_match_t match, void *match_data)
318 {
319 	struct devres *new_dr = container_of(new_res, struct devres, data);
320 	struct devres *dr;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&dev->devres_lock, flags);
324 	dr = find_dr(dev, new_dr->node.release, match, match_data);
325 	if (!dr) {
326 		add_dr(dev, &new_dr->node);
327 		dr = new_dr;
328 		new_res = NULL;
329 	}
330 	spin_unlock_irqrestore(&dev->devres_lock, flags);
331 	devres_free(new_res);
332 
333 	return dr->data;
334 }
335 EXPORT_SYMBOL_GPL(devres_get);
336 
337 /**
338  * devres_remove - Find a device resource and remove it
339  * @dev: Device to find resource from
340  * @release: Look for resources associated with this release function
341  * @match: Match function (optional)
342  * @match_data: Data for the match function
343  *
344  * Find the latest devres of @dev associated with @release and for
345  * which @match returns 1.  If @match is NULL, it's considered to
346  * match all.  If found, the resource is removed atomically and
347  * returned.
348  *
349  * RETURNS:
350  * Pointer to removed devres on success, NULL if not found.
351  */
devres_remove(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)352 void *devres_remove(struct device *dev, dr_release_t release,
353 		    dr_match_t match, void *match_data)
354 {
355 	struct devres *dr;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&dev->devres_lock, flags);
359 	dr = find_dr(dev, release, match, match_data);
360 	if (dr) {
361 		list_del_init(&dr->node.entry);
362 		devres_log(dev, &dr->node, "REM");
363 	}
364 	spin_unlock_irqrestore(&dev->devres_lock, flags);
365 
366 	if (dr)
367 		return dr->data;
368 	return NULL;
369 }
370 EXPORT_SYMBOL_GPL(devres_remove);
371 
372 /**
373  * devres_destroy - Find a device resource and destroy it
374  * @dev: Device to find resource from
375  * @release: Look for resources associated with this release function
376  * @match: Match function (optional)
377  * @match_data: Data for the match function
378  *
379  * Find the latest devres of @dev associated with @release and for
380  * which @match returns 1.  If @match is NULL, it's considered to
381  * match all.  If found, the resource is removed atomically and freed.
382  *
383  * Note that the release function for the resource will not be called,
384  * only the devres-allocated data will be freed.  The caller becomes
385  * responsible for freeing any other data.
386  *
387  * RETURNS:
388  * 0 if devres is found and freed, -ENOENT if not found.
389  */
devres_destroy(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)390 int devres_destroy(struct device *dev, dr_release_t release,
391 		   dr_match_t match, void *match_data)
392 {
393 	void *res;
394 
395 	res = devres_remove(dev, release, match, match_data);
396 	if (unlikely(!res))
397 		return -ENOENT;
398 
399 	devres_free(res);
400 	return 0;
401 }
402 EXPORT_SYMBOL_GPL(devres_destroy);
403 
404 
405 /**
406  * devres_release - Find a device resource and destroy it, calling release
407  * @dev: Device to find resource from
408  * @release: Look for resources associated with this release function
409  * @match: Match function (optional)
410  * @match_data: Data for the match function
411  *
412  * Find the latest devres of @dev associated with @release and for
413  * which @match returns 1.  If @match is NULL, it's considered to
414  * match all.  If found, the resource is removed atomically, the
415  * release function called and the resource freed.
416  *
417  * RETURNS:
418  * 0 if devres is found and freed, -ENOENT if not found.
419  */
devres_release(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)420 int devres_release(struct device *dev, dr_release_t release,
421 		   dr_match_t match, void *match_data)
422 {
423 	void *res;
424 
425 	res = devres_remove(dev, release, match, match_data);
426 	if (unlikely(!res))
427 		return -ENOENT;
428 
429 	(*release)(dev, res);
430 	devres_free(res);
431 	return 0;
432 }
433 EXPORT_SYMBOL_GPL(devres_release);
434 
remove_nodes(struct device * dev,struct list_head * first,struct list_head * end,struct list_head * todo)435 static int remove_nodes(struct device *dev,
436 			struct list_head *first, struct list_head *end,
437 			struct list_head *todo)
438 {
439 	struct devres_node *node, *n;
440 	int cnt = 0, nr_groups = 0;
441 
442 	/* First pass - move normal devres entries to @todo and clear
443 	 * devres_group colors.
444 	 */
445 	node = list_entry(first, struct devres_node, entry);
446 	list_for_each_entry_safe_from(node, n, end, entry) {
447 		struct devres_group *grp;
448 
449 		grp = node_to_group(node);
450 		if (grp) {
451 			/* clear color of group markers in the first pass */
452 			grp->color = 0;
453 			nr_groups++;
454 		} else {
455 			/* regular devres entry */
456 			if (&node->entry == first)
457 				first = first->next;
458 			list_move_tail(&node->entry, todo);
459 			cnt++;
460 		}
461 	}
462 
463 	if (!nr_groups)
464 		return cnt;
465 
466 	/* Second pass - Scan groups and color them.  A group gets
467 	 * color value of two iff the group is wholly contained in
468 	 * [current node, end). That is, for a closed group, both opening
469 	 * and closing markers should be in the range, while just the
470 	 * opening marker is enough for an open group.
471 	 */
472 	node = list_entry(first, struct devres_node, entry);
473 	list_for_each_entry_safe_from(node, n, end, entry) {
474 		struct devres_group *grp;
475 
476 		grp = node_to_group(node);
477 		BUG_ON(!grp || list_empty(&grp->node[0].entry));
478 
479 		grp->color++;
480 		if (list_empty(&grp->node[1].entry))
481 			grp->color++;
482 
483 		BUG_ON(grp->color <= 0 || grp->color > 2);
484 		if (grp->color == 2) {
485 			/* No need to update current node or end. The removed
486 			 * nodes are always before both.
487 			 */
488 			list_move_tail(&grp->node[0].entry, todo);
489 			list_del_init(&grp->node[1].entry);
490 		}
491 	}
492 
493 	return cnt;
494 }
495 
release_nodes(struct device * dev,struct list_head * todo)496 static void release_nodes(struct device *dev, struct list_head *todo)
497 {
498 	struct devres *dr, *tmp;
499 
500 	/* Release.  Note that both devres and devres_group are
501 	 * handled as devres in the following loop.  This is safe.
502 	 */
503 	list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
504 		devres_log(dev, &dr->node, "REL");
505 		dr->node.release(dev, dr->data);
506 		kfree(dr);
507 	}
508 }
509 
510 /**
511  * devres_release_all - Release all managed resources
512  * @dev: Device to release resources for
513  *
514  * Release all resources associated with @dev.  This function is
515  * called on driver detach.
516  */
devres_release_all(struct device * dev)517 int devres_release_all(struct device *dev)
518 {
519 	unsigned long flags;
520 	LIST_HEAD(todo);
521 	int cnt;
522 
523 	/* Looks like an uninitialized device structure */
524 	if (WARN_ON(dev->devres_head.next == NULL))
525 		return -ENODEV;
526 
527 	/* Nothing to release if list is empty */
528 	if (list_empty(&dev->devres_head))
529 		return 0;
530 
531 	spin_lock_irqsave(&dev->devres_lock, flags);
532 	cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
533 	spin_unlock_irqrestore(&dev->devres_lock, flags);
534 
535 	release_nodes(dev, &todo);
536 	return cnt;
537 }
538 
539 /**
540  * devres_open_group - Open a new devres group
541  * @dev: Device to open devres group for
542  * @id: Separator ID
543  * @gfp: Allocation flags
544  *
545  * Open a new devres group for @dev with @id.  For @id, using a
546  * pointer to an object which won't be used for another group is
547  * recommended.  If @id is NULL, address-wise unique ID is created.
548  *
549  * RETURNS:
550  * ID of the new group, NULL on failure.
551  */
devres_open_group(struct device * dev,void * id,gfp_t gfp)552 void *devres_open_group(struct device *dev, void *id, gfp_t gfp)
553 {
554 	struct devres_group *grp;
555 	unsigned long flags;
556 
557 	grp = kmalloc(sizeof(*grp), gfp);
558 	if (unlikely(!grp))
559 		return NULL;
560 
561 	grp->node[0].release = &group_open_release;
562 	grp->node[1].release = &group_close_release;
563 	INIT_LIST_HEAD(&grp->node[0].entry);
564 	INIT_LIST_HEAD(&grp->node[1].entry);
565 	set_node_dbginfo(&grp->node[0], "grp<", 0);
566 	set_node_dbginfo(&grp->node[1], "grp>", 0);
567 	grp->id = grp;
568 	if (id)
569 		grp->id = id;
570 	grp->color = 0;
571 
572 	spin_lock_irqsave(&dev->devres_lock, flags);
573 	add_dr(dev, &grp->node[0]);
574 	spin_unlock_irqrestore(&dev->devres_lock, flags);
575 	return grp->id;
576 }
577 EXPORT_SYMBOL_GPL(devres_open_group);
578 
579 /*
580  * Find devres group with ID @id.  If @id is NULL, look for the latest open
581  * group.
582  */
find_group(struct device * dev,void * id)583 static struct devres_group *find_group(struct device *dev, void *id)
584 {
585 	struct devres_node *node;
586 
587 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
588 		struct devres_group *grp;
589 
590 		if (node->release != &group_open_release)
591 			continue;
592 
593 		grp = container_of(node, struct devres_group, node[0]);
594 
595 		if (id) {
596 			if (grp->id == id)
597 				return grp;
598 		} else if (list_empty(&grp->node[1].entry))
599 			return grp;
600 	}
601 
602 	return NULL;
603 }
604 
605 /**
606  * devres_close_group - Close a devres group
607  * @dev: Device to close devres group for
608  * @id: ID of target group, can be NULL
609  *
610  * Close the group identified by @id.  If @id is NULL, the latest open
611  * group is selected.
612  */
devres_close_group(struct device * dev,void * id)613 void devres_close_group(struct device *dev, void *id)
614 {
615 	struct devres_group *grp;
616 	unsigned long flags;
617 
618 	spin_lock_irqsave(&dev->devres_lock, flags);
619 
620 	grp = find_group(dev, id);
621 	if (grp)
622 		add_dr(dev, &grp->node[1]);
623 	else
624 		WARN_ON(1);
625 
626 	spin_unlock_irqrestore(&dev->devres_lock, flags);
627 }
628 EXPORT_SYMBOL_GPL(devres_close_group);
629 
630 /**
631  * devres_remove_group - Remove a devres group
632  * @dev: Device to remove group for
633  * @id: ID of target group, can be NULL
634  *
635  * Remove the group identified by @id.  If @id is NULL, the latest
636  * open group is selected.  Note that removing a group doesn't affect
637  * any other resources.
638  */
devres_remove_group(struct device * dev,void * id)639 void devres_remove_group(struct device *dev, void *id)
640 {
641 	struct devres_group *grp;
642 	unsigned long flags;
643 
644 	spin_lock_irqsave(&dev->devres_lock, flags);
645 
646 	grp = find_group(dev, id);
647 	if (grp) {
648 		list_del_init(&grp->node[0].entry);
649 		list_del_init(&grp->node[1].entry);
650 		devres_log(dev, &grp->node[0], "REM");
651 	} else
652 		WARN_ON(1);
653 
654 	spin_unlock_irqrestore(&dev->devres_lock, flags);
655 
656 	kfree(grp);
657 }
658 EXPORT_SYMBOL_GPL(devres_remove_group);
659 
660 /**
661  * devres_release_group - Release resources in a devres group
662  * @dev: Device to release group for
663  * @id: ID of target group, can be NULL
664  *
665  * Release all resources in the group identified by @id.  If @id is
666  * NULL, the latest open group is selected.  The selected group and
667  * groups properly nested inside the selected group are removed.
668  *
669  * RETURNS:
670  * The number of released non-group resources.
671  */
devres_release_group(struct device * dev,void * id)672 int devres_release_group(struct device *dev, void *id)
673 {
674 	struct devres_group *grp;
675 	unsigned long flags;
676 	LIST_HEAD(todo);
677 	int cnt = 0;
678 
679 	spin_lock_irqsave(&dev->devres_lock, flags);
680 
681 	grp = find_group(dev, id);
682 	if (grp) {
683 		struct list_head *first = &grp->node[0].entry;
684 		struct list_head *end = &dev->devres_head;
685 
686 		if (!list_empty(&grp->node[1].entry))
687 			end = grp->node[1].entry.next;
688 
689 		cnt = remove_nodes(dev, first, end, &todo);
690 		spin_unlock_irqrestore(&dev->devres_lock, flags);
691 
692 		release_nodes(dev, &todo);
693 	} else if (list_empty(&dev->devres_head)) {
694 		/*
695 		 * dev is probably dying via devres_release_all(): groups
696 		 * have already been removed and are on the process of
697 		 * being released - don't touch and don't warn.
698 		 */
699 		spin_unlock_irqrestore(&dev->devres_lock, flags);
700 	} else {
701 		WARN_ON(1);
702 		spin_unlock_irqrestore(&dev->devres_lock, flags);
703 	}
704 
705 	return cnt;
706 }
707 EXPORT_SYMBOL_GPL(devres_release_group);
708 
709 /*
710  * Custom devres actions allow inserting a simple function call
711  * into the teardown sequence.
712  */
713 
714 struct action_devres {
715 	void *data;
716 	void (*action)(void *);
717 };
718 
devm_action_match(struct device * dev,void * res,void * p)719 static int devm_action_match(struct device *dev, void *res, void *p)
720 {
721 	struct action_devres *devres = res;
722 	struct action_devres *target = p;
723 
724 	return devres->action == target->action &&
725 	       devres->data == target->data;
726 }
727 
devm_action_release(struct device * dev,void * res)728 static void devm_action_release(struct device *dev, void *res)
729 {
730 	struct action_devres *devres = res;
731 
732 	devres->action(devres->data);
733 }
734 
735 /**
736  * __devm_add_action() - add a custom action to list of managed resources
737  * @dev: Device that owns the action
738  * @action: Function that should be called
739  * @data: Pointer to data passed to @action implementation
740  * @name: Name of the resource (for debugging purposes)
741  *
742  * This adds a custom action to the list of managed resources so that
743  * it gets executed as part of standard resource unwinding.
744  */
__devm_add_action(struct device * dev,void (* action)(void *),void * data,const char * name)745 int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name)
746 {
747 	struct action_devres *devres;
748 
749 	devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres),
750 				     GFP_KERNEL, NUMA_NO_NODE, name);
751 	if (!devres)
752 		return -ENOMEM;
753 
754 	devres->data = data;
755 	devres->action = action;
756 
757 	devres_add(dev, devres);
758 	return 0;
759 }
760 EXPORT_SYMBOL_GPL(__devm_add_action);
761 
devm_is_action_added(struct device * dev,void (* action)(void *),void * data)762 bool devm_is_action_added(struct device *dev, void (*action)(void *), void *data)
763 {
764 	struct action_devres devres = {
765 		.data = data,
766 		.action = action,
767 	};
768 
769 	return devres_find(dev, devm_action_release, devm_action_match, &devres);
770 }
771 EXPORT_SYMBOL_GPL(devm_is_action_added);
772 
773 /**
774  * devm_remove_action_nowarn() - removes previously added custom action
775  * @dev: Device that owns the action
776  * @action: Function implementing the action
777  * @data: Pointer to data passed to @action implementation
778  *
779  * Removes instance of @action previously added by devm_add_action().
780  * Both action and data should match one of the existing entries.
781  *
782  * In contrast to devm_remove_action(), this function does not WARN() if no
783  * entry could have been found.
784  *
785  * This should only be used if the action is contained in an object with
786  * independent lifetime management, e.g. the Devres rust abstraction.
787  *
788  * Causing the warning from regular driver code most likely indicates an abuse
789  * of the devres API.
790  *
791  * Returns: 0 on success, -ENOENT if no entry could have been found.
792  */
devm_remove_action_nowarn(struct device * dev,void (* action)(void *),void * data)793 int devm_remove_action_nowarn(struct device *dev,
794 			      void (*action)(void *),
795 			      void *data)
796 {
797 	struct action_devres devres = {
798 		.data = data,
799 		.action = action,
800 	};
801 
802 	return devres_destroy(dev, devm_action_release, devm_action_match,
803 			      &devres);
804 }
805 EXPORT_SYMBOL_GPL(devm_remove_action_nowarn);
806 
807 /**
808  * devm_release_action() - release previously added custom action
809  * @dev: Device that owns the action
810  * @action: Function implementing the action
811  * @data: Pointer to data passed to @action implementation
812  *
813  * Releases and removes instance of @action previously added by
814  * devm_add_action().  Both action and data should match one of the
815  * existing entries.
816  */
devm_release_action(struct device * dev,void (* action)(void *),void * data)817 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
818 {
819 	struct action_devres devres = {
820 		.data = data,
821 		.action = action,
822 	};
823 
824 	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
825 			       &devres));
826 
827 }
828 EXPORT_SYMBOL_GPL(devm_release_action);
829 
830 /*
831  * Managed kmalloc/kfree
832  */
devm_kmalloc_release(struct device * dev,void * res)833 static void devm_kmalloc_release(struct device *dev, void *res)
834 {
835 	/* noop */
836 }
837 
devm_kmalloc_match(struct device * dev,void * res,void * data)838 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
839 {
840 	return res == data;
841 }
842 
843 /**
844  * devm_kmalloc - Resource-managed kmalloc
845  * @dev: Device to allocate memory for
846  * @size: Allocation size
847  * @gfp: Allocation gfp flags
848  *
849  * Managed kmalloc.  Memory allocated with this function is
850  * automatically freed on driver detach.  Like all other devres
851  * resources, guaranteed alignment is unsigned long long.
852  *
853  * RETURNS:
854  * Pointer to allocated memory on success, NULL on failure.
855  */
devm_kmalloc(struct device * dev,size_t size,gfp_t gfp)856 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
857 {
858 	struct devres *dr;
859 
860 	if (unlikely(!size))
861 		return ZERO_SIZE_PTR;
862 
863 	/* use raw alloc_dr for kmalloc caller tracing */
864 	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
865 	if (unlikely(!dr))
866 		return NULL;
867 
868 	/*
869 	 * This is named devm_kzalloc_release for historical reasons
870 	 * The initial implementation did not support kmalloc, only kzalloc
871 	 */
872 	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
873 	devres_add(dev, dr->data);
874 	return dr->data;
875 }
876 EXPORT_SYMBOL_GPL(devm_kmalloc);
877 
878 /**
879  * devm_krealloc - Resource-managed krealloc()
880  * @dev: Device to re-allocate memory for
881  * @ptr: Pointer to the memory chunk to re-allocate
882  * @new_size: New allocation size
883  * @gfp: Allocation gfp flags
884  *
885  * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
886  * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
887  * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
888  * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
889  * change the order in which the release callback for the re-alloc'ed devres
890  * will be called (except when falling back to devm_kmalloc() or when freeing
891  * resources when new_size is zero). The contents of the memory are preserved
892  * up to the lesser of new and old sizes.
893  */
devm_krealloc(struct device * dev,void * ptr,size_t new_size,gfp_t gfp)894 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
895 {
896 	size_t total_new_size, total_old_size;
897 	struct devres *old_dr, *new_dr;
898 	unsigned long flags;
899 
900 	if (unlikely(!new_size)) {
901 		devm_kfree(dev, ptr);
902 		return ZERO_SIZE_PTR;
903 	}
904 
905 	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
906 		return devm_kmalloc(dev, new_size, gfp);
907 
908 	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
909 		/*
910 		 * We cannot reliably realloc a const string returned by
911 		 * devm_kstrdup_const().
912 		 */
913 		return NULL;
914 
915 	if (!check_dr_size(new_size, &total_new_size))
916 		return NULL;
917 
918 	total_old_size = ksize(container_of(ptr, struct devres, data));
919 	if (total_old_size == 0) {
920 		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
921 		return NULL;
922 	}
923 
924 	/*
925 	 * If new size is smaller or equal to the actual number of bytes
926 	 * allocated previously - just return the same pointer.
927 	 */
928 	if (total_new_size <= total_old_size)
929 		return ptr;
930 
931 	/*
932 	 * Otherwise: allocate new, larger chunk. We need to allocate before
933 	 * taking the lock as most probably the caller uses GFP_KERNEL.
934 	 * alloc_dr() will call check_dr_size() to reserve extra memory
935 	 * for struct devres automatically, so size @new_size user request
936 	 * is delivered to it directly as devm_kmalloc() does.
937 	 */
938 	new_dr = alloc_dr(devm_kmalloc_release,
939 			  new_size, gfp, dev_to_node(dev));
940 	if (!new_dr)
941 		return NULL;
942 
943 	/*
944 	 * The spinlock protects the linked list against concurrent
945 	 * modifications but not the resource itself.
946 	 */
947 	spin_lock_irqsave(&dev->devres_lock, flags);
948 
949 	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
950 	if (!old_dr) {
951 		spin_unlock_irqrestore(&dev->devres_lock, flags);
952 		kfree(new_dr);
953 		WARN(1, "Memory chunk not managed or managed by a different device.");
954 		return NULL;
955 	}
956 
957 	replace_dr(dev, &old_dr->node, &new_dr->node);
958 
959 	spin_unlock_irqrestore(&dev->devres_lock, flags);
960 
961 	/*
962 	 * We can copy the memory contents after releasing the lock as we're
963 	 * no longer modifying the list links.
964 	 */
965 	memcpy(new_dr->data, old_dr->data,
966 	       total_old_size - offsetof(struct devres, data));
967 	/*
968 	 * Same for releasing the old devres - it's now been removed from the
969 	 * list. This is also the reason why we must not use devm_kfree() - the
970 	 * links are no longer valid.
971 	 */
972 	kfree(old_dr);
973 
974 	return new_dr->data;
975 }
976 EXPORT_SYMBOL_GPL(devm_krealloc);
977 
978 /**
979  * devm_kstrdup - Allocate resource managed space and
980  *                copy an existing string into that.
981  * @dev: Device to allocate memory for
982  * @s: the string to duplicate
983  * @gfp: the GFP mask used in the devm_kmalloc() call when
984  *       allocating memory
985  * RETURNS:
986  * Pointer to allocated string on success, NULL on failure.
987  */
devm_kstrdup(struct device * dev,const char * s,gfp_t gfp)988 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
989 {
990 	if (!s)
991 		return NULL;
992 
993 	return devm_kmemdup(dev, s, strlen(s) + 1, gfp);
994 }
995 EXPORT_SYMBOL_GPL(devm_kstrdup);
996 
997 /**
998  * devm_kstrdup_const - resource managed conditional string duplication
999  * @dev: device for which to duplicate the string
1000  * @s: the string to duplicate
1001  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
1002  *
1003  * Strings allocated by devm_kstrdup_const will be automatically freed when
1004  * the associated device is detached.
1005  *
1006  * RETURNS:
1007  * Source string if it is in .rodata section otherwise it falls back to
1008  * devm_kstrdup.
1009  */
devm_kstrdup_const(struct device * dev,const char * s,gfp_t gfp)1010 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
1011 {
1012 	if (is_kernel_rodata((unsigned long)s))
1013 		return s;
1014 
1015 	return devm_kstrdup(dev, s, gfp);
1016 }
1017 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
1018 
1019 /**
1020  * devm_kvasprintf - Allocate resource managed space and format a string
1021  *		     into that.
1022  * @dev: Device to allocate memory for
1023  * @gfp: the GFP mask used in the devm_kmalloc() call when
1024  *       allocating memory
1025  * @fmt: The printf()-style format string
1026  * @ap: Arguments for the format string
1027  * RETURNS:
1028  * Pointer to allocated string on success, NULL on failure.
1029  */
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1030 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1031 		      va_list ap)
1032 {
1033 	unsigned int len;
1034 	char *p;
1035 	va_list aq;
1036 
1037 	va_copy(aq, ap);
1038 	len = vsnprintf(NULL, 0, fmt, aq);
1039 	va_end(aq);
1040 
1041 	p = devm_kmalloc(dev, len+1, gfp);
1042 	if (!p)
1043 		return NULL;
1044 
1045 	vsnprintf(p, len+1, fmt, ap);
1046 
1047 	return p;
1048 }
1049 EXPORT_SYMBOL(devm_kvasprintf);
1050 
1051 /**
1052  * devm_kasprintf - Allocate resource managed space and format a string
1053  *		    into that.
1054  * @dev: Device to allocate memory for
1055  * @gfp: the GFP mask used in the devm_kmalloc() call when
1056  *       allocating memory
1057  * @fmt: The printf()-style format string
1058  * @...: Arguments for the format string
1059  * RETURNS:
1060  * Pointer to allocated string on success, NULL on failure.
1061  */
devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1062 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1063 {
1064 	va_list ap;
1065 	char *p;
1066 
1067 	va_start(ap, fmt);
1068 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1069 	va_end(ap);
1070 
1071 	return p;
1072 }
1073 EXPORT_SYMBOL_GPL(devm_kasprintf);
1074 
1075 /**
1076  * devm_kfree - Resource-managed kfree
1077  * @dev: Device this memory belongs to
1078  * @p: Memory to free
1079  *
1080  * Free memory allocated with devm_kmalloc().
1081  */
devm_kfree(struct device * dev,const void * p)1082 void devm_kfree(struct device *dev, const void *p)
1083 {
1084 	int rc;
1085 
1086 	/*
1087 	 * Special cases: pointer to a string in .rodata returned by
1088 	 * devm_kstrdup_const() or NULL/ZERO ptr.
1089 	 */
1090 	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1091 		return;
1092 
1093 	rc = devres_destroy(dev, devm_kmalloc_release,
1094 			    devm_kmalloc_match, (void *)p);
1095 	WARN_ON(rc);
1096 }
1097 EXPORT_SYMBOL_GPL(devm_kfree);
1098 
1099 /**
1100  * devm_kmemdup - Resource-managed kmemdup
1101  * @dev: Device this memory belongs to
1102  * @src: Memory region to duplicate
1103  * @len: Memory region length
1104  * @gfp: GFP mask to use
1105  *
1106  * Duplicate region of a memory using resource managed kmalloc
1107  */
devm_kmemdup(struct device * dev,const void * src,size_t len,gfp_t gfp)1108 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1109 {
1110 	void *p;
1111 
1112 	p = devm_kmalloc(dev, len, gfp);
1113 	if (p)
1114 		memcpy(p, src, len);
1115 
1116 	return p;
1117 }
1118 EXPORT_SYMBOL_GPL(devm_kmemdup);
1119 
1120 struct pages_devres {
1121 	unsigned long addr;
1122 	unsigned int order;
1123 };
1124 
devm_pages_match(struct device * dev,void * res,void * p)1125 static int devm_pages_match(struct device *dev, void *res, void *p)
1126 {
1127 	struct pages_devres *devres = res;
1128 	struct pages_devres *target = p;
1129 
1130 	return devres->addr == target->addr;
1131 }
1132 
devm_pages_release(struct device * dev,void * res)1133 static void devm_pages_release(struct device *dev, void *res)
1134 {
1135 	struct pages_devres *devres = res;
1136 
1137 	free_pages(devres->addr, devres->order);
1138 }
1139 
1140 /**
1141  * devm_get_free_pages - Resource-managed __get_free_pages
1142  * @dev: Device to allocate memory for
1143  * @gfp_mask: Allocation gfp flags
1144  * @order: Allocation size is (1 << order) pages
1145  *
1146  * Managed get_free_pages.  Memory allocated with this function is
1147  * automatically freed on driver detach.
1148  *
1149  * RETURNS:
1150  * Address of allocated memory on success, 0 on failure.
1151  */
1152 
devm_get_free_pages(struct device * dev,gfp_t gfp_mask,unsigned int order)1153 unsigned long devm_get_free_pages(struct device *dev,
1154 				  gfp_t gfp_mask, unsigned int order)
1155 {
1156 	struct pages_devres *devres;
1157 	unsigned long addr;
1158 
1159 	addr = __get_free_pages(gfp_mask, order);
1160 
1161 	if (unlikely(!addr))
1162 		return 0;
1163 
1164 	devres = devres_alloc(devm_pages_release,
1165 			      sizeof(struct pages_devres), GFP_KERNEL);
1166 	if (unlikely(!devres)) {
1167 		free_pages(addr, order);
1168 		return 0;
1169 	}
1170 
1171 	devres->addr = addr;
1172 	devres->order = order;
1173 
1174 	devres_add(dev, devres);
1175 	return addr;
1176 }
1177 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1178 
1179 /**
1180  * devm_free_pages - Resource-managed free_pages
1181  * @dev: Device this memory belongs to
1182  * @addr: Memory to free
1183  *
1184  * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1185  * there is no need to supply the @order.
1186  */
devm_free_pages(struct device * dev,unsigned long addr)1187 void devm_free_pages(struct device *dev, unsigned long addr)
1188 {
1189 	struct pages_devres devres = { .addr = addr };
1190 
1191 	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1192 			       &devres));
1193 }
1194 EXPORT_SYMBOL_GPL(devm_free_pages);
1195 
devm_percpu_release(struct device * dev,void * pdata)1196 static void devm_percpu_release(struct device *dev, void *pdata)
1197 {
1198 	void __percpu *p;
1199 
1200 	p = *(void __percpu **)pdata;
1201 	free_percpu(p);
1202 }
1203 
devm_percpu_match(struct device * dev,void * data,void * p)1204 static int devm_percpu_match(struct device *dev, void *data, void *p)
1205 {
1206 	struct devres *devr = container_of(data, struct devres, data);
1207 
1208 	return *(void **)devr->data == p;
1209 }
1210 
1211 /**
1212  * __devm_alloc_percpu - Resource-managed alloc_percpu
1213  * @dev: Device to allocate per-cpu memory for
1214  * @size: Size of per-cpu memory to allocate
1215  * @align: Alignment of per-cpu memory to allocate
1216  *
1217  * Managed alloc_percpu. Per-cpu memory allocated with this function is
1218  * automatically freed on driver detach.
1219  *
1220  * RETURNS:
1221  * Pointer to allocated memory on success, NULL on failure.
1222  */
__devm_alloc_percpu(struct device * dev,size_t size,size_t align)1223 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1224 		size_t align)
1225 {
1226 	void *p;
1227 	void __percpu *pcpu;
1228 
1229 	pcpu = __alloc_percpu(size, align);
1230 	if (!pcpu)
1231 		return NULL;
1232 
1233 	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1234 	if (!p) {
1235 		free_percpu(pcpu);
1236 		return NULL;
1237 	}
1238 
1239 	*(void __percpu **)p = pcpu;
1240 
1241 	devres_add(dev, p);
1242 
1243 	return pcpu;
1244 }
1245 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1246 
1247 /**
1248  * devm_free_percpu - Resource-managed free_percpu
1249  * @dev: Device this memory belongs to
1250  * @pdata: Per-cpu memory to free
1251  *
1252  * Free memory allocated with devm_alloc_percpu().
1253  */
devm_free_percpu(struct device * dev,void __percpu * pdata)1254 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1255 {
1256 	/*
1257 	 * Use devres_release() to prevent memory leakage as
1258 	 * devm_free_pages() does.
1259 	 */
1260 	WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match,
1261 			       (void *)(__force unsigned long)pdata));
1262 }
1263 EXPORT_SYMBOL_GPL(devm_free_percpu);
1264