xref: /linux/drivers/base/core.c (revision 3ae7f5093e4f10fd3fa4666b89509a9895e290e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35 
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39 
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49 
50 /**
51  * __fwnode_link_add - Create a link between two fwnode_handles.
52  * @con: Consumer end of the link.
53  * @sup: Supplier end of the link.
54  * @flags: Link flags.
55  *
56  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57  * represents the detail that the firmware lists @sup fwnode as supplying a
58  * resource to @con.
59  *
60  * The driver core will use the fwnode link to create a device link between the
61  * two device objects corresponding to @con and @sup when they are created. The
62  * driver core will automatically delete the fwnode link between @con and @sup
63  * after doing that.
64  *
65  * Attempts to create duplicate links between the same pair of fwnode handles
66  * are ignored and there is no reference counting.
67  */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)68 static int __fwnode_link_add(struct fwnode_handle *con,
69 			     struct fwnode_handle *sup, u8 flags)
70 {
71 	struct fwnode_link *link;
72 
73 	list_for_each_entry(link, &sup->consumers, s_hook)
74 		if (link->consumer == con) {
75 			link->flags |= flags;
76 			return 0;
77 		}
78 
79 	link = kzalloc(sizeof(*link), GFP_KERNEL);
80 	if (!link)
81 		return -ENOMEM;
82 
83 	link->supplier = sup;
84 	INIT_LIST_HEAD(&link->s_hook);
85 	link->consumer = con;
86 	INIT_LIST_HEAD(&link->c_hook);
87 	link->flags = flags;
88 
89 	list_add(&link->s_hook, &sup->consumers);
90 	list_add(&link->c_hook, &con->suppliers);
91 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 		 con, sup);
93 
94 	return 0;
95 }
96 
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 		    u8 flags)
99 {
100 	guard(mutex)(&fwnode_link_lock);
101 
102 	return __fwnode_link_add(con, sup, flags);
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	guard(mutex)(&fwnode_link_lock);
144 
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	guard(mutex)(&fwnode_link_lock);
160 
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
device_is_dependent(struct device * dev,void * target)303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 		output = "supplier unbind";
465 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n",
489 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492 
493 static struct attribute *devlink_attrs[] = {
494 	&dev_attr_status.attr,
495 	&dev_attr_auto_remove_on.attr,
496 	&dev_attr_runtime_pm.attr,
497 	&dev_attr_sync_state_only.attr,
498 	NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501 
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 	struct device_link *link = container_of(work, struct device_link, rm_work);
505 
506 	/* Ensure that all references to the link object have been dropped. */
507 	device_link_synchronize_removal();
508 
509 	pm_runtime_release_supplier(link);
510 	/*
511 	 * If supplier_preactivated is set, the link has been dropped between
512 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 	 * in __driver_probe_device().  In that case, drop the supplier's
514 	 * PM-runtime usage counter to remove the reference taken by
515 	 * pm_runtime_get_suppliers().
516 	 */
517 	if (link->supplier_preactivated)
518 		pm_runtime_put_noidle(link->supplier);
519 
520 	pm_request_idle(link->supplier);
521 
522 	put_device(link->consumer);
523 	put_device(link->supplier);
524 	kfree(link);
525 }
526 
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 	struct device_link *link = to_devlink(dev);
530 
531 	INIT_WORK(&link->rm_work, device_link_release_fn);
532 	/*
533 	 * It may take a while to complete this work because of the SRCU
534 	 * synchronization in device_link_release_fn() and if the consumer or
535 	 * supplier devices get deleted when it runs, so put it into the
536 	 * dedicated workqueue.
537 	 */
538 	queue_work(device_link_wq, &link->rm_work);
539 }
540 
541 /**
542  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543  */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 	/*
547 	 * devlink removal jobs are queued in the dedicated work queue.
548 	 * To be sure that all removal jobs are terminated, ensure that any
549 	 * scheduled work has run to completion.
550 	 */
551 	flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554 
555 static const struct class devlink_class = {
556 	.name = "devlink",
557 	.dev_groups = devlink_groups,
558 	.dev_release = devlink_dev_release,
559 };
560 
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 	int ret;
565 	struct device_link *link = to_devlink(dev);
566 	struct device *sup = link->supplier;
567 	struct device *con = link->consumer;
568 
569 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 	if (ret)
571 		goto out;
572 
573 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 	if (ret)
575 		goto err_con;
576 
577 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 	if (!buf_con) {
579 		ret = -ENOMEM;
580 		goto err_con_dev;
581 	}
582 
583 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 	if (ret)
585 		goto err_con_dev;
586 
587 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 	if (!buf_sup) {
589 		ret = -ENOMEM;
590 		goto err_sup_dev;
591 	}
592 
593 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 	if (ret)
595 		goto err_sup_dev;
596 
597 	goto out;
598 
599 err_sup_dev:
600 	sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 	return ret;
607 }
608 
devlink_remove_symlinks(struct device * dev)609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 	struct device_link *link = to_devlink(dev);
613 	struct device *sup = link->supplier;
614 	struct device *con = link->consumer;
615 
616 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
618 
619 	if (device_is_registered(con)) {
620 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 		if (!buf_sup)
622 			goto out;
623 		sysfs_remove_link(&con->kobj, buf_sup);
624 	}
625 
626 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 	if (!buf_con)
628 		goto out;
629 	sysfs_remove_link(&sup->kobj, buf_con);
630 
631 	return;
632 
633 out:
634 	WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636 
637 static struct class_interface devlink_class_intf = {
638 	.class = &devlink_class,
639 	.add_dev = devlink_add_symlinks,
640 	.remove_dev = devlink_remove_symlinks,
641 };
642 
devlink_class_init(void)643 static int __init devlink_class_init(void)
644 {
645 	int ret;
646 
647 	ret = class_register(&devlink_class);
648 	if (ret)
649 		return ret;
650 
651 	ret = class_interface_register(&devlink_class_intf);
652 	if (ret)
653 		class_unregister(&devlink_class);
654 
655 	return ret;
656 }
657 postcore_initcall(devlink_class_init);
658 
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
662 			       DL_FLAG_SYNC_STATE_ONLY | \
663 			       DL_FLAG_INFERRED | \
664 			       DL_FLAG_CYCLE)
665 
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668 
669 /**
670  * device_link_add - Create a link between two devices.
671  * @consumer: Consumer end of the link.
672  * @supplier: Supplier end of the link.
673  * @flags: Link flags.
674  *
675  * Return: On success, a device_link struct will be returned.
676  *         On error or invalid flag settings, NULL will be returned.
677  *
678  * The caller is responsible for the proper synchronization of the link creation
679  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680  * runtime PM framework to take the link into account.  Second, if the
681  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682  * be forced into the active meta state and reference-counted upon the creation
683  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684  * ignored.
685  *
686  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687  * expected to release the link returned by it directly with the help of either
688  * device_link_del() or device_link_remove().
689  *
690  * If that flag is not set, however, the caller of this function is handing the
691  * management of the link over to the driver core entirely and its return value
692  * can only be used to check whether or not the link is present.  In that case,
693  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694  * flags can be used to indicate to the driver core when the link can be safely
695  * deleted.  Namely, setting one of them in @flags indicates to the driver core
696  * that the link is not going to be used (by the given caller of this function)
697  * after unbinding the consumer or supplier driver, respectively, from its
698  * device, so the link can be deleted at that point.  If none of them is set,
699  * the link will be maintained until one of the devices pointed to by it (either
700  * the consumer or the supplier) is unregistered.
701  *
702  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705  * be used to request the driver core to automatically probe for a consumer
706  * driver after successfully binding a driver to the supplier device.
707  *
708  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710  * the same time is invalid and will cause NULL to be returned upfront.
711  * However, if a device link between the given @consumer and @supplier pair
712  * exists already when this function is called for them, the existing link will
713  * be returned regardless of its current type and status (the link's flags may
714  * be modified then).  The caller of this function is then expected to treat
715  * the link as though it has just been created, so (in particular) if
716  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717  * explicitly when not needed any more (as stated above).
718  *
719  * A side effect of the link creation is re-ordering of dpm_list and the
720  * devices_kset list by moving the consumer device and all devices depending
721  * on it to the ends of these lists (that does not happen to devices that have
722  * not been registered when this function is called).
723  *
724  * The supplier device is required to be registered when this function is called
725  * and NULL will be returned if that is not the case.  The consumer device need
726  * not be registered, however.
727  */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 				    struct device *supplier, u32 flags)
730 {
731 	struct device_link *link;
732 
733 	if (!consumer || !supplier || consumer == supplier ||
734 	    flags & ~DL_ADD_VALID_FLAGS ||
735 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 		return NULL;
740 
741 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 		if (pm_runtime_get_sync(supplier) < 0) {
743 			pm_runtime_put_noidle(supplier);
744 			return NULL;
745 		}
746 	}
747 
748 	if (!(flags & DL_FLAG_STATELESS))
749 		flags |= DL_FLAG_MANAGED;
750 
751 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 	    !device_link_flag_is_sync_state_only(flags))
753 		return NULL;
754 
755 	device_links_write_lock();
756 	device_pm_lock();
757 
758 	/*
759 	 * If the supplier has not been fully registered yet or there is a
760 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 	 * the supplier already in the graph, return NULL. If the link is a
762 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 	 * because it only affects sync_state() callbacks.
764 	 */
765 	if (!device_pm_initialized(supplier)
766 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 		  device_is_dependent(consumer, supplier))) {
768 		link = NULL;
769 		goto out;
770 	}
771 
772 	/*
773 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 	 * So, only create it if the consumer hasn't probed yet.
775 	 */
776 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 	    consumer->links.status != DL_DEV_NO_DRIVER &&
778 	    consumer->links.status != DL_DEV_PROBING) {
779 		link = NULL;
780 		goto out;
781 	}
782 
783 	/*
784 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 	 */
788 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790 
791 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 		if (link->consumer != consumer)
793 			continue;
794 
795 		if (link->flags & DL_FLAG_INFERRED &&
796 		    !(flags & DL_FLAG_INFERRED))
797 			link->flags &= ~DL_FLAG_INFERRED;
798 
799 		if (flags & DL_FLAG_PM_RUNTIME) {
800 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 				pm_runtime_new_link(consumer);
802 				link->flags |= DL_FLAG_PM_RUNTIME;
803 			}
804 			if (flags & DL_FLAG_RPM_ACTIVE)
805 				refcount_inc(&link->rpm_active);
806 		}
807 
808 		if (flags & DL_FLAG_STATELESS) {
809 			kref_get(&link->kref);
810 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 			    !(link->flags & DL_FLAG_STATELESS)) {
812 				link->flags |= DL_FLAG_STATELESS;
813 				goto reorder;
814 			} else {
815 				link->flags |= DL_FLAG_STATELESS;
816 				goto out;
817 			}
818 		}
819 
820 		/*
821 		 * If the life time of the link following from the new flags is
822 		 * longer than indicated by the flags of the existing link,
823 		 * update the existing link to stay around longer.
824 		 */
825 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 			}
830 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 		}
834 		if (!(link->flags & DL_FLAG_MANAGED)) {
835 			kref_get(&link->kref);
836 			link->flags |= DL_FLAG_MANAGED;
837 			device_link_init_status(link, consumer, supplier);
838 		}
839 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 			goto reorder;
843 		}
844 
845 		goto out;
846 	}
847 
848 	link = kzalloc(sizeof(*link), GFP_KERNEL);
849 	if (!link)
850 		goto out;
851 
852 	refcount_set(&link->rpm_active, 1);
853 
854 	get_device(supplier);
855 	link->supplier = supplier;
856 	INIT_LIST_HEAD(&link->s_node);
857 	get_device(consumer);
858 	link->consumer = consumer;
859 	INIT_LIST_HEAD(&link->c_node);
860 	link->flags = flags;
861 	kref_init(&link->kref);
862 
863 	link->link_dev.class = &devlink_class;
864 	device_set_pm_not_required(&link->link_dev);
865 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 		     dev_bus_name(supplier), dev_name(supplier),
867 		     dev_bus_name(consumer), dev_name(consumer));
868 	if (device_register(&link->link_dev)) {
869 		put_device(&link->link_dev);
870 		link = NULL;
871 		goto out;
872 	}
873 
874 	if (flags & DL_FLAG_PM_RUNTIME) {
875 		if (flags & DL_FLAG_RPM_ACTIVE)
876 			refcount_inc(&link->rpm_active);
877 
878 		pm_runtime_new_link(consumer);
879 	}
880 
881 	/* Determine the initial link state. */
882 	if (flags & DL_FLAG_STATELESS)
883 		link->status = DL_STATE_NONE;
884 	else
885 		device_link_init_status(link, consumer, supplier);
886 
887 	/*
888 	 * Some callers expect the link creation during consumer driver probe to
889 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 	 */
891 	if (link->status == DL_STATE_CONSUMER_PROBE &&
892 	    flags & DL_FLAG_PM_RUNTIME)
893 		pm_runtime_resume(supplier);
894 
895 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897 
898 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 		dev_dbg(consumer,
900 			"Linked as a sync state only consumer to %s\n",
901 			dev_name(supplier));
902 		goto out;
903 	}
904 
905 reorder:
906 	/*
907 	 * Move the consumer and all of the devices depending on it to the end
908 	 * of dpm_list and the devices_kset list.
909 	 *
910 	 * It is necessary to hold dpm_list locked throughout all that or else
911 	 * we may end up suspending with a wrong ordering of it.
912 	 */
913 	device_reorder_to_tail(consumer, NULL);
914 
915 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916 
917 out:
918 	device_pm_unlock();
919 	device_links_write_unlock();
920 
921 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 		pm_runtime_put(supplier);
923 
924 	return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927 
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 	struct device_link *link = container_of(kref, struct device_link, kref);
931 
932 	dev_dbg(link->consumer, "Dropping the link to %s\n",
933 		dev_name(link->supplier));
934 
935 	pm_runtime_drop_link(link);
936 
937 	device_link_remove_from_lists(link);
938 	device_unregister(&link->link_dev);
939 }
940 
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 	if (link->flags & DL_FLAG_STATELESS)
944 		kref_put(&link->kref, __device_link_del);
945 	else if (!device_is_registered(link->consumer))
946 		__device_link_del(&link->kref);
947 	else
948 		WARN(1, "Unable to drop a managed device link reference\n");
949 }
950 
951 /**
952  * device_link_del - Delete a stateless link between two devices.
953  * @link: Device link to delete.
954  *
955  * The caller must ensure proper synchronization of this function with runtime
956  * PM.  If the link was added multiple times, it needs to be deleted as often.
957  * Care is required for hotplugged devices:  Their links are purged on removal
958  * and calling device_link_del() is then no longer allowed.
959  */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 	device_links_write_lock();
963 	device_link_put_kref(link);
964 	device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967 
968 /**
969  * device_link_remove - Delete a stateless link between two devices.
970  * @consumer: Consumer end of the link.
971  * @supplier: Supplier end of the link.
972  *
973  * The caller must ensure proper synchronization of this function with runtime
974  * PM.
975  */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 	struct device_link *link;
979 
980 	if (WARN_ON(consumer == supplier))
981 		return;
982 
983 	device_links_write_lock();
984 
985 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 		if (link->consumer == consumer) {
987 			device_link_put_kref(link);
988 			break;
989 		}
990 	}
991 
992 	device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995 
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 	struct device_link *link;
999 
1000 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 		if (link->status != DL_STATE_CONSUMER_PROBE)
1002 			continue;
1003 
1004 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 		} else {
1007 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 		}
1010 	}
1011 }
1012 
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 	return (fw_devlink_best_effort && dev->can_match) ||
1016 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018 
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 						struct fwnode_handle *fwnode)
1021 {
1022 	struct fwnode_link *link;
1023 
1024 	if (!fwnode || fw_devlink_is_permissive())
1025 		return NULL;
1026 
1027 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 		if (!(link->flags &
1029 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 			return link->supplier;
1031 
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * device_links_check_suppliers - Check presence of supplier drivers.
1037  * @dev: Consumer device.
1038  *
1039  * Check links from this device to any suppliers.  Walk the list of the device's
1040  * links to suppliers and see if all of them are available.  If not, simply
1041  * return -EPROBE_DEFER.
1042  *
1043  * We need to guarantee that the supplier will not go away after the check has
1044  * been positive here.  It only can go away in __device_release_driver() and
1045  * that function  checks the device's links to consumers.  This means we need to
1046  * mark the link as "consumer probe in progress" to make the supplier removal
1047  * wait for us to complete (or bad things may happen).
1048  *
1049  * Links without the DL_FLAG_MANAGED flag set are ignored.
1050  */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 	struct device_link *link;
1054 	int ret = 0, fwnode_ret = 0;
1055 	struct fwnode_handle *sup_fw;
1056 
1057 	/*
1058 	 * Device waiting for supplier to become available is not allowed to
1059 	 * probe.
1060 	 */
1061 	scoped_guard(mutex, &fwnode_link_lock) {
1062 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 		if (sup_fw) {
1064 			if (dev_is_best_effort(dev))
1065 				fwnode_ret = -EAGAIN;
1066 			else
1067 				return dev_err_probe(dev, -EPROBE_DEFER,
1068 						     "wait for supplier %pfwf\n", sup_fw);
1069 		}
1070 	}
1071 
1072 	device_links_write_lock();
1073 
1074 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 		if (!(link->flags & DL_FLAG_MANAGED))
1076 			continue;
1077 
1078 		if (link->status != DL_STATE_AVAILABLE &&
1079 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080 
1081 			if (dev_is_best_effort(dev) &&
1082 			    link->flags & DL_FLAG_INFERRED &&
1083 			    !link->supplier->can_match) {
1084 				ret = -EAGAIN;
1085 				continue;
1086 			}
1087 
1088 			device_links_missing_supplier(dev);
1089 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 					    "supplier %s not ready\n", dev_name(link->supplier));
1091 			break;
1092 		}
1093 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 	}
1095 	dev->links.status = DL_DEV_PROBING;
1096 
1097 	device_links_write_unlock();
1098 
1099 	return ret ? ret : fwnode_ret;
1100 }
1101 
1102 /**
1103  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104  * @dev: Device to call sync_state() on
1105  * @list: List head to queue the @dev on
1106  *
1107  * Queues a device for a sync_state() callback when the device links write lock
1108  * isn't held. This allows the sync_state() execution flow to use device links
1109  * APIs.  The caller must ensure this function is called with
1110  * device_links_write_lock() held.
1111  *
1112  * This function does a get_device() to make sure the device is not freed while
1113  * on this list.
1114  *
1115  * So the caller must also ensure that device_links_flush_sync_list() is called
1116  * as soon as the caller releases device_links_write_lock().  This is necessary
1117  * to make sure the sync_state() is called in a timely fashion and the
1118  * put_device() is called on this device.
1119  */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1120 static void __device_links_queue_sync_state(struct device *dev,
1121 					    struct list_head *list)
1122 {
1123 	struct device_link *link;
1124 
1125 	if (!dev_has_sync_state(dev))
1126 		return;
1127 	if (dev->state_synced)
1128 		return;
1129 
1130 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 		if (!(link->flags & DL_FLAG_MANAGED))
1132 			continue;
1133 		if (link->status != DL_STATE_ACTIVE)
1134 			return;
1135 	}
1136 
1137 	/*
1138 	 * Set the flag here to avoid adding the same device to a list more
1139 	 * than once. This can happen if new consumers get added to the device
1140 	 * and probed before the list is flushed.
1141 	 */
1142 	dev->state_synced = true;
1143 
1144 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 		return;
1146 
1147 	get_device(dev);
1148 	list_add_tail(&dev->links.defer_sync, list);
1149 }
1150 
1151 /**
1152  * device_links_flush_sync_list - Call sync_state() on a list of devices
1153  * @list: List of devices to call sync_state() on
1154  * @dont_lock_dev: Device for which lock is already held by the caller
1155  *
1156  * Calls sync_state() on all the devices that have been queued for it. This
1157  * function is used in conjunction with __device_links_queue_sync_state(). The
1158  * @dont_lock_dev parameter is useful when this function is called from a
1159  * context where a device lock is already held.
1160  */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1161 static void device_links_flush_sync_list(struct list_head *list,
1162 					 struct device *dont_lock_dev)
1163 {
1164 	struct device *dev, *tmp;
1165 
1166 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 		list_del_init(&dev->links.defer_sync);
1168 
1169 		if (dev != dont_lock_dev)
1170 			device_lock(dev);
1171 
1172 		dev_sync_state(dev);
1173 
1174 		if (dev != dont_lock_dev)
1175 			device_unlock(dev);
1176 
1177 		put_device(dev);
1178 	}
1179 }
1180 
device_links_supplier_sync_state_pause(void)1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 	device_links_write_lock();
1184 	defer_sync_state_count++;
1185 	device_links_write_unlock();
1186 }
1187 
device_links_supplier_sync_state_resume(void)1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 	struct device *dev, *tmp;
1191 	LIST_HEAD(sync_list);
1192 
1193 	device_links_write_lock();
1194 	if (!defer_sync_state_count) {
1195 		WARN(true, "Unmatched sync_state pause/resume!");
1196 		goto out;
1197 	}
1198 	defer_sync_state_count--;
1199 	if (defer_sync_state_count)
1200 		goto out;
1201 
1202 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 		/*
1204 		 * Delete from deferred_sync list before queuing it to
1205 		 * sync_list because defer_sync is used for both lists.
1206 		 */
1207 		list_del_init(&dev->links.defer_sync);
1208 		__device_links_queue_sync_state(dev, &sync_list);
1209 	}
1210 out:
1211 	device_links_write_unlock();
1212 
1213 	device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215 
sync_state_resume_initcall(void)1216 static int sync_state_resume_initcall(void)
1217 {
1218 	device_links_supplier_sync_state_resume();
1219 	return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222 
__device_links_supplier_defer_sync(struct device * sup)1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228 
device_link_drop_managed(struct device_link * link)1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 	link->flags &= ~DL_FLAG_MANAGED;
1232 	WRITE_ONCE(link->status, DL_STATE_NONE);
1233 	kref_put(&link->kref, __device_link_del);
1234 }
1235 
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 					 struct device_attribute *attr,
1238 					 char *buf)
1239 {
1240 	bool val;
1241 
1242 	device_lock(dev);
1243 	scoped_guard(mutex, &fwnode_link_lock)
1244 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 	device_unlock(dev);
1246 	return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249 
1250 /**
1251  * device_links_force_bind - Prepares device to be force bound
1252  * @dev: Consumer device.
1253  *
1254  * device_bind_driver() force binds a device to a driver without calling any
1255  * driver probe functions. So the consumer really isn't going to wait for any
1256  * supplier before it's bound to the driver. We still want the device link
1257  * states to be sensible when this happens.
1258  *
1259  * In preparation for device_bind_driver(), this function goes through each
1260  * supplier device links and checks if the supplier is bound. If it is, then
1261  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263  */
device_links_force_bind(struct device * dev)1264 void device_links_force_bind(struct device *dev)
1265 {
1266 	struct device_link *link, *ln;
1267 
1268 	device_links_write_lock();
1269 
1270 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 		if (!(link->flags & DL_FLAG_MANAGED))
1272 			continue;
1273 
1274 		if (link->status != DL_STATE_AVAILABLE) {
1275 			device_link_drop_managed(link);
1276 			continue;
1277 		}
1278 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 	}
1280 	dev->links.status = DL_DEV_PROBING;
1281 
1282 	device_links_write_unlock();
1283 }
1284 
1285 /**
1286  * device_links_driver_bound - Update device links after probing its driver.
1287  * @dev: Device to update the links for.
1288  *
1289  * The probe has been successful, so update links from this device to any
1290  * consumers by changing their status to "available".
1291  *
1292  * Also change the status of @dev's links to suppliers to "active".
1293  *
1294  * Links without the DL_FLAG_MANAGED flag set are ignored.
1295  */
device_links_driver_bound(struct device * dev)1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 	struct device_link *link, *ln;
1299 	LIST_HEAD(sync_list);
1300 
1301 	/*
1302 	 * If a device binds successfully, it's expected to have created all
1303 	 * the device links it needs to or make new device links as it needs
1304 	 * them. So, fw_devlink no longer needs to create device links to any
1305 	 * of the device's suppliers.
1306 	 *
1307 	 * Also, if a child firmware node of this bound device is not added as a
1308 	 * device by now, assume it is never going to be added. Make this bound
1309 	 * device the fallback supplier to the dangling consumers of the child
1310 	 * firmware node because this bound device is probably implementing the
1311 	 * child firmware node functionality and we don't want the dangling
1312 	 * consumers to defer probe indefinitely waiting for a device for the
1313 	 * child firmware node.
1314 	 */
1315 	if (dev->fwnode && dev->fwnode->dev == dev) {
1316 		struct fwnode_handle *child;
1317 
1318 		fwnode_links_purge_suppliers(dev->fwnode);
1319 
1320 		guard(mutex)(&fwnode_link_lock);
1321 
1322 		fwnode_for_each_available_child_node(dev->fwnode, child)
1323 			__fw_devlink_pickup_dangling_consumers(child,
1324 							       dev->fwnode);
1325 		__fw_devlink_link_to_consumers(dev);
1326 	}
1327 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328 
1329 	device_links_write_lock();
1330 
1331 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 		if (!(link->flags & DL_FLAG_MANAGED))
1333 			continue;
1334 
1335 		/*
1336 		 * Links created during consumer probe may be in the "consumer
1337 		 * probe" state to start with if the supplier is still probing
1338 		 * when they are created and they may become "active" if the
1339 		 * consumer probe returns first.  Skip them here.
1340 		 */
1341 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 		    link->status == DL_STATE_ACTIVE)
1343 			continue;
1344 
1345 		WARN_ON(link->status != DL_STATE_DORMANT);
1346 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347 
1348 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 			driver_deferred_probe_add(link->consumer);
1350 	}
1351 
1352 	if (defer_sync_state_count)
1353 		__device_links_supplier_defer_sync(dev);
1354 	else
1355 		__device_links_queue_sync_state(dev, &sync_list);
1356 
1357 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 		struct device *supplier;
1359 
1360 		if (!(link->flags & DL_FLAG_MANAGED))
1361 			continue;
1362 
1363 		supplier = link->supplier;
1364 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 			/*
1366 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 			 * save to drop the managed link completely.
1369 			 */
1370 			device_link_drop_managed(link);
1371 		} else if (dev_is_best_effort(dev) &&
1372 			   link->flags & DL_FLAG_INFERRED &&
1373 			   link->status != DL_STATE_CONSUMER_PROBE &&
1374 			   !link->supplier->can_match) {
1375 			/*
1376 			 * When dev_is_best_effort() is true, we ignore device
1377 			 * links to suppliers that don't have a driver.  If the
1378 			 * consumer device still managed to probe, there's no
1379 			 * point in maintaining a device link in a weird state
1380 			 * (consumer probed before supplier). So delete it.
1381 			 */
1382 			device_link_drop_managed(link);
1383 		} else {
1384 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 		}
1387 
1388 		/*
1389 		 * This needs to be done even for the deleted
1390 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 		 * device link that was preventing the supplier from getting a
1392 		 * sync_state() call.
1393 		 */
1394 		if (defer_sync_state_count)
1395 			__device_links_supplier_defer_sync(supplier);
1396 		else
1397 			__device_links_queue_sync_state(supplier, &sync_list);
1398 	}
1399 
1400 	dev->links.status = DL_DEV_DRIVER_BOUND;
1401 
1402 	device_links_write_unlock();
1403 
1404 	device_links_flush_sync_list(&sync_list, dev);
1405 }
1406 
1407 /**
1408  * __device_links_no_driver - Update links of a device without a driver.
1409  * @dev: Device without a drvier.
1410  *
1411  * Delete all non-persistent links from this device to any suppliers.
1412  *
1413  * Persistent links stay around, but their status is changed to "available",
1414  * unless they already are in the "supplier unbind in progress" state in which
1415  * case they need not be updated.
1416  *
1417  * Links without the DL_FLAG_MANAGED flag set are ignored.
1418  */
__device_links_no_driver(struct device * dev)1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 	struct device_link *link, *ln;
1422 
1423 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 		if (!(link->flags & DL_FLAG_MANAGED))
1425 			continue;
1426 
1427 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 			device_link_drop_managed(link);
1429 			continue;
1430 		}
1431 
1432 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 		    link->status != DL_STATE_ACTIVE)
1434 			continue;
1435 
1436 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 		} else {
1439 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 		}
1442 	}
1443 
1444 	dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446 
1447 /**
1448  * device_links_no_driver - Update links after failing driver probe.
1449  * @dev: Device whose driver has just failed to probe.
1450  *
1451  * Clean up leftover links to consumers for @dev and invoke
1452  * %__device_links_no_driver() to update links to suppliers for it as
1453  * appropriate.
1454  *
1455  * Links without the DL_FLAG_MANAGED flag set are ignored.
1456  */
device_links_no_driver(struct device * dev)1457 void device_links_no_driver(struct device *dev)
1458 {
1459 	struct device_link *link;
1460 
1461 	device_links_write_lock();
1462 
1463 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 		if (!(link->flags & DL_FLAG_MANAGED))
1465 			continue;
1466 
1467 		/*
1468 		 * The probe has failed, so if the status of the link is
1469 		 * "consumer probe" or "active", it must have been added by
1470 		 * a probing consumer while this device was still probing.
1471 		 * Change its state to "dormant", as it represents a valid
1472 		 * relationship, but it is not functionally meaningful.
1473 		 */
1474 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 		    link->status == DL_STATE_ACTIVE)
1476 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 	}
1478 
1479 	__device_links_no_driver(dev);
1480 
1481 	device_links_write_unlock();
1482 }
1483 
1484 /**
1485  * device_links_driver_cleanup - Update links after driver removal.
1486  * @dev: Device whose driver has just gone away.
1487  *
1488  * Update links to consumers for @dev by changing their status to "dormant" and
1489  * invoke %__device_links_no_driver() to update links to suppliers for it as
1490  * appropriate.
1491  *
1492  * Links without the DL_FLAG_MANAGED flag set are ignored.
1493  */
device_links_driver_cleanup(struct device * dev)1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 	struct device_link *link, *ln;
1497 
1498 	device_links_write_lock();
1499 
1500 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 		if (!(link->flags & DL_FLAG_MANAGED))
1502 			continue;
1503 
1504 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506 
1507 		/*
1508 		 * autoremove the links between this @dev and its consumer
1509 		 * devices that are not active, i.e. where the link state
1510 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 		 */
1512 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 			device_link_drop_managed(link);
1515 
1516 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 	}
1518 
1519 	list_del_init(&dev->links.defer_sync);
1520 	__device_links_no_driver(dev);
1521 
1522 	device_links_write_unlock();
1523 }
1524 
1525 /**
1526  * device_links_busy - Check if there are any busy links to consumers.
1527  * @dev: Device to check.
1528  *
1529  * Check each consumer of the device and return 'true' if its link's status
1530  * is one of "consumer probe" or "active" (meaning that the given consumer is
1531  * probing right now or its driver is present).  Otherwise, change the link
1532  * state to "supplier unbind" to prevent the consumer from being probed
1533  * successfully going forward.
1534  *
1535  * Return 'false' if there are no probing or active consumers.
1536  *
1537  * Links without the DL_FLAG_MANAGED flag set are ignored.
1538  */
device_links_busy(struct device * dev)1539 bool device_links_busy(struct device *dev)
1540 {
1541 	struct device_link *link;
1542 	bool ret = false;
1543 
1544 	device_links_write_lock();
1545 
1546 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 		if (!(link->flags & DL_FLAG_MANAGED))
1548 			continue;
1549 
1550 		if (link->status == DL_STATE_CONSUMER_PROBE
1551 		    || link->status == DL_STATE_ACTIVE) {
1552 			ret = true;
1553 			break;
1554 		}
1555 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 	}
1557 
1558 	dev->links.status = DL_DEV_UNBINDING;
1559 
1560 	device_links_write_unlock();
1561 	return ret;
1562 }
1563 
1564 /**
1565  * device_links_unbind_consumers - Force unbind consumers of the given device.
1566  * @dev: Device to unbind the consumers of.
1567  *
1568  * Walk the list of links to consumers for @dev and if any of them is in the
1569  * "consumer probe" state, wait for all device probes in progress to complete
1570  * and start over.
1571  *
1572  * If that's not the case, change the status of the link to "supplier unbind"
1573  * and check if the link was in the "active" state.  If so, force the consumer
1574  * driver to unbind and start over (the consumer will not re-probe as we have
1575  * changed the state of the link already).
1576  *
1577  * Links without the DL_FLAG_MANAGED flag set are ignored.
1578  */
device_links_unbind_consumers(struct device * dev)1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 	struct device_link *link;
1582 
1583  start:
1584 	device_links_write_lock();
1585 
1586 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 		enum device_link_state status;
1588 
1589 		if (!(link->flags & DL_FLAG_MANAGED) ||
1590 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 			continue;
1592 
1593 		status = link->status;
1594 		if (status == DL_STATE_CONSUMER_PROBE) {
1595 			device_links_write_unlock();
1596 
1597 			wait_for_device_probe();
1598 			goto start;
1599 		}
1600 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 		if (status == DL_STATE_ACTIVE) {
1602 			struct device *consumer = link->consumer;
1603 
1604 			get_device(consumer);
1605 
1606 			device_links_write_unlock();
1607 
1608 			device_release_driver_internal(consumer, NULL,
1609 						       consumer->parent);
1610 			put_device(consumer);
1611 			goto start;
1612 		}
1613 	}
1614 
1615 	device_links_write_unlock();
1616 }
1617 
1618 /**
1619  * device_links_purge - Delete existing links to other devices.
1620  * @dev: Target device.
1621  */
device_links_purge(struct device * dev)1622 static void device_links_purge(struct device *dev)
1623 {
1624 	struct device_link *link, *ln;
1625 
1626 	if (dev->class == &devlink_class)
1627 		return;
1628 
1629 	/*
1630 	 * Delete all of the remaining links from this device to any other
1631 	 * devices (either consumers or suppliers).
1632 	 */
1633 	device_links_write_lock();
1634 
1635 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 		WARN_ON(link->status == DL_STATE_ACTIVE);
1637 		__device_link_del(&link->kref);
1638 	}
1639 
1640 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 		WARN_ON(link->status != DL_STATE_DORMANT &&
1642 			link->status != DL_STATE_NONE);
1643 		__device_link_del(&link->kref);
1644 	}
1645 
1646 	device_links_write_unlock();
1647 }
1648 
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1650 					 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1652 					 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1654 					 DL_FLAG_PM_RUNTIME)
1655 
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
fw_devlink_setup(char * arg)1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 	if (!arg)
1660 		return -EINVAL;
1661 
1662 	if (strcmp(arg, "off") == 0) {
1663 		fw_devlink_flags = 0;
1664 	} else if (strcmp(arg, "permissive") == 0) {
1665 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 	} else if (strcmp(arg, "on") == 0) {
1667 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 	} else if (strcmp(arg, "rpm") == 0) {
1669 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 	}
1671 	return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674 
1675 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 	return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681 
1682 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1684 
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690 
fw_devlink_sync_state_setup(char * arg)1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 	if (!arg)
1694 		return -EINVAL;
1695 
1696 	if (strcmp(arg, "strict") == 0) {
1697 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 		return 0;
1699 	} else if (strcmp(arg, "timeout") == 0) {
1700 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 		return 0;
1702 	}
1703 	return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706 
fw_devlink_get_flags(u8 fwlink_flags)1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711 
1712 	return fw_devlink_flags;
1713 }
1714 
fw_devlink_is_permissive(void)1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719 
fw_devlink_is_strict(void)1720 bool fw_devlink_is_strict(void)
1721 {
1722 	return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724 
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 		return;
1729 
1730 	fwnode_call_int_op(fwnode, add_links);
1731 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733 
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 	struct fwnode_handle *child = NULL;
1737 
1738 	fw_devlink_parse_fwnode(fwnode);
1739 
1740 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 		fw_devlink_parse_fwtree(child);
1742 }
1743 
fw_devlink_relax_link(struct device_link * link)1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 	if (!(link->flags & DL_FLAG_INFERRED))
1747 		return;
1748 
1749 	if (device_link_flag_is_sync_state_only(link->flags))
1750 		return;
1751 
1752 	pm_runtime_drop_link(link);
1753 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 		dev_name(link->supplier));
1756 }
1757 
fw_devlink_no_driver(struct device * dev,void * data)1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 	struct device_link *link = to_devlink(dev);
1761 
1762 	if (!link->supplier->can_match)
1763 		fw_devlink_relax_link(link);
1764 
1765 	return 0;
1766 }
1767 
fw_devlink_drivers_done(void)1768 void fw_devlink_drivers_done(void)
1769 {
1770 	fw_devlink_drv_reg_done = true;
1771 	device_links_write_lock();
1772 	class_for_each_device(&devlink_class, NULL, NULL,
1773 			      fw_devlink_no_driver);
1774 	device_links_write_unlock();
1775 }
1776 
fw_devlink_dev_sync_state(struct device * dev,void * data)1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 	struct device_link *link = to_devlink(dev);
1780 	struct device *sup = link->supplier;
1781 
1782 	if (!(link->flags & DL_FLAG_MANAGED) ||
1783 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 	    !dev_has_sync_state(sup))
1785 		return 0;
1786 
1787 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 		dev_warn(sup, "sync_state() pending due to %s\n",
1789 			 dev_name(link->consumer));
1790 		return 0;
1791 	}
1792 
1793 	if (!list_empty(&sup->links.defer_sync))
1794 		return 0;
1795 
1796 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 	sup->state_synced = true;
1798 	get_device(sup);
1799 	list_add_tail(&sup->links.defer_sync, data);
1800 
1801 	return 0;
1802 }
1803 
fw_devlink_probing_done(void)1804 void fw_devlink_probing_done(void)
1805 {
1806 	LIST_HEAD(sync_list);
1807 
1808 	device_links_write_lock();
1809 	class_for_each_device(&devlink_class, NULL, &sync_list,
1810 			      fw_devlink_dev_sync_state);
1811 	device_links_write_unlock();
1812 	device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814 
1815 /**
1816  * wait_for_init_devices_probe - Try to probe any device needed for init
1817  *
1818  * Some devices might need to be probed and bound successfully before the kernel
1819  * boot sequence can finish and move on to init/userspace. For example, a
1820  * network interface might need to be bound to be able to mount a NFS rootfs.
1821  *
1822  * With fw_devlink=on by default, some of these devices might be blocked from
1823  * probing because they are waiting on a optional supplier that doesn't have a
1824  * driver. While fw_devlink will eventually identify such devices and unblock
1825  * the probing automatically, it might be too late by the time it unblocks the
1826  * probing of devices. For example, the IP4 autoconfig might timeout before
1827  * fw_devlink unblocks probing of the network interface.
1828  *
1829  * This function is available to temporarily try and probe all devices that have
1830  * a driver even if some of their suppliers haven't been added or don't have
1831  * drivers.
1832  *
1833  * The drivers can then decide which of the suppliers are optional vs mandatory
1834  * and probe the device if possible. By the time this function returns, all such
1835  * "best effort" probes are guaranteed to be completed. If a device successfully
1836  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837  * device where the supplier hasn't yet probed successfully because they have to
1838  * be optional dependencies.
1839  *
1840  * Any devices that didn't successfully probe go back to being treated as if
1841  * this function was never called.
1842  *
1843  * This also means that some devices that aren't needed for init and could have
1844  * waited for their optional supplier to probe (when the supplier's module is
1845  * loaded later on) would end up probing prematurely with limited functionality.
1846  * So call this function only when boot would fail without it.
1847  */
wait_for_init_devices_probe(void)1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 		return;
1852 
1853 	/*
1854 	 * Wait for all ongoing probes to finish so that the "best effort" is
1855 	 * only applied to devices that can't probe otherwise.
1856 	 */
1857 	wait_for_device_probe();
1858 
1859 	pr_info("Trying to probe devices needed for running init ...\n");
1860 	fw_devlink_best_effort = true;
1861 	driver_deferred_probe_trigger();
1862 
1863 	/*
1864 	 * Wait for all "best effort" probes to finish before going back to
1865 	 * normal enforcement.
1866 	 */
1867 	wait_for_device_probe();
1868 	fw_devlink_best_effort = false;
1869 }
1870 
fw_devlink_unblock_consumers(struct device * dev)1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 	struct device_link *link;
1874 
1875 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 		return;
1877 
1878 	device_links_write_lock();
1879 	list_for_each_entry(link, &dev->links.consumers, s_node)
1880 		fw_devlink_relax_link(link);
1881 	device_links_write_unlock();
1882 }
1883 
1884 #define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1885 
fwnode_init_without_drv(struct fwnode_handle * fwnode)1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 	struct device *dev;
1889 	bool ret;
1890 
1891 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 		return false;
1893 
1894 	dev = get_dev_from_fwnode(fwnode);
1895 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 	put_device(dev);
1897 
1898 	return ret;
1899 }
1900 
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902 {
1903 	struct fwnode_handle *parent;
1904 
1905 	fwnode_for_each_parent_node(fwnode, parent) {
1906 		if (fwnode_init_without_drv(parent)) {
1907 			fwnode_handle_put(parent);
1908 			return true;
1909 		}
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 /**
1916  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917  * @ancestor: Firmware which is tested for being an ancestor
1918  * @child: Firmware which is tested for being the child
1919  *
1920  * A node is considered an ancestor of itself too.
1921  *
1922  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923  */
fwnode_is_ancestor_of(const struct fwnode_handle * ancestor,const struct fwnode_handle * child)1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 				  const struct fwnode_handle *child)
1926 {
1927 	struct fwnode_handle *parent;
1928 
1929 	if (IS_ERR_OR_NULL(ancestor))
1930 		return false;
1931 
1932 	if (child == ancestor)
1933 		return true;
1934 
1935 	fwnode_for_each_parent_node(child, parent) {
1936 		if (parent == ancestor) {
1937 			fwnode_handle_put(parent);
1938 			return true;
1939 		}
1940 	}
1941 	return false;
1942 }
1943 
1944 /**
1945  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946  * @fwnode: firmware node
1947  *
1948  * Given a firmware node (@fwnode), this function finds its closest ancestor
1949  * firmware node that has a corresponding struct device and returns that struct
1950  * device.
1951  *
1952  * The caller is responsible for calling put_device() on the returned device
1953  * pointer.
1954  *
1955  * Return: a pointer to the device of the @fwnode's closest ancestor.
1956  */
fwnode_get_next_parent_dev(const struct fwnode_handle * fwnode)1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958 {
1959 	struct fwnode_handle *parent;
1960 	struct device *dev;
1961 
1962 	fwnode_for_each_parent_node(fwnode, parent) {
1963 		dev = get_dev_from_fwnode(parent);
1964 		if (dev) {
1965 			fwnode_handle_put(parent);
1966 			return dev;
1967 		}
1968 	}
1969 	return NULL;
1970 }
1971 
1972 /**
1973  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974  * @con_handle: Potential consumer device fwnode.
1975  * @sup_handle: Potential supplier's fwnode.
1976  *
1977  * Needs to be called with fwnode_lock and device link lock held.
1978  *
1979  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980  * depend on @con. This function can detect multiple cyles between @sup_handle
1981  * and @con. When such dependency cycles are found, convert all device links
1982  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984  * converted into a device link in the future, they are created as
1985  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986  * fw_devlink=permissive just between the devices in the cycle. We need to do
1987  * this because, at this point, fw_devlink can't tell which of these
1988  * dependencies is not a real dependency.
1989  *
1990  * Return true if one or more cycles were found. Otherwise, return false.
1991  */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1992 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993 				 struct fwnode_handle *sup_handle)
1994 {
1995 	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996 	struct fwnode_link *link;
1997 	struct device_link *dev_link;
1998 	bool ret = false;
1999 
2000 	if (!sup_handle)
2001 		return false;
2002 
2003 	/*
2004 	 * We aren't trying to find all cycles. Just a cycle between con and
2005 	 * sup_handle.
2006 	 */
2007 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 		return false;
2009 
2010 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2011 
2012 	/* Termination condition. */
2013 	if (sup_handle == con_handle) {
2014 		pr_debug("----- cycle: start -----\n");
2015 		ret = true;
2016 		goto out;
2017 	}
2018 
2019 	sup_dev = get_dev_from_fwnode(sup_handle);
2020 	con_dev = get_dev_from_fwnode(con_handle);
2021 	/*
2022 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 	 * further.
2025 	 */
2026 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2027 	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028 		ret = false;
2029 		goto out;
2030 	}
2031 
2032 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 		if (link->flags & FWLINK_FLAG_IGNORE)
2034 			continue;
2035 
2036 		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037 			__fwnode_link_cycle(link);
2038 			ret = true;
2039 		}
2040 	}
2041 
2042 	/*
2043 	 * Give priority to device parent over fwnode parent to account for any
2044 	 * quirks in how fwnodes are converted to devices.
2045 	 */
2046 	if (sup_dev)
2047 		par_dev = get_device(sup_dev->parent);
2048 	else
2049 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2050 
2051 	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 			 par_dev->fwnode);
2054 		ret = true;
2055 	}
2056 
2057 	if (!sup_dev)
2058 		goto out;
2059 
2060 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 		/*
2062 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 		 * such due to a cycle.
2064 		 */
2065 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 		    !(dev_link->flags & DL_FLAG_CYCLE))
2067 			continue;
2068 
2069 		if (__fw_devlink_relax_cycles(con_handle,
2070 					      dev_link->supplier->fwnode)) {
2071 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 				 dev_link->supplier->fwnode);
2073 			fw_devlink_relax_link(dev_link);
2074 			dev_link->flags |= DL_FLAG_CYCLE;
2075 			ret = true;
2076 		}
2077 	}
2078 
2079 out:
2080 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 	put_device(sup_dev);
2082 	put_device(con_dev);
2083 	put_device(par_dev);
2084 	return ret;
2085 }
2086 
2087 /**
2088  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089  * @con: consumer device for the device link
2090  * @sup_handle: fwnode handle of supplier
2091  * @link: fwnode link that's being converted to a device link
2092  *
2093  * This function will try to create a device link between the consumer device
2094  * @con and the supplier device represented by @sup_handle.
2095  *
2096  * The supplier has to be provided as a fwnode because incorrect cycles in
2097  * fwnode links can sometimes cause the supplier device to never be created.
2098  * This function detects such cases and returns an error if it cannot create a
2099  * device link from the consumer to a missing supplier.
2100  *
2101  * Returns,
2102  * 0 on successfully creating a device link
2103  * -EINVAL if the device link cannot be created as expected
2104  * -EAGAIN if the device link cannot be created right now, but it may be
2105  *  possible to do that in the future
2106  */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2107 static int fw_devlink_create_devlink(struct device *con,
2108 				     struct fwnode_handle *sup_handle,
2109 				     struct fwnode_link *link)
2110 {
2111 	struct device *sup_dev;
2112 	int ret = 0;
2113 	u32 flags;
2114 
2115 	if (link->flags & FWLINK_FLAG_IGNORE)
2116 		return 0;
2117 
2118 	/*
2119 	 * In some cases, a device P might also be a supplier to its child node
2120 	 * C. However, this would defer the probe of C until the probe of P
2121 	 * completes successfully. This is perfectly fine in the device driver
2122 	 * model. device_add() doesn't guarantee probe completion of the device
2123 	 * by the time it returns.
2124 	 *
2125 	 * However, there are a few drivers that assume C will finish probing
2126 	 * as soon as it's added and before P finishes probing. So, we provide
2127 	 * a flag to let fw_devlink know not to delay the probe of C until the
2128 	 * probe of P completes successfully.
2129 	 *
2130 	 * When such a flag is set, we can't create device links where P is the
2131 	 * supplier of C as that would delay the probe of C.
2132 	 */
2133 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2134 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2135 		return -EINVAL;
2136 
2137 	/*
2138 	 * Don't try to optimize by not calling the cycle detection logic under
2139 	 * certain conditions. There's always some corner case that won't get
2140 	 * detected.
2141 	 */
2142 	device_links_write_lock();
2143 	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2144 		__fwnode_link_cycle(link);
2145 		pr_debug("----- cycle: end -----\n");
2146 		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2147 			link->consumer, sup_handle);
2148 	}
2149 	device_links_write_unlock();
2150 
2151 	if (con->fwnode == link->consumer)
2152 		flags = fw_devlink_get_flags(link->flags);
2153 	else
2154 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2155 
2156 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2157 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2158 	else
2159 		sup_dev = get_dev_from_fwnode(sup_handle);
2160 
2161 	if (sup_dev) {
2162 		/*
2163 		 * If it's one of those drivers that don't actually bind to
2164 		 * their device using driver core, then don't wait on this
2165 		 * supplier device indefinitely.
2166 		 */
2167 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2168 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2169 			dev_dbg(con,
2170 				"Not linking %pfwf - dev might never probe\n",
2171 				sup_handle);
2172 			ret = -EINVAL;
2173 			goto out;
2174 		}
2175 
2176 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2177 			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2178 				flags, dev_name(sup_dev), link->consumer);
2179 			ret = -EINVAL;
2180 		}
2181 
2182 		goto out;
2183 	}
2184 
2185 	/*
2186 	 * Supplier or supplier's ancestor already initialized without a struct
2187 	 * device or being probed by a driver.
2188 	 */
2189 	if (fwnode_init_without_drv(sup_handle) ||
2190 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2191 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2192 			sup_handle);
2193 		return -EINVAL;
2194 	}
2195 
2196 	ret = -EAGAIN;
2197 out:
2198 	put_device(sup_dev);
2199 	return ret;
2200 }
2201 
2202 /**
2203  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2204  * @dev: Device that needs to be linked to its consumers
2205  *
2206  * This function looks at all the consumer fwnodes of @dev and creates device
2207  * links between the consumer device and @dev (supplier).
2208  *
2209  * If the consumer device has not been added yet, then this function creates a
2210  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2211  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2212  * sync_state() callback before the real consumer device gets to be added and
2213  * then probed.
2214  *
2215  * Once device links are created from the real consumer to @dev (supplier), the
2216  * fwnode links are deleted.
2217  */
__fw_devlink_link_to_consumers(struct device * dev)2218 static void __fw_devlink_link_to_consumers(struct device *dev)
2219 {
2220 	struct fwnode_handle *fwnode = dev->fwnode;
2221 	struct fwnode_link *link, *tmp;
2222 
2223 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2224 		struct device *con_dev;
2225 		bool own_link = true;
2226 		int ret;
2227 
2228 		con_dev = get_dev_from_fwnode(link->consumer);
2229 		/*
2230 		 * If consumer device is not available yet, make a "proxy"
2231 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2232 		 * the supplier device. This is necessary to make sure the
2233 		 * supplier doesn't get a sync_state() callback before the real
2234 		 * consumer can create a device link to the supplier.
2235 		 *
2236 		 * This proxy link step is needed to handle the case where the
2237 		 * consumer's parent device is added before the supplier.
2238 		 */
2239 		if (!con_dev) {
2240 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2241 			/*
2242 			 * However, if the consumer's parent device is also the
2243 			 * parent of the supplier, don't create a
2244 			 * consumer-supplier link from the parent to its child
2245 			 * device. Such a dependency is impossible.
2246 			 */
2247 			if (con_dev &&
2248 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2249 				put_device(con_dev);
2250 				con_dev = NULL;
2251 			} else {
2252 				own_link = false;
2253 			}
2254 		}
2255 
2256 		if (!con_dev)
2257 			continue;
2258 
2259 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2260 		put_device(con_dev);
2261 		if (!own_link || ret == -EAGAIN)
2262 			continue;
2263 
2264 		__fwnode_link_del(link);
2265 	}
2266 }
2267 
2268 /**
2269  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2270  * @dev: The consumer device that needs to be linked to its suppliers
2271  * @fwnode: Root of the fwnode tree that is used to create device links
2272  *
2273  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2274  * @fwnode and creates device links between @dev (consumer) and all the
2275  * supplier devices of the entire fwnode tree at @fwnode.
2276  *
2277  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2278  * and the real suppliers of @dev. Once these device links are created, the
2279  * fwnode links are deleted.
2280  *
2281  * In addition, it also looks at all the suppliers of the entire fwnode tree
2282  * because some of the child devices of @dev that have not been added yet
2283  * (because @dev hasn't probed) might already have their suppliers added to
2284  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2285  * @dev (consumer) and these suppliers to make sure they don't execute their
2286  * sync_state() callbacks before these child devices have a chance to create
2287  * their device links. The fwnode links that correspond to the child devices
2288  * aren't delete because they are needed later to create the device links
2289  * between the real consumer and supplier devices.
2290  */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2291 static void __fw_devlink_link_to_suppliers(struct device *dev,
2292 					   struct fwnode_handle *fwnode)
2293 {
2294 	bool own_link = (dev->fwnode == fwnode);
2295 	struct fwnode_link *link, *tmp;
2296 	struct fwnode_handle *child = NULL;
2297 
2298 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2299 		int ret;
2300 		struct fwnode_handle *sup = link->supplier;
2301 
2302 		ret = fw_devlink_create_devlink(dev, sup, link);
2303 		if (!own_link || ret == -EAGAIN)
2304 			continue;
2305 
2306 		__fwnode_link_del(link);
2307 	}
2308 
2309 	/*
2310 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2311 	 * all the descendants. This proxy link step is needed to handle the
2312 	 * case where the supplier is added before the consumer's parent device
2313 	 * (@dev).
2314 	 */
2315 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2316 		__fw_devlink_link_to_suppliers(dev, child);
2317 }
2318 
fw_devlink_link_device(struct device * dev)2319 static void fw_devlink_link_device(struct device *dev)
2320 {
2321 	struct fwnode_handle *fwnode = dev->fwnode;
2322 
2323 	if (!fw_devlink_flags)
2324 		return;
2325 
2326 	fw_devlink_parse_fwtree(fwnode);
2327 
2328 	guard(mutex)(&fwnode_link_lock);
2329 
2330 	__fw_devlink_link_to_consumers(dev);
2331 	__fw_devlink_link_to_suppliers(dev, fwnode);
2332 }
2333 
2334 /* Device links support end. */
2335 
2336 static struct kobject *dev_kobj;
2337 
2338 /* /sys/dev/char */
2339 static struct kobject *sysfs_dev_char_kobj;
2340 
2341 /* /sys/dev/block */
2342 static struct kobject *sysfs_dev_block_kobj;
2343 
2344 static DEFINE_MUTEX(device_hotplug_lock);
2345 
lock_device_hotplug(void)2346 void lock_device_hotplug(void)
2347 {
2348 	mutex_lock(&device_hotplug_lock);
2349 }
2350 
unlock_device_hotplug(void)2351 void unlock_device_hotplug(void)
2352 {
2353 	mutex_unlock(&device_hotplug_lock);
2354 }
2355 
lock_device_hotplug_sysfs(void)2356 int lock_device_hotplug_sysfs(void)
2357 {
2358 	if (mutex_trylock(&device_hotplug_lock))
2359 		return 0;
2360 
2361 	/* Avoid busy looping (5 ms of sleep should do). */
2362 	msleep(5);
2363 	return restart_syscall();
2364 }
2365 
2366 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2367 static inline int device_is_not_partition(struct device *dev)
2368 {
2369 	return !(dev->type == &part_type);
2370 }
2371 #else
device_is_not_partition(struct device * dev)2372 static inline int device_is_not_partition(struct device *dev)
2373 {
2374 	return 1;
2375 }
2376 #endif
2377 
device_platform_notify(struct device * dev)2378 static void device_platform_notify(struct device *dev)
2379 {
2380 	acpi_device_notify(dev);
2381 
2382 	software_node_notify(dev);
2383 }
2384 
device_platform_notify_remove(struct device * dev)2385 static void device_platform_notify_remove(struct device *dev)
2386 {
2387 	software_node_notify_remove(dev);
2388 
2389 	acpi_device_notify_remove(dev);
2390 }
2391 
2392 /**
2393  * dev_driver_string - Return a device's driver name, if at all possible
2394  * @dev: struct device to get the name of
2395  *
2396  * Will return the device's driver's name if it is bound to a device.  If
2397  * the device is not bound to a driver, it will return the name of the bus
2398  * it is attached to.  If it is not attached to a bus either, an empty
2399  * string will be returned.
2400  */
dev_driver_string(const struct device * dev)2401 const char *dev_driver_string(const struct device *dev)
2402 {
2403 	struct device_driver *drv;
2404 
2405 	/* dev->driver can change to NULL underneath us because of unbinding,
2406 	 * so be careful about accessing it.  dev->bus and dev->class should
2407 	 * never change once they are set, so they don't need special care.
2408 	 */
2409 	drv = READ_ONCE(dev->driver);
2410 	return drv ? drv->name : dev_bus_name(dev);
2411 }
2412 EXPORT_SYMBOL(dev_driver_string);
2413 
2414 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2415 
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2416 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2417 			     char *buf)
2418 {
2419 	struct device_attribute *dev_attr = to_dev_attr(attr);
2420 	struct device *dev = kobj_to_dev(kobj);
2421 	ssize_t ret = -EIO;
2422 
2423 	if (dev_attr->show)
2424 		ret = dev_attr->show(dev, dev_attr, buf);
2425 	if (ret >= (ssize_t)PAGE_SIZE) {
2426 		printk("dev_attr_show: %pS returned bad count\n",
2427 				dev_attr->show);
2428 	}
2429 	return ret;
2430 }
2431 
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2432 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2433 			      const char *buf, size_t count)
2434 {
2435 	struct device_attribute *dev_attr = to_dev_attr(attr);
2436 	struct device *dev = kobj_to_dev(kobj);
2437 	ssize_t ret = -EIO;
2438 
2439 	if (dev_attr->store)
2440 		ret = dev_attr->store(dev, dev_attr, buf, count);
2441 	return ret;
2442 }
2443 
2444 static const struct sysfs_ops dev_sysfs_ops = {
2445 	.show	= dev_attr_show,
2446 	.store	= dev_attr_store,
2447 };
2448 
2449 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2450 
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2451 ssize_t device_store_ulong(struct device *dev,
2452 			   struct device_attribute *attr,
2453 			   const char *buf, size_t size)
2454 {
2455 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2456 	int ret;
2457 	unsigned long new;
2458 
2459 	ret = kstrtoul(buf, 0, &new);
2460 	if (ret)
2461 		return ret;
2462 	*(unsigned long *)(ea->var) = new;
2463 	/* Always return full write size even if we didn't consume all */
2464 	return size;
2465 }
2466 EXPORT_SYMBOL_GPL(device_store_ulong);
2467 
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2468 ssize_t device_show_ulong(struct device *dev,
2469 			  struct device_attribute *attr,
2470 			  char *buf)
2471 {
2472 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2473 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2474 }
2475 EXPORT_SYMBOL_GPL(device_show_ulong);
2476 
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2477 ssize_t device_store_int(struct device *dev,
2478 			 struct device_attribute *attr,
2479 			 const char *buf, size_t size)
2480 {
2481 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2482 	int ret;
2483 	long new;
2484 
2485 	ret = kstrtol(buf, 0, &new);
2486 	if (ret)
2487 		return ret;
2488 
2489 	if (new > INT_MAX || new < INT_MIN)
2490 		return -EINVAL;
2491 	*(int *)(ea->var) = new;
2492 	/* Always return full write size even if we didn't consume all */
2493 	return size;
2494 }
2495 EXPORT_SYMBOL_GPL(device_store_int);
2496 
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2497 ssize_t device_show_int(struct device *dev,
2498 			struct device_attribute *attr,
2499 			char *buf)
2500 {
2501 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2502 
2503 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2504 }
2505 EXPORT_SYMBOL_GPL(device_show_int);
2506 
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2507 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2508 			  const char *buf, size_t size)
2509 {
2510 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2511 
2512 	if (kstrtobool(buf, ea->var) < 0)
2513 		return -EINVAL;
2514 
2515 	return size;
2516 }
2517 EXPORT_SYMBOL_GPL(device_store_bool);
2518 
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2519 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2520 			 char *buf)
2521 {
2522 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2523 
2524 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2525 }
2526 EXPORT_SYMBOL_GPL(device_show_bool);
2527 
device_show_string(struct device * dev,struct device_attribute * attr,char * buf)2528 ssize_t device_show_string(struct device *dev,
2529 			   struct device_attribute *attr, char *buf)
2530 {
2531 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2532 
2533 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2534 }
2535 EXPORT_SYMBOL_GPL(device_show_string);
2536 
2537 /**
2538  * device_release - free device structure.
2539  * @kobj: device's kobject.
2540  *
2541  * This is called once the reference count for the object
2542  * reaches 0. We forward the call to the device's release
2543  * method, which should handle actually freeing the structure.
2544  */
device_release(struct kobject * kobj)2545 static void device_release(struct kobject *kobj)
2546 {
2547 	struct device *dev = kobj_to_dev(kobj);
2548 	struct device_private *p = dev->p;
2549 
2550 	/*
2551 	 * Some platform devices are driven without driver attached
2552 	 * and managed resources may have been acquired.  Make sure
2553 	 * all resources are released.
2554 	 *
2555 	 * Drivers still can add resources into device after device
2556 	 * is deleted but alive, so release devres here to avoid
2557 	 * possible memory leak.
2558 	 */
2559 	devres_release_all(dev);
2560 
2561 	kfree(dev->dma_range_map);
2562 
2563 	if (dev->release)
2564 		dev->release(dev);
2565 	else if (dev->type && dev->type->release)
2566 		dev->type->release(dev);
2567 	else if (dev->class && dev->class->dev_release)
2568 		dev->class->dev_release(dev);
2569 	else
2570 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2571 			dev_name(dev));
2572 	kfree(p);
2573 }
2574 
device_namespace(const struct kobject * kobj)2575 static const void *device_namespace(const struct kobject *kobj)
2576 {
2577 	const struct device *dev = kobj_to_dev(kobj);
2578 	const void *ns = NULL;
2579 
2580 	if (dev->class && dev->class->namespace)
2581 		ns = dev->class->namespace(dev);
2582 
2583 	return ns;
2584 }
2585 
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2586 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2587 {
2588 	const struct device *dev = kobj_to_dev(kobj);
2589 
2590 	if (dev->class && dev->class->get_ownership)
2591 		dev->class->get_ownership(dev, uid, gid);
2592 }
2593 
2594 static const struct kobj_type device_ktype = {
2595 	.release	= device_release,
2596 	.sysfs_ops	= &dev_sysfs_ops,
2597 	.namespace	= device_namespace,
2598 	.get_ownership	= device_get_ownership,
2599 };
2600 
2601 
dev_uevent_filter(const struct kobject * kobj)2602 static int dev_uevent_filter(const struct kobject *kobj)
2603 {
2604 	const struct kobj_type *ktype = get_ktype(kobj);
2605 
2606 	if (ktype == &device_ktype) {
2607 		const struct device *dev = kobj_to_dev(kobj);
2608 		if (dev->bus)
2609 			return 1;
2610 		if (dev->class)
2611 			return 1;
2612 	}
2613 	return 0;
2614 }
2615 
dev_uevent_name(const struct kobject * kobj)2616 static const char *dev_uevent_name(const struct kobject *kobj)
2617 {
2618 	const struct device *dev = kobj_to_dev(kobj);
2619 
2620 	if (dev->bus)
2621 		return dev->bus->name;
2622 	if (dev->class)
2623 		return dev->class->name;
2624 	return NULL;
2625 }
2626 
2627 /*
2628  * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2629  * function may race with binding and unbinding the device from a driver,
2630  * we need to be careful. Binding is generally safe, at worst we miss the
2631  * fact that the device is already bound to a driver (but the driver
2632  * information that is delivered through uevents is best-effort, it may
2633  * become obsolete as soon as it is generated anyways). Unbinding is more
2634  * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2635  * be used to make sure we are dealing with the same pointer, and to
2636  * ensure that driver structure is not going to disappear from under us
2637  * we take bus' drivers klist lock. The assumption that only registered
2638  * driver can be bound to a device, and to unregister a driver bus code
2639  * will take the same lock.
2640  */
dev_driver_uevent(const struct device * dev,struct kobj_uevent_env * env)2641 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2642 {
2643 	struct subsys_private *sp = bus_to_subsys(dev->bus);
2644 
2645 	if (sp) {
2646 		scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2647 			struct device_driver *drv = READ_ONCE(dev->driver);
2648 			if (drv)
2649 				add_uevent_var(env, "DRIVER=%s", drv->name);
2650 		}
2651 
2652 		subsys_put(sp);
2653 	}
2654 }
2655 
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2656 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2657 {
2658 	const struct device *dev = kobj_to_dev(kobj);
2659 	int retval = 0;
2660 
2661 	/* add device node properties if present */
2662 	if (MAJOR(dev->devt)) {
2663 		const char *tmp;
2664 		const char *name;
2665 		umode_t mode = 0;
2666 		kuid_t uid = GLOBAL_ROOT_UID;
2667 		kgid_t gid = GLOBAL_ROOT_GID;
2668 
2669 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2670 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2671 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2672 		if (name) {
2673 			add_uevent_var(env, "DEVNAME=%s", name);
2674 			if (mode)
2675 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2676 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2677 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2678 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2679 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2680 			kfree(tmp);
2681 		}
2682 	}
2683 
2684 	if (dev->type && dev->type->name)
2685 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2686 
2687 	/* Add "DRIVER=%s" variable if the device is bound to a driver */
2688 	dev_driver_uevent(dev, env);
2689 
2690 	/* Add common DT information about the device */
2691 	of_device_uevent(dev, env);
2692 
2693 	/* have the bus specific function add its stuff */
2694 	if (dev->bus && dev->bus->uevent) {
2695 		retval = dev->bus->uevent(dev, env);
2696 		if (retval)
2697 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2698 				 dev_name(dev), __func__, retval);
2699 	}
2700 
2701 	/* have the class specific function add its stuff */
2702 	if (dev->class && dev->class->dev_uevent) {
2703 		retval = dev->class->dev_uevent(dev, env);
2704 		if (retval)
2705 			pr_debug("device: '%s': %s: class uevent() "
2706 				 "returned %d\n", dev_name(dev),
2707 				 __func__, retval);
2708 	}
2709 
2710 	/* have the device type specific function add its stuff */
2711 	if (dev->type && dev->type->uevent) {
2712 		retval = dev->type->uevent(dev, env);
2713 		if (retval)
2714 			pr_debug("device: '%s': %s: dev_type uevent() "
2715 				 "returned %d\n", dev_name(dev),
2716 				 __func__, retval);
2717 	}
2718 
2719 	return retval;
2720 }
2721 
2722 static const struct kset_uevent_ops device_uevent_ops = {
2723 	.filter =	dev_uevent_filter,
2724 	.name =		dev_uevent_name,
2725 	.uevent =	dev_uevent,
2726 };
2727 
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2728 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2729 			   char *buf)
2730 {
2731 	struct kobject *top_kobj;
2732 	struct kset *kset;
2733 	struct kobj_uevent_env *env = NULL;
2734 	int i;
2735 	int len = 0;
2736 	int retval;
2737 
2738 	/* search the kset, the device belongs to */
2739 	top_kobj = &dev->kobj;
2740 	while (!top_kobj->kset && top_kobj->parent)
2741 		top_kobj = top_kobj->parent;
2742 	if (!top_kobj->kset)
2743 		goto out;
2744 
2745 	kset = top_kobj->kset;
2746 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2747 		goto out;
2748 
2749 	/* respect filter */
2750 	if (kset->uevent_ops && kset->uevent_ops->filter)
2751 		if (!kset->uevent_ops->filter(&dev->kobj))
2752 			goto out;
2753 
2754 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2755 	if (!env)
2756 		return -ENOMEM;
2757 
2758 	/* let the kset specific function add its keys */
2759 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2760 	if (retval)
2761 		goto out;
2762 
2763 	/* copy keys to file */
2764 	for (i = 0; i < env->envp_idx; i++)
2765 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2766 out:
2767 	kfree(env);
2768 	return len;
2769 }
2770 
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2771 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2772 			    const char *buf, size_t count)
2773 {
2774 	int rc;
2775 
2776 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2777 
2778 	if (rc) {
2779 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2780 		return rc;
2781 	}
2782 
2783 	return count;
2784 }
2785 static DEVICE_ATTR_RW(uevent);
2786 
online_show(struct device * dev,struct device_attribute * attr,char * buf)2787 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2788 			   char *buf)
2789 {
2790 	bool val;
2791 
2792 	device_lock(dev);
2793 	val = !dev->offline;
2794 	device_unlock(dev);
2795 	return sysfs_emit(buf, "%u\n", val);
2796 }
2797 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2798 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2799 			    const char *buf, size_t count)
2800 {
2801 	bool val;
2802 	int ret;
2803 
2804 	ret = kstrtobool(buf, &val);
2805 	if (ret < 0)
2806 		return ret;
2807 
2808 	ret = lock_device_hotplug_sysfs();
2809 	if (ret)
2810 		return ret;
2811 
2812 	ret = val ? device_online(dev) : device_offline(dev);
2813 	unlock_device_hotplug();
2814 	return ret < 0 ? ret : count;
2815 }
2816 static DEVICE_ATTR_RW(online);
2817 
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2818 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2819 			      char *buf)
2820 {
2821 	const char *loc;
2822 
2823 	switch (dev->removable) {
2824 	case DEVICE_REMOVABLE:
2825 		loc = "removable";
2826 		break;
2827 	case DEVICE_FIXED:
2828 		loc = "fixed";
2829 		break;
2830 	default:
2831 		loc = "unknown";
2832 	}
2833 	return sysfs_emit(buf, "%s\n", loc);
2834 }
2835 static DEVICE_ATTR_RO(removable);
2836 
device_add_groups(struct device * dev,const struct attribute_group ** groups)2837 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2838 {
2839 	return sysfs_create_groups(&dev->kobj, groups);
2840 }
2841 EXPORT_SYMBOL_GPL(device_add_groups);
2842 
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2843 void device_remove_groups(struct device *dev,
2844 			  const struct attribute_group **groups)
2845 {
2846 	sysfs_remove_groups(&dev->kobj, groups);
2847 }
2848 EXPORT_SYMBOL_GPL(device_remove_groups);
2849 
2850 union device_attr_group_devres {
2851 	const struct attribute_group *group;
2852 	const struct attribute_group **groups;
2853 };
2854 
devm_attr_group_remove(struct device * dev,void * res)2855 static void devm_attr_group_remove(struct device *dev, void *res)
2856 {
2857 	union device_attr_group_devres *devres = res;
2858 	const struct attribute_group *group = devres->group;
2859 
2860 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2861 	sysfs_remove_group(&dev->kobj, group);
2862 }
2863 
2864 /**
2865  * devm_device_add_group - given a device, create a managed attribute group
2866  * @dev:	The device to create the group for
2867  * @grp:	The attribute group to create
2868  *
2869  * This function creates a group for the first time.  It will explicitly
2870  * warn and error if any of the attribute files being created already exist.
2871  *
2872  * Returns 0 on success or error code on failure.
2873  */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2874 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2875 {
2876 	union device_attr_group_devres *devres;
2877 	int error;
2878 
2879 	devres = devres_alloc(devm_attr_group_remove,
2880 			      sizeof(*devres), GFP_KERNEL);
2881 	if (!devres)
2882 		return -ENOMEM;
2883 
2884 	error = sysfs_create_group(&dev->kobj, grp);
2885 	if (error) {
2886 		devres_free(devres);
2887 		return error;
2888 	}
2889 
2890 	devres->group = grp;
2891 	devres_add(dev, devres);
2892 	return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(devm_device_add_group);
2895 
device_add_attrs(struct device * dev)2896 static int device_add_attrs(struct device *dev)
2897 {
2898 	const struct class *class = dev->class;
2899 	const struct device_type *type = dev->type;
2900 	int error;
2901 
2902 	if (class) {
2903 		error = device_add_groups(dev, class->dev_groups);
2904 		if (error)
2905 			return error;
2906 	}
2907 
2908 	if (type) {
2909 		error = device_add_groups(dev, type->groups);
2910 		if (error)
2911 			goto err_remove_class_groups;
2912 	}
2913 
2914 	error = device_add_groups(dev, dev->groups);
2915 	if (error)
2916 		goto err_remove_type_groups;
2917 
2918 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2919 		error = device_create_file(dev, &dev_attr_online);
2920 		if (error)
2921 			goto err_remove_dev_groups;
2922 	}
2923 
2924 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2925 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2926 		if (error)
2927 			goto err_remove_dev_online;
2928 	}
2929 
2930 	if (dev_removable_is_valid(dev)) {
2931 		error = device_create_file(dev, &dev_attr_removable);
2932 		if (error)
2933 			goto err_remove_dev_waiting_for_supplier;
2934 	}
2935 
2936 	if (dev_add_physical_location(dev)) {
2937 		error = device_add_group(dev,
2938 			&dev_attr_physical_location_group);
2939 		if (error)
2940 			goto err_remove_dev_removable;
2941 	}
2942 
2943 	return 0;
2944 
2945  err_remove_dev_removable:
2946 	device_remove_file(dev, &dev_attr_removable);
2947  err_remove_dev_waiting_for_supplier:
2948 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2949  err_remove_dev_online:
2950 	device_remove_file(dev, &dev_attr_online);
2951  err_remove_dev_groups:
2952 	device_remove_groups(dev, dev->groups);
2953  err_remove_type_groups:
2954 	if (type)
2955 		device_remove_groups(dev, type->groups);
2956  err_remove_class_groups:
2957 	if (class)
2958 		device_remove_groups(dev, class->dev_groups);
2959 
2960 	return error;
2961 }
2962 
device_remove_attrs(struct device * dev)2963 static void device_remove_attrs(struct device *dev)
2964 {
2965 	const struct class *class = dev->class;
2966 	const struct device_type *type = dev->type;
2967 
2968 	if (dev->physical_location) {
2969 		device_remove_group(dev, &dev_attr_physical_location_group);
2970 		kfree(dev->physical_location);
2971 	}
2972 
2973 	device_remove_file(dev, &dev_attr_removable);
2974 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2975 	device_remove_file(dev, &dev_attr_online);
2976 	device_remove_groups(dev, dev->groups);
2977 
2978 	if (type)
2979 		device_remove_groups(dev, type->groups);
2980 
2981 	if (class)
2982 		device_remove_groups(dev, class->dev_groups);
2983 }
2984 
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2985 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2986 			char *buf)
2987 {
2988 	return print_dev_t(buf, dev->devt);
2989 }
2990 static DEVICE_ATTR_RO(dev);
2991 
2992 /* /sys/devices/ */
2993 struct kset *devices_kset;
2994 
2995 /**
2996  * devices_kset_move_before - Move device in the devices_kset's list.
2997  * @deva: Device to move.
2998  * @devb: Device @deva should come before.
2999  */
devices_kset_move_before(struct device * deva,struct device * devb)3000 static void devices_kset_move_before(struct device *deva, struct device *devb)
3001 {
3002 	if (!devices_kset)
3003 		return;
3004 	pr_debug("devices_kset: Moving %s before %s\n",
3005 		 dev_name(deva), dev_name(devb));
3006 	spin_lock(&devices_kset->list_lock);
3007 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3008 	spin_unlock(&devices_kset->list_lock);
3009 }
3010 
3011 /**
3012  * devices_kset_move_after - Move device in the devices_kset's list.
3013  * @deva: Device to move
3014  * @devb: Device @deva should come after.
3015  */
devices_kset_move_after(struct device * deva,struct device * devb)3016 static void devices_kset_move_after(struct device *deva, struct device *devb)
3017 {
3018 	if (!devices_kset)
3019 		return;
3020 	pr_debug("devices_kset: Moving %s after %s\n",
3021 		 dev_name(deva), dev_name(devb));
3022 	spin_lock(&devices_kset->list_lock);
3023 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3024 	spin_unlock(&devices_kset->list_lock);
3025 }
3026 
3027 /**
3028  * devices_kset_move_last - move the device to the end of devices_kset's list.
3029  * @dev: device to move
3030  */
devices_kset_move_last(struct device * dev)3031 void devices_kset_move_last(struct device *dev)
3032 {
3033 	if (!devices_kset)
3034 		return;
3035 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3036 	spin_lock(&devices_kset->list_lock);
3037 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3038 	spin_unlock(&devices_kset->list_lock);
3039 }
3040 
3041 /**
3042  * device_create_file - create sysfs attribute file for device.
3043  * @dev: device.
3044  * @attr: device attribute descriptor.
3045  */
device_create_file(struct device * dev,const struct device_attribute * attr)3046 int device_create_file(struct device *dev,
3047 		       const struct device_attribute *attr)
3048 {
3049 	int error = 0;
3050 
3051 	if (dev) {
3052 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3053 			"Attribute %s: write permission without 'store'\n",
3054 			attr->attr.name);
3055 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3056 			"Attribute %s: read permission without 'show'\n",
3057 			attr->attr.name);
3058 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3059 	}
3060 
3061 	return error;
3062 }
3063 EXPORT_SYMBOL_GPL(device_create_file);
3064 
3065 /**
3066  * device_remove_file - remove sysfs attribute file.
3067  * @dev: device.
3068  * @attr: device attribute descriptor.
3069  */
device_remove_file(struct device * dev,const struct device_attribute * attr)3070 void device_remove_file(struct device *dev,
3071 			const struct device_attribute *attr)
3072 {
3073 	if (dev)
3074 		sysfs_remove_file(&dev->kobj, &attr->attr);
3075 }
3076 EXPORT_SYMBOL_GPL(device_remove_file);
3077 
3078 /**
3079  * device_remove_file_self - remove sysfs attribute file from its own method.
3080  * @dev: device.
3081  * @attr: device attribute descriptor.
3082  *
3083  * See kernfs_remove_self() for details.
3084  */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3085 bool device_remove_file_self(struct device *dev,
3086 			     const struct device_attribute *attr)
3087 {
3088 	if (dev)
3089 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3090 	else
3091 		return false;
3092 }
3093 EXPORT_SYMBOL_GPL(device_remove_file_self);
3094 
3095 /**
3096  * device_create_bin_file - create sysfs binary attribute file for device.
3097  * @dev: device.
3098  * @attr: device binary attribute descriptor.
3099  */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3100 int device_create_bin_file(struct device *dev,
3101 			   const struct bin_attribute *attr)
3102 {
3103 	int error = -EINVAL;
3104 	if (dev)
3105 		error = sysfs_create_bin_file(&dev->kobj, attr);
3106 	return error;
3107 }
3108 EXPORT_SYMBOL_GPL(device_create_bin_file);
3109 
3110 /**
3111  * device_remove_bin_file - remove sysfs binary attribute file
3112  * @dev: device.
3113  * @attr: device binary attribute descriptor.
3114  */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3115 void device_remove_bin_file(struct device *dev,
3116 			    const struct bin_attribute *attr)
3117 {
3118 	if (dev)
3119 		sysfs_remove_bin_file(&dev->kobj, attr);
3120 }
3121 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3122 
klist_children_get(struct klist_node * n)3123 static void klist_children_get(struct klist_node *n)
3124 {
3125 	struct device_private *p = to_device_private_parent(n);
3126 	struct device *dev = p->device;
3127 
3128 	get_device(dev);
3129 }
3130 
klist_children_put(struct klist_node * n)3131 static void klist_children_put(struct klist_node *n)
3132 {
3133 	struct device_private *p = to_device_private_parent(n);
3134 	struct device *dev = p->device;
3135 
3136 	put_device(dev);
3137 }
3138 
3139 /**
3140  * device_initialize - init device structure.
3141  * @dev: device.
3142  *
3143  * This prepares the device for use by other layers by initializing
3144  * its fields.
3145  * It is the first half of device_register(), if called by
3146  * that function, though it can also be called separately, so one
3147  * may use @dev's fields. In particular, get_device()/put_device()
3148  * may be used for reference counting of @dev after calling this
3149  * function.
3150  *
3151  * All fields in @dev must be initialized by the caller to 0, except
3152  * for those explicitly set to some other value.  The simplest
3153  * approach is to use kzalloc() to allocate the structure containing
3154  * @dev.
3155  *
3156  * NOTE: Use put_device() to give up your reference instead of freeing
3157  * @dev directly once you have called this function.
3158  */
device_initialize(struct device * dev)3159 void device_initialize(struct device *dev)
3160 {
3161 	dev->kobj.kset = devices_kset;
3162 	kobject_init(&dev->kobj, &device_ktype);
3163 	INIT_LIST_HEAD(&dev->dma_pools);
3164 	mutex_init(&dev->mutex);
3165 	lockdep_set_novalidate_class(&dev->mutex);
3166 	spin_lock_init(&dev->devres_lock);
3167 	INIT_LIST_HEAD(&dev->devres_head);
3168 	device_pm_init(dev);
3169 	set_dev_node(dev, NUMA_NO_NODE);
3170 	INIT_LIST_HEAD(&dev->links.consumers);
3171 	INIT_LIST_HEAD(&dev->links.suppliers);
3172 	INIT_LIST_HEAD(&dev->links.defer_sync);
3173 	dev->links.status = DL_DEV_NO_DRIVER;
3174 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3175     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3176     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3177 	dev->dma_coherent = dma_default_coherent;
3178 #endif
3179 	swiotlb_dev_init(dev);
3180 }
3181 EXPORT_SYMBOL_GPL(device_initialize);
3182 
virtual_device_parent(void)3183 struct kobject *virtual_device_parent(void)
3184 {
3185 	static struct kobject *virtual_dir = NULL;
3186 
3187 	if (!virtual_dir)
3188 		virtual_dir = kobject_create_and_add("virtual",
3189 						     &devices_kset->kobj);
3190 
3191 	return virtual_dir;
3192 }
3193 
3194 struct class_dir {
3195 	struct kobject kobj;
3196 	const struct class *class;
3197 };
3198 
3199 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3200 
class_dir_release(struct kobject * kobj)3201 static void class_dir_release(struct kobject *kobj)
3202 {
3203 	struct class_dir *dir = to_class_dir(kobj);
3204 	kfree(dir);
3205 }
3206 
3207 static const
class_dir_child_ns_type(const struct kobject * kobj)3208 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3209 {
3210 	const struct class_dir *dir = to_class_dir(kobj);
3211 	return dir->class->ns_type;
3212 }
3213 
3214 static const struct kobj_type class_dir_ktype = {
3215 	.release	= class_dir_release,
3216 	.sysfs_ops	= &kobj_sysfs_ops,
3217 	.child_ns_type	= class_dir_child_ns_type
3218 };
3219 
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3220 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3221 						struct kobject *parent_kobj)
3222 {
3223 	struct class_dir *dir;
3224 	int retval;
3225 
3226 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3227 	if (!dir)
3228 		return ERR_PTR(-ENOMEM);
3229 
3230 	dir->class = sp->class;
3231 	kobject_init(&dir->kobj, &class_dir_ktype);
3232 
3233 	dir->kobj.kset = &sp->glue_dirs;
3234 
3235 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3236 	if (retval < 0) {
3237 		kobject_put(&dir->kobj);
3238 		return ERR_PTR(retval);
3239 	}
3240 	return &dir->kobj;
3241 }
3242 
3243 static DEFINE_MUTEX(gdp_mutex);
3244 
get_device_parent(struct device * dev,struct device * parent)3245 static struct kobject *get_device_parent(struct device *dev,
3246 					 struct device *parent)
3247 {
3248 	struct subsys_private *sp = class_to_subsys(dev->class);
3249 	struct kobject *kobj = NULL;
3250 
3251 	if (sp) {
3252 		struct kobject *parent_kobj;
3253 		struct kobject *k;
3254 
3255 		/*
3256 		 * If we have no parent, we live in "virtual".
3257 		 * Class-devices with a non class-device as parent, live
3258 		 * in a "glue" directory to prevent namespace collisions.
3259 		 */
3260 		if (parent == NULL)
3261 			parent_kobj = virtual_device_parent();
3262 		else if (parent->class && !dev->class->ns_type) {
3263 			subsys_put(sp);
3264 			return &parent->kobj;
3265 		} else {
3266 			parent_kobj = &parent->kobj;
3267 		}
3268 
3269 		mutex_lock(&gdp_mutex);
3270 
3271 		/* find our class-directory at the parent and reference it */
3272 		spin_lock(&sp->glue_dirs.list_lock);
3273 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3274 			if (k->parent == parent_kobj) {
3275 				kobj = kobject_get(k);
3276 				break;
3277 			}
3278 		spin_unlock(&sp->glue_dirs.list_lock);
3279 		if (kobj) {
3280 			mutex_unlock(&gdp_mutex);
3281 			subsys_put(sp);
3282 			return kobj;
3283 		}
3284 
3285 		/* or create a new class-directory at the parent device */
3286 		k = class_dir_create_and_add(sp, parent_kobj);
3287 		/* do not emit an uevent for this simple "glue" directory */
3288 		mutex_unlock(&gdp_mutex);
3289 		subsys_put(sp);
3290 		return k;
3291 	}
3292 
3293 	/* subsystems can specify a default root directory for their devices */
3294 	if (!parent && dev->bus) {
3295 		struct device *dev_root = bus_get_dev_root(dev->bus);
3296 
3297 		if (dev_root) {
3298 			kobj = &dev_root->kobj;
3299 			put_device(dev_root);
3300 			return kobj;
3301 		}
3302 	}
3303 
3304 	if (parent)
3305 		return &parent->kobj;
3306 	return NULL;
3307 }
3308 
live_in_glue_dir(struct kobject * kobj,struct device * dev)3309 static inline bool live_in_glue_dir(struct kobject *kobj,
3310 				    struct device *dev)
3311 {
3312 	struct subsys_private *sp;
3313 	bool retval;
3314 
3315 	if (!kobj || !dev->class)
3316 		return false;
3317 
3318 	sp = class_to_subsys(dev->class);
3319 	if (!sp)
3320 		return false;
3321 
3322 	if (kobj->kset == &sp->glue_dirs)
3323 		retval = true;
3324 	else
3325 		retval = false;
3326 
3327 	subsys_put(sp);
3328 	return retval;
3329 }
3330 
get_glue_dir(struct device * dev)3331 static inline struct kobject *get_glue_dir(struct device *dev)
3332 {
3333 	return dev->kobj.parent;
3334 }
3335 
3336 /**
3337  * kobject_has_children - Returns whether a kobject has children.
3338  * @kobj: the object to test
3339  *
3340  * This will return whether a kobject has other kobjects as children.
3341  *
3342  * It does NOT account for the presence of attribute files, only sub
3343  * directories. It also assumes there is no concurrent addition or
3344  * removal of such children, and thus relies on external locking.
3345  */
kobject_has_children(struct kobject * kobj)3346 static inline bool kobject_has_children(struct kobject *kobj)
3347 {
3348 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3349 
3350 	return kobj->sd && kobj->sd->dir.subdirs;
3351 }
3352 
3353 /*
3354  * make sure cleaning up dir as the last step, we need to make
3355  * sure .release handler of kobject is run with holding the
3356  * global lock
3357  */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3358 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3359 {
3360 	unsigned int ref;
3361 
3362 	/* see if we live in a "glue" directory */
3363 	if (!live_in_glue_dir(glue_dir, dev))
3364 		return;
3365 
3366 	mutex_lock(&gdp_mutex);
3367 	/**
3368 	 * There is a race condition between removing glue directory
3369 	 * and adding a new device under the glue directory.
3370 	 *
3371 	 * CPU1:                                         CPU2:
3372 	 *
3373 	 * device_add()
3374 	 *   get_device_parent()
3375 	 *     class_dir_create_and_add()
3376 	 *       kobject_add_internal()
3377 	 *         create_dir()    // create glue_dir
3378 	 *
3379 	 *                                               device_add()
3380 	 *                                                 get_device_parent()
3381 	 *                                                   kobject_get() // get glue_dir
3382 	 *
3383 	 * device_del()
3384 	 *   cleanup_glue_dir()
3385 	 *     kobject_del(glue_dir)
3386 	 *
3387 	 *                                               kobject_add()
3388 	 *                                                 kobject_add_internal()
3389 	 *                                                   create_dir() // in glue_dir
3390 	 *                                                     sysfs_create_dir_ns()
3391 	 *                                                       kernfs_create_dir_ns(sd)
3392 	 *
3393 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3394 	 *       sysfs_put()        // free glue_dir->sd
3395 	 *
3396 	 *                                                         // sd is freed
3397 	 *                                                         kernfs_new_node(sd)
3398 	 *                                                           kernfs_get(glue_dir)
3399 	 *                                                           kernfs_add_one()
3400 	 *                                                           kernfs_put()
3401 	 *
3402 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3403 	 * a new device under glue dir, the glue_dir kobject reference count
3404 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3405 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3406 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3407 	 *
3408 	 * Then the CPU2 will see a stale "empty" but still potentially used
3409 	 * glue dir around in kernfs_new_node().
3410 	 *
3411 	 * In order to avoid this happening, we also should make sure that
3412 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3413 	 * for glue_dir kobj is 1.
3414 	 */
3415 	ref = kref_read(&glue_dir->kref);
3416 	if (!kobject_has_children(glue_dir) && !--ref)
3417 		kobject_del(glue_dir);
3418 	kobject_put(glue_dir);
3419 	mutex_unlock(&gdp_mutex);
3420 }
3421 
device_add_class_symlinks(struct device * dev)3422 static int device_add_class_symlinks(struct device *dev)
3423 {
3424 	struct device_node *of_node = dev_of_node(dev);
3425 	struct subsys_private *sp;
3426 	int error;
3427 
3428 	if (of_node) {
3429 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3430 		if (error)
3431 			dev_warn(dev, "Error %d creating of_node link\n",error);
3432 		/* An error here doesn't warrant bringing down the device */
3433 	}
3434 
3435 	sp = class_to_subsys(dev->class);
3436 	if (!sp)
3437 		return 0;
3438 
3439 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3440 	if (error)
3441 		goto out_devnode;
3442 
3443 	if (dev->parent && device_is_not_partition(dev)) {
3444 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3445 					  "device");
3446 		if (error)
3447 			goto out_subsys;
3448 	}
3449 
3450 	/* link in the class directory pointing to the device */
3451 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3452 	if (error)
3453 		goto out_device;
3454 	goto exit;
3455 
3456 out_device:
3457 	sysfs_remove_link(&dev->kobj, "device");
3458 out_subsys:
3459 	sysfs_remove_link(&dev->kobj, "subsystem");
3460 out_devnode:
3461 	sysfs_remove_link(&dev->kobj, "of_node");
3462 exit:
3463 	subsys_put(sp);
3464 	return error;
3465 }
3466 
device_remove_class_symlinks(struct device * dev)3467 static void device_remove_class_symlinks(struct device *dev)
3468 {
3469 	struct subsys_private *sp = class_to_subsys(dev->class);
3470 
3471 	if (dev_of_node(dev))
3472 		sysfs_remove_link(&dev->kobj, "of_node");
3473 
3474 	if (!sp)
3475 		return;
3476 
3477 	if (dev->parent && device_is_not_partition(dev))
3478 		sysfs_remove_link(&dev->kobj, "device");
3479 	sysfs_remove_link(&dev->kobj, "subsystem");
3480 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3481 	subsys_put(sp);
3482 }
3483 
3484 /**
3485  * dev_set_name - set a device name
3486  * @dev: device
3487  * @fmt: format string for the device's name
3488  */
dev_set_name(struct device * dev,const char * fmt,...)3489 int dev_set_name(struct device *dev, const char *fmt, ...)
3490 {
3491 	va_list vargs;
3492 	int err;
3493 
3494 	va_start(vargs, fmt);
3495 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3496 	va_end(vargs);
3497 	return err;
3498 }
3499 EXPORT_SYMBOL_GPL(dev_set_name);
3500 
3501 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3502 static struct kobject *device_to_dev_kobj(struct device *dev)
3503 {
3504 	if (is_blockdev(dev))
3505 		return sysfs_dev_block_kobj;
3506 	else
3507 		return sysfs_dev_char_kobj;
3508 }
3509 
device_create_sys_dev_entry(struct device * dev)3510 static int device_create_sys_dev_entry(struct device *dev)
3511 {
3512 	struct kobject *kobj = device_to_dev_kobj(dev);
3513 	int error = 0;
3514 	char devt_str[15];
3515 
3516 	if (kobj) {
3517 		format_dev_t(devt_str, dev->devt);
3518 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3519 	}
3520 
3521 	return error;
3522 }
3523 
device_remove_sys_dev_entry(struct device * dev)3524 static void device_remove_sys_dev_entry(struct device *dev)
3525 {
3526 	struct kobject *kobj = device_to_dev_kobj(dev);
3527 	char devt_str[15];
3528 
3529 	if (kobj) {
3530 		format_dev_t(devt_str, dev->devt);
3531 		sysfs_remove_link(kobj, devt_str);
3532 	}
3533 }
3534 
device_private_init(struct device * dev)3535 static int device_private_init(struct device *dev)
3536 {
3537 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3538 	if (!dev->p)
3539 		return -ENOMEM;
3540 	dev->p->device = dev;
3541 	klist_init(&dev->p->klist_children, klist_children_get,
3542 		   klist_children_put);
3543 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3544 	return 0;
3545 }
3546 
3547 /**
3548  * device_add - add device to device hierarchy.
3549  * @dev: device.
3550  *
3551  * This is part 2 of device_register(), though may be called
3552  * separately _iff_ device_initialize() has been called separately.
3553  *
3554  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3555  * to the global and sibling lists for the device, then
3556  * adds it to the other relevant subsystems of the driver model.
3557  *
3558  * Do not call this routine or device_register() more than once for
3559  * any device structure.  The driver model core is not designed to work
3560  * with devices that get unregistered and then spring back to life.
3561  * (Among other things, it's very hard to guarantee that all references
3562  * to the previous incarnation of @dev have been dropped.)  Allocate
3563  * and register a fresh new struct device instead.
3564  *
3565  * NOTE: _Never_ directly free @dev after calling this function, even
3566  * if it returned an error! Always use put_device() to give up your
3567  * reference instead.
3568  *
3569  * Rule of thumb is: if device_add() succeeds, you should call
3570  * device_del() when you want to get rid of it. If device_add() has
3571  * *not* succeeded, use *only* put_device() to drop the reference
3572  * count.
3573  */
device_add(struct device * dev)3574 int device_add(struct device *dev)
3575 {
3576 	struct subsys_private *sp;
3577 	struct device *parent;
3578 	struct kobject *kobj;
3579 	struct class_interface *class_intf;
3580 	int error = -EINVAL;
3581 	struct kobject *glue_dir = NULL;
3582 
3583 	dev = get_device(dev);
3584 	if (!dev)
3585 		goto done;
3586 
3587 	if (!dev->p) {
3588 		error = device_private_init(dev);
3589 		if (error)
3590 			goto done;
3591 	}
3592 
3593 	/*
3594 	 * for statically allocated devices, which should all be converted
3595 	 * some day, we need to initialize the name. We prevent reading back
3596 	 * the name, and force the use of dev_name()
3597 	 */
3598 	if (dev->init_name) {
3599 		error = dev_set_name(dev, "%s", dev->init_name);
3600 		dev->init_name = NULL;
3601 	}
3602 
3603 	if (dev_name(dev))
3604 		error = 0;
3605 	/* subsystems can specify simple device enumeration */
3606 	else if (dev->bus && dev->bus->dev_name)
3607 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3608 	else
3609 		error = -EINVAL;
3610 	if (error)
3611 		goto name_error;
3612 
3613 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3614 
3615 	parent = get_device(dev->parent);
3616 	kobj = get_device_parent(dev, parent);
3617 	if (IS_ERR(kobj)) {
3618 		error = PTR_ERR(kobj);
3619 		goto parent_error;
3620 	}
3621 	if (kobj)
3622 		dev->kobj.parent = kobj;
3623 
3624 	/* use parent numa_node */
3625 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3626 		set_dev_node(dev, dev_to_node(parent));
3627 
3628 	/* first, register with generic layer. */
3629 	/* we require the name to be set before, and pass NULL */
3630 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3631 	if (error) {
3632 		glue_dir = kobj;
3633 		goto Error;
3634 	}
3635 
3636 	/* notify platform of device entry */
3637 	device_platform_notify(dev);
3638 
3639 	error = device_create_file(dev, &dev_attr_uevent);
3640 	if (error)
3641 		goto attrError;
3642 
3643 	error = device_add_class_symlinks(dev);
3644 	if (error)
3645 		goto SymlinkError;
3646 	error = device_add_attrs(dev);
3647 	if (error)
3648 		goto AttrsError;
3649 	error = bus_add_device(dev);
3650 	if (error)
3651 		goto BusError;
3652 	error = dpm_sysfs_add(dev);
3653 	if (error)
3654 		goto DPMError;
3655 	device_pm_add(dev);
3656 
3657 	if (MAJOR(dev->devt)) {
3658 		error = device_create_file(dev, &dev_attr_dev);
3659 		if (error)
3660 			goto DevAttrError;
3661 
3662 		error = device_create_sys_dev_entry(dev);
3663 		if (error)
3664 			goto SysEntryError;
3665 
3666 		devtmpfs_create_node(dev);
3667 	}
3668 
3669 	/* Notify clients of device addition.  This call must come
3670 	 * after dpm_sysfs_add() and before kobject_uevent().
3671 	 */
3672 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3673 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3674 
3675 	/*
3676 	 * Check if any of the other devices (consumers) have been waiting for
3677 	 * this device (supplier) to be added so that they can create a device
3678 	 * link to it.
3679 	 *
3680 	 * This needs to happen after device_pm_add() because device_link_add()
3681 	 * requires the supplier be registered before it's called.
3682 	 *
3683 	 * But this also needs to happen before bus_probe_device() to make sure
3684 	 * waiting consumers can link to it before the driver is bound to the
3685 	 * device and the driver sync_state callback is called for this device.
3686 	 */
3687 	if (dev->fwnode && !dev->fwnode->dev) {
3688 		dev->fwnode->dev = dev;
3689 		fw_devlink_link_device(dev);
3690 	}
3691 
3692 	bus_probe_device(dev);
3693 
3694 	/*
3695 	 * If all driver registration is done and a newly added device doesn't
3696 	 * match with any driver, don't block its consumers from probing in
3697 	 * case the consumer device is able to operate without this supplier.
3698 	 */
3699 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3700 		fw_devlink_unblock_consumers(dev);
3701 
3702 	if (parent)
3703 		klist_add_tail(&dev->p->knode_parent,
3704 			       &parent->p->klist_children);
3705 
3706 	sp = class_to_subsys(dev->class);
3707 	if (sp) {
3708 		mutex_lock(&sp->mutex);
3709 		/* tie the class to the device */
3710 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3711 
3712 		/* notify any interfaces that the device is here */
3713 		list_for_each_entry(class_intf, &sp->interfaces, node)
3714 			if (class_intf->add_dev)
3715 				class_intf->add_dev(dev);
3716 		mutex_unlock(&sp->mutex);
3717 		subsys_put(sp);
3718 	}
3719 done:
3720 	put_device(dev);
3721 	return error;
3722  SysEntryError:
3723 	if (MAJOR(dev->devt))
3724 		device_remove_file(dev, &dev_attr_dev);
3725  DevAttrError:
3726 	device_pm_remove(dev);
3727 	dpm_sysfs_remove(dev);
3728  DPMError:
3729 	device_set_driver(dev, NULL);
3730 	bus_remove_device(dev);
3731  BusError:
3732 	device_remove_attrs(dev);
3733  AttrsError:
3734 	device_remove_class_symlinks(dev);
3735  SymlinkError:
3736 	device_remove_file(dev, &dev_attr_uevent);
3737  attrError:
3738 	device_platform_notify_remove(dev);
3739 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3740 	glue_dir = get_glue_dir(dev);
3741 	kobject_del(&dev->kobj);
3742  Error:
3743 	cleanup_glue_dir(dev, glue_dir);
3744 parent_error:
3745 	put_device(parent);
3746 name_error:
3747 	kfree(dev->p);
3748 	dev->p = NULL;
3749 	goto done;
3750 }
3751 EXPORT_SYMBOL_GPL(device_add);
3752 
3753 /**
3754  * device_register - register a device with the system.
3755  * @dev: pointer to the device structure
3756  *
3757  * This happens in two clean steps - initialize the device
3758  * and add it to the system. The two steps can be called
3759  * separately, but this is the easiest and most common.
3760  * I.e. you should only call the two helpers separately if
3761  * have a clearly defined need to use and refcount the device
3762  * before it is added to the hierarchy.
3763  *
3764  * For more information, see the kerneldoc for device_initialize()
3765  * and device_add().
3766  *
3767  * NOTE: _Never_ directly free @dev after calling this function, even
3768  * if it returned an error! Always use put_device() to give up the
3769  * reference initialized in this function instead.
3770  */
device_register(struct device * dev)3771 int device_register(struct device *dev)
3772 {
3773 	device_initialize(dev);
3774 	return device_add(dev);
3775 }
3776 EXPORT_SYMBOL_GPL(device_register);
3777 
3778 /**
3779  * get_device - increment reference count for device.
3780  * @dev: device.
3781  *
3782  * This simply forwards the call to kobject_get(), though
3783  * we do take care to provide for the case that we get a NULL
3784  * pointer passed in.
3785  */
get_device(struct device * dev)3786 struct device *get_device(struct device *dev)
3787 {
3788 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3789 }
3790 EXPORT_SYMBOL_GPL(get_device);
3791 
3792 /**
3793  * put_device - decrement reference count.
3794  * @dev: device in question.
3795  */
put_device(struct device * dev)3796 void put_device(struct device *dev)
3797 {
3798 	/* might_sleep(); */
3799 	if (dev)
3800 		kobject_put(&dev->kobj);
3801 }
3802 EXPORT_SYMBOL_GPL(put_device);
3803 
kill_device(struct device * dev)3804 bool kill_device(struct device *dev)
3805 {
3806 	/*
3807 	 * Require the device lock and set the "dead" flag to guarantee that
3808 	 * the update behavior is consistent with the other bitfields near
3809 	 * it and that we cannot have an asynchronous probe routine trying
3810 	 * to run while we are tearing out the bus/class/sysfs from
3811 	 * underneath the device.
3812 	 */
3813 	device_lock_assert(dev);
3814 
3815 	if (dev->p->dead)
3816 		return false;
3817 	dev->p->dead = true;
3818 	return true;
3819 }
3820 EXPORT_SYMBOL_GPL(kill_device);
3821 
3822 /**
3823  * device_del - delete device from system.
3824  * @dev: device.
3825  *
3826  * This is the first part of the device unregistration
3827  * sequence. This removes the device from the lists we control
3828  * from here, has it removed from the other driver model
3829  * subsystems it was added to in device_add(), and removes it
3830  * from the kobject hierarchy.
3831  *
3832  * NOTE: this should be called manually _iff_ device_add() was
3833  * also called manually.
3834  */
device_del(struct device * dev)3835 void device_del(struct device *dev)
3836 {
3837 	struct subsys_private *sp;
3838 	struct device *parent = dev->parent;
3839 	struct kobject *glue_dir = NULL;
3840 	struct class_interface *class_intf;
3841 	unsigned int noio_flag;
3842 
3843 	device_lock(dev);
3844 	kill_device(dev);
3845 	device_unlock(dev);
3846 
3847 	if (dev->fwnode && dev->fwnode->dev == dev)
3848 		dev->fwnode->dev = NULL;
3849 
3850 	/* Notify clients of device removal.  This call must come
3851 	 * before dpm_sysfs_remove().
3852 	 */
3853 	noio_flag = memalloc_noio_save();
3854 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3855 
3856 	dpm_sysfs_remove(dev);
3857 	if (parent)
3858 		klist_del(&dev->p->knode_parent);
3859 	if (MAJOR(dev->devt)) {
3860 		devtmpfs_delete_node(dev);
3861 		device_remove_sys_dev_entry(dev);
3862 		device_remove_file(dev, &dev_attr_dev);
3863 	}
3864 
3865 	sp = class_to_subsys(dev->class);
3866 	if (sp) {
3867 		device_remove_class_symlinks(dev);
3868 
3869 		mutex_lock(&sp->mutex);
3870 		/* notify any interfaces that the device is now gone */
3871 		list_for_each_entry(class_intf, &sp->interfaces, node)
3872 			if (class_intf->remove_dev)
3873 				class_intf->remove_dev(dev);
3874 		/* remove the device from the class list */
3875 		klist_del(&dev->p->knode_class);
3876 		mutex_unlock(&sp->mutex);
3877 		subsys_put(sp);
3878 	}
3879 	device_remove_file(dev, &dev_attr_uevent);
3880 	device_remove_attrs(dev);
3881 	bus_remove_device(dev);
3882 	device_pm_remove(dev);
3883 	driver_deferred_probe_del(dev);
3884 	device_platform_notify_remove(dev);
3885 	device_links_purge(dev);
3886 
3887 	/*
3888 	 * If a device does not have a driver attached, we need to clean
3889 	 * up any managed resources. We do this in device_release(), but
3890 	 * it's never called (and we leak the device) if a managed
3891 	 * resource holds a reference to the device. So release all
3892 	 * managed resources here, like we do in driver_detach(). We
3893 	 * still need to do so again in device_release() in case someone
3894 	 * adds a new resource after this point, though.
3895 	 */
3896 	devres_release_all(dev);
3897 
3898 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3899 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3900 	glue_dir = get_glue_dir(dev);
3901 	kobject_del(&dev->kobj);
3902 	cleanup_glue_dir(dev, glue_dir);
3903 	memalloc_noio_restore(noio_flag);
3904 	put_device(parent);
3905 }
3906 EXPORT_SYMBOL_GPL(device_del);
3907 
3908 /**
3909  * device_unregister - unregister device from system.
3910  * @dev: device going away.
3911  *
3912  * We do this in two parts, like we do device_register(). First,
3913  * we remove it from all the subsystems with device_del(), then
3914  * we decrement the reference count via put_device(). If that
3915  * is the final reference count, the device will be cleaned up
3916  * via device_release() above. Otherwise, the structure will
3917  * stick around until the final reference to the device is dropped.
3918  */
device_unregister(struct device * dev)3919 void device_unregister(struct device *dev)
3920 {
3921 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3922 	device_del(dev);
3923 	put_device(dev);
3924 }
3925 EXPORT_SYMBOL_GPL(device_unregister);
3926 
prev_device(struct klist_iter * i)3927 static struct device *prev_device(struct klist_iter *i)
3928 {
3929 	struct klist_node *n = klist_prev(i);
3930 	struct device *dev = NULL;
3931 	struct device_private *p;
3932 
3933 	if (n) {
3934 		p = to_device_private_parent(n);
3935 		dev = p->device;
3936 	}
3937 	return dev;
3938 }
3939 
next_device(struct klist_iter * i)3940 static struct device *next_device(struct klist_iter *i)
3941 {
3942 	struct klist_node *n = klist_next(i);
3943 	struct device *dev = NULL;
3944 	struct device_private *p;
3945 
3946 	if (n) {
3947 		p = to_device_private_parent(n);
3948 		dev = p->device;
3949 	}
3950 	return dev;
3951 }
3952 
3953 /**
3954  * device_get_devnode - path of device node file
3955  * @dev: device
3956  * @mode: returned file access mode
3957  * @uid: returned file owner
3958  * @gid: returned file group
3959  * @tmp: possibly allocated string
3960  *
3961  * Return the relative path of a possible device node.
3962  * Non-default names may need to allocate a memory to compose
3963  * a name. This memory is returned in tmp and needs to be
3964  * freed by the caller.
3965  */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3966 const char *device_get_devnode(const struct device *dev,
3967 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3968 			       const char **tmp)
3969 {
3970 	char *s;
3971 
3972 	*tmp = NULL;
3973 
3974 	/* the device type may provide a specific name */
3975 	if (dev->type && dev->type->devnode)
3976 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3977 	if (*tmp)
3978 		return *tmp;
3979 
3980 	/* the class may provide a specific name */
3981 	if (dev->class && dev->class->devnode)
3982 		*tmp = dev->class->devnode(dev, mode);
3983 	if (*tmp)
3984 		return *tmp;
3985 
3986 	/* return name without allocation, tmp == NULL */
3987 	if (strchr(dev_name(dev), '!') == NULL)
3988 		return dev_name(dev);
3989 
3990 	/* replace '!' in the name with '/' */
3991 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3992 	if (!s)
3993 		return NULL;
3994 	return *tmp = s;
3995 }
3996 
3997 /**
3998  * device_for_each_child - device child iterator.
3999  * @parent: parent struct device.
4000  * @fn: function to be called for each device.
4001  * @data: data for the callback.
4002  *
4003  * Iterate over @parent's child devices, and call @fn for each,
4004  * passing it @data.
4005  *
4006  * We check the return of @fn each time. If it returns anything
4007  * other than 0, we break out and return that value.
4008  */
device_for_each_child(struct device * parent,void * data,device_iter_t fn)4009 int device_for_each_child(struct device *parent, void *data,
4010 			  device_iter_t fn)
4011 {
4012 	struct klist_iter i;
4013 	struct device *child;
4014 	int error = 0;
4015 
4016 	if (!parent || !parent->p)
4017 		return 0;
4018 
4019 	klist_iter_init(&parent->p->klist_children, &i);
4020 	while (!error && (child = next_device(&i)))
4021 		error = fn(child, data);
4022 	klist_iter_exit(&i);
4023 	return error;
4024 }
4025 EXPORT_SYMBOL_GPL(device_for_each_child);
4026 
4027 /**
4028  * device_for_each_child_reverse - device child iterator in reversed order.
4029  * @parent: parent struct device.
4030  * @fn: function to be called for each device.
4031  * @data: data for the callback.
4032  *
4033  * Iterate over @parent's child devices, and call @fn for each,
4034  * passing it @data.
4035  *
4036  * We check the return of @fn each time. If it returns anything
4037  * other than 0, we break out and return that value.
4038  */
device_for_each_child_reverse(struct device * parent,void * data,device_iter_t fn)4039 int device_for_each_child_reverse(struct device *parent, void *data,
4040 				  device_iter_t fn)
4041 {
4042 	struct klist_iter i;
4043 	struct device *child;
4044 	int error = 0;
4045 
4046 	if (!parent || !parent->p)
4047 		return 0;
4048 
4049 	klist_iter_init(&parent->p->klist_children, &i);
4050 	while ((child = prev_device(&i)) && !error)
4051 		error = fn(child, data);
4052 	klist_iter_exit(&i);
4053 	return error;
4054 }
4055 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4056 
4057 /**
4058  * device_for_each_child_reverse_from - device child iterator in reversed order.
4059  * @parent: parent struct device.
4060  * @from: optional starting point in child list
4061  * @fn: function to be called for each device.
4062  * @data: data for the callback.
4063  *
4064  * Iterate over @parent's child devices, starting at @from, and call @fn
4065  * for each, passing it @data. This helper is identical to
4066  * device_for_each_child_reverse() when @from is NULL.
4067  *
4068  * @fn is checked each iteration. If it returns anything other than 0,
4069  * iteration stop and that value is returned to the caller of
4070  * device_for_each_child_reverse_from();
4071  */
device_for_each_child_reverse_from(struct device * parent,struct device * from,void * data,device_iter_t fn)4072 int device_for_each_child_reverse_from(struct device *parent,
4073 				       struct device *from, void *data,
4074 				       device_iter_t fn)
4075 {
4076 	struct klist_iter i;
4077 	struct device *child;
4078 	int error = 0;
4079 
4080 	if (!parent || !parent->p)
4081 		return 0;
4082 
4083 	klist_iter_init_node(&parent->p->klist_children, &i,
4084 			     (from ? &from->p->knode_parent : NULL));
4085 	while ((child = prev_device(&i)) && !error)
4086 		error = fn(child, data);
4087 	klist_iter_exit(&i);
4088 	return error;
4089 }
4090 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4091 
4092 /**
4093  * device_find_child - device iterator for locating a particular device.
4094  * @parent: parent struct device
4095  * @match: Callback function to check device
4096  * @data: Data to pass to match function
4097  *
4098  * This is similar to the device_for_each_child() function above, but it
4099  * returns a reference to a device that is 'found' for later use, as
4100  * determined by the @match callback.
4101  *
4102  * The callback should return 0 if the device doesn't match and non-zero
4103  * if it does.  If the callback returns non-zero and a reference to the
4104  * current device can be obtained, this function will return to the caller
4105  * and not iterate over any more devices.
4106  *
4107  * NOTE: you will need to drop the reference with put_device() after use.
4108  */
device_find_child(struct device * parent,const void * data,device_match_t match)4109 struct device *device_find_child(struct device *parent, const void *data,
4110 				 device_match_t match)
4111 {
4112 	struct klist_iter i;
4113 	struct device *child;
4114 
4115 	if (!parent || !parent->p)
4116 		return NULL;
4117 
4118 	klist_iter_init(&parent->p->klist_children, &i);
4119 	while ((child = next_device(&i))) {
4120 		if (match(child, data)) {
4121 			get_device(child);
4122 			break;
4123 		}
4124 	}
4125 	klist_iter_exit(&i);
4126 	return child;
4127 }
4128 EXPORT_SYMBOL_GPL(device_find_child);
4129 
devices_init(void)4130 int __init devices_init(void)
4131 {
4132 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4133 	if (!devices_kset)
4134 		return -ENOMEM;
4135 	dev_kobj = kobject_create_and_add("dev", NULL);
4136 	if (!dev_kobj)
4137 		goto dev_kobj_err;
4138 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4139 	if (!sysfs_dev_block_kobj)
4140 		goto block_kobj_err;
4141 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4142 	if (!sysfs_dev_char_kobj)
4143 		goto char_kobj_err;
4144 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4145 	if (!device_link_wq)
4146 		goto wq_err;
4147 
4148 	return 0;
4149 
4150  wq_err:
4151 	kobject_put(sysfs_dev_char_kobj);
4152  char_kobj_err:
4153 	kobject_put(sysfs_dev_block_kobj);
4154  block_kobj_err:
4155 	kobject_put(dev_kobj);
4156  dev_kobj_err:
4157 	kset_unregister(devices_kset);
4158 	return -ENOMEM;
4159 }
4160 
device_check_offline(struct device * dev,void * not_used)4161 static int device_check_offline(struct device *dev, void *not_used)
4162 {
4163 	int ret;
4164 
4165 	ret = device_for_each_child(dev, NULL, device_check_offline);
4166 	if (ret)
4167 		return ret;
4168 
4169 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4170 }
4171 
4172 /**
4173  * device_offline - Prepare the device for hot-removal.
4174  * @dev: Device to be put offline.
4175  *
4176  * Execute the device bus type's .offline() callback, if present, to prepare
4177  * the device for a subsequent hot-removal.  If that succeeds, the device must
4178  * not be used until either it is removed or its bus type's .online() callback
4179  * is executed.
4180  *
4181  * Call under device_hotplug_lock.
4182  */
device_offline(struct device * dev)4183 int device_offline(struct device *dev)
4184 {
4185 	int ret;
4186 
4187 	if (dev->offline_disabled)
4188 		return -EPERM;
4189 
4190 	ret = device_for_each_child(dev, NULL, device_check_offline);
4191 	if (ret)
4192 		return ret;
4193 
4194 	device_lock(dev);
4195 	if (device_supports_offline(dev)) {
4196 		if (dev->offline) {
4197 			ret = 1;
4198 		} else {
4199 			ret = dev->bus->offline(dev);
4200 			if (!ret) {
4201 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4202 				dev->offline = true;
4203 			}
4204 		}
4205 	}
4206 	device_unlock(dev);
4207 
4208 	return ret;
4209 }
4210 
4211 /**
4212  * device_online - Put the device back online after successful device_offline().
4213  * @dev: Device to be put back online.
4214  *
4215  * If device_offline() has been successfully executed for @dev, but the device
4216  * has not been removed subsequently, execute its bus type's .online() callback
4217  * to indicate that the device can be used again.
4218  *
4219  * Call under device_hotplug_lock.
4220  */
device_online(struct device * dev)4221 int device_online(struct device *dev)
4222 {
4223 	int ret = 0;
4224 
4225 	device_lock(dev);
4226 	if (device_supports_offline(dev)) {
4227 		if (dev->offline) {
4228 			ret = dev->bus->online(dev);
4229 			if (!ret) {
4230 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4231 				dev->offline = false;
4232 			}
4233 		} else {
4234 			ret = 1;
4235 		}
4236 	}
4237 	device_unlock(dev);
4238 
4239 	return ret;
4240 }
4241 
4242 struct root_device {
4243 	struct device dev;
4244 	struct module *owner;
4245 };
4246 
to_root_device(struct device * d)4247 static inline struct root_device *to_root_device(struct device *d)
4248 {
4249 	return container_of(d, struct root_device, dev);
4250 }
4251 
root_device_release(struct device * dev)4252 static void root_device_release(struct device *dev)
4253 {
4254 	kfree(to_root_device(dev));
4255 }
4256 
4257 /**
4258  * __root_device_register - allocate and register a root device
4259  * @name: root device name
4260  * @owner: owner module of the root device, usually THIS_MODULE
4261  *
4262  * This function allocates a root device and registers it
4263  * using device_register(). In order to free the returned
4264  * device, use root_device_unregister().
4265  *
4266  * Root devices are dummy devices which allow other devices
4267  * to be grouped under /sys/devices. Use this function to
4268  * allocate a root device and then use it as the parent of
4269  * any device which should appear under /sys/devices/{name}
4270  *
4271  * The /sys/devices/{name} directory will also contain a
4272  * 'module' symlink which points to the @owner directory
4273  * in sysfs.
4274  *
4275  * Returns &struct device pointer on success, or ERR_PTR() on error.
4276  *
4277  * Note: You probably want to use root_device_register().
4278  */
__root_device_register(const char * name,struct module * owner)4279 struct device *__root_device_register(const char *name, struct module *owner)
4280 {
4281 	struct root_device *root;
4282 	int err = -ENOMEM;
4283 
4284 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4285 	if (!root)
4286 		return ERR_PTR(err);
4287 
4288 	err = dev_set_name(&root->dev, "%s", name);
4289 	if (err) {
4290 		kfree(root);
4291 		return ERR_PTR(err);
4292 	}
4293 
4294 	root->dev.release = root_device_release;
4295 
4296 	err = device_register(&root->dev);
4297 	if (err) {
4298 		put_device(&root->dev);
4299 		return ERR_PTR(err);
4300 	}
4301 
4302 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4303 	if (owner) {
4304 		struct module_kobject *mk = &owner->mkobj;
4305 
4306 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4307 		if (err) {
4308 			device_unregister(&root->dev);
4309 			return ERR_PTR(err);
4310 		}
4311 		root->owner = owner;
4312 	}
4313 #endif
4314 
4315 	return &root->dev;
4316 }
4317 EXPORT_SYMBOL_GPL(__root_device_register);
4318 
4319 /**
4320  * root_device_unregister - unregister and free a root device
4321  * @dev: device going away
4322  *
4323  * This function unregisters and cleans up a device that was created by
4324  * root_device_register().
4325  */
root_device_unregister(struct device * dev)4326 void root_device_unregister(struct device *dev)
4327 {
4328 	struct root_device *root = to_root_device(dev);
4329 
4330 	if (root->owner)
4331 		sysfs_remove_link(&root->dev.kobj, "module");
4332 
4333 	device_unregister(dev);
4334 }
4335 EXPORT_SYMBOL_GPL(root_device_unregister);
4336 
4337 
device_create_release(struct device * dev)4338 static void device_create_release(struct device *dev)
4339 {
4340 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4341 	kfree(dev);
4342 }
4343 
4344 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4345 device_create_groups_vargs(const struct class *class, struct device *parent,
4346 			   dev_t devt, void *drvdata,
4347 			   const struct attribute_group **groups,
4348 			   const char *fmt, va_list args)
4349 {
4350 	struct device *dev = NULL;
4351 	int retval = -ENODEV;
4352 
4353 	if (IS_ERR_OR_NULL(class))
4354 		goto error;
4355 
4356 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4357 	if (!dev) {
4358 		retval = -ENOMEM;
4359 		goto error;
4360 	}
4361 
4362 	device_initialize(dev);
4363 	dev->devt = devt;
4364 	dev->class = class;
4365 	dev->parent = parent;
4366 	dev->groups = groups;
4367 	dev->release = device_create_release;
4368 	dev_set_drvdata(dev, drvdata);
4369 
4370 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4371 	if (retval)
4372 		goto error;
4373 
4374 	retval = device_add(dev);
4375 	if (retval)
4376 		goto error;
4377 
4378 	return dev;
4379 
4380 error:
4381 	put_device(dev);
4382 	return ERR_PTR(retval);
4383 }
4384 
4385 /**
4386  * device_create - creates a device and registers it with sysfs
4387  * @class: pointer to the struct class that this device should be registered to
4388  * @parent: pointer to the parent struct device of this new device, if any
4389  * @devt: the dev_t for the char device to be added
4390  * @drvdata: the data to be added to the device for callbacks
4391  * @fmt: string for the device's name
4392  *
4393  * This function can be used by char device classes.  A struct device
4394  * will be created in sysfs, registered to the specified class.
4395  *
4396  * A "dev" file will be created, showing the dev_t for the device, if
4397  * the dev_t is not 0,0.
4398  * If a pointer to a parent struct device is passed in, the newly created
4399  * struct device will be a child of that device in sysfs.
4400  * The pointer to the struct device will be returned from the call.
4401  * Any further sysfs files that might be required can be created using this
4402  * pointer.
4403  *
4404  * Returns &struct device pointer on success, or ERR_PTR() on error.
4405  */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4406 struct device *device_create(const struct class *class, struct device *parent,
4407 			     dev_t devt, void *drvdata, const char *fmt, ...)
4408 {
4409 	va_list vargs;
4410 	struct device *dev;
4411 
4412 	va_start(vargs, fmt);
4413 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4414 					  fmt, vargs);
4415 	va_end(vargs);
4416 	return dev;
4417 }
4418 EXPORT_SYMBOL_GPL(device_create);
4419 
4420 /**
4421  * device_create_with_groups - creates a device and registers it with sysfs
4422  * @class: pointer to the struct class that this device should be registered to
4423  * @parent: pointer to the parent struct device of this new device, if any
4424  * @devt: the dev_t for the char device to be added
4425  * @drvdata: the data to be added to the device for callbacks
4426  * @groups: NULL-terminated list of attribute groups to be created
4427  * @fmt: string for the device's name
4428  *
4429  * This function can be used by char device classes.  A struct device
4430  * will be created in sysfs, registered to the specified class.
4431  * Additional attributes specified in the groups parameter will also
4432  * be created automatically.
4433  *
4434  * A "dev" file will be created, showing the dev_t for the device, if
4435  * the dev_t is not 0,0.
4436  * If a pointer to a parent struct device is passed in, the newly created
4437  * struct device will be a child of that device in sysfs.
4438  * The pointer to the struct device will be returned from the call.
4439  * Any further sysfs files that might be required can be created using this
4440  * pointer.
4441  *
4442  * Returns &struct device pointer on success, or ERR_PTR() on error.
4443  */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4444 struct device *device_create_with_groups(const struct class *class,
4445 					 struct device *parent, dev_t devt,
4446 					 void *drvdata,
4447 					 const struct attribute_group **groups,
4448 					 const char *fmt, ...)
4449 {
4450 	va_list vargs;
4451 	struct device *dev;
4452 
4453 	va_start(vargs, fmt);
4454 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4455 					 fmt, vargs);
4456 	va_end(vargs);
4457 	return dev;
4458 }
4459 EXPORT_SYMBOL_GPL(device_create_with_groups);
4460 
4461 /**
4462  * device_destroy - removes a device that was created with device_create()
4463  * @class: pointer to the struct class that this device was registered with
4464  * @devt: the dev_t of the device that was previously registered
4465  *
4466  * This call unregisters and cleans up a device that was created with a
4467  * call to device_create().
4468  */
device_destroy(const struct class * class,dev_t devt)4469 void device_destroy(const struct class *class, dev_t devt)
4470 {
4471 	struct device *dev;
4472 
4473 	dev = class_find_device_by_devt(class, devt);
4474 	if (dev) {
4475 		put_device(dev);
4476 		device_unregister(dev);
4477 	}
4478 }
4479 EXPORT_SYMBOL_GPL(device_destroy);
4480 
4481 /**
4482  * device_rename - renames a device
4483  * @dev: the pointer to the struct device to be renamed
4484  * @new_name: the new name of the device
4485  *
4486  * It is the responsibility of the caller to provide mutual
4487  * exclusion between two different calls of device_rename
4488  * on the same device to ensure that new_name is valid and
4489  * won't conflict with other devices.
4490  *
4491  * Note: given that some subsystems (networking and infiniband) use this
4492  * function, with no immediate plans for this to change, we cannot assume or
4493  * require that this function not be called at all.
4494  *
4495  * However, if you're writing new code, do not call this function. The following
4496  * text from Kay Sievers offers some insight:
4497  *
4498  * Renaming devices is racy at many levels, symlinks and other stuff are not
4499  * replaced atomically, and you get a "move" uevent, but it's not easy to
4500  * connect the event to the old and new device. Device nodes are not renamed at
4501  * all, there isn't even support for that in the kernel now.
4502  *
4503  * In the meantime, during renaming, your target name might be taken by another
4504  * driver, creating conflicts. Or the old name is taken directly after you
4505  * renamed it -- then you get events for the same DEVPATH, before you even see
4506  * the "move" event. It's just a mess, and nothing new should ever rely on
4507  * kernel device renaming. Besides that, it's not even implemented now for
4508  * other things than (driver-core wise very simple) network devices.
4509  *
4510  * Make up a "real" name in the driver before you register anything, or add
4511  * some other attributes for userspace to find the device, or use udev to add
4512  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4513  * don't even want to get into that and try to implement the missing pieces in
4514  * the core. We really have other pieces to fix in the driver core mess. :)
4515  */
device_rename(struct device * dev,const char * new_name)4516 int device_rename(struct device *dev, const char *new_name)
4517 {
4518 	struct subsys_private *sp = NULL;
4519 	struct kobject *kobj = &dev->kobj;
4520 	char *old_device_name = NULL;
4521 	int error;
4522 	bool is_link_renamed = false;
4523 
4524 	dev = get_device(dev);
4525 	if (!dev)
4526 		return -EINVAL;
4527 
4528 	dev_dbg(dev, "renaming to %s\n", new_name);
4529 
4530 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4531 	if (!old_device_name) {
4532 		error = -ENOMEM;
4533 		goto out;
4534 	}
4535 
4536 	if (dev->class) {
4537 		sp = class_to_subsys(dev->class);
4538 
4539 		if (!sp) {
4540 			error = -EINVAL;
4541 			goto out;
4542 		}
4543 
4544 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4545 					     new_name, kobject_namespace(kobj));
4546 		if (error)
4547 			goto out;
4548 
4549 		is_link_renamed = true;
4550 	}
4551 
4552 	error = kobject_rename(kobj, new_name);
4553 out:
4554 	if (error && is_link_renamed)
4555 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4556 				     old_device_name, kobject_namespace(kobj));
4557 	subsys_put(sp);
4558 
4559 	put_device(dev);
4560 
4561 	kfree(old_device_name);
4562 
4563 	return error;
4564 }
4565 EXPORT_SYMBOL_GPL(device_rename);
4566 
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4567 static int device_move_class_links(struct device *dev,
4568 				   struct device *old_parent,
4569 				   struct device *new_parent)
4570 {
4571 	int error = 0;
4572 
4573 	if (old_parent)
4574 		sysfs_remove_link(&dev->kobj, "device");
4575 	if (new_parent)
4576 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4577 					  "device");
4578 	return error;
4579 }
4580 
4581 /**
4582  * device_move - moves a device to a new parent
4583  * @dev: the pointer to the struct device to be moved
4584  * @new_parent: the new parent of the device (can be NULL)
4585  * @dpm_order: how to reorder the dpm_list
4586  */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4587 int device_move(struct device *dev, struct device *new_parent,
4588 		enum dpm_order dpm_order)
4589 {
4590 	int error;
4591 	struct device *old_parent;
4592 	struct kobject *new_parent_kobj;
4593 
4594 	dev = get_device(dev);
4595 	if (!dev)
4596 		return -EINVAL;
4597 
4598 	device_pm_lock();
4599 	new_parent = get_device(new_parent);
4600 	new_parent_kobj = get_device_parent(dev, new_parent);
4601 	if (IS_ERR(new_parent_kobj)) {
4602 		error = PTR_ERR(new_parent_kobj);
4603 		put_device(new_parent);
4604 		goto out;
4605 	}
4606 
4607 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4608 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4609 	error = kobject_move(&dev->kobj, new_parent_kobj);
4610 	if (error) {
4611 		cleanup_glue_dir(dev, new_parent_kobj);
4612 		put_device(new_parent);
4613 		goto out;
4614 	}
4615 	old_parent = dev->parent;
4616 	dev->parent = new_parent;
4617 	if (old_parent)
4618 		klist_remove(&dev->p->knode_parent);
4619 	if (new_parent) {
4620 		klist_add_tail(&dev->p->knode_parent,
4621 			       &new_parent->p->klist_children);
4622 		set_dev_node(dev, dev_to_node(new_parent));
4623 	}
4624 
4625 	if (dev->class) {
4626 		error = device_move_class_links(dev, old_parent, new_parent);
4627 		if (error) {
4628 			/* We ignore errors on cleanup since we're hosed anyway... */
4629 			device_move_class_links(dev, new_parent, old_parent);
4630 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4631 				if (new_parent)
4632 					klist_remove(&dev->p->knode_parent);
4633 				dev->parent = old_parent;
4634 				if (old_parent) {
4635 					klist_add_tail(&dev->p->knode_parent,
4636 						       &old_parent->p->klist_children);
4637 					set_dev_node(dev, dev_to_node(old_parent));
4638 				}
4639 			}
4640 			cleanup_glue_dir(dev, new_parent_kobj);
4641 			put_device(new_parent);
4642 			goto out;
4643 		}
4644 	}
4645 	switch (dpm_order) {
4646 	case DPM_ORDER_NONE:
4647 		break;
4648 	case DPM_ORDER_DEV_AFTER_PARENT:
4649 		device_pm_move_after(dev, new_parent);
4650 		devices_kset_move_after(dev, new_parent);
4651 		break;
4652 	case DPM_ORDER_PARENT_BEFORE_DEV:
4653 		device_pm_move_before(new_parent, dev);
4654 		devices_kset_move_before(new_parent, dev);
4655 		break;
4656 	case DPM_ORDER_DEV_LAST:
4657 		device_pm_move_last(dev);
4658 		devices_kset_move_last(dev);
4659 		break;
4660 	}
4661 
4662 	put_device(old_parent);
4663 out:
4664 	device_pm_unlock();
4665 	put_device(dev);
4666 	return error;
4667 }
4668 EXPORT_SYMBOL_GPL(device_move);
4669 
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4670 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4671 				     kgid_t kgid)
4672 {
4673 	struct kobject *kobj = &dev->kobj;
4674 	const struct class *class = dev->class;
4675 	const struct device_type *type = dev->type;
4676 	int error;
4677 
4678 	if (class) {
4679 		/*
4680 		 * Change the device groups of the device class for @dev to
4681 		 * @kuid/@kgid.
4682 		 */
4683 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4684 						  kgid);
4685 		if (error)
4686 			return error;
4687 	}
4688 
4689 	if (type) {
4690 		/*
4691 		 * Change the device groups of the device type for @dev to
4692 		 * @kuid/@kgid.
4693 		 */
4694 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4695 						  kgid);
4696 		if (error)
4697 			return error;
4698 	}
4699 
4700 	/* Change the device groups of @dev to @kuid/@kgid. */
4701 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4702 	if (error)
4703 		return error;
4704 
4705 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4706 		/* Change online device attributes of @dev to @kuid/@kgid. */
4707 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4708 						kuid, kgid);
4709 		if (error)
4710 			return error;
4711 	}
4712 
4713 	return 0;
4714 }
4715 
4716 /**
4717  * device_change_owner - change the owner of an existing device.
4718  * @dev: device.
4719  * @kuid: new owner's kuid
4720  * @kgid: new owner's kgid
4721  *
4722  * This changes the owner of @dev and its corresponding sysfs entries to
4723  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4724  * core.
4725  *
4726  * Returns 0 on success or error code on failure.
4727  */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4728 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4729 {
4730 	int error;
4731 	struct kobject *kobj = &dev->kobj;
4732 	struct subsys_private *sp;
4733 
4734 	dev = get_device(dev);
4735 	if (!dev)
4736 		return -EINVAL;
4737 
4738 	/*
4739 	 * Change the kobject and the default attributes and groups of the
4740 	 * ktype associated with it to @kuid/@kgid.
4741 	 */
4742 	error = sysfs_change_owner(kobj, kuid, kgid);
4743 	if (error)
4744 		goto out;
4745 
4746 	/*
4747 	 * Change the uevent file for @dev to the new owner. The uevent file
4748 	 * was created in a separate step when @dev got added and we mirror
4749 	 * that step here.
4750 	 */
4751 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4752 					kgid);
4753 	if (error)
4754 		goto out;
4755 
4756 	/*
4757 	 * Change the device groups, the device groups associated with the
4758 	 * device class, and the groups associated with the device type of @dev
4759 	 * to @kuid/@kgid.
4760 	 */
4761 	error = device_attrs_change_owner(dev, kuid, kgid);
4762 	if (error)
4763 		goto out;
4764 
4765 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4766 	if (error)
4767 		goto out;
4768 
4769 	/*
4770 	 * Change the owner of the symlink located in the class directory of
4771 	 * the device class associated with @dev which points to the actual
4772 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4773 	 * symlink shows the same permissions as its target.
4774 	 */
4775 	sp = class_to_subsys(dev->class);
4776 	if (!sp) {
4777 		error = -EINVAL;
4778 		goto out;
4779 	}
4780 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4781 	subsys_put(sp);
4782 
4783 out:
4784 	put_device(dev);
4785 	return error;
4786 }
4787 EXPORT_SYMBOL_GPL(device_change_owner);
4788 
4789 /**
4790  * device_shutdown - call ->shutdown() on each device to shutdown.
4791  */
device_shutdown(void)4792 void device_shutdown(void)
4793 {
4794 	struct device *dev, *parent;
4795 
4796 	wait_for_device_probe();
4797 	device_block_probing();
4798 
4799 	cpufreq_suspend();
4800 
4801 	spin_lock(&devices_kset->list_lock);
4802 	/*
4803 	 * Walk the devices list backward, shutting down each in turn.
4804 	 * Beware that device unplug events may also start pulling
4805 	 * devices offline, even as the system is shutting down.
4806 	 */
4807 	while (!list_empty(&devices_kset->list)) {
4808 		dev = list_entry(devices_kset->list.prev, struct device,
4809 				kobj.entry);
4810 
4811 		/*
4812 		 * hold reference count of device's parent to
4813 		 * prevent it from being freed because parent's
4814 		 * lock is to be held
4815 		 */
4816 		parent = get_device(dev->parent);
4817 		get_device(dev);
4818 		/*
4819 		 * Make sure the device is off the kset list, in the
4820 		 * event that dev->*->shutdown() doesn't remove it.
4821 		 */
4822 		list_del_init(&dev->kobj.entry);
4823 		spin_unlock(&devices_kset->list_lock);
4824 
4825 		/* hold lock to avoid race with probe/release */
4826 		if (parent)
4827 			device_lock(parent);
4828 		device_lock(dev);
4829 
4830 		/* Don't allow any more runtime suspends */
4831 		pm_runtime_get_noresume(dev);
4832 		pm_runtime_barrier(dev);
4833 
4834 		if (dev->class && dev->class->shutdown_pre) {
4835 			if (initcall_debug)
4836 				dev_info(dev, "shutdown_pre\n");
4837 			dev->class->shutdown_pre(dev);
4838 		}
4839 		if (dev->bus && dev->bus->shutdown) {
4840 			if (initcall_debug)
4841 				dev_info(dev, "shutdown\n");
4842 			dev->bus->shutdown(dev);
4843 		} else if (dev->driver && dev->driver->shutdown) {
4844 			if (initcall_debug)
4845 				dev_info(dev, "shutdown\n");
4846 			dev->driver->shutdown(dev);
4847 		}
4848 
4849 		device_unlock(dev);
4850 		if (parent)
4851 			device_unlock(parent);
4852 
4853 		put_device(dev);
4854 		put_device(parent);
4855 
4856 		spin_lock(&devices_kset->list_lock);
4857 	}
4858 	spin_unlock(&devices_kset->list_lock);
4859 }
4860 
4861 /*
4862  * Device logging functions
4863  */
4864 
4865 #ifdef CONFIG_PRINTK
4866 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4867 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4868 {
4869 	const char *subsys;
4870 
4871 	memset(dev_info, 0, sizeof(*dev_info));
4872 
4873 	if (dev->class)
4874 		subsys = dev->class->name;
4875 	else if (dev->bus)
4876 		subsys = dev->bus->name;
4877 	else
4878 		return;
4879 
4880 	strscpy(dev_info->subsystem, subsys);
4881 
4882 	/*
4883 	 * Add device identifier DEVICE=:
4884 	 *   b12:8         block dev_t
4885 	 *   c127:3        char dev_t
4886 	 *   n8            netdev ifindex
4887 	 *   +sound:card0  subsystem:devname
4888 	 */
4889 	if (MAJOR(dev->devt)) {
4890 		char c;
4891 
4892 		if (strcmp(subsys, "block") == 0)
4893 			c = 'b';
4894 		else
4895 			c = 'c';
4896 
4897 		snprintf(dev_info->device, sizeof(dev_info->device),
4898 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4899 	} else if (strcmp(subsys, "net") == 0) {
4900 		struct net_device *net = to_net_dev(dev);
4901 
4902 		snprintf(dev_info->device, sizeof(dev_info->device),
4903 			 "n%u", net->ifindex);
4904 	} else {
4905 		snprintf(dev_info->device, sizeof(dev_info->device),
4906 			 "+%s:%s", subsys, dev_name(dev));
4907 	}
4908 }
4909 
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4910 int dev_vprintk_emit(int level, const struct device *dev,
4911 		     const char *fmt, va_list args)
4912 {
4913 	struct dev_printk_info dev_info;
4914 
4915 	set_dev_info(dev, &dev_info);
4916 
4917 	return vprintk_emit(0, level, &dev_info, fmt, args);
4918 }
4919 EXPORT_SYMBOL(dev_vprintk_emit);
4920 
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4921 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4922 {
4923 	va_list args;
4924 	int r;
4925 
4926 	va_start(args, fmt);
4927 
4928 	r = dev_vprintk_emit(level, dev, fmt, args);
4929 
4930 	va_end(args);
4931 
4932 	return r;
4933 }
4934 EXPORT_SYMBOL(dev_printk_emit);
4935 
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4936 static void __dev_printk(const char *level, const struct device *dev,
4937 			struct va_format *vaf)
4938 {
4939 	if (dev)
4940 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4941 				dev_driver_string(dev), dev_name(dev), vaf);
4942 	else
4943 		printk("%s(NULL device *): %pV", level, vaf);
4944 }
4945 
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4946 void _dev_printk(const char *level, const struct device *dev,
4947 		 const char *fmt, ...)
4948 {
4949 	struct va_format vaf;
4950 	va_list args;
4951 
4952 	va_start(args, fmt);
4953 
4954 	vaf.fmt = fmt;
4955 	vaf.va = &args;
4956 
4957 	__dev_printk(level, dev, &vaf);
4958 
4959 	va_end(args);
4960 }
4961 EXPORT_SYMBOL(_dev_printk);
4962 
4963 #define define_dev_printk_level(func, kern_level)		\
4964 void func(const struct device *dev, const char *fmt, ...)	\
4965 {								\
4966 	struct va_format vaf;					\
4967 	va_list args;						\
4968 								\
4969 	va_start(args, fmt);					\
4970 								\
4971 	vaf.fmt = fmt;						\
4972 	vaf.va = &args;						\
4973 								\
4974 	__dev_printk(kern_level, dev, &vaf);			\
4975 								\
4976 	va_end(args);						\
4977 }								\
4978 EXPORT_SYMBOL(func);
4979 
4980 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4981 define_dev_printk_level(_dev_alert, KERN_ALERT);
4982 define_dev_printk_level(_dev_crit, KERN_CRIT);
4983 define_dev_printk_level(_dev_err, KERN_ERR);
4984 define_dev_printk_level(_dev_warn, KERN_WARNING);
4985 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4986 define_dev_printk_level(_dev_info, KERN_INFO);
4987 
4988 #endif
4989 
__dev_probe_failed(const struct device * dev,int err,bool fatal,const char * fmt,va_list vargsp)4990 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4991 			       const char *fmt, va_list vargsp)
4992 {
4993 	struct va_format vaf;
4994 	va_list vargs;
4995 
4996 	/*
4997 	 * On x86_64 and possibly on other architectures, va_list is actually a
4998 	 * size-1 array containing a structure.  As a result, function parameter
4999 	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5000 	 * T(*)[1], which is expected by its assignment to vaf.va below.
5001 	 *
5002 	 * One standard way to solve this mess is by creating a copy in a local
5003 	 * variable of type va_list and then using a pointer to that local copy
5004 	 * instead, which is the approach employed here.
5005 	 */
5006 	va_copy(vargs, vargsp);
5007 
5008 	vaf.fmt = fmt;
5009 	vaf.va = &vargs;
5010 
5011 	switch (err) {
5012 	case -EPROBE_DEFER:
5013 		device_set_deferred_probe_reason(dev, &vaf);
5014 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5015 		break;
5016 
5017 	case -ENOMEM:
5018 		/* Don't print anything on -ENOMEM, there's already enough output */
5019 		break;
5020 
5021 	default:
5022 		/* Log fatal final failures as errors, otherwise produce warnings */
5023 		if (fatal)
5024 			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5025 		else
5026 			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5027 		break;
5028 	}
5029 
5030 	va_end(vargs);
5031 }
5032 
5033 /**
5034  * dev_err_probe - probe error check and log helper
5035  * @dev: the pointer to the struct device
5036  * @err: error value to test
5037  * @fmt: printf-style format string
5038  * @...: arguments as specified in the format string
5039  *
5040  * This helper implements common pattern present in probe functions for error
5041  * checking: print debug or error message depending if the error value is
5042  * -EPROBE_DEFER and propagate error upwards.
5043  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5044  * checked later by reading devices_deferred debugfs attribute.
5045  * It replaces the following code sequence::
5046  *
5047  * 	if (err != -EPROBE_DEFER)
5048  * 		dev_err(dev, ...);
5049  * 	else
5050  * 		dev_dbg(dev, ...);
5051  * 	return err;
5052  *
5053  * with::
5054  *
5055  * 	return dev_err_probe(dev, err, ...);
5056  *
5057  * Using this helper in your probe function is totally fine even if @err
5058  * is known to never be -EPROBE_DEFER.
5059  * The benefit compared to a normal dev_err() is the standardized format
5060  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5061  * instead of "-35"), and having the error code returned allows more
5062  * compact error paths.
5063  *
5064  * Returns @err.
5065  */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5066 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5067 {
5068 	va_list vargs;
5069 
5070 	va_start(vargs, fmt);
5071 
5072 	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5073 	__dev_probe_failed(dev, err, true, fmt, vargs);
5074 
5075 	va_end(vargs);
5076 
5077 	return err;
5078 }
5079 EXPORT_SYMBOL_GPL(dev_err_probe);
5080 
5081 /**
5082  * dev_warn_probe - probe error check and log helper
5083  * @dev: the pointer to the struct device
5084  * @err: error value to test
5085  * @fmt: printf-style format string
5086  * @...: arguments as specified in the format string
5087  *
5088  * This helper implements common pattern present in probe functions for error
5089  * checking: print debug or warning message depending if the error value is
5090  * -EPROBE_DEFER and propagate error upwards.
5091  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5092  * checked later by reading devices_deferred debugfs attribute.
5093  * It replaces the following code sequence::
5094  *
5095  * 	if (err != -EPROBE_DEFER)
5096  * 		dev_warn(dev, ...);
5097  * 	else
5098  * 		dev_dbg(dev, ...);
5099  * 	return err;
5100  *
5101  * with::
5102  *
5103  * 	return dev_warn_probe(dev, err, ...);
5104  *
5105  * Using this helper in your probe function is totally fine even if @err
5106  * is known to never be -EPROBE_DEFER.
5107  * The benefit compared to a normal dev_warn() is the standardized format
5108  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5109  * instead of "-35"), and having the error code returned allows more
5110  * compact error paths.
5111  *
5112  * Returns @err.
5113  */
dev_warn_probe(const struct device * dev,int err,const char * fmt,...)5114 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5115 {
5116 	va_list vargs;
5117 
5118 	va_start(vargs, fmt);
5119 
5120 	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5121 	__dev_probe_failed(dev, err, false, fmt, vargs);
5122 
5123 	va_end(vargs);
5124 
5125 	return err;
5126 }
5127 EXPORT_SYMBOL_GPL(dev_warn_probe);
5128 
fwnode_is_primary(struct fwnode_handle * fwnode)5129 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5130 {
5131 	return fwnode && !IS_ERR(fwnode->secondary);
5132 }
5133 
5134 /**
5135  * set_primary_fwnode - Change the primary firmware node of a given device.
5136  * @dev: Device to handle.
5137  * @fwnode: New primary firmware node of the device.
5138  *
5139  * Set the device's firmware node pointer to @fwnode, but if a secondary
5140  * firmware node of the device is present, preserve it.
5141  *
5142  * Valid fwnode cases are:
5143  *  - primary --> secondary --> -ENODEV
5144  *  - primary --> NULL
5145  *  - secondary --> -ENODEV
5146  *  - NULL
5147  */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5148 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5149 {
5150 	struct device *parent = dev->parent;
5151 	struct fwnode_handle *fn = dev->fwnode;
5152 
5153 	if (fwnode) {
5154 		if (fwnode_is_primary(fn))
5155 			fn = fn->secondary;
5156 
5157 		if (fn) {
5158 			WARN_ON(fwnode->secondary);
5159 			fwnode->secondary = fn;
5160 		}
5161 		dev->fwnode = fwnode;
5162 	} else {
5163 		if (fwnode_is_primary(fn)) {
5164 			dev->fwnode = fn->secondary;
5165 
5166 			/* Skip nullifying fn->secondary if the primary is shared */
5167 			if (parent && fn == parent->fwnode)
5168 				return;
5169 
5170 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5171 			fn->secondary = NULL;
5172 		} else {
5173 			dev->fwnode = NULL;
5174 		}
5175 	}
5176 }
5177 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5178 
5179 /**
5180  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5181  * @dev: Device to handle.
5182  * @fwnode: New secondary firmware node of the device.
5183  *
5184  * If a primary firmware node of the device is present, set its secondary
5185  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5186  * @fwnode.
5187  */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5188 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5189 {
5190 	if (fwnode)
5191 		fwnode->secondary = ERR_PTR(-ENODEV);
5192 
5193 	if (fwnode_is_primary(dev->fwnode))
5194 		dev->fwnode->secondary = fwnode;
5195 	else
5196 		dev->fwnode = fwnode;
5197 }
5198 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5199 
5200 /**
5201  * device_remove_of_node - Remove an of_node from a device
5202  * @dev: device whose device tree node is being removed
5203  */
device_remove_of_node(struct device * dev)5204 void device_remove_of_node(struct device *dev)
5205 {
5206 	dev = get_device(dev);
5207 	if (!dev)
5208 		return;
5209 
5210 	if (!dev->of_node)
5211 		goto end;
5212 
5213 	if (dev->fwnode == of_fwnode_handle(dev->of_node))
5214 		dev->fwnode = NULL;
5215 
5216 	of_node_put(dev->of_node);
5217 	dev->of_node = NULL;
5218 
5219 end:
5220 	put_device(dev);
5221 }
5222 EXPORT_SYMBOL_GPL(device_remove_of_node);
5223 
5224 /**
5225  * device_add_of_node - Add an of_node to an existing device
5226  * @dev: device whose device tree node is being added
5227  * @of_node: of_node to add
5228  *
5229  * Return: 0 on success or error code on failure.
5230  */
device_add_of_node(struct device * dev,struct device_node * of_node)5231 int device_add_of_node(struct device *dev, struct device_node *of_node)
5232 {
5233 	int ret;
5234 
5235 	if (!of_node)
5236 		return -EINVAL;
5237 
5238 	dev = get_device(dev);
5239 	if (!dev)
5240 		return -EINVAL;
5241 
5242 	if (dev->of_node) {
5243 		dev_err(dev, "Cannot replace node %pOF with %pOF\n",
5244 			dev->of_node, of_node);
5245 		ret = -EBUSY;
5246 		goto end;
5247 	}
5248 
5249 	dev->of_node = of_node_get(of_node);
5250 
5251 	if (!dev->fwnode)
5252 		dev->fwnode = of_fwnode_handle(of_node);
5253 
5254 	ret = 0;
5255 end:
5256 	put_device(dev);
5257 	return ret;
5258 }
5259 EXPORT_SYMBOL_GPL(device_add_of_node);
5260 
5261 /**
5262  * device_set_of_node_from_dev - reuse device-tree node of another device
5263  * @dev: device whose device-tree node is being set
5264  * @dev2: device whose device-tree node is being reused
5265  *
5266  * Takes another reference to the new device-tree node after first dropping
5267  * any reference held to the old node.
5268  */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5269 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5270 {
5271 	of_node_put(dev->of_node);
5272 	dev->of_node = of_node_get(dev2->of_node);
5273 	dev->of_node_reused = true;
5274 }
5275 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5276 
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5277 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5278 {
5279 	dev->fwnode = fwnode;
5280 	dev->of_node = to_of_node(fwnode);
5281 }
5282 EXPORT_SYMBOL_GPL(device_set_node);
5283 
device_match_name(struct device * dev,const void * name)5284 int device_match_name(struct device *dev, const void *name)
5285 {
5286 	return sysfs_streq(dev_name(dev), name);
5287 }
5288 EXPORT_SYMBOL_GPL(device_match_name);
5289 
device_match_type(struct device * dev,const void * type)5290 int device_match_type(struct device *dev, const void *type)
5291 {
5292 	return dev->type == type;
5293 }
5294 EXPORT_SYMBOL_GPL(device_match_type);
5295 
device_match_of_node(struct device * dev,const void * np)5296 int device_match_of_node(struct device *dev, const void *np)
5297 {
5298 	return np && dev->of_node == np;
5299 }
5300 EXPORT_SYMBOL_GPL(device_match_of_node);
5301 
device_match_fwnode(struct device * dev,const void * fwnode)5302 int device_match_fwnode(struct device *dev, const void *fwnode)
5303 {
5304 	return fwnode && dev_fwnode(dev) == fwnode;
5305 }
5306 EXPORT_SYMBOL_GPL(device_match_fwnode);
5307 
device_match_devt(struct device * dev,const void * pdevt)5308 int device_match_devt(struct device *dev, const void *pdevt)
5309 {
5310 	return dev->devt == *(dev_t *)pdevt;
5311 }
5312 EXPORT_SYMBOL_GPL(device_match_devt);
5313 
device_match_acpi_dev(struct device * dev,const void * adev)5314 int device_match_acpi_dev(struct device *dev, const void *adev)
5315 {
5316 	return adev && ACPI_COMPANION(dev) == adev;
5317 }
5318 EXPORT_SYMBOL(device_match_acpi_dev);
5319 
device_match_acpi_handle(struct device * dev,const void * handle)5320 int device_match_acpi_handle(struct device *dev, const void *handle)
5321 {
5322 	return handle && ACPI_HANDLE(dev) == handle;
5323 }
5324 EXPORT_SYMBOL(device_match_acpi_handle);
5325 
device_match_any(struct device * dev,const void * unused)5326 int device_match_any(struct device *dev, const void *unused)
5327 {
5328 	return 1;
5329 }
5330 EXPORT_SYMBOL_GPL(device_match_any);
5331