1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 *
27 * Modifications: Added PACKET_MMAP support
28 * Paolo Abeni <paolo.abeni@email.it>
29 * Added TPACKET_V3 support
30 * Gabor Tatarka <gabor.tatarka@ericsson.com>
31 *
32 * based on previous works of:
33 * Simon Patarin <patarin@cs.unibo.it>
34 * Phil Wood <cpw@lanl.gov>
35 *
36 * Monitor-mode support for mac80211 includes code taken from the iw
37 * command; the copyright notice for that code is
38 *
39 * Copyright (c) 2007, 2008 Johannes Berg
40 * Copyright (c) 2007 Andy Lutomirski
41 * Copyright (c) 2007 Mike Kershaw
42 * Copyright (c) 2008 Gábor Stefanik
43 *
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
62 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
63 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
64 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
65 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 */
69
70
71 #define _GNU_SOURCE
72
73 #include <config.h>
74
75 #include <errno.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <unistd.h>
79 #include <fcntl.h>
80 #include <string.h>
81 #include <limits.h>
82 #include <endian.h>
83 #include <sys/stat.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/utsname.h>
87 #include <sys/mman.h>
88 #include <linux/if.h>
89 #include <linux/if_packet.h>
90 #include <linux/sockios.h>
91 #include <linux/ethtool.h>
92 #include <netinet/in.h>
93 #include <linux/if_ether.h>
94 #include <linux/if_arp.h>
95 #include <poll.h>
96 #include <dirent.h>
97 #include <sys/eventfd.h>
98
99 #include "pcap-int.h"
100 #include "pcap-util.h"
101 #include "pcap/sll.h"
102 #include "pcap/vlan.h"
103 #include "pcap/can_socketcan.h"
104
105 #include "diag-control.h"
106
107 /*
108 * We require TPACKET_V2 support.
109 */
110 #ifndef TPACKET2_HDRLEN
111 #error "Libpcap will only work if TPACKET_V2 is supported; you must build for a 2.6.27 or later kernel"
112 #endif
113
114 /* check for memory mapped access availability. We assume every needed
115 * struct is defined if the macro TPACKET_HDRLEN is defined, because it
116 * uses many ring related structs and macros */
117 #ifdef TPACKET3_HDRLEN
118 # define HAVE_TPACKET3
119 #endif /* TPACKET3_HDRLEN */
120
121 /*
122 * Not all compilers that are used to compile code to run on Linux have
123 * these builtins. For example, older versions of GCC don't, and at
124 * least some people are doing cross-builds for MIPS with older versions
125 * of GCC.
126 */
127 #ifndef HAVE___ATOMIC_LOAD_N
128 #define __atomic_load_n(ptr, memory_model) (*(ptr))
129 #endif
130 #ifndef HAVE___ATOMIC_STORE_N
131 #define __atomic_store_n(ptr, val, memory_model) *(ptr) = (val)
132 #endif
133
134 #define packet_mmap_acquire(pkt) \
135 (__atomic_load_n(&pkt->tp_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
136 #define packet_mmap_release(pkt) \
137 (__atomic_store_n(&pkt->tp_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
138 #define packet_mmap_v3_acquire(pkt) \
139 (__atomic_load_n(&pkt->hdr.bh1.block_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
140 #define packet_mmap_v3_release(pkt) \
141 (__atomic_store_n(&pkt->hdr.bh1.block_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
142
143 #include <linux/types.h>
144 #include <linux/filter.h>
145
146 #ifdef HAVE_LINUX_NET_TSTAMP_H
147 #include <linux/net_tstamp.h>
148 #endif
149
150 /*
151 * For checking whether a device is a bonding device.
152 */
153 #include <linux/if_bonding.h>
154
155 /*
156 * Got libnl?
157 */
158 #ifdef HAVE_LIBNL
159 #include <linux/nl80211.h>
160
161 #include <netlink/genl/genl.h>
162 #include <netlink/genl/family.h>
163 #include <netlink/genl/ctrl.h>
164 #include <netlink/msg.h>
165 #include <netlink/attr.h>
166 #endif /* HAVE_LIBNL */
167
168 #ifndef HAVE_SOCKLEN_T
169 typedef int socklen_t;
170 #endif
171
172 #define MAX_LINKHEADER_SIZE 256
173
174 /*
175 * When capturing on all interfaces we use this as the buffer size.
176 * Should be bigger then all MTUs that occur in real life.
177 * 64kB should be enough for now.
178 */
179 #define BIGGER_THAN_ALL_MTUS (64*1024)
180
181 /*
182 * Private data for capturing on Linux PF_PACKET sockets.
183 */
184 struct pcap_linux {
185 long long sysfs_dropped; /* packets reported dropped by /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors */
186 struct pcap_stat stat;
187
188 char *device; /* device name */
189 int filter_in_userland; /* must filter in userland */
190 int blocks_to_filter_in_userland;
191 int must_do_on_close; /* stuff we must do when we close */
192 int timeout; /* timeout for buffering */
193 int cooked; /* using SOCK_DGRAM rather than SOCK_RAW */
194 int ifindex; /* interface index of device we're bound to */
195 int lo_ifindex; /* interface index of the loopback device */
196 int netdown; /* we got an ENETDOWN and haven't resolved it */
197 bpf_u_int32 oldmode; /* mode to restore when turning monitor mode off */
198 char *mondevice; /* mac80211 monitor device we created */
199 u_char *mmapbuf; /* memory-mapped region pointer */
200 size_t mmapbuflen; /* size of region */
201 int vlan_offset; /* offset at which to insert vlan tags; if -1, don't insert */
202 u_int tp_version; /* version of tpacket_hdr for mmaped ring */
203 u_int tp_hdrlen; /* hdrlen of tpacket_hdr for mmaped ring */
204 u_char *oneshot_buffer; /* buffer for copy of packet */
205 int poll_timeout; /* timeout to use in poll() */
206 #ifdef HAVE_TPACKET3
207 unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */
208 int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */
209 #endif
210 int poll_breakloop_fd; /* fd to an eventfd to break from blocking operations */
211 };
212
213 /*
214 * Stuff to do when we close.
215 */
216 #define MUST_CLEAR_RFMON 0x00000001 /* clear rfmon (monitor) mode */
217 #define MUST_DELETE_MONIF 0x00000002 /* delete monitor-mode interface */
218
219 /*
220 * Prototypes for internal functions and methods.
221 */
222 static int get_if_flags(const char *, bpf_u_int32 *, char *);
223 static int is_wifi(const char *);
224 static int map_arphrd_to_dlt(pcap_t *, int, const char *, int);
225 static int pcap_activate_linux(pcap_t *);
226 static int setup_socket(pcap_t *, int);
227 static int setup_mmapped(pcap_t *);
228 static int pcap_can_set_rfmon_linux(pcap_t *);
229 static int pcap_inject_linux(pcap_t *, const void *, int);
230 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
231 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
232 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
233 static int pcap_set_datalink_linux(pcap_t *, int);
234 static void pcap_cleanup_linux(pcap_t *);
235
236 union thdr {
237 struct tpacket2_hdr *h2;
238 #ifdef HAVE_TPACKET3
239 struct tpacket_block_desc *h3;
240 #endif
241 u_char *raw;
242 };
243
244 #define RING_GET_FRAME_AT(h, offset) (((u_char **)h->buffer)[(offset)])
245 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset)
246
247 static void destroy_ring(pcap_t *handle);
248 static int create_ring(pcap_t *handle);
249 static int prepare_tpacket_socket(pcap_t *handle);
250 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *);
251 #ifdef HAVE_TPACKET3
252 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *);
253 #endif
254 static int pcap_setnonblock_linux(pcap_t *p, int nonblock);
255 static int pcap_getnonblock_linux(pcap_t *p);
256 static void pcapint_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
257 const u_char *bytes);
258
259 /*
260 * In pre-3.0 kernels, the tp_vlan_tci field is set to whatever the
261 * vlan_tci field in the skbuff is. 0 can either mean "not on a VLAN"
262 * or "on VLAN 0". There is no flag set in the tp_status field to
263 * distinguish between them.
264 *
265 * In 3.0 and later kernels, if there's a VLAN tag present, the tp_vlan_tci
266 * field is set to the VLAN tag, and the TP_STATUS_VLAN_VALID flag is set
267 * in the tp_status field, otherwise the tp_vlan_tci field is set to 0 and
268 * the TP_STATUS_VLAN_VALID flag isn't set in the tp_status field.
269 *
270 * With a pre-3.0 kernel, we cannot distinguish between packets with no
271 * VLAN tag and packets on VLAN 0, so we will mishandle some packets, and
272 * there's nothing we can do about that.
273 *
274 * So, on those systems, which never set the TP_STATUS_VLAN_VALID flag, we
275 * continue the behavior of earlier libpcaps, wherein we treated packets
276 * with a VLAN tag of 0 as being packets without a VLAN tag rather than packets
277 * on VLAN 0. We do this by treating packets with a tp_vlan_tci of 0 and
278 * with the TP_STATUS_VLAN_VALID flag not set in tp_status as not having
279 * VLAN tags. This does the right thing on 3.0 and later kernels, and
280 * continues the old unfixably-imperfect behavior on pre-3.0 kernels.
281 *
282 * If TP_STATUS_VLAN_VALID isn't defined, we test it as the 0x10 bit; it
283 * has that value in 3.0 and later kernels.
284 */
285 #ifdef TP_STATUS_VLAN_VALID
286 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & TP_STATUS_VLAN_VALID))
287 #else
288 /*
289 * This is being compiled on a system that lacks TP_STATUS_VLAN_VALID,
290 * so we test with the value it has in the 3.0 and later kernels, so
291 * we can test it if we're running on a system that has it. (If we're
292 * running on a system that doesn't have it, it won't be set in the
293 * tp_status field, so the tests of it will always fail; that means
294 * we behave the way we did before we introduced this macro.)
295 */
296 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & 0x10))
297 #endif
298
299 #ifdef TP_STATUS_VLAN_TPID_VALID
300 # define VLAN_TPID(hdr, hv) (((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q)
301 #else
302 # define VLAN_TPID(hdr, hv) ETH_P_8021Q
303 #endif
304
305 /*
306 * Required select timeout if we're polling for an "interface disappeared"
307 * indication - 1 millisecond.
308 */
309 static const struct timeval netdown_timeout = {
310 0, 1000 /* 1000 microseconds = 1 millisecond */
311 };
312
313 /*
314 * Wrap some ioctl calls
315 */
316 static int iface_get_id(int fd, const char *device, char *ebuf);
317 static int iface_get_mtu(int fd, const char *device, char *ebuf);
318 static int iface_get_arptype(int fd, const char *device, char *ebuf);
319 static int iface_bind(int fd, int ifindex, char *ebuf, int protocol);
320 static int enter_rfmon_mode(pcap_t *handle, int sock_fd,
321 const char *device);
322 static int iface_get_ts_types(const char *device, pcap_t *handle,
323 char *ebuf);
324 static int iface_get_offload(pcap_t *handle);
325
326 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
327 static int fix_offset(pcap_t *handle, struct bpf_insn *p);
328 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
329 static int reset_kernel_filter(pcap_t *handle);
330
331 static struct sock_filter total_insn
332 = BPF_STMT(BPF_RET | BPF_K, 0);
333 static struct sock_fprog total_fcode
334 = { 1, &total_insn };
335
336 static int iface_dsa_get_proto_info(const char *device, pcap_t *handle);
337
338 pcap_t *
pcapint_create_interface(const char * device,char * ebuf)339 pcapint_create_interface(const char *device, char *ebuf)
340 {
341 pcap_t *handle;
342
343 handle = PCAP_CREATE_COMMON(ebuf, struct pcap_linux);
344 if (handle == NULL)
345 return NULL;
346
347 handle->activate_op = pcap_activate_linux;
348 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
349
350 /*
351 * See what time stamp types we support.
352 */
353 if (iface_get_ts_types(device, handle, ebuf) == -1) {
354 pcap_close(handle);
355 return NULL;
356 }
357
358 /*
359 * We claim that we support microsecond and nanosecond time
360 * stamps.
361 *
362 * XXX - with adapter-supplied time stamps, can we choose
363 * microsecond or nanosecond time stamps on arbitrary
364 * adapters?
365 */
366 handle->tstamp_precision_list = malloc(2 * sizeof(u_int));
367 if (handle->tstamp_precision_list == NULL) {
368 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
369 errno, "malloc");
370 pcap_close(handle);
371 return NULL;
372 }
373 handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO;
374 handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO;
375 handle->tstamp_precision_count = 2;
376
377 /*
378 * Start out with the breakloop handle not open; we don't
379 * need it until we're activated and ready to capture.
380 */
381 struct pcap_linux *handlep = handle->priv;
382 handlep->poll_breakloop_fd = -1;
383
384 return handle;
385 }
386
387 #ifdef HAVE_LIBNL
388 /*
389 * If interface {if_name} is a mac80211 driver, the file
390 * /sys/class/net/{if_name}/phy80211 is a symlink to
391 * /sys/class/ieee80211/{phydev_name}, for some {phydev_name}.
392 *
393 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
394 * least, has a "wmaster0" device and a "wlan0" device; the
395 * latter is the one with the IP address. Both show up in
396 * "tcpdump -D" output. Capturing on the wmaster0 device
397 * captures with 802.11 headers.
398 *
399 * airmon-ng searches through /sys/class/net for devices named
400 * monN, starting with mon0; as soon as one *doesn't* exist,
401 * it chooses that as the monitor device name. If the "iw"
402 * command exists, it does
403 *
404 * iw dev {if_name} interface add {monif_name} type monitor
405 *
406 * where {monif_name} is the monitor device. It then (sigh) sleeps
407 * .1 second, and then configures the device up. Otherwise, if
408 * /sys/class/ieee80211/{phydev_name}/add_iface is a file, it writes
409 * {mondev_name}, without a newline, to that file, and again (sigh)
410 * sleeps .1 second, and then iwconfig's that device into monitor
411 * mode and configures it up. Otherwise, you can't do monitor mode.
412 *
413 * All these devices are "glued" together by having the
414 * /sys/class/net/{if_name}/phy80211 links pointing to the same
415 * place, so, given a wmaster, wlan, or mon device, you can
416 * find the other devices by looking for devices with
417 * the same phy80211 link.
418 *
419 * To turn monitor mode off, delete the monitor interface,
420 * either with
421 *
422 * iw dev {monif_name} interface del
423 *
424 * or by sending {monif_name}, with no NL, down
425 * /sys/class/ieee80211/{phydev_name}/remove_iface
426 *
427 * Note: if you try to create a monitor device named "monN", and
428 * there's already a "monN" device, it fails, as least with
429 * the netlink interface (which is what iw uses), with a return
430 * value of -ENFILE. (Return values are negative errnos.) We
431 * could probably use that to find an unused device.
432 *
433 * Yes, you can have multiple monitor devices for a given
434 * physical device.
435 */
436
437 /*
438 * Is this a mac80211 device? If so, fill in the physical device path and
439 * return 1; if not, return 0. On an error, fill in handle->errbuf and
440 * return PCAP_ERROR.
441 */
442 static int
get_mac80211_phydev(pcap_t * handle,const char * device,char * phydev_path,size_t phydev_max_pathlen)443 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path,
444 size_t phydev_max_pathlen)
445 {
446 char *pathstr;
447 ssize_t bytes_read;
448
449 /*
450 * Generate the path string for the symlink to the physical device.
451 */
452 if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) {
453 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
454 "%s: Can't generate path name string for /sys/class/net device",
455 device);
456 return PCAP_ERROR;
457 }
458 bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen);
459 if (bytes_read == -1) {
460 if (errno == ENOENT || errno == EINVAL) {
461 /*
462 * Doesn't exist, or not a symlink; assume that
463 * means it's not a mac80211 device.
464 */
465 free(pathstr);
466 return 0;
467 }
468 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
469 errno, "%s: Can't readlink %s", device, pathstr);
470 free(pathstr);
471 return PCAP_ERROR;
472 }
473 free(pathstr);
474 phydev_path[bytes_read] = '\0';
475 return 1;
476 }
477
478 struct nl80211_state {
479 struct nl_sock *nl_sock;
480 struct nl_cache *nl_cache;
481 struct genl_family *nl80211;
482 };
483
484 static int
nl80211_init(pcap_t * handle,struct nl80211_state * state,const char * device)485 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device)
486 {
487 int err;
488
489 state->nl_sock = nl_socket_alloc();
490 if (!state->nl_sock) {
491 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
492 "%s: failed to allocate netlink handle", device);
493 return PCAP_ERROR;
494 }
495
496 if (genl_connect(state->nl_sock)) {
497 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
498 "%s: failed to connect to generic netlink", device);
499 goto out_handle_destroy;
500 }
501
502 err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache);
503 if (err < 0) {
504 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
505 "%s: failed to allocate generic netlink cache: %s",
506 device, nl_geterror(-err));
507 goto out_handle_destroy;
508 }
509
510 state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211");
511 if (!state->nl80211) {
512 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
513 "%s: nl80211 not found", device);
514 goto out_cache_free;
515 }
516
517 return 0;
518
519 out_cache_free:
520 nl_cache_free(state->nl_cache);
521 out_handle_destroy:
522 nl_socket_free(state->nl_sock);
523 return PCAP_ERROR;
524 }
525
526 static void
nl80211_cleanup(struct nl80211_state * state)527 nl80211_cleanup(struct nl80211_state *state)
528 {
529 genl_family_put(state->nl80211);
530 nl_cache_free(state->nl_cache);
531 nl_socket_free(state->nl_sock);
532 }
533
534 static int
535 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
536 const char *device, const char *mondevice);
537
538 static int
add_mon_if(pcap_t * handle,int sock_fd,struct nl80211_state * state,const char * device,const char * mondevice)539 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
540 const char *device, const char *mondevice)
541 {
542 struct pcap_linux *handlep = handle->priv;
543 int ifindex;
544 struct nl_msg *msg;
545 int err;
546
547 ifindex = iface_get_id(sock_fd, device, handle->errbuf);
548 if (ifindex == -1)
549 return PCAP_ERROR;
550
551 msg = nlmsg_alloc();
552 if (!msg) {
553 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
554 "%s: failed to allocate netlink msg", device);
555 return PCAP_ERROR;
556 }
557
558 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
559 0, NL80211_CMD_NEW_INTERFACE, 0);
560 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
561 DIAG_OFF_NARROWING
562 NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice);
563 DIAG_ON_NARROWING
564 NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR);
565
566 err = nl_send_auto_complete(state->nl_sock, msg);
567 if (err < 0) {
568 if (err == -NLE_FAILURE) {
569 /*
570 * Device not available; our caller should just
571 * keep trying. (libnl 2.x maps ENFILE to
572 * NLE_FAILURE; it can also map other errors
573 * to that, but there's not much we can do
574 * about that.)
575 */
576 nlmsg_free(msg);
577 return 0;
578 } else {
579 /*
580 * Real failure, not just "that device is not
581 * available.
582 */
583 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
584 "%s: nl_send_auto_complete failed adding %s interface: %s",
585 device, mondevice, nl_geterror(-err));
586 nlmsg_free(msg);
587 return PCAP_ERROR;
588 }
589 }
590 err = nl_wait_for_ack(state->nl_sock);
591 if (err < 0) {
592 if (err == -NLE_FAILURE) {
593 /*
594 * Device not available; our caller should just
595 * keep trying. (libnl 2.x maps ENFILE to
596 * NLE_FAILURE; it can also map other errors
597 * to that, but there's not much we can do
598 * about that.)
599 */
600 nlmsg_free(msg);
601 return 0;
602 } else {
603 /*
604 * Real failure, not just "that device is not
605 * available.
606 */
607 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
608 "%s: nl_wait_for_ack failed adding %s interface: %s",
609 device, mondevice, nl_geterror(-err));
610 nlmsg_free(msg);
611 return PCAP_ERROR;
612 }
613 }
614
615 /*
616 * Success.
617 */
618 nlmsg_free(msg);
619
620 /*
621 * Try to remember the monitor device.
622 */
623 handlep->mondevice = strdup(mondevice);
624 if (handlep->mondevice == NULL) {
625 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
626 errno, "strdup");
627 /*
628 * Get rid of the monitor device.
629 */
630 del_mon_if(handle, sock_fd, state, device, mondevice);
631 return PCAP_ERROR;
632 }
633 return 1;
634
635 nla_put_failure:
636 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
637 "%s: nl_put failed adding %s interface",
638 device, mondevice);
639 nlmsg_free(msg);
640 return PCAP_ERROR;
641 }
642
643 static int
del_mon_if(pcap_t * handle,int sock_fd,struct nl80211_state * state,const char * device,const char * mondevice)644 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
645 const char *device, const char *mondevice)
646 {
647 int ifindex;
648 struct nl_msg *msg;
649 int err;
650
651 ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf);
652 if (ifindex == -1)
653 return PCAP_ERROR;
654
655 msg = nlmsg_alloc();
656 if (!msg) {
657 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
658 "%s: failed to allocate netlink msg", device);
659 return PCAP_ERROR;
660 }
661
662 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
663 0, NL80211_CMD_DEL_INTERFACE, 0);
664 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
665
666 err = nl_send_auto_complete(state->nl_sock, msg);
667 if (err < 0) {
668 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
669 "%s: nl_send_auto_complete failed deleting %s interface: %s",
670 device, mondevice, nl_geterror(-err));
671 nlmsg_free(msg);
672 return PCAP_ERROR;
673 }
674 err = nl_wait_for_ack(state->nl_sock);
675 if (err < 0) {
676 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
677 "%s: nl_wait_for_ack failed adding %s interface: %s",
678 device, mondevice, nl_geterror(-err));
679 nlmsg_free(msg);
680 return PCAP_ERROR;
681 }
682
683 /*
684 * Success.
685 */
686 nlmsg_free(msg);
687 return 1;
688
689 nla_put_failure:
690 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
691 "%s: nl_put failed deleting %s interface",
692 device, mondevice);
693 nlmsg_free(msg);
694 return PCAP_ERROR;
695 }
696 #endif /* HAVE_LIBNL */
697
pcap_protocol(pcap_t * handle)698 static int pcap_protocol(pcap_t *handle)
699 {
700 int protocol;
701
702 protocol = handle->opt.protocol;
703 if (protocol == 0)
704 protocol = ETH_P_ALL;
705
706 return htons(protocol);
707 }
708
709 static int
pcap_can_set_rfmon_linux(pcap_t * handle)710 pcap_can_set_rfmon_linux(pcap_t *handle)
711 {
712 #ifdef HAVE_LIBNL
713 char phydev_path[PATH_MAX+1];
714 int ret;
715 #endif
716
717 if (strcmp(handle->opt.device, "any") == 0) {
718 /*
719 * Monitor mode makes no sense on the "any" device.
720 */
721 return 0;
722 }
723
724 #ifdef HAVE_LIBNL
725 /*
726 * Bleah. There doesn't seem to be a way to ask a mac80211
727 * device, through libnl, whether it supports monitor mode;
728 * we'll just check whether the device appears to be a
729 * mac80211 device and, if so, assume the device supports
730 * monitor mode.
731 */
732 ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path,
733 PATH_MAX);
734 if (ret < 0)
735 return ret; /* error */
736 if (ret == 1)
737 return 1; /* mac80211 device */
738 #endif
739
740 return 0;
741 }
742
743 /*
744 * Grabs the number of missed packets by the interface from
745 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors.
746 *
747 * Compared to /proc/net/dev this avoids counting software drops,
748 * but may be unimplemented and just return 0.
749 * The author has found no straightforward way to check for support.
750 */
751 static long long int
linux_get_stat(const char * if_name,const char * stat)752 linux_get_stat(const char * if_name, const char * stat) {
753 ssize_t bytes_read;
754 int fd;
755 char buffer[PATH_MAX];
756
757 snprintf(buffer, sizeof(buffer), "/sys/class/net/%s/statistics/%s", if_name, stat);
758 fd = open(buffer, O_RDONLY);
759 if (fd == -1)
760 return 0;
761
762 bytes_read = read(fd, buffer, sizeof(buffer) - 1);
763 close(fd);
764 if (bytes_read == -1)
765 return 0;
766 buffer[bytes_read] = '\0';
767
768 return strtoll(buffer, NULL, 10);
769 }
770
771 static long long int
linux_if_drops(const char * if_name)772 linux_if_drops(const char * if_name)
773 {
774 long long int missed = linux_get_stat(if_name, "rx_missed_errors");
775 long long int fifo = linux_get_stat(if_name, "rx_fifo_errors");
776 return missed + fifo;
777 }
778
779
780 /*
781 * Monitor mode is kind of interesting because we have to reset the
782 * interface before exiting. The problem can't really be solved without
783 * some daemon taking care of managing usage counts. If we put the
784 * interface into monitor mode, we set a flag indicating that we must
785 * take it out of that mode when the interface is closed, and, when
786 * closing the interface, if that flag is set we take it out of monitor
787 * mode.
788 */
789
pcap_cleanup_linux(pcap_t * handle)790 static void pcap_cleanup_linux( pcap_t *handle )
791 {
792 struct pcap_linux *handlep = handle->priv;
793 #ifdef HAVE_LIBNL
794 struct nl80211_state nlstate;
795 int ret;
796 #endif /* HAVE_LIBNL */
797
798 if (handlep->must_do_on_close != 0) {
799 /*
800 * There's something we have to do when closing this
801 * pcap_t.
802 */
803 #ifdef HAVE_LIBNL
804 if (handlep->must_do_on_close & MUST_DELETE_MONIF) {
805 ret = nl80211_init(handle, &nlstate, handlep->device);
806 if (ret >= 0) {
807 ret = del_mon_if(handle, handle->fd, &nlstate,
808 handlep->device, handlep->mondevice);
809 nl80211_cleanup(&nlstate);
810 }
811 if (ret < 0) {
812 fprintf(stderr,
813 "Can't delete monitor interface %s (%s).\n"
814 "Please delete manually.\n",
815 handlep->mondevice, handle->errbuf);
816 }
817 }
818 #endif /* HAVE_LIBNL */
819
820 /*
821 * Take this pcap out of the list of pcaps for which we
822 * have to take the interface out of some mode.
823 */
824 pcapint_remove_from_pcaps_to_close(handle);
825 }
826
827 if (handle->fd != -1) {
828 /*
829 * Destroy the ring buffer (assuming we've set it up),
830 * and unmap it if it's mapped.
831 */
832 destroy_ring(handle);
833 }
834
835 if (handlep->oneshot_buffer != NULL) {
836 free(handlep->oneshot_buffer);
837 handlep->oneshot_buffer = NULL;
838 }
839
840 if (handlep->mondevice != NULL) {
841 free(handlep->mondevice);
842 handlep->mondevice = NULL;
843 }
844 if (handlep->device != NULL) {
845 free(handlep->device);
846 handlep->device = NULL;
847 }
848
849 if (handlep->poll_breakloop_fd != -1) {
850 close(handlep->poll_breakloop_fd);
851 handlep->poll_breakloop_fd = -1;
852 }
853 pcapint_cleanup_live_common(handle);
854 }
855
856 #ifdef HAVE_TPACKET3
857 /*
858 * Some versions of TPACKET_V3 have annoying bugs/misfeatures
859 * around which we have to work. Determine if we have those
860 * problems or not.
861 * 3.19 is the first release with a fixed version of
862 * TPACKET_V3. We treat anything before that as
863 * not having a fixed version; that may really mean
864 * it has *no* version.
865 */
has_broken_tpacket_v3(void)866 static int has_broken_tpacket_v3(void)
867 {
868 struct utsname utsname;
869 const char *release;
870 long major, minor;
871 int matches, verlen;
872
873 /* No version information, assume broken. */
874 if (uname(&utsname) == -1)
875 return 1;
876 release = utsname.release;
877
878 /* A malformed version, ditto. */
879 matches = sscanf(release, "%ld.%ld%n", &major, &minor, &verlen);
880 if (matches != 2)
881 return 1;
882 if (release[verlen] != '.' && release[verlen] != '\0')
883 return 1;
884
885 /* OK, a fixed version. */
886 if (major > 3 || (major == 3 && minor >= 19))
887 return 0;
888
889 /* Too old :( */
890 return 1;
891 }
892 #endif
893
894 /*
895 * Set the timeout to be used in poll() with memory-mapped packet capture.
896 */
897 static void
set_poll_timeout(struct pcap_linux * handlep)898 set_poll_timeout(struct pcap_linux *handlep)
899 {
900 #ifdef HAVE_TPACKET3
901 int broken_tpacket_v3 = has_broken_tpacket_v3();
902 #endif
903 if (handlep->timeout == 0) {
904 #ifdef HAVE_TPACKET3
905 /*
906 * XXX - due to a set of (mis)features in the TPACKET_V3
907 * kernel code prior to the 3.19 kernel, blocking forever
908 * with a TPACKET_V3 socket can, if few packets are
909 * arriving and passing the socket filter, cause most
910 * packets to be dropped. See libpcap issue #335 for the
911 * full painful story.
912 *
913 * The workaround is to have poll() time out very quickly,
914 * so we grab the frames handed to us, and return them to
915 * the kernel, ASAP.
916 */
917 if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3)
918 handlep->poll_timeout = 1; /* don't block for very long */
919 else
920 #endif
921 handlep->poll_timeout = -1; /* block forever */
922 } else if (handlep->timeout > 0) {
923 #ifdef HAVE_TPACKET3
924 /*
925 * For TPACKET_V3, the timeout is handled by the kernel,
926 * so block forever; that way, we don't get extra timeouts.
927 * Don't do that if we have a broken TPACKET_V3, though.
928 */
929 if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3)
930 handlep->poll_timeout = -1; /* block forever, let TPACKET_V3 wake us up */
931 else
932 #endif
933 handlep->poll_timeout = handlep->timeout; /* block for that amount of time */
934 } else {
935 /*
936 * Non-blocking mode; we call poll() to pick up error
937 * indications, but we don't want it to wait for
938 * anything.
939 */
940 handlep->poll_timeout = 0;
941 }
942 }
943
pcap_breakloop_linux(pcap_t * handle)944 static void pcap_breakloop_linux(pcap_t *handle)
945 {
946 pcapint_breakloop_common(handle);
947 struct pcap_linux *handlep = handle->priv;
948
949 uint64_t value = 1;
950
951 if (handlep->poll_breakloop_fd != -1) {
952 /*
953 * XXX - pcap_breakloop() doesn't have a return value,
954 * so we can't indicate an error.
955 */
956 DIAG_OFF_WARN_UNUSED_RESULT
957 (void)write(handlep->poll_breakloop_fd, &value, sizeof(value));
958 DIAG_ON_WARN_UNUSED_RESULT
959 }
960 }
961
962 /*
963 * Set the offset at which to insert VLAN tags.
964 * That should be the offset of the type field.
965 */
966 static void
set_vlan_offset(pcap_t * handle)967 set_vlan_offset(pcap_t *handle)
968 {
969 struct pcap_linux *handlep = handle->priv;
970
971 switch (handle->linktype) {
972
973 case DLT_EN10MB:
974 /*
975 * The type field is after the destination and source
976 * MAC address.
977 */
978 handlep->vlan_offset = 2 * ETH_ALEN;
979 break;
980
981 case DLT_LINUX_SLL:
982 /*
983 * The type field is in the last 2 bytes of the
984 * DLT_LINUX_SLL header.
985 */
986 handlep->vlan_offset = SLL_HDR_LEN - 2;
987 break;
988
989 default:
990 handlep->vlan_offset = -1; /* unknown */
991 break;
992 }
993 }
994
995 /*
996 * Get a handle for a live capture from the given device. You can
997 * pass NULL as device to get all packages (without link level
998 * information of course). If you pass 1 as promisc the interface
999 * will be set to promiscuous mode (XXX: I think this usage should
1000 * be deprecated and functions be added to select that later allow
1001 * modification of that values -- Torsten).
1002 */
1003 static int
pcap_activate_linux(pcap_t * handle)1004 pcap_activate_linux(pcap_t *handle)
1005 {
1006 struct pcap_linux *handlep = handle->priv;
1007 const char *device;
1008 int is_any_device;
1009 struct ifreq ifr;
1010 int status;
1011 int ret;
1012
1013 device = handle->opt.device;
1014
1015 /*
1016 * Start out assuming no warnings.
1017 */
1018 status = 0;
1019
1020 /*
1021 * Make sure the name we were handed will fit into the ioctls we
1022 * might perform on the device; if not, return a "No such device"
1023 * indication, as the Linux kernel shouldn't support creating
1024 * a device whose name won't fit into those ioctls.
1025 *
1026 * "Will fit" means "will fit, complete with a null terminator",
1027 * so if the length, which does *not* include the null terminator,
1028 * is greater than *or equal to* the size of the field into which
1029 * we'll be copying it, that won't fit.
1030 */
1031 if (strlen(device) >= sizeof(ifr.ifr_name)) {
1032 /*
1033 * There's nothing more to say, so clear the error
1034 * message.
1035 */
1036 handle->errbuf[0] = '\0';
1037 status = PCAP_ERROR_NO_SUCH_DEVICE;
1038 goto fail;
1039 }
1040
1041 /*
1042 * Turn a negative snapshot value (invalid), a snapshot value of
1043 * 0 (unspecified), or a value bigger than the normal maximum
1044 * value, into the maximum allowed value.
1045 *
1046 * If some application really *needs* a bigger snapshot
1047 * length, we should just increase MAXIMUM_SNAPLEN.
1048 */
1049 if (handle->snapshot <= 0 || handle->snapshot > MAXIMUM_SNAPLEN)
1050 handle->snapshot = MAXIMUM_SNAPLEN;
1051
1052 handlep->device = strdup(device);
1053 if (handlep->device == NULL) {
1054 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1055 errno, "strdup");
1056 status = PCAP_ERROR;
1057 goto fail;
1058 }
1059
1060 /*
1061 * The "any" device is a special device which causes us not
1062 * to bind to a particular device and thus to look at all
1063 * devices.
1064 */
1065 is_any_device = (strcmp(device, "any") == 0);
1066 if (is_any_device) {
1067 if (handle->opt.promisc) {
1068 handle->opt.promisc = 0;
1069 /* Just a warning. */
1070 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1071 "Promiscuous mode not supported on the \"any\" device");
1072 status = PCAP_WARNING_PROMISC_NOTSUP;
1073 }
1074 }
1075
1076 /* copy timeout value */
1077 handlep->timeout = handle->opt.timeout;
1078
1079 /*
1080 * If we're in promiscuous mode, then we probably want
1081 * to see when the interface drops packets too, so get an
1082 * initial count from
1083 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1084 */
1085 if (handle->opt.promisc)
1086 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1087
1088 /*
1089 * If the "any" device is specified, try to open a SOCK_DGRAM.
1090 * Otherwise, open a SOCK_RAW.
1091 */
1092 ret = setup_socket(handle, is_any_device);
1093 if (ret < 0) {
1094 /*
1095 * Fatal error; the return value is the error code,
1096 * and handle->errbuf has been set to an appropriate
1097 * error message.
1098 */
1099 status = ret;
1100 goto fail;
1101 }
1102 if (ret > 0) {
1103 /*
1104 * We got a warning; return that, as handle->errbuf
1105 * might have been overwritten by this warning.
1106 */
1107 status = ret;
1108 }
1109
1110 /*
1111 * Success (possibly with a warning).
1112 *
1113 * First, try to allocate an event FD for breakloop, if
1114 * we're not going to start in non-blocking mode.
1115 */
1116 if (!handle->opt.nonblock) {
1117 handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK);
1118 if (handlep->poll_breakloop_fd == -1) {
1119 /*
1120 * Failed.
1121 */
1122 pcapint_fmt_errmsg_for_errno(handle->errbuf,
1123 PCAP_ERRBUF_SIZE, errno, "could not open eventfd");
1124 status = PCAP_ERROR;
1125 goto fail;
1126 }
1127 }
1128
1129 /*
1130 * Succeeded.
1131 * Try to set up memory-mapped access.
1132 */
1133 ret = setup_mmapped(handle);
1134 if (ret < 0) {
1135 /*
1136 * We failed to set up to use it, or the
1137 * kernel supports it, but we failed to
1138 * enable it. The return value is the
1139 * error status to return and, if it's
1140 * PCAP_ERROR, handle->errbuf contains
1141 * the error message.
1142 */
1143 status = ret;
1144 goto fail;
1145 }
1146 if (ret > 0) {
1147 /*
1148 * We got a warning; return that, as handle->errbuf
1149 * might have been overwritten by this warning.
1150 */
1151 status = ret;
1152 }
1153
1154 /*
1155 * We succeeded. status has been set to the status to return,
1156 * which might be 0, or might be a PCAP_WARNING_ value.
1157 */
1158 /*
1159 * Now that we have activated the mmap ring, we can
1160 * set the correct protocol.
1161 */
1162 if ((ret = iface_bind(handle->fd, handlep->ifindex,
1163 handle->errbuf, pcap_protocol(handle))) != 0) {
1164 status = ret;
1165 goto fail;
1166 }
1167
1168 handle->inject_op = pcap_inject_linux;
1169 handle->setfilter_op = pcap_setfilter_linux;
1170 handle->setdirection_op = pcap_setdirection_linux;
1171 handle->set_datalink_op = pcap_set_datalink_linux;
1172 handle->setnonblock_op = pcap_setnonblock_linux;
1173 handle->getnonblock_op = pcap_getnonblock_linux;
1174 handle->cleanup_op = pcap_cleanup_linux;
1175 handle->stats_op = pcap_stats_linux;
1176 handle->breakloop_op = pcap_breakloop_linux;
1177
1178 switch (handlep->tp_version) {
1179
1180 case TPACKET_V2:
1181 handle->read_op = pcap_read_linux_mmap_v2;
1182 break;
1183 #ifdef HAVE_TPACKET3
1184 case TPACKET_V3:
1185 handle->read_op = pcap_read_linux_mmap_v3;
1186 break;
1187 #endif
1188 }
1189 handle->oneshot_callback = pcapint_oneshot_linux;
1190 handle->selectable_fd = handle->fd;
1191
1192 return status;
1193
1194 fail:
1195 pcap_cleanup_linux(handle);
1196 return status;
1197 }
1198
1199 static int
pcap_set_datalink_linux(pcap_t * handle,int dlt)1200 pcap_set_datalink_linux(pcap_t *handle, int dlt)
1201 {
1202 handle->linktype = dlt;
1203
1204 /*
1205 * Update the offset at which to insert VLAN tags for the
1206 * new link-layer type.
1207 */
1208 set_vlan_offset(handle);
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * linux_check_direction()
1215 *
1216 * Do checks based on packet direction.
1217 */
1218 static inline int
linux_check_direction(const pcap_t * handle,const struct sockaddr_ll * sll)1219 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll)
1220 {
1221 struct pcap_linux *handlep = handle->priv;
1222
1223 if (sll->sll_pkttype == PACKET_OUTGOING) {
1224 /*
1225 * Outgoing packet.
1226 * If this is from the loopback device, reject it;
1227 * we'll see the packet as an incoming packet as well,
1228 * and we don't want to see it twice.
1229 */
1230 if (sll->sll_ifindex == handlep->lo_ifindex)
1231 return 0;
1232
1233 /*
1234 * If this is an outgoing CAN or CAN FD frame, and
1235 * the user doesn't only want outgoing packets,
1236 * reject it; CAN devices and drivers, and the CAN
1237 * stack, always arrange to loop back transmitted
1238 * packets, so they also appear as incoming packets.
1239 * We don't want duplicate packets, and we can't
1240 * easily distinguish packets looped back by the CAN
1241 * layer than those received by the CAN layer, so we
1242 * eliminate this packet instead.
1243 *
1244 * We check whether this is a CAN or CAN FD frame
1245 * by checking whether the device's hardware type
1246 * is ARPHRD_CAN.
1247 */
1248 if (sll->sll_hatype == ARPHRD_CAN &&
1249 handle->direction != PCAP_D_OUT)
1250 return 0;
1251
1252 /*
1253 * If the user only wants incoming packets, reject it.
1254 */
1255 if (handle->direction == PCAP_D_IN)
1256 return 0;
1257 } else {
1258 /*
1259 * Incoming packet.
1260 * If the user only wants outgoing packets, reject it.
1261 */
1262 if (handle->direction == PCAP_D_OUT)
1263 return 0;
1264 }
1265 return 1;
1266 }
1267
1268 /*
1269 * Check whether the device to which the pcap_t is bound still exists.
1270 * We do so by asking what address the socket is bound to, and checking
1271 * whether the ifindex in the address is -1, meaning "that device is gone",
1272 * or some other value, meaning "that device still exists".
1273 */
1274 static int
device_still_exists(pcap_t * handle)1275 device_still_exists(pcap_t *handle)
1276 {
1277 struct pcap_linux *handlep = handle->priv;
1278 struct sockaddr_ll addr;
1279 socklen_t addr_len;
1280
1281 /*
1282 * If handlep->ifindex is -1, the socket isn't bound, meaning
1283 * we're capturing on the "any" device; that device never
1284 * disappears. (It should also never be configured down, so
1285 * we shouldn't even get here, but let's make sure.)
1286 */
1287 if (handlep->ifindex == -1)
1288 return (1); /* it's still here */
1289
1290 /*
1291 * OK, now try to get the address for the socket.
1292 */
1293 addr_len = sizeof (addr);
1294 if (getsockname(handle->fd, (struct sockaddr *) &addr, &addr_len) == -1) {
1295 /*
1296 * Error - report an error and return -1.
1297 */
1298 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1299 errno, "getsockname failed");
1300 return (-1);
1301 }
1302 if (addr.sll_ifindex == -1) {
1303 /*
1304 * This means the device went away.
1305 */
1306 return (0);
1307 }
1308
1309 /*
1310 * The device presumably just went down.
1311 */
1312 return (1);
1313 }
1314
1315 static int
pcap_inject_linux(pcap_t * handle,const void * buf,int size)1316 pcap_inject_linux(pcap_t *handle, const void *buf, int size)
1317 {
1318 struct pcap_linux *handlep = handle->priv;
1319 int ret;
1320
1321 if (handlep->ifindex == -1) {
1322 /*
1323 * We don't support sending on the "any" device.
1324 */
1325 pcapint_strlcpy(handle->errbuf,
1326 "Sending packets isn't supported on the \"any\" device",
1327 PCAP_ERRBUF_SIZE);
1328 return (-1);
1329 }
1330
1331 if (handlep->cooked) {
1332 /*
1333 * We don't support sending on cooked-mode sockets.
1334 *
1335 * XXX - how do you send on a bound cooked-mode
1336 * socket?
1337 * Is a "sendto()" required there?
1338 */
1339 pcapint_strlcpy(handle->errbuf,
1340 "Sending packets isn't supported in cooked mode",
1341 PCAP_ERRBUF_SIZE);
1342 return (-1);
1343 }
1344
1345 ret = (int)send(handle->fd, buf, size, 0);
1346 if (ret == -1) {
1347 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1348 errno, "send");
1349 return (-1);
1350 }
1351 return (ret);
1352 }
1353
1354 /*
1355 * Get the statistics for the given packet capture handle.
1356 */
1357 static int
pcap_stats_linux(pcap_t * handle,struct pcap_stat * stats)1358 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1359 {
1360 struct pcap_linux *handlep = handle->priv;
1361 #ifdef HAVE_TPACKET3
1362 /*
1363 * For sockets using TPACKET_V2, the extra stuff at the end
1364 * of a struct tpacket_stats_v3 will not be filled in, and
1365 * we don't look at it so this is OK even for those sockets.
1366 * In addition, the PF_PACKET socket code in the kernel only
1367 * uses the length parameter to compute how much data to
1368 * copy out and to indicate how much data was copied out, so
1369 * it's OK to base it on the size of a struct tpacket_stats.
1370 *
1371 * XXX - it's probably OK, in fact, to just use a
1372 * struct tpacket_stats for V3 sockets, as we don't
1373 * care about the tp_freeze_q_cnt stat.
1374 */
1375 struct tpacket_stats_v3 kstats;
1376 #else /* HAVE_TPACKET3 */
1377 struct tpacket_stats kstats;
1378 #endif /* HAVE_TPACKET3 */
1379 socklen_t len = sizeof (struct tpacket_stats);
1380
1381 long long if_dropped = 0;
1382
1383 /*
1384 * To fill in ps_ifdrop, we parse
1385 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1386 * for the numbers
1387 */
1388 if (handle->opt.promisc)
1389 {
1390 /*
1391 * XXX - is there any reason to do this by remembering
1392 * the last counts value, subtracting it from the
1393 * current counts value, and adding that to stat.ps_ifdrop,
1394 * maintaining stat.ps_ifdrop as a count, rather than just
1395 * saving the *initial* counts value and setting
1396 * stat.ps_ifdrop to the difference between the current
1397 * value and the initial value?
1398 *
1399 * One reason might be to handle the count wrapping
1400 * around, on platforms where the count is 32 bits
1401 * and where you might get more than 2^32 dropped
1402 * packets; is there any other reason?
1403 *
1404 * (We maintain the count as a long long int so that,
1405 * if the kernel maintains the counts as 64-bit even
1406 * on 32-bit platforms, we can handle the real count.
1407 *
1408 * Unfortunately, we can't report 64-bit counts; we
1409 * need a better API for reporting statistics, such as
1410 * one that reports them in a style similar to the
1411 * pcapng Interface Statistics Block, so that 1) the
1412 * counts are 64-bit, 2) it's easier to add new statistics
1413 * without breaking the ABI, and 3) it's easier to
1414 * indicate to a caller that wants one particular
1415 * statistic that it's not available by just not supplying
1416 * it.)
1417 */
1418 if_dropped = handlep->sysfs_dropped;
1419 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1420 handlep->stat.ps_ifdrop += (u_int)(handlep->sysfs_dropped - if_dropped);
1421 }
1422
1423 /*
1424 * Try to get the packet counts from the kernel.
1425 */
1426 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1427 &kstats, &len) > -1) {
1428 /*
1429 * "ps_recv" counts only packets that *passed* the
1430 * filter, not packets that didn't pass the filter.
1431 * This includes packets later dropped because we
1432 * ran out of buffer space.
1433 *
1434 * "ps_drop" counts packets dropped because we ran
1435 * out of buffer space. It doesn't count packets
1436 * dropped by the interface driver. It counts only
1437 * packets that passed the filter.
1438 *
1439 * See above for ps_ifdrop.
1440 *
1441 * Both statistics include packets not yet read from
1442 * the kernel by libpcap, and thus not yet seen by
1443 * the application.
1444 *
1445 * In "linux/net/packet/af_packet.c", at least in 2.6.27
1446 * through 5.6 kernels, "tp_packets" is incremented for
1447 * every packet that passes the packet filter *and* is
1448 * successfully copied to the ring buffer; "tp_drops" is
1449 * incremented for every packet dropped because there's
1450 * not enough free space in the ring buffer.
1451 *
1452 * When the statistics are returned for a PACKET_STATISTICS
1453 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1454 * so that "tp_packets" counts all packets handed to
1455 * the PF_PACKET socket, including packets dropped because
1456 * there wasn't room on the socket buffer - but not
1457 * including packets that didn't pass the filter.
1458 *
1459 * In the BSD BPF, the count of received packets is
1460 * incremented for every packet handed to BPF, regardless
1461 * of whether it passed the filter.
1462 *
1463 * We can't make "pcap_stats()" work the same on both
1464 * platforms, but the best approximation is to return
1465 * "tp_packets" as the count of packets and "tp_drops"
1466 * as the count of drops.
1467 *
1468 * Keep a running total because each call to
1469 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1470 * resets the counters to zero.
1471 */
1472 handlep->stat.ps_recv += kstats.tp_packets;
1473 handlep->stat.ps_drop += kstats.tp_drops;
1474 *stats = handlep->stat;
1475 return 0;
1476 }
1477
1478 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, errno,
1479 "failed to get statistics from socket");
1480 return -1;
1481 }
1482
1483 /*
1484 * A PF_PACKET socket can be bound to any network interface.
1485 */
1486 static int
can_be_bound(const char * name _U_)1487 can_be_bound(const char *name _U_)
1488 {
1489 return (1);
1490 }
1491
1492 /*
1493 * Get a socket to use with various interface ioctls.
1494 */
1495 static int
get_if_ioctl_socket(void)1496 get_if_ioctl_socket(void)
1497 {
1498 int fd;
1499
1500 /*
1501 * This is a bit ugly.
1502 *
1503 * There isn't a socket type that's guaranteed to work.
1504 *
1505 * AF_NETLINK will work *if* you have Netlink configured into the
1506 * kernel (can it be configured out if you have any networking
1507 * support at all?) *and* if you're running a sufficiently recent
1508 * kernel, but not all the kernels we support are sufficiently
1509 * recent - that feature was introduced in Linux 4.6.
1510 *
1511 * AF_UNIX will work *if* you have UNIX-domain sockets configured
1512 * into the kernel and *if* you're not on a system that doesn't
1513 * allow them - some SELinux systems don't allow you create them.
1514 * Most systems probably have them configured in, but not all systems
1515 * have them configured in and allow them to be created.
1516 *
1517 * AF_INET will work *if* you have IPv4 configured into the kernel,
1518 * but, apparently, some systems have network adapters but have
1519 * kernels without IPv4 support.
1520 *
1521 * AF_INET6 will work *if* you have IPv6 configured into the
1522 * kernel, but if you don't have AF_INET, you might not have
1523 * AF_INET6, either (that is, independently on its own grounds).
1524 *
1525 * AF_PACKET would work, except that some of these calls should
1526 * work even if you *don't* have capture permission (you should be
1527 * able to enumerate interfaces and get information about them
1528 * without capture permission; you shouldn't get a failure until
1529 * you try pcap_activate()). (If you don't allow programs to
1530 * get as much information as possible about interfaces if you
1531 * don't have permission to capture, you run the risk of users
1532 * asking "why isn't it showing XXX" - or, worse, if you don't
1533 * show interfaces *at all* if you don't have permission to
1534 * capture on them, "why do no interfaces show up?" - when the
1535 * real problem is a permissions problem. Error reports of that
1536 * type require a lot more back-and-forth to debug, as evidenced
1537 * by many Wireshark bugs/mailing list questions/Q&A questions.)
1538 *
1539 * So:
1540 *
1541 * we first try an AF_NETLINK socket, where "try" includes
1542 * "try to do a device ioctl on it", as, in the future, once
1543 * pre-4.6 kernels are sufficiently rare, that will probably
1544 * be the mechanism most likely to work;
1545 *
1546 * if that fails, we try an AF_UNIX socket, as that's less
1547 * likely to be configured out on a networking-capable system
1548 * than is IP;
1549 *
1550 * if that fails, we try an AF_INET6 socket;
1551 *
1552 * if that fails, we try an AF_INET socket.
1553 */
1554 fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
1555 if (fd != -1) {
1556 /*
1557 * OK, let's make sure we can do an SIOCGIFNAME
1558 * ioctl.
1559 */
1560 struct ifreq ifr;
1561
1562 memset(&ifr, 0, sizeof(ifr));
1563 if (ioctl(fd, SIOCGIFNAME, &ifr) == 0 ||
1564 errno != EOPNOTSUPP) {
1565 /*
1566 * It succeeded, or failed for some reason
1567 * other than "netlink sockets don't support
1568 * device ioctls". Go with the AF_NETLINK
1569 * socket.
1570 */
1571 return (fd);
1572 }
1573
1574 /*
1575 * OK, that didn't work, so it's as bad as "netlink
1576 * sockets aren't available". Close the socket and
1577 * drive on.
1578 */
1579 close(fd);
1580 }
1581
1582 /*
1583 * Now try an AF_UNIX socket.
1584 */
1585 fd = socket(AF_UNIX, SOCK_RAW, 0);
1586 if (fd != -1) {
1587 /*
1588 * OK, we got it!
1589 */
1590 return (fd);
1591 }
1592
1593 /*
1594 * Now try an AF_INET6 socket.
1595 */
1596 fd = socket(AF_INET6, SOCK_DGRAM, 0);
1597 if (fd != -1) {
1598 return (fd);
1599 }
1600
1601 /*
1602 * Now try an AF_INET socket.
1603 *
1604 * XXX - if that fails, is there anything else we should try?
1605 * AF_CAN, for embedded systems in vehicles, in case they're
1606 * built without Internet protocol support? Any other socket
1607 * types popular in non-Internet embedded systems?
1608 */
1609 return (socket(AF_INET, SOCK_DGRAM, 0));
1610 }
1611
1612 /*
1613 * Get additional flags for a device, using SIOCGIFMEDIA.
1614 */
1615 static int
get_if_flags(const char * name,bpf_u_int32 * flags,char * errbuf)1616 get_if_flags(const char *name, bpf_u_int32 *flags, char *errbuf)
1617 {
1618 int sock;
1619 FILE *fh;
1620 unsigned int arptype;
1621 struct ifreq ifr;
1622 struct ethtool_value info;
1623
1624 if (*flags & PCAP_IF_LOOPBACK) {
1625 /*
1626 * Loopback devices aren't wireless, and "connected"/
1627 * "disconnected" doesn't apply to them.
1628 */
1629 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1630 return 0;
1631 }
1632
1633 sock = get_if_ioctl_socket();
1634 if (sock == -1) {
1635 pcapint_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno,
1636 "Can't create socket to get ethtool information for %s",
1637 name);
1638 return -1;
1639 }
1640
1641 /*
1642 * OK, what type of network is this?
1643 * In particular, is it wired or wireless?
1644 */
1645 if (is_wifi(name)) {
1646 /*
1647 * Wi-Fi, hence wireless.
1648 */
1649 *flags |= PCAP_IF_WIRELESS;
1650 } else {
1651 /*
1652 * OK, what does /sys/class/net/{if_name}/type contain?
1653 * (We don't use that for Wi-Fi, as it'll report
1654 * "Ethernet", i.e. ARPHRD_ETHER, for non-monitor-
1655 * mode devices.)
1656 */
1657 char *pathstr;
1658
1659 if (asprintf(&pathstr, "/sys/class/net/%s/type", name) == -1) {
1660 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1661 "%s: Can't generate path name string for /sys/class/net device",
1662 name);
1663 close(sock);
1664 return -1;
1665 }
1666 fh = fopen(pathstr, "r");
1667 if (fh != NULL) {
1668 if (fscanf(fh, "%u", &arptype) == 1) {
1669 /*
1670 * OK, we got an ARPHRD_ type; what is it?
1671 */
1672 switch (arptype) {
1673
1674 case ARPHRD_LOOPBACK:
1675 /*
1676 * These are types to which
1677 * "connected" and "disconnected"
1678 * don't apply, so don't bother
1679 * asking about it.
1680 *
1681 * XXX - add other types?
1682 */
1683 close(sock);
1684 fclose(fh);
1685 free(pathstr);
1686 return 0;
1687
1688 case ARPHRD_IRDA:
1689 case ARPHRD_IEEE80211:
1690 case ARPHRD_IEEE80211_PRISM:
1691 case ARPHRD_IEEE80211_RADIOTAP:
1692 #ifdef ARPHRD_IEEE802154
1693 case ARPHRD_IEEE802154:
1694 #endif
1695 #ifdef ARPHRD_IEEE802154_MONITOR
1696 case ARPHRD_IEEE802154_MONITOR:
1697 #endif
1698 #ifdef ARPHRD_6LOWPAN
1699 case ARPHRD_6LOWPAN:
1700 #endif
1701 /*
1702 * Various wireless types.
1703 */
1704 *flags |= PCAP_IF_WIRELESS;
1705 break;
1706 }
1707 }
1708 fclose(fh);
1709 }
1710 free(pathstr);
1711 }
1712
1713 #ifdef ETHTOOL_GLINK
1714 memset(&ifr, 0, sizeof(ifr));
1715 pcapint_strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
1716 info.cmd = ETHTOOL_GLINK;
1717 /*
1718 * XXX - while Valgrind handles SIOCETHTOOL and knows that
1719 * the ETHTOOL_GLINK command sets the .data member of the
1720 * structure, Memory Sanitizer doesn't yet do so:
1721 *
1722 * https://bugs.llvm.org/show_bug.cgi?id=45814
1723 *
1724 * For now, we zero it out to squelch warnings; if the bug
1725 * in question is fixed, we can remove this.
1726 */
1727 info.data = 0;
1728 ifr.ifr_data = (caddr_t)&info;
1729 if (ioctl(sock, SIOCETHTOOL, &ifr) == -1) {
1730 int save_errno = errno;
1731
1732 switch (save_errno) {
1733
1734 case EOPNOTSUPP:
1735 case EINVAL:
1736 /*
1737 * OK, this OS version or driver doesn't support
1738 * asking for this information.
1739 * XXX - distinguish between "this doesn't
1740 * support ethtool at all because it's not
1741 * that type of device" vs. "this doesn't
1742 * support ethtool even though it's that
1743 * type of device", and return "unknown".
1744 */
1745 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1746 close(sock);
1747 return 0;
1748
1749 case ENODEV:
1750 /*
1751 * OK, no such device.
1752 * The user will find that out when they try to
1753 * activate the device; just say "OK" and
1754 * don't set anything.
1755 */
1756 close(sock);
1757 return 0;
1758
1759 default:
1760 /*
1761 * Other error.
1762 */
1763 pcapint_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE,
1764 save_errno,
1765 "%s: SIOCETHTOOL(ETHTOOL_GLINK) ioctl failed",
1766 name);
1767 close(sock);
1768 return -1;
1769 }
1770 }
1771
1772 /*
1773 * Is it connected?
1774 */
1775 if (info.data) {
1776 /*
1777 * It's connected.
1778 */
1779 *flags |= PCAP_IF_CONNECTION_STATUS_CONNECTED;
1780 } else {
1781 /*
1782 * It's disconnected.
1783 */
1784 *flags |= PCAP_IF_CONNECTION_STATUS_DISCONNECTED;
1785 }
1786 #endif
1787
1788 close(sock);
1789 return 0;
1790 }
1791
1792 int
pcapint_platform_finddevs(pcap_if_list_t * devlistp,char * errbuf)1793 pcapint_platform_finddevs(pcap_if_list_t *devlistp, char *errbuf)
1794 {
1795 /*
1796 * Get the list of regular interfaces first.
1797 */
1798 if (pcapint_findalldevs_interfaces(devlistp, errbuf, can_be_bound,
1799 get_if_flags) == -1)
1800 return (-1); /* failure */
1801
1802 /*
1803 * Add the "any" device.
1804 */
1805 if (pcap_add_any_dev(devlistp, errbuf) == NULL)
1806 return (-1);
1807
1808 return (0);
1809 }
1810
1811 /*
1812 * Set direction flag: Which packets do we accept on a forwarding
1813 * single device? IN, OUT or both?
1814 */
1815 static int
pcap_setdirection_linux(pcap_t * handle,pcap_direction_t d)1816 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1817 {
1818 /*
1819 * It's guaranteed, at this point, that d is a valid
1820 * direction value.
1821 */
1822 handle->direction = d;
1823 return 0;
1824 }
1825
1826 static int
is_wifi(const char * device)1827 is_wifi(const char *device)
1828 {
1829 char *pathstr;
1830 struct stat statb;
1831
1832 /*
1833 * See if there's a sysfs wireless directory for it.
1834 * If so, it's a wireless interface.
1835 */
1836 if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) {
1837 /*
1838 * Just give up here.
1839 */
1840 return 0;
1841 }
1842 if (stat(pathstr, &statb) == 0) {
1843 free(pathstr);
1844 return 1;
1845 }
1846 free(pathstr);
1847
1848 return 0;
1849 }
1850
1851 /*
1852 * Linux uses the ARP hardware type to identify the type of an
1853 * interface. pcap uses the DLT_xxx constants for this. This
1854 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1855 * constant, as arguments, and sets "handle->linktype" to the
1856 * appropriate DLT_XXX constant and sets "handle->offset" to
1857 * the appropriate value (to make "handle->offset" plus link-layer
1858 * header length be a multiple of 4, so that the link-layer payload
1859 * will be aligned on a 4-byte boundary when capturing packets).
1860 * (If the offset isn't set here, it'll be 0; add code as appropriate
1861 * for cases where it shouldn't be 0.)
1862 *
1863 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1864 * in cooked mode; otherwise, we can't use cooked mode, so we have
1865 * to pick some type that works in raw mode, or fail.
1866 *
1867 * Sets the link type to -1 if unable to map the type.
1868 *
1869 * Returns 0 on success or a PCAP_ERROR_ value on error.
1870 */
map_arphrd_to_dlt(pcap_t * handle,int arptype,const char * device,int cooked_ok)1871 static int map_arphrd_to_dlt(pcap_t *handle, int arptype,
1872 const char *device, int cooked_ok)
1873 {
1874 static const char cdma_rmnet[] = "cdma_rmnet";
1875
1876 switch (arptype) {
1877
1878 case ARPHRD_ETHER:
1879 /*
1880 * For various annoying reasons having to do with DHCP
1881 * software, some versions of Android give the mobile-
1882 * phone-network interface an ARPHRD_ value of
1883 * ARPHRD_ETHER, even though the packets supplied by
1884 * that interface have no link-layer header, and begin
1885 * with an IP header, so that the ARPHRD_ value should
1886 * be ARPHRD_NONE.
1887 *
1888 * Detect those devices by checking the device name, and
1889 * use DLT_RAW for them.
1890 */
1891 if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) {
1892 handle->linktype = DLT_RAW;
1893 return 0;
1894 }
1895
1896 /*
1897 * Is this a real Ethernet device? If so, give it a
1898 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1899 * that an application can let you choose it, in case you're
1900 * capturing DOCSIS traffic that a Cisco Cable Modem
1901 * Termination System is putting out onto an Ethernet (it
1902 * doesn't put an Ethernet header onto the wire, it puts raw
1903 * DOCSIS frames out on the wire inside the low-level
1904 * Ethernet framing).
1905 *
1906 * XXX - are there any other sorts of "fake Ethernet" that
1907 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as
1908 * a Cisco CMTS won't put traffic onto it or get traffic
1909 * bridged onto it? ISDN is handled in "setup_socket()",
1910 * as we fall back on cooked mode there, and we use
1911 * is_wifi() to check for 802.11 devices; are there any
1912 * others?
1913 */
1914 if (!is_wifi(device)) {
1915 int ret;
1916
1917 /*
1918 * This is not a Wi-Fi device but it could be
1919 * a DSA master/management network device.
1920 */
1921 ret = iface_dsa_get_proto_info(device, handle);
1922 if (ret < 0)
1923 return ret;
1924
1925 if (ret == 1) {
1926 /*
1927 * This is a DSA master/management network
1928 * device linktype is already set by
1929 * iface_dsa_get_proto_info() set an
1930 * appropriate offset here.
1931 */
1932 handle->offset = 2;
1933 break;
1934 }
1935
1936 /*
1937 * It's not a Wi-Fi device; offer DOCSIS.
1938 */
1939 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1940 if (handle->dlt_list == NULL) {
1941 pcapint_fmt_errmsg_for_errno(handle->errbuf,
1942 PCAP_ERRBUF_SIZE, errno, "malloc");
1943 return (PCAP_ERROR);
1944 }
1945 handle->dlt_list[0] = DLT_EN10MB;
1946 handle->dlt_list[1] = DLT_DOCSIS;
1947 handle->dlt_count = 2;
1948 }
1949 /* FALLTHROUGH */
1950
1951 case ARPHRD_METRICOM:
1952 case ARPHRD_LOOPBACK:
1953 handle->linktype = DLT_EN10MB;
1954 handle->offset = 2;
1955 break;
1956
1957 case ARPHRD_EETHER:
1958 handle->linktype = DLT_EN3MB;
1959 break;
1960
1961 case ARPHRD_AX25:
1962 handle->linktype = DLT_AX25_KISS;
1963 break;
1964
1965 case ARPHRD_PRONET:
1966 handle->linktype = DLT_PRONET;
1967 break;
1968
1969 case ARPHRD_CHAOS:
1970 handle->linktype = DLT_CHAOS;
1971 break;
1972 #ifndef ARPHRD_CAN
1973 #define ARPHRD_CAN 280
1974 #endif
1975 case ARPHRD_CAN:
1976 handle->linktype = DLT_CAN_SOCKETCAN;
1977 break;
1978
1979 #ifndef ARPHRD_IEEE802_TR
1980 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
1981 #endif
1982 case ARPHRD_IEEE802_TR:
1983 case ARPHRD_IEEE802:
1984 handle->linktype = DLT_IEEE802;
1985 handle->offset = 2;
1986 break;
1987
1988 case ARPHRD_ARCNET:
1989 handle->linktype = DLT_ARCNET_LINUX;
1990 break;
1991
1992 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
1993 #define ARPHRD_FDDI 774
1994 #endif
1995 case ARPHRD_FDDI:
1996 handle->linktype = DLT_FDDI;
1997 handle->offset = 3;
1998 break;
1999
2000 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
2001 #define ARPHRD_ATM 19
2002 #endif
2003 case ARPHRD_ATM:
2004 /*
2005 * The Classical IP implementation in ATM for Linux
2006 * supports both what RFC 1483 calls "LLC Encapsulation",
2007 * in which each packet has an LLC header, possibly
2008 * with a SNAP header as well, prepended to it, and
2009 * what RFC 1483 calls "VC Based Multiplexing", in which
2010 * different virtual circuits carry different network
2011 * layer protocols, and no header is prepended to packets.
2012 *
2013 * They both have an ARPHRD_ type of ARPHRD_ATM, so
2014 * you can't use the ARPHRD_ type to find out whether
2015 * captured packets will have an LLC header, and,
2016 * while there's a socket ioctl to *set* the encapsulation
2017 * type, there's no ioctl to *get* the encapsulation type.
2018 *
2019 * This means that
2020 *
2021 * programs that dissect Linux Classical IP frames
2022 * would have to check for an LLC header and,
2023 * depending on whether they see one or not, dissect
2024 * the frame as LLC-encapsulated or as raw IP (I
2025 * don't know whether there's any traffic other than
2026 * IP that would show up on the socket, or whether
2027 * there's any support for IPv6 in the Linux
2028 * Classical IP code);
2029 *
2030 * filter expressions would have to compile into
2031 * code that checks for an LLC header and does
2032 * the right thing.
2033 *
2034 * Both of those are a nuisance - and, at least on systems
2035 * that support PF_PACKET sockets, we don't have to put
2036 * up with those nuisances; instead, we can just capture
2037 * in cooked mode. That's what we'll do, if we can.
2038 * Otherwise, we'll just fail.
2039 */
2040 if (cooked_ok)
2041 handle->linktype = DLT_LINUX_SLL;
2042 else
2043 handle->linktype = -1;
2044 break;
2045
2046 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
2047 #define ARPHRD_IEEE80211 801
2048 #endif
2049 case ARPHRD_IEEE80211:
2050 handle->linktype = DLT_IEEE802_11;
2051 break;
2052
2053 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
2054 #define ARPHRD_IEEE80211_PRISM 802
2055 #endif
2056 case ARPHRD_IEEE80211_PRISM:
2057 handle->linktype = DLT_PRISM_HEADER;
2058 break;
2059
2060 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
2061 #define ARPHRD_IEEE80211_RADIOTAP 803
2062 #endif
2063 case ARPHRD_IEEE80211_RADIOTAP:
2064 handle->linktype = DLT_IEEE802_11_RADIO;
2065 break;
2066
2067 case ARPHRD_PPP:
2068 /*
2069 * Some PPP code in the kernel supplies no link-layer
2070 * header whatsoever to PF_PACKET sockets; other PPP
2071 * code supplies PPP link-layer headers ("syncppp.c");
2072 * some PPP code might supply random link-layer
2073 * headers (PPP over ISDN - there's code in Ethereal,
2074 * for example, to cope with PPP-over-ISDN captures
2075 * with which the Ethereal developers have had to cope,
2076 * heuristically trying to determine which of the
2077 * oddball link-layer headers particular packets have).
2078 *
2079 * As such, we just punt, and run all PPP interfaces
2080 * in cooked mode, if we can; otherwise, we just treat
2081 * it as DLT_RAW, for now - if somebody needs to capture,
2082 * on a 2.0[.x] kernel, on PPP devices that supply a
2083 * link-layer header, they'll have to add code here to
2084 * map to the appropriate DLT_ type (possibly adding a
2085 * new DLT_ type, if necessary).
2086 */
2087 if (cooked_ok)
2088 handle->linktype = DLT_LINUX_SLL;
2089 else {
2090 /*
2091 * XXX - handle ISDN types here? We can't fall
2092 * back on cooked sockets, so we'd have to
2093 * figure out from the device name what type of
2094 * link-layer encapsulation it's using, and map
2095 * that to an appropriate DLT_ value, meaning
2096 * we'd map "isdnN" devices to DLT_RAW (they
2097 * supply raw IP packets with no link-layer
2098 * header) and "isdY" devices to a new DLT_I4L_IP
2099 * type that has only an Ethernet packet type as
2100 * a link-layer header.
2101 *
2102 * But sometimes we seem to get random crap
2103 * in the link-layer header when capturing on
2104 * ISDN devices....
2105 */
2106 handle->linktype = DLT_RAW;
2107 }
2108 break;
2109
2110 #ifndef ARPHRD_CISCO
2111 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
2112 #endif
2113 case ARPHRD_CISCO:
2114 handle->linktype = DLT_C_HDLC;
2115 break;
2116
2117 /* Not sure if this is correct for all tunnels, but it
2118 * works for CIPE */
2119 case ARPHRD_TUNNEL:
2120 #ifndef ARPHRD_SIT
2121 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */
2122 #endif
2123 case ARPHRD_SIT:
2124 case ARPHRD_CSLIP:
2125 case ARPHRD_SLIP6:
2126 case ARPHRD_CSLIP6:
2127 case ARPHRD_ADAPT:
2128 case ARPHRD_SLIP:
2129 #ifndef ARPHRD_RAWHDLC
2130 #define ARPHRD_RAWHDLC 518
2131 #endif
2132 case ARPHRD_RAWHDLC:
2133 #ifndef ARPHRD_DLCI
2134 #define ARPHRD_DLCI 15
2135 #endif
2136 case ARPHRD_DLCI:
2137 /*
2138 * XXX - should some of those be mapped to DLT_LINUX_SLL
2139 * instead? Should we just map all of them to DLT_LINUX_SLL?
2140 */
2141 handle->linktype = DLT_RAW;
2142 break;
2143
2144 #ifndef ARPHRD_FRAD
2145 #define ARPHRD_FRAD 770
2146 #endif
2147 case ARPHRD_FRAD:
2148 handle->linktype = DLT_FRELAY;
2149 break;
2150
2151 case ARPHRD_LOCALTLK:
2152 handle->linktype = DLT_LTALK;
2153 break;
2154
2155 case 18:
2156 /*
2157 * RFC 4338 defines an encapsulation for IP and ARP
2158 * packets that's compatible with the RFC 2625
2159 * encapsulation, but that uses a different ARP
2160 * hardware type and hardware addresses. That
2161 * ARP hardware type is 18; Linux doesn't define
2162 * any ARPHRD_ value as 18, but if it ever officially
2163 * supports RFC 4338-style IP-over-FC, it should define
2164 * one.
2165 *
2166 * For now, we map it to DLT_IP_OVER_FC, in the hopes
2167 * that this will encourage its use in the future,
2168 * should Linux ever officially support RFC 4338-style
2169 * IP-over-FC.
2170 */
2171 handle->linktype = DLT_IP_OVER_FC;
2172 break;
2173
2174 #ifndef ARPHRD_FCPP
2175 #define ARPHRD_FCPP 784
2176 #endif
2177 case ARPHRD_FCPP:
2178 #ifndef ARPHRD_FCAL
2179 #define ARPHRD_FCAL 785
2180 #endif
2181 case ARPHRD_FCAL:
2182 #ifndef ARPHRD_FCPL
2183 #define ARPHRD_FCPL 786
2184 #endif
2185 case ARPHRD_FCPL:
2186 #ifndef ARPHRD_FCFABRIC
2187 #define ARPHRD_FCFABRIC 787
2188 #endif
2189 case ARPHRD_FCFABRIC:
2190 /*
2191 * Back in 2002, Donald Lee at Cray wanted a DLT_ for
2192 * IP-over-FC:
2193 *
2194 * https://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html
2195 *
2196 * and one was assigned.
2197 *
2198 * In a later private discussion (spun off from a message
2199 * on the ethereal-users list) on how to get that DLT_
2200 * value in libpcap on Linux, I ended up deciding that
2201 * the best thing to do would be to have him tweak the
2202 * driver to set the ARPHRD_ value to some ARPHRD_FCxx
2203 * type, and map all those types to DLT_IP_OVER_FC:
2204 *
2205 * I've checked into the libpcap and tcpdump CVS tree
2206 * support for DLT_IP_OVER_FC. In order to use that,
2207 * you'd have to modify your modified driver to return
2208 * one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" -
2209 * change it to set "dev->type" to ARPHRD_FCFABRIC, for
2210 * example (the exact value doesn't matter, it can be
2211 * any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or
2212 * ARPHRD_FCFABRIC).
2213 *
2214 * 11 years later, Christian Svensson wanted to map
2215 * various ARPHRD_ values to DLT_FC_2 and
2216 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel
2217 * frames:
2218 *
2219 * https://github.com/mcr/libpcap/pull/29
2220 *
2221 * There doesn't seem to be any network drivers that uses
2222 * any of the ARPHRD_FC* values for IP-over-FC, and
2223 * it's not exactly clear what the "Dummy types for non
2224 * ARP hardware" are supposed to mean (link-layer
2225 * header type? Physical network type?), so it's
2226 * not exactly clear why the ARPHRD_FC* types exist
2227 * in the first place.
2228 *
2229 * For now, we map them to DLT_FC_2, and provide an
2230 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as
2231 * DLT_IP_OVER_FC just in case there's some old
2232 * driver out there that uses one of those types for
2233 * IP-over-FC on which somebody wants to capture
2234 * packets.
2235 */
2236 handle->linktype = DLT_FC_2;
2237 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 3);
2238 if (handle->dlt_list == NULL) {
2239 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2240 PCAP_ERRBUF_SIZE, errno, "malloc");
2241 return (PCAP_ERROR);
2242 }
2243 handle->dlt_list[0] = DLT_FC_2;
2244 handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS;
2245 handle->dlt_list[2] = DLT_IP_OVER_FC;
2246 handle->dlt_count = 3;
2247 break;
2248
2249 #ifndef ARPHRD_IRDA
2250 #define ARPHRD_IRDA 783
2251 #endif
2252 case ARPHRD_IRDA:
2253 /* Don't expect IP packet out of this interfaces... */
2254 handle->linktype = DLT_LINUX_IRDA;
2255 /* We need to save packet direction for IrDA decoding,
2256 * so let's use "Linux-cooked" mode. Jean II
2257 *
2258 * XXX - this is handled in setup_socket(). */
2259 /* handlep->cooked = 1; */
2260 break;
2261
2262 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
2263 * is needed, please report it to <daniele@orlandi.com> */
2264 #ifndef ARPHRD_LAPD
2265 #define ARPHRD_LAPD 8445
2266 #endif
2267 case ARPHRD_LAPD:
2268 /* Don't expect IP packet out of this interfaces... */
2269 handle->linktype = DLT_LINUX_LAPD;
2270 break;
2271
2272 #ifndef ARPHRD_NONE
2273 #define ARPHRD_NONE 0xFFFE
2274 #endif
2275 case ARPHRD_NONE:
2276 /*
2277 * No link-layer header; packets are just IP
2278 * packets, so use DLT_RAW.
2279 */
2280 handle->linktype = DLT_RAW;
2281 break;
2282
2283 #ifndef ARPHRD_IEEE802154
2284 #define ARPHRD_IEEE802154 804
2285 #endif
2286 case ARPHRD_IEEE802154:
2287 handle->linktype = DLT_IEEE802_15_4_NOFCS;
2288 break;
2289
2290 #ifndef ARPHRD_NETLINK
2291 #define ARPHRD_NETLINK 824
2292 #endif
2293 case ARPHRD_NETLINK:
2294 handle->linktype = DLT_NETLINK;
2295 /*
2296 * We need to use cooked mode, so that in sll_protocol we
2297 * pick up the netlink protocol type such as NETLINK_ROUTE,
2298 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc.
2299 *
2300 * XXX - this is handled in setup_socket().
2301 */
2302 /* handlep->cooked = 1; */
2303 break;
2304
2305 #ifndef ARPHRD_VSOCKMON
2306 #define ARPHRD_VSOCKMON 826
2307 #endif
2308 case ARPHRD_VSOCKMON:
2309 handle->linktype = DLT_VSOCK;
2310 break;
2311
2312 default:
2313 handle->linktype = -1;
2314 break;
2315 }
2316 return (0);
2317 }
2318
2319 /*
2320 * Try to set up a PF_PACKET socket.
2321 * Returns 0 or a PCAP_WARNING_ value on success and a PCAP_ERROR_ value
2322 * on failure.
2323 */
2324 static int
setup_socket(pcap_t * handle,int is_any_device)2325 setup_socket(pcap_t *handle, int is_any_device)
2326 {
2327 struct pcap_linux *handlep = handle->priv;
2328 const char *device = handle->opt.device;
2329 int status = 0;
2330 int sock_fd, arptype;
2331 int val;
2332 int err = 0;
2333 struct packet_mreq mr;
2334 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2335 int bpf_extensions;
2336 socklen_t len = sizeof(bpf_extensions);
2337 #endif
2338
2339 /*
2340 * Open a socket with protocol family packet. If cooked is true,
2341 * we open a SOCK_DGRAM socket for the cooked interface, otherwise
2342 * we open a SOCK_RAW socket for the raw interface.
2343 *
2344 * The protocol is set to 0. This means we will receive no
2345 * packets until we "bind" the socket with a non-zero
2346 * protocol. This allows us to setup the ring buffers without
2347 * dropping any packets.
2348 */
2349 sock_fd = is_any_device ?
2350 socket(PF_PACKET, SOCK_DGRAM, 0) :
2351 socket(PF_PACKET, SOCK_RAW, 0);
2352
2353 if (sock_fd == -1) {
2354 if (errno == EPERM || errno == EACCES) {
2355 /*
2356 * You don't have permission to open the
2357 * socket.
2358 */
2359 status = PCAP_ERROR_PERM_DENIED;
2360 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2361 "Attempt to create packet socket failed - CAP_NET_RAW may be required");
2362 } else if (errno == EAFNOSUPPORT) {
2363 /*
2364 * PF_PACKET sockets not supported.
2365 * Perhaps we're running on the WSL1 module
2366 * in the Windows NT kernel rather than on
2367 * a real Linux kernel.
2368 */
2369 status = PCAP_ERROR_CAPTURE_NOTSUP;
2370 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2371 "PF_PACKET sockets not supported - is this WSL1?");
2372 } else {
2373 /*
2374 * Other error.
2375 */
2376 status = PCAP_ERROR;
2377 }
2378 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2379 errno, "socket");
2380 return status;
2381 }
2382
2383 /*
2384 * Get the interface index of the loopback device.
2385 * If the attempt fails, don't fail, just set the
2386 * "handlep->lo_ifindex" to -1.
2387 *
2388 * XXX - can there be more than one device that loops
2389 * packets back, i.e. devices other than "lo"? If so,
2390 * we'd need to find them all, and have an array of
2391 * indices for them, and check all of them in
2392 * "pcap_read_packet()".
2393 */
2394 handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
2395
2396 /*
2397 * Default value for offset to align link-layer payload
2398 * on a 4-byte boundary.
2399 */
2400 handle->offset = 0;
2401
2402 /*
2403 * What kind of frames do we have to deal with? Fall back
2404 * to cooked mode if we have an unknown interface type
2405 * or a type we know doesn't work well in raw mode.
2406 */
2407 if (!is_any_device) {
2408 /* Assume for now we don't need cooked mode. */
2409 handlep->cooked = 0;
2410
2411 if (handle->opt.rfmon) {
2412 /*
2413 * We were asked to turn on monitor mode.
2414 * Do so before we get the link-layer type,
2415 * because entering monitor mode could change
2416 * the link-layer type.
2417 */
2418 err = enter_rfmon_mode(handle, sock_fd, device);
2419 if (err < 0) {
2420 /* Hard failure */
2421 close(sock_fd);
2422 return err;
2423 }
2424 if (err == 0) {
2425 /*
2426 * Nothing worked for turning monitor mode
2427 * on.
2428 */
2429 close(sock_fd);
2430
2431 return PCAP_ERROR_RFMON_NOTSUP;
2432 }
2433
2434 /*
2435 * Either monitor mode has been turned on for
2436 * the device, or we've been given a different
2437 * device to open for monitor mode. If we've
2438 * been given a different device, use it.
2439 */
2440 if (handlep->mondevice != NULL)
2441 device = handlep->mondevice;
2442 }
2443 arptype = iface_get_arptype(sock_fd, device, handle->errbuf);
2444 if (arptype < 0) {
2445 close(sock_fd);
2446 return arptype;
2447 }
2448 status = map_arphrd_to_dlt(handle, arptype, device, 1);
2449 if (status < 0) {
2450 close(sock_fd);
2451 return status;
2452 }
2453 if (handle->linktype == -1 ||
2454 handle->linktype == DLT_LINUX_SLL ||
2455 handle->linktype == DLT_LINUX_IRDA ||
2456 handle->linktype == DLT_LINUX_LAPD ||
2457 handle->linktype == DLT_NETLINK ||
2458 (handle->linktype == DLT_EN10MB &&
2459 (strncmp("isdn", device, 4) == 0 ||
2460 strncmp("isdY", device, 4) == 0))) {
2461 /*
2462 * Unknown interface type (-1), or a
2463 * device we explicitly chose to run
2464 * in cooked mode (e.g., PPP devices),
2465 * or an ISDN device (whose link-layer
2466 * type we can only determine by using
2467 * APIs that may be different on different
2468 * kernels) - reopen in cooked mode.
2469 *
2470 * If the type is unknown, return a warning;
2471 * map_arphrd_to_dlt() has already set the
2472 * warning message.
2473 */
2474 if (close(sock_fd) == -1) {
2475 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2476 PCAP_ERRBUF_SIZE, errno, "close");
2477 return PCAP_ERROR;
2478 }
2479 sock_fd = socket(PF_PACKET, SOCK_DGRAM, 0);
2480 if (sock_fd < 0) {
2481 /*
2482 * Fatal error. We treat this as
2483 * a generic error; we already know
2484 * that we were able to open a
2485 * PF_PACKET/SOCK_RAW socket, so
2486 * any failure is a "this shouldn't
2487 * happen" case.
2488 */
2489 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2490 PCAP_ERRBUF_SIZE, errno, "socket");
2491 return PCAP_ERROR;
2492 }
2493 handlep->cooked = 1;
2494
2495 /*
2496 * Get rid of any link-layer type list
2497 * we allocated - this only supports cooked
2498 * capture.
2499 */
2500 if (handle->dlt_list != NULL) {
2501 free(handle->dlt_list);
2502 handle->dlt_list = NULL;
2503 handle->dlt_count = 0;
2504 }
2505
2506 if (handle->linktype == -1) {
2507 /*
2508 * Warn that we're falling back on
2509 * cooked mode; we may want to
2510 * update "map_arphrd_to_dlt()"
2511 * to handle the new type.
2512 */
2513 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2514 "arptype %d not "
2515 "supported by libpcap - "
2516 "falling back to cooked "
2517 "socket",
2518 arptype);
2519 status = PCAP_WARNING;
2520 }
2521
2522 /*
2523 * IrDA capture is not a real "cooked" capture,
2524 * it's IrLAP frames, not IP packets. The
2525 * same applies to LAPD capture.
2526 */
2527 if (handle->linktype != DLT_LINUX_IRDA &&
2528 handle->linktype != DLT_LINUX_LAPD &&
2529 handle->linktype != DLT_NETLINK)
2530 handle->linktype = DLT_LINUX_SLL;
2531 }
2532
2533 handlep->ifindex = iface_get_id(sock_fd, device,
2534 handle->errbuf);
2535 if (handlep->ifindex == -1) {
2536 close(sock_fd);
2537 return PCAP_ERROR;
2538 }
2539
2540 if ((err = iface_bind(sock_fd, handlep->ifindex,
2541 handle->errbuf, 0)) != 0) {
2542 close(sock_fd);
2543 return err;
2544 }
2545 } else {
2546 /*
2547 * The "any" device.
2548 */
2549 if (handle->opt.rfmon) {
2550 /*
2551 * It doesn't support monitor mode.
2552 */
2553 close(sock_fd);
2554 return PCAP_ERROR_RFMON_NOTSUP;
2555 }
2556
2557 /*
2558 * It uses cooked mode.
2559 * Support both DLT_LINUX_SLL and DLT_LINUX_SLL2.
2560 */
2561 handlep->cooked = 1;
2562 handle->linktype = DLT_LINUX_SLL;
2563 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2564 if (handle->dlt_list == NULL) {
2565 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2566 PCAP_ERRBUF_SIZE, errno, "malloc");
2567 return (PCAP_ERROR);
2568 }
2569 handle->dlt_list[0] = DLT_LINUX_SLL;
2570 handle->dlt_list[1] = DLT_LINUX_SLL2;
2571 handle->dlt_count = 2;
2572
2573 /*
2574 * We're not bound to a device.
2575 * For now, we're using this as an indication
2576 * that we can't transmit; stop doing that only
2577 * if we figure out how to transmit in cooked
2578 * mode.
2579 */
2580 handlep->ifindex = -1;
2581 }
2582
2583 /*
2584 * Select promiscuous mode on if "promisc" is set.
2585 *
2586 * Do not turn allmulti mode on if we don't select
2587 * promiscuous mode - on some devices (e.g., Orinoco
2588 * wireless interfaces), allmulti mode isn't supported
2589 * and the driver implements it by turning promiscuous
2590 * mode on, and that screws up the operation of the
2591 * card as a normal networking interface, and on no
2592 * other platform I know of does starting a non-
2593 * promiscuous capture affect which multicast packets
2594 * are received by the interface.
2595 */
2596
2597 /*
2598 * Hmm, how can we set promiscuous mode on all interfaces?
2599 * I am not sure if that is possible at all. For now, we
2600 * silently ignore attempts to turn promiscuous mode on
2601 * for the "any" device (so you don't have to explicitly
2602 * disable it in programs such as tcpdump).
2603 */
2604
2605 if (!is_any_device && handle->opt.promisc) {
2606 memset(&mr, 0, sizeof(mr));
2607 mr.mr_ifindex = handlep->ifindex;
2608 mr.mr_type = PACKET_MR_PROMISC;
2609 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
2610 &mr, sizeof(mr)) == -1) {
2611 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2612 PCAP_ERRBUF_SIZE, errno, "setsockopt (PACKET_ADD_MEMBERSHIP)");
2613 close(sock_fd);
2614 return PCAP_ERROR;
2615 }
2616 }
2617
2618 /*
2619 * Enable auxiliary data and reserve room for reconstructing
2620 * VLAN headers.
2621 *
2622 * XXX - is enabling auxiliary data necessary, now that we
2623 * only support memory-mapped capture? The kernel's memory-mapped
2624 * capture code doesn't seem to check whether auxiliary data
2625 * is enabled, it seems to provide it whether it is or not.
2626 */
2627 val = 1;
2628 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
2629 sizeof(val)) == -1 && errno != ENOPROTOOPT) {
2630 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2631 errno, "setsockopt (PACKET_AUXDATA)");
2632 close(sock_fd);
2633 return PCAP_ERROR;
2634 }
2635 handle->offset += VLAN_TAG_LEN;
2636
2637 /*
2638 * If we're in cooked mode, make the snapshot length
2639 * large enough to hold a "cooked mode" header plus
2640 * 1 byte of packet data (so we don't pass a byte
2641 * count of 0 to "recvfrom()").
2642 * XXX - we don't know whether this will be DLT_LINUX_SLL
2643 * or DLT_LINUX_SLL2, so make sure it's big enough for
2644 * a DLT_LINUX_SLL2 "cooked mode" header; a snapshot length
2645 * that small is silly anyway.
2646 */
2647 if (handlep->cooked) {
2648 if (handle->snapshot < SLL2_HDR_LEN + 1)
2649 handle->snapshot = SLL2_HDR_LEN + 1;
2650 }
2651 handle->bufsize = handle->snapshot;
2652
2653 /*
2654 * Set the offset at which to insert VLAN tags.
2655 */
2656 set_vlan_offset(handle);
2657
2658 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) {
2659 int nsec_tstamps = 1;
2660
2661 if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) {
2662 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS");
2663 close(sock_fd);
2664 return PCAP_ERROR;
2665 }
2666 }
2667
2668 /*
2669 * We've succeeded. Save the socket FD in the pcap structure.
2670 */
2671 handle->fd = sock_fd;
2672
2673 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2674 /*
2675 * Can we generate special code for VLAN checks?
2676 * (XXX - what if we need the special code but it's not supported
2677 * by the OS? Is that possible?)
2678 */
2679 if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS,
2680 &bpf_extensions, &len) == 0) {
2681 if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) {
2682 /*
2683 * Yes, we can. Request that we do so.
2684 */
2685 handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING;
2686 }
2687 }
2688 #endif /* defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) */
2689
2690 return status;
2691 }
2692
2693 /*
2694 * Attempt to setup memory-mapped access.
2695 *
2696 * On success, returns 0 if there are no warnings or a PCAP_WARNING_ code
2697 * if there is a warning.
2698 *
2699 * On error, returns the appropriate error code; if that is PCAP_ERROR,
2700 * sets handle->errbuf to the appropriate message.
2701 */
2702 static int
setup_mmapped(pcap_t * handle)2703 setup_mmapped(pcap_t *handle)
2704 {
2705 struct pcap_linux *handlep = handle->priv;
2706 int status;
2707
2708 /*
2709 * Attempt to allocate a buffer to hold the contents of one
2710 * packet, for use by the oneshot callback.
2711 */
2712 handlep->oneshot_buffer = malloc(handle->snapshot);
2713 if (handlep->oneshot_buffer == NULL) {
2714 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2715 errno, "can't allocate oneshot buffer");
2716 return PCAP_ERROR;
2717 }
2718
2719 if (handle->opt.buffer_size == 0) {
2720 /* by default request 2M for the ring buffer */
2721 handle->opt.buffer_size = 2*1024*1024;
2722 }
2723 status = prepare_tpacket_socket(handle);
2724 if (status == -1) {
2725 free(handlep->oneshot_buffer);
2726 handlep->oneshot_buffer = NULL;
2727 return PCAP_ERROR;
2728 }
2729 status = create_ring(handle);
2730 if (status < 0) {
2731 /*
2732 * Error attempting to enable memory-mapped capture;
2733 * fail. The return value is the status to return.
2734 */
2735 free(handlep->oneshot_buffer);
2736 handlep->oneshot_buffer = NULL;
2737 return status;
2738 }
2739
2740 /*
2741 * Success. status has been set either to 0 if there are no
2742 * warnings or to a PCAP_WARNING_ value if there is a warning.
2743 *
2744 * handle->offset is used to get the current position into the rx ring.
2745 * handle->cc is used to store the ring size.
2746 */
2747
2748 /*
2749 * Set the timeout to use in poll() before returning.
2750 */
2751 set_poll_timeout(handlep);
2752
2753 return status;
2754 }
2755
2756 /*
2757 * Attempt to set the socket to the specified version of the memory-mapped
2758 * header.
2759 *
2760 * Return 0 if we succeed; return 1 if we fail because that version isn't
2761 * supported; return -1 on any other error, and set handle->errbuf.
2762 */
2763 static int
init_tpacket(pcap_t * handle,int version,const char * version_str)2764 init_tpacket(pcap_t *handle, int version, const char *version_str)
2765 {
2766 struct pcap_linux *handlep = handle->priv;
2767 int val = version;
2768 socklen_t len = sizeof(val);
2769
2770 /*
2771 * Probe whether kernel supports the specified TPACKET version;
2772 * this also gets the length of the header for that version.
2773 *
2774 * This socket option was introduced in 2.6.27, which was
2775 * also the first release with TPACKET_V2 support.
2776 */
2777 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
2778 if (errno == EINVAL) {
2779 /*
2780 * EINVAL means this specific version of TPACKET
2781 * is not supported. Tell the caller they can try
2782 * with a different one; if they've run out of
2783 * others to try, let them set the error message
2784 * appropriately.
2785 */
2786 return 1;
2787 }
2788
2789 /*
2790 * All other errors are fatal.
2791 */
2792 if (errno == ENOPROTOOPT) {
2793 /*
2794 * PACKET_HDRLEN isn't supported, which means
2795 * that memory-mapped capture isn't supported.
2796 * Indicate that in the message.
2797 */
2798 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2799 "Kernel doesn't support memory-mapped capture; a 2.6.27 or later 2.x kernel is required, with CONFIG_PACKET_MMAP specified for 2.x kernels");
2800 } else {
2801 /*
2802 * Some unexpected error.
2803 */
2804 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2805 errno, "can't get %s header len on packet socket",
2806 version_str);
2807 }
2808 return -1;
2809 }
2810 handlep->tp_hdrlen = val;
2811
2812 val = version;
2813 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
2814 sizeof(val)) < 0) {
2815 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2816 errno, "can't activate %s on packet socket", version_str);
2817 return -1;
2818 }
2819 handlep->tp_version = version;
2820
2821 return 0;
2822 }
2823
2824 /*
2825 * Attempt to set the socket to version 3 of the memory-mapped header and,
2826 * if that fails because version 3 isn't supported, attempt to fall
2827 * back to version 2. If version 2 isn't supported, just fail.
2828 *
2829 * Return 0 if we succeed and -1 on any other error, and set handle->errbuf.
2830 */
2831 static int
prepare_tpacket_socket(pcap_t * handle)2832 prepare_tpacket_socket(pcap_t *handle)
2833 {
2834 int ret;
2835
2836 #ifdef HAVE_TPACKET3
2837 /*
2838 * Try setting the version to TPACKET_V3.
2839 *
2840 * The only mode in which buffering is done on PF_PACKET
2841 * sockets, so that packets might not be delivered
2842 * immediately, is TPACKET_V3 mode.
2843 *
2844 * The buffering cannot be disabled in that mode, so
2845 * if the user has requested immediate mode, we don't
2846 * use TPACKET_V3.
2847 */
2848 if (!handle->opt.immediate) {
2849 ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3");
2850 if (ret == 0) {
2851 /*
2852 * Success.
2853 */
2854 return 0;
2855 }
2856 if (ret == -1) {
2857 /*
2858 * We failed for some reason other than "the
2859 * kernel doesn't support TPACKET_V3".
2860 */
2861 return -1;
2862 }
2863
2864 /*
2865 * This means it returned 1, which means "the kernel
2866 * doesn't support TPACKET_V3"; try TPACKET_V2.
2867 */
2868 }
2869 #endif /* HAVE_TPACKET3 */
2870
2871 /*
2872 * Try setting the version to TPACKET_V2.
2873 */
2874 ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2");
2875 if (ret == 0) {
2876 /*
2877 * Success.
2878 */
2879 return 0;
2880 }
2881
2882 if (ret == 1) {
2883 /*
2884 * OK, the kernel supports memory-mapped capture, but
2885 * not TPACKET_V2. Set the error message appropriately.
2886 */
2887 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2888 "Kernel doesn't support TPACKET_V2; a 2.6.27 or later kernel is required");
2889 }
2890
2891 /*
2892 * We failed.
2893 */
2894 return -1;
2895 }
2896
2897 #define MAX(a,b) ((a)>(b)?(a):(b))
2898
2899 /*
2900 * Attempt to set up memory-mapped access.
2901 *
2902 * On success, returns 0 if there are no warnings or to a PCAP_WARNING_ code
2903 * if there is a warning.
2904 *
2905 * On error, returns the appropriate error code; if that is PCAP_ERROR,
2906 * sets handle->errbuf to the appropriate message.
2907 */
2908 static int
create_ring(pcap_t * handle)2909 create_ring(pcap_t *handle)
2910 {
2911 struct pcap_linux *handlep = handle->priv;
2912 unsigned i, j, frames_per_block;
2913 #ifdef HAVE_TPACKET3
2914 /*
2915 * For sockets using TPACKET_V2, the extra stuff at the end of a
2916 * struct tpacket_req3 will be ignored, so this is OK even for
2917 * those sockets.
2918 */
2919 struct tpacket_req3 req;
2920 #else
2921 struct tpacket_req req;
2922 #endif
2923 socklen_t len;
2924 unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff;
2925 unsigned int frame_size;
2926 int status;
2927
2928 /*
2929 * Start out assuming no warnings.
2930 */
2931 status = 0;
2932
2933 /*
2934 * Reserve space for VLAN tag reconstruction.
2935 */
2936 tp_reserve = VLAN_TAG_LEN;
2937
2938 /*
2939 * If we're capturing in cooked mode, reserve space for
2940 * a DLT_LINUX_SLL2 header; we don't know yet whether
2941 * we'll be using DLT_LINUX_SLL or DLT_LINUX_SLL2, as
2942 * that can be changed on an open device, so we reserve
2943 * space for the larger of the two.
2944 *
2945 * XXX - we assume that the kernel is still adding
2946 * 16 bytes of extra space, so we subtract 16 from
2947 * SLL2_HDR_LEN to get the additional space needed.
2948 * (Are they doing that for DLT_LINUX_SLL, the link-
2949 * layer header for which is 16 bytes?)
2950 *
2951 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - 16)?
2952 */
2953 if (handlep->cooked)
2954 tp_reserve += SLL2_HDR_LEN - 16;
2955
2956 /*
2957 * Try to request that amount of reserve space.
2958 * This must be done before creating the ring buffer.
2959 */
2960 len = sizeof(tp_reserve);
2961 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE,
2962 &tp_reserve, len) < 0) {
2963 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2964 PCAP_ERRBUF_SIZE, errno,
2965 "setsockopt (PACKET_RESERVE)");
2966 return PCAP_ERROR;
2967 }
2968
2969 switch (handlep->tp_version) {
2970
2971 case TPACKET_V2:
2972 /* Note that with large snapshot length (say 256K, which is
2973 * the default for recent versions of tcpdump, Wireshark,
2974 * TShark, dumpcap or 64K, the value that "-s 0" has given for
2975 * a long time with tcpdump), if we use the snapshot
2976 * length to calculate the frame length, only a few frames
2977 * will be available in the ring even with pretty
2978 * large ring size (and a lot of memory will be unused).
2979 *
2980 * Ideally, we should choose a frame length based on the
2981 * minimum of the specified snapshot length and the maximum
2982 * packet size. That's not as easy as it sounds; consider,
2983 * for example, an 802.11 interface in monitor mode, where
2984 * the frame would include a radiotap header, where the
2985 * maximum radiotap header length is device-dependent.
2986 *
2987 * So, for now, we just do this for Ethernet devices, where
2988 * there's no metadata header, and the link-layer header is
2989 * fixed length. We can get the maximum packet size by
2990 * adding 18, the Ethernet header length plus the CRC length
2991 * (just in case we happen to get the CRC in the packet), to
2992 * the MTU of the interface; we fetch the MTU in the hopes
2993 * that it reflects support for jumbo frames. (Even if the
2994 * interface is just being used for passive snooping, the
2995 * driver might set the size of buffers in the receive ring
2996 * based on the MTU, so that the MTU limits the maximum size
2997 * of packets that we can receive.)
2998 *
2999 * If segmentation/fragmentation or receive offload are
3000 * enabled, we can get reassembled/aggregated packets larger
3001 * than MTU, but bounded to 65535 plus the Ethernet overhead,
3002 * due to kernel and protocol constraints */
3003 frame_size = handle->snapshot;
3004 if (handle->linktype == DLT_EN10MB) {
3005 unsigned int max_frame_len;
3006 int mtu;
3007 int offload;
3008
3009 mtu = iface_get_mtu(handle->fd, handle->opt.device,
3010 handle->errbuf);
3011 if (mtu == -1)
3012 return PCAP_ERROR;
3013 offload = iface_get_offload(handle);
3014 if (offload == -1)
3015 return PCAP_ERROR;
3016 if (offload)
3017 max_frame_len = MAX(mtu, 65535);
3018 else
3019 max_frame_len = mtu;
3020 max_frame_len += 18;
3021
3022 if (frame_size > max_frame_len)
3023 frame_size = max_frame_len;
3024 }
3025
3026 /* NOTE: calculus matching those in tpacket_rcv()
3027 * in linux-2.6/net/packet/af_packet.c
3028 */
3029 len = sizeof(sk_type);
3030 if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type,
3031 &len) < 0) {
3032 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3033 PCAP_ERRBUF_SIZE, errno, "getsockopt (SO_TYPE)");
3034 return PCAP_ERROR;
3035 }
3036 maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE;
3037 /* XXX: in the kernel maclen is calculated from
3038 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len
3039 * in: packet_snd() in linux-2.6/net/packet/af_packet.c
3040 * then packet_alloc_skb() in linux-2.6/net/packet/af_packet.c
3041 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c
3042 * but I see no way to get those sizes in userspace,
3043 * like for instance with an ifreq ioctl();
3044 * the best thing I've found so far is MAX_HEADER in
3045 * the kernel part of linux-2.6/include/linux/netdevice.h
3046 * which goes up to 128+48=176; since pcap-linux.c
3047 * defines a MAX_LINKHEADER_SIZE of 256 which is
3048 * greater than that, let's use it.. maybe is it even
3049 * large enough to directly replace macoff..
3050 */
3051 tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ;
3052 netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve;
3053 /* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN
3054 * of netoff, which contradicts
3055 * linux-2.6/Documentation/networking/packet_mmap.txt
3056 * documenting that:
3057 * "- Gap, chosen so that packet data (Start+tp_net)
3058 * aligns to TPACKET_ALIGNMENT=16"
3059 */
3060 /* NOTE: in linux-2.6/include/linux/skbuff.h:
3061 * "CPUs often take a performance hit
3062 * when accessing unaligned memory locations"
3063 */
3064 macoff = netoff - maclen;
3065 req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size);
3066 /*
3067 * Round the buffer size up to a multiple of the
3068 * frame size (rather than rounding down, which
3069 * would give a buffer smaller than our caller asked
3070 * for, and possibly give zero frames if the requested
3071 * buffer size is too small for one frame).
3072 */
3073 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3074 break;
3075
3076 #ifdef HAVE_TPACKET3
3077 case TPACKET_V3:
3078 /* The "frames" for this are actually buffers that
3079 * contain multiple variable-sized frames.
3080 *
3081 * We pick a "frame" size of MAXIMUM_SNAPLEN to leave
3082 * enough room for at least one reasonably-sized packet
3083 * in the "frame". */
3084 req.tp_frame_size = MAXIMUM_SNAPLEN;
3085 /*
3086 * Round the buffer size up to a multiple of the
3087 * "frame" size (rather than rounding down, which
3088 * would give a buffer smaller than our caller asked
3089 * for, and possibly give zero "frames" if the requested
3090 * buffer size is too small for one "frame").
3091 */
3092 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3093 break;
3094 #endif
3095 default:
3096 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3097 "Internal error: unknown TPACKET_ value %u",
3098 handlep->tp_version);
3099 return PCAP_ERROR;
3100 }
3101
3102 /* compute the minimum block size that will handle this frame.
3103 * The block has to be page size aligned.
3104 * The max block size allowed by the kernel is arch-dependent and
3105 * it's not explicitly checked here. */
3106 req.tp_block_size = getpagesize();
3107 while (req.tp_block_size < req.tp_frame_size)
3108 req.tp_block_size <<= 1;
3109
3110 frames_per_block = req.tp_block_size/req.tp_frame_size;
3111
3112 /*
3113 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was,
3114 * so we check for PACKET_TIMESTAMP. We check for
3115 * linux/net_tstamp.h just in case a system somehow has
3116 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might
3117 * be unnecessary.
3118 *
3119 * SIOCSHWTSTAMP was introduced in the patch that introduced
3120 * linux/net_tstamp.h, so we don't bother checking whether
3121 * SIOCSHWTSTAMP is defined (if your Linux system has
3122 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your
3123 * Linux system is badly broken).
3124 */
3125 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
3126 /*
3127 * If we were told to do so, ask the kernel and the driver
3128 * to use hardware timestamps.
3129 *
3130 * Hardware timestamps are only supported with mmapped
3131 * captures.
3132 */
3133 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER ||
3134 handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) {
3135 struct hwtstamp_config hwconfig;
3136 struct ifreq ifr;
3137 int timesource;
3138
3139 /*
3140 * Ask for hardware time stamps on all packets,
3141 * including transmitted packets.
3142 */
3143 memset(&hwconfig, 0, sizeof(hwconfig));
3144 hwconfig.tx_type = HWTSTAMP_TX_ON;
3145 hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
3146
3147 memset(&ifr, 0, sizeof(ifr));
3148 pcapint_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
3149 ifr.ifr_data = (void *)&hwconfig;
3150
3151 /*
3152 * This may require CAP_NET_ADMIN.
3153 */
3154 if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) {
3155 switch (errno) {
3156
3157 case EPERM:
3158 /*
3159 * Treat this as an error, as the
3160 * user should try to run this
3161 * with the appropriate privileges -
3162 * and, if they can't, shouldn't
3163 * try requesting hardware time stamps.
3164 */
3165 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3166 "Attempt to set hardware timestamp failed - CAP_NET_ADMIN may be required");
3167 return PCAP_ERROR_PERM_DENIED;
3168
3169 case EOPNOTSUPP:
3170 case ERANGE:
3171 /*
3172 * Treat this as a warning, as the
3173 * only way to fix the warning is to
3174 * get an adapter that supports hardware
3175 * time stamps for *all* packets.
3176 * (ERANGE means "we support hardware
3177 * time stamps, but for packets matching
3178 * that particular filter", so it means
3179 * "we don't support hardware time stamps
3180 * for all incoming packets" here.)
3181 *
3182 * We'll just fall back on the standard
3183 * host time stamps.
3184 */
3185 status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP;
3186 break;
3187
3188 default:
3189 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3190 PCAP_ERRBUF_SIZE, errno,
3191 "SIOCSHWTSTAMP failed");
3192 return PCAP_ERROR;
3193 }
3194 } else {
3195 /*
3196 * Well, that worked. Now specify the type of
3197 * hardware time stamp we want for this
3198 * socket.
3199 */
3200 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) {
3201 /*
3202 * Hardware timestamp, synchronized
3203 * with the system clock.
3204 */
3205 timesource = SOF_TIMESTAMPING_SYS_HARDWARE;
3206 } else {
3207 /*
3208 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware
3209 * timestamp, not synchronized with the
3210 * system clock.
3211 */
3212 timesource = SOF_TIMESTAMPING_RAW_HARDWARE;
3213 }
3214 if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP,
3215 (void *)×ource, sizeof(timesource))) {
3216 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3217 PCAP_ERRBUF_SIZE, errno,
3218 "can't set PACKET_TIMESTAMP");
3219 return PCAP_ERROR;
3220 }
3221 }
3222 }
3223 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */
3224
3225 /* ask the kernel to create the ring */
3226 retry:
3227 req.tp_block_nr = req.tp_frame_nr / frames_per_block;
3228
3229 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
3230 req.tp_frame_nr = req.tp_block_nr * frames_per_block;
3231
3232 #ifdef HAVE_TPACKET3
3233 /* timeout value to retire block - use the configured buffering timeout, or default if <0. */
3234 if (handlep->timeout > 0) {
3235 /* Use the user specified timeout as the block timeout */
3236 req.tp_retire_blk_tov = handlep->timeout;
3237 } else if (handlep->timeout == 0) {
3238 /*
3239 * In pcap, this means "infinite timeout"; TPACKET_V3
3240 * doesn't support that, so just set it to UINT_MAX
3241 * milliseconds. In the TPACKET_V3 loop, if the
3242 * timeout is 0, and we haven't yet seen any packets,
3243 * and we block and still don't have any packets, we
3244 * keep blocking until we do.
3245 */
3246 req.tp_retire_blk_tov = UINT_MAX;
3247 } else {
3248 /*
3249 * XXX - this is not valid; use 0, meaning "have the
3250 * kernel pick a default", for now.
3251 */
3252 req.tp_retire_blk_tov = 0;
3253 }
3254 /* private data not used */
3255 req.tp_sizeof_priv = 0;
3256 /* Rx ring - feature request bits - none (rxhash will not be filled) */
3257 req.tp_feature_req_word = 0;
3258 #endif
3259
3260 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3261 (void *) &req, sizeof(req))) {
3262 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
3263 /*
3264 * Memory failure; try to reduce the requested ring
3265 * size.
3266 *
3267 * We used to reduce this by half -- do 5% instead.
3268 * That may result in more iterations and a longer
3269 * startup, but the user will be much happier with
3270 * the resulting buffer size.
3271 */
3272 if (req.tp_frame_nr < 20)
3273 req.tp_frame_nr -= 1;
3274 else
3275 req.tp_frame_nr -= req.tp_frame_nr/20;
3276 goto retry;
3277 }
3278 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3279 errno, "can't create rx ring on packet socket");
3280 return PCAP_ERROR;
3281 }
3282
3283 /* memory map the rx ring */
3284 handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size;
3285 handlep->mmapbuf = mmap(0, handlep->mmapbuflen,
3286 PROT_READ|PROT_WRITE, MAP_SHARED, handle->fd, 0);
3287 if (handlep->mmapbuf == MAP_FAILED) {
3288 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3289 errno, "can't mmap rx ring");
3290
3291 /* clear the allocated ring on error*/
3292 destroy_ring(handle);
3293 return PCAP_ERROR;
3294 }
3295
3296 /* allocate a ring for each frame header pointer*/
3297 handle->cc = req.tp_frame_nr;
3298 handle->buffer = malloc(handle->cc * sizeof(union thdr *));
3299 if (!handle->buffer) {
3300 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3301 errno, "can't allocate ring of frame headers");
3302
3303 destroy_ring(handle);
3304 return PCAP_ERROR;
3305 }
3306
3307 /* fill the header ring with proper frame ptr*/
3308 handle->offset = 0;
3309 for (i=0; i<req.tp_block_nr; ++i) {
3310 u_char *base = &handlep->mmapbuf[i*req.tp_block_size];
3311 for (j=0; j<frames_per_block; ++j, ++handle->offset) {
3312 RING_GET_CURRENT_FRAME(handle) = base;
3313 base += req.tp_frame_size;
3314 }
3315 }
3316
3317 handle->bufsize = req.tp_frame_size;
3318 handle->offset = 0;
3319 return status;
3320 }
3321
3322 /* free all ring related resources*/
3323 static void
destroy_ring(pcap_t * handle)3324 destroy_ring(pcap_t *handle)
3325 {
3326 struct pcap_linux *handlep = handle->priv;
3327
3328 /*
3329 * Tell the kernel to destroy the ring.
3330 * We don't check for setsockopt failure, as 1) we can't recover
3331 * from an error and 2) we might not yet have set it up in the
3332 * first place.
3333 */
3334 struct tpacket_req req;
3335 memset(&req, 0, sizeof(req));
3336 (void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3337 (void *) &req, sizeof(req));
3338
3339 /* if ring is mapped, unmap it*/
3340 if (handlep->mmapbuf) {
3341 /* do not test for mmap failure, as we can't recover from any error */
3342 (void)munmap(handlep->mmapbuf, handlep->mmapbuflen);
3343 handlep->mmapbuf = NULL;
3344 }
3345 }
3346
3347 /*
3348 * Special one-shot callback, used for pcap_next() and pcap_next_ex(),
3349 * for Linux mmapped capture.
3350 *
3351 * The problem is that pcap_next() and pcap_next_ex() expect the packet
3352 * data handed to the callback to be valid after the callback returns,
3353 * but pcap_read_linux_mmap() has to release that packet as soon as
3354 * the callback returns (otherwise, the kernel thinks there's still
3355 * at least one unprocessed packet available in the ring, so a select()
3356 * will immediately return indicating that there's data to process), so,
3357 * in the callback, we have to make a copy of the packet.
3358 *
3359 * Yes, this means that, if the capture is using the ring buffer, using
3360 * pcap_next() or pcap_next_ex() requires more copies than using
3361 * pcap_loop() or pcap_dispatch(). If that bothers you, don't use
3362 * pcap_next() or pcap_next_ex().
3363 */
3364 static void
pcapint_oneshot_linux(u_char * user,const struct pcap_pkthdr * h,const u_char * bytes)3365 pcapint_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
3366 const u_char *bytes)
3367 {
3368 struct oneshot_userdata *sp = (struct oneshot_userdata *)user;
3369 pcap_t *handle = sp->pd;
3370 struct pcap_linux *handlep = handle->priv;
3371
3372 *sp->hdr = *h;
3373 memcpy(handlep->oneshot_buffer, bytes, h->caplen);
3374 *sp->pkt = handlep->oneshot_buffer;
3375 }
3376
3377 static int
pcap_getnonblock_linux(pcap_t * handle)3378 pcap_getnonblock_linux(pcap_t *handle)
3379 {
3380 struct pcap_linux *handlep = handle->priv;
3381
3382 /* use negative value of timeout to indicate non blocking ops */
3383 return (handlep->timeout<0);
3384 }
3385
3386 static int
pcap_setnonblock_linux(pcap_t * handle,int nonblock)3387 pcap_setnonblock_linux(pcap_t *handle, int nonblock)
3388 {
3389 struct pcap_linux *handlep = handle->priv;
3390
3391 /*
3392 * Set the file descriptor to the requested mode, as we use
3393 * it for sending packets.
3394 */
3395 if (pcapint_setnonblock_fd(handle, nonblock) == -1)
3396 return -1;
3397
3398 /*
3399 * Map each value to their corresponding negation to
3400 * preserve the timeout value provided with pcap_set_timeout.
3401 */
3402 if (nonblock) {
3403 /*
3404 * We're setting the mode to non-blocking mode.
3405 */
3406 if (handlep->timeout >= 0) {
3407 /*
3408 * Indicate that we're switching to
3409 * non-blocking mode.
3410 */
3411 handlep->timeout = ~handlep->timeout;
3412 }
3413 if (handlep->poll_breakloop_fd != -1) {
3414 /* Close the eventfd; we do not need it in nonblock mode. */
3415 close(handlep->poll_breakloop_fd);
3416 handlep->poll_breakloop_fd = -1;
3417 }
3418 } else {
3419 /*
3420 * We're setting the mode to blocking mode.
3421 */
3422 if (handlep->poll_breakloop_fd == -1) {
3423 /* If we did not have an eventfd, open one now that we are blocking. */
3424 if ( ( handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK) ) == -1 ) {
3425 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3426 PCAP_ERRBUF_SIZE, errno,
3427 "could not open eventfd");
3428 return -1;
3429 }
3430 }
3431 if (handlep->timeout < 0) {
3432 handlep->timeout = ~handlep->timeout;
3433 }
3434 }
3435 /* Update the timeout to use in poll(). */
3436 set_poll_timeout(handlep);
3437 return 0;
3438 }
3439
3440 /*
3441 * Get the status field of the ring buffer frame at a specified offset.
3442 */
3443 static inline u_int
pcap_get_ring_frame_status(pcap_t * handle,int offset)3444 pcap_get_ring_frame_status(pcap_t *handle, int offset)
3445 {
3446 struct pcap_linux *handlep = handle->priv;
3447 union thdr h;
3448
3449 h.raw = RING_GET_FRAME_AT(handle, offset);
3450 switch (handlep->tp_version) {
3451 case TPACKET_V2:
3452 return __atomic_load_n(&h.h2->tp_status, __ATOMIC_ACQUIRE);
3453 break;
3454 #ifdef HAVE_TPACKET3
3455 case TPACKET_V3:
3456 return __atomic_load_n(&h.h3->hdr.bh1.block_status, __ATOMIC_ACQUIRE);
3457 break;
3458 #endif
3459 }
3460 /* This should not happen. */
3461 return 0;
3462 }
3463
3464 /*
3465 * Block waiting for frames to be available.
3466 */
pcap_wait_for_frames_mmap(pcap_t * handle)3467 static int pcap_wait_for_frames_mmap(pcap_t *handle)
3468 {
3469 struct pcap_linux *handlep = handle->priv;
3470 int timeout;
3471 struct ifreq ifr;
3472 int ret;
3473 struct pollfd pollinfo[2];
3474 int numpollinfo;
3475 pollinfo[0].fd = handle->fd;
3476 pollinfo[0].events = POLLIN;
3477 if ( handlep->poll_breakloop_fd == -1 ) {
3478 numpollinfo = 1;
3479 pollinfo[1].revents = 0;
3480 /*
3481 * We set pollinfo[1].revents to zero, even though
3482 * numpollinfo = 1 meaning that poll() doesn't see
3483 * pollinfo[1], so that we do not have to add a
3484 * conditional of numpollinfo > 1 below when we
3485 * test pollinfo[1].revents.
3486 */
3487 } else {
3488 pollinfo[1].fd = handlep->poll_breakloop_fd;
3489 pollinfo[1].events = POLLIN;
3490 numpollinfo = 2;
3491 }
3492
3493 /*
3494 * Keep polling until we either get some packets to read, see
3495 * that we got told to break out of the loop, get a fatal error,
3496 * or discover that the device went away.
3497 *
3498 * In non-blocking mode, we must still do one poll() to catch
3499 * any pending error indications, but the poll() has a timeout
3500 * of 0, so that it doesn't block, and we quit after that one
3501 * poll().
3502 *
3503 * If we've seen an ENETDOWN, it might be the first indication
3504 * that the device went away, or it might just be that it was
3505 * configured down. Unfortunately, there's no guarantee that
3506 * the device has actually been removed as an interface, because:
3507 *
3508 * 1) if, as appears to be the case at least some of the time,
3509 * the PF_PACKET socket code first gets a NETDEV_DOWN indication
3510 * for the device and then gets a NETDEV_UNREGISTER indication
3511 * for it, the first indication will cause a wakeup with ENETDOWN
3512 * but won't set the packet socket's field for the interface index
3513 * to -1, and the second indication won't cause a wakeup (because
3514 * the first indication also caused the protocol hook to be
3515 * unregistered) but will set the packet socket's field for the
3516 * interface index to -1;
3517 *
3518 * 2) even if just a NETDEV_UNREGISTER indication is registered,
3519 * the packet socket's field for the interface index only gets
3520 * set to -1 after the wakeup, so there's a small but non-zero
3521 * risk that a thread blocked waiting for the wakeup will get
3522 * to the "fetch the socket name" code before the interface index
3523 * gets set to -1, so it'll get the old interface index.
3524 *
3525 * Therefore, if we got an ENETDOWN and haven't seen a packet
3526 * since then, we assume that we might be waiting for the interface
3527 * to disappear, and poll with a timeout to try again in a short
3528 * period of time. If we *do* see a packet, the interface has
3529 * come back up again, and is *definitely* still there, so we
3530 * don't need to poll.
3531 */
3532 for (;;) {
3533 /*
3534 * Yes, we do this even in non-blocking mode, as it's
3535 * the only way to get error indications from a
3536 * tpacket socket.
3537 *
3538 * The timeout is 0 in non-blocking mode, so poll()
3539 * returns immediately.
3540 */
3541 timeout = handlep->poll_timeout;
3542
3543 /*
3544 * If we got an ENETDOWN and haven't gotten an indication
3545 * that the device has gone away or that the device is up,
3546 * we don't yet know for certain whether the device has
3547 * gone away or not, do a poll() with a 1-millisecond timeout,
3548 * as we have to poll indefinitely for "device went away"
3549 * indications until we either get one or see that the
3550 * device is up.
3551 */
3552 if (handlep->netdown) {
3553 if (timeout != 0)
3554 timeout = 1;
3555 }
3556 ret = poll(pollinfo, numpollinfo, timeout);
3557 if (ret < 0) {
3558 /*
3559 * Error. If it's not EINTR, report it.
3560 */
3561 if (errno != EINTR) {
3562 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3563 PCAP_ERRBUF_SIZE, errno,
3564 "can't poll on packet socket");
3565 return PCAP_ERROR;
3566 }
3567
3568 /*
3569 * It's EINTR; if we were told to break out of
3570 * the loop, do so.
3571 */
3572 if (handle->break_loop) {
3573 handle->break_loop = 0;
3574 return PCAP_ERROR_BREAK;
3575 }
3576 } else if (ret > 0) {
3577 /*
3578 * OK, some descriptor is ready.
3579 * Check the socket descriptor first.
3580 *
3581 * As I read the Linux man page, pollinfo[0].revents
3582 * will either be POLLIN, POLLERR, POLLHUP, or POLLNVAL.
3583 */
3584 if (pollinfo[0].revents == POLLIN) {
3585 /*
3586 * OK, we may have packets to
3587 * read.
3588 */
3589 break;
3590 }
3591 if (pollinfo[0].revents != 0) {
3592 /*
3593 * There's some indication other than
3594 * "you can read on this descriptor" on
3595 * the descriptor.
3596 */
3597 if (pollinfo[0].revents & POLLNVAL) {
3598 snprintf(handle->errbuf,
3599 PCAP_ERRBUF_SIZE,
3600 "Invalid polling request on packet socket");
3601 return PCAP_ERROR;
3602 }
3603 if (pollinfo[0].revents & (POLLHUP | POLLRDHUP)) {
3604 snprintf(handle->errbuf,
3605 PCAP_ERRBUF_SIZE,
3606 "Hangup on packet socket");
3607 return PCAP_ERROR;
3608 }
3609 if (pollinfo[0].revents & POLLERR) {
3610 /*
3611 * Get the error.
3612 */
3613 int err;
3614 socklen_t errlen;
3615
3616 errlen = sizeof(err);
3617 if (getsockopt(handle->fd, SOL_SOCKET,
3618 SO_ERROR, &err, &errlen) == -1) {
3619 /*
3620 * The call *itself* returned
3621 * an error; make *that*
3622 * the error.
3623 */
3624 err = errno;
3625 }
3626
3627 /*
3628 * OK, we have the error.
3629 */
3630 if (err == ENETDOWN) {
3631 /*
3632 * The device on which we're
3633 * capturing went away or the
3634 * interface was taken down.
3635 *
3636 * We don't know for certain
3637 * which happened, and the
3638 * next poll() may indicate
3639 * that there are packets
3640 * to be read, so just set
3641 * a flag to get us to do
3642 * checks later, and set
3643 * the required select
3644 * timeout to 1 millisecond
3645 * so that event loops that
3646 * check our socket descriptor
3647 * also time out so that
3648 * they can call us and we
3649 * can do the checks.
3650 */
3651 handlep->netdown = 1;
3652 handle->required_select_timeout = &netdown_timeout;
3653 } else if (err == 0) {
3654 /*
3655 * This shouldn't happen, so
3656 * report a special indication
3657 * that it did.
3658 */
3659 snprintf(handle->errbuf,
3660 PCAP_ERRBUF_SIZE,
3661 "Error condition on packet socket: Reported error was 0");
3662 return PCAP_ERROR;
3663 } else {
3664 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3665 PCAP_ERRBUF_SIZE,
3666 err,
3667 "Error condition on packet socket");
3668 return PCAP_ERROR;
3669 }
3670 }
3671 }
3672 /*
3673 * Now check the event device.
3674 */
3675 if (pollinfo[1].revents & POLLIN) {
3676 ssize_t nread;
3677 uint64_t value;
3678
3679 /*
3680 * This should never fail, but, just
3681 * in case....
3682 */
3683 nread = read(handlep->poll_breakloop_fd, &value,
3684 sizeof(value));
3685 if (nread == -1) {
3686 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3687 PCAP_ERRBUF_SIZE,
3688 errno,
3689 "Error reading from event FD");
3690 return PCAP_ERROR;
3691 }
3692
3693 /*
3694 * According to the Linux read(2) man
3695 * page, read() will transfer at most
3696 * 2^31-1 bytes, so the return value is
3697 * either -1 or a value between 0
3698 * and 2^31-1, so it's non-negative.
3699 *
3700 * Cast it to size_t to squelch
3701 * warnings from the compiler; add this
3702 * comment to squelch warnings from
3703 * humans reading the code. :-)
3704 *
3705 * Don't treat an EOF as an error, but
3706 * *do* treat a short read as an error;
3707 * that "shouldn't happen", but....
3708 */
3709 if (nread != 0 &&
3710 (size_t)nread < sizeof(value)) {
3711 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3712 "Short read from event FD: expected %zu, got %zd",
3713 sizeof(value), nread);
3714 return PCAP_ERROR;
3715 }
3716
3717 /*
3718 * This event gets signaled by a
3719 * pcap_breakloop() call; if we were told
3720 * to break out of the loop, do so.
3721 */
3722 if (handle->break_loop) {
3723 handle->break_loop = 0;
3724 return PCAP_ERROR_BREAK;
3725 }
3726 }
3727 }
3728
3729 /*
3730 * Either:
3731 *
3732 * 1) we got neither an error from poll() nor any
3733 * readable descriptors, in which case there
3734 * are no packets waiting to read
3735 *
3736 * or
3737 *
3738 * 2) We got readable descriptors but the PF_PACKET
3739 * socket wasn't one of them, in which case there
3740 * are no packets waiting to read
3741 *
3742 * so, if we got an ENETDOWN, we've drained whatever
3743 * packets were available to read at the point of the
3744 * ENETDOWN.
3745 *
3746 * So, if we got an ENETDOWN and haven't gotten an indication
3747 * that the device has gone away or that the device is up,
3748 * we don't yet know for certain whether the device has
3749 * gone away or not, check whether the device exists and is
3750 * up.
3751 */
3752 if (handlep->netdown) {
3753 if (!device_still_exists(handle)) {
3754 /*
3755 * The device doesn't exist any more;
3756 * report that.
3757 *
3758 * XXX - we should really return an
3759 * appropriate error for that, but
3760 * pcap_dispatch() etc. aren't documented
3761 * as having error returns other than
3762 * PCAP_ERROR or PCAP_ERROR_BREAK.
3763 */
3764 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3765 "The interface disappeared");
3766 return PCAP_ERROR;
3767 }
3768
3769 /*
3770 * The device still exists; try to see if it's up.
3771 */
3772 memset(&ifr, 0, sizeof(ifr));
3773 pcapint_strlcpy(ifr.ifr_name, handlep->device,
3774 sizeof(ifr.ifr_name));
3775 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3776 if (errno == ENXIO || errno == ENODEV) {
3777 /*
3778 * OK, *now* it's gone.
3779 *
3780 * XXX - see above comment.
3781 */
3782 snprintf(handle->errbuf,
3783 PCAP_ERRBUF_SIZE,
3784 "The interface disappeared");
3785 return PCAP_ERROR;
3786 } else {
3787 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3788 PCAP_ERRBUF_SIZE, errno,
3789 "%s: Can't get flags",
3790 handlep->device);
3791 return PCAP_ERROR;
3792 }
3793 }
3794 if (ifr.ifr_flags & IFF_UP) {
3795 /*
3796 * It's up, so it definitely still exists.
3797 * Cancel the ENETDOWN indication - we
3798 * presumably got it due to the interface
3799 * going down rather than the device going
3800 * away - and revert to "no required select
3801 * timeout.
3802 */
3803 handlep->netdown = 0;
3804 handle->required_select_timeout = NULL;
3805 }
3806 }
3807
3808 /*
3809 * If we're in non-blocking mode, just quit now, rather
3810 * than spinning in a loop doing poll()s that immediately
3811 * time out if there's no indication on any descriptor.
3812 */
3813 if (handlep->poll_timeout == 0)
3814 break;
3815 }
3816 return 0;
3817 }
3818
3819 /* handle a single memory mapped packet */
pcap_handle_packet_mmap(pcap_t * handle,pcap_handler callback,u_char * user,unsigned char * frame,unsigned int tp_len,unsigned int tp_mac,unsigned int tp_snaplen,unsigned int tp_sec,unsigned int tp_usec,int tp_vlan_tci_valid,__u16 tp_vlan_tci,__u16 tp_vlan_tpid)3820 static int pcap_handle_packet_mmap(
3821 pcap_t *handle,
3822 pcap_handler callback,
3823 u_char *user,
3824 unsigned char *frame,
3825 unsigned int tp_len,
3826 unsigned int tp_mac,
3827 unsigned int tp_snaplen,
3828 unsigned int tp_sec,
3829 unsigned int tp_usec,
3830 int tp_vlan_tci_valid,
3831 __u16 tp_vlan_tci,
3832 __u16 tp_vlan_tpid)
3833 {
3834 struct pcap_linux *handlep = handle->priv;
3835 unsigned char *bp;
3836 struct sockaddr_ll *sll;
3837 struct pcap_pkthdr pcaphdr;
3838 unsigned int snaplen = tp_snaplen;
3839 struct utsname utsname;
3840
3841 /* perform sanity check on internal offset. */
3842 if (tp_mac + tp_snaplen > handle->bufsize) {
3843 /*
3844 * Report some system information as a debugging aid.
3845 */
3846 if (uname(&utsname) != -1) {
3847 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3848 "corrupted frame on kernel ring mac "
3849 "offset %u + caplen %u > frame len %d "
3850 "(kernel %.32s version %s, machine %.16s)",
3851 tp_mac, tp_snaplen, handle->bufsize,
3852 utsname.release, utsname.version,
3853 utsname.machine);
3854 } else {
3855 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3856 "corrupted frame on kernel ring mac "
3857 "offset %u + caplen %u > frame len %d",
3858 tp_mac, tp_snaplen, handle->bufsize);
3859 }
3860 return -1;
3861 }
3862
3863 /* run filter on received packet
3864 * If the kernel filtering is enabled we need to run the
3865 * filter until all the frames present into the ring
3866 * at filter creation time are processed.
3867 * In this case, blocks_to_filter_in_userland is used
3868 * as a counter for the packet we need to filter.
3869 * Note: alternatively it could be possible to stop applying
3870 * the filter when the ring became empty, but it can possibly
3871 * happen a lot later... */
3872 bp = frame + tp_mac;
3873
3874 /* if required build in place the sll header*/
3875 sll = (void *)(frame + TPACKET_ALIGN(handlep->tp_hdrlen));
3876 if (handlep->cooked) {
3877 if (handle->linktype == DLT_LINUX_SLL2) {
3878 struct sll2_header *hdrp;
3879
3880 /*
3881 * The kernel should have left us with enough
3882 * space for an sll header; back up the packet
3883 * data pointer into that space, as that'll be
3884 * the beginning of the packet we pass to the
3885 * callback.
3886 */
3887 bp -= SLL2_HDR_LEN;
3888
3889 /*
3890 * Let's make sure that's past the end of
3891 * the tpacket header, i.e. >=
3892 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3893 * don't step on the header when we construct
3894 * the sll header.
3895 */
3896 if (bp < (u_char *)frame +
3897 TPACKET_ALIGN(handlep->tp_hdrlen) +
3898 sizeof(struct sockaddr_ll)) {
3899 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3900 "cooked-mode frame doesn't have room for sll header");
3901 return -1;
3902 }
3903
3904 /*
3905 * OK, that worked; construct the sll header.
3906 */
3907 hdrp = (struct sll2_header *)bp;
3908 hdrp->sll2_protocol = sll->sll_protocol;
3909 hdrp->sll2_reserved_mbz = 0;
3910 hdrp->sll2_if_index = htonl(sll->sll_ifindex);
3911 hdrp->sll2_hatype = htons(sll->sll_hatype);
3912 hdrp->sll2_pkttype = sll->sll_pkttype;
3913 hdrp->sll2_halen = sll->sll_halen;
3914 memcpy(hdrp->sll2_addr, sll->sll_addr, SLL_ADDRLEN);
3915
3916 snaplen += sizeof(struct sll2_header);
3917 } else {
3918 struct sll_header *hdrp;
3919
3920 /*
3921 * The kernel should have left us with enough
3922 * space for an sll header; back up the packet
3923 * data pointer into that space, as that'll be
3924 * the beginning of the packet we pass to the
3925 * callback.
3926 */
3927 bp -= SLL_HDR_LEN;
3928
3929 /*
3930 * Let's make sure that's past the end of
3931 * the tpacket header, i.e. >=
3932 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3933 * don't step on the header when we construct
3934 * the sll header.
3935 */
3936 if (bp < (u_char *)frame +
3937 TPACKET_ALIGN(handlep->tp_hdrlen) +
3938 sizeof(struct sockaddr_ll)) {
3939 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3940 "cooked-mode frame doesn't have room for sll header");
3941 return -1;
3942 }
3943
3944 /*
3945 * OK, that worked; construct the sll header.
3946 */
3947 hdrp = (struct sll_header *)bp;
3948 hdrp->sll_pkttype = htons(sll->sll_pkttype);
3949 hdrp->sll_hatype = htons(sll->sll_hatype);
3950 hdrp->sll_halen = htons(sll->sll_halen);
3951 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
3952 hdrp->sll_protocol = sll->sll_protocol;
3953
3954 snaplen += sizeof(struct sll_header);
3955 }
3956 } else {
3957 /*
3958 * If this is a packet from a CAN device, so that
3959 * sll->sll_hatype is ARPHRD_CAN, then, as we're
3960 * not capturing in cooked mode, its link-layer
3961 * type is DLT_CAN_SOCKETCAN. Fix up the header
3962 * provided by the code below us to match what
3963 * DLT_CAN_SOCKETCAN is expected to provide.
3964 */
3965 if (sll->sll_hatype == ARPHRD_CAN) {
3966 pcap_can_socketcan_hdr *canhdr = (pcap_can_socketcan_hdr *)bp;
3967 uint16_t protocol = ntohs(sll->sll_protocol);
3968
3969 /*
3970 * Check the protocol field from the sll header.
3971 * If it's one of the known CAN protocol types,
3972 * make sure the appropriate flags are set, so
3973 * that a program can tell what type of frame
3974 * it is.
3975 *
3976 * The two flags are:
3977 *
3978 * CANFD_FDF, which is in the fd_flags field
3979 * of the CAN classic/CAN FD header;
3980 *
3981 * CANXL_XLF, which is in the flags field
3982 * of the CAN XL header, which overlaps
3983 * the payload_length field of the CAN
3984 * classic/CAN FD header.
3985 */
3986 switch (protocol) {
3987
3988 case LINUX_SLL_P_CAN:
3989 /*
3990 * CAN classic.
3991 *
3992 * Zero out the fd_flags and reserved
3993 * fields, in case they're uninitialized
3994 * crap, and clear the CANXL_XLF bit in
3995 * the payload_length field.
3996 *
3997 * This means that the CANFD_FDF flag isn't
3998 * set in the fd_flags field, and that
3999 * the CANXL_XLF bit isn't set in the
4000 * payload_length field, so this frame
4001 * will appear to be a CAN classic frame.
4002 */
4003 canhdr->payload_length &= ~CANXL_XLF;
4004 canhdr->fd_flags = 0;
4005 canhdr->reserved1 = 0;
4006 canhdr->reserved2 = 0;
4007 break;
4008
4009 case LINUX_SLL_P_CANFD:
4010 /*
4011 * Set CANFD_FDF in the fd_flags field,
4012 * and clear the CANXL_XLF bit in the
4013 * payload_length field, so this frame
4014 * will appear to be a CAN FD frame.
4015 */
4016 canhdr->payload_length &= ~CANXL_XLF;
4017 canhdr->fd_flags |= CANFD_FDF;
4018
4019 /*
4020 * Zero out all the unknown bits in fd_flags
4021 * and clear the reserved fields, so that
4022 * a program reading this can assume that
4023 * CANFD_FDF is set because we set it, not
4024 * because some uninitialized crap was
4025 * provided in the fd_flags field.
4026 *
4027 * (At least some LINKTYPE_CAN_SOCKETCAN
4028 * files attached to Wireshark bugs had
4029 * uninitialized junk there, so it does
4030 * happen.)
4031 *
4032 * Update this if Linux adds more flag bits
4033 * to the fd_flags field or uses either of
4034 * the reserved fields for FD frames.
4035 */
4036 canhdr->fd_flags &= (CANFD_FDF|CANFD_ESI|CANFD_BRS);
4037 canhdr->reserved1 = 0;
4038 canhdr->reserved2 = 0;
4039 break;
4040
4041 case LINUX_SLL_P_CANXL:
4042 /*
4043 * CAN XL frame.
4044 *
4045 * Make sure the CANXL_XLF bit is set in
4046 * the payload_length field, so that
4047 * this frame will appear to be a
4048 * CAN XL frame.
4049 */
4050 canhdr->payload_length |= CANXL_XLF;
4051 break;
4052 }
4053
4054 /*
4055 * Put multi-byte header fields in a byte-order
4056 *-independent format.
4057 */
4058 if (canhdr->payload_length & CANXL_XLF) {
4059 /*
4060 * This is a CAN XL frame.
4061 *
4062 * DLT_CAN_SOCKETCAN is specified as having
4063 * the Priority ID/VCID field in big--
4064 * endian byte order, and the payload length
4065 * and Acceptance Field in little-endian byte
4066 * order. but capturing on a CAN device
4067 * provides them in host byte order.
4068 * Convert them to the appropriate byte
4069 * orders.
4070 *
4071 * The reason we put the first field
4072 * into big-endian byte order is that
4073 * older libpcap code, ignorant of
4074 * CAN XL, treated it as the CAN ID
4075 * field and put it into big-endian
4076 * byte order, and we don't want to
4077 * break code that understands CAN XL
4078 * headers, and treats that field as
4079 * being big-endian.
4080 *
4081 * The other fields are put in little-
4082 * endian byte order is that older
4083 * libpcap code, ignorant of CAN XL,
4084 * left those fields alone, and the
4085 * processors on which the CAN XL
4086 * frames were captured are likely
4087 * to be little-endian processors.
4088 */
4089 pcap_can_socketcan_xl_hdr *canxl_hdr = (pcap_can_socketcan_xl_hdr *)bp;
4090
4091 #if __BYTE_ORDER == __LITTLE_ENDIAN
4092 /*
4093 * We're capturing on a little-endian
4094 * machine, so we put the priority/VCID
4095 * field into big-endian byte order, and
4096 * leave the payload length and acceptance
4097 * field in little-endian byte order.
4098 */
4099 /* Byte-swap priority/VCID. */
4100 canxl_hdr->priority_vcid = SWAPLONG(canxl_hdr->priority_vcid);
4101 #elif __BYTE_ORDER == __BIG_ENDIAN
4102 /*
4103 * We're capturing on a big-endian
4104 * machine, so we want to leave the
4105 * priority/VCID field alone, and byte-swap
4106 * the payload length and acceptance
4107 * fields to little-endian.
4108 */
4109 /* Byte-swap the payload length */
4110 canxl_hdr->payload_length = SWAPSHORT(canxl_hdr->payload_length);
4111
4112 /*
4113 * Byte-swap the acceptance field.
4114 *
4115 * XXX - is it just a 4-octet string,
4116 * not in any byte order?
4117 */
4118 canxl_hdr->acceptance_field = SWAPLONG(canxl_hdr->acceptance_field);
4119 #else
4120 #error "Unknown byte order"
4121 #endif
4122 } else {
4123 /*
4124 * CAN or CAN FD frame.
4125 *
4126 * DLT_CAN_SOCKETCAN is specified as having
4127 * the CAN ID and flags in network byte
4128 * order, but capturing on a CAN device
4129 * provides it in host byte order. Convert
4130 * it to network byte order.
4131 */
4132 canhdr->can_id = htonl(canhdr->can_id);
4133 }
4134 }
4135 }
4136
4137 if (handlep->filter_in_userland && handle->fcode.bf_insns) {
4138 struct pcap_bpf_aux_data aux_data;
4139
4140 aux_data.vlan_tag_present = tp_vlan_tci_valid;
4141 aux_data.vlan_tag = tp_vlan_tci & 0x0fff;
4142
4143 if (pcapint_filter_with_aux_data(handle->fcode.bf_insns,
4144 bp,
4145 tp_len,
4146 snaplen,
4147 &aux_data) == 0)
4148 return 0;
4149 }
4150
4151 if (!linux_check_direction(handle, sll))
4152 return 0;
4153
4154 /* get required packet info from ring header */
4155 pcaphdr.ts.tv_sec = tp_sec;
4156 pcaphdr.ts.tv_usec = tp_usec;
4157 pcaphdr.caplen = tp_snaplen;
4158 pcaphdr.len = tp_len;
4159
4160 /* if required build in place the sll header*/
4161 if (handlep->cooked) {
4162 /* update packet len */
4163 if (handle->linktype == DLT_LINUX_SLL2) {
4164 pcaphdr.caplen += SLL2_HDR_LEN;
4165 pcaphdr.len += SLL2_HDR_LEN;
4166 } else {
4167 pcaphdr.caplen += SLL_HDR_LEN;
4168 pcaphdr.len += SLL_HDR_LEN;
4169 }
4170 }
4171
4172 if (tp_vlan_tci_valid &&
4173 handlep->vlan_offset != -1 &&
4174 tp_snaplen >= (unsigned int) handlep->vlan_offset)
4175 {
4176 struct vlan_tag *tag;
4177
4178 /*
4179 * Move everything in the header, except the type field,
4180 * down VLAN_TAG_LEN bytes, to allow us to insert the
4181 * VLAN tag between that stuff and the type field.
4182 */
4183 bp -= VLAN_TAG_LEN;
4184 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset);
4185
4186 /*
4187 * Now insert the tag.
4188 */
4189 tag = (struct vlan_tag *)(bp + handlep->vlan_offset);
4190 tag->vlan_tpid = htons(tp_vlan_tpid);
4191 tag->vlan_tci = htons(tp_vlan_tci);
4192
4193 /*
4194 * Add the tag to the packet lengths.
4195 */
4196 pcaphdr.caplen += VLAN_TAG_LEN;
4197 pcaphdr.len += VLAN_TAG_LEN;
4198 }
4199
4200 /*
4201 * The only way to tell the kernel to cut off the
4202 * packet at a snapshot length is with a filter program;
4203 * if there's no filter program, the kernel won't cut
4204 * the packet off.
4205 *
4206 * Trim the snapshot length to be no longer than the
4207 * specified snapshot length.
4208 *
4209 * XXX - an alternative is to put a filter, consisting
4210 * of a "ret <snaplen>" instruction, on the socket
4211 * in the activate routine, so that the truncation is
4212 * done in the kernel even if nobody specified a filter;
4213 * that means that less buffer space is consumed in
4214 * the memory-mapped buffer.
4215 */
4216 if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot)
4217 pcaphdr.caplen = handle->snapshot;
4218
4219 /* pass the packet to the user */
4220 callback(user, &pcaphdr, bp);
4221
4222 return 1;
4223 }
4224
4225 static int
pcap_read_linux_mmap_v2(pcap_t * handle,int max_packets,pcap_handler callback,u_char * user)4226 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback,
4227 u_char *user)
4228 {
4229 struct pcap_linux *handlep = handle->priv;
4230 union thdr h;
4231 int pkts = 0;
4232 int ret;
4233
4234 /* wait for frames availability.*/
4235 h.raw = RING_GET_CURRENT_FRAME(handle);
4236 if (!packet_mmap_acquire(h.h2)) {
4237 /*
4238 * The current frame is owned by the kernel; wait for
4239 * a frame to be handed to us.
4240 */
4241 ret = pcap_wait_for_frames_mmap(handle);
4242 if (ret) {
4243 return ret;
4244 }
4245 }
4246
4247 /*
4248 * This can conceivably process more than INT_MAX packets,
4249 * which would overflow the packet count, causing it either
4250 * to look like a negative number, and thus cause us to
4251 * return a value that looks like an error, or overflow
4252 * back into positive territory, and thus cause us to
4253 * return a too-low count.
4254 *
4255 * Therefore, if the packet count is unlimited, we clip
4256 * it at INT_MAX; this routine is not expected to
4257 * process packets indefinitely, so that's not an issue.
4258 */
4259 if (PACKET_COUNT_IS_UNLIMITED(max_packets))
4260 max_packets = INT_MAX;
4261
4262 while (pkts < max_packets) {
4263 /*
4264 * Get the current ring buffer frame, and break if
4265 * it's still owned by the kernel.
4266 */
4267 h.raw = RING_GET_CURRENT_FRAME(handle);
4268 if (!packet_mmap_acquire(h.h2))
4269 break;
4270
4271 ret = pcap_handle_packet_mmap(
4272 handle,
4273 callback,
4274 user,
4275 h.raw,
4276 h.h2->tp_len,
4277 h.h2->tp_mac,
4278 h.h2->tp_snaplen,
4279 h.h2->tp_sec,
4280 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000,
4281 VLAN_VALID(h.h2, h.h2),
4282 h.h2->tp_vlan_tci,
4283 VLAN_TPID(h.h2, h.h2));
4284 if (ret == 1) {
4285 pkts++;
4286 } else if (ret < 0) {
4287 return ret;
4288 }
4289
4290 /*
4291 * Hand this block back to the kernel, and, if we're
4292 * counting blocks that need to be filtered in userland
4293 * after having been filtered by the kernel, count
4294 * the one we've just processed.
4295 */
4296 packet_mmap_release(h.h2);
4297 if (handlep->blocks_to_filter_in_userland > 0) {
4298 handlep->blocks_to_filter_in_userland--;
4299 if (handlep->blocks_to_filter_in_userland == 0) {
4300 /*
4301 * No more blocks need to be filtered
4302 * in userland.
4303 */
4304 handlep->filter_in_userland = 0;
4305 }
4306 }
4307
4308 /* next block */
4309 if (++handle->offset >= handle->cc)
4310 handle->offset = 0;
4311
4312 /* check for break loop condition*/
4313 if (handle->break_loop) {
4314 handle->break_loop = 0;
4315 return PCAP_ERROR_BREAK;
4316 }
4317 }
4318 return pkts;
4319 }
4320
4321 #ifdef HAVE_TPACKET3
4322 static int
pcap_read_linux_mmap_v3(pcap_t * handle,int max_packets,pcap_handler callback,u_char * user)4323 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback,
4324 u_char *user)
4325 {
4326 struct pcap_linux *handlep = handle->priv;
4327 union thdr h;
4328 int pkts = 0;
4329 int ret;
4330
4331 again:
4332 if (handlep->current_packet == NULL) {
4333 /* wait for frames availability.*/
4334 h.raw = RING_GET_CURRENT_FRAME(handle);
4335 if (!packet_mmap_v3_acquire(h.h3)) {
4336 /*
4337 * The current frame is owned by the kernel; wait
4338 * for a frame to be handed to us.
4339 */
4340 ret = pcap_wait_for_frames_mmap(handle);
4341 if (ret) {
4342 return ret;
4343 }
4344 }
4345 }
4346 h.raw = RING_GET_CURRENT_FRAME(handle);
4347 if (!packet_mmap_v3_acquire(h.h3)) {
4348 if (pkts == 0 && handlep->timeout == 0) {
4349 /* Block until we see a packet. */
4350 goto again;
4351 }
4352 return pkts;
4353 }
4354
4355 /*
4356 * This can conceivably process more than INT_MAX packets,
4357 * which would overflow the packet count, causing it either
4358 * to look like a negative number, and thus cause us to
4359 * return a value that looks like an error, or overflow
4360 * back into positive territory, and thus cause us to
4361 * return a too-low count.
4362 *
4363 * Therefore, if the packet count is unlimited, we clip
4364 * it at INT_MAX; this routine is not expected to
4365 * process packets indefinitely, so that's not an issue.
4366 */
4367 if (PACKET_COUNT_IS_UNLIMITED(max_packets))
4368 max_packets = INT_MAX;
4369
4370 while (pkts < max_packets) {
4371 int packets_to_read;
4372
4373 if (handlep->current_packet == NULL) {
4374 h.raw = RING_GET_CURRENT_FRAME(handle);
4375 if (!packet_mmap_v3_acquire(h.h3))
4376 break;
4377
4378 handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt;
4379 handlep->packets_left = h.h3->hdr.bh1.num_pkts;
4380 }
4381 packets_to_read = handlep->packets_left;
4382
4383 if (packets_to_read > (max_packets - pkts)) {
4384 /*
4385 * There are more packets in the buffer than
4386 * the number of packets we have left to
4387 * process to get up to the maximum number
4388 * of packets to process. Only process enough
4389 * of them to get us up to that maximum.
4390 */
4391 packets_to_read = max_packets - pkts;
4392 }
4393
4394 while (packets_to_read-- && !handle->break_loop) {
4395 struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet;
4396 ret = pcap_handle_packet_mmap(
4397 handle,
4398 callback,
4399 user,
4400 handlep->current_packet,
4401 tp3_hdr->tp_len,
4402 tp3_hdr->tp_mac,
4403 tp3_hdr->tp_snaplen,
4404 tp3_hdr->tp_sec,
4405 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000,
4406 VLAN_VALID(tp3_hdr, &tp3_hdr->hv1),
4407 tp3_hdr->hv1.tp_vlan_tci,
4408 VLAN_TPID(tp3_hdr, &tp3_hdr->hv1));
4409 if (ret == 1) {
4410 pkts++;
4411 } else if (ret < 0) {
4412 handlep->current_packet = NULL;
4413 return ret;
4414 }
4415 handlep->current_packet += tp3_hdr->tp_next_offset;
4416 handlep->packets_left--;
4417 }
4418
4419 if (handlep->packets_left <= 0) {
4420 /*
4421 * Hand this block back to the kernel, and, if
4422 * we're counting blocks that need to be
4423 * filtered in userland after having been
4424 * filtered by the kernel, count the one we've
4425 * just processed.
4426 */
4427 packet_mmap_v3_release(h.h3);
4428 if (handlep->blocks_to_filter_in_userland > 0) {
4429 handlep->blocks_to_filter_in_userland--;
4430 if (handlep->blocks_to_filter_in_userland == 0) {
4431 /*
4432 * No more blocks need to be filtered
4433 * in userland.
4434 */
4435 handlep->filter_in_userland = 0;
4436 }
4437 }
4438
4439 /* next block */
4440 if (++handle->offset >= handle->cc)
4441 handle->offset = 0;
4442
4443 handlep->current_packet = NULL;
4444 }
4445
4446 /* check for break loop condition*/
4447 if (handle->break_loop) {
4448 handle->break_loop = 0;
4449 return PCAP_ERROR_BREAK;
4450 }
4451 }
4452 if (pkts == 0 && handlep->timeout == 0) {
4453 /* Block until we see a packet. */
4454 goto again;
4455 }
4456 return pkts;
4457 }
4458 #endif /* HAVE_TPACKET3 */
4459
4460 /*
4461 * Attach the given BPF code to the packet capture device.
4462 */
4463 static int
pcap_setfilter_linux(pcap_t * handle,struct bpf_program * filter)4464 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
4465 {
4466 struct pcap_linux *handlep;
4467 struct sock_fprog fcode;
4468 int can_filter_in_kernel;
4469 int err = 0;
4470 int n, offset;
4471
4472 if (!handle)
4473 return -1;
4474 if (!filter) {
4475 pcapint_strlcpy(handle->errbuf, "setfilter: No filter specified",
4476 PCAP_ERRBUF_SIZE);
4477 return -1;
4478 }
4479
4480 handlep = handle->priv;
4481
4482 /* Make our private copy of the filter */
4483
4484 if (pcapint_install_bpf_program(handle, filter) < 0)
4485 /* pcapint_install_bpf_program() filled in errbuf */
4486 return -1;
4487
4488 /*
4489 * Run user level packet filter by default. Will be overridden if
4490 * installing a kernel filter succeeds.
4491 */
4492 handlep->filter_in_userland = 1;
4493
4494 /* Install kernel level filter if possible */
4495
4496 #ifdef USHRT_MAX
4497 if (handle->fcode.bf_len > USHRT_MAX) {
4498 /*
4499 * fcode.len is an unsigned short for current kernel.
4500 * I have yet to see BPF-Code with that much
4501 * instructions but still it is possible. So for the
4502 * sake of correctness I added this check.
4503 */
4504 fprintf(stderr, "Warning: Filter too complex for kernel\n");
4505 fcode.len = 0;
4506 fcode.filter = NULL;
4507 can_filter_in_kernel = 0;
4508 } else
4509 #endif /* USHRT_MAX */
4510 {
4511 /*
4512 * Oh joy, the Linux kernel uses struct sock_fprog instead
4513 * of struct bpf_program and of course the length field is
4514 * of different size. Pointed out by Sebastian
4515 *
4516 * Oh, and we also need to fix it up so that all "ret"
4517 * instructions with non-zero operands have MAXIMUM_SNAPLEN
4518 * as the operand if we're not capturing in memory-mapped
4519 * mode, and so that, if we're in cooked mode, all memory-
4520 * reference instructions use special magic offsets in
4521 * references to the link-layer header and assume that the
4522 * link-layer payload begins at 0; "fix_program()" will do
4523 * that.
4524 */
4525 switch (fix_program(handle, &fcode)) {
4526
4527 case -1:
4528 default:
4529 /*
4530 * Fatal error; just quit.
4531 * (The "default" case shouldn't happen; we
4532 * return -1 for that reason.)
4533 */
4534 return -1;
4535
4536 case 0:
4537 /*
4538 * The program performed checks that we can't make
4539 * work in the kernel.
4540 */
4541 can_filter_in_kernel = 0;
4542 break;
4543
4544 case 1:
4545 /*
4546 * We have a filter that'll work in the kernel.
4547 */
4548 can_filter_in_kernel = 1;
4549 break;
4550 }
4551 }
4552
4553 /*
4554 * NOTE: at this point, we've set both the "len" and "filter"
4555 * fields of "fcode". As of the 2.6.32.4 kernel, at least,
4556 * those are the only members of the "sock_fprog" structure,
4557 * so we initialize every member of that structure.
4558 *
4559 * If there is anything in "fcode" that is not initialized,
4560 * it is either a field added in a later kernel, or it's
4561 * padding.
4562 *
4563 * If a new field is added, this code needs to be updated
4564 * to set it correctly.
4565 *
4566 * If there are no other fields, then:
4567 *
4568 * if the Linux kernel looks at the padding, it's
4569 * buggy;
4570 *
4571 * if the Linux kernel doesn't look at the padding,
4572 * then if some tool complains that we're passing
4573 * uninitialized data to the kernel, then the tool
4574 * is buggy and needs to understand that it's just
4575 * padding.
4576 */
4577 if (can_filter_in_kernel) {
4578 if ((err = set_kernel_filter(handle, &fcode)) == 0)
4579 {
4580 /*
4581 * Installation succeeded - using kernel filter,
4582 * so userland filtering not needed.
4583 */
4584 handlep->filter_in_userland = 0;
4585 }
4586 else if (err == -1) /* Non-fatal error */
4587 {
4588 /*
4589 * Print a warning if we weren't able to install
4590 * the filter for a reason other than "this kernel
4591 * isn't configured to support socket filters.
4592 */
4593 if (errno == ENOMEM) {
4594 /*
4595 * Either a kernel memory allocation
4596 * failure occurred, or there's too
4597 * much "other/option memory" allocated
4598 * for this socket. Suggest that they
4599 * increase the "other/option memory"
4600 * limit.
4601 */
4602 fprintf(stderr,
4603 "Warning: Couldn't allocate kernel memory for filter: try increasing net.core.optmem_max with sysctl\n");
4604 } else if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
4605 fprintf(stderr,
4606 "Warning: Kernel filter failed: %s\n",
4607 pcap_strerror(errno));
4608 }
4609 }
4610 }
4611
4612 /*
4613 * If we're not using the kernel filter, get rid of any kernel
4614 * filter that might've been there before, e.g. because the
4615 * previous filter could work in the kernel, or because some other
4616 * code attached a filter to the socket by some means other than
4617 * calling "pcap_setfilter()". Otherwise, the kernel filter may
4618 * filter out packets that would pass the new userland filter.
4619 */
4620 if (handlep->filter_in_userland) {
4621 if (reset_kernel_filter(handle) == -1) {
4622 pcapint_fmt_errmsg_for_errno(handle->errbuf,
4623 PCAP_ERRBUF_SIZE, errno,
4624 "can't remove kernel filter");
4625 err = -2; /* fatal error */
4626 }
4627 }
4628
4629 /*
4630 * Free up the copy of the filter that was made by "fix_program()".
4631 */
4632 if (fcode.filter != NULL)
4633 free(fcode.filter);
4634
4635 if (err == -2)
4636 /* Fatal error */
4637 return -1;
4638
4639 /*
4640 * If we're filtering in userland, there's nothing to do;
4641 * the new filter will be used for the next packet.
4642 */
4643 if (handlep->filter_in_userland)
4644 return 0;
4645
4646 /*
4647 * We're filtering in the kernel; the packets present in
4648 * all blocks currently in the ring were already filtered
4649 * by the old filter, and so will need to be filtered in
4650 * userland by the new filter.
4651 *
4652 * Get an upper bound for the number of such blocks; first,
4653 * walk the ring backward and count the free blocks.
4654 */
4655 offset = handle->offset;
4656 if (--offset < 0)
4657 offset = handle->cc - 1;
4658 for (n=0; n < handle->cc; ++n) {
4659 if (--offset < 0)
4660 offset = handle->cc - 1;
4661 if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL)
4662 break;
4663 }
4664
4665 /*
4666 * If we found free blocks, decrement the count of free
4667 * blocks by 1, just in case we lost a race with another
4668 * thread of control that was adding a packet while
4669 * we were counting and that had run the filter before
4670 * we changed it.
4671 *
4672 * XXX - could there be more than one block added in
4673 * this fashion?
4674 *
4675 * XXX - is there a way to avoid that race, e.g. somehow
4676 * wait for all packets that passed the old filter to
4677 * be added to the ring?
4678 */
4679 if (n != 0)
4680 n--;
4681
4682 /*
4683 * Set the count of blocks worth of packets to filter
4684 * in userland to the total number of blocks in the
4685 * ring minus the number of free blocks we found, and
4686 * turn on userland filtering. (The count of blocks
4687 * worth of packets to filter in userland is guaranteed
4688 * not to be zero - n, above, couldn't be set to a
4689 * value > handle->cc, and if it were equal to
4690 * handle->cc, it wouldn't be zero, and thus would
4691 * be decremented to handle->cc - 1.)
4692 */
4693 handlep->blocks_to_filter_in_userland = handle->cc - n;
4694 handlep->filter_in_userland = 1;
4695
4696 return 0;
4697 }
4698
4699 /*
4700 * Return the index of the given device name. Fill ebuf and return
4701 * -1 on failure.
4702 */
4703 static int
iface_get_id(int fd,const char * device,char * ebuf)4704 iface_get_id(int fd, const char *device, char *ebuf)
4705 {
4706 struct ifreq ifr;
4707
4708 memset(&ifr, 0, sizeof(ifr));
4709 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4710
4711 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
4712 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4713 errno, "SIOCGIFINDEX");
4714 return -1;
4715 }
4716
4717 return ifr.ifr_ifindex;
4718 }
4719
4720 /*
4721 * Bind the socket associated with FD to the given device.
4722 * Return 0 on success or a PCAP_ERROR_ value on a hard error.
4723 */
4724 static int
iface_bind(int fd,int ifindex,char * ebuf,int protocol)4725 iface_bind(int fd, int ifindex, char *ebuf, int protocol)
4726 {
4727 struct sockaddr_ll sll;
4728 int ret, err;
4729 socklen_t errlen = sizeof(err);
4730
4731 memset(&sll, 0, sizeof(sll));
4732 sll.sll_family = AF_PACKET;
4733 sll.sll_ifindex = ifindex < 0 ? 0 : ifindex;
4734 sll.sll_protocol = protocol;
4735
4736 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
4737 if (errno == ENETDOWN) {
4738 /*
4739 * Return a "network down" indication, so that
4740 * the application can report that rather than
4741 * saying we had a mysterious failure and
4742 * suggest that they report a problem to the
4743 * libpcap developers.
4744 */
4745 return PCAP_ERROR_IFACE_NOT_UP;
4746 }
4747 if (errno == ENODEV) {
4748 /*
4749 * There's nothing more to say, so clear the
4750 * error message.
4751 */
4752 ebuf[0] = '\0';
4753 ret = PCAP_ERROR_NO_SUCH_DEVICE;
4754 } else {
4755 ret = PCAP_ERROR;
4756 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4757 errno, "bind");
4758 }
4759 return ret;
4760 }
4761
4762 /* Any pending errors, e.g., network is down? */
4763
4764 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
4765 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4766 errno, "getsockopt (SO_ERROR)");
4767 return PCAP_ERROR;
4768 }
4769
4770 if (err == ENETDOWN) {
4771 /*
4772 * Return a "network down" indication, so that
4773 * the application can report that rather than
4774 * saying we had a mysterious failure and
4775 * suggest that they report a problem to the
4776 * libpcap developers.
4777 */
4778 return PCAP_ERROR_IFACE_NOT_UP;
4779 } else if (err > 0) {
4780 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4781 err, "bind");
4782 return PCAP_ERROR;
4783 }
4784
4785 return 0;
4786 }
4787
4788 /*
4789 * Try to enter monitor mode.
4790 * If we have libnl, try to create a new monitor-mode device and
4791 * capture on that; otherwise, just say "not supported".
4792 */
4793 #ifdef HAVE_LIBNL
4794 static int
enter_rfmon_mode(pcap_t * handle,int sock_fd,const char * device)4795 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device)
4796 {
4797 struct pcap_linux *handlep = handle->priv;
4798 int ret;
4799 char phydev_path[PATH_MAX+1];
4800 struct nl80211_state nlstate;
4801 struct ifreq ifr;
4802 u_int n;
4803
4804 /*
4805 * Is this a mac80211 device?
4806 */
4807 ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX);
4808 if (ret < 0)
4809 return ret; /* error */
4810 if (ret == 0)
4811 return 0; /* no error, but not mac80211 device */
4812
4813 /*
4814 * XXX - is this already a monN device?
4815 * If so, we're done.
4816 */
4817
4818 /*
4819 * OK, it's apparently a mac80211 device.
4820 * Try to find an unused monN device for it.
4821 */
4822 ret = nl80211_init(handle, &nlstate, device);
4823 if (ret != 0)
4824 return ret;
4825 for (n = 0; n < UINT_MAX; n++) {
4826 /*
4827 * Try mon{n}.
4828 */
4829 char mondevice[3+10+1]; /* mon{UINT_MAX}\0 */
4830
4831 snprintf(mondevice, sizeof mondevice, "mon%u", n);
4832 ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice);
4833 if (ret == 1) {
4834 /*
4835 * Success. We don't clean up the libnl state
4836 * yet, as we'll be using it later.
4837 */
4838 goto added;
4839 }
4840 if (ret < 0) {
4841 /*
4842 * Hard failure. Just return ret; handle->errbuf
4843 * has already been set.
4844 */
4845 nl80211_cleanup(&nlstate);
4846 return ret;
4847 }
4848 }
4849
4850 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4851 "%s: No free monN interfaces", device);
4852 nl80211_cleanup(&nlstate);
4853 return PCAP_ERROR;
4854
4855 added:
4856
4857 #if 0
4858 /*
4859 * Sleep for .1 seconds.
4860 */
4861 delay.tv_sec = 0;
4862 delay.tv_nsec = 500000000;
4863 nanosleep(&delay, NULL);
4864 #endif
4865
4866 /*
4867 * If we haven't already done so, arrange to have
4868 * "pcap_close_all()" called when we exit.
4869 */
4870 if (!pcapint_do_addexit(handle)) {
4871 /*
4872 * "atexit()" failed; don't put the interface
4873 * in rfmon mode, just give up.
4874 */
4875 del_mon_if(handle, sock_fd, &nlstate, device,
4876 handlep->mondevice);
4877 nl80211_cleanup(&nlstate);
4878 return PCAP_ERROR;
4879 }
4880
4881 /*
4882 * Now configure the monitor interface up.
4883 */
4884 memset(&ifr, 0, sizeof(ifr));
4885 pcapint_strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name));
4886 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) {
4887 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4888 errno, "%s: Can't get flags for %s", device,
4889 handlep->mondevice);
4890 del_mon_if(handle, sock_fd, &nlstate, device,
4891 handlep->mondevice);
4892 nl80211_cleanup(&nlstate);
4893 return PCAP_ERROR;
4894 }
4895 ifr.ifr_flags |= IFF_UP|IFF_RUNNING;
4896 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) {
4897 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4898 errno, "%s: Can't set flags for %s", device,
4899 handlep->mondevice);
4900 del_mon_if(handle, sock_fd, &nlstate, device,
4901 handlep->mondevice);
4902 nl80211_cleanup(&nlstate);
4903 return PCAP_ERROR;
4904 }
4905
4906 /*
4907 * Success. Clean up the libnl state.
4908 */
4909 nl80211_cleanup(&nlstate);
4910
4911 /*
4912 * Note that we have to delete the monitor device when we close
4913 * the handle.
4914 */
4915 handlep->must_do_on_close |= MUST_DELETE_MONIF;
4916
4917 /*
4918 * Add this to the list of pcaps to close when we exit.
4919 */
4920 pcapint_add_to_pcaps_to_close(handle);
4921
4922 return 1;
4923 }
4924 #else /* HAVE_LIBNL */
4925 static int
enter_rfmon_mode(pcap_t * handle _U_,int sock_fd _U_,const char * device _U_)4926 enter_rfmon_mode(pcap_t *handle _U_, int sock_fd _U_, const char *device _U_)
4927 {
4928 /*
4929 * We don't have libnl, so we can't do monitor mode.
4930 */
4931 return 0;
4932 }
4933 #endif /* HAVE_LIBNL */
4934
4935 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
4936 /*
4937 * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values.
4938 */
4939 static const struct {
4940 int soft_timestamping_val;
4941 int pcap_tstamp_val;
4942 } sof_ts_type_map[3] = {
4943 { SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST },
4944 { SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER },
4945 { SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED }
4946 };
4947 #define NUM_SOF_TIMESTAMPING_TYPES (sizeof sof_ts_type_map / sizeof sof_ts_type_map[0])
4948
4949 /*
4950 * Set the list of time stamping types to include all types.
4951 */
4952 static int
iface_set_all_ts_types(pcap_t * handle,char * ebuf)4953 iface_set_all_ts_types(pcap_t *handle, char *ebuf)
4954 {
4955 u_int i;
4956
4957 handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int));
4958 if (handle->tstamp_type_list == NULL) {
4959 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4960 errno, "malloc");
4961 return -1;
4962 }
4963 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++)
4964 handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val;
4965 handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES;
4966 return 0;
4967 }
4968
4969 /*
4970 * Get a list of time stamp types.
4971 */
4972 #ifdef ETHTOOL_GET_TS_INFO
4973 static int
iface_get_ts_types(const char * device,pcap_t * handle,char * ebuf)4974 iface_get_ts_types(const char *device, pcap_t *handle, char *ebuf)
4975 {
4976 int fd;
4977 struct ifreq ifr;
4978 struct ethtool_ts_info info;
4979 int num_ts_types;
4980 u_int i, j;
4981
4982 /*
4983 * This doesn't apply to the "any" device; you can't say "turn on
4984 * hardware time stamping for all devices that exist now and arrange
4985 * that it be turned on for any device that appears in the future",
4986 * and not all devices even necessarily *support* hardware time
4987 * stamping, so don't report any time stamp types.
4988 */
4989 if (strcmp(device, "any") == 0) {
4990 handle->tstamp_type_list = NULL;
4991 return 0;
4992 }
4993
4994 /*
4995 * Create a socket from which to fetch time stamping capabilities.
4996 */
4997 fd = get_if_ioctl_socket();
4998 if (fd < 0) {
4999 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5000 errno, "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO)");
5001 return -1;
5002 }
5003
5004 memset(&ifr, 0, sizeof(ifr));
5005 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5006 memset(&info, 0, sizeof(info));
5007 info.cmd = ETHTOOL_GET_TS_INFO;
5008 ifr.ifr_data = (caddr_t)&info;
5009 if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) {
5010 int save_errno = errno;
5011
5012 close(fd);
5013 switch (save_errno) {
5014
5015 case EOPNOTSUPP:
5016 case EINVAL:
5017 /*
5018 * OK, this OS version or driver doesn't support
5019 * asking for the time stamping types, so let's
5020 * just return all the possible types.
5021 */
5022 if (iface_set_all_ts_types(handle, ebuf) == -1)
5023 return -1;
5024 return 0;
5025
5026 case ENODEV:
5027 /*
5028 * OK, no such device.
5029 * The user will find that out when they try to
5030 * activate the device; just return an empty
5031 * list of time stamp types.
5032 */
5033 handle->tstamp_type_list = NULL;
5034 return 0;
5035
5036 default:
5037 /*
5038 * Other error.
5039 */
5040 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5041 save_errno,
5042 "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed",
5043 device);
5044 return -1;
5045 }
5046 }
5047 close(fd);
5048
5049 /*
5050 * Do we support hardware time stamping of *all* packets?
5051 */
5052 if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) {
5053 /*
5054 * No, so don't report any time stamp types.
5055 *
5056 * XXX - some devices either don't report
5057 * HWTSTAMP_FILTER_ALL when they do support it, or
5058 * report HWTSTAMP_FILTER_ALL but map it to only
5059 * time stamping a few PTP packets. See
5060 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2
5061 *
5062 * Maybe that got fixed later.
5063 */
5064 handle->tstamp_type_list = NULL;
5065 return 0;
5066 }
5067
5068 num_ts_types = 0;
5069 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
5070 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val)
5071 num_ts_types++;
5072 }
5073 if (num_ts_types != 0) {
5074 handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int));
5075 if (handle->tstamp_type_list == NULL) {
5076 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5077 errno, "malloc");
5078 return -1;
5079 }
5080 for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
5081 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) {
5082 handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val;
5083 j++;
5084 }
5085 }
5086 handle->tstamp_type_count = num_ts_types;
5087 } else
5088 handle->tstamp_type_list = NULL;
5089
5090 return 0;
5091 }
5092 #else /* ETHTOOL_GET_TS_INFO */
5093 static int
iface_get_ts_types(const char * device,pcap_t * handle,char * ebuf)5094 iface_get_ts_types(const char *device, pcap_t *handle, char *ebuf)
5095 {
5096 /*
5097 * This doesn't apply to the "any" device; you can't say "turn on
5098 * hardware time stamping for all devices that exist now and arrange
5099 * that it be turned on for any device that appears in the future",
5100 * and not all devices even necessarily *support* hardware time
5101 * stamping, so don't report any time stamp types.
5102 */
5103 if (strcmp(device, "any") == 0) {
5104 handle->tstamp_type_list = NULL;
5105 return 0;
5106 }
5107
5108 /*
5109 * We don't have an ioctl to use to ask what's supported,
5110 * so say we support everything.
5111 */
5112 if (iface_set_all_ts_types(handle, ebuf) == -1)
5113 return -1;
5114 return 0;
5115 }
5116 #endif /* ETHTOOL_GET_TS_INFO */
5117 #else /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
5118 static int
iface_get_ts_types(const char * device _U_,pcap_t * p _U_,char * ebuf _U_)5119 iface_get_ts_types(const char *device _U_, pcap_t *p _U_, char *ebuf _U_)
5120 {
5121 /*
5122 * Nothing to fetch, so it always "succeeds".
5123 */
5124 return 0;
5125 }
5126 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
5127
5128 /*
5129 * Find out if we have any form of fragmentation/reassembly offloading.
5130 *
5131 * We do so using SIOCETHTOOL checking for various types of offloading;
5132 * if SIOCETHTOOL isn't defined, or we don't have any #defines for any
5133 * of the types of offloading, there's nothing we can do to check, so
5134 * we just say "no, we don't".
5135 *
5136 * We treat EOPNOTSUPP, EINVAL and, if eperm_ok is true, EPERM as
5137 * indications that the operation isn't supported. We do EPERM
5138 * weirdly because the SIOCETHTOOL code in later kernels 1) doesn't
5139 * support ETHTOOL_GUFO, 2) also doesn't include it in the list
5140 * of ethtool operations that don't require CAP_NET_ADMIN privileges,
5141 * and 3) does the "is this permitted" check before doing the "is
5142 * this even supported" check, so it fails with "this is not permitted"
5143 * rather than "this is not even supported". To work around this
5144 * annoyance, we only treat EPERM as an error for the first feature,
5145 * and assume that they all do the same permission checks, so if the
5146 * first one is allowed all the others are allowed if supported.
5147 */
5148 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO))
5149 static int
iface_ethtool_flag_ioctl(pcap_t * handle,int cmd,const char * cmdname,int eperm_ok)5150 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname,
5151 int eperm_ok)
5152 {
5153 struct ifreq ifr;
5154 struct ethtool_value eval;
5155
5156 memset(&ifr, 0, sizeof(ifr));
5157 pcapint_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
5158 eval.cmd = cmd;
5159 eval.data = 0;
5160 ifr.ifr_data = (caddr_t)&eval;
5161 if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) {
5162 if (errno == EOPNOTSUPP || errno == EINVAL ||
5163 (errno == EPERM && eperm_ok)) {
5164 /*
5165 * OK, let's just return 0, which, in our
5166 * case, either means "no, what we're asking
5167 * about is not enabled" or "all the flags
5168 * are clear (i.e., nothing is enabled)".
5169 */
5170 return 0;
5171 }
5172 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5173 errno, "%s: SIOCETHTOOL(%s) ioctl failed",
5174 handle->opt.device, cmdname);
5175 return -1;
5176 }
5177 return eval.data;
5178 }
5179
5180 /*
5181 * XXX - it's annoying that we have to check for offloading at all, but,
5182 * given that we have to, it's still annoying that we have to check for
5183 * particular types of offloading, especially that shiny new types of
5184 * offloading may be added - and, worse, may not be checkable with
5185 * a particular ETHTOOL_ operation; ETHTOOL_GFEATURES would, in
5186 * theory, give those to you, but the actual flags being used are
5187 * opaque (defined in a non-uapi header), and there doesn't seem to
5188 * be any obvious way to ask the kernel what all the offloading flags
5189 * are - at best, you can ask for a set of strings(!) to get *names*
5190 * for various flags. (That whole mechanism appears to have been
5191 * designed for the sole purpose of letting ethtool report flags
5192 * by name and set flags by name, with the names having no semantics
5193 * ethtool understands.)
5194 */
5195 static int
iface_get_offload(pcap_t * handle)5196 iface_get_offload(pcap_t *handle)
5197 {
5198 int ret;
5199
5200 #ifdef ETHTOOL_GTSO
5201 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO", 0);
5202 if (ret == -1)
5203 return -1;
5204 if (ret)
5205 return 1; /* TCP segmentation offloading on */
5206 #endif
5207
5208 #ifdef ETHTOOL_GGSO
5209 /*
5210 * XXX - will this cause large unsegmented packets to be
5211 * handed to PF_PACKET sockets on transmission? If not,
5212 * this need not be checked.
5213 */
5214 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO", 0);
5215 if (ret == -1)
5216 return -1;
5217 if (ret)
5218 return 1; /* generic segmentation offloading on */
5219 #endif
5220
5221 #ifdef ETHTOOL_GFLAGS
5222 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS", 0);
5223 if (ret == -1)
5224 return -1;
5225 if (ret & ETH_FLAG_LRO)
5226 return 1; /* large receive offloading on */
5227 #endif
5228
5229 #ifdef ETHTOOL_GGRO
5230 /*
5231 * XXX - will this cause large reassembled packets to be
5232 * handed to PF_PACKET sockets on receipt? If not,
5233 * this need not be checked.
5234 */
5235 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO", 0);
5236 if (ret == -1)
5237 return -1;
5238 if (ret)
5239 return 1; /* generic (large) receive offloading on */
5240 #endif
5241
5242 #ifdef ETHTOOL_GUFO
5243 /*
5244 * Do this one last, as support for it was removed in later
5245 * kernels, and it fails with EPERM on those kernels rather
5246 * than with EOPNOTSUPP (see explanation in comment for
5247 * iface_ethtool_flag_ioctl()).
5248 */
5249 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO", 1);
5250 if (ret == -1)
5251 return -1;
5252 if (ret)
5253 return 1; /* UDP fragmentation offloading on */
5254 #endif
5255
5256 return 0;
5257 }
5258 #else /* SIOCETHTOOL */
5259 static int
iface_get_offload(pcap_t * handle _U_)5260 iface_get_offload(pcap_t *handle _U_)
5261 {
5262 /*
5263 * XXX - do we need to get this information if we don't
5264 * have the ethtool ioctls? If so, how do we do that?
5265 */
5266 return 0;
5267 }
5268 #endif /* SIOCETHTOOL */
5269
5270 static struct dsa_proto {
5271 const char *name;
5272 bpf_u_int32 linktype;
5273 } dsa_protos[] = {
5274 /*
5275 * None is special and indicates that the interface does not have
5276 * any tagging protocol configured, and is therefore a standard
5277 * Ethernet interface.
5278 */
5279 { "none", DLT_EN10MB },
5280 { "brcm", DLT_DSA_TAG_BRCM },
5281 { "brcm-prepend", DLT_DSA_TAG_BRCM_PREPEND },
5282 { "dsa", DLT_DSA_TAG_DSA },
5283 { "edsa", DLT_DSA_TAG_EDSA },
5284 };
5285
5286 static int
iface_dsa_get_proto_info(const char * device,pcap_t * handle)5287 iface_dsa_get_proto_info(const char *device, pcap_t *handle)
5288 {
5289 char *pathstr;
5290 unsigned int i;
5291 /*
5292 * Make this significantly smaller than PCAP_ERRBUF_SIZE;
5293 * the tag *shouldn't* have some huge long name, and making
5294 * it smaller keeps newer versions of GCC from whining that
5295 * the error message if we don't support the tag could
5296 * overflow the error message buffer.
5297 */
5298 char buf[128];
5299 ssize_t r;
5300 int fd;
5301
5302 fd = asprintf(&pathstr, "/sys/class/net/%s/dsa/tagging", device);
5303 if (fd < 0) {
5304 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5305 fd, "asprintf");
5306 return PCAP_ERROR;
5307 }
5308
5309 fd = open(pathstr, O_RDONLY);
5310 free(pathstr);
5311 /*
5312 * This is not fatal, kernel >= 4.20 *might* expose this attribute
5313 */
5314 if (fd < 0)
5315 return 0;
5316
5317 r = read(fd, buf, sizeof(buf) - 1);
5318 if (r <= 0) {
5319 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5320 errno, "read");
5321 close(fd);
5322 return PCAP_ERROR;
5323 }
5324 close(fd);
5325
5326 /*
5327 * Buffer should be LF terminated.
5328 */
5329 if (buf[r - 1] == '\n')
5330 r--;
5331 buf[r] = '\0';
5332
5333 for (i = 0; i < sizeof(dsa_protos) / sizeof(dsa_protos[0]); i++) {
5334 if (strlen(dsa_protos[i].name) == (size_t)r &&
5335 strcmp(buf, dsa_protos[i].name) == 0) {
5336 handle->linktype = dsa_protos[i].linktype;
5337 switch (dsa_protos[i].linktype) {
5338 case DLT_EN10MB:
5339 return 0;
5340 default:
5341 return 1;
5342 }
5343 }
5344 }
5345
5346 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
5347 "unsupported DSA tag: %s", buf);
5348
5349 return PCAP_ERROR;
5350 }
5351
5352 /*
5353 * Query the kernel for the MTU of the given interface.
5354 */
5355 static int
iface_get_mtu(int fd,const char * device,char * ebuf)5356 iface_get_mtu(int fd, const char *device, char *ebuf)
5357 {
5358 struct ifreq ifr;
5359
5360 if (!device)
5361 return BIGGER_THAN_ALL_MTUS;
5362
5363 memset(&ifr, 0, sizeof(ifr));
5364 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5365
5366 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
5367 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5368 errno, "SIOCGIFMTU");
5369 return -1;
5370 }
5371
5372 return ifr.ifr_mtu;
5373 }
5374
5375 /*
5376 * Get the hardware type of the given interface as ARPHRD_xxx constant.
5377 */
5378 static int
iface_get_arptype(int fd,const char * device,char * ebuf)5379 iface_get_arptype(int fd, const char *device, char *ebuf)
5380 {
5381 struct ifreq ifr;
5382 int ret;
5383
5384 memset(&ifr, 0, sizeof(ifr));
5385 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5386
5387 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
5388 if (errno == ENODEV) {
5389 /*
5390 * No such device.
5391 *
5392 * There's nothing more to say, so clear
5393 * the error message.
5394 */
5395 ret = PCAP_ERROR_NO_SUCH_DEVICE;
5396 ebuf[0] = '\0';
5397 } else {
5398 ret = PCAP_ERROR;
5399 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5400 errno, "SIOCGIFHWADDR");
5401 }
5402 return ret;
5403 }
5404
5405 return ifr.ifr_hwaddr.sa_family;
5406 }
5407
5408 static int
fix_program(pcap_t * handle,struct sock_fprog * fcode)5409 fix_program(pcap_t *handle, struct sock_fprog *fcode)
5410 {
5411 struct pcap_linux *handlep = handle->priv;
5412 size_t prog_size;
5413 register int i;
5414 register struct bpf_insn *p;
5415 struct bpf_insn *f;
5416 int len;
5417
5418 /*
5419 * Make a copy of the filter, and modify that copy if
5420 * necessary.
5421 */
5422 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
5423 len = handle->fcode.bf_len;
5424 f = (struct bpf_insn *)malloc(prog_size);
5425 if (f == NULL) {
5426 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5427 errno, "malloc");
5428 return -1;
5429 }
5430 memcpy(f, handle->fcode.bf_insns, prog_size);
5431 fcode->len = len;
5432 fcode->filter = (struct sock_filter *) f;
5433
5434 for (i = 0; i < len; ++i) {
5435 p = &f[i];
5436 /*
5437 * What type of instruction is this?
5438 */
5439 switch (BPF_CLASS(p->code)) {
5440
5441 case BPF_LD:
5442 case BPF_LDX:
5443 /*
5444 * It's a load instruction; is it loading
5445 * from the packet?
5446 */
5447 switch (BPF_MODE(p->code)) {
5448
5449 case BPF_ABS:
5450 case BPF_IND:
5451 case BPF_MSH:
5452 /*
5453 * Yes; are we in cooked mode?
5454 */
5455 if (handlep->cooked) {
5456 /*
5457 * Yes, so we need to fix this
5458 * instruction.
5459 */
5460 if (fix_offset(handle, p) < 0) {
5461 /*
5462 * We failed to do so.
5463 * Return 0, so our caller
5464 * knows to punt to userland.
5465 */
5466 return 0;
5467 }
5468 }
5469 break;
5470 }
5471 break;
5472 }
5473 }
5474 return 1; /* we succeeded */
5475 }
5476
5477 static int
fix_offset(pcap_t * handle,struct bpf_insn * p)5478 fix_offset(pcap_t *handle, struct bpf_insn *p)
5479 {
5480 /*
5481 * Existing references to auxiliary data shouldn't be adjusted.
5482 *
5483 * Note that SKF_AD_OFF is negative, but p->k is unsigned, so
5484 * we use >= and cast SKF_AD_OFF to unsigned.
5485 */
5486 if (p->k >= (bpf_u_int32)SKF_AD_OFF)
5487 return 0;
5488 if (handle->linktype == DLT_LINUX_SLL2) {
5489 /*
5490 * What's the offset?
5491 */
5492 if (p->k >= SLL2_HDR_LEN) {
5493 /*
5494 * It's within the link-layer payload; that starts
5495 * at an offset of 0, as far as the kernel packet
5496 * filter is concerned, so subtract the length of
5497 * the link-layer header.
5498 */
5499 p->k -= SLL2_HDR_LEN;
5500 } else if (p->k == 0) {
5501 /*
5502 * It's the protocol field; map it to the
5503 * special magic kernel offset for that field.
5504 */
5505 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5506 } else if (p->k == 4) {
5507 /*
5508 * It's the ifindex field; map it to the
5509 * special magic kernel offset for that field.
5510 */
5511 p->k = SKF_AD_OFF + SKF_AD_IFINDEX;
5512 } else if (p->k == 10) {
5513 /*
5514 * It's the packet type field; map it to the
5515 * special magic kernel offset for that field.
5516 */
5517 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5518 } else if ((bpf_int32)(p->k) > 0) {
5519 /*
5520 * It's within the header, but it's not one of
5521 * those fields; we can't do that in the kernel,
5522 * so punt to userland.
5523 */
5524 return -1;
5525 }
5526 } else {
5527 /*
5528 * What's the offset?
5529 */
5530 if (p->k >= SLL_HDR_LEN) {
5531 /*
5532 * It's within the link-layer payload; that starts
5533 * at an offset of 0, as far as the kernel packet
5534 * filter is concerned, so subtract the length of
5535 * the link-layer header.
5536 */
5537 p->k -= SLL_HDR_LEN;
5538 } else if (p->k == 0) {
5539 /*
5540 * It's the packet type field; map it to the
5541 * special magic kernel offset for that field.
5542 */
5543 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5544 } else if (p->k == 14) {
5545 /*
5546 * It's the protocol field; map it to the
5547 * special magic kernel offset for that field.
5548 */
5549 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5550 } else if ((bpf_int32)(p->k) > 0) {
5551 /*
5552 * It's within the header, but it's not one of
5553 * those fields; we can't do that in the kernel,
5554 * so punt to userland.
5555 */
5556 return -1;
5557 }
5558 }
5559 return 0;
5560 }
5561
5562 static int
set_kernel_filter(pcap_t * handle,struct sock_fprog * fcode)5563 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
5564 {
5565 int total_filter_on = 0;
5566 int save_mode;
5567 int ret;
5568 int save_errno;
5569
5570 /*
5571 * The socket filter code doesn't discard all packets queued
5572 * up on the socket when the filter is changed; this means
5573 * that packets that don't match the new filter may show up
5574 * after the new filter is put onto the socket, if those
5575 * packets haven't yet been read.
5576 *
5577 * This means, for example, that if you do a tcpdump capture
5578 * with a filter, the first few packets in the capture might
5579 * be packets that wouldn't have passed the filter.
5580 *
5581 * We therefore discard all packets queued up on the socket
5582 * when setting a kernel filter. (This isn't an issue for
5583 * userland filters, as the userland filtering is done after
5584 * packets are queued up.)
5585 *
5586 * To flush those packets, we put the socket in read-only mode,
5587 * and read packets from the socket until there are no more to
5588 * read.
5589 *
5590 * In order to keep that from being an infinite loop - i.e.,
5591 * to keep more packets from arriving while we're draining
5592 * the queue - we put the "total filter", which is a filter
5593 * that rejects all packets, onto the socket before draining
5594 * the queue.
5595 *
5596 * This code deliberately ignores any errors, so that you may
5597 * get bogus packets if an error occurs, rather than having
5598 * the filtering done in userland even if it could have been
5599 * done in the kernel.
5600 */
5601 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5602 &total_fcode, sizeof(total_fcode)) == 0) {
5603 char drain[1];
5604
5605 /*
5606 * Note that we've put the total filter onto the socket.
5607 */
5608 total_filter_on = 1;
5609
5610 /*
5611 * Save the socket's current mode, and put it in
5612 * non-blocking mode; we drain it by reading packets
5613 * until we get an error (which is normally a
5614 * "nothing more to be read" error).
5615 */
5616 save_mode = fcntl(handle->fd, F_GETFL, 0);
5617 if (save_mode == -1) {
5618 pcapint_fmt_errmsg_for_errno(handle->errbuf,
5619 PCAP_ERRBUF_SIZE, errno,
5620 "can't get FD flags when changing filter");
5621 return -2;
5622 }
5623 if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) {
5624 pcapint_fmt_errmsg_for_errno(handle->errbuf,
5625 PCAP_ERRBUF_SIZE, errno,
5626 "can't set nonblocking mode when changing filter");
5627 return -2;
5628 }
5629 while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0)
5630 ;
5631 save_errno = errno;
5632 if (save_errno != EAGAIN) {
5633 /*
5634 * Fatal error.
5635 *
5636 * If we can't restore the mode or reset the
5637 * kernel filter, there's nothing we can do.
5638 */
5639 (void)fcntl(handle->fd, F_SETFL, save_mode);
5640 (void)reset_kernel_filter(handle);
5641 pcapint_fmt_errmsg_for_errno(handle->errbuf,
5642 PCAP_ERRBUF_SIZE, save_errno,
5643 "recv failed when changing filter");
5644 return -2;
5645 }
5646 if (fcntl(handle->fd, F_SETFL, save_mode) == -1) {
5647 pcapint_fmt_errmsg_for_errno(handle->errbuf,
5648 PCAP_ERRBUF_SIZE, errno,
5649 "can't restore FD flags when changing filter");
5650 return -2;
5651 }
5652 }
5653
5654 /*
5655 * Now attach the new filter.
5656 */
5657 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5658 fcode, sizeof(*fcode));
5659 if (ret == -1 && total_filter_on) {
5660 /*
5661 * Well, we couldn't set that filter on the socket,
5662 * but we could set the total filter on the socket.
5663 *
5664 * This could, for example, mean that the filter was
5665 * too big to put into the kernel, so we'll have to
5666 * filter in userland; in any case, we'll be doing
5667 * filtering in userland, so we need to remove the
5668 * total filter so we see packets.
5669 */
5670 save_errno = errno;
5671
5672 /*
5673 * If this fails, we're really screwed; we have the
5674 * total filter on the socket, and it won't come off.
5675 * Report it as a fatal error.
5676 */
5677 if (reset_kernel_filter(handle) == -1) {
5678 pcapint_fmt_errmsg_for_errno(handle->errbuf,
5679 PCAP_ERRBUF_SIZE, errno,
5680 "can't remove kernel total filter");
5681 return -2; /* fatal error */
5682 }
5683
5684 errno = save_errno;
5685 }
5686 return ret;
5687 }
5688
5689 static int
reset_kernel_filter(pcap_t * handle)5690 reset_kernel_filter(pcap_t *handle)
5691 {
5692 int ret;
5693 /*
5694 * setsockopt() barfs unless it get a dummy parameter.
5695 * valgrind whines unless the value is initialized,
5696 * as it has no idea that setsockopt() ignores its
5697 * parameter.
5698 */
5699 int dummy = 0;
5700
5701 ret = setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
5702 &dummy, sizeof(dummy));
5703 /*
5704 * Ignore ENOENT - it means "we don't have a filter", so there
5705 * was no filter to remove, and there's still no filter.
5706 *
5707 * Also ignore ENONET, as a lot of kernel versions had a
5708 * typo where ENONET, rather than ENOENT, was returned.
5709 */
5710 if (ret == -1 && errno != ENOENT && errno != ENONET)
5711 return -1;
5712 return 0;
5713 }
5714
5715 int
pcap_set_protocol_linux(pcap_t * p,int protocol)5716 pcap_set_protocol_linux(pcap_t *p, int protocol)
5717 {
5718 if (pcapint_check_activated(p))
5719 return (PCAP_ERROR_ACTIVATED);
5720 p->opt.protocol = protocol;
5721 return (0);
5722 }
5723
5724 /*
5725 * Libpcap version string.
5726 */
5727 const char *
pcap_lib_version(void)5728 pcap_lib_version(void)
5729 {
5730 #if defined(HAVE_TPACKET3)
5731 return (PCAP_VERSION_STRING " (with TPACKET_V3)");
5732 #else
5733 return (PCAP_VERSION_STRING " (with TPACKET_V2)");
5734 #endif
5735 }
5736