1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48 #include <sys/vdev_trim.h>
49
50 /*
51 * This file contains the necessary logic to remove vdevs from a
52 * storage pool. Currently, the only devices that can be removed
53 * are log, cache, and spare devices; and top level vdevs from a pool
54 * w/o raidz. (Note that members of a mirror can also be removed
55 * by the detach operation.)
56 *
57 * Log vdevs are removed by evacuating them and then turning the vdev
58 * into a hole vdev while holding spa config locks.
59 *
60 * Top level vdevs are removed and converted into an indirect vdev via
61 * a multi-step process:
62 *
63 * - Disable allocations from this device (spa_vdev_remove_top).
64 *
65 * - From a new thread (spa_vdev_remove_thread), copy data from
66 * the removing vdev to a different vdev. The copy happens in open
67 * context (spa_vdev_copy_impl) and issues a sync task
68 * (vdev_mapping_sync) so the sync thread can update the partial
69 * indirect mappings in core and on disk.
70 *
71 * - If a free happens during a removal, it is freed from the
72 * removing vdev, and if it has already been copied, from the new
73 * location as well (free_from_removing_vdev).
74 *
75 * - After the removal is completed, the copy thread converts the vdev
76 * into an indirect vdev (vdev_remove_complete) before instructing
77 * the sync thread to destroy the space maps and finish the removal
78 * (spa_finish_removal).
79 */
80
81 typedef struct vdev_copy_arg {
82 metaslab_t *vca_msp;
83 uint64_t vca_outstanding_bytes;
84 kcondvar_t vca_cv;
85 kmutex_t vca_lock;
86 } vdev_copy_arg_t;
87
88 /*
89 * The maximum amount of memory we can use for outstanding i/o while
90 * doing a device removal. This determines how much i/o we can have
91 * in flight concurrently.
92 */
93 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
94
95 /*
96 * The largest contiguous segment that we will attempt to allocate when
97 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
98 * there is a performance problem with attempting to allocate large blocks,
99 * consider decreasing this.
100 *
101 * Note: we will issue I/Os of up to this size. The mpt driver does not
102 * respond well to I/Os larger than 1MB, so we set this to 1MB. (When
103 * mpt processes an I/O larger than 1MB, it needs to do an allocation of
104 * 2 physically contiguous pages; if this allocation fails, mpt will drop
105 * the I/O and hang the device.)
106 */
107 int zfs_remove_max_segment = 1024 * 1024;
108
109 /*
110 * Allow a remap segment to span free chunks of at most this size. The main
111 * impact of a larger span is that we will read and write larger, more
112 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
113 * for iops. The value here was chosen to align with
114 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
115 * reads (but there's no reason it has to be the same).
116 *
117 * Additionally, a higher span will have the following relatively minor
118 * effects:
119 * - the mapping will be smaller, since one entry can cover more allocated
120 * segments
121 * - more of the fragmentation in the removing device will be preserved
122 * - we'll do larger allocations, which may fail and fall back on smaller
123 * allocations
124 */
125 int vdev_removal_max_span = 32 * 1024;
126
127 /*
128 * This is used by the test suite so that it can ensure that certain
129 * actions happen while in the middle of a removal.
130 */
131 int zfs_removal_suspend_progress = 0;
132
133 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
134
135 static void spa_vdev_remove_thread(void *arg);
136
137 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)138 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
139 {
140 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
141 DMU_POOL_DIRECTORY_OBJECT,
142 DMU_POOL_REMOVING, sizeof (uint64_t),
143 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
144 &spa->spa_removing_phys, tx));
145 }
146
147 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)148 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
149 {
150 for (int i = 0; i < count; i++) {
151 uint64_t guid =
152 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
153
154 if (guid == target_guid)
155 return (nvpp[i]);
156 }
157
158 return (NULL);
159 }
160
161 static void
spa_vdev_remove_aux(nvlist_t * config,char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)162 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
163 nvlist_t *dev_to_remove)
164 {
165 nvlist_t **newdev = NULL;
166
167 if (count > 1)
168 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
169
170 for (int i = 0, j = 0; i < count; i++) {
171 if (dev[i] == dev_to_remove)
172 continue;
173 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
174 }
175
176 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
177 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
178
179 for (int i = 0; i < count - 1; i++)
180 nvlist_free(newdev[i]);
181
182 if (count > 1)
183 kmem_free(newdev, (count - 1) * sizeof (void *));
184 }
185
186 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)187 spa_vdev_removal_create(vdev_t *vd)
188 {
189 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
190 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
191 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
192 svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
193 svr->svr_vdev_id = vd->vdev_id;
194
195 for (int i = 0; i < TXG_SIZE; i++) {
196 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
197 0, 0);
198 list_create(&svr->svr_new_segments[i],
199 sizeof (vdev_indirect_mapping_entry_t),
200 offsetof(vdev_indirect_mapping_entry_t, vime_node));
201 }
202
203 return (svr);
204 }
205
206 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)207 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
208 {
209 for (int i = 0; i < TXG_SIZE; i++) {
210 ASSERT0(svr->svr_bytes_done[i]);
211 ASSERT0(svr->svr_max_offset_to_sync[i]);
212 range_tree_destroy(svr->svr_frees[i]);
213 list_destroy(&svr->svr_new_segments[i]);
214 }
215
216 range_tree_destroy(svr->svr_allocd_segs);
217 mutex_destroy(&svr->svr_lock);
218 cv_destroy(&svr->svr_cv);
219 kmem_free(svr, sizeof (*svr));
220 }
221
222 /*
223 * This is called as a synctask in the txg in which we will mark this vdev
224 * as removing (in the config stored in the MOS).
225 *
226 * It begins the evacuation of a toplevel vdev by:
227 * - initializing the spa_removing_phys which tracks this removal
228 * - computing the amount of space to remove for accounting purposes
229 * - dirtying all dbufs in the spa_config_object
230 * - creating the spa_vdev_removal
231 * - starting the spa_vdev_remove_thread
232 */
233 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)234 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
235 {
236 int vdev_id = (uintptr_t)arg;
237 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
238 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
239 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
240 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
241 spa_vdev_removal_t *svr = NULL;
242 uint64_t txg = dmu_tx_get_txg(tx);
243
244 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
245 svr = spa_vdev_removal_create(vd);
246
247 ASSERT(vd->vdev_removing);
248 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
249
250 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
251 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
252 /*
253 * By activating the OBSOLETE_COUNTS feature, we prevent
254 * the pool from being downgraded and ensure that the
255 * refcounts are precise.
256 */
257 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
258 uint64_t one = 1;
259 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
260 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
261 &one, tx));
262 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
263 }
264
265 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
266 vd->vdev_indirect_mapping =
267 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
268 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
269 vd->vdev_indirect_births =
270 vdev_indirect_births_open(mos, vic->vic_births_object);
271 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
272 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
273 spa->spa_removing_phys.sr_end_time = 0;
274 spa->spa_removing_phys.sr_state = DSS_SCANNING;
275 spa->spa_removing_phys.sr_to_copy = 0;
276 spa->spa_removing_phys.sr_copied = 0;
277
278 /*
279 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
280 * there may be space in the defer tree, which is free, but still
281 * counted in vs_alloc.
282 */
283 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
284 metaslab_t *ms = vd->vdev_ms[i];
285 if (ms->ms_sm == NULL)
286 continue;
287
288 spa->spa_removing_phys.sr_to_copy +=
289 metaslab_allocated_space(ms);
290
291 /*
292 * Space which we are freeing this txg does not need to
293 * be copied.
294 */
295 spa->spa_removing_phys.sr_to_copy -=
296 range_tree_space(ms->ms_freeing);
297
298 ASSERT0(range_tree_space(ms->ms_freed));
299 for (int t = 0; t < TXG_SIZE; t++)
300 ASSERT0(range_tree_space(ms->ms_allocating[t]));
301 }
302
303 /*
304 * Sync tasks are called before metaslab_sync(), so there should
305 * be no already-synced metaslabs in the TXG_CLEAN list.
306 */
307 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
308
309 spa_sync_removing_state(spa, tx);
310
311 /*
312 * All blocks that we need to read the most recent mapping must be
313 * stored on concrete vdevs. Therefore, we must dirty anything that
314 * is read before spa_remove_init(). Specifically, the
315 * spa_config_object. (Note that although we already modified the
316 * spa_config_object in spa_sync_removing_state, that may not have
317 * modified all blocks of the object.)
318 */
319 dmu_object_info_t doi;
320 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
321 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
322 dmu_buf_t *dbuf;
323 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
324 offset, FTAG, &dbuf, 0));
325 dmu_buf_will_dirty(dbuf, tx);
326 offset += dbuf->db_size;
327 dmu_buf_rele(dbuf, FTAG);
328 }
329
330 /*
331 * Now that we've allocated the im_object, dirty the vdev to ensure
332 * that the object gets written to the config on disk.
333 */
334 vdev_config_dirty(vd);
335
336 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
337 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
338 vic->vic_mapping_object);
339
340 spa_history_log_internal(spa, "vdev remove started", tx,
341 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
342 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
343 /*
344 * Setting spa_vdev_removal causes subsequent frees to call
345 * free_from_removing_vdev(). Note that we don't need any locking
346 * because we are the sync thread, and metaslab_free_impl() is only
347 * called from syncing context (potentially from a zio taskq thread,
348 * but in any case only when there are outstanding free i/os, which
349 * there are not).
350 */
351 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
352 spa->spa_vdev_removal = svr;
353 svr->svr_thread = thread_create(NULL, 0,
354 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
355 }
356
357 /*
358 * When we are opening a pool, we must read the mapping for each
359 * indirect vdev in order from most recently removed to least
360 * recently removed. We do this because the blocks for the mapping
361 * of older indirect vdevs may be stored on more recently removed vdevs.
362 * In order to read each indirect mapping object, we must have
363 * initialized all more recently removed vdevs.
364 */
365 int
spa_remove_init(spa_t * spa)366 spa_remove_init(spa_t *spa)
367 {
368 int error;
369
370 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
371 DMU_POOL_DIRECTORY_OBJECT,
372 DMU_POOL_REMOVING, sizeof (uint64_t),
373 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
374 &spa->spa_removing_phys);
375
376 if (error == ENOENT) {
377 spa->spa_removing_phys.sr_state = DSS_NONE;
378 spa->spa_removing_phys.sr_removing_vdev = -1;
379 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
380 spa->spa_indirect_vdevs_loaded = B_TRUE;
381 return (0);
382 } else if (error != 0) {
383 return (error);
384 }
385
386 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
387 /*
388 * We are currently removing a vdev. Create and
389 * initialize a spa_vdev_removal_t from the bonus
390 * buffer of the removing vdevs vdev_im_object, and
391 * initialize its partial mapping.
392 */
393 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
394 vdev_t *vd = vdev_lookup_top(spa,
395 spa->spa_removing_phys.sr_removing_vdev);
396
397 if (vd == NULL) {
398 spa_config_exit(spa, SCL_STATE, FTAG);
399 return (EINVAL);
400 }
401
402 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
403
404 ASSERT(vdev_is_concrete(vd));
405 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
406 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
407 ASSERT(vd->vdev_removing);
408
409 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
410 spa->spa_meta_objset, vic->vic_mapping_object);
411 vd->vdev_indirect_births = vdev_indirect_births_open(
412 spa->spa_meta_objset, vic->vic_births_object);
413 spa_config_exit(spa, SCL_STATE, FTAG);
414
415 spa->spa_vdev_removal = svr;
416 }
417
418 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
419 uint64_t indirect_vdev_id =
420 spa->spa_removing_phys.sr_prev_indirect_vdev;
421 while (indirect_vdev_id != UINT64_MAX) {
422 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
423 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
424
425 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
426 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
427 spa->spa_meta_objset, vic->vic_mapping_object);
428 vd->vdev_indirect_births = vdev_indirect_births_open(
429 spa->spa_meta_objset, vic->vic_births_object);
430
431 indirect_vdev_id = vic->vic_prev_indirect_vdev;
432 }
433 spa_config_exit(spa, SCL_STATE, FTAG);
434
435 /*
436 * Now that we've loaded all the indirect mappings, we can allow
437 * reads from other blocks (e.g. via predictive prefetch).
438 */
439 spa->spa_indirect_vdevs_loaded = B_TRUE;
440 return (0);
441 }
442
443 void
spa_restart_removal(spa_t * spa)444 spa_restart_removal(spa_t *spa)
445 {
446 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
447
448 if (svr == NULL)
449 return;
450
451 /*
452 * In general when this function is called there is no
453 * removal thread running. The only scenario where this
454 * is not true is during spa_import() where this function
455 * is called twice [once from spa_import_impl() and
456 * spa_async_resume()]. Thus, in the scenario where we
457 * import a pool that has an ongoing removal we don't
458 * want to spawn a second thread.
459 */
460 if (svr->svr_thread != NULL)
461 return;
462
463 if (!spa_writeable(spa))
464 return;
465
466 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
467 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
468 0, &p0, TS_RUN, minclsyspri);
469 }
470
471 /*
472 * Process freeing from a device which is in the middle of being removed.
473 * We must handle this carefully so that we attempt to copy freed data,
474 * and we correctly free already-copied data.
475 */
476 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)477 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
478 {
479 spa_t *spa = vd->vdev_spa;
480 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
481 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
482 uint64_t txg = spa_syncing_txg(spa);
483 uint64_t max_offset_yet = 0;
484
485 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
486 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
487 vdev_indirect_mapping_object(vim));
488 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
489
490 mutex_enter(&svr->svr_lock);
491
492 /*
493 * Remove the segment from the removing vdev's spacemap. This
494 * ensures that we will not attempt to copy this space (if the
495 * removal thread has not yet visited it), and also ensures
496 * that we know what is actually allocated on the new vdevs
497 * (needed if we cancel the removal).
498 *
499 * Note: we must do the metaslab_free_concrete() with the svr_lock
500 * held, so that the remove_thread can not load this metaslab and then
501 * visit this offset between the time that we metaslab_free_concrete()
502 * and when we check to see if it has been visited.
503 *
504 * Note: The checkpoint flag is set to false as having/taking
505 * a checkpoint and removing a device can't happen at the same
506 * time.
507 */
508 ASSERT(!spa_has_checkpoint(spa));
509 metaslab_free_concrete(vd, offset, size, B_FALSE);
510
511 uint64_t synced_size = 0;
512 uint64_t synced_offset = 0;
513 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
514 if (offset < max_offset_synced) {
515 /*
516 * The mapping for this offset is already on disk.
517 * Free from the new location.
518 *
519 * Note that we use svr_max_synced_offset because it is
520 * updated atomically with respect to the in-core mapping.
521 * By contrast, vim_max_offset is not.
522 *
523 * This block may be split between a synced entry and an
524 * in-flight or unvisited entry. Only process the synced
525 * portion of it here.
526 */
527 synced_size = MIN(size, max_offset_synced - offset);
528 synced_offset = offset;
529
530 ASSERT3U(max_offset_yet, <=, max_offset_synced);
531 max_offset_yet = max_offset_synced;
532
533 DTRACE_PROBE3(remove__free__synced,
534 spa_t *, spa,
535 uint64_t, offset,
536 uint64_t, synced_size);
537
538 size -= synced_size;
539 offset += synced_size;
540 }
541
542 /*
543 * Look at all in-flight txgs starting from the currently syncing one
544 * and see if a section of this free is being copied. By starting from
545 * this txg and iterating forward, we might find that this region
546 * was copied in two different txgs and handle it appropriately.
547 */
548 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
549 int txgoff = (txg + i) & TXG_MASK;
550 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
551 /*
552 * The mapping for this offset is in flight, and
553 * will be synced in txg+i.
554 */
555 uint64_t inflight_size = MIN(size,
556 svr->svr_max_offset_to_sync[txgoff] - offset);
557
558 DTRACE_PROBE4(remove__free__inflight,
559 spa_t *, spa,
560 uint64_t, offset,
561 uint64_t, inflight_size,
562 uint64_t, txg + i);
563
564 /*
565 * We copy data in order of increasing offset.
566 * Therefore the max_offset_to_sync[] must increase
567 * (or be zero, indicating that nothing is being
568 * copied in that txg).
569 */
570 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
571 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
572 >=, max_offset_yet);
573 max_offset_yet =
574 svr->svr_max_offset_to_sync[txgoff];
575 }
576
577 /*
578 * We've already committed to copying this segment:
579 * we have allocated space elsewhere in the pool for
580 * it and have an IO outstanding to copy the data. We
581 * cannot free the space before the copy has
582 * completed, or else the copy IO might overwrite any
583 * new data. To free that space, we record the
584 * segment in the appropriate svr_frees tree and free
585 * the mapped space later, in the txg where we have
586 * completed the copy and synced the mapping (see
587 * vdev_mapping_sync).
588 */
589 range_tree_add(svr->svr_frees[txgoff],
590 offset, inflight_size);
591 size -= inflight_size;
592 offset += inflight_size;
593
594 /*
595 * This space is already accounted for as being
596 * done, because it is being copied in txg+i.
597 * However, if i!=0, then it is being copied in
598 * a future txg. If we crash after this txg
599 * syncs but before txg+i syncs, then the space
600 * will be free. Therefore we must account
601 * for the space being done in *this* txg
602 * (when it is freed) rather than the future txg
603 * (when it will be copied).
604 */
605 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
606 inflight_size);
607 svr->svr_bytes_done[txgoff] -= inflight_size;
608 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
609 }
610 }
611 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
612
613 if (size > 0) {
614 /*
615 * The copy thread has not yet visited this offset. Ensure
616 * that it doesn't.
617 */
618
619 DTRACE_PROBE3(remove__free__unvisited,
620 spa_t *, spa,
621 uint64_t, offset,
622 uint64_t, size);
623
624 if (svr->svr_allocd_segs != NULL)
625 range_tree_clear(svr->svr_allocd_segs, offset, size);
626
627 /*
628 * Since we now do not need to copy this data, for
629 * accounting purposes we have done our job and can count
630 * it as completed.
631 */
632 svr->svr_bytes_done[txg & TXG_MASK] += size;
633 }
634 mutex_exit(&svr->svr_lock);
635
636 /*
637 * Now that we have dropped svr_lock, process the synced portion
638 * of this free.
639 */
640 if (synced_size > 0) {
641 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
642
643 /*
644 * Note: this can only be called from syncing context,
645 * and the vdev_indirect_mapping is only changed from the
646 * sync thread, so we don't need svr_lock while doing
647 * metaslab_free_impl_cb.
648 */
649 boolean_t checkpoint = B_FALSE;
650 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
651 metaslab_free_impl_cb, &checkpoint);
652 }
653 }
654
655 /*
656 * Stop an active removal and update the spa_removing phys.
657 */
658 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)659 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
660 {
661 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
662 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
663
664 /* Ensure the removal thread has completed before we free the svr. */
665 spa_vdev_remove_suspend(spa);
666
667 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
668
669 if (state == DSS_FINISHED) {
670 spa_removing_phys_t *srp = &spa->spa_removing_phys;
671 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
672 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
673
674 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
675 vdev_t *pvd = vdev_lookup_top(spa,
676 srp->sr_prev_indirect_vdev);
677 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
678 }
679
680 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
681 srp->sr_prev_indirect_vdev = vd->vdev_id;
682 }
683 spa->spa_removing_phys.sr_state = state;
684 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
685
686 spa->spa_vdev_removal = NULL;
687 spa_vdev_removal_destroy(svr);
688
689 spa_sync_removing_state(spa, tx);
690
691 vdev_config_dirty(spa->spa_root_vdev);
692 }
693
694 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)695 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
696 {
697 vdev_t *vd = arg;
698 vdev_indirect_mark_obsolete(vd, offset, size);
699 boolean_t checkpoint = B_FALSE;
700 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
701 metaslab_free_impl_cb, &checkpoint);
702 }
703
704 /*
705 * On behalf of the removal thread, syncs an incremental bit more of
706 * the indirect mapping to disk and updates the in-memory mapping.
707 * Called as a sync task in every txg that the removal thread makes progress.
708 */
709 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)710 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
711 {
712 spa_vdev_removal_t *svr = arg;
713 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
714 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
715 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
716 uint64_t txg = dmu_tx_get_txg(tx);
717 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
718
719 ASSERT(vic->vic_mapping_object != 0);
720 ASSERT3U(txg, ==, spa_syncing_txg(spa));
721
722 vdev_indirect_mapping_add_entries(vim,
723 &svr->svr_new_segments[txg & TXG_MASK], tx);
724 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
725 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
726
727 /*
728 * Free the copied data for anything that was freed while the
729 * mapping entries were in flight.
730 */
731 mutex_enter(&svr->svr_lock);
732 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
733 free_mapped_segment_cb, vd);
734 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
735 vdev_indirect_mapping_max_offset(vim));
736 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
737 mutex_exit(&svr->svr_lock);
738
739 spa_sync_removing_state(spa, tx);
740 }
741
742 typedef struct vdev_copy_segment_arg {
743 spa_t *vcsa_spa;
744 dva_t *vcsa_dest_dva;
745 uint64_t vcsa_txg;
746 range_tree_t *vcsa_obsolete_segs;
747 } vdev_copy_segment_arg_t;
748
749 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)750 unalloc_seg(void *arg, uint64_t start, uint64_t size)
751 {
752 vdev_copy_segment_arg_t *vcsa = arg;
753 spa_t *spa = vcsa->vcsa_spa;
754 blkptr_t bp = { 0 };
755
756 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
757 BP_SET_LSIZE(&bp, size);
758 BP_SET_PSIZE(&bp, size);
759 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
760 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
761 BP_SET_TYPE(&bp, DMU_OT_NONE);
762 BP_SET_LEVEL(&bp, 0);
763 BP_SET_DEDUP(&bp, 0);
764 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
765
766 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
767 DVA_SET_OFFSET(&bp.blk_dva[0],
768 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
769 DVA_SET_ASIZE(&bp.blk_dva[0], size);
770
771 zio_free(spa, vcsa->vcsa_txg, &bp);
772 }
773
774 /*
775 * All reads and writes associated with a call to spa_vdev_copy_segment()
776 * are done.
777 */
778 static void
spa_vdev_copy_segment_done(zio_t * zio)779 spa_vdev_copy_segment_done(zio_t *zio)
780 {
781 vdev_copy_segment_arg_t *vcsa = zio->io_private;
782
783 range_tree_vacate(vcsa->vcsa_obsolete_segs,
784 unalloc_seg, vcsa);
785 range_tree_destroy(vcsa->vcsa_obsolete_segs);
786 kmem_free(vcsa, sizeof (*vcsa));
787
788 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
789 }
790
791 /*
792 * The write of the new location is done.
793 */
794 static void
spa_vdev_copy_segment_write_done(zio_t * zio)795 spa_vdev_copy_segment_write_done(zio_t *zio)
796 {
797 vdev_copy_arg_t *vca = zio->io_private;
798
799 abd_free(zio->io_abd);
800
801 mutex_enter(&vca->vca_lock);
802 vca->vca_outstanding_bytes -= zio->io_size;
803 cv_signal(&vca->vca_cv);
804 mutex_exit(&vca->vca_lock);
805 }
806
807 /*
808 * The read of the old location is done. The parent zio is the write to
809 * the new location. Allow it to start.
810 */
811 static void
spa_vdev_copy_segment_read_done(zio_t * zio)812 spa_vdev_copy_segment_read_done(zio_t *zio)
813 {
814 zio_nowait(zio_unique_parent(zio));
815 }
816
817 /*
818 * If the old and new vdevs are mirrors, we will read both sides of the old
819 * mirror, and write each copy to the corresponding side of the new mirror.
820 * If the old and new vdevs have a different number of children, we will do
821 * this as best as possible. Since we aren't verifying checksums, this
822 * ensures that as long as there's a good copy of the data, we'll have a
823 * good copy after the removal, even if there's silent damage to one side
824 * of the mirror. If we're removing a mirror that has some silent damage,
825 * we'll have exactly the same damage in the new location (assuming that
826 * the new location is also a mirror).
827 *
828 * We accomplish this by creating a tree of zio_t's, with as many writes as
829 * there are "children" of the new vdev (a non-redundant vdev counts as one
830 * child, a 2-way mirror has 2 children, etc). Each write has an associated
831 * read from a child of the old vdev. Typically there will be the same
832 * number of children of the old and new vdevs. However, if there are more
833 * children of the new vdev, some child(ren) of the old vdev will be issued
834 * multiple reads. If there are more children of the old vdev, some copies
835 * will be dropped.
836 *
837 * For example, the tree of zio_t's for a 2-way mirror is:
838 *
839 * null
840 * / \
841 * write(new vdev, child 0) write(new vdev, child 1)
842 * | |
843 * read(old vdev, child 0) read(old vdev, child 1)
844 *
845 * Child zio's complete before their parents complete. However, zio's
846 * created with zio_vdev_child_io() may be issued before their children
847 * complete. In this case we need to make sure that the children (reads)
848 * complete before the parents (writes) are *issued*. We do this by not
849 * calling zio_nowait() on each write until its corresponding read has
850 * completed.
851 *
852 * The spa_config_lock must be held while zio's created by
853 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
854 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
855 * zio is needed to release the spa_config_lock after all the reads and
856 * writes complete. (Note that we can't grab the config lock for each read,
857 * because it is not reentrant - we could deadlock with a thread waiting
858 * for a write lock.)
859 */
860 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)861 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
862 vdev_t *source_vd, uint64_t source_offset,
863 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
864 {
865 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
866
867 mutex_enter(&vca->vca_lock);
868 vca->vca_outstanding_bytes += size;
869 mutex_exit(&vca->vca_lock);
870
871 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
872
873 vdev_t *source_child_vd;
874 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
875 /*
876 * Source and dest are both mirrors. Copy from the same
877 * child id as we are copying to (wrapping around if there
878 * are more dest children than source children).
879 */
880 source_child_vd =
881 source_vd->vdev_child[dest_id % source_vd->vdev_children];
882 } else {
883 source_child_vd = source_vd;
884 }
885
886 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
887 dest_child_vd, dest_offset, abd, size,
888 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
889 ZIO_FLAG_CANFAIL,
890 spa_vdev_copy_segment_write_done, vca);
891
892 zio_nowait(zio_vdev_child_io(write_zio, NULL,
893 source_child_vd, source_offset, abd, size,
894 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
895 ZIO_FLAG_CANFAIL,
896 spa_vdev_copy_segment_read_done, vca));
897 }
898
899 /*
900 * Allocate a new location for this segment, and create the zio_t's to
901 * read from the old location and write to the new location.
902 */
903 static int
spa_vdev_copy_segment(vdev_t * vd,range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)904 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
905 uint64_t maxalloc, uint64_t txg,
906 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
907 {
908 metaslab_group_t *mg = vd->vdev_mg;
909 spa_t *spa = vd->vdev_spa;
910 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
911 vdev_indirect_mapping_entry_t *entry;
912 dva_t dst = { 0 };
913 uint64_t start = range_tree_min(segs);
914
915 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
916
917 uint64_t size = range_tree_span(segs);
918 if (range_tree_span(segs) > maxalloc) {
919 /*
920 * We can't allocate all the segments. Prefer to end
921 * the allocation at the end of a segment, thus avoiding
922 * additional split blocks.
923 */
924 range_seg_max_t search;
925 zfs_btree_index_t where;
926 rs_set_start(&search, segs, start + maxalloc);
927 rs_set_end(&search, segs, start + maxalloc);
928 (void) zfs_btree_find(&segs->rt_root, &search, &where);
929 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
930 &where);
931 if (rs != NULL) {
932 size = rs_get_end(rs, segs) - start;
933 } else {
934 /*
935 * There are no segments that end before maxalloc.
936 * I.e. the first segment is larger than maxalloc,
937 * so we must split it.
938 */
939 size = maxalloc;
940 }
941 }
942 ASSERT3U(size, <=, maxalloc);
943
944 /*
945 * An allocation class might not have any remaining vdevs or space
946 */
947 metaslab_class_t *mc = mg->mg_class;
948 if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
949 mc = spa_normal_class(spa);
950 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
951 zal, 0);
952 if (error == ENOSPC && mc != spa_normal_class(spa)) {
953 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
954 &dst, 0, NULL, txg, 0, zal, 0);
955 }
956 if (error != 0)
957 return (error);
958
959 /*
960 * Determine the ranges that are not actually needed. Offsets are
961 * relative to the start of the range to be copied (i.e. relative to the
962 * local variable "start").
963 */
964 range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
965 0, 0);
966
967 zfs_btree_index_t where;
968 range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
969 ASSERT3U(rs_get_start(rs, segs), ==, start);
970 uint64_t prev_seg_end = rs_get_end(rs, segs);
971 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
972 if (rs_get_start(rs, segs) >= start + size) {
973 break;
974 } else {
975 range_tree_add(obsolete_segs,
976 prev_seg_end - start,
977 rs_get_start(rs, segs) - prev_seg_end);
978 }
979 prev_seg_end = rs_get_end(rs, segs);
980 }
981 /* We don't end in the middle of an obsolete range */
982 ASSERT3U(start + size, <=, prev_seg_end);
983
984 range_tree_clear(segs, start, size);
985
986 /*
987 * We can't have any padding of the allocated size, otherwise we will
988 * misunderstand what's allocated, and the size of the mapping.
989 * The caller ensures this will be true by passing in a size that is
990 * aligned to the worst (highest) ashift in the pool.
991 */
992 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
993
994 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
995 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
996 entry->vime_mapping.vimep_dst = dst;
997 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
998 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
999 }
1000
1001 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1002 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1003 vcsa->vcsa_obsolete_segs = obsolete_segs;
1004 vcsa->vcsa_spa = spa;
1005 vcsa->vcsa_txg = txg;
1006
1007 /*
1008 * See comment before spa_vdev_copy_one_child().
1009 */
1010 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1011 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1012 spa_vdev_copy_segment_done, vcsa, 0);
1013 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1014 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1015 for (int i = 0; i < dest_vd->vdev_children; i++) {
1016 vdev_t *child = dest_vd->vdev_child[i];
1017 spa_vdev_copy_one_child(vca, nzio, vd, start,
1018 child, DVA_GET_OFFSET(&dst), i, size);
1019 }
1020 } else {
1021 spa_vdev_copy_one_child(vca, nzio, vd, start,
1022 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1023 }
1024 zio_nowait(nzio);
1025
1026 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1027 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1028 vdev_dirty(vd, 0, NULL, txg);
1029
1030 return (0);
1031 }
1032
1033 /*
1034 * Complete the removal of a toplevel vdev. This is called as a
1035 * synctask in the same txg that we will sync out the new config (to the
1036 * MOS object) which indicates that this vdev is indirect.
1037 */
1038 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1039 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1040 {
1041 spa_vdev_removal_t *svr = arg;
1042 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1043 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1044
1045 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1046
1047 for (int i = 0; i < TXG_SIZE; i++) {
1048 ASSERT0(svr->svr_bytes_done[i]);
1049 }
1050
1051 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1052 spa->spa_removing_phys.sr_to_copy);
1053
1054 vdev_destroy_spacemaps(vd, tx);
1055
1056 /* destroy leaf zaps, if any */
1057 ASSERT3P(svr->svr_zaplist, !=, NULL);
1058 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1059 pair != NULL;
1060 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1061 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1062 }
1063 fnvlist_free(svr->svr_zaplist);
1064
1065 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1066 /* vd->vdev_path is not available here */
1067 spa_history_log_internal(spa, "vdev remove completed", tx,
1068 "%s vdev %llu", spa_name(spa), vd->vdev_id);
1069 }
1070
1071 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1072 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1073 {
1074 ASSERT3P(zlist, !=, NULL);
1075 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1076
1077 if (vd->vdev_leaf_zap != 0) {
1078 char zkey[32];
1079 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1080 VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1081 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1082 }
1083
1084 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1085 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1086 }
1087 }
1088
1089 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1090 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1091 {
1092 vdev_t *ivd;
1093 dmu_tx_t *tx;
1094 spa_t *spa = vd->vdev_spa;
1095 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1096
1097 /*
1098 * First, build a list of leaf zaps to be destroyed.
1099 * This is passed to the sync context thread,
1100 * which does the actual unlinking.
1101 */
1102 svr->svr_zaplist = fnvlist_alloc();
1103 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1104
1105 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1106 ivd->vdev_removing = 0;
1107
1108 vd->vdev_leaf_zap = 0;
1109
1110 vdev_remove_child(ivd, vd);
1111 vdev_compact_children(ivd);
1112
1113 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1114
1115 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1116 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1117 0, ZFS_SPACE_CHECK_NONE, tx);
1118 dmu_tx_commit(tx);
1119
1120 /*
1121 * Indicate that this thread has exited.
1122 * After this, we can not use svr.
1123 */
1124 mutex_enter(&svr->svr_lock);
1125 svr->svr_thread = NULL;
1126 cv_broadcast(&svr->svr_cv);
1127 mutex_exit(&svr->svr_lock);
1128 }
1129
1130 /*
1131 * Complete the removal of a toplevel vdev. This is called in open
1132 * context by the removal thread after we have copied all vdev's data.
1133 */
1134 static void
vdev_remove_complete(spa_t * spa)1135 vdev_remove_complete(spa_t *spa)
1136 {
1137 uint64_t txg;
1138
1139 /*
1140 * Wait for any deferred frees to be synced before we call
1141 * vdev_metaslab_fini()
1142 */
1143 txg_wait_synced(spa->spa_dsl_pool, 0);
1144 txg = spa_vdev_enter(spa);
1145 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1146 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1147 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1148 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1149
1150 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1151 ESC_ZFS_VDEV_REMOVE_DEV);
1152
1153 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1154 vd->vdev_id, txg);
1155
1156 /*
1157 * Discard allocation state.
1158 */
1159 if (vd->vdev_mg != NULL) {
1160 vdev_metaslab_fini(vd);
1161 metaslab_group_destroy(vd->vdev_mg);
1162 vd->vdev_mg = NULL;
1163 spa_log_sm_set_blocklimit(spa);
1164 }
1165 ASSERT0(vd->vdev_stat.vs_space);
1166 ASSERT0(vd->vdev_stat.vs_dspace);
1167
1168 vdev_remove_replace_with_indirect(vd, txg);
1169
1170 /*
1171 * We now release the locks, allowing spa_sync to run and finish the
1172 * removal via vdev_remove_complete_sync in syncing context.
1173 *
1174 * Note that we hold on to the vdev_t that has been replaced. Since
1175 * it isn't part of the vdev tree any longer, it can't be concurrently
1176 * manipulated, even while we don't have the config lock.
1177 */
1178 (void) spa_vdev_exit(spa, NULL, txg, 0);
1179
1180 /*
1181 * Top ZAP should have been transferred to the indirect vdev in
1182 * vdev_remove_replace_with_indirect.
1183 */
1184 ASSERT0(vd->vdev_top_zap);
1185
1186 /*
1187 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1188 */
1189 ASSERT0(vd->vdev_leaf_zap);
1190
1191 txg = spa_vdev_enter(spa);
1192 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1193 /*
1194 * Request to update the config and the config cachefile.
1195 */
1196 vdev_config_dirty(spa->spa_root_vdev);
1197 (void) spa_vdev_exit(spa, vd, txg, 0);
1198
1199 spa_event_post(ev);
1200 }
1201
1202 /*
1203 * Evacuates a segment of size at most max_alloc from the vdev
1204 * via repeated calls to spa_vdev_copy_segment. If an allocation
1205 * fails, the pool is probably too fragmented to handle such a
1206 * large size, so decrease max_alloc so that the caller will not try
1207 * this size again this txg.
1208 */
1209 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1210 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1211 uint64_t *max_alloc, dmu_tx_t *tx)
1212 {
1213 uint64_t txg = dmu_tx_get_txg(tx);
1214 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1215
1216 mutex_enter(&svr->svr_lock);
1217
1218 /*
1219 * Determine how big of a chunk to copy. We can allocate up
1220 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1221 * bytes of unallocated space at a time. "segs" will track the
1222 * allocated segments that we are copying. We may also be copying
1223 * free segments (of up to vdev_removal_max_span bytes).
1224 */
1225 range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1226 for (;;) {
1227 range_tree_t *rt = svr->svr_allocd_segs;
1228 range_seg_t *rs = range_tree_first(rt);
1229
1230 if (rs == NULL)
1231 break;
1232
1233 uint64_t seg_length;
1234
1235 if (range_tree_is_empty(segs)) {
1236 /* need to truncate the first seg based on max_alloc */
1237 seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1238 rt), *max_alloc);
1239 } else {
1240 if (rs_get_start(rs, rt) - range_tree_max(segs) >
1241 vdev_removal_max_span) {
1242 /*
1243 * Including this segment would cause us to
1244 * copy a larger unneeded chunk than is allowed.
1245 */
1246 break;
1247 } else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1248 *max_alloc) {
1249 /*
1250 * This additional segment would extend past
1251 * max_alloc. Rather than splitting this
1252 * segment, leave it for the next mapping.
1253 */
1254 break;
1255 } else {
1256 seg_length = rs_get_end(rs, rt) -
1257 rs_get_start(rs, rt);
1258 }
1259 }
1260
1261 range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1262 range_tree_remove(svr->svr_allocd_segs,
1263 rs_get_start(rs, rt), seg_length);
1264 }
1265
1266 if (range_tree_is_empty(segs)) {
1267 mutex_exit(&svr->svr_lock);
1268 range_tree_destroy(segs);
1269 return;
1270 }
1271
1272 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1273 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1274 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1275 }
1276
1277 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1278
1279 /*
1280 * Note: this is the amount of *allocated* space
1281 * that we are taking care of each txg.
1282 */
1283 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1284
1285 mutex_exit(&svr->svr_lock);
1286
1287 zio_alloc_list_t zal;
1288 metaslab_trace_init(&zal);
1289 uint64_t thismax = SPA_MAXBLOCKSIZE;
1290 while (!range_tree_is_empty(segs)) {
1291 int error = spa_vdev_copy_segment(vd,
1292 segs, thismax, txg, vca, &zal);
1293
1294 if (error == ENOSPC) {
1295 /*
1296 * Cut our segment in half, and don't try this
1297 * segment size again this txg. Note that the
1298 * allocation size must be aligned to the highest
1299 * ashift in the pool, so that the allocation will
1300 * not be padded out to a multiple of the ashift,
1301 * which could cause us to think that this mapping
1302 * is larger than we intended.
1303 */
1304 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1305 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1306 uint64_t attempted =
1307 MIN(range_tree_span(segs), thismax);
1308 thismax = P2ROUNDUP(attempted / 2,
1309 1 << spa->spa_max_ashift);
1310 /*
1311 * The minimum-size allocation can not fail.
1312 */
1313 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1314 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1315 } else {
1316 ASSERT0(error);
1317
1318 /*
1319 * We've performed an allocation, so reset the
1320 * alloc trace list.
1321 */
1322 metaslab_trace_fini(&zal);
1323 metaslab_trace_init(&zal);
1324 }
1325 }
1326 metaslab_trace_fini(&zal);
1327 range_tree_destroy(segs);
1328 }
1329
1330 /*
1331 * The removal thread operates in open context. It iterates over all
1332 * allocated space in the vdev, by loading each metaslab's spacemap.
1333 * For each contiguous segment of allocated space (capping the segment
1334 * size at SPA_MAXBLOCKSIZE), we:
1335 * - Allocate space for it on another vdev.
1336 * - Create a new mapping from the old location to the new location
1337 * (as a record in svr_new_segments).
1338 * - Initiate a logical read zio to get the data off the removing disk.
1339 * - In the read zio's done callback, initiate a logical write zio to
1340 * write it to the new vdev.
1341 * Note that all of this will take effect when a particular TXG syncs.
1342 * The sync thread ensures that all the phys reads and writes for the syncing
1343 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1344 * (see vdev_mapping_sync()).
1345 */
1346 static void
spa_vdev_remove_thread(void * arg)1347 spa_vdev_remove_thread(void *arg)
1348 {
1349 spa_t *spa = arg;
1350 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1351 vdev_copy_arg_t vca;
1352 uint64_t max_alloc = zfs_remove_max_segment;
1353 uint64_t last_txg = 0;
1354
1355 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1356 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1357 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1358 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1359
1360 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1361 ASSERT(vdev_is_concrete(vd));
1362 ASSERT(vd->vdev_removing);
1363 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1364 ASSERT(vim != NULL);
1365
1366 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1367 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1368 vca.vca_outstanding_bytes = 0;
1369
1370 mutex_enter(&svr->svr_lock);
1371
1372 /*
1373 * Start from vim_max_offset so we pick up where we left off
1374 * if we are restarting the removal after opening the pool.
1375 */
1376 uint64_t msi;
1377 for (msi = start_offset >> vd->vdev_ms_shift;
1378 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1379 metaslab_t *msp = vd->vdev_ms[msi];
1380 ASSERT3U(msi, <=, vd->vdev_ms_count);
1381
1382 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1383
1384 mutex_enter(&msp->ms_sync_lock);
1385 mutex_enter(&msp->ms_lock);
1386
1387 /*
1388 * Assert nothing in flight -- ms_*tree is empty.
1389 */
1390 for (int i = 0; i < TXG_SIZE; i++) {
1391 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1392 }
1393
1394 /*
1395 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1396 * read the allocated segments from the space map object
1397 * into svr_allocd_segs. Since we do this while holding
1398 * svr_lock and ms_sync_lock, concurrent frees (which
1399 * would have modified the space map) will wait for us
1400 * to finish loading the spacemap, and then take the
1401 * appropriate action (see free_from_removing_vdev()).
1402 */
1403 if (msp->ms_sm != NULL) {
1404 VERIFY0(space_map_load(msp->ms_sm,
1405 svr->svr_allocd_segs, SM_ALLOC));
1406
1407 range_tree_walk(msp->ms_unflushed_allocs,
1408 range_tree_add, svr->svr_allocd_segs);
1409 range_tree_walk(msp->ms_unflushed_frees,
1410 range_tree_remove, svr->svr_allocd_segs);
1411 range_tree_walk(msp->ms_freeing,
1412 range_tree_remove, svr->svr_allocd_segs);
1413
1414 /*
1415 * When we are resuming from a paused removal (i.e.
1416 * when importing a pool with a removal in progress),
1417 * discard any state that we have already processed.
1418 */
1419 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1420 }
1421 mutex_exit(&msp->ms_lock);
1422 mutex_exit(&msp->ms_sync_lock);
1423
1424 vca.vca_msp = msp;
1425 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1426 zfs_btree_numnodes(&svr->svr_allocd_segs->rt_root),
1427 msp->ms_id);
1428
1429 while (!svr->svr_thread_exit &&
1430 !range_tree_is_empty(svr->svr_allocd_segs)) {
1431
1432 mutex_exit(&svr->svr_lock);
1433
1434 /*
1435 * We need to periodically drop the config lock so that
1436 * writers can get in. Additionally, we can't wait
1437 * for a txg to sync while holding a config lock
1438 * (since a waiting writer could cause a 3-way deadlock
1439 * with the sync thread, which also gets a config
1440 * lock for reader). So we can't hold the config lock
1441 * while calling dmu_tx_assign().
1442 */
1443 spa_config_exit(spa, SCL_CONFIG, FTAG);
1444
1445 /*
1446 * This delay will pause the removal around the point
1447 * specified by zfs_removal_suspend_progress. We do this
1448 * solely from the test suite or during debugging.
1449 */
1450 uint64_t bytes_copied =
1451 spa->spa_removing_phys.sr_copied;
1452 for (int i = 0; i < TXG_SIZE; i++)
1453 bytes_copied += svr->svr_bytes_done[i];
1454 while (zfs_removal_suspend_progress &&
1455 !svr->svr_thread_exit)
1456 delay(hz);
1457
1458 mutex_enter(&vca.vca_lock);
1459 while (vca.vca_outstanding_bytes >
1460 zfs_remove_max_copy_bytes) {
1461 cv_wait(&vca.vca_cv, &vca.vca_lock);
1462 }
1463 mutex_exit(&vca.vca_lock);
1464
1465 dmu_tx_t *tx =
1466 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1467
1468 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1469 uint64_t txg = dmu_tx_get_txg(tx);
1470
1471 /*
1472 * Reacquire the vdev_config lock. The vdev_t
1473 * that we're removing may have changed, e.g. due
1474 * to a vdev_attach or vdev_detach.
1475 */
1476 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1477 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1478
1479 if (txg != last_txg)
1480 max_alloc = zfs_remove_max_segment;
1481 last_txg = txg;
1482
1483 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1484
1485 dmu_tx_commit(tx);
1486 mutex_enter(&svr->svr_lock);
1487 }
1488 }
1489
1490 mutex_exit(&svr->svr_lock);
1491
1492 spa_config_exit(spa, SCL_CONFIG, FTAG);
1493
1494 /*
1495 * Wait for all copies to finish before cleaning up the vca.
1496 */
1497 txg_wait_synced(spa->spa_dsl_pool, 0);
1498 ASSERT0(vca.vca_outstanding_bytes);
1499
1500 mutex_destroy(&vca.vca_lock);
1501 cv_destroy(&vca.vca_cv);
1502
1503 if (svr->svr_thread_exit) {
1504 mutex_enter(&svr->svr_lock);
1505 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1506 svr->svr_thread = NULL;
1507 cv_broadcast(&svr->svr_cv);
1508 mutex_exit(&svr->svr_lock);
1509 } else {
1510 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1511 vdev_remove_complete(spa);
1512 }
1513 }
1514
1515 void
spa_vdev_remove_suspend(spa_t * spa)1516 spa_vdev_remove_suspend(spa_t *spa)
1517 {
1518 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1519
1520 if (svr == NULL)
1521 return;
1522
1523 mutex_enter(&svr->svr_lock);
1524 svr->svr_thread_exit = B_TRUE;
1525 while (svr->svr_thread != NULL)
1526 cv_wait(&svr->svr_cv, &svr->svr_lock);
1527 svr->svr_thread_exit = B_FALSE;
1528 mutex_exit(&svr->svr_lock);
1529 }
1530
1531 /* ARGSUSED */
1532 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1533 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1534 {
1535 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1536
1537 if (spa->spa_vdev_removal == NULL)
1538 return (ENOTACTIVE);
1539 return (0);
1540 }
1541
1542 /*
1543 * Cancel a removal by freeing all entries from the partial mapping
1544 * and marking the vdev as no longer being removing.
1545 */
1546 /* ARGSUSED */
1547 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1548 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1549 {
1550 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1551 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1552 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1553 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1554 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1555 objset_t *mos = spa->spa_meta_objset;
1556
1557 ASSERT3P(svr->svr_thread, ==, NULL);
1558
1559 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1560 if (vdev_obsolete_counts_are_precise(vd)) {
1561 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1562 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1563 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1564 }
1565
1566 if (vdev_obsolete_sm_object(vd) != 0) {
1567 ASSERT(vd->vdev_obsolete_sm != NULL);
1568 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1569 space_map_object(vd->vdev_obsolete_sm));
1570
1571 space_map_free(vd->vdev_obsolete_sm, tx);
1572 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1573 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1574 space_map_close(vd->vdev_obsolete_sm);
1575 vd->vdev_obsolete_sm = NULL;
1576 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1577 }
1578 for (int i = 0; i < TXG_SIZE; i++) {
1579 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1580 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1581 vdev_indirect_mapping_max_offset(vim));
1582 }
1583
1584 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1585 metaslab_t *msp = vd->vdev_ms[msi];
1586
1587 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1588 break;
1589
1590 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1591
1592 mutex_enter(&msp->ms_lock);
1593
1594 /*
1595 * Assert nothing in flight -- ms_*tree is empty.
1596 */
1597 for (int i = 0; i < TXG_SIZE; i++)
1598 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1599 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1600 ASSERT0(range_tree_space(msp->ms_defer[i]));
1601 ASSERT0(range_tree_space(msp->ms_freed));
1602
1603 if (msp->ms_sm != NULL) {
1604 mutex_enter(&svr->svr_lock);
1605 VERIFY0(space_map_load(msp->ms_sm,
1606 svr->svr_allocd_segs, SM_ALLOC));
1607
1608 range_tree_walk(msp->ms_unflushed_allocs,
1609 range_tree_add, svr->svr_allocd_segs);
1610 range_tree_walk(msp->ms_unflushed_frees,
1611 range_tree_remove, svr->svr_allocd_segs);
1612 range_tree_walk(msp->ms_freeing,
1613 range_tree_remove, svr->svr_allocd_segs);
1614
1615 /*
1616 * Clear everything past what has been synced,
1617 * because we have not allocated mappings for it yet.
1618 */
1619 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1620 uint64_t sm_end = msp->ms_sm->sm_start +
1621 msp->ms_sm->sm_size;
1622 if (sm_end > syncd)
1623 range_tree_clear(svr->svr_allocd_segs,
1624 syncd, sm_end - syncd);
1625
1626 mutex_exit(&svr->svr_lock);
1627 }
1628 mutex_exit(&msp->ms_lock);
1629
1630 mutex_enter(&svr->svr_lock);
1631 range_tree_vacate(svr->svr_allocd_segs,
1632 free_mapped_segment_cb, vd);
1633 mutex_exit(&svr->svr_lock);
1634 }
1635
1636 /*
1637 * Note: this must happen after we invoke free_mapped_segment_cb,
1638 * because it adds to the obsolete_segments.
1639 */
1640 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1641
1642 ASSERT3U(vic->vic_mapping_object, ==,
1643 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1644 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1645 vd->vdev_indirect_mapping = NULL;
1646 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1647 vic->vic_mapping_object = 0;
1648
1649 ASSERT3U(vic->vic_births_object, ==,
1650 vdev_indirect_births_object(vd->vdev_indirect_births));
1651 vdev_indirect_births_close(vd->vdev_indirect_births);
1652 vd->vdev_indirect_births = NULL;
1653 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1654 vic->vic_births_object = 0;
1655
1656 /*
1657 * We may have processed some frees from the removing vdev in this
1658 * txg, thus increasing svr_bytes_done; discard that here to
1659 * satisfy the assertions in spa_vdev_removal_destroy().
1660 * Note that future txg's can not have any bytes_done, because
1661 * future TXG's are only modified from open context, and we have
1662 * already shut down the copying thread.
1663 */
1664 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1665 spa_finish_removal(spa, DSS_CANCELED, tx);
1666
1667 vd->vdev_removing = B_FALSE;
1668 vdev_config_dirty(vd);
1669
1670 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1671 vd->vdev_id, dmu_tx_get_txg(tx));
1672 spa_history_log_internal(spa, "vdev remove canceled", tx,
1673 "%s vdev %llu %s", spa_name(spa),
1674 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1675 }
1676
1677 int
spa_vdev_remove_cancel(spa_t * spa)1678 spa_vdev_remove_cancel(spa_t *spa)
1679 {
1680 spa_vdev_remove_suspend(spa);
1681
1682 if (spa->spa_vdev_removal == NULL)
1683 return (ENOTACTIVE);
1684
1685 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1686
1687 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1688 spa_vdev_remove_cancel_sync, NULL, 0,
1689 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1690
1691 if (error == 0) {
1692 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1693 vdev_t *vd = vdev_lookup_top(spa, vdid);
1694 metaslab_group_activate(vd->vdev_mg);
1695 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1696 }
1697
1698 return (error);
1699 }
1700
1701 void
svr_sync(spa_t * spa,dmu_tx_t * tx)1702 svr_sync(spa_t *spa, dmu_tx_t *tx)
1703 {
1704 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1705 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1706
1707 if (svr == NULL)
1708 return;
1709
1710 /*
1711 * This check is necessary so that we do not dirty the
1712 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1713 * is nothing to do. Dirtying it every time would prevent us
1714 * from syncing-to-convergence.
1715 */
1716 if (svr->svr_bytes_done[txgoff] == 0)
1717 return;
1718
1719 /*
1720 * Update progress accounting.
1721 */
1722 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1723 svr->svr_bytes_done[txgoff] = 0;
1724
1725 spa_sync_removing_state(spa, tx);
1726 }
1727
1728 static void
vdev_remove_make_hole_and_free(vdev_t * vd)1729 vdev_remove_make_hole_and_free(vdev_t *vd)
1730 {
1731 uint64_t id = vd->vdev_id;
1732 spa_t *spa = vd->vdev_spa;
1733 vdev_t *rvd = spa->spa_root_vdev;
1734
1735 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1737
1738 vdev_free(vd);
1739
1740 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1741 vdev_add_child(rvd, vd);
1742 vdev_config_dirty(rvd);
1743
1744 /*
1745 * Reassess the health of our root vdev.
1746 */
1747 vdev_reopen(rvd);
1748 }
1749
1750 /*
1751 * Remove a log device. The config lock is held for the specified TXG.
1752 */
1753 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)1754 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1755 {
1756 metaslab_group_t *mg = vd->vdev_mg;
1757 spa_t *spa = vd->vdev_spa;
1758 int error = 0;
1759
1760 ASSERT(vd->vdev_islog);
1761 ASSERT(vd == vd->vdev_top);
1762 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1763
1764 /*
1765 * Stop allocating from this vdev.
1766 */
1767 metaslab_group_passivate(mg);
1768
1769 /*
1770 * Wait for the youngest allocations and frees to sync,
1771 * and then wait for the deferral of those frees to finish.
1772 */
1773 spa_vdev_config_exit(spa, NULL,
1774 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1775
1776 /*
1777 * Evacuate the device. We don't hold the config lock as
1778 * writer since we need to do I/O but we do keep the
1779 * spa_namespace_lock held. Once this completes the device
1780 * should no longer have any blocks allocated on it.
1781 */
1782 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1783 if (vd->vdev_stat.vs_alloc != 0)
1784 error = spa_reset_logs(spa);
1785
1786 *txg = spa_vdev_config_enter(spa);
1787
1788 if (error != 0) {
1789 metaslab_group_activate(mg);
1790 return (error);
1791 }
1792 ASSERT0(vd->vdev_stat.vs_alloc);
1793
1794 /*
1795 * The evacuation succeeded. Remove any remaining MOS metadata
1796 * associated with this vdev, and wait for these changes to sync.
1797 */
1798 vd->vdev_removing = B_TRUE;
1799
1800 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1801 vdev_config_dirty(vd);
1802
1803 /*
1804 * When the log space map feature is enabled we look at
1805 * the vdev's top_zap to find the on-disk flush data of
1806 * the metaslab we just flushed. Thus, while removing a
1807 * log vdev we make sure to call vdev_metaslab_fini()
1808 * first, which removes all metaslabs of this vdev from
1809 * spa_metaslabs_by_flushed before vdev_remove_empty()
1810 * destroys the top_zap of this log vdev.
1811 *
1812 * This avoids the scenario where we flush a metaslab
1813 * from the log vdev being removed that doesn't have a
1814 * top_zap and end up failing to lookup its on-disk flush
1815 * data.
1816 *
1817 * We don't call metaslab_group_destroy() right away
1818 * though (it will be called in vdev_free() later) as
1819 * during metaslab_sync() of metaslabs from other vdevs
1820 * we may touch the metaslab group of this vdev through
1821 * metaslab_class_histogram_verify()
1822 */
1823 vdev_metaslab_fini(vd);
1824 spa_log_sm_set_blocklimit(spa);
1825
1826 spa_history_log_internal(spa, "vdev remove", NULL,
1827 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1828 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1829
1830 /* Make sure these changes are sync'ed */
1831 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1832
1833 /* Stop initializing and TRIM */
1834 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1835 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1836 vdev_autotrim_stop_wait(vd);
1837
1838 *txg = spa_vdev_config_enter(spa);
1839
1840 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1841 ESC_ZFS_VDEV_REMOVE_DEV);
1842 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1843 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1844
1845 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1846 ASSERT0(vd->vdev_top_zap);
1847 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1848 ASSERT0(vd->vdev_leaf_zap);
1849
1850 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1851
1852 if (list_link_active(&vd->vdev_state_dirty_node))
1853 vdev_state_clean(vd);
1854 if (list_link_active(&vd->vdev_config_dirty_node))
1855 vdev_config_clean(vd);
1856
1857 ASSERT0(vd->vdev_stat.vs_alloc);
1858
1859 /*
1860 * Clean up the vdev namespace.
1861 */
1862 vdev_remove_make_hole_and_free(vd);
1863
1864 if (ev != NULL)
1865 spa_event_post(ev);
1866
1867 return (0);
1868 }
1869
1870 static int
spa_vdev_remove_top_check(vdev_t * vd)1871 spa_vdev_remove_top_check(vdev_t *vd)
1872 {
1873 spa_t *spa = vd->vdev_spa;
1874
1875 if (vd != vd->vdev_top)
1876 return (SET_ERROR(ENOTSUP));
1877
1878 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1879 return (SET_ERROR(ENOTSUP));
1880
1881 /* available space in the pool's normal class */
1882 uint64_t available = dsl_dir_space_available(
1883 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1884
1885 metaslab_class_t *mc = vd->vdev_mg->mg_class;
1886
1887 /*
1888 * When removing a vdev from an allocation class that has
1889 * remaining vdevs, include available space from the class.
1890 */
1891 if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1892 uint64_t class_avail = metaslab_class_get_space(mc) -
1893 metaslab_class_get_alloc(mc);
1894
1895 /* add class space, adjusted for overhead */
1896 available += (class_avail * 94) / 100;
1897 }
1898
1899 /*
1900 * There has to be enough free space to remove the
1901 * device and leave double the "slop" space (i.e. we
1902 * must leave at least 3% of the pool free, in addition to
1903 * the normal slop space).
1904 */
1905 if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1906 return (SET_ERROR(ENOSPC));
1907 }
1908
1909 /*
1910 * There can not be a removal in progress.
1911 */
1912 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1913 return (SET_ERROR(EBUSY));
1914
1915 /*
1916 * The device must have all its data.
1917 */
1918 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1919 !vdev_dtl_empty(vd, DTL_OUTAGE))
1920 return (SET_ERROR(EBUSY));
1921
1922 /*
1923 * The device must be healthy.
1924 */
1925 if (!vdev_readable(vd))
1926 return (SET_ERROR(EIO));
1927
1928 /*
1929 * All vdevs in normal class must have the same ashift.
1930 */
1931 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1932 return (SET_ERROR(EINVAL));
1933 }
1934
1935 /*
1936 * All vdevs in normal class must have the same ashift
1937 * and not be raidz.
1938 */
1939 vdev_t *rvd = spa->spa_root_vdev;
1940 int num_indirect = 0;
1941 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1942 vdev_t *cvd = rvd->vdev_child[id];
1943 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1944 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1945 if (cvd->vdev_ops == &vdev_indirect_ops)
1946 num_indirect++;
1947 if (!vdev_is_concrete(cvd))
1948 continue;
1949 if (cvd->vdev_ops == &vdev_raidz_ops)
1950 return (SET_ERROR(EINVAL));
1951 /*
1952 * Need the mirror to be mirror of leaf vdevs only
1953 */
1954 if (cvd->vdev_ops == &vdev_mirror_ops) {
1955 for (uint64_t cid = 0;
1956 cid < cvd->vdev_children; cid++) {
1957 vdev_t *tmp = cvd->vdev_child[cid];
1958 if (!tmp->vdev_ops->vdev_op_leaf)
1959 return (SET_ERROR(EINVAL));
1960 }
1961 }
1962 }
1963
1964 return (0);
1965 }
1966
1967 /*
1968 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1969 * The config lock is held for the specified TXG. Once initiated,
1970 * evacuation of all allocated space (copying it to other vdevs) happens
1971 * in the background (see spa_vdev_remove_thread()), and can be canceled
1972 * (see spa_vdev_remove_cancel()). If successful, the vdev will
1973 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1974 */
1975 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)1976 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1977 {
1978 spa_t *spa = vd->vdev_spa;
1979 int error;
1980
1981 /*
1982 * Check for errors up-front, so that we don't waste time
1983 * passivating the metaslab group and clearing the ZIL if there
1984 * are errors.
1985 */
1986 error = spa_vdev_remove_top_check(vd);
1987 if (error != 0)
1988 return (error);
1989
1990 /*
1991 * Stop allocating from this vdev. Note that we must check
1992 * that this is not the only device in the pool before
1993 * passivating, otherwise we will not be able to make
1994 * progress because we can't allocate from any vdevs.
1995 * The above check for sufficient free space serves this
1996 * purpose.
1997 */
1998 metaslab_group_t *mg = vd->vdev_mg;
1999 metaslab_group_passivate(mg);
2000
2001 /*
2002 * Wait for the youngest allocations and frees to sync,
2003 * and then wait for the deferral of those frees to finish.
2004 */
2005 spa_vdev_config_exit(spa, NULL,
2006 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2007
2008 /*
2009 * We must ensure that no "stubby" log blocks are allocated
2010 * on the device to be removed. These blocks could be
2011 * written at any time, including while we are in the middle
2012 * of copying them.
2013 */
2014 error = spa_reset_logs(spa);
2015
2016 /*
2017 * We stop any initializing and TRIM that is currently in progress
2018 * but leave the state as "active". This will allow the process to
2019 * resume if the removal is canceled sometime later.
2020 */
2021 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2022 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2023 vdev_autotrim_stop_wait(vd);
2024
2025 *txg = spa_vdev_config_enter(spa);
2026
2027 /*
2028 * Things might have changed while the config lock was dropped
2029 * (e.g. space usage). Check for errors again.
2030 */
2031 if (error == 0)
2032 error = spa_vdev_remove_top_check(vd);
2033
2034 if (error != 0) {
2035 metaslab_group_activate(mg);
2036 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2037 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2038 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2039 return (error);
2040 }
2041
2042 vd->vdev_removing = B_TRUE;
2043
2044 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2045 vdev_config_dirty(vd);
2046 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2047 dsl_sync_task_nowait(spa->spa_dsl_pool,
2048 vdev_remove_initiate_sync,
2049 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2050 dmu_tx_commit(tx);
2051
2052 return (0);
2053 }
2054
2055 /*
2056 * Remove a device from the pool.
2057 *
2058 * Removing a device from the vdev namespace requires several steps
2059 * and can take a significant amount of time. As a result we use
2060 * the spa_vdev_config_[enter/exit] functions which allow us to
2061 * grab and release the spa_config_lock while still holding the namespace
2062 * lock. During each step the configuration is synced out.
2063 */
2064 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2065 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2066 {
2067 vdev_t *vd;
2068 nvlist_t **spares, **l2cache, *nv;
2069 uint64_t txg = 0;
2070 uint_t nspares, nl2cache;
2071 int error = 0;
2072 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2073 sysevent_t *ev = NULL;
2074
2075 ASSERT(spa_writeable(spa));
2076
2077 if (!locked)
2078 txg = spa_vdev_enter(spa);
2079
2080 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2081 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2082 error = (spa_has_checkpoint(spa)) ?
2083 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2084
2085 if (!locked)
2086 return (spa_vdev_exit(spa, NULL, txg, error));
2087
2088 return (error);
2089 }
2090
2091 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2092
2093 if (spa->spa_spares.sav_vdevs != NULL &&
2094 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2095 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2096 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2097 /*
2098 * Only remove the hot spare if it's not currently in use
2099 * in this pool.
2100 */
2101 if (vd == NULL || unspare) {
2102 char *nvstr = fnvlist_lookup_string(nv,
2103 ZPOOL_CONFIG_PATH);
2104 spa_history_log_internal(spa, "vdev remove", NULL,
2105 "%s vdev (%s) %s", spa_name(spa),
2106 VDEV_TYPE_SPARE, nvstr);
2107 if (vd == NULL)
2108 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2109 ev = spa_event_create(spa, vd, NULL,
2110 ESC_ZFS_VDEV_REMOVE_AUX);
2111 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2112 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2113 spa_load_spares(spa);
2114 spa->spa_spares.sav_sync = B_TRUE;
2115 } else {
2116 error = SET_ERROR(EBUSY);
2117 }
2118 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2119 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2120 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2121 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2122 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2123 spa_history_log_internal(spa, "vdev remove", NULL,
2124 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2125 /*
2126 * Cache devices can always be removed.
2127 */
2128 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2129 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2130 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2131 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2132 spa_load_l2cache(spa);
2133 spa->spa_l2cache.sav_sync = B_TRUE;
2134 } else if (vd != NULL && vd->vdev_islog) {
2135 ASSERT(!locked);
2136 error = spa_vdev_remove_log(vd, &txg);
2137 } else if (vd != NULL) {
2138 ASSERT(!locked);
2139 error = spa_vdev_remove_top(vd, &txg);
2140 } else {
2141 /*
2142 * There is no vdev of any kind with the specified guid.
2143 */
2144 error = SET_ERROR(ENOENT);
2145 }
2146
2147 if (!locked)
2148 error = spa_vdev_exit(spa, NULL, txg, error);
2149
2150 if (ev != NULL) {
2151 if (error != 0) {
2152 spa_event_discard(ev);
2153 } else {
2154 spa_event_post(ev);
2155 }
2156 }
2157
2158 return (error);
2159 }
2160
2161 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2162 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2163 {
2164 prs->prs_state = spa->spa_removing_phys.sr_state;
2165
2166 if (prs->prs_state == DSS_NONE)
2167 return (SET_ERROR(ENOENT));
2168
2169 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2170 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2171 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2172 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2173 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2174
2175 if (spa->spa_vdev_removal != NULL) {
2176 for (int i = 0; i < TXG_SIZE; i++) {
2177 prs->prs_copied +=
2178 spa->spa_vdev_removal->svr_bytes_done[i];
2179 }
2180 }
2181
2182 prs->prs_mapping_memory = 0;
2183 uint64_t indirect_vdev_id =
2184 spa->spa_removing_phys.sr_prev_indirect_vdev;
2185 while (indirect_vdev_id != -1) {
2186 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2187 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2188 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2189
2190 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2191 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2192 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2193 }
2194
2195 return (0);
2196 }
2197