xref: /linux/include/linux/power_supply.h (revision 1193e205dbb6feca917dc8e1862ffcdf2194234b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14 
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/rwsem.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/notifier.h>
22 
23 /*
24  * All voltages, currents, charges, energies, time and temperatures in uV,
25  * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26  * stated. It's driver's job to convert its raw values to units in which
27  * this class operates.
28  */
29 
30 /*
31  * For systems where the charger determines the maximum battery capacity
32  * the min and max fields should be used to present these values to user
33  * space. Unused/unknown fields will not appear in sysfs.
34  */
35 
36 enum {
37 	POWER_SUPPLY_STATUS_UNKNOWN = 0,
38 	POWER_SUPPLY_STATUS_CHARGING,
39 	POWER_SUPPLY_STATUS_DISCHARGING,
40 	POWER_SUPPLY_STATUS_NOT_CHARGING,
41 	POWER_SUPPLY_STATUS_FULL,
42 };
43 
44 /* What algorithm is the charger using? */
45 enum power_supply_charge_type {
46 	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
47 	POWER_SUPPLY_CHARGE_TYPE_NONE,
48 	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
49 	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
50 	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
51 	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
52 	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
53 	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
54 	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
55 };
56 
57 enum {
58 	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
59 	POWER_SUPPLY_HEALTH_GOOD,
60 	POWER_SUPPLY_HEALTH_OVERHEAT,
61 	POWER_SUPPLY_HEALTH_DEAD,
62 	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
63 	POWER_SUPPLY_HEALTH_UNDERVOLTAGE,
64 	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
65 	POWER_SUPPLY_HEALTH_COLD,
66 	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
67 	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
68 	POWER_SUPPLY_HEALTH_OVERCURRENT,
69 	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
70 	POWER_SUPPLY_HEALTH_WARM,
71 	POWER_SUPPLY_HEALTH_COOL,
72 	POWER_SUPPLY_HEALTH_HOT,
73 	POWER_SUPPLY_HEALTH_NO_BATTERY,
74 	POWER_SUPPLY_HEALTH_BLOWN_FUSE,
75 	POWER_SUPPLY_HEALTH_CELL_IMBALANCE,
76 };
77 
78 enum {
79 	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
80 	POWER_SUPPLY_TECHNOLOGY_NiMH,
81 	POWER_SUPPLY_TECHNOLOGY_LION,
82 	POWER_SUPPLY_TECHNOLOGY_LIPO,
83 	POWER_SUPPLY_TECHNOLOGY_LiFe,
84 	POWER_SUPPLY_TECHNOLOGY_NiCd,
85 	POWER_SUPPLY_TECHNOLOGY_LiMn,
86 };
87 
88 enum {
89 	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
90 	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
91 	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
92 	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
93 	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
94 	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
95 };
96 
97 enum {
98 	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
99 	POWER_SUPPLY_SCOPE_SYSTEM,
100 	POWER_SUPPLY_SCOPE_DEVICE,
101 };
102 
103 enum power_supply_property {
104 	/* Properties of type `int' */
105 	POWER_SUPPLY_PROP_STATUS = 0,
106 	POWER_SUPPLY_PROP_CHARGE_TYPE,
107 	POWER_SUPPLY_PROP_CHARGE_TYPES,
108 	POWER_SUPPLY_PROP_HEALTH,
109 	POWER_SUPPLY_PROP_PRESENT,
110 	POWER_SUPPLY_PROP_ONLINE,
111 	POWER_SUPPLY_PROP_AUTHENTIC,
112 	POWER_SUPPLY_PROP_TECHNOLOGY,
113 	POWER_SUPPLY_PROP_CYCLE_COUNT,
114 	POWER_SUPPLY_PROP_VOLTAGE_MAX,
115 	POWER_SUPPLY_PROP_VOLTAGE_MIN,
116 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
117 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
118 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
119 	POWER_SUPPLY_PROP_VOLTAGE_AVG,
120 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
121 	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
122 	POWER_SUPPLY_PROP_CURRENT_MAX,
123 	POWER_SUPPLY_PROP_CURRENT_NOW,
124 	POWER_SUPPLY_PROP_CURRENT_AVG,
125 	POWER_SUPPLY_PROP_CURRENT_BOOT,
126 	POWER_SUPPLY_PROP_POWER_NOW,
127 	POWER_SUPPLY_PROP_POWER_AVG,
128 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
129 	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
130 	POWER_SUPPLY_PROP_CHARGE_FULL,
131 	POWER_SUPPLY_PROP_CHARGE_EMPTY,
132 	POWER_SUPPLY_PROP_CHARGE_NOW,
133 	POWER_SUPPLY_PROP_CHARGE_AVG,
134 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
135 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
136 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
137 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
138 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
139 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
140 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
141 	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
142 	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
143 	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
144 	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
145 	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
146 	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
147 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
148 	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
149 	POWER_SUPPLY_PROP_ENERGY_FULL,
150 	POWER_SUPPLY_PROP_ENERGY_EMPTY,
151 	POWER_SUPPLY_PROP_ENERGY_NOW,
152 	POWER_SUPPLY_PROP_ENERGY_AVG,
153 	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
154 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
155 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
156 	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
157 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
158 	POWER_SUPPLY_PROP_TEMP,
159 	POWER_SUPPLY_PROP_TEMP_MAX,
160 	POWER_SUPPLY_PROP_TEMP_MIN,
161 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
162 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
163 	POWER_SUPPLY_PROP_TEMP_AMBIENT,
164 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
165 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
166 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
167 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
168 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
169 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
170 	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
171 	POWER_SUPPLY_PROP_USB_TYPE,
172 	POWER_SUPPLY_PROP_SCOPE,
173 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
174 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
175 	POWER_SUPPLY_PROP_CALIBRATE,
176 	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
177 	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
178 	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
179 	/* Properties of type `const char *' */
180 	POWER_SUPPLY_PROP_MODEL_NAME,
181 	POWER_SUPPLY_PROP_MANUFACTURER,
182 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
183 };
184 
185 enum power_supply_type {
186 	POWER_SUPPLY_TYPE_UNKNOWN = 0,
187 	POWER_SUPPLY_TYPE_BATTERY,
188 	POWER_SUPPLY_TYPE_UPS,
189 	POWER_SUPPLY_TYPE_MAINS,
190 	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
191 	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
192 	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
193 	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
194 	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
195 	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
196 	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
197 	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
198 	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
199 };
200 
201 enum power_supply_usb_type {
202 	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
203 	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
204 	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
205 	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
206 	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
207 	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
208 	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
209 	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
210 	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
211 	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
212 };
213 
214 enum power_supply_charge_behaviour {
215 	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
216 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
217 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE,
218 	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
219 };
220 
221 enum power_supply_notifier_events {
222 	PSY_EVENT_PROP_CHANGED,
223 };
224 
225 union power_supply_propval {
226 	int intval;
227 	const char *strval;
228 };
229 
230 struct device_node;
231 struct power_supply;
232 
233 /* Run-time specific power supply configuration */
234 struct power_supply_config {
235 	struct device_node *of_node;
236 	struct fwnode_handle *fwnode;
237 
238 	/* Driver private data */
239 	void *drv_data;
240 
241 	/* Device specific sysfs attributes */
242 	const struct attribute_group **attr_grp;
243 
244 	char **supplied_to;
245 	size_t num_supplicants;
246 
247 	bool no_wakeup_source;
248 };
249 
250 /* Description of power supply */
251 struct power_supply_desc {
252 	const char *name;
253 	enum power_supply_type type;
254 	u8 charge_behaviours;
255 	u32 charge_types;
256 	u32 usb_types;
257 	const enum power_supply_property *properties;
258 	size_t num_properties;
259 
260 	/*
261 	 * Functions for drivers implementing power supply class.
262 	 * These shouldn't be called directly by other drivers for accessing
263 	 * this power supply. Instead use power_supply_*() functions (for
264 	 * example power_supply_get_property()).
265 	 */
266 	int (*get_property)(struct power_supply *psy,
267 			    enum power_supply_property psp,
268 			    union power_supply_propval *val);
269 	int (*set_property)(struct power_supply *psy,
270 			    enum power_supply_property psp,
271 			    const union power_supply_propval *val);
272 	/*
273 	 * property_is_writeable() will be called during registration
274 	 * of power supply. If this happens during device probe then it must
275 	 * not access internal data of device (because probe did not end).
276 	 */
277 	int (*property_is_writeable)(struct power_supply *psy,
278 				     enum power_supply_property psp);
279 	void (*external_power_changed)(struct power_supply *psy);
280 
281 	/*
282 	 * Set if thermal zone should not be created for this power supply.
283 	 * For example for virtual supplies forwarding calls to actual
284 	 * sensors or other supplies.
285 	 */
286 	bool no_thermal;
287 	/* For APM emulation, think legacy userspace. */
288 	int use_for_apm;
289 };
290 
291 struct power_supply_ext {
292 	const char *const name;
293 	u8 charge_behaviours;
294 	u32 charge_types;
295 	const enum power_supply_property *properties;
296 	size_t num_properties;
297 
298 	int (*get_property)(struct power_supply *psy,
299 			    const struct power_supply_ext *ext,
300 			    void *data,
301 			    enum power_supply_property psp,
302 			    union power_supply_propval *val);
303 	int (*set_property)(struct power_supply *psy,
304 			    const struct power_supply_ext *ext,
305 			    void *data,
306 			    enum power_supply_property psp,
307 			    const union power_supply_propval *val);
308 	int (*property_is_writeable)(struct power_supply *psy,
309 				     const struct power_supply_ext *ext,
310 				     void *data,
311 				     enum power_supply_property psp);
312 };
313 
314 struct power_supply {
315 	const struct power_supply_desc *desc;
316 
317 	char **supplied_to;
318 	size_t num_supplicants;
319 
320 	char **supplied_from;
321 	size_t num_supplies;
322 
323 	/* Driver private data */
324 	void *drv_data;
325 
326 	/* private */
327 	struct device dev;
328 	struct work_struct changed_work;
329 	struct delayed_work deferred_register_work;
330 	spinlock_t changed_lock;
331 	bool changed;
332 	bool update_groups;
333 	bool initialized;
334 	bool removing;
335 	atomic_t use_cnt;
336 	struct power_supply_battery_info *battery_info;
337 	struct rw_semaphore extensions_sem; /* protects "extensions" */
338 	struct list_head extensions;
339 #ifdef CONFIG_THERMAL
340 	struct thermal_zone_device *tzd;
341 	struct thermal_cooling_device *tcd;
342 #endif
343 
344 #ifdef CONFIG_LEDS_TRIGGERS
345 	struct led_trigger *trig;
346 	struct led_trigger *charging_trig;
347 	struct led_trigger *full_trig;
348 	struct led_trigger *charging_blink_full_solid_trig;
349 	struct led_trigger *charging_orange_full_green_trig;
350 #endif
351 };
352 
353 #define dev_to_psy(__dev)	container_of_const(__dev, struct power_supply, dev)
354 
355 /*
356  * This is recommended structure to specify static power supply parameters.
357  * Generic one, parametrizable for different power supplies. Power supply
358  * class itself does not use it, but that's what implementing most platform
359  * drivers, should try reuse for consistency.
360  */
361 
362 struct power_supply_info {
363 	const char *name;
364 	int technology;
365 	int voltage_max_design;
366 	int voltage_min_design;
367 	int charge_full_design;
368 	int charge_empty_design;
369 	int energy_full_design;
370 	int energy_empty_design;
371 	int use_for_apm;
372 };
373 
374 struct power_supply_battery_ocv_table {
375 	int ocv;	/* microVolts */
376 	int capacity;	/* percent */
377 };
378 
379 struct power_supply_resistance_temp_table {
380 	int temp;	/* celsius */
381 	int resistance;	/* internal resistance percent */
382 };
383 
384 struct power_supply_vbat_ri_table {
385 	int vbat_uv;	/* Battery voltage in microvolt */
386 	int ri_uohm;	/* Internal resistance in microohm */
387 };
388 
389 /**
390  * struct power_supply_maintenance_charge_table - setting for maintenace charging
391  * @charge_current_max_ua: maintenance charging current that is used to keep
392  *   the charge of the battery full as current is consumed after full charging.
393  *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
394  *   reach this voltage the maintenance charging current is turned off. It is
395  *   turned back on if we fall below this voltage.
396  * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
397  *   lower than the constant_charge_voltage_max_uv. We can apply this settings
398  *   charge_current_max_ua until we get back up to this voltage.
399  * @safety_timer_minutes: maintenance charging safety timer, with an expiry
400  *   time in minutes. We will only use maintenance charging in this setting
401  *   for a certain amount of time, then we will first move to the next
402  *   maintenance charge current and voltage pair in respective array and wait
403  *   for the next safety timer timeout, or, if we reached the last maintencance
404  *   charging setting, disable charging until we reach
405  *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
406  *   These timers should be chosen to align with the typical discharge curve
407  *   for the battery.
408  *
409  * Ordinary CC/CV charging will stop charging when the charge current goes
410  * below charge_term_current_ua, and then restart it (if the device is still
411  * plugged into the charger) at charge_restart_voltage_uv. This happens in most
412  * consumer products because the power usage while connected to a charger is
413  * not zero, and devices are not manufactured to draw power directly from the
414  * charger: instead they will at all times dissipate the battery a little, like
415  * the power used in standby mode. This will over time give a charge graph
416  * such as this:
417  *
418  * Energy
419  *  ^      ...        ...      ...      ...      ...      ...      ...
420  *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
421  *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
422  *  |.          ..        ..       ..       ..       ..       ..
423  *  +-------------------------------------------------------------------> t
424  *
425  * Practically this means that the Li-ions are wandering back and forth in the
426  * battery and this causes degeneration of the battery anode and cathode.
427  * To prolong the life of the battery, maintenance charging is applied after
428  * reaching charge_term_current_ua to hold up the charge in the battery while
429  * consuming power, thus lowering the wear on the battery:
430  *
431  * Energy
432  *  ^      .......................................
433  *  |    .                                        ......................
434  *  |  ..
435  *  |.
436  *  +-------------------------------------------------------------------> t
437  *
438  * Maintenance charging uses the voltages from this table: a table of settings
439  * is traversed using a slightly lower current and voltage than what is used for
440  * CC/CV charging. The maintenance charging will for safety reasons not go on
441  * indefinately: we lower the current and voltage with successive maintenance
442  * settings, then disable charging completely after we reach the last one,
443  * and after that we do not restart charging until we reach
444  * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
445  * ordinary CC/CV charging from there.
446  *
447  * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
448  * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
449  * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
450  * After this the charge cycle is restarted waiting for
451  * charge_restart_voltage_uv.
452  *
453  * For most mobile electronics this type of maintenance charging is enough for
454  * the user to disconnect the device and make use of it before both maintenance
455  * charging cycles are complete, if the current and voltage has been chosen
456  * appropriately. These need to be determined from battery discharge curves
457  * and expected standby current.
458  *
459  * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
460  * charging, ordinary CC/CV charging is restarted. This can happen if the
461  * device is e.g. actively used during charging, so more current is drawn than
462  * the expected stand-by current. Also overvoltage protection will be applied
463  * as usual.
464  */
465 struct power_supply_maintenance_charge_table {
466 	int charge_current_max_ua;
467 	int charge_voltage_max_uv;
468 	int charge_safety_timer_minutes;
469 };
470 
471 #define POWER_SUPPLY_OCV_TEMP_MAX 20
472 
473 /**
474  * struct power_supply_battery_info - information about batteries
475  * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
476  * @energy_full_design_uwh: energy content when fully charged in microwatt
477  *   hours
478  * @charge_full_design_uah: charge content when fully charged in microampere
479  *   hours
480  * @voltage_min_design_uv: minimum voltage across the poles when the battery
481  *   is at minimum voltage level in microvolts. If the voltage drops below this
482  *   level the battery will need precharging when using CC/CV charging.
483  * @voltage_max_design_uv: voltage across the poles when the battery is fully
484  *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
485  *   printed on the label of the battery.
486  * @tricklecharge_current_ua: the tricklecharge current used when trickle
487  *   charging the battery in microamperes. This is the charging phase when the
488  *   battery is completely empty and we need to carefully trickle in some
489  *   charge until we reach the precharging voltage.
490  * @precharge_current_ua: current to use in the precharge phase in microamperes,
491  *   the precharge rate is limited by limiting the current to this value.
492  * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
493  *   microvolts. When we pass this voltage we will nominally switch over to the
494  *   CC (constant current) charging phase defined by constant_charge_current_ua
495  *   and constant_charge_voltage_max_uv.
496  * @charge_term_current_ua: when the current in the CV (constant voltage)
497  *   charging phase drops below this value in microamperes the charging will
498  *   terminate completely and not restart until the voltage over the battery
499  *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
500  * @charge_restart_voltage_uv: when the battery has been fully charged by
501  *   CC/CV charging and charging has been disabled, and the voltage subsequently
502  *   drops below this value in microvolts, the charging will be restarted
503  *   (typically using CV charging).
504  * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
505  *   voltage_max_design_uv and we reach this voltage level, all charging must
506  *   stop and emergency procedures take place, such as shutting down the system
507  *   in some cases.
508  * @constant_charge_current_max_ua: current in microamperes to use in the CC
509  *   (constant current) charging phase. The charging rate is limited
510  *   by this current. This is the main charging phase and as the current is
511  *   constant into the battery the voltage slowly ascends to
512  *   constant_charge_voltage_max_uv.
513  * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
514  *   the CC (constant current) charging phase and the beginning of the CV
515  *   (constant voltage) charging phase.
516  * @maintenance_charge: an array of maintenance charging settings to be used
517  *   after the main CC/CV charging phase is complete.
518  * @maintenance_charge_size: the number of maintenance charging settings in
519  *   maintenance_charge.
520  * @alert_low_temp_charge_current_ua: The charging current to use if the battery
521  *   enters low alert temperature, i.e. if the internal temperature is between
522  *   temp_alert_min and temp_min. No matter the charging phase, this
523  *   and alert_high_temp_charge_voltage_uv will be applied.
524  * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
525  *   but for the charging voltage.
526  * @alert_high_temp_charge_current_ua: The charging current to use if the
527  *   battery enters high alert temperature, i.e. if the internal temperature is
528  *   between temp_alert_max and temp_max. No matter the charging phase, this
529  *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
530  *   the charging current as an evasive manouver.
531  * @alert_high_temp_charge_voltage_uv: Same as
532  *   alert_high_temp_charge_current_ua, but for the charging voltage.
533  * @factory_internal_resistance_uohm: the internal resistance of the battery
534  *   at fabrication time, expressed in microohms. This resistance will vary
535  *   depending on the lifetime and charge of the battery, so this is just a
536  *   nominal ballpark figure. This internal resistance is given for the state
537  *   when the battery is discharging.
538  * @factory_internal_resistance_charging_uohm: the internal resistance of the
539  *   battery at fabrication time while charging, expressed in microohms.
540  *   The charging process will affect the internal resistance of the battery
541  *   so this value provides a better resistance under these circumstances.
542  *   This resistance will vary depending on the lifetime and charge of the
543  *   battery, so this is just a nominal ballpark figure.
544  * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
545  *   temperature indices. This is an array of temperatures in degrees Celsius
546  *   indicating which capacity table to use for a certain temperature, since
547  *   the capacity for reasons of chemistry will be different at different
548  *   temperatures. Determining capacity is a multivariate problem and the
549  *   temperature is the first variable we determine.
550  * @temp_ambient_alert_min: the battery will go outside of operating conditions
551  *   when the ambient temperature goes below this temperature in degrees
552  *   Celsius.
553  * @temp_ambient_alert_max: the battery will go outside of operating conditions
554  *   when the ambient temperature goes above this temperature in degrees
555  *   Celsius.
556  * @temp_alert_min: the battery should issue an alert if the internal
557  *   temperature goes below this temperature in degrees Celsius.
558  * @temp_alert_max: the battery should issue an alert if the internal
559  *   temperature goes above this temperature in degrees Celsius.
560  * @temp_min: the battery will go outside of operating conditions when
561  *   the internal temperature goes below this temperature in degrees Celsius.
562  *   Normally this means the system should shut down.
563  * @temp_max: the battery will go outside of operating conditions when
564  *   the internal temperature goes above this temperature in degrees Celsius.
565  *   Normally this means the system should shut down.
566  * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
567  *   ocv_table and a size for each entry in ocv_table_size. These arrays
568  *   determine the capacity in percent in relation to the voltage in microvolts
569  *   at the indexed temperature.
570  * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
571  *   each entry in the array of capacity arrays in ocv_table.
572  * @resist_table: this is a table that correlates a battery temperature to the
573  *   expected internal resistance at this temperature. The resistance is given
574  *   as a percentage of factory_internal_resistance_uohm. Knowing the
575  *   resistance of the battery is usually necessary for calculating the open
576  *   circuit voltage (OCV) that is then used with the ocv_table to calculate
577  *   the capacity of the battery. The resist_table must be ordered descending
578  *   by temperature: highest temperature with lowest resistance first, lowest
579  *   temperature with highest resistance last.
580  * @resist_table_size: the number of items in the resist_table.
581  * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
582  *   to internal resistance (Ri). The resistance is given in microohm for the
583  *   corresponding voltage in microvolts. The internal resistance is used to
584  *   determine the open circuit voltage so that we can determine the capacity
585  *   of the battery. These voltages to resistance tables apply when the battery
586  *   is discharging. The table must be ordered descending by voltage: highest
587  *   voltage first.
588  * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
589  *   table.
590  * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
591  *   when the battery is charging. Being under charge changes the battery's
592  *   internal resistance characteristics so a separate table is needed.*
593  *   The table must be ordered descending by voltage: highest voltage first.
594  * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
595  *   table.
596  * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
597  *   in ohms for this battery, if an identification resistor is mounted
598  *   between a third battery terminal and ground. This scheme is used by a lot
599  *   of mobile device batteries.
600  * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
601  *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
602  *   tolerance is 10% we will detect a proper battery if the BTI resistance
603  *   is between 6300 and 7700 Ohm.
604  *
605  * This is the recommended struct to manage static battery parameters,
606  * populated by power_supply_get_battery_info(). Most platform drivers should
607  * use these for consistency.
608  *
609  * Its field names must correspond to elements in enum power_supply_property.
610  * The default field value is -EINVAL or NULL for pointers.
611  *
612  * CC/CV CHARGING:
613  *
614  * The charging parameters here assume a CC/CV charging scheme. This method
615  * is most common with Lithium Ion batteries (other methods are possible) and
616  * looks as follows:
617  *
618  * ^ Battery voltage
619  * |                                               --- overvoltage_limit_uv
620  * |
621  * |                    ...................................................
622  * |                 .. constant_charge_voltage_max_uv
623  * |              ..
624  * |             .
625  * |            .
626  * |           .
627  * |          .
628  * |         .
629  * |     .. precharge_voltage_max_uv
630  * |  ..
631  * |. (trickle charging)
632  * +------------------------------------------------------------------> time
633  *
634  * ^ Current into the battery
635  * |
636  * |      ............. constant_charge_current_max_ua
637  * |      .            .
638  * |      .             .
639  * |      .              .
640  * |      .               .
641  * |      .                ..
642  * |      .                  ....
643  * |      .                       .....
644  * |    ... precharge_current_ua       .......  charge_term_current_ua
645  * |    .                                    .
646  * |    .                                    .
647  * |.... tricklecharge_current_ua            .
648  * |                                         .
649  * +-----------------------------------------------------------------> time
650  *
651  * These diagrams are synchronized on time and the voltage and current
652  * follow each other.
653  *
654  * With CC/CV charging commence over time like this for an empty battery:
655  *
656  * 1. When the battery is completely empty it may need to be charged with
657  *    an especially small current so that electrons just "trickle in",
658  *    this is the tricklecharge_current_ua.
659  *
660  * 2. Next a small initial pre-charge current (precharge_current_ua)
661  *    is applied if the voltage is below precharge_voltage_max_uv until we
662  *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
663  *    to as "trickle charging" but the use in the Linux kernel is different
664  *    see below!
665  *
666  * 3. Then the main charging current is applied, which is called the constant
667  *    current (CC) phase. A current regulator is set up to allow
668  *    constant_charge_current_max_ua of current to flow into the battery.
669  *    The chemical reaction in the battery will make the voltage go up as
670  *    charge goes into the battery. This current is applied until we reach
671  *    the constant_charge_voltage_max_uv voltage.
672  *
673  * 4. At this voltage we switch over to the constant voltage (CV) phase. This
674  *    means we allow current to go into the battery, but we keep the voltage
675  *    fixed. This current will continue to charge the battery while keeping
676  *    the voltage the same. A chemical reaction in the battery goes on
677  *    storing energy without affecting the voltage. Over time the current
678  *    will slowly drop and when we reach charge_term_current_ua we will
679  *    end the constant voltage phase.
680  *
681  * After this the battery is fully charged, and if we do not support maintenance
682  * charging, the charging will not restart until power dissipation makes the
683  * voltage fall so that we reach charge_restart_voltage_uv and at this point
684  * we restart charging at the appropriate phase, usually this will be inside
685  * the CV phase.
686  *
687  * If we support maintenance charging the voltage is however kept high after
688  * the CV phase with a very low current. This is meant to let the same charge
689  * go in for usage while the charger is still connected, mainly for
690  * dissipation for the power consuming entity while connected to the
691  * charger.
692  *
693  * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
694  * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
695  * explosions.
696  *
697  * DETERMINING BATTERY CAPACITY:
698  *
699  * Several members of the struct deal with trying to determine the remaining
700  * capacity in the battery, usually as a percentage of charge. In practice
701  * many chargers uses a so-called fuel gauge or coloumb counter that measure
702  * how much charge goes into the battery and how much goes out (+/- leak
703  * consumption). This does not help if we do not know how much capacity the
704  * battery has to begin with, such as when it is first used or was taken out
705  * and charged in a separate charger. Therefore many capacity algorithms use
706  * the open circuit voltage with a look-up table to determine the rough
707  * capacity of the battery. The open circuit voltage can be conceptualized
708  * with an ideal voltage source (V) in series with an internal resistance (Ri)
709  * like this:
710  *
711  *      +-------> IBAT >----------------+
712  *      |                    ^          |
713  *     [ ] Ri                |          |
714  *      |                    | VBAT     |
715  *      o <----------        |          |
716  *     +|           ^        |         [ ] Rload
717  *    .---.         |        |          |
718  *    | V |         | OCV    |          |
719  *    '---'         |        |          |
720  *      |           |        |          |
721  *  GND +-------------------------------+
722  *
723  * If we disconnect the load (here simplified as a fixed resistance Rload)
724  * and measure VBAT with a infinite impedance voltage meter we will get
725  * VBAT = OCV and this assumption is sometimes made even under load, assuming
726  * Rload is insignificant. However this will be of dubious quality because the
727  * load is rarely that small and Ri is strongly nonlinear depending on
728  * temperature and how much capacity is left in the battery due to the
729  * chemistry involved.
730  *
731  * In many practical applications we cannot just disconnect the battery from
732  * the load, so instead we often try to measure the instantaneous IBAT (the
733  * current out from the battery), estimate the Ri and thus calculate the
734  * voltage drop over Ri and compensate like this:
735  *
736  *   OCV = VBAT - (IBAT * Ri)
737  *
738  * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
739  * (by interpolation) the Ri from the VBAT under load. These curves are highly
740  * nonlinear and may need many datapoints but can be found in datasheets for
741  * some batteries. This gives the compensated open circuit voltage (OCV) for
742  * the battery even under load. Using this method will also compensate for
743  * temperature changes in the environment: this will also make the internal
744  * resistance change, and it will affect the VBAT under load, so correlating
745  * VBAT to Ri takes both remaining capacity and temperature into consideration.
746  *
747  * Alternatively a manufacturer can specify how the capacity of the battery
748  * is dependent on the battery temperature which is the main factor affecting
749  * Ri. As we know all checmical reactions are faster when it is warm and slower
750  * when it is cold. You can put in 1500mAh and only get 800mAh out before the
751  * voltage drops too low for example. This effect is also highly nonlinear and
752  * the purpose of the table resist_table: this will take a temperature and
753  * tell us how big percentage of Ri the specified temperature correlates to.
754  * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
755  * Celsius.
756  *
757  * The power supply class itself doesn't use this struct as of now.
758  */
759 
760 struct power_supply_battery_info {
761 	unsigned int technology;
762 	int energy_full_design_uwh;
763 	int charge_full_design_uah;
764 	int voltage_min_design_uv;
765 	int voltage_max_design_uv;
766 	int tricklecharge_current_ua;
767 	int precharge_current_ua;
768 	int precharge_voltage_max_uv;
769 	int charge_term_current_ua;
770 	int charge_restart_voltage_uv;
771 	int overvoltage_limit_uv;
772 	int constant_charge_current_max_ua;
773 	int constant_charge_voltage_max_uv;
774 	const struct power_supply_maintenance_charge_table *maintenance_charge;
775 	int maintenance_charge_size;
776 	int alert_low_temp_charge_current_ua;
777 	int alert_low_temp_charge_voltage_uv;
778 	int alert_high_temp_charge_current_ua;
779 	int alert_high_temp_charge_voltage_uv;
780 	int factory_internal_resistance_uohm;
781 	int factory_internal_resistance_charging_uohm;
782 	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
783 	int temp_ambient_alert_min;
784 	int temp_ambient_alert_max;
785 	int temp_alert_min;
786 	int temp_alert_max;
787 	int temp_min;
788 	int temp_max;
789 	const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
790 	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
791 	const struct power_supply_resistance_temp_table *resist_table;
792 	int resist_table_size;
793 	const struct power_supply_vbat_ri_table *vbat2ri_discharging;
794 	int vbat2ri_discharging_size;
795 	const struct power_supply_vbat_ri_table *vbat2ri_charging;
796 	int vbat2ri_charging_size;
797 	int bti_resistance_ohm;
798 	int bti_resistance_tolerance;
799 };
800 
801 extern int power_supply_reg_notifier(struct notifier_block *nb);
802 extern void power_supply_unreg_notifier(struct notifier_block *nb);
803 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
804 extern struct power_supply *power_supply_get_by_name(const char *name);
805 extern void power_supply_put(struct power_supply *psy);
806 #else
power_supply_put(struct power_supply * psy)807 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)808 static inline struct power_supply *power_supply_get_by_name(const char *name)
809 { return NULL; }
810 #endif
811 #ifdef CONFIG_OF
812 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
813 							const char *property);
814 extern struct power_supply *devm_power_supply_get_by_phandle(
815 				    struct device *dev, const char *property);
816 #else /* !CONFIG_OF */
817 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)818 power_supply_get_by_phandle(struct device_node *np, const char *property)
819 { return NULL; }
820 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)821 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
822 { return NULL; }
823 #endif /* CONFIG_OF */
824 
825 extern const enum power_supply_property power_supply_battery_info_properties[];
826 extern const size_t power_supply_battery_info_properties_size;
827 extern int power_supply_get_battery_info(struct power_supply *psy,
828 					 struct power_supply_battery_info **info_out);
829 extern void power_supply_put_battery_info(struct power_supply *psy,
830 					  struct power_supply_battery_info *info);
831 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
832 					       enum power_supply_property psp);
833 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
834 					      enum power_supply_property psp,
835 					      union power_supply_propval *val);
836 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
837 				       int table_len, int ocv);
838 extern const struct power_supply_battery_ocv_table *
839 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
840 				int temp, int *table_len);
841 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
842 					int ocv, int temp);
843 extern int
844 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
845 				int table_len, int temp);
846 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
847 				int vbat_uv, bool charging);
848 extern const struct power_supply_maintenance_charge_table *
849 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
850 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
851 					      int resistance);
852 extern void power_supply_changed(struct power_supply *psy);
853 extern int power_supply_am_i_supplied(struct power_supply *psy);
854 int power_supply_get_property_from_supplier(struct power_supply *psy,
855 					    enum power_supply_property psp,
856 					    union power_supply_propval *val);
857 
858 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)859 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
860 {
861 	const struct power_supply_maintenance_charge_table *mt;
862 
863 	mt = power_supply_get_maintenance_charging_setting(info, 0);
864 
865 	return (mt != NULL);
866 }
867 
868 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)869 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
870 {
871 	return ((info->vbat2ri_discharging != NULL) &&
872 		info->vbat2ri_discharging_size > 0);
873 }
874 
875 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)876 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
877 {
878 	return ((info->resist_table != NULL) &&
879 		info->resist_table_size > 0);
880 }
881 
882 #ifdef CONFIG_POWER_SUPPLY
883 extern int power_supply_is_system_supplied(void);
884 #else
power_supply_is_system_supplied(void)885 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
886 #endif
887 
888 extern int power_supply_get_property(struct power_supply *psy,
889 			    enum power_supply_property psp,
890 			    union power_supply_propval *val);
891 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
892 extern int power_supply_set_property(struct power_supply *psy,
893 			    enum power_supply_property psp,
894 			    const union power_supply_propval *val);
895 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)896 static inline int power_supply_set_property(struct power_supply *psy,
897 			    enum power_supply_property psp,
898 			    const union power_supply_propval *val)
899 { return 0; }
900 #endif
901 extern void power_supply_external_power_changed(struct power_supply *psy);
902 
903 extern struct power_supply *__must_check
904 power_supply_register(struct device *parent,
905 				 const struct power_supply_desc *desc,
906 				 const struct power_supply_config *cfg);
907 extern struct power_supply *__must_check
908 devm_power_supply_register(struct device *parent,
909 				 const struct power_supply_desc *desc,
910 				 const struct power_supply_config *cfg);
911 extern void power_supply_unregister(struct power_supply *psy);
912 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
913 
914 extern int __must_check
915 power_supply_register_extension(struct power_supply *psy,
916 				const struct power_supply_ext *ext,
917 				struct device *dev,
918 				void *data);
919 extern void power_supply_unregister_extension(struct power_supply *psy,
920 					      const struct power_supply_ext *ext);
921 
922 #define to_power_supply(device) container_of(device, struct power_supply, dev)
923 
924 extern void *power_supply_get_drvdata(struct power_supply *psy);
925 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data));
926 
power_supply_is_amp_property(enum power_supply_property psp)927 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
928 {
929 	switch (psp) {
930 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
931 	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
932 	case POWER_SUPPLY_PROP_CHARGE_FULL:
933 	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
934 	case POWER_SUPPLY_PROP_CHARGE_NOW:
935 	case POWER_SUPPLY_PROP_CHARGE_AVG:
936 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
937 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
938 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
939 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
940 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
941 	case POWER_SUPPLY_PROP_CURRENT_MAX:
942 	case POWER_SUPPLY_PROP_CURRENT_NOW:
943 	case POWER_SUPPLY_PROP_CURRENT_AVG:
944 	case POWER_SUPPLY_PROP_CURRENT_BOOT:
945 		return true;
946 	default:
947 		break;
948 	}
949 
950 	return false;
951 }
952 
power_supply_is_watt_property(enum power_supply_property psp)953 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
954 {
955 	switch (psp) {
956 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
957 	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
958 	case POWER_SUPPLY_PROP_ENERGY_FULL:
959 	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
960 	case POWER_SUPPLY_PROP_ENERGY_NOW:
961 	case POWER_SUPPLY_PROP_ENERGY_AVG:
962 	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
963 	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
964 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
965 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
966 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
967 	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
968 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
969 	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
970 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
971 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
972 	case POWER_SUPPLY_PROP_POWER_NOW:
973 		return true;
974 	default:
975 		break;
976 	}
977 
978 	return false;
979 }
980 
981 #ifdef CONFIG_SYSFS
982 ssize_t power_supply_charge_behaviour_show(struct device *dev,
983 					   unsigned int available_behaviours,
984 					   enum power_supply_charge_behaviour behaviour,
985 					   char *buf);
986 
987 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
988 ssize_t power_supply_charge_types_show(struct device *dev,
989 				       unsigned int available_types,
990 				       enum power_supply_charge_type current_type,
991 				       char *buf);
992 int power_supply_charge_types_parse(unsigned int available_types, const char *buf);
993 #else
994 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)995 ssize_t power_supply_charge_behaviour_show(struct device *dev,
996 					   unsigned int available_behaviours,
997 					   enum power_supply_charge_behaviour behaviour,
998 					   char *buf)
999 {
1000 	return -EOPNOTSUPP;
1001 }
1002 
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)1003 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1004 						      const char *buf)
1005 {
1006 	return -EOPNOTSUPP;
1007 }
1008 
1009 static inline
power_supply_charge_types_show(struct device * dev,unsigned int available_types,enum power_supply_charge_type current_type,char * buf)1010 ssize_t power_supply_charge_types_show(struct device *dev,
1011 				       unsigned int available_types,
1012 				       enum power_supply_charge_type current_type,
1013 				       char *buf)
1014 {
1015 	return -EOPNOTSUPP;
1016 }
1017 
power_supply_charge_types_parse(unsigned int available_types,const char * buf)1018 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf)
1019 {
1020 	return -EOPNOTSUPP;
1021 }
1022 #endif
1023 
1024 #endif /* __LINUX_POWER_SUPPLY_H__ */
1025