1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28
29 /*
30 * University Copyright- Copyright (c) 1982, 1986, 1988
31 * The Regents of the University of California
32 * All Rights Reserved
33 *
34 * University Acknowledgment- Portions of this document are derived from
35 * software developed by the University of California, Berkeley, and its
36 * contributors.
37 */
38
39 /*
40 * The maximum supported file system size (in sectors) is the
41 * number of frags that can be represented in an int32_t field
42 * (INT_MAX) times the maximum number of sectors per frag. Since
43 * the maximum frag size is MAXBSIZE, the maximum number of sectors
44 * per frag is MAXBSIZE/DEV_BSIZE.
45 */
46 #define FS_MAX (((diskaddr_t)INT_MAX) * (MAXBSIZE/DEV_BSIZE))
47
48 /*
49 * make file system for cylinder-group style file systems
50 *
51 * usage:
52 *
53 * mkfs [-F FSType] [-V] [-G [-P]] [-M dirname] [-m] [options]
54 * [-o specific_options] special size
55 * [nsect ntrack bsize fsize cpg minfree rps nbpi opt apc rotdelay
56 * 2 3 4 5 6 7 8 9 10 11 12
57 * nrpos maxcontig mtb]
58 * 13 14 15
59 *
60 * where specific_options are:
61 * N - no create
62 * nsect - The number of sectors per track
63 * ntrack - The number of tracks per cylinder
64 * bsize - block size
65 * fragsize - fragment size
66 * cgsize - The number of disk cylinders per cylinder group.
67 * free - minimum free space
68 * rps - rotational speed (rev/sec).
69 * nbpi - number of data bytes per allocated inode
70 * opt - optimization (space, time)
71 * apc - number of alternates
72 * gap - gap size
73 * nrpos - number of rotational positions
74 * maxcontig - maximum number of logical blocks that will be
75 * allocated contiguously before inserting rotational delay
76 * mtb - if "y", set up file system for eventual growth to over a
77 * a terabyte
78 * -P Do not grow the file system, but print on stdout the maximal
79 * size in sectors to which the file system can be increased. The calculated
80 * size is limited by the value provided by the operand size.
81 *
82 * Note that -P is a project-private interface and together with -G intended
83 * to be used only by the growfs script. It is therefore purposely not
84 * documented in the man page.
85 * The -P option is covered by PSARC case 2003/422.
86 */
87
88 /*
89 * The following constants set the defaults used for the number
90 * of sectors/track (fs_nsect), and number of tracks/cyl (fs_ntrak).
91 *
92 * NSECT NTRAK
93 * 72MB CDC 18 9
94 * 30MB CDC 18 5
95 * 720KB Diskette 9 2
96 *
97 * However the defaults will be different for disks larger than CHSLIMIT.
98 */
99
100 #define DFLNSECT 32
101 #define DFLNTRAK 16
102
103 /*
104 * The following default sectors and tracks values are used for
105 * non-efi disks that are larger than the CHS addressing limit. The
106 * existing default cpg of 16 (DESCPG) holds good for larger disks too.
107 */
108 #define DEF_SECTORS_EFI 128
109 #define DEF_TRACKS_EFI 48
110
111 /*
112 * The maximum number of cylinders in a group depends upon how much
113 * information can be stored on a single cylinder. The default is to
114 * use 16 cylinders per group. This is effectively tradition - it was
115 * the largest value acceptable under SunOs 4.1
116 */
117 #define DESCPG 16 /* desired fs_cpg */
118
119 /*
120 * The following two constants set the default block and fragment sizes.
121 * Both constants must be a power of 2 and meet the following constraints:
122 * MINBSIZE <= DESBLKSIZE <= MAXBSIZE
123 * DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
124 * DESBLKSIZE / DESFRAGSIZE <= 8
125 */
126 #define DESBLKSIZE 8192
127 #define DESFRAGSIZE 1024
128
129 /*
130 * MINFREE gives the minimum acceptable percentage of file system
131 * blocks which may be free. If the freelist drops below this level
132 * only the superuser may continue to allocate blocks. This may
133 * be set to 0 if no reserve of free blocks is deemed necessary,
134 * however throughput drops by fifty percent if the file system
135 * is run at between 90% and 100% full; thus the default value of
136 * fs_minfree is 10%. With 10% free space, fragmentation is not a
137 * problem, so we choose to optimize for time.
138 */
139 #define MINFREE 10
140 #define DEFAULTOPT FS_OPTTIME
141
142 /*
143 * ROTDELAY gives the minimum number of milliseconds to initiate
144 * another disk transfer on the same cylinder. It is no longer used
145 * and will always default to 0.
146 */
147 #define ROTDELAY 0
148
149 /*
150 * MAXBLKPG determines the maximum number of data blocks which are
151 * placed in a single cylinder group. The default is one indirect
152 * block worth of data blocks.
153 */
154 #define MAXBLKPG(bsize) ((bsize) / sizeof (daddr32_t))
155
156 /*
157 * Each file system has a number of inodes statically allocated.
158 * We allocate one inode slot per NBPI bytes, expecting this
159 * to be far more than we will ever need.
160 */
161 #define NBPI 2048 /* Number Bytes Per Inode */
162 #define MTB_NBPI (MB) /* Number Bytes Per Inode for multi-terabyte */
163
164 /*
165 * Disks are assumed to rotate at 60HZ, unless otherwise specified.
166 */
167 #define DEFHZ 60
168
169 /*
170 * Cylinder group related limits.
171 *
172 * For each cylinder we keep track of the availability of blocks at different
173 * rotational positions, so that we can lay out the data to be picked
174 * up with minimum rotational latency. NRPOS is the number of rotational
175 * positions which we distinguish. With NRPOS 8 the resolution of our
176 * summary information is 2ms for a typical 3600 rpm drive.
177 */
178 #define NRPOS 8 /* number distinct rotational positions */
179
180 #ifdef DEBUG
181 #define dprintf(x) printf x
182 #else
183 #define dprintf(x)
184 #endif
185
186 /*
187 * For the -N option, when calculating the backup superblocks, do not print
188 * them if we are not really sure. We may have to try an alternate method of
189 * arriving at the superblocks. So defer printing till a handful of superblocks
190 * look good.
191 */
192 #define tprintf(x) if (Nflag && retry) \
193 (void) strncat(tmpbuf, x, strlen(x)); \
194 else \
195 (void) fprintf(stderr, x);
196
197 #define ALTSB 32 /* Location of first backup superblock */
198
199 /*
200 * range_check "user_supplied" flag values.
201 */
202 #define RC_DEFAULT 0
203 #define RC_KEYWORD 1
204 #define RC_POSITIONAL 2
205
206 /*
207 * ufs hole
208 */
209 #define UFS_HOLE -1
210
211 #ifndef STANDALONE
212 #include <stdio.h>
213 #include <sys/mnttab.h>
214 #endif
215
216 #include <stdlib.h>
217 #include <unistd.h>
218 #include <malloc.h>
219 #include <string.h>
220 #include <strings.h>
221 #include <ctype.h>
222 #include <errno.h>
223 #include <sys/param.h>
224 #include <time.h>
225 #include <sys/types.h>
226 #include <sys/sysmacros.h>
227 #include <sys/vnode.h>
228 #include <sys/fs/ufs_fsdir.h>
229 #include <sys/fs/ufs_inode.h>
230 #include <sys/fs/ufs_fs.h>
231 #include <sys/fs/ufs_log.h>
232 #include <sys/mntent.h>
233 #include <sys/filio.h>
234 #include <limits.h>
235 #include <sys/int_const.h>
236 #include <signal.h>
237 #include <sys/efi_partition.h>
238 #include "roll_log.h"
239
240 #define bcopy(f, t, n) (void) memcpy(t, f, n)
241 #define bzero(s, n) (void) memset(s, 0, n)
242 #define bcmp(s, d, n) memcmp(s, d, n)
243
244 #define index(s, r) strchr(s, r)
245 #define rindex(s, r) strrchr(s, r)
246
247 #include <sys/stat.h>
248 #include <sys/statvfs.h>
249 #include <locale.h>
250 #include <fcntl.h>
251 #include <sys/isa_defs.h> /* for ENDIAN defines */
252 #include <sys/vtoc.h>
253
254 #include <sys/dkio.h>
255 #include <sys/asynch.h>
256
257 extern offset_t llseek();
258 extern char *getfullblkname();
259 extern long lrand48();
260
261 extern int optind;
262 extern char *optarg;
263
264
265 /*
266 * The size of a cylinder group is calculated by CGSIZE. The maximum size
267 * is limited by the fact that cylinder groups are at most one block.
268 * Its size is derived from the size of the maps maintained in the
269 * cylinder group and the (struct cg) size.
270 */
271 #define CGSIZE(fs) \
272 /* base cg */ (sizeof (struct cg) + \
273 /* blktot size */ (fs)->fs_cpg * sizeof (long) + \
274 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof (short) + \
275 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
276 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
277
278 /*
279 * We limit the size of the inode map to be no more than a
280 * third of the cylinder group space, since we must leave at
281 * least an equal amount of space for the block map.
282 *
283 * N.B.: MAXIpG must be a multiple of INOPB(fs).
284 */
285 #define MAXIpG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
286
287 /*
288 * Same as MAXIpG, but parameterized by the block size (b) and the
289 * cylinder group divisor (d), which is the reciprocal of the fraction of the
290 * cylinder group overhead block that is used for the inode map. So for
291 * example, if d = 5, the macro's computation assumes that 1/5 of the
292 * cylinder group overhead block can be dedicated to the inode map.
293 */
294 #define MAXIpG_B(b, d) roundup((b) * NBBY / (d), (b) / sizeof (struct dinode))
295
296 #define UMASK 0755
297 #define MAXINOPB (MAXBSIZE / sizeof (struct dinode))
298 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
299 #define MB (1024*1024)
300 #define BETWEEN(x, l, h) ((x) >= (l) && (x) <= (h))
301
302 /*
303 * Used to set the inode generation number. Since both inodes and dinodes
304 * are dealt with, we really need a pointer to an icommon here.
305 */
306 #define IRANDOMIZE(icp) (icp)->ic_gen = lrand48();
307
308 /*
309 * Flags for number()
310 */
311 #define ALLOW_PERCENT 0x01 /* allow trailing `%' on number */
312 #define ALLOW_MS1 0x02 /* allow trailing `ms', state 1 */
313 #define ALLOW_MS2 0x04 /* allow trailing `ms', state 2 */
314 #define ALLOW_END_ONLY 0x08 /* must be at end of number & suffixes */
315
316 #define MAXAIO 1000 /* maximum number of outstanding I/O's we'll manage */
317 #define BLOCK 1 /* block in aiowait */
318 #define NOBLOCK 0 /* don't block in aiowait */
319
320 #define RELEASE 1 /* free an aio buffer after use */
321 #define SAVE 0 /* don't free the buffer */
322
323 typedef struct aio_trans {
324 aio_result_t resultbuf;
325 diskaddr_t bno;
326 char *buffer;
327 int size;
328 int release;
329 struct aio_trans *next;
330 } aio_trans;
331
332 typedef struct aio_results {
333 int max;
334 int outstanding;
335 int maxpend;
336 aio_trans *trans;
337 } aio_results;
338
339 int aio_inited = 0;
340 aio_results results;
341
342 /*
343 * Allow up to MAXBUF aio requests that each have a unique buffer.
344 * More aio's might be done, but not using memory through the getbuf()
345 * interface. This can be raised, but you run into the potential of
346 * using more memory than is physically available on the machine,
347 * and if you start swapping, you can forget about performance.
348 * To prevent this, we also limit the total memory used for a given
349 * type of buffer to MAXBUFMEM.
350 *
351 * Tests indicate a cylinder group's worth of inodes takes:
352 *
353 * NBPI Size of Inode Buffer
354 * 2k 1688k
355 * 8k 424k
356 *
357 * initcg() stores all the inodes for a cylinder group in one buffer,
358 * so allowing 20 buffers could take 32 MB if not limited by MAXBUFMEM.
359 */
360 #define MAXBUF 20
361 #define MAXBUFMEM (8 * 1024 * 1024)
362
363 /*
364 * header information for buffers managed by getbuf() and freebuf()
365 */
366 typedef struct bufhdr {
367 struct bufhdr *head;
368 struct bufhdr *next;
369 } bufhdr;
370
371 int bufhdrsize;
372
373 bufhdr inodebuf = { NULL, NULL };
374 bufhdr cgsumbuf = { NULL, NULL };
375
376 #define SECTORS_PER_TERABYTE (1LL << 31)
377 /*
378 * The following constant specifies an upper limit for file system size
379 * that is actually a lot bigger than we expect to support with UFS. (Since
380 * it's specified in sectors, the file system size would be 2**44 * 512,
381 * which is 2**53, which is 8192 Terabytes.) However, it's useful
382 * for checking the basic sanity of a size value that is input on the
383 * command line.
384 */
385 #define FS_SIZE_UPPER_LIMIT 0x100000000000LL
386
387 /*
388 * Forward declarations
389 */
390 static char *getbuf(bufhdr *bufhead, int size);
391 static void freebuf(char *buf);
392 static void freetrans(aio_trans *transp);
393 static aio_trans *get_aiop();
394 static aio_trans *wait_for_write(int block);
395 static void initcg(int cylno);
396 static void fsinit();
397 static int makedir(struct direct *protodir, int entries);
398 static void iput(struct inode *ip);
399 static void rdfs(diskaddr_t bno, int size, char *bf);
400 static void wtfs(diskaddr_t bno, int size, char *bf);
401 static void awtfs(diskaddr_t bno, int size, char *bf, int release);
402 static void wtfs_breakup(diskaddr_t bno, int size, char *bf);
403 static int isblock(struct fs *fs, unsigned char *cp, int h);
404 static void clrblock(struct fs *fs, unsigned char *cp, int h);
405 static void setblock(struct fs *fs, unsigned char *cp, int h);
406 static void usage();
407 static void dump_fscmd(char *fsys, int fsi);
408 static uint64_t number(uint64_t d_value, char *param, int flags);
409 static int match(char *s);
410 static char checkopt(char *optim);
411 static char checkmtb(char *mtbarg);
412 static void range_check(long *varp, char *name, long minimum,
413 long maximum, long def_val, int user_supplied);
414 static void range_check_64(uint64_t *varp, char *name, uint64_t minimum,
415 uint64_t maximum, uint64_t def_val, int user_supplied);
416 static daddr32_t alloc(int size, int mode);
417 static diskaddr_t get_max_size(int fd);
418 static long get_max_track_size(int fd);
419 static void block_sigint(sigset_t *old_mask);
420 static void unblock_sigint(sigset_t *old_mask);
421 static void recover_from_sigint(int signum);
422 static int confirm_abort(void);
423 static int getaline(FILE *fp, char *loc, int maxlen);
424 static void flush_writes(void);
425 static long compute_maxcpg(long, long, long, long, long);
426 static int in_64bit_mode(void);
427 static int validate_size(int fd, diskaddr_t size);
428 static void dump_sblock(void);
429
430 /*
431 * Workaround for mkfs to function properly on disks attached to XMIT 2.X
432 * controller. If the address is not aligned at 8 byte boundary, mkfs on
433 * disks attached to XMIT 2.X controller exhibts un-predictable behaviour.
434 */
435 #define XMIT_2_X_ALIGN 8
436 #pragma align XMIT_2_X_ALIGN(fsun, altfsun, cgun)
437
438 union {
439 struct fs fs;
440 char pad[SBSIZE];
441 } fsun, altfsun;
442 #define sblock fsun.fs
443 #define altsblock altfsun.fs
444
445 struct csum *fscs;
446
447 union cgun {
448 struct cg cg;
449 char pad[MAXBSIZE];
450 } cgun;
451
452 #define acg cgun.cg
453 /*
454 * Size of screen in cols in which to fit output
455 */
456 #define WIDTH 80
457
458 struct dinode zino[MAXBSIZE / sizeof (struct dinode)];
459
460 /*
461 * file descriptors used for rdfs(fsi) and wtfs(fso).
462 * Initialized to an illegal file descriptor number.
463 */
464 int fsi = -1;
465 int fso = -1;
466
467 /*
468 * The BIG parameter is machine dependent. It should be a longlong integer
469 * constant that can be used by the number parser to check the validity
470 * of numeric parameters.
471 */
472
473 #define BIG 0x7fffffffffffffffLL
474
475 /* Used to indicate to number() that a bogus value should cause us to exit */
476 #define NO_DEFAULT LONG_MIN
477
478 /*
479 * INVALIDSBLIMIT is the number of bad backup superblocks that will be
480 * tolerated before we decide to try arriving at a different set of them
481 * using a different logic. This is applicable for non-EFI disks only.
482 */
483 #define INVALIDSBLIMIT 10
484
485 /*
486 * The *_flag variables are used to indicate that the user specified
487 * the values, rather than that we made them up ourselves. We can
488 * complain about the user giving us bogus values.
489 */
490
491 /* semi-constants */
492 long sectorsize = DEV_BSIZE; /* bytes/sector from param.h */
493 long bbsize = BBSIZE; /* boot block size */
494 long sbsize = SBSIZE; /* superblock size */
495
496 /* parameters */
497 diskaddr_t fssize_db; /* file system size in disk blocks */
498 diskaddr_t fssize_frag; /* file system size in frags */
499 long cpg; /* cylinders/cylinder group */
500 int cpg_flag = RC_DEFAULT;
501 long rotdelay = -1; /* rotational delay between blocks */
502 int rotdelay_flag = RC_DEFAULT;
503 long maxcontig; /* max contiguous blocks to allocate */
504 int maxcontig_flag = RC_DEFAULT;
505 long nsect = DFLNSECT; /* sectors per track */
506 int nsect_flag = RC_DEFAULT;
507 long ntrack = DFLNTRAK; /* tracks per cylinder group */
508 int ntrack_flag = RC_DEFAULT;
509 long bsize = DESBLKSIZE; /* filesystem block size */
510 int bsize_flag = RC_DEFAULT;
511 long fragsize = DESFRAGSIZE; /* filesystem fragment size */
512 int fragsize_flag = RC_DEFAULT;
513 long minfree = MINFREE; /* fs_minfree */
514 int minfree_flag = RC_DEFAULT;
515 long rps = DEFHZ; /* revolutions/second of drive */
516 int rps_flag = RC_DEFAULT;
517 long nbpi = NBPI; /* number of bytes per inode */
518 int nbpi_flag = RC_DEFAULT;
519 long nrpos = NRPOS; /* number of rotational positions */
520 int nrpos_flag = RC_DEFAULT;
521 long apc = 0; /* alternate sectors per cylinder */
522 int apc_flag = RC_DEFAULT;
523 char opt = 't'; /* optimization style, `t' or `s' */
524 char mtb = 'n'; /* multi-terabyte format, 'y' or 'n' */
525 #define DEFAULT_SECT_TRAK_CPG (nsect_flag == RC_DEFAULT && \
526 ntrack_flag == RC_DEFAULT && \
527 cpg_flag == RC_DEFAULT)
528
529 long debug = 0; /* enable debugging output */
530
531 int spc_flag = 0; /* alternate sectors specified or */
532 /* found */
533
534 /* global state */
535 int Nflag; /* do not write to disk */
536 int mflag; /* return the command line used to create this FS */
537 int rflag; /* report the superblock in an easily-parsed form */
538 int Rflag; /* dump the superblock in binary */
539 char *fsys;
540 time_t mkfstime;
541 char *string;
542 int label_type;
543
544 /*
545 * logging support
546 */
547 int islog; /* true if ufs logging is enabled */
548 int islogok; /* true if ufs log state is good */
549 int waslog; /* true when ufs logging disabled during grow */
550
551 /*
552 * growfs defines, globals, and forward references
553 */
554 #define NOTENOUGHSPACE 33
555 int grow;
556 #define GROW_WITH_DEFAULT_TRAK (grow && ntrack_flag == RC_DEFAULT)
557
558 static int Pflag; /* probe to which size the fs can be grown */
559 int ismounted;
560 char *directory;
561 diskaddr_t grow_fssize;
562 long grow_fs_size;
563 long grow_fs_ncg;
564 diskaddr_t grow_fs_csaddr;
565 long grow_fs_cssize;
566 int grow_fs_clean;
567 struct csum *grow_fscs;
568 diskaddr_t grow_sifrag;
569 int test;
570 int testforce;
571 diskaddr_t testfrags;
572 int inlockexit;
573 int isbad;
574
575 void lockexit(int);
576 void randomgeneration(void);
577 void checksummarysize(void);
578 int checksblock(struct fs, int);
579 void growinit(char *);
580 void checkdev(char *, char *);
581 void checkmount(struct mnttab *, char *);
582 struct dinode *gdinode(ino_t);
583 int csfraginrange(daddr32_t);
584 struct csfrag *findcsfrag(daddr32_t, struct csfrag **);
585 void checkindirect(ino_t, daddr32_t *, daddr32_t, int);
586 void addcsfrag(ino_t, daddr32_t, struct csfrag **);
587 void delcsfrag(daddr32_t, struct csfrag **);
588 void checkdirect(ino_t, daddr32_t *, daddr32_t *, int);
589 void findcsfragino(void);
590 void fixindirect(daddr32_t, int);
591 void fixdirect(caddr_t, daddr32_t, daddr32_t *, int);
592 void fixcsfragino(void);
593 void extendsummaryinfo(void);
594 int notenoughspace(void);
595 void unalloccsfragino(void);
596 void unalloccsfragfree(void);
597 void findcsfragfree(void);
598 void copycsfragino(void);
599 void rdcg(long);
600 void wtcg(void);
601 void flcg(void);
602 void allocfrags(long, daddr32_t *, long *);
603 void alloccsfragino(void);
604 void alloccsfragfree(void);
605 void freefrags(daddr32_t, long, long);
606 int findfreerange(long *, long *);
607 void resetallocinfo(void);
608 void extendcg(long);
609 void ulockfs(void);
610 void wlockfs(void);
611 void clockfs(void);
612 void wtsb(void);
613 static int64_t checkfragallocated(daddr32_t);
614 static struct csum *read_summaryinfo(struct fs *);
615 static diskaddr_t probe_summaryinfo();
616
617 int
main(int argc,char * argv[])618 main(int argc, char *argv[])
619 {
620 long i, mincpc, mincpg, ibpcl;
621 long cylno, rpos, blk, j, warn = 0;
622 long mincpgcnt, maxcpg;
623 uint64_t used, bpcg, inospercg;
624 long mapcramped, inodecramped;
625 long postblsize, rotblsize, totalsbsize;
626 FILE *mnttab;
627 struct mnttab mntp;
628 char *special;
629 struct statvfs64 fs;
630 struct dk_geom dkg;
631 struct dk_minfo dkminfo;
632 char pbuf[sizeof (uint64_t) * 3 + 1];
633 char *tmpbuf;
634 int width, plen;
635 uint64_t num;
636 int c, saverr;
637 diskaddr_t max_fssize;
638 long tmpmaxcontig = -1;
639 struct sigaction sigact;
640 uint64_t nbytes64;
641 int remaining_cg;
642 int do_dot = 0;
643 int use_efi_dflts = 0, retry = 0, isremovable = 0, ishotpluggable = 0;
644 int invalid_sb_cnt, ret, skip_this_sb, cg_too_small;
645 int geom_nsect, geom_ntrack, geom_cpg;
646
647 (void) setlocale(LC_ALL, "");
648
649 #if !defined(TEXT_DOMAIN)
650 #define TEXT_DOMAIN "SYS_TEST"
651 #endif
652 (void) textdomain(TEXT_DOMAIN);
653
654 while ((c = getopt(argc, argv, "F:bmo:VPGM:T:t:")) != EOF) {
655 switch (c) {
656
657 case 'F':
658 string = optarg;
659 if (strcmp(string, "ufs") != 0)
660 usage();
661 break;
662
663 case 'm': /* return command line used to create this FS */
664 mflag++;
665 break;
666
667 case 'o':
668 /*
669 * ufs specific options.
670 */
671 string = optarg;
672 while (*string != '\0') {
673 if (match("nsect=")) {
674 nsect = number(DFLNSECT, "nsect", 0);
675 nsect_flag = RC_KEYWORD;
676 } else if (match("ntrack=")) {
677 ntrack = number(DFLNTRAK, "ntrack", 0);
678 ntrack_flag = RC_KEYWORD;
679 } else if (match("bsize=")) {
680 bsize = number(DESBLKSIZE, "bsize", 0);
681 bsize_flag = RC_KEYWORD;
682 } else if (match("fragsize=")) {
683 fragsize = number(DESFRAGSIZE,
684 "fragsize", 0);
685 fragsize_flag = RC_KEYWORD;
686 } else if (match("cgsize=")) {
687 cpg = number(DESCPG, "cgsize", 0);
688 cpg_flag = RC_KEYWORD;
689 } else if (match("free=")) {
690 minfree = number(MINFREE, "free",
691 ALLOW_PERCENT);
692 minfree_flag = RC_KEYWORD;
693 } else if (match("maxcontig=")) {
694 tmpmaxcontig =
695 number(-1, "maxcontig", 0);
696 maxcontig_flag = RC_KEYWORD;
697 } else if (match("nrpos=")) {
698 nrpos = number(NRPOS, "nrpos", 0);
699 nrpos_flag = RC_KEYWORD;
700 } else if (match("rps=")) {
701 rps = number(DEFHZ, "rps", 0);
702 rps_flag = RC_KEYWORD;
703 } else if (match("nbpi=")) {
704 nbpi = number(NBPI, "nbpi", 0);
705 nbpi_flag = RC_KEYWORD;
706 } else if (match("opt=")) {
707 opt = checkopt(string);
708 } else if (match("mtb=")) {
709 mtb = checkmtb(string);
710 } else if (match("apc=")) {
711 apc = number(0, "apc", 0);
712 apc_flag = RC_KEYWORD;
713 } else if (match("gap=")) {
714 (void) number(0, "gap", ALLOW_MS1);
715 rotdelay = ROTDELAY;
716 rotdelay_flag = RC_DEFAULT;
717 } else if (match("debug=")) {
718 debug = number(0, "debug", 0);
719 } else if (match("N")) {
720 Nflag++;
721 } else if (match("calcsb")) {
722 rflag++;
723 Nflag++;
724 } else if (match("calcbinsb")) {
725 rflag++;
726 Rflag++;
727 Nflag++;
728 } else if (*string == '\0') {
729 break;
730 } else {
731 (void) fprintf(stderr, gettext(
732 "illegal option: %s\n"), string);
733 usage();
734 }
735
736 if (*string == ',') string++;
737 if (*string == ' ') string++;
738 }
739 break;
740
741 case 'V':
742 {
743 char *opt_text;
744 int opt_count;
745
746 (void) fprintf(stdout, gettext("mkfs -F ufs "));
747 for (opt_count = 1; opt_count < argc;
748 opt_count++) {
749 opt_text = argv[opt_count];
750 if (opt_text)
751 (void) fprintf(stdout, " %s ",
752 opt_text);
753 }
754 (void) fprintf(stdout, "\n");
755 }
756 break;
757
758 case 'b': /* do nothing for this */
759 break;
760
761 case 'M': /* grow the mounted file system */
762 directory = optarg;
763
764 /* FALLTHROUGH */
765 case 'G': /* grow the file system */
766 grow = 1;
767 break;
768 case 'P': /* probe the file system growing size */
769 Pflag = 1;
770 grow = 1; /* probe mode implies fs growing */
771 break;
772 case 'T': /* For testing */
773 testforce = 1;
774
775 /* FALLTHROUGH */
776 case 't':
777 test = 1;
778 string = optarg;
779 testfrags = number(NO_DEFAULT, "testfrags", 0);
780 break;
781
782 case '?':
783 usage();
784 break;
785 }
786 }
787 #ifdef MKFS_DEBUG
788 /*
789 * Turning on MKFS_DEBUG causes mkfs to produce a filesystem
790 * that can be reproduced by setting the time to 0 and seeding
791 * the random number generator to a constant.
792 */
793 mkfstime = 0; /* reproducible results */
794 #else
795 (void) time(&mkfstime);
796 #endif
797
798 if (optind >= (argc - 1)) {
799 if (optind > (argc - 1)) {
800 (void) fprintf(stderr,
801 gettext("special not specified\n"));
802 usage();
803 } else if (mflag == 0) {
804 (void) fprintf(stderr,
805 gettext("size not specified\n"));
806 usage();
807 }
808 }
809 argc -= optind;
810 argv = &argv[optind];
811
812 fsys = argv[0];
813 fsi = open64(fsys, O_RDONLY);
814 if (fsi < 0) {
815 (void) fprintf(stderr, gettext("%s: cannot open\n"), fsys);
816 lockexit(32);
817 }
818
819 if (mflag) {
820 dump_fscmd(fsys, fsi);
821 lockexit(0);
822 }
823
824 /*
825 * The task of setting all of the configuration parameters for a
826 * UFS file system is basically a matter of solving n equations
827 * in m variables. Typically, m is greater than n, so there is
828 * usually more than one valid solution. Since this is usually
829 * an under-constrained problem, it's not always obvious what the
830 * "best" configuration is.
831 *
832 * In general, the approach is to
833 * 1. Determine the values for the file system parameters
834 * that are externally contrained and therefore not adjustable
835 * by mkfs (such as the device's size and maxtransfer size).
836 * 2. Acquire the user's requested setting for all configuration
837 * values that can be set on the command line.
838 * 3. Determine the final value of all configuration values, by
839 * the following approach:
840 * - set the file system block size (fs_bsize). Although
841 * this could be regarded as an adjustable parameter, in
842 * fact, it's pretty much a constant. At this time, it's
843 * generally set to 8k (with older hardware, it can
844 * sometimes make sense to set it to 4k, but those
845 * situations are pretty rare now).
846 * - re-adjust the maximum file system size based on the
847 * value of the file system block size. Since the
848 * frag size can't be any larger than a file system
849 * block, and the number of frags in the file system
850 * has to fit into 31 bits, the file system block size
851 * affects the maximum file system size.
852 * - now that the real maximum file system is known, set the
853 * actual size of the file system to be created to
854 * MIN(requested size, maximum file system size).
855 * - now validate, and if necessary, adjust the following
856 * values:
857 * rotdelay
858 * nsect
859 * maxcontig
860 * apc
861 * frag_size
862 * rps
863 * minfree
864 * nrpos
865 * nrack
866 * nbpi
867 * - calculate maxcpg (the maximum value of the cylinders-per-
868 * cylinder-group configuration parameters). There are two
869 * algorithms for calculating maxcpg: an old one, which is
870 * used for file systems of less than 1 terabyte, and a
871 * new one, implemented in the function compute_maxcpg(),
872 * which is used for file systems of greater than 1 TB.
873 * The difference between them is that compute_maxcpg()
874 * really tries to maximize the cpg value. The old
875 * algorithm fails to take advantage of smaller frags and
876 * lower inode density when determining the maximum cpg,
877 * and thus comes up with much lower numbers in some
878 * configurations. At some point, we might use the
879 * new algorithm for determining maxcpg for all file
880 * systems, but at this time, the changes implemented for
881 * multi-terabyte UFS are NOT being automatically applied
882 * to UFS file systems of less than a terabyte (in the
883 * interest of not changing existing UFS policy too much
884 * until the ramifications of the changes are well-understood
885 * and have been evaluated for their effects on performance.)
886 * - check the current values of the configuration parameters
887 * against the various constraints imposed by UFS. These
888 * include:
889 * * There must be at least one inode in each
890 * cylinder group.
891 * * The cylinder group overhead block, which
892 * contains the inode and frag bigmaps, must fit
893 * within one file system block.
894 * * The space required for inode maps should
895 * occupy no more than a third of the cylinder
896 * group overhead block.
897 * * The rotational position tables have to fit
898 * within the available space in the super block.
899 * Adjust the configuration values that can be adjusted
900 * so that these constraints are satisfied. The
901 * configuration values that are adjustable are:
902 * * frag size
903 * * cylinders per group
904 * * inode density (can be increased)
905 * * number of rotational positions (the rotational
906 * position tables are eliminated altogether if
907 * there isn't enough room for them.)
908 * 4. Set the values for all the dependent configuration
909 * values (those that aren't settable on the command
910 * line and which are completely dependent on the
911 * adjustable parameters). This include cpc (cycles
912 * per cylinder, spc (sectors-per-cylinder), and many others.
913 */
914
915 /*
916 * Figure out the partition size and initialize the label_type.
917 */
918 max_fssize = get_max_size(fsi);
919
920 /*
921 * Get and check positional arguments, if any.
922 */
923 switch (argc - 1) {
924 default:
925 usage();
926 /*NOTREACHED*/
927 case 15:
928 mtb = checkmtb(argv[15]);
929 /* FALLTHROUGH */
930 case 14:
931 string = argv[14];
932 tmpmaxcontig = number(-1, "maxcontig", 0);
933 maxcontig_flag = RC_POSITIONAL;
934 /* FALLTHROUGH */
935 case 13:
936 string = argv[13];
937 nrpos = number(NRPOS, "nrpos", 0);
938 nrpos_flag = RC_POSITIONAL;
939 /* FALLTHROUGH */
940 case 12:
941 string = argv[12];
942 rotdelay = ROTDELAY;
943 rotdelay_flag = RC_DEFAULT;
944 /* FALLTHROUGH */
945 case 11:
946 string = argv[11];
947 apc = number(0, "apc", 0);
948 apc_flag = RC_POSITIONAL;
949 /* FALLTHROUGH */
950 case 10:
951 opt = checkopt(argv[10]);
952 /* FALLTHROUGH */
953 case 9:
954 string = argv[9];
955 nbpi = number(NBPI, "nbpi", 0);
956 nbpi_flag = RC_POSITIONAL;
957 /* FALLTHROUGH */
958 case 8:
959 string = argv[8];
960 rps = number(DEFHZ, "rps", 0);
961 rps_flag = RC_POSITIONAL;
962 /* FALLTHROUGH */
963 case 7:
964 string = argv[7];
965 minfree = number(MINFREE, "free", ALLOW_PERCENT);
966 minfree_flag = RC_POSITIONAL;
967 /* FALLTHROUGH */
968 case 6:
969 string = argv[6];
970 cpg = number(DESCPG, "cgsize", 0);
971 cpg_flag = RC_POSITIONAL;
972 /* FALLTHROUGH */
973 case 5:
974 string = argv[5];
975 fragsize = number(DESFRAGSIZE, "fragsize", 0);
976 fragsize_flag = RC_POSITIONAL;
977 /* FALLTHROUGH */
978 case 4:
979 string = argv[4];
980 bsize = number(DESBLKSIZE, "bsize", 0);
981 bsize_flag = RC_POSITIONAL;
982 /* FALLTHROUGH */
983 case 3:
984 string = argv[3];
985 ntrack = number(DFLNTRAK, "ntrack", 0);
986 ntrack_flag = RC_POSITIONAL;
987 /* FALLTHROUGH */
988 case 2:
989 string = argv[2];
990 nsect = number(DFLNSECT, "nsect", 0);
991 nsect_flag = RC_POSITIONAL;
992 /* FALLTHROUGH */
993 case 1:
994 string = argv[1];
995 fssize_db = number(max_fssize, "size", 0);
996 }
997
998 /*
999 * Initialize the parameters in the same way as newfs so that
1000 * newfs and mkfs would result in the same file system layout
1001 * for EFI labelled disks. Do this only in the absence of user
1002 * specified values for these parameters.
1003 */
1004 if (label_type == LABEL_TYPE_EFI) {
1005 if (apc_flag == RC_DEFAULT) apc = 0;
1006 if (nrpos_flag == RC_DEFAULT) nrpos = 1;
1007 if (ntrack_flag == RC_DEFAULT) ntrack = DEF_TRACKS_EFI;
1008 if (rps_flag == RC_DEFAULT) rps = DEFHZ;
1009 if (nsect_flag == RC_DEFAULT) nsect = DEF_SECTORS_EFI;
1010 }
1011
1012 if ((maxcontig_flag == RC_DEFAULT) || (tmpmaxcontig == -1) ||
1013 (maxcontig == -1)) {
1014 long maxtrax = get_max_track_size(fsi);
1015 maxcontig = maxtrax / bsize;
1016
1017 } else {
1018 maxcontig = tmpmaxcontig;
1019 }
1020 dprintf(("DeBuG maxcontig : %ld\n", maxcontig));
1021
1022 if (rotdelay == -1) { /* default by newfs and mkfs */
1023 rotdelay = ROTDELAY;
1024 }
1025
1026 if (cpg_flag == RC_DEFAULT) { /* If not explicity set, use default */
1027 cpg = DESCPG;
1028 }
1029 dprintf(("DeBuG cpg : %ld\n", cpg));
1030
1031 /*
1032 * Now that we have the semi-sane args, either positional, via -o,
1033 * or by defaulting, handle inter-dependencies and range checks.
1034 */
1035
1036 /*
1037 * Settle the file system block size first, since it's a fixed
1038 * parameter once set and so many other parameters, including
1039 * max_fssize, depend on it.
1040 */
1041 range_check(&bsize, "bsize", MINBSIZE, MAXBSIZE, DESBLKSIZE,
1042 bsize_flag);
1043
1044 if (!POWEROF2(bsize)) {
1045 (void) fprintf(stderr,
1046 gettext("block size must be a power of 2, not %ld\n"),
1047 bsize);
1048 bsize = DESBLKSIZE;
1049 (void) fprintf(stderr,
1050 gettext("mkfs: bsize reset to default %ld\n"),
1051 bsize);
1052 }
1053
1054 if (fssize_db > max_fssize && validate_size(fsi, fssize_db)) {
1055 (void) fprintf(stderr, gettext(
1056 "Warning: the requested size of this file system\n"
1057 "(%lld sectors) is greater than the size of the\n"
1058 "device reported by the driver (%lld sectors).\n"
1059 "However, a read of the device at the requested size\n"
1060 "does succeed, so the requested size will be used.\n"),
1061 fssize_db, max_fssize);
1062 max_fssize = fssize_db;
1063 }
1064 /*
1065 * Since the maximum allocatable unit (the frag) must be less than
1066 * or equal to bsize, and the number of frags must be less than or
1067 * equal to INT_MAX, the total size of the file system (in
1068 * bytes) must be less than or equal to bsize * INT_MAX.
1069 */
1070
1071 if (max_fssize > ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX)
1072 max_fssize = ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX;
1073
1074 range_check_64(&fssize_db, "size", 1024LL, max_fssize, max_fssize, 1);
1075
1076 if (fssize_db >= SECTORS_PER_TERABYTE) {
1077 mtb = 'y';
1078 if (!in_64bit_mode()) {
1079 (void) fprintf(stderr, gettext(
1080 "mkfs: Warning: Creating a file system greater than 1 terabyte on a\n"
1081 " system running a 32-bit kernel. This file system will not be\n"
1082 " accessible until the system is rebooted with a 64-bit kernel.\n"));
1083 }
1084 }
1085 dprintf(("DeBuG mtb : %c\n", mtb));
1086
1087 /*
1088 * With newer and much larger disks, the newfs(1M) and mkfs_ufs(1M)
1089 * commands had problems in correctly handling the "native" geometries
1090 * for various storage devices.
1091 *
1092 * To handle the new age disks, mkfs_ufs(1M) will use the EFI style
1093 * for non-EFI disks that are larger than the CHS addressing limit
1094 * ( > 8GB approx ) and ignore the disk geometry information for
1095 * these drives. This is what is currently done for multi-terrabyte
1096 * filesystems on EFI disks.
1097 *
1098 * However if the user asked for a specific layout by supplying values
1099 * for even one of the three parameters (nsect, ntrack, cpg), honour
1100 * the user supplied parameters.
1101 *
1102 * Choosing EFI style or native geometry style can make a lot of
1103 * difference, because the size of a cylinder group is dependent on
1104 * this choice. This in turn means that the position of alternate
1105 * superblocks varies depending on the style chosen. It is not
1106 * necessary that all disks of size > CHSLIMIT have EFI style layout.
1107 * There can be disks which are > CHSLIMIT size, but have native
1108 * geometry style layout, thereby warranting the need for alternate
1109 * logic in superblock detection.
1110 */
1111 if (mtb != 'y' && (ntrack == -1 || GROW_WITH_DEFAULT_TRAK ||
1112 DEFAULT_SECT_TRAK_CPG)) {
1113 /*
1114 * "-1" indicates that we were called from newfs and ntracks
1115 * was not specified in newfs command line. Calculate nsect
1116 * and ntrack in the same manner as newfs.
1117 *
1118 * This is required because, the defaults for nsect and ntrack
1119 * is hardcoded in mkfs, whereas to generate the alternate
1120 * superblock locations for the -N option, there is a need for
1121 * the geometry based values that newfs would have arrived at.
1122 * Newfs would have arrived at these values as below.
1123 */
1124 if (label_type == LABEL_TYPE_EFI ||
1125 label_type == LABEL_TYPE_OTHER) {
1126 use_efi_dflts = 1;
1127 retry = 1;
1128 } else if (ioctl(fsi, DKIOCGGEOM, &dkg)) {
1129 dprintf(("%s: Unable to read Disk geometry", fsys));
1130 perror(gettext("Unable to read Disk geometry"));
1131 lockexit(32);
1132 } else {
1133 nsect = dkg.dkg_nsect;
1134 ntrack = dkg.dkg_nhead;
1135 #ifdef i386 /* Bug 1170182 */
1136 if (ntrack > 32 && (ntrack % 16) != 0) {
1137 ntrack -= (ntrack % 16);
1138 }
1139 #endif
1140 if (ioctl(fsi, DKIOCREMOVABLE, &isremovable)) {
1141 dprintf(("DeBuG Unable to determine if %s is"
1142 " Removable Media. Proceeding with system"
1143 " determined parameters.\n", fsys));
1144 isremovable = 0;
1145 }
1146 if (ioctl(fsi, DKIOCHOTPLUGGABLE, &ishotpluggable)) {
1147 dprintf(("DeBuG Unable to determine if %s is"
1148 " Hotpluggable Media. Proceeding with "
1149 "system determined parameters.\n", fsys));
1150 ishotpluggable = 0;
1151 }
1152 if ((((diskaddr_t)dkg.dkg_ncyl * dkg.dkg_nhead *
1153 dkg.dkg_nsect) > CHSLIMIT) || isremovable ||
1154 ishotpluggable) {
1155 use_efi_dflts = 1;
1156 retry = 1;
1157 }
1158 }
1159 }
1160 dprintf(("DeBuG CHSLIMIT = %d geom = %llu\n", CHSLIMIT,
1161 (diskaddr_t)dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect));
1162 dprintf(("DeBuG label_type = %d isremovable = %d ishotpluggable = %d "
1163 "use_efi_dflts = %d\n", label_type, isremovable, ishotpluggable,
1164 use_efi_dflts));
1165
1166 /*
1167 * For the newfs -N case, even if the disksize is > CHSLIMIT, do not
1168 * blindly follow EFI style. If the fs_version indicates a geometry
1169 * based layout, try that one first. If it fails we can always try the
1170 * other logic.
1171 *
1172 * If we were called from growfs, we will have a problem if we mix
1173 * and match the filesystem creation and growth styles. For example,
1174 * if we create using EFI style, we have to also grow using EFI
1175 * style. So follow the style indicated by the fs_version.
1176 *
1177 * Read and verify the primary superblock. If it looks sane, use the
1178 * fs_version from the superblock. If the primary superblock does
1179 * not look good, read and verify the first alternate superblock at
1180 * ALTSB. Use the fs_version to decide whether to use the
1181 * EFI style logic or the old geometry based logic to calculate
1182 * the alternate superblock locations.
1183 */
1184 if ((Nflag && use_efi_dflts) || (grow)) {
1185 if (grow && ntrack_flag != RC_DEFAULT)
1186 goto start_fs_creation;
1187 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize,
1188 (char *)&altsblock);
1189 ret = checksblock(altsblock, 1);
1190
1191 if (!ret) {
1192 if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1193 mtb = 'y';
1194 goto start_fs_creation;
1195 }
1196 use_efi_dflts = (altsblock.fs_version ==
1197 UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1198 } else {
1199 /*
1200 * The primary superblock didn't help in determining
1201 * the fs_version. Try the first alternate superblock.
1202 */
1203 dprintf(("DeBuG checksblock() failed - error : %d"
1204 " for sb : %d\n", ret, SBOFF/sectorsize));
1205 rdfs((diskaddr_t)ALTSB, (int)sbsize,
1206 (char *)&altsblock);
1207 ret = checksblock(altsblock, 1);
1208
1209 if (!ret) {
1210 if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1211 mtb = 'y';
1212 goto start_fs_creation;
1213 }
1214 use_efi_dflts = (altsblock.fs_version ==
1215 UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1216 }
1217 dprintf(("DeBuG checksblock() returned : %d"
1218 " for sb : %d\n", ret, ALTSB));
1219 }
1220 }
1221
1222 geom_nsect = nsect;
1223 geom_ntrack = ntrack;
1224 geom_cpg = cpg;
1225 dprintf(("DeBuG geom_nsect=%d, geom_ntrack=%d, geom_cpg=%d\n",
1226 geom_nsect, geom_ntrack, geom_cpg));
1227
1228 start_fs_creation:
1229 retry_alternate_logic:
1230 invalid_sb_cnt = 0;
1231 cg_too_small = 0;
1232 if (use_efi_dflts) {
1233 nsect = DEF_SECTORS_EFI;
1234 ntrack = DEF_TRACKS_EFI;
1235 cpg = DESCPG;
1236 dprintf(("\nDeBuG Using EFI defaults\n"));
1237 } else {
1238 nsect = geom_nsect;
1239 ntrack = geom_ntrack;
1240 cpg = geom_cpg;
1241 dprintf(("\nDeBuG Using Geometry\n"));
1242 /*
1243 * 32K based on max block size of 64K, and rotational layout
1244 * test of nsect <= (256 * sectors/block). Current block size
1245 * limit is not 64K, but it's growing soon.
1246 */
1247 range_check(&nsect, "nsect", 1, 32768, DFLNSECT, nsect_flag);
1248 /*
1249 * ntrack is the number of tracks per cylinder.
1250 * The ntrack value must be between 1 and the total number of
1251 * sectors in the file system.
1252 */
1253 range_check(&ntrack, "ntrack", 1,
1254 fssize_db > INT_MAX ? INT_MAX : (uint32_t)fssize_db,
1255 DFLNTRAK, ntrack_flag);
1256 }
1257
1258 range_check(&apc, "apc", 0, nsect - 1, 0, apc_flag);
1259
1260 if (mtb == 'y')
1261 fragsize = bsize;
1262
1263 range_check(&fragsize, "fragsize", sectorsize, bsize,
1264 MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)), fragsize_flag);
1265
1266 if ((bsize / MAXFRAG) > fragsize) {
1267 (void) fprintf(stderr, gettext(
1268 "fragment size %ld is too small, minimum with block size %ld is %ld\n"),
1269 fragsize, bsize, bsize / MAXFRAG);
1270 (void) fprintf(stderr,
1271 gettext("mkfs: fragsize reset to minimum %ld\n"),
1272 bsize / MAXFRAG);
1273 fragsize = bsize / MAXFRAG;
1274 }
1275
1276 if (!POWEROF2(fragsize)) {
1277 (void) fprintf(stderr,
1278 gettext("fragment size must be a power of 2, not %ld\n"),
1279 fragsize);
1280 fragsize = MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize));
1281 (void) fprintf(stderr,
1282 gettext("mkfs: fragsize reset to %ld\n"),
1283 fragsize);
1284 }
1285
1286 /* At this point, bsize must be >= fragsize, so no need to check it */
1287
1288 if (bsize < PAGESIZE) {
1289 (void) fprintf(stderr, gettext(
1290 "WARNING: filesystem block size (%ld) is smaller than "
1291 "memory page size (%ld).\nResulting filesystem can not be "
1292 "mounted on this system.\n\n"),
1293 bsize, (long)PAGESIZE);
1294 }
1295
1296 range_check(&rps, "rps", 1, 1000, DEFHZ, rps_flag);
1297 range_check(&minfree, "free", 0, 99, MINFREE, minfree_flag);
1298 range_check(&nrpos, "nrpos", 1, nsect, MIN(nsect, NRPOS), nrpos_flag);
1299
1300 /*
1301 * nbpi is variable, but 2MB seems a reasonable upper limit,
1302 * as 4MB tends to cause problems (using otherwise-default
1303 * parameters). The true limit is where we end up with one
1304 * inode per cylinder group. If this file system is being
1305 * configured for multi-terabyte access, nbpi must be at least 1MB.
1306 */
1307 if (mtb == 'y' && nbpi < MTB_NBPI) {
1308 if (nbpi_flag != RC_DEFAULT)
1309 (void) fprintf(stderr, gettext("mkfs: bad value for "
1310 "nbpi: must be at least 1048576 for multi-terabyte,"
1311 " nbpi reset to default 1048576\n"));
1312 nbpi = MTB_NBPI;
1313 }
1314
1315 if (mtb == 'y')
1316 range_check(&nbpi, "nbpi", MTB_NBPI, 2 * MB, MTB_NBPI,
1317 nbpi_flag);
1318 else
1319 range_check(&nbpi, "nbpi", DEV_BSIZE, 2 * MB, NBPI, nbpi_flag);
1320
1321 /*
1322 * maxcpg is another variably-limited parameter. Calculate
1323 * the limit based on what we've got for its dependent
1324 * variables. Effectively, it's how much space is left in the
1325 * superblock after all the other bits are accounted for. We
1326 * only fill in sblock fields so we can use MAXIpG.
1327 *
1328 * If the calculation of maxcpg below (for the mtb == 'n'
1329 * case) is changed, update newfs as well.
1330 *
1331 * For old-style, non-MTB format file systems, use the old
1332 * algorithm for calculating the maximum cylinder group size,
1333 * even though it limits the cylinder group more than necessary.
1334 * Since layout can affect performance, we don't want to change
1335 * the default layout for non-MTB file systems at this time.
1336 * However, for MTB file systems, use the new maxcpg calculation,
1337 * which really maxes out the cylinder group size.
1338 */
1339
1340 sblock.fs_bsize = bsize;
1341 sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1342
1343 if (mtb == 'n') {
1344 maxcpg = (bsize - sizeof (struct cg) -
1345 howmany(MAXIpG(&sblock), NBBY)) /
1346 (sizeof (long) + nrpos * sizeof (short) +
1347 nsect / (MAXFRAG * NBBY));
1348 } else {
1349 maxcpg = compute_maxcpg(bsize, fragsize, nbpi, nrpos,
1350 nsect * ntrack);
1351 }
1352
1353 dprintf(("DeBuG cpg : %ld\n", cpg));
1354 /*
1355 * Increase the cpg to maxcpg if either newfs was invoked
1356 * with -T option or if mkfs wants to create a mtb file system
1357 * and if the user has not specified the cpg.
1358 */
1359 if (cpg == -1 || (mtb == 'y' && cpg_flag == RC_DEFAULT))
1360 cpg = maxcpg;
1361 dprintf(("DeBuG cpg : %ld\n", cpg));
1362
1363 /*
1364 * mincpg is variable in complex ways, so we really can't
1365 * do a sane lower-end limit check at this point.
1366 */
1367 range_check(&cpg, "cgsize", 1, maxcpg, MIN(maxcpg, DESCPG), cpg_flag);
1368
1369 /*
1370 * get the controller info
1371 */
1372 islog = 0;
1373 islogok = 0;
1374 waslog = 0;
1375
1376 /*
1377 * Do not grow the file system, but print on stdout the maximum
1378 * size in sectors to which the file system can be increased.
1379 * The calculated size is limited by fssize_db.
1380 * Note that we don't lock the filesystem and therefore under rare
1381 * conditions (the filesystem is mounted, the free block count is
1382 * almost zero, and the superuser is still changing it) the calculated
1383 * size can be imprecise.
1384 */
1385 if (Pflag) {
1386 (void) printf("%llu\n", probe_summaryinfo());
1387 exit(0);
1388 }
1389
1390 /*
1391 * If we're growing an existing filesystem, then we're about
1392 * to start doing things that can require recovery efforts if
1393 * we get interrupted, so make sure we get a chance to do so.
1394 */
1395 if (grow) {
1396 sigact.sa_handler = recover_from_sigint;
1397 sigemptyset(&sigact.sa_mask);
1398 sigact.sa_flags = SA_RESTART;
1399
1400 if (sigaction(SIGINT, &sigact, (struct sigaction *)NULL) < 0) {
1401 perror(gettext("Could not register SIGINT handler"));
1402 lockexit(3);
1403 }
1404 }
1405
1406 if (!Nflag) {
1407 /*
1408 * Check if MNTTAB is trustable
1409 */
1410 if (statvfs64(MNTTAB, &fs) < 0) {
1411 (void) fprintf(stderr, gettext("can't statvfs %s\n"),
1412 MNTTAB);
1413 exit(32);
1414 }
1415
1416 if (strcmp(MNTTYPE_MNTFS, fs.f_basetype) != 0) {
1417 (void) fprintf(stderr, gettext(
1418 "%s file system type is not %s, can't mkfs\n"),
1419 MNTTAB, MNTTYPE_MNTFS);
1420 exit(32);
1421 }
1422
1423 special = getfullblkname(fsys);
1424 checkdev(fsys, special);
1425
1426 /*
1427 * If we found the block device name,
1428 * then check the mount table.
1429 * if mounted, and growing write lock the file system
1430 *
1431 */
1432 if ((special != NULL) && (*special != '\0')) {
1433 if ((mnttab = fopen(MNTTAB, "r")) == NULL) {
1434 (void) fprintf(stderr, gettext(
1435 "can't open %s\n"), MNTTAB);
1436 exit(32);
1437 }
1438 while ((getmntent(mnttab, &mntp)) == NULL) {
1439 if (grow) {
1440 checkmount(&mntp, special);
1441 continue;
1442 }
1443 if (strcmp(special, mntp.mnt_special) == 0) {
1444 (void) fprintf(stderr, gettext(
1445 "%s is mounted, can't mkfs\n"),
1446 special);
1447 exit(32);
1448 }
1449 }
1450 (void) fclose(mnttab);
1451 }
1452
1453 if (directory && (ismounted == 0)) {
1454 (void) fprintf(stderr, gettext("%s is not mounted\n"),
1455 special);
1456 lockexit(32);
1457 }
1458
1459 fso = (grow) ? open64(fsys, O_WRONLY) : creat64(fsys, 0666);
1460 if (fso < 0) {
1461 saverr = errno;
1462 (void) fprintf(stderr,
1463 gettext("%s: cannot create: %s\n"),
1464 fsys, strerror(saverr));
1465 lockexit(32);
1466 }
1467
1468 } else {
1469
1470 /*
1471 * For the -N case, a file descriptor is needed for the llseek()
1472 * in wtfs(). See the comment in wtfs() for more information.
1473 *
1474 * Get a file descriptor that's read-only so that this code
1475 * doesn't accidentally write to the file.
1476 */
1477 fso = open64(fsys, O_RDONLY);
1478 if (fso < 0) {
1479 saverr = errno;
1480 (void) fprintf(stderr, gettext("%s: cannot open: %s\n"),
1481 fsys, strerror(saverr));
1482 lockexit(32);
1483 }
1484 }
1485
1486 /*
1487 * Check the media sector size
1488 */
1489 if (ioctl(fso, DKIOCGMEDIAINFO, &dkminfo) != -1) {
1490 if (dkminfo.dki_lbsize != 0 &&
1491 POWEROF2(dkminfo.dki_lbsize / DEV_BSIZE) &&
1492 dkminfo.dki_lbsize != DEV_BSIZE) {
1493 fprintf(stderr,
1494 gettext("The device sector size %u is not "
1495 "supported by ufs!\n"), dkminfo.dki_lbsize);
1496 (void) close(fso);
1497 exit(1);
1498 }
1499 }
1500
1501 /*
1502 * seed random # generator (for ic_generation)
1503 */
1504 #ifdef MKFS_DEBUG
1505 srand48(12962); /* reproducible results */
1506 #else
1507 srand48((long)(time((time_t *)NULL) + getpid()));
1508 #endif
1509
1510 if (grow) {
1511 growinit(fsys);
1512 goto grow00;
1513 }
1514
1515 /*
1516 * Validate the given file system size.
1517 * Verify that its last block can actually be accessed.
1518 *
1519 * Note: it's ok to use sblock as a buffer because it is immediately
1520 * overwritten by the rdfs() of the superblock in the next line.
1521 *
1522 * ToDo: Because the size checking is done in rdfs()/wtfs(), the
1523 * error message for specifying an illegal size is very unfriendly.
1524 * In the future, one could replace the rdfs()/wtfs() calls
1525 * below with in-line calls to read() or write(). This allows better
1526 * error messages to be put in place.
1527 */
1528 rdfs(fssize_db - 1, (int)sectorsize, (char *)&sblock);
1529
1530 /*
1531 * make the fs unmountable
1532 */
1533 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1534 sblock.fs_magic = -1;
1535 sblock.fs_clean = FSBAD;
1536 sblock.fs_state = FSOKAY - sblock.fs_time;
1537 wtfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1538 bzero(&sblock, (size_t)sbsize);
1539
1540 sblock.fs_nsect = nsect;
1541 sblock.fs_ntrak = ntrack;
1542
1543 /*
1544 * Validate specified/determined spc
1545 * and calculate minimum cylinders per group.
1546 */
1547
1548 /*
1549 * sectors/cyl = tracks/cyl * sectors/track
1550 */
1551 sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect;
1552
1553 grow00:
1554 if (apc_flag) {
1555 sblock.fs_spc -= apc;
1556 }
1557 /*
1558 * Have to test for this separately from apc_flag, due to
1559 * the growfs case....
1560 */
1561 if (sblock.fs_spc != sblock.fs_ntrak * sblock.fs_nsect) {
1562 spc_flag = 1;
1563 }
1564 if (grow)
1565 goto grow10;
1566
1567 sblock.fs_nrpos = nrpos;
1568 sblock.fs_bsize = bsize;
1569 sblock.fs_fsize = fragsize;
1570 sblock.fs_minfree = minfree;
1571
1572 grow10:
1573 if (nbpi < sblock.fs_fsize) {
1574 (void) fprintf(stderr, gettext(
1575 "warning: wasteful data byte allocation / inode (nbpi):\n"));
1576 (void) fprintf(stderr, gettext(
1577 "%ld smaller than allocatable fragment size of %d\n"),
1578 nbpi, sblock.fs_fsize);
1579 }
1580 if (grow)
1581 goto grow20;
1582
1583 if (opt == 's')
1584 sblock.fs_optim = FS_OPTSPACE;
1585 else
1586 sblock.fs_optim = FS_OPTTIME;
1587
1588 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
1589 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
1590 /*
1591 * Planning now for future expansion.
1592 */
1593 #if defined(_BIG_ENDIAN)
1594 sblock.fs_qbmask.val[0] = 0;
1595 sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
1596 sblock.fs_qfmask.val[0] = 0;
1597 sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
1598 #endif
1599 #if defined(_LITTLE_ENDIAN)
1600 sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
1601 sblock.fs_qbmask.val[1] = 0;
1602 sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
1603 sblock.fs_qfmask.val[1] = 0;
1604 #endif
1605 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
1606 sblock.fs_bshift++;
1607 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
1608 sblock.fs_fshift++;
1609 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
1610 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
1611 sblock.fs_fragshift++;
1612 if (sblock.fs_frag > MAXFRAG) {
1613 (void) fprintf(stderr, gettext(
1614 "fragment size %d is too small, minimum with block size %d is %d\n"),
1615 sblock.fs_fsize, sblock.fs_bsize,
1616 sblock.fs_bsize / MAXFRAG);
1617 lockexit(32);
1618 }
1619 sblock.fs_nindir = sblock.fs_bsize / sizeof (daddr32_t);
1620 sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1621 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
1622 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
1623 sblock.fs_fsbtodb++;
1624
1625 /*
1626 * Compute the super-block, cylinder group, and inode blocks.
1627 * Note that these "blkno" are really fragment addresses.
1628 * For example, on an 8K/1K (block/fragment) system, fs_sblkno is 16,
1629 * fs_cblkno is 24, and fs_iblkno is 32. This is why CGSIZE is so
1630 * important: only 1 FS block is allocated for the cg struct (fragment
1631 * numbers 24 through 31).
1632 */
1633 sblock.fs_sblkno =
1634 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
1635 sblock.fs_cblkno = (daddr32_t)(sblock.fs_sblkno +
1636 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
1637 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
1638
1639 sblock.fs_cgoffset = roundup(
1640 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
1641 for (sblock.fs_cgmask = -1, i = sblock.fs_ntrak; i > 1; i >>= 1)
1642 sblock.fs_cgmask <<= 1;
1643 if (!POWEROF2(sblock.fs_ntrak))
1644 sblock.fs_cgmask <<= 1;
1645 /*
1646 * Validate specified/determined spc
1647 * and calculate minimum cylinders per group.
1648 */
1649
1650 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
1651 sblock.fs_cpc > 1 && (i & 1) == 0;
1652 sblock.fs_cpc >>= 1, i >>= 1)
1653 /* void */;
1654 mincpc = sblock.fs_cpc;
1655
1656 /* if these calculations are changed, check dump_fscmd also */
1657 bpcg = (uint64_t)sblock.fs_spc * sectorsize;
1658 inospercg = (uint64_t)roundup(bpcg / sizeof (struct dinode),
1659 INOPB(&sblock));
1660 if (inospercg > MAXIpG(&sblock))
1661 inospercg = MAXIpG(&sblock);
1662 used = (uint64_t)(sblock.fs_iblkno + inospercg /
1663 INOPF(&sblock)) * NSPF(&sblock);
1664 mincpgcnt = (long)howmany((uint64_t)sblock.fs_cgoffset *
1665 (~sblock.fs_cgmask) + used, sblock.fs_spc);
1666 mincpg = roundup(mincpgcnt, mincpc);
1667 /*
1668 * Insure that cylinder group with mincpg has enough space
1669 * for block maps
1670 */
1671 sblock.fs_cpg = mincpg;
1672 sblock.fs_ipg = (int32_t)inospercg;
1673 mapcramped = 0;
1674
1675 /*
1676 * Make sure the cg struct fits within the file system block.
1677 * Use larger block sizes until it fits
1678 */
1679 while (CGSIZE(&sblock) > sblock.fs_bsize) {
1680 mapcramped = 1;
1681 if (sblock.fs_bsize < MAXBSIZE) {
1682 sblock.fs_bsize <<= 1;
1683 if ((i & 1) == 0) {
1684 i >>= 1;
1685 } else {
1686 sblock.fs_cpc <<= 1;
1687 mincpc <<= 1;
1688 mincpg = roundup(mincpgcnt, mincpc);
1689 sblock.fs_cpg = mincpg;
1690 }
1691 sblock.fs_frag <<= 1;
1692 sblock.fs_fragshift += 1;
1693 if (sblock.fs_frag <= MAXFRAG)
1694 continue;
1695 }
1696
1697 /*
1698 * Looped far enough. The fragment is now as large as the
1699 * filesystem block!
1700 */
1701 if (sblock.fs_fsize == sblock.fs_bsize) {
1702 (void) fprintf(stderr, gettext(
1703 "There is no block size that can support this disk\n"));
1704 lockexit(32);
1705 }
1706
1707 /*
1708 * Try a larger fragment. Double the fragment size.
1709 */
1710 sblock.fs_frag >>= 1;
1711 sblock.fs_fragshift -= 1;
1712 sblock.fs_fsize <<= 1;
1713 sblock.fs_nspf <<= 1;
1714 }
1715 /*
1716 * Insure that cylinder group with mincpg has enough space for inodes
1717 */
1718 inodecramped = 0;
1719 used *= sectorsize;
1720 nbytes64 = (uint64_t)mincpg * bpcg - used;
1721 inospercg = (uint64_t)roundup((nbytes64 / nbpi), INOPB(&sblock));
1722 sblock.fs_ipg = (int32_t)inospercg;
1723 while (inospercg > MAXIpG(&sblock)) {
1724 inodecramped = 1;
1725 if (mincpc == 1 || sblock.fs_frag == 1 ||
1726 sblock.fs_bsize == MINBSIZE)
1727 break;
1728 nbytes64 = (uint64_t)mincpg * bpcg - used;
1729 (void) fprintf(stderr,
1730 gettext("With a block size of %d %s %lu\n"),
1731 sblock.fs_bsize, gettext("minimum bytes per inode is"),
1732 (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1733 sblock.fs_bsize >>= 1;
1734 sblock.fs_frag >>= 1;
1735 sblock.fs_fragshift -= 1;
1736 mincpc >>= 1;
1737 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
1738 if (CGSIZE(&sblock) > sblock.fs_bsize) {
1739 sblock.fs_bsize <<= 1;
1740 break;
1741 }
1742 mincpg = sblock.fs_cpg;
1743 nbytes64 = (uint64_t)mincpg * bpcg - used;
1744 inospercg = (uint64_t)roundup((nbytes64 / nbpi),
1745 INOPB(&sblock));
1746 sblock.fs_ipg = (int32_t)inospercg;
1747 }
1748 if (inodecramped) {
1749 if (inospercg > MAXIpG(&sblock)) {
1750 nbytes64 = (uint64_t)mincpg * bpcg - used;
1751 (void) fprintf(stderr, gettext(
1752 "Minimum bytes per inode is %d\n"),
1753 (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1754 } else if (!mapcramped) {
1755 (void) fprintf(stderr, gettext(
1756 "With %ld bytes per inode, minimum cylinders per group is %ld\n"),
1757 nbpi, mincpg);
1758 }
1759 }
1760 if (mapcramped) {
1761 (void) fprintf(stderr, gettext(
1762 "With %d sectors per cylinder, minimum cylinders "
1763 "per group is %ld\n"),
1764 sblock.fs_spc, mincpg);
1765 }
1766 if (inodecramped || mapcramped) {
1767 /*
1768 * To make this at least somewhat comprehensible in
1769 * the world of i18n, figure out what we're going to
1770 * say and then say it all at one time. The days of
1771 * needing to scrimp on string space are behind us....
1772 */
1773 if ((sblock.fs_bsize != bsize) &&
1774 (sblock.fs_fsize != fragsize)) {
1775 (void) fprintf(stderr, gettext(
1776 "This requires the block size to be changed from %ld to %d\n"
1777 "and the fragment size to be changed from %ld to %d\n"),
1778 bsize, sblock.fs_bsize,
1779 fragsize, sblock.fs_fsize);
1780 } else if (sblock.fs_bsize != bsize) {
1781 (void) fprintf(stderr, gettext(
1782 "This requires the block size to be changed from %ld to %d\n"),
1783 bsize, sblock.fs_bsize);
1784 } else if (sblock.fs_fsize != fragsize) {
1785 (void) fprintf(stderr, gettext(
1786 "This requires the fragment size to be changed from %ld to %d\n"),
1787 fragsize, sblock.fs_fsize);
1788 } else {
1789 (void) fprintf(stderr, gettext(
1790 "Unable to make filesystem fit with the given constraints\n"));
1791 }
1792 (void) fprintf(stderr, gettext(
1793 "Please re-run mkfs with corrected parameters\n"));
1794 lockexit(32);
1795 }
1796 /*
1797 * Calculate the number of cylinders per group
1798 */
1799 sblock.fs_cpg = cpg;
1800 if (sblock.fs_cpg % mincpc != 0) {
1801 (void) fprintf(stderr, gettext(
1802 "Warning: cylinder groups must have a multiple "
1803 "of %ld cylinders with the given\n parameters\n"),
1804 mincpc);
1805 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
1806 (void) fprintf(stderr, gettext("Rounded cgsize up to %d\n"),
1807 sblock.fs_cpg);
1808 }
1809 /*
1810 * Must insure there is enough space for inodes
1811 */
1812 /* if these calculations are changed, check dump_fscmd also */
1813 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1814 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), INOPB(&sblock));
1815
1816 /*
1817 * Slim down cylinders per group, until the inodes can fit.
1818 */
1819 while (sblock.fs_ipg > MAXIpG(&sblock)) {
1820 inodecramped = 1;
1821 sblock.fs_cpg -= mincpc;
1822 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1823 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1824 INOPB(&sblock));
1825 }
1826 /*
1827 * Must insure there is enough space to hold block map.
1828 * Cut down on cylinders per group, until the cg struct fits in a
1829 * filesystem block.
1830 */
1831 while (CGSIZE(&sblock) > sblock.fs_bsize) {
1832 mapcramped = 1;
1833 sblock.fs_cpg -= mincpc;
1834 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1835 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1836 INOPB(&sblock));
1837 }
1838 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
1839 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
1840 (void) fprintf(stderr,
1841 gettext("newfs: panic (fs_cpg * fs_spc) %% NSPF != 0\n"));
1842 lockexit(32);
1843 }
1844 if (sblock.fs_cpg < mincpg) {
1845 (void) fprintf(stderr, gettext(
1846 "With the given parameters, cgsize must be at least %ld; please re-run mkfs\n"),
1847 mincpg);
1848 lockexit(32);
1849 }
1850 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
1851 grow20:
1852 /*
1853 * Now have size for file system and nsect and ntrak.
1854 * Determine number of cylinders and blocks in the file system.
1855 */
1856 fssize_frag = (int64_t)dbtofsb(&sblock, fssize_db);
1857 if (fssize_frag > INT_MAX) {
1858 (void) fprintf(stderr, gettext(
1859 "There are too many fragments in the system, increase fragment size\n"),
1860 mincpg);
1861 lockexit(32);
1862 }
1863 sblock.fs_size = (int32_t)fssize_frag;
1864 sblock.fs_ncyl = (int32_t)(fssize_frag * NSPF(&sblock) / sblock.fs_spc);
1865 if (fssize_frag * NSPF(&sblock) >
1866 (uint64_t)sblock.fs_ncyl * sblock.fs_spc) {
1867 sblock.fs_ncyl++;
1868 warn = 1;
1869 }
1870 if (sblock.fs_ncyl < 1) {
1871 (void) fprintf(stderr, gettext(
1872 "file systems must have at least one cylinder\n"));
1873 lockexit(32);
1874 }
1875 if (grow)
1876 goto grow30;
1877 /*
1878 * Determine feasability/values of rotational layout tables.
1879 *
1880 * The size of the rotational layout tables is limited by the size
1881 * of the file system block, fs_bsize. The amount of space
1882 * available for tables is calculated as (fs_bsize - sizeof (struct
1883 * fs)). The size of these tables is inversely proportional to the
1884 * block size of the file system. The size increases if sectors per
1885 * track are not powers of two, because more cylinders must be
1886 * described by the tables before the rotational pattern repeats
1887 * (fs_cpc).
1888 */
1889 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
1890 sblock.fs_sbsize = fragroundup(&sblock, sizeof (struct fs));
1891 sblock.fs_npsect = sblock.fs_nsect;
1892 if (sblock.fs_ntrak == 1) {
1893 sblock.fs_cpc = 0;
1894 goto next;
1895 }
1896 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof (short);
1897 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
1898 totalsbsize = sizeof (struct fs) + rotblsize;
1899
1900 /* do static allocation if nrpos == 8 and fs_cpc == 16 */
1901 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
1902 /* use old static table space */
1903 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
1904 (char *)(&sblock.fs_link);
1905 sblock.fs_rotbloff = &sblock.fs_space[0] -
1906 (uchar_t *)(&sblock.fs_link);
1907 } else {
1908 /* use 4.3 dynamic table space */
1909 sblock.fs_postbloff = &sblock.fs_space[0] -
1910 (uchar_t *)(&sblock.fs_link);
1911 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
1912 totalsbsize += postblsize;
1913 }
1914 if (totalsbsize > sblock.fs_bsize ||
1915 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
1916 (void) fprintf(stderr, gettext(
1917 "Warning: insufficient space in super block for\n"
1918 "rotational layout tables with nsect %d, ntrack %d, "
1919 "and nrpos %d.\nOmitting tables - file system "
1920 "performance may be impaired.\n"),
1921 sblock.fs_nsect, sblock.fs_ntrak, sblock.fs_nrpos);
1922
1923 /*
1924 * Setting fs_cpc to 0 tells alloccgblk() in ufs_alloc.c to
1925 * ignore the positional layout table and rotational
1926 * position table.
1927 */
1928 sblock.fs_cpc = 0;
1929 goto next;
1930 }
1931 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
1932
1933
1934 /*
1935 * calculate the available blocks for each rotational position
1936 */
1937 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
1938 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
1939 fs_postbl(&sblock, cylno)[rpos] = -1;
1940 for (i = (rotblsize - 1) * sblock.fs_frag;
1941 i >= 0; i -= sblock.fs_frag) {
1942 cylno = cbtocylno(&sblock, i);
1943 rpos = cbtorpos(&sblock, i);
1944 blk = fragstoblks(&sblock, i);
1945 if (fs_postbl(&sblock, cylno)[rpos] == -1)
1946 fs_rotbl(&sblock)[blk] = 0;
1947 else
1948 fs_rotbl(&sblock)[blk] =
1949 fs_postbl(&sblock, cylno)[rpos] - blk;
1950 fs_postbl(&sblock, cylno)[rpos] = blk;
1951 }
1952 next:
1953 grow30:
1954 /*
1955 * Compute/validate number of cylinder groups.
1956 * Note that if an excessively large filesystem is specified
1957 * (e.g., more than 16384 cylinders for an 8K filesystem block), it
1958 * does not get detected until checksummarysize()
1959 */
1960 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
1961 if (sblock.fs_ncyl % sblock.fs_cpg)
1962 sblock.fs_ncg++;
1963 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
1964 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
1965 ibpcl = cgdmin(&sblock, i) - cgbase(&sblock, i);
1966 if (ibpcl >= sblock.fs_fpg) {
1967 (void) fprintf(stderr, gettext(
1968 "inode blocks/cyl group (%d) >= data blocks (%d)\n"),
1969 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
1970 sblock.fs_fpg / sblock.fs_frag);
1971 if ((ibpcl < 0) || (sblock.fs_fpg < 0)) {
1972 (void) fprintf(stderr, gettext(
1973 "number of cylinders per cylinder group (%d) must be decreased.\n"),
1974 sblock.fs_cpg);
1975 } else {
1976 (void) fprintf(stderr, gettext(
1977 "number of cylinders per cylinder group (%d) must be increased.\n"),
1978 sblock.fs_cpg);
1979 }
1980 (void) fprintf(stderr, gettext(
1981 "Note that cgsize may have been adjusted to allow struct cg to fit.\n"));
1982 lockexit(32);
1983 }
1984 j = sblock.fs_ncg - 1;
1985 if ((i = fssize_frag - j * sblock.fs_fpg) < sblock.fs_fpg &&
1986 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
1987 (void) fprintf(stderr, gettext(
1988 "Warning: inode blocks/cyl group (%d) >= data "
1989 "blocks (%ld) in last\n cylinder group. This "
1990 "implies %ld sector(s) cannot be allocated.\n"),
1991 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
1992 i / sblock.fs_frag, i * NSPF(&sblock));
1993 /*
1994 * If there is only one cylinder group and that is not even
1995 * big enough to hold the inodes, exit.
1996 */
1997 if (sblock.fs_ncg == 1)
1998 cg_too_small = 1;
1999 sblock.fs_ncg--;
2000 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2001 sblock.fs_size = fssize_frag =
2002 (int64_t)sblock.fs_ncyl * (int64_t)sblock.fs_spc /
2003 (int64_t)NSPF(&sblock);
2004 warn = 0;
2005 }
2006 if (warn && !spc_flag) {
2007 (void) fprintf(stderr, gettext(
2008 "Warning: %d sector(s) in last cylinder unallocated\n"),
2009 sblock.fs_spc - (uint32_t)(fssize_frag * NSPF(&sblock) -
2010 (uint64_t)(sblock.fs_ncyl - 1) * sblock.fs_spc));
2011 }
2012 /*
2013 * fill in remaining fields of the super block
2014 */
2015
2016 /*
2017 * The csum records are stored in cylinder group 0, starting at
2018 * cgdmin, the first data block.
2019 */
2020 sblock.fs_csaddr = cgdmin(&sblock, 0);
2021 sblock.fs_cssize =
2022 fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum));
2023 i = sblock.fs_bsize / sizeof (struct csum);
2024 sblock.fs_csmask = ~(i - 1);
2025 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
2026 sblock.fs_csshift++;
2027 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
2028
2029 checksummarysize();
2030 if (mtb == 'y') {
2031 sblock.fs_magic = MTB_UFS_MAGIC;
2032 sblock.fs_version = MTB_UFS_VERSION_1;
2033 } else {
2034 sblock.fs_magic = FS_MAGIC;
2035 if (use_efi_dflts)
2036 sblock.fs_version = UFS_EFISTYLE4NONEFI_VERSION_2;
2037 else
2038 sblock.fs_version = UFS_VERSION_MIN;
2039 }
2040
2041 if (grow) {
2042 bcopy((caddr_t)grow_fscs, (caddr_t)fscs, (int)grow_fs_cssize);
2043 extendsummaryinfo();
2044 goto grow40;
2045 }
2046 sblock.fs_rotdelay = rotdelay;
2047 sblock.fs_maxcontig = maxcontig;
2048 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
2049
2050 sblock.fs_rps = rps;
2051 sblock.fs_cgrotor = 0;
2052 sblock.fs_cstotal.cs_ndir = 0;
2053 sblock.fs_cstotal.cs_nbfree = 0;
2054 sblock.fs_cstotal.cs_nifree = 0;
2055 sblock.fs_cstotal.cs_nffree = 0;
2056 sblock.fs_fmod = 0;
2057 sblock.fs_ronly = 0;
2058 sblock.fs_time = mkfstime;
2059 sblock.fs_state = FSOKAY - sblock.fs_time;
2060 sblock.fs_clean = FSCLEAN;
2061 grow40:
2062
2063 /*
2064 * If all that's needed is a dump of the superblock we
2065 * would use by default, we've got it now. So, splat it
2066 * out and leave.
2067 */
2068 if (rflag) {
2069 dump_sblock();
2070 lockexit(0);
2071 }
2072 /*
2073 * Dump out summary information about file system.
2074 */
2075 (void) fprintf(stderr, gettext(
2076 "%s:\t%lld sectors in %d cylinders of %d tracks, %d sectors\n"),
2077 fsys, (uint64_t)sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
2078 sblock.fs_ntrak, sblock.fs_nsect);
2079 (void) fprintf(stderr, gettext(
2080 "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n"),
2081 (float)sblock.fs_size * sblock.fs_fsize / MB, sblock.fs_ncg,
2082 sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize / MB,
2083 sblock.fs_ipg);
2084
2085 tmpbuf = calloc(sblock.fs_ncg / 50 + 500, 1);
2086 if (tmpbuf == NULL) {
2087 perror("calloc");
2088 lockexit(32);
2089 }
2090 if (cg_too_small) {
2091 (void) fprintf(stderr, gettext("File system creation failed. "
2092 "There is only one cylinder group and\nthat is "
2093 "not even big enough to hold the inodes.\n"));
2094 lockexit(32);
2095 }
2096 /*
2097 * Now build the cylinders group blocks and
2098 * then print out indices of cylinder groups.
2099 */
2100 tprintf(gettext(
2101 "super-block backups (for fsck -F ufs -o b=#) at:\n"));
2102 for (width = cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) {
2103 if ((grow == 0) || (cylno >= grow_fs_ncg))
2104 initcg(cylno);
2105 num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2106 /*
2107 * If Nflag and if the disk is larger than the CHSLIMIT,
2108 * then sanity test the superblocks before reporting. If there
2109 * are too many superblocks which look insane, we have
2110 * to retry with alternate logic. If both methods have
2111 * failed, then our efforts to arrive at alternate
2112 * superblocks failed, so complain and exit.
2113 */
2114 if (Nflag && retry) {
2115 skip_this_sb = 0;
2116 rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2117 ret = checksblock(altsblock, 1);
2118 if (ret) {
2119 skip_this_sb = 1;
2120 invalid_sb_cnt++;
2121 dprintf(("DeBuG checksblock() failed - error :"
2122 " %d for sb : %llu invalid_sb_cnt : %d\n",
2123 ret, num, invalid_sb_cnt));
2124 } else {
2125 /*
2126 * Though the superblock looks sane, verify if
2127 * the fs_version in the superblock and the
2128 * logic that we are using to arrive at the
2129 * superblocks match.
2130 */
2131 if (use_efi_dflts && altsblock.fs_version
2132 != UFS_EFISTYLE4NONEFI_VERSION_2) {
2133 skip_this_sb = 1;
2134 invalid_sb_cnt++;
2135 }
2136 }
2137 if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2138 if (retry > 1) {
2139 (void) fprintf(stderr, gettext(
2140 "Error determining alternate "
2141 "superblock locations\n"));
2142 free(tmpbuf);
2143 lockexit(32);
2144 }
2145 retry++;
2146 use_efi_dflts = !use_efi_dflts;
2147 free(tmpbuf);
2148 goto retry_alternate_logic;
2149 }
2150 if (skip_this_sb)
2151 continue;
2152 }
2153 (void) sprintf(pbuf, " %llu,", num);
2154 plen = strlen(pbuf);
2155 if ((width + plen) > (WIDTH - 1)) {
2156 width = plen;
2157 tprintf("\n");
2158 } else {
2159 width += plen;
2160 }
2161 if (Nflag && retry)
2162 (void) strncat(tmpbuf, pbuf, strlen(pbuf));
2163 else
2164 (void) fprintf(stderr, "%s", pbuf);
2165 }
2166 tprintf("\n");
2167
2168 remaining_cg = sblock.fs_ncg - cylno;
2169
2170 /*
2171 * If there are more than 300 cylinder groups still to be
2172 * initialized, print a "." for every 50 cylinder groups.
2173 */
2174 if (remaining_cg > 300) {
2175 tprintf(gettext("Initializing cylinder groups:\n"));
2176 do_dot = 1;
2177 }
2178
2179 /*
2180 * Now initialize all cylinder groups between the first ten
2181 * and the last ten.
2182 *
2183 * If the number of cylinder groups was less than 10, all of the
2184 * cylinder group offsets would have printed in the last loop
2185 * and cylno will already be equal to sblock.fs_ncg and so this
2186 * loop will not be entered. If there are less than 20 cylinder
2187 * groups, cylno is already less than fs_ncg - 10, so this loop
2188 * won't be entered in that case either.
2189 */
2190
2191 i = 0;
2192 for (; cylno < sblock.fs_ncg - 10; cylno++) {
2193 if ((grow == 0) || (cylno >= grow_fs_ncg))
2194 initcg(cylno);
2195 if (do_dot && cylno % 50 == 0) {
2196 tprintf(".");
2197 i++;
2198 if (i == WIDTH - 1) {
2199 tprintf("\n");
2200 i = 0;
2201 }
2202 }
2203 }
2204
2205 /*
2206 * Now print the cylinder group offsets for the last 10
2207 * cylinder groups, if any are left.
2208 */
2209
2210 if (do_dot) {
2211 tprintf(gettext(
2212 "\nsuper-block backups for last 10 cylinder groups at:\n"));
2213 }
2214 for (width = 0; cylno < sblock.fs_ncg; cylno++) {
2215 if ((grow == 0) || (cylno >= grow_fs_ncg))
2216 initcg(cylno);
2217 num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2218 if (Nflag && retry) {
2219 skip_this_sb = 0;
2220 rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2221 ret = checksblock(altsblock, 1);
2222 if (ret) {
2223 skip_this_sb = 1;
2224 invalid_sb_cnt++;
2225 dprintf(("DeBuG checksblock() failed - error :"
2226 " %d for sb : %llu invalid_sb_cnt : %d\n",
2227 ret, num, invalid_sb_cnt));
2228 } else {
2229 /*
2230 * Though the superblock looks sane, verify if
2231 * the fs_version in the superblock and the
2232 * logic that we are using to arrive at the
2233 * superblocks match.
2234 */
2235 if (use_efi_dflts && altsblock.fs_version
2236 != UFS_EFISTYLE4NONEFI_VERSION_2) {
2237 skip_this_sb = 1;
2238 invalid_sb_cnt++;
2239 }
2240 }
2241 if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2242 if (retry > 1) {
2243 (void) fprintf(stderr, gettext(
2244 "Error determining alternate "
2245 "superblock locations\n"));
2246 free(tmpbuf);
2247 lockexit(32);
2248 }
2249 retry++;
2250 use_efi_dflts = !use_efi_dflts;
2251 free(tmpbuf);
2252 goto retry_alternate_logic;
2253 }
2254 if (skip_this_sb)
2255 continue;
2256 }
2257 /* Don't print ',' for the last superblock */
2258 if (cylno == sblock.fs_ncg-1)
2259 (void) sprintf(pbuf, " %llu", num);
2260 else
2261 (void) sprintf(pbuf, " %llu,", num);
2262 plen = strlen(pbuf);
2263 if ((width + plen) > (WIDTH - 1)) {
2264 width = plen;
2265 tprintf("\n");
2266 } else {
2267 width += plen;
2268 }
2269 if (Nflag && retry)
2270 (void) strncat(tmpbuf, pbuf, strlen(pbuf));
2271 else
2272 (void) fprintf(stderr, "%s", pbuf);
2273 }
2274 tprintf("\n");
2275 if (Nflag) {
2276 if (retry)
2277 (void) fprintf(stderr, "%s", tmpbuf);
2278 free(tmpbuf);
2279 lockexit(0);
2280 }
2281
2282 free(tmpbuf);
2283 if (grow)
2284 goto grow50;
2285
2286 /*
2287 * Now construct the initial file system,
2288 * then write out the super-block.
2289 */
2290 fsinit();
2291 grow50:
2292 /*
2293 * write the superblock and csum information
2294 */
2295 wtsb();
2296
2297 /*
2298 * extend the last cylinder group in the original file system
2299 */
2300 if (grow) {
2301 extendcg(grow_fs_ncg-1);
2302 wtsb();
2303 }
2304
2305 /*
2306 * Write out the duplicate super blocks to the first 10
2307 * cylinder groups (or fewer, if there are fewer than 10
2308 * cylinder groups).
2309 */
2310 for (cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++)
2311 awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2312 (int)sbsize, (char *)&sblock, SAVE);
2313
2314 /*
2315 * Now write out duplicate super blocks to the remaining
2316 * cylinder groups. In the case of multi-terabyte file
2317 * systems, just write out the super block to the last ten
2318 * cylinder groups (or however many are left).
2319 */
2320 if (mtb == 'y') {
2321 if (sblock.fs_ncg <= 10)
2322 cylno = sblock.fs_ncg;
2323 else if (sblock.fs_ncg <= 20)
2324 cylno = 10;
2325 else
2326 cylno = sblock.fs_ncg - 10;
2327 }
2328
2329 for (; cylno < sblock.fs_ncg; cylno++)
2330 awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2331 (int)sbsize, (char *)&sblock, SAVE);
2332
2333 /*
2334 * Flush out all the AIO writes we've done. It's not
2335 * necessary to do this explicitly, but it's the only
2336 * way to report any errors from those writes.
2337 */
2338 flush_writes();
2339
2340 /*
2341 * set clean flag
2342 */
2343 if (grow)
2344 sblock.fs_clean = grow_fs_clean;
2345 else
2346 sblock.fs_clean = FSCLEAN;
2347 sblock.fs_time = mkfstime;
2348 sblock.fs_state = FSOKAY - sblock.fs_time;
2349 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
2350 isbad = 0;
2351
2352 if (fsync(fso) == -1) {
2353 saverr = errno;
2354 (void) fprintf(stderr,
2355 gettext("mkfs: fsync failed on write disk: %s\n"),
2356 strerror(saverr));
2357 /* we're just cleaning up, so keep going */
2358 }
2359 if (close(fsi) == -1) {
2360 saverr = errno;
2361 (void) fprintf(stderr,
2362 gettext("mkfs: close failed on read disk: %s\n"),
2363 strerror(saverr));
2364 /* we're just cleaning up, so keep going */
2365 }
2366 if (close(fso) == -1) {
2367 saverr = errno;
2368 (void) fprintf(stderr,
2369 gettext("mkfs: close failed on write disk: %s\n"),
2370 strerror(saverr));
2371 /* we're just cleaning up, so keep going */
2372 }
2373 fsi = fso = -1;
2374
2375 #ifndef STANDALONE
2376 lockexit(0);
2377 #endif
2378
2379 return (0);
2380 }
2381
2382 /*
2383 * Figure out how big the partition we're dealing with is.
2384 * The value returned is in disk blocks (sectors);
2385 */
2386 static diskaddr_t
get_max_size(int fd)2387 get_max_size(int fd)
2388 {
2389 struct extvtoc vtoc;
2390 dk_gpt_t *efi_vtoc;
2391 diskaddr_t slicesize;
2392
2393 int index = read_extvtoc(fd, &vtoc);
2394
2395 if (index >= 0) {
2396 label_type = LABEL_TYPE_VTOC;
2397 } else {
2398 if (index == VT_ENOTSUP || index == VT_ERROR) {
2399 /* it might be an EFI label */
2400 index = efi_alloc_and_read(fd, &efi_vtoc);
2401 label_type = LABEL_TYPE_EFI;
2402 }
2403 }
2404
2405 if (index < 0) {
2406 switch (index) {
2407 case VT_ERROR:
2408 break;
2409 case VT_EIO:
2410 errno = EIO;
2411 break;
2412 case VT_EINVAL:
2413 errno = EINVAL;
2414 }
2415 perror(gettext("Can not determine partition size"));
2416 lockexit(32);
2417 }
2418
2419 if (label_type == LABEL_TYPE_EFI) {
2420 slicesize = efi_vtoc->efi_parts[index].p_size;
2421 efi_free(efi_vtoc);
2422 } else {
2423 /*
2424 * In the vtoc struct, p_size is a 32-bit signed quantity.
2425 * In the dk_gpt struct (efi's version of the vtoc), p_size
2426 * is an unsigned 64-bit quantity. By casting the vtoc's
2427 * psize to an unsigned 32-bit quantity, it will be copied
2428 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without
2429 * sign extension.
2430 */
2431
2432 slicesize = (uint32_t)vtoc.v_part[index].p_size;
2433 }
2434
2435 dprintf(("DeBuG get_max_size index = %d, p_size = %lld, dolimit = %d\n",
2436 index, slicesize, (slicesize > FS_MAX)));
2437
2438 /*
2439 * The next line limits a UFS file system to the maximum
2440 * supported size.
2441 */
2442
2443 if (slicesize > FS_MAX)
2444 return (FS_MAX);
2445 return (slicesize);
2446 }
2447
2448 static long
get_max_track_size(int fd)2449 get_max_track_size(int fd)
2450 {
2451 struct dk_cinfo ci;
2452 long track_size = -1;
2453
2454 if (ioctl(fd, DKIOCINFO, &ci) == 0) {
2455 track_size = ci.dki_maxtransfer * DEV_BSIZE;
2456 }
2457
2458 if ((track_size < 0)) {
2459 int error = 0;
2460 int maxphys;
2461 int gotit = 0;
2462
2463 gotit = fsgetmaxphys(&maxphys, &error);
2464 if (gotit) {
2465 track_size = MIN(MB, maxphys);
2466 } else {
2467 (void) fprintf(stderr, gettext(
2468 "Warning: Could not get system value for maxphys. The value for\n"
2469 "maxcontig will default to 1MB.\n"));
2470 track_size = MB;
2471 }
2472 }
2473 return (track_size);
2474 }
2475
2476 /*
2477 * Initialize a cylinder group.
2478 */
2479 static void
initcg(int cylno)2480 initcg(int cylno)
2481 {
2482 diskaddr_t cbase, d;
2483 diskaddr_t dlower; /* last data block before cg metadata */
2484 diskaddr_t dupper; /* first data block after cg metadata */
2485 diskaddr_t dmax;
2486 int64_t i;
2487 struct csum *cs;
2488 struct dinode *inode_buffer;
2489 int size;
2490
2491 /*
2492 * Variables used to store intermediate results as a part of
2493 * the internal implementation of the cbtocylno() macros.
2494 */
2495 diskaddr_t bno; /* UFS block number (not sector number) */
2496 int cbcylno; /* current cylinder number */
2497 int cbcylno_sect; /* sector offset within cylinder */
2498 int cbsect_incr; /* amount to increment sector offset */
2499
2500 /*
2501 * Variables used to store intermediate results as a part of
2502 * the internal implementation of the cbtorpos() macros.
2503 */
2504 short *cgblks; /* pointer to array of free blocks in cg */
2505 int trackrpos; /* tmp variable for rotation position */
2506 int trackoff; /* offset within a track */
2507 int trackoff_incr; /* amount to increment trackoff */
2508 int rpos; /* rotation position of current block */
2509 int rpos_incr; /* amount to increment rpos per block */
2510
2511 union cgun *icgun; /* local pointer to a cg summary block */
2512 #define icg (icgun->cg)
2513
2514 icgun = (union cgun *)getbuf(&cgsumbuf, sizeof (union cgun));
2515
2516 /*
2517 * Determine block bounds for cylinder group.
2518 * Allow space for super block summary information in first
2519 * cylinder group.
2520 */
2521 cbase = cgbase(&sblock, cylno);
2522 dmax = cbase + sblock.fs_fpg;
2523 if (dmax > sblock.fs_size) /* last cg may be smaller than normal */
2524 dmax = sblock.fs_size;
2525 dlower = cgsblock(&sblock, cylno) - cbase;
2526 dupper = cgdmin(&sblock, cylno) - cbase;
2527 if (cylno == 0)
2528 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
2529 cs = fscs + cylno;
2530 icg.cg_time = mkfstime;
2531 icg.cg_magic = CG_MAGIC;
2532 icg.cg_cgx = cylno;
2533 /* last one gets whatever's left */
2534 if (cylno == sblock.fs_ncg - 1)
2535 icg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
2536 else
2537 icg.cg_ncyl = sblock.fs_cpg;
2538 icg.cg_niblk = sblock.fs_ipg;
2539 icg.cg_ndblk = dmax - cbase;
2540 icg.cg_cs.cs_ndir = 0;
2541 icg.cg_cs.cs_nffree = 0;
2542 icg.cg_cs.cs_nbfree = 0;
2543 icg.cg_cs.cs_nifree = 0;
2544 icg.cg_rotor = 0;
2545 icg.cg_frotor = 0;
2546 icg.cg_irotor = 0;
2547 icg.cg_btotoff = &icg.cg_space[0] - (uchar_t *)(&icg.cg_link);
2548 icg.cg_boff = icg.cg_btotoff + sblock.fs_cpg * sizeof (long);
2549 icg.cg_iusedoff = icg.cg_boff +
2550 sblock.fs_cpg * sblock.fs_nrpos * sizeof (short);
2551 icg.cg_freeoff = icg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
2552 icg.cg_nextfreeoff = icg.cg_freeoff +
2553 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
2554 for (i = 0; i < sblock.fs_frag; i++) {
2555 icg.cg_frsum[i] = 0;
2556 }
2557 bzero((caddr_t)cg_inosused(&icg), icg.cg_freeoff - icg.cg_iusedoff);
2558 icg.cg_cs.cs_nifree += sblock.fs_ipg;
2559 if (cylno == 0)
2560 for (i = 0; i < UFSROOTINO; i++) {
2561 setbit(cg_inosused(&icg), i);
2562 icg.cg_cs.cs_nifree--;
2563 }
2564
2565 /*
2566 * Initialize all the inodes in the cylinder group using
2567 * random numbers.
2568 */
2569 size = sblock.fs_ipg * sizeof (struct dinode);
2570 inode_buffer = (struct dinode *)getbuf(&inodebuf, size);
2571
2572 for (i = 0; i < sblock.fs_ipg; i++) {
2573 IRANDOMIZE(&(inode_buffer[i].di_ic));
2574 }
2575
2576 /*
2577 * Write all inodes in a single write for performance.
2578 */
2579 awtfs(fsbtodb(&sblock, (uint64_t)cgimin(&sblock, cylno)), (int)size,
2580 (char *)inode_buffer, RELEASE);
2581
2582 bzero((caddr_t)cg_blktot(&icg), icg.cg_boff - icg.cg_btotoff);
2583 bzero((caddr_t)cg_blks(&sblock, &icg, 0),
2584 icg.cg_iusedoff - icg.cg_boff);
2585 bzero((caddr_t)cg_blksfree(&icg), icg.cg_nextfreeoff - icg.cg_freeoff);
2586
2587 if (cylno > 0) {
2588 for (d = 0; d < dlower; d += sblock.fs_frag) {
2589 setblock(&sblock, cg_blksfree(&icg), d/sblock.fs_frag);
2590 icg.cg_cs.cs_nbfree++;
2591 cg_blktot(&icg)[cbtocylno(&sblock, d)]++;
2592 cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2593 [cbtorpos(&sblock, d)]++;
2594 }
2595 sblock.fs_dsize += dlower;
2596 }
2597 sblock.fs_dsize += icg.cg_ndblk - dupper;
2598 if ((i = dupper % sblock.fs_frag) != 0) {
2599 icg.cg_frsum[sblock.fs_frag - i]++;
2600 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
2601 setbit(cg_blksfree(&icg), dupper);
2602 icg.cg_cs.cs_nffree++;
2603 }
2604 }
2605
2606 /*
2607 * WARNING: The following code is somewhat confusing, but
2608 * results in a substantial performance improvement in mkfs.
2609 *
2610 * Instead of using cbtocylno() and cbtorpos() macros, we
2611 * keep track of all the intermediate state of those macros
2612 * in some variables. This allows simple addition to be
2613 * done to calculate the results as we step through the
2614 * blocks in an orderly fashion instead of the slower
2615 * multiplication and division the macros are forced to
2616 * used so they can support random input. (Multiplication,
2617 * division, and remainder operations typically take about
2618 * 10x as many processor cycles as other operations.)
2619 *
2620 * The basic idea is to take code:
2621 *
2622 * for (x = starting_x; x < max; x++)
2623 * y = (x * c) / z
2624 *
2625 * and rewrite it to take advantage of the fact that
2626 * the variable x is incrementing in an orderly way:
2627 *
2628 * intermediate = starting_x * c
2629 * yval = intermediate / z
2630 * for (x = starting_x; x < max; x++) {
2631 * y = yval;
2632 * intermediate += c
2633 * if (intermediate > z) {
2634 * yval++;
2635 * intermediate -= z
2636 * }
2637 * }
2638 *
2639 * Performance has improved as much as 4X using this code.
2640 */
2641
2642 /*
2643 * Initialize the starting points for all the cbtocylno()
2644 * macro variables and figure out the increments needed each
2645 * time through the loop.
2646 */
2647 cbcylno_sect = dupper * NSPF(&sblock);
2648 cbsect_incr = sblock.fs_frag * NSPF(&sblock);
2649 cbcylno = cbcylno_sect / sblock.fs_spc;
2650 cbcylno_sect %= sblock.fs_spc;
2651 cgblks = cg_blks(&sblock, &icg, cbcylno);
2652 bno = dupper / sblock.fs_frag;
2653
2654 /*
2655 * Initialize the starting points for all the cbtorpos()
2656 * macro variables and figure out the increments needed each
2657 * time through the loop.
2658 *
2659 * It's harder to simplify the cbtorpos() macro if there were
2660 * alternate sectors specified (or if they previously existed
2661 * in the growfs case). Since this is rare, we just revert to
2662 * using the macros in this case and skip the variable setup.
2663 */
2664 if (!spc_flag) {
2665 trackrpos = (cbcylno_sect % sblock.fs_nsect) * sblock.fs_nrpos;
2666 rpos = trackrpos / sblock.fs_nsect;
2667 trackoff = trackrpos % sblock.fs_nsect;
2668 trackoff_incr = cbsect_incr * sblock.fs_nrpos;
2669 rpos_incr = (trackoff_incr / sblock.fs_nsect) % sblock.fs_nrpos;
2670 trackoff_incr = trackoff_incr % sblock.fs_nsect;
2671 }
2672
2673 /*
2674 * Loop through all the blocks, marking them free and
2675 * updating totals kept in the superblock and cg summary.
2676 */
2677 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
2678 setblock(&sblock, cg_blksfree(&icg), bno);
2679 icg.cg_cs.cs_nbfree++;
2680
2681 cg_blktot(&icg)[cbcylno]++;
2682
2683 if (!spc_flag)
2684 cgblks[rpos]++;
2685 else
2686 cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2687 [cbtorpos(&sblock, d)]++;
2688
2689 d += sblock.fs_frag;
2690 bno++;
2691
2692 /*
2693 * Increment the sector offset within the cylinder
2694 * for the cbtocylno() macro reimplementation. If
2695 * we're beyond the end of the cylinder, update the
2696 * cylinder number, calculate the offset in the
2697 * new cylinder, and update the cgblks pointer
2698 * to the next rotational position.
2699 */
2700 cbcylno_sect += cbsect_incr;
2701 if (cbcylno_sect >= sblock.fs_spc) {
2702 cbcylno++;
2703 cbcylno_sect -= sblock.fs_spc;
2704 cgblks += sblock.fs_nrpos;
2705 }
2706
2707 /*
2708 * If there aren't alternate sectors, increment the
2709 * rotational position variables for the cbtorpos()
2710 * reimplementation. Note that we potentially
2711 * increment rpos twice. Once by rpos_incr, and one
2712 * more time when we wrap to a new track because
2713 * trackoff >= fs_nsect.
2714 */
2715 if (!spc_flag) {
2716 trackoff += trackoff_incr;
2717 rpos += rpos_incr;
2718 if (trackoff >= sblock.fs_nsect) {
2719 trackoff -= sblock.fs_nsect;
2720 rpos++;
2721 }
2722 if (rpos >= sblock.fs_nrpos)
2723 rpos -= sblock.fs_nrpos;
2724 }
2725 }
2726
2727 if (d < dmax - cbase) {
2728 icg.cg_frsum[dmax - cbase - d]++;
2729 for (; d < dmax - cbase; d++) {
2730 setbit(cg_blksfree(&icg), d);
2731 icg.cg_cs.cs_nffree++;
2732 }
2733 }
2734 sblock.fs_cstotal.cs_ndir += icg.cg_cs.cs_ndir;
2735 sblock.fs_cstotal.cs_nffree += icg.cg_cs.cs_nffree;
2736 sblock.fs_cstotal.cs_nbfree += icg.cg_cs.cs_nbfree;
2737 sblock.fs_cstotal.cs_nifree += icg.cg_cs.cs_nifree;
2738 *cs = icg.cg_cs;
2739 awtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, cylno)),
2740 sblock.fs_bsize, (char *)&icg, RELEASE);
2741 }
2742
2743 /*
2744 * initialize the file system
2745 */
2746 struct inode node;
2747
2748 #define LOSTDIR
2749 #ifdef LOSTDIR
2750 #define PREDEFDIR 3
2751 #else
2752 #define PREDEFDIR 2
2753 #endif
2754
2755 struct direct root_dir[] = {
2756 { UFSROOTINO, sizeof (struct direct), 1, "." },
2757 { UFSROOTINO, sizeof (struct direct), 2, ".." },
2758 #ifdef LOSTDIR
2759 { LOSTFOUNDINO, sizeof (struct direct), 10, "lost+found" },
2760 #endif
2761 };
2762 #ifdef LOSTDIR
2763 struct direct lost_found_dir[] = {
2764 { LOSTFOUNDINO, sizeof (struct direct), 1, "." },
2765 { UFSROOTINO, sizeof (struct direct), 2, ".." },
2766 { 0, DIRBLKSIZ, 0, 0 },
2767 };
2768 #endif
2769 char buf[MAXBSIZE];
2770
2771 static void
fsinit()2772 fsinit()
2773 {
2774 int i;
2775
2776
2777 /*
2778 * initialize the node
2779 */
2780 node.i_atime = mkfstime;
2781 node.i_mtime = mkfstime;
2782 node.i_ctime = mkfstime;
2783 #ifdef LOSTDIR
2784 /*
2785 * create the lost+found directory
2786 */
2787 (void) makedir(lost_found_dir, 2);
2788 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) {
2789 bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
2790 }
2791 node.i_number = LOSTFOUNDINO;
2792 node.i_smode = IFDIR | 0700;
2793 node.i_nlink = 2;
2794 node.i_size = sblock.fs_bsize;
2795 node.i_db[0] = alloc((int)node.i_size, node.i_mode);
2796 node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2797 IRANDOMIZE(&node.i_ic);
2798 wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), (int)node.i_size, buf);
2799 iput(&node);
2800 #endif
2801 /*
2802 * create the root directory
2803 */
2804 node.i_number = UFSROOTINO;
2805 node.i_mode = IFDIR | UMASK;
2806 node.i_nlink = PREDEFDIR;
2807 node.i_size = makedir(root_dir, PREDEFDIR);
2808 node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
2809 /* i_size < 2GB because we are initializing the file system */
2810 node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2811 IRANDOMIZE(&node.i_ic);
2812 wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), sblock.fs_fsize, buf);
2813 iput(&node);
2814 }
2815
2816 /*
2817 * construct a set of directory entries in "buf".
2818 * return size of directory.
2819 */
2820 static int
makedir(struct direct * protodir,int entries)2821 makedir(struct direct *protodir, int entries)
2822 {
2823 char *cp;
2824 int i;
2825 ushort_t spcleft;
2826
2827 spcleft = DIRBLKSIZ;
2828 for (cp = buf, i = 0; i < entries - 1; i++) {
2829 protodir[i].d_reclen = DIRSIZ(&protodir[i]);
2830 bcopy(&protodir[i], cp, protodir[i].d_reclen);
2831 cp += protodir[i].d_reclen;
2832 spcleft -= protodir[i].d_reclen;
2833 }
2834 protodir[i].d_reclen = spcleft;
2835 bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
2836 return (DIRBLKSIZ);
2837 }
2838
2839 /*
2840 * allocate a block or frag
2841 */
2842 static daddr32_t
alloc(int size,int mode)2843 alloc(int size, int mode)
2844 {
2845 int i, frag;
2846 daddr32_t d;
2847
2848 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2849 (char *)&acg);
2850 if (acg.cg_magic != CG_MAGIC) {
2851 (void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2852 lockexit(32);
2853 }
2854 if (acg.cg_cs.cs_nbfree == 0) {
2855 (void) fprintf(stderr,
2856 gettext("first cylinder group ran out of space\n"));
2857 lockexit(32);
2858 }
2859 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
2860 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
2861 goto goth;
2862 (void) fprintf(stderr,
2863 gettext("internal error: can't find block in cyl 0\n"));
2864 lockexit(32);
2865 goth:
2866 clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
2867 acg.cg_cs.cs_nbfree--;
2868 sblock.fs_cstotal.cs_nbfree--;
2869 fscs[0].cs_nbfree--;
2870 if (mode & IFDIR) {
2871 acg.cg_cs.cs_ndir++;
2872 sblock.fs_cstotal.cs_ndir++;
2873 fscs[0].cs_ndir++;
2874 }
2875 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
2876 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
2877 if (size != sblock.fs_bsize) {
2878 frag = howmany(size, sblock.fs_fsize);
2879 fscs[0].cs_nffree += sblock.fs_frag - frag;
2880 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
2881 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
2882 acg.cg_frsum[sblock.fs_frag - frag]++;
2883 for (i = frag; i < sblock.fs_frag; i++)
2884 setbit(cg_blksfree(&acg), d + i);
2885 }
2886 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2887 (char *)&acg);
2888 return (d);
2889 }
2890
2891 /*
2892 * Allocate an inode on the disk
2893 */
2894 static void
iput(struct inode * ip)2895 iput(struct inode *ip)
2896 {
2897 struct dinode buf[MAXINOPB];
2898 diskaddr_t d;
2899
2900 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2901 (char *)&acg);
2902 if (acg.cg_magic != CG_MAGIC) {
2903 (void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2904 lockexit(32);
2905 }
2906 acg.cg_cs.cs_nifree--;
2907 setbit(cg_inosused(&acg), ip->i_number);
2908 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2909 (char *)&acg);
2910 sblock.fs_cstotal.cs_nifree--;
2911 fscs[0].cs_nifree--;
2912 if ((int)ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
2913 (void) fprintf(stderr,
2914 gettext("fsinit: inode value out of range (%d).\n"),
2915 ip->i_number);
2916 lockexit(32);
2917 }
2918 d = fsbtodb(&sblock, (uint64_t)itod(&sblock, (int)ip->i_number));
2919 rdfs(d, sblock.fs_bsize, (char *)buf);
2920 buf[itoo(&sblock, (int)ip->i_number)].di_ic = ip->i_ic;
2921 wtfs(d, sblock.fs_bsize, (char *)buf);
2922 }
2923
2924 /*
2925 * getbuf() -- Get a buffer for use in an AIO operation. Buffer
2926 * is zero'd the first time returned, left with whatever
2927 * was in memory after that. This function actually gets
2928 * enough memory the first time it's called to support
2929 * MAXBUF buffers like a slab allocator. When all the
2930 * buffers are in use, it waits for an aio to complete
2931 * and make a buffer available.
2932 *
2933 * Never returns an error. Either succeeds or exits.
2934 */
2935 static char *
getbuf(bufhdr * bufhead,int size)2936 getbuf(bufhdr *bufhead, int size)
2937 {
2938 bufhdr *pbuf;
2939 bufhdr *prev;
2940 int i;
2941 int buf_size, max_bufs;
2942
2943 /*
2944 * Initialize all the buffers
2945 */
2946 if (bufhead->head == NULL) {
2947 /*
2948 * round up the size of our buffer header to a
2949 * 16 byte boundary so the address we return to
2950 * the caller is "suitably aligned".
2951 */
2952 bufhdrsize = (sizeof (bufhdr) + 15) & ~15;
2953
2954 /*
2955 * Add in our header to the buffer and round it all up to
2956 * a 16 byte boundry so each member of the slab is aligned.
2957 */
2958 buf_size = (size + bufhdrsize + 15) & ~15;
2959
2960 /*
2961 * Limit number of buffers to lesser of MAXBUFMEM's worth
2962 * or MAXBUF, whichever is less.
2963 */
2964 max_bufs = MAXBUFMEM / buf_size;
2965 if (max_bufs > MAXBUF)
2966 max_bufs = MAXBUF;
2967
2968 pbuf = (bufhdr *)calloc(max_bufs, buf_size);
2969 if (pbuf == NULL) {
2970 perror("calloc");
2971 lockexit(32);
2972 }
2973
2974 bufhead->head = bufhead;
2975 prev = bufhead;
2976 for (i = 0; i < max_bufs; i++) {
2977 pbuf->head = bufhead;
2978 prev->next = pbuf;
2979 prev = pbuf;
2980 pbuf = (bufhdr *)((char *)pbuf + buf_size);
2981 }
2982 }
2983
2984 /*
2985 * Get an available buffer, waiting for I/O if necessary
2986 */
2987 wait_for_write(NOBLOCK);
2988 while (bufhead->next == NULL)
2989 wait_for_write(BLOCK);
2990
2991 /*
2992 * Take the buffer off the list
2993 */
2994 pbuf = bufhead->next;
2995 bufhead->next = pbuf->next;
2996 pbuf->next = NULL;
2997
2998 /*
2999 * return the empty buffer space just past the header
3000 */
3001 return ((char *)pbuf + bufhdrsize);
3002 }
3003
3004 /*
3005 * freebuf() -- Free a buffer gotten previously through getbuf.
3006 * Puts the buffer back on the appropriate list for
3007 * later use. Never calls free().
3008 *
3009 * Assumes that SIGINT is blocked.
3010 */
3011 static void
freebuf(char * buf)3012 freebuf(char *buf)
3013 {
3014 bufhdr *pbuf;
3015 bufhdr *bufhead;
3016
3017 /*
3018 * get the header for this buffer
3019 */
3020 pbuf = (bufhdr *)(buf - bufhdrsize);
3021
3022 /*
3023 * Put it back on the list of available buffers
3024 */
3025 bufhead = pbuf->head;
3026 pbuf->next = bufhead->next;
3027 bufhead->next = pbuf;
3028 }
3029
3030 /*
3031 * freetrans() -- Free a transaction gotten previously through getaiop.
3032 * Puts the transaction struct back on the appropriate list for
3033 * later use. Never calls free().
3034 *
3035 * Assumes that SIGINT is blocked.
3036 */
3037 static void
freetrans(aio_trans * transp)3038 freetrans(aio_trans *transp)
3039 {
3040 /*
3041 * free the buffer associated with this AIO if needed
3042 */
3043 if (transp->release == RELEASE)
3044 freebuf(transp->buffer);
3045
3046 /*
3047 * Put transaction on the free list
3048 */
3049 transp->next = results.trans;
3050 results.trans = transp;
3051 }
3052
3053 /*
3054 * wait_for_write() -- Wait for an aio write to complete. Return
3055 * the transaction structure for that write.
3056 *
3057 * Blocks SIGINT if necessary.
3058 */
3059 aio_trans *
wait_for_write(int block)3060 wait_for_write(int block)
3061 {
3062 aio_trans *transp;
3063 aio_result_t *resultp;
3064 static struct timeval zero_wait = { 0, 0 };
3065 sigset_t old_mask;
3066
3067 /*
3068 * If we know there aren't any outstanding transactions, just return
3069 */
3070 if (results.outstanding == 0)
3071 return ((aio_trans *) 0);
3072
3073 block_sigint(&old_mask);
3074
3075 resultp = aiowait(block ? NULL : &zero_wait);
3076 if (resultp == NULL ||
3077 (resultp == (aio_result_t *)-1 && errno == EINVAL)) {
3078 unblock_sigint(&old_mask);
3079 return ((aio_trans *) 0);
3080 }
3081
3082 results.outstanding--;
3083 transp = (aio_trans *)resultp;
3084
3085 if (resultp->aio_return != transp->size) {
3086 if (resultp->aio_return == -1) {
3087 /*
3088 * The aiowrite() may have failed because the
3089 * kernel didn't have enough memory to do the job.
3090 * Flush all pending writes and try a normal
3091 * write(). wtfs_breakup() will call exit if it
3092 * fails, so we don't worry about errors here.
3093 */
3094 flush_writes();
3095 wtfs_breakup(transp->bno, transp->size, transp->buffer);
3096 } else {
3097 (void) fprintf(stderr, gettext(
3098 "short write (%d of %d bytes) on sector %lld\n"),
3099 resultp->aio_return, transp->size,
3100 transp->bno);
3101 /*
3102 * Don't unblock SIGINT, to avoid potential
3103 * looping due to queued interrupts and
3104 * error handling.
3105 */
3106 lockexit(32);
3107 }
3108 }
3109
3110 resultp->aio_return = 0;
3111 freetrans(transp);
3112 unblock_sigint(&old_mask);
3113 return (transp);
3114 }
3115
3116 /*
3117 * flush_writes() -- flush all the outstanding aio writes.
3118 */
3119 static void
flush_writes(void)3120 flush_writes(void)
3121 {
3122 while (wait_for_write(BLOCK))
3123 ;
3124 }
3125
3126 /*
3127 * get_aiop() -- find and return an aio_trans structure on which a new
3128 * aio can be done. Blocks on aiowait() if needed. Reaps
3129 * all outstanding completed aio's.
3130 *
3131 * Assumes that SIGINT is blocked.
3132 */
3133 aio_trans *
get_aiop()3134 get_aiop()
3135 {
3136 int i;
3137 aio_trans *transp;
3138 aio_trans *prev;
3139
3140 /*
3141 * initialize aio stuff
3142 */
3143 if (!aio_inited) {
3144 aio_inited = 1;
3145
3146 results.maxpend = 0;
3147 results.outstanding = 0;
3148 results.max = MAXAIO;
3149
3150 results.trans = (aio_trans *)calloc(results.max,
3151 sizeof (aio_trans));
3152 if (results.trans == NULL) {
3153 perror("calloc");
3154 lockexit(32);
3155 }
3156
3157 /*
3158 * Initialize the linked list of aio transaction
3159 * structures. Note that the final "next" pointer
3160 * will be NULL since we got the buffer from calloc().
3161 */
3162 prev = results.trans;
3163 for (i = 1; i < results.max; i++) {
3164 prev->next = &(results.trans[i]);
3165 prev = prev->next;
3166 }
3167 }
3168
3169 wait_for_write(NOBLOCK);
3170 while (results.trans == NULL)
3171 wait_for_write(BLOCK);
3172 transp = results.trans;
3173 results.trans = results.trans->next;
3174
3175 transp->next = 0;
3176 transp->resultbuf.aio_return = AIO_INPROGRESS;
3177 return (transp);
3178 }
3179
3180 /*
3181 * read a block from the file system
3182 */
3183 static void
rdfs(diskaddr_t bno,int size,char * bf)3184 rdfs(diskaddr_t bno, int size, char *bf)
3185 {
3186 int n, saverr;
3187
3188 /*
3189 * In case we need any data that's pending in an aiowrite(),
3190 * we wait for them all to complete before doing a read.
3191 */
3192 flush_writes();
3193
3194 /*
3195 * Note: the llseek() can succeed, even if the offset is out of range.
3196 * It's not until the file i/o operation (the read()) that one knows
3197 * for sure if the raw device can handle the offset.
3198 */
3199 if (llseek(fsi, (offset_t)bno * sectorsize, 0) < 0) {
3200 saverr = errno;
3201 (void) fprintf(stderr,
3202 gettext("seek error on sector %lld: %s\n"),
3203 bno, strerror(saverr));
3204 lockexit(32);
3205 }
3206 n = read(fsi, bf, size);
3207 if (n != size) {
3208 saverr = errno;
3209 if (n == -1)
3210 (void) fprintf(stderr,
3211 gettext("read error on sector %lld: %s\n"),
3212 bno, strerror(saverr));
3213 else
3214 (void) fprintf(stderr, gettext(
3215 "short read (%d of %d bytes) on sector %lld\n"),
3216 n, size, bno);
3217 lockexit(32);
3218 }
3219 }
3220
3221 /*
3222 * write a block to the file system
3223 */
3224 static void
wtfs(diskaddr_t bno,int size,char * bf)3225 wtfs(diskaddr_t bno, int size, char *bf)
3226 {
3227 int n, saverr;
3228
3229 if (fso == -1)
3230 return;
3231
3232 /*
3233 * Note: the llseek() can succeed, even if the offset is out of range.
3234 * It's not until the file i/o operation (the write()) that one knows
3235 * for sure if the raw device can handle the offset.
3236 */
3237 if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3238 saverr = errno;
3239 (void) fprintf(stderr,
3240 gettext("seek error on sector %lld: %s\n"),
3241 bno, strerror(saverr));
3242 lockexit(32);
3243 }
3244 if (Nflag)
3245 return;
3246 n = write(fso, bf, size);
3247 if (n != size) {
3248 saverr = errno;
3249 if (n == -1)
3250 (void) fprintf(stderr,
3251 gettext("write error on sector %lld: %s\n"),
3252 bno, strerror(saverr));
3253 else
3254 (void) fprintf(stderr, gettext(
3255 "short write (%d of %d bytes) on sector %lld\n"),
3256 n, size, bno);
3257 lockexit(32);
3258 }
3259 }
3260
3261 /*
3262 * write a block to the file system -- buffered with aio
3263 */
3264 static void
awtfs(diskaddr_t bno,int size,char * bf,int release)3265 awtfs(diskaddr_t bno, int size, char *bf, int release)
3266 {
3267 int n;
3268 aio_trans *transp;
3269 sigset_t old_mask;
3270
3271 if (fso == -1)
3272 return;
3273
3274 /*
3275 * We need to keep things consistent if we get interrupted,
3276 * so defer any expected interrupts for the time being.
3277 */
3278 block_sigint(&old_mask);
3279
3280 if (Nflag) {
3281 if (release == RELEASE)
3282 freebuf(bf);
3283 } else {
3284 transp = get_aiop();
3285 transp->bno = bno;
3286 transp->buffer = bf;
3287 transp->size = size;
3288 transp->release = release;
3289
3290 n = aiowrite(fso, bf, size, (off_t)bno * sectorsize,
3291 SEEK_SET, &transp->resultbuf);
3292
3293 if (n < 0) {
3294 /*
3295 * The aiowrite() may have failed because the
3296 * kernel didn't have enough memory to do the job.
3297 * Flush all pending writes and try a normal
3298 * write(). wtfs_breakup() will call exit if it
3299 * fails, so we don't worry about errors here.
3300 */
3301 flush_writes();
3302 wtfs_breakup(transp->bno, transp->size, transp->buffer);
3303 freetrans(transp);
3304 } else {
3305 /*
3306 * Keep track of our pending writes.
3307 */
3308 results.outstanding++;
3309 if (results.outstanding > results.maxpend)
3310 results.maxpend = results.outstanding;
3311 }
3312 }
3313
3314 unblock_sigint(&old_mask);
3315 }
3316
3317
3318 /*
3319 * write a block to the file system, but break it up into sbsize
3320 * chunks to avoid forcing a large amount of memory to be locked down.
3321 * Only used as a fallback when an aio write has failed.
3322 */
3323 static void
wtfs_breakup(diskaddr_t bno,int size,char * bf)3324 wtfs_breakup(diskaddr_t bno, int size, char *bf)
3325 {
3326 int n, saverr;
3327 int wsize;
3328 int block_incr = sbsize / sectorsize;
3329
3330 if (size < sbsize)
3331 wsize = size;
3332 else
3333 wsize = sbsize;
3334
3335 n = 0;
3336 while (size) {
3337 /*
3338 * Note: the llseek() can succeed, even if the offset is
3339 * out of range. It's not until the file i/o operation
3340 * (the write()) that one knows for sure if the raw device
3341 * can handle the offset.
3342 */
3343 if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3344 saverr = errno;
3345 (void) fprintf(stderr,
3346 gettext("seek error on sector %lld: %s\n"),
3347 bno, strerror(saverr));
3348 lockexit(32);
3349 }
3350
3351 n = write(fso, bf, wsize);
3352 if (n == -1) {
3353 saverr = errno;
3354 (void) fprintf(stderr,
3355 gettext("write error on sector %lld: %s\n"),
3356 bno, strerror(saverr));
3357 lockexit(32);
3358 }
3359 if (n != wsize) {
3360 saverr = errno;
3361 (void) fprintf(stderr, gettext(
3362 "short write (%d of %d bytes) on sector %lld\n"),
3363 n, size, bno);
3364 lockexit(32);
3365 }
3366
3367 bno += block_incr;
3368 bf += wsize;
3369 size -= wsize;
3370 if (size < wsize)
3371 wsize = size;
3372 }
3373 }
3374
3375
3376 /*
3377 * check if a block is available
3378 */
3379 static int
isblock(struct fs * fs,unsigned char * cp,int h)3380 isblock(struct fs *fs, unsigned char *cp, int h)
3381 {
3382 unsigned char mask;
3383
3384 switch (fs->fs_frag) {
3385 case 8:
3386 return (cp[h] == 0xff);
3387 case 4:
3388 mask = 0x0f << ((h & 0x1) << 2);
3389 return ((cp[h >> 1] & mask) == mask);
3390 case 2:
3391 mask = 0x03 << ((h & 0x3) << 1);
3392 return ((cp[h >> 2] & mask) == mask);
3393 case 1:
3394 mask = 0x01 << (h & 0x7);
3395 return ((cp[h >> 3] & mask) == mask);
3396 default:
3397 (void) fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
3398 return (0);
3399 }
3400 }
3401
3402 /*
3403 * take a block out of the map
3404 */
3405 static void
clrblock(struct fs * fs,unsigned char * cp,int h)3406 clrblock(struct fs *fs, unsigned char *cp, int h)
3407 {
3408 switch ((fs)->fs_frag) {
3409 case 8:
3410 cp[h] = 0;
3411 return;
3412 case 4:
3413 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
3414 return;
3415 case 2:
3416 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
3417 return;
3418 case 1:
3419 cp[h >> 3] &= ~(0x01 << (h & 0x7));
3420 return;
3421 default:
3422 (void) fprintf(stderr,
3423 gettext("clrblock: bad fs_frag value %d\n"), fs->fs_frag);
3424 return;
3425 }
3426 }
3427
3428 /*
3429 * put a block into the map
3430 */
3431 static void
setblock(struct fs * fs,unsigned char * cp,int h)3432 setblock(struct fs *fs, unsigned char *cp, int h)
3433 {
3434 switch (fs->fs_frag) {
3435 case 8:
3436 cp[h] = 0xff;
3437 return;
3438 case 4:
3439 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
3440 return;
3441 case 2:
3442 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
3443 return;
3444 case 1:
3445 cp[h >> 3] |= (0x01 << (h & 0x7));
3446 return;
3447 default:
3448 (void) fprintf(stderr,
3449 gettext("setblock: bad fs_frag value %d\n"), fs->fs_frag);
3450 return;
3451 }
3452 }
3453
3454 static void
usage()3455 usage()
3456 {
3457 (void) fprintf(stderr,
3458 gettext("ufs usage: mkfs [-F FSType] [-V] [-m] [-o options] "
3459 "special " /* param 0 */
3460 "size(sectors) \\ \n")); /* param 1 */
3461 (void) fprintf(stderr,
3462 "[nsect " /* param 2 */
3463 "ntrack " /* param 3 */
3464 "bsize " /* param 4 */
3465 "fragsize " /* param 5 */
3466 "cpg " /* param 6 */
3467 "free " /* param 7 */
3468 "rps " /* param 8 */
3469 "nbpi " /* param 9 */
3470 "opt " /* param 10 */
3471 "apc " /* param 11 */
3472 "gap " /* param 12 */
3473 "nrpos " /* param 13 */
3474 "maxcontig " /* param 14 */
3475 "mtb]\n"); /* param 15 */
3476 (void) fprintf(stderr,
3477 gettext(" -m : dump fs cmd line used to make this partition\n"
3478 " -V :print this command line and return\n"
3479 " -o :ufs options: :nsect=%d,ntrack=%d,bsize=%d,fragsize=%d\n"
3480 " -o :ufs options: :cgsize=%d,free=%d,rps=%d,nbpi=%d,opt=%c\n"
3481 " -o :ufs options: :apc=%d,gap=%d,nrpos=%d,maxcontig=%d\n"
3482 " -o :ufs options: :mtb=%c,calcsb,calcbinsb\n"
3483 "NOTE that all -o suboptions: must be separated only by commas so as to\n"
3484 "be parsed as a single argument\n"),
3485 nsect, ntrack, bsize, fragsize, cpg, sblock.fs_minfree, rps,
3486 nbpi, opt, apc, (rotdelay == -1) ? 0 : rotdelay,
3487 sblock.fs_nrpos, maxcontig, mtb);
3488 lockexit(32);
3489 }
3490
3491 /*ARGSUSED*/
3492 static void
dump_fscmd(char * fsys,int fsi)3493 dump_fscmd(char *fsys, int fsi)
3494 {
3495 int64_t used, bpcg, inospercg;
3496 int64_t nbpi;
3497 uint64_t nbytes64;
3498
3499 bzero((char *)&sblock, sizeof (sblock));
3500 rdfs((diskaddr_t)SBLOCK, SBSIZE, (char *)&sblock);
3501
3502 /*
3503 * ensure a valid file system and if not, exit with error or else
3504 * we will end up computing block numbers etc and dividing by zero
3505 * which will cause floating point errors in this routine.
3506 */
3507
3508 if ((sblock.fs_magic != FS_MAGIC) &&
3509 (sblock.fs_magic != MTB_UFS_MAGIC)) {
3510 (void) fprintf(stderr, gettext(
3511 "[not currently a valid file system - bad superblock]\n"));
3512 lockexit(32);
3513 }
3514
3515 if (sblock.fs_magic == FS_MAGIC &&
3516 (sblock.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3517 sblock.fs_version != UFS_VERSION_MIN)) {
3518 (void) fprintf(stderr, gettext(
3519 "Unknown version of UFS format: %d\n"), sblock.fs_version);
3520 lockexit(32);
3521 }
3522
3523 if (sblock.fs_magic == MTB_UFS_MAGIC &&
3524 (sblock.fs_version > MTB_UFS_VERSION_1 ||
3525 sblock.fs_version < MTB_UFS_VERSION_MIN)) {
3526 (void) fprintf(stderr, gettext(
3527 "Unknown version of UFS format: %d\n"), sblock.fs_version);
3528 lockexit(32);
3529 }
3530
3531 /*
3532 * Compute a reasonable nbpi value.
3533 * The algorithm for "used" is copied from code
3534 * in main() verbatim.
3535 * The nbpi equation is taken from main where the
3536 * fs_ipg value is set for the last time. The INOPB(...) - 1
3537 * is used to account for the roundup.
3538 * The problem is that a range of nbpi values map to
3539 * the same file system layout. So it is not possible
3540 * to calculate the exact value specified when the file
3541 * system was created. So instead we determine the top
3542 * end of the range of values.
3543 */
3544 bpcg = sblock.fs_spc * sectorsize;
3545 inospercg = (int64_t)roundup(bpcg / sizeof (struct dinode),
3546 INOPB(&sblock));
3547 if (inospercg > MAXIpG(&sblock))
3548 inospercg = MAXIpG(&sblock);
3549 used = (int64_t)
3550 (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
3551 used *= sectorsize;
3552 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
3553
3554 /*
3555 * The top end of the range of values for nbpi may not be
3556 * a valid command line value for mkfs. Report the bottom
3557 * end instead.
3558 */
3559 nbpi = (int64_t)(nbytes64 / (sblock.fs_ipg));
3560
3561 (void) fprintf(stdout, gettext("mkfs -F ufs -o "), fsys);
3562 (void) fprintf(stdout, "nsect=%d,ntrack=%d,",
3563 sblock.fs_nsect, sblock.fs_ntrak);
3564 (void) fprintf(stdout, "bsize=%d,fragsize=%d,cgsize=%d,free=%d,",
3565 sblock.fs_bsize, sblock.fs_fsize, sblock.fs_cpg, sblock.fs_minfree);
3566 (void) fprintf(stdout, "rps=%d,nbpi=%lld,opt=%c,apc=%d,gap=%d,",
3567 sblock.fs_rps, nbpi, (sblock.fs_optim == FS_OPTSPACE) ? 's' : 't',
3568 (sblock.fs_ntrak * sblock.fs_nsect) - sblock.fs_spc,
3569 sblock.fs_rotdelay);
3570 (void) fprintf(stdout, "nrpos=%d,maxcontig=%d,mtb=%c ",
3571 sblock.fs_nrpos, sblock.fs_maxcontig,
3572 ((sblock.fs_magic == MTB_UFS_MAGIC) ? 'y' : 'n'));
3573 (void) fprintf(stdout, "%s %lld\n", fsys,
3574 fsbtodb(&sblock, sblock.fs_size));
3575
3576 bzero((char *)&sblock, sizeof (sblock));
3577 }
3578
3579 /* number ************************************************************* */
3580 /* */
3581 /* Convert a numeric string arg to binary */
3582 /* */
3583 /* Args: d_value - default value, if have parse error */
3584 /* param - the name of the argument, for error messages */
3585 /* flags - parser state and what's allowed in the arg */
3586 /* Global arg: string - pointer to command arg */
3587 /* */
3588 /* Valid forms: 123 | 123k | 123*123 | 123x123 */
3589 /* */
3590 /* Return: converted number */
3591 /* */
3592 /* ******************************************************************** */
3593
3594 static uint64_t
number(uint64_t d_value,char * param,int flags)3595 number(uint64_t d_value, char *param, int flags)
3596 {
3597 char *cs;
3598 uint64_t n, t;
3599 uint64_t cut = BIG / 10; /* limit to avoid overflow */
3600 int minus = 0;
3601
3602 cs = string;
3603 if (*cs == '-') {
3604 minus = 1;
3605 cs += 1;
3606 }
3607 if ((*cs < '0') || (*cs > '9')) {
3608 goto bail_out;
3609 }
3610 n = 0;
3611 while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
3612 n = n*10 + *cs++ - '0';
3613 }
3614 if (minus)
3615 n = -n;
3616 for (;;) {
3617 switch (*cs++) {
3618 case 'k':
3619 if (flags & ALLOW_END_ONLY)
3620 goto bail_out;
3621 if (n > (BIG / 1024))
3622 goto overflow;
3623 n *= 1024;
3624 continue;
3625
3626 case '*':
3627 case 'x':
3628 if (flags & ALLOW_END_ONLY)
3629 goto bail_out;
3630 string = cs;
3631 t = number(d_value, param, flags);
3632 if (n > (BIG / t))
3633 goto overflow;
3634 n *= t;
3635 cs = string + 1; /* adjust for -- below */
3636
3637 /* recursion has read rest of expression */
3638 /* FALLTHROUGH */
3639
3640 case ',':
3641 case '\0':
3642 cs--;
3643 string = cs;
3644 return (n);
3645
3646 case '%':
3647 if (flags & ALLOW_END_ONLY)
3648 goto bail_out;
3649 if (flags & ALLOW_PERCENT) {
3650 flags &= ~ALLOW_PERCENT;
3651 flags |= ALLOW_END_ONLY;
3652 continue;
3653 }
3654 goto bail_out;
3655
3656 case 'm':
3657 if (flags & ALLOW_END_ONLY)
3658 goto bail_out;
3659 if (flags & ALLOW_MS1) {
3660 flags &= ~ALLOW_MS1;
3661 flags |= ALLOW_MS2;
3662 continue;
3663 }
3664 goto bail_out;
3665
3666 case 's':
3667 if (flags & ALLOW_END_ONLY)
3668 goto bail_out;
3669 if (flags & ALLOW_MS2) {
3670 flags &= ~ALLOW_MS2;
3671 flags |= ALLOW_END_ONLY;
3672 continue;
3673 }
3674 goto bail_out;
3675
3676 case '0': case '1': case '2': case '3': case '4':
3677 case '5': case '6': case '7': case '8': case '9':
3678 overflow:
3679 (void) fprintf(stderr,
3680 gettext("mkfs: value for %s overflowed\n"),
3681 param);
3682 while ((*cs != '\0') && (*cs != ','))
3683 cs++;
3684 string = cs;
3685 return (BIG);
3686
3687 default:
3688 bail_out:
3689 (void) fprintf(stderr, gettext(
3690 "mkfs: bad numeric arg for %s: \"%s\"\n"),
3691 param, string);
3692 while ((*cs != '\0') && (*cs != ','))
3693 cs++;
3694 string = cs;
3695 if (d_value != NO_DEFAULT) {
3696 (void) fprintf(stderr,
3697 gettext("mkfs: %s reset to default %lld\n"),
3698 param, d_value);
3699 return (d_value);
3700 }
3701 lockexit(2);
3702
3703 }
3704 } /* never gets here */
3705 }
3706
3707 /* match ************************************************************** */
3708 /* */
3709 /* Compare two text strings for equality */
3710 /* */
3711 /* Arg: s - pointer to string to match with a command arg */
3712 /* Global arg: string - pointer to command arg */
3713 /* */
3714 /* Return: 1 if match, 0 if no match */
3715 /* If match, also reset `string' to point to the text */
3716 /* that follows the matching text. */
3717 /* */
3718 /* ******************************************************************** */
3719
3720 static int
match(char * s)3721 match(char *s)
3722 {
3723 char *cs;
3724
3725 cs = string;
3726 while (*cs++ == *s) {
3727 if (*s++ == '\0') {
3728 goto true;
3729 }
3730 }
3731 if (*s != '\0') {
3732 return (0);
3733 }
3734
3735 true:
3736 cs--;
3737 string = cs;
3738 return (1);
3739 }
3740
3741 /*
3742 * GROWFS ROUTINES
3743 */
3744
3745 /* ARGSUSED */
3746 void
lockexit(int exitstatus)3747 lockexit(int exitstatus)
3748 {
3749 if (Pflag) {
3750 /* the probe mode neither changes nor locks the filesystem */
3751 exit(exitstatus);
3752 }
3753
3754 /*
3755 * flush the dirty cylinder group
3756 */
3757 if (inlockexit == 0) {
3758 inlockexit = 1;
3759 flcg();
3760 }
3761
3762 if (aio_inited) {
3763 flush_writes();
3764 }
3765
3766 /*
3767 * make sure the file system is unlocked before exiting
3768 */
3769 if ((inlockexit == 1) && (!isbad)) {
3770 inlockexit = 2;
3771 ulockfs();
3772 /*
3773 * if logging was enabled, then re-enable it
3774 */
3775 if (waslog) {
3776 if (rl_log_control(fsys, _FIOLOGENABLE) != RL_SUCCESS) {
3777 (void) fprintf(stderr, gettext(
3778 "failed to re-enable logging\n"));
3779 }
3780 }
3781 } else if (grow) {
3782 if (isbad) {
3783 (void) fprintf(stderr, gettext(
3784 "Filesystem is currently inconsistent. It "
3785 "must be repaired with fsck(1M)\nbefore being "
3786 "used. Use the following command to "
3787 "do this:\n\n\tfsck %s\n\n"), fsys);
3788
3789 if (ismounted) {
3790 (void) fprintf(stderr, gettext(
3791 "You will be told that the filesystem "
3792 "is already mounted, and asked if you\n"
3793 "wish to continue. Answer `yes' to "
3794 "this question.\n\n"));
3795 }
3796
3797 (void) fprintf(stderr, gettext(
3798 "One problem should be reported, that the summary "
3799 "information is bad.\nYou will then be asked if it "
3800 "should be salvaged. Answer `yes' to\nthis "
3801 "question.\n\n"));
3802 }
3803
3804 if (ismounted) {
3805 /*
3806 * In theory, there's no way to get here without
3807 * isbad also being set, but be robust in the
3808 * face of future code changes.
3809 */
3810 (void) fprintf(stderr, gettext(
3811 "The filesystem is currently mounted "
3812 "read-only and write-locked. "));
3813 if (isbad) {
3814 (void) fprintf(stderr, gettext(
3815 "After\nrunning fsck, unlock the "
3816 "filesystem and "));
3817 } else {
3818 (void) fprintf(stderr, gettext(
3819 "Unlock the filesystem\nand "));
3820 }
3821
3822 (void) fprintf(stderr, gettext(
3823 "re-enable writing with\nthe following "
3824 "command:\n\n\tlockfs -u %s\n\n"), directory);
3825 }
3826 }
3827
3828 exit(exitstatus);
3829 }
3830
3831 void
randomgeneration()3832 randomgeneration()
3833 {
3834 int i;
3835 struct dinode *dp;
3836
3837 /*
3838 * always perform fsirand(1) function... newfs will notice that
3839 * the inodes have been randomized and will not call fsirand itself
3840 */
3841 for (i = 0, dp = zino; i < sblock.fs_inopb; ++i, ++dp)
3842 IRANDOMIZE(&dp->di_ic);
3843 }
3844
3845 /*
3846 * Check the size of the summary information.
3847 * Fields in sblock are not changed in this function.
3848 *
3849 * For an 8K filesystem block, the maximum number of cylinder groups is 16384.
3850 * MAXCSBUFS {32} * 8K {FS block size}
3851 * divided by (sizeof csum) {16}
3852 *
3853 * Note that MAXCSBUFS is not used in the kernel; as of Solaris 2.6 build 32,
3854 * this is the only place where it's referenced.
3855 */
3856 void
checksummarysize()3857 checksummarysize()
3858 {
3859 diskaddr_t dmax;
3860 diskaddr_t dmin;
3861 int64_t cg0frags;
3862 int64_t cg0blocks;
3863 int64_t maxncg;
3864 int64_t maxfrags;
3865 uint64_t fs_size;
3866 uint64_t maxfs_blocks; /* filesystem blocks for max filesystem size */
3867
3868 /*
3869 * compute the maximum summary info size
3870 */
3871 dmin = cgdmin(&sblock, 0);
3872 dmax = cgbase(&sblock, 0) + sblock.fs_fpg;
3873 fs_size = (grow) ? grow_fs_size : sblock.fs_size;
3874 if (dmax > fs_size)
3875 dmax = fs_size;
3876 cg0frags = dmax - dmin;
3877 cg0blocks = cg0frags / sblock.fs_frag;
3878 cg0frags = cg0blocks * sblock.fs_frag;
3879 maxncg = (longlong_t)cg0blocks *
3880 (longlong_t)(sblock.fs_bsize / sizeof (struct csum));
3881
3882 maxfs_blocks = FS_MAX;
3883
3884 if (maxncg > ((longlong_t)maxfs_blocks / (longlong_t)sblock.fs_fpg) + 1)
3885 maxncg = ((longlong_t)maxfs_blocks /
3886 (longlong_t)sblock.fs_fpg) + 1;
3887
3888 maxfrags = maxncg * (longlong_t)sblock.fs_fpg;
3889
3890 if (maxfrags > maxfs_blocks)
3891 maxfrags = maxfs_blocks;
3892
3893
3894 /*
3895 * remember for later processing in extendsummaryinfo()
3896 */
3897 if (test)
3898 grow_sifrag = dmin + (cg0blocks * sblock.fs_frag);
3899 if (testfrags == 0)
3900 testfrags = cg0frags;
3901 if (testforce)
3902 if (testfrags > cg0frags) {
3903 (void) fprintf(stderr,
3904 gettext("Too many test frags (%lld); "
3905 "try %lld\n"), testfrags, cg0frags);
3906 lockexit(32);
3907 }
3908
3909 /*
3910 * if summary info is too large (too many cg's) tell the user and exit
3911 */
3912 if ((longlong_t)sblock.fs_size > maxfrags) {
3913 (void) fprintf(stderr, gettext(
3914 "Too many cylinder groups with %llu sectors;\n try "
3915 "increasing cgsize, or decreasing fssize to %llu\n"),
3916 fsbtodb(&sblock, (uint64_t)sblock.fs_size),
3917 fsbtodb(&sblock, (uint64_t)maxfrags));
3918 lockexit(32);
3919 }
3920 }
3921
3922 /*
3923 * checksblock() has two uses:
3924 * - One is to sanity test the superblock and is used when newfs(1M)
3925 * is invoked with the "-N" option. If any discrepancy was found,
3926 * just return whatever error was found and do not exit.
3927 * - the other use of it is in places where you expect the superblock
3928 * to be sane, and if it isn't, then we exit.
3929 * Which of the above two actions to take is indicated with the second argument.
3930 */
3931
3932 int
checksblock(struct fs sb,int proceed)3933 checksblock(struct fs sb, int proceed)
3934 {
3935 int err = 0;
3936 char *errmsg;
3937
3938 if ((sb.fs_magic != FS_MAGIC) && (sb.fs_magic != MTB_UFS_MAGIC)) {
3939 err = 1;
3940 errmsg = gettext("Bad superblock; magic number wrong\n");
3941 } else if ((sb.fs_magic == FS_MAGIC &&
3942 (sb.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3943 sb.fs_version != UFS_VERSION_MIN)) ||
3944 (sb.fs_magic == MTB_UFS_MAGIC &&
3945 (sb.fs_version > MTB_UFS_VERSION_1 ||
3946 sb.fs_version < MTB_UFS_VERSION_MIN))) {
3947 err = 2;
3948 errmsg = gettext("Unrecognized version of UFS\n");
3949 } else if (sb.fs_ncg < 1) {
3950 err = 3;
3951 errmsg = gettext("Bad superblock; ncg out of range\n");
3952 } else if (sb.fs_cpg < 1) {
3953 err = 4;
3954 errmsg = gettext("Bad superblock; cpg out of range\n");
3955 } else if (sb.fs_ncg * sb.fs_cpg < sb.fs_ncyl ||
3956 (sb.fs_ncg - 1) * sb.fs_cpg >= sb.fs_ncyl) {
3957 err = 5;
3958 errmsg = gettext("Bad superblock; ncyl out of range\n");
3959 } else if (sb.fs_sbsize <= 0 || sb.fs_sbsize > sb.fs_bsize) {
3960 err = 6;
3961 errmsg = gettext("Bad superblock; superblock size out of "
3962 "range\n");
3963 }
3964
3965 if (proceed) {
3966 if (err) dprintf(("%s", errmsg));
3967 return (err);
3968 }
3969
3970 if (err) {
3971 fprintf(stderr, "%s", errmsg);
3972 lockexit(32);
3973 }
3974 return (32);
3975 }
3976
3977 /*
3978 * Roll the embedded log, if any, and set up the global variables
3979 * islog and islogok.
3980 */
3981 static void
logsetup(char * devstr)3982 logsetup(char *devstr)
3983 {
3984 void *buf, *ud_buf;
3985 extent_block_t *ebp;
3986 ml_unit_t *ul;
3987 ml_odunit_t *ud;
3988
3989 /*
3990 * Does the superblock indicate that we are supposed to have a log ?
3991 */
3992 if (sblock.fs_logbno == 0) {
3993 /*
3994 * No log present, nothing to do.
3995 */
3996 islog = 0;
3997 islogok = 0;
3998 return;
3999 } else {
4000 /*
4001 * There's a log in a yet unknown state, attempt to roll it.
4002 */
4003 islogok = 0;
4004
4005 /*
4006 * We failed to roll the log, bail out.
4007 */
4008 if (rl_roll_log(devstr) != RL_SUCCESS)
4009 return;
4010
4011 islog = 1;
4012
4013 /* log is not okay; check the fs */
4014 if ((FSOKAY != (sblock.fs_state + sblock.fs_time)) ||
4015 (sblock.fs_clean != FSLOG))
4016 return;
4017
4018 /* get the log allocation block */
4019 buf = (void *)malloc(DEV_BSIZE);
4020 if (buf == (void *) NULL)
4021 return;
4022
4023 ud_buf = (void *)malloc(DEV_BSIZE);
4024 if (ud_buf == (void *) NULL) {
4025 free(buf);
4026 return;
4027 }
4028
4029 rdfs((diskaddr_t)logbtodb(&sblock, sblock.fs_logbno),
4030 DEV_BSIZE, buf);
4031 ebp = (extent_block_t *)buf;
4032
4033 /* log allocation block is not okay; check the fs */
4034 if (ebp->type != LUFS_EXTENTS) {
4035 free(buf);
4036 free(ud_buf);
4037 return;
4038 }
4039
4040 /* get the log state block(s) */
4041 rdfs((diskaddr_t)logbtodb(&sblock, ebp->extents[0].pbno),
4042 DEV_BSIZE, ud_buf);
4043 ud = (ml_odunit_t *)ud_buf;
4044 ul = (ml_unit_t *)malloc(sizeof (*ul));
4045 ul->un_ondisk = *ud;
4046
4047 /* log state is okay */
4048 if ((ul->un_chksum == ul->un_head_ident + ul->un_tail_ident) &&
4049 (ul->un_version == LUFS_VERSION_LATEST) &&
4050 (ul->un_badlog == 0))
4051 islogok = 1;
4052 free(ud_buf);
4053 free(buf);
4054 free(ul);
4055 }
4056 }
4057
4058 void
growinit(char * devstr)4059 growinit(char *devstr)
4060 {
4061 int i;
4062 char buf[DEV_BSIZE];
4063
4064 /*
4065 * Read and verify the superblock
4066 */
4067 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4068 (void) checksblock(sblock, 0);
4069 if (sblock.fs_postblformat != FS_DYNAMICPOSTBLFMT) {
4070 (void) fprintf(stderr,
4071 gettext("old file system format; can't growfs\n"));
4072 lockexit(32);
4073 }
4074
4075 /*
4076 * can't shrink a file system
4077 */
4078 grow_fssize = fsbtodb(&sblock, (uint64_t)sblock.fs_size);
4079 if (fssize_db < grow_fssize) {
4080 (void) fprintf(stderr,
4081 gettext("%lld sectors < current size of %lld sectors\n"),
4082 fssize_db, grow_fssize);
4083 lockexit(32);
4084 }
4085
4086 /*
4087 * can't grow a system to over a terabyte unless it was set up
4088 * as an MTB UFS file system.
4089 */
4090 if (mtb == 'y' && sblock.fs_magic != MTB_UFS_MAGIC) {
4091 if (fssize_db >= SECTORS_PER_TERABYTE) {
4092 (void) fprintf(stderr, gettext(
4093 "File system was not set up with the multi-terabyte format.\n"));
4094 (void) fprintf(stderr, gettext(
4095 "Its size cannot be increased to a terabyte or more.\n"));
4096 } else {
4097 (void) fprintf(stderr, gettext(
4098 "Cannot convert file system to multi-terabyte format.\n"));
4099 }
4100 lockexit(32);
4101 }
4102
4103 logsetup(devstr);
4104
4105 /*
4106 * can't growfs when logging device has errors
4107 */
4108 if ((islog && !islogok) ||
4109 ((FSOKAY == (sblock.fs_state + sblock.fs_time)) &&
4110 (sblock.fs_clean == FSLOG && !islog))) {
4111 (void) fprintf(stderr,
4112 gettext("logging device has errors; can't growfs\n"));
4113 lockexit(32);
4114 }
4115
4116 /*
4117 * disable ufs logging for growing
4118 */
4119 if (islog) {
4120 if (rl_log_control(devstr, _FIOLOGDISABLE) != RL_SUCCESS) {
4121 (void) fprintf(stderr, gettext(
4122 "failed to disable logging\n"));
4123 lockexit(32);
4124 }
4125 islog = 0;
4126 waslog = 1;
4127 }
4128
4129 /*
4130 * if mounted write lock the file system to be grown
4131 */
4132 if (ismounted)
4133 wlockfs();
4134
4135 /*
4136 * refresh dynamic superblock state - disabling logging will have
4137 * changed the amount of free space available in the file system
4138 */
4139 rdfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4140
4141 /*
4142 * make sure device is big enough
4143 */
4144 rdfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4145 wtfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4146
4147 /*
4148 * read current summary information
4149 */
4150 grow_fscs = read_summaryinfo(&sblock);
4151
4152 /*
4153 * save some current size related fields from the superblock
4154 * These are used in extendsummaryinfo()
4155 */
4156 grow_fs_size = sblock.fs_size;
4157 grow_fs_ncg = sblock.fs_ncg;
4158 grow_fs_csaddr = (diskaddr_t)sblock.fs_csaddr;
4159 grow_fs_cssize = sblock.fs_cssize;
4160
4161 /*
4162 * save and reset the clean flag
4163 */
4164 if (FSOKAY == (sblock.fs_state + sblock.fs_time))
4165 grow_fs_clean = sblock.fs_clean;
4166 else
4167 grow_fs_clean = FSBAD;
4168 sblock.fs_clean = FSBAD;
4169 sblock.fs_state = FSOKAY - sblock.fs_time;
4170 isbad = 1;
4171 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4172 }
4173
4174 void
checkdev(char * rdev,char * bdev)4175 checkdev(char *rdev, char *bdev)
4176 {
4177 struct stat64 statarea;
4178
4179 if (stat64(bdev, &statarea) < 0) {
4180 (void) fprintf(stderr, gettext("can't check mount point; "));
4181 (void) fprintf(stderr, gettext("can't stat %s\n"), bdev);
4182 lockexit(32);
4183 }
4184 if ((statarea.st_mode & S_IFMT) != S_IFBLK) {
4185 (void) fprintf(stderr, gettext(
4186 "can't check mount point; %s is not a block device\n"),
4187 bdev);
4188 lockexit(32);
4189 }
4190 if (stat64(rdev, &statarea) < 0) {
4191 (void) fprintf(stderr, gettext("can't stat %s\n"), rdev);
4192 lockexit(32);
4193 }
4194 if ((statarea.st_mode & S_IFMT) != S_IFCHR) {
4195 (void) fprintf(stderr,
4196 gettext("%s is not a character device\n"), rdev);
4197 lockexit(32);
4198 }
4199 }
4200
4201 void
checkmount(struct mnttab * mntp,char * bdevname)4202 checkmount(struct mnttab *mntp, char *bdevname)
4203 {
4204 struct stat64 statdir;
4205 struct stat64 statdev;
4206
4207 if (strcmp(bdevname, mntp->mnt_special) == 0) {
4208 if (stat64(mntp->mnt_mountp, &statdir) == -1) {
4209 (void) fprintf(stderr, gettext("can't stat %s\n"),
4210 mntp->mnt_mountp);
4211 lockexit(32);
4212 }
4213 if (stat64(mntp->mnt_special, &statdev) == -1) {
4214 (void) fprintf(stderr, gettext("can't stat %s\n"),
4215 mntp->mnt_special);
4216 lockexit(32);
4217 }
4218 if (statdir.st_dev != statdev.st_rdev) {
4219 (void) fprintf(stderr, gettext(
4220 "%s is not mounted on %s; mnttab(4) wrong\n"),
4221 mntp->mnt_special, mntp->mnt_mountp);
4222 lockexit(32);
4223 }
4224 ismounted = 1;
4225 if (directory) {
4226 if (strcmp(mntp->mnt_mountp, directory) != 0) {
4227 (void) fprintf(stderr,
4228 gettext("%s is mounted on %s, not %s\n"),
4229 bdevname, mntp->mnt_mountp, directory);
4230 lockexit(32);
4231 }
4232 } else {
4233 if (grow)
4234 (void) fprintf(stderr, gettext(
4235 "%s is mounted on %s; can't growfs\n"),
4236 bdevname, mntp->mnt_mountp);
4237 else
4238 (void) fprintf(stderr,
4239 gettext("%s is mounted, can't mkfs\n"),
4240 bdevname);
4241 lockexit(32);
4242 }
4243 }
4244 }
4245
4246 struct dinode *dibuf = 0;
4247 diskaddr_t difrag = 0;
4248
4249 struct dinode *
gdinode(ino_t ino)4250 gdinode(ino_t ino)
4251 {
4252 /*
4253 * read the block of inodes containing inode number ino
4254 */
4255 if (dibuf == 0)
4256 dibuf = (struct dinode *)malloc((unsigned)sblock.fs_bsize);
4257 if (itod(&sblock, ino) != difrag) {
4258 difrag = itod(&sblock, ino);
4259 rdfs(fsbtodb(&sblock, (uint64_t)difrag), (int)sblock.fs_bsize,
4260 (char *)dibuf);
4261 }
4262 return (dibuf + (ino % INOPB(&sblock)));
4263 }
4264
4265 /*
4266 * structure that manages the frags we need for extended summary info
4267 * These frags can be:
4268 * free
4269 * data block
4270 * alloc block
4271 */
4272 struct csfrag {
4273 struct csfrag *next; /* next entry */
4274 daddr32_t ofrag; /* old frag */
4275 daddr32_t nfrag; /* new frag */
4276 long cylno; /* cylno of nfrag */
4277 long frags; /* number of frags */
4278 long size; /* size in bytes */
4279 ino_t ino; /* inode number */
4280 long fixed; /* Boolean - Already fixed? */
4281 };
4282 struct csfrag *csfrag; /* state unknown */
4283 struct csfrag *csfragino; /* frags belonging to an inode */
4284 struct csfrag *csfragfree; /* frags that are free */
4285
4286 daddr32_t maxcsfrag = 0; /* maximum in range */
4287 daddr32_t mincsfrag = 0x7fffffff; /* minimum in range */
4288
4289 int
csfraginrange(daddr32_t frag)4290 csfraginrange(daddr32_t frag)
4291 {
4292 return ((frag >= mincsfrag) && (frag <= maxcsfrag));
4293 }
4294
4295 struct csfrag *
findcsfrag(daddr32_t frag,struct csfrag ** cfap)4296 findcsfrag(daddr32_t frag, struct csfrag **cfap)
4297 {
4298 struct csfrag *cfp;
4299
4300 if (!csfraginrange(frag))
4301 return (NULL);
4302
4303 for (cfp = *cfap; cfp; cfp = cfp->next)
4304 if (cfp->ofrag == frag)
4305 return (cfp);
4306 return (NULL);
4307 }
4308
4309 void
checkindirect(ino_t ino,daddr32_t * fragsp,daddr32_t frag,int level)4310 checkindirect(ino_t ino, daddr32_t *fragsp, daddr32_t frag, int level)
4311 {
4312 int i;
4313 int ne = sblock.fs_bsize / sizeof (daddr32_t);
4314 daddr32_t fsb[MAXBSIZE / sizeof (daddr32_t)];
4315
4316 if (frag == 0)
4317 return;
4318
4319 rdfs(fsbtodb(&sblock, frag), (int)sblock.fs_bsize,
4320 (char *)fsb);
4321
4322 checkdirect(ino, fragsp, fsb, sblock.fs_bsize / sizeof (daddr32_t));
4323
4324 if (level)
4325 for (i = 0; i < ne && *fragsp; ++i)
4326 checkindirect(ino, fragsp, fsb[i], level-1);
4327 }
4328
4329 void
addcsfrag(ino_t ino,daddr32_t frag,struct csfrag ** cfap)4330 addcsfrag(ino_t ino, daddr32_t frag, struct csfrag **cfap)
4331 {
4332 struct csfrag *cfp, *curr, *prev;
4333
4334 /*
4335 * establish a range for faster checking in csfraginrange()
4336 */
4337 if (frag > maxcsfrag)
4338 maxcsfrag = frag;
4339 if (frag < mincsfrag)
4340 mincsfrag = frag;
4341
4342 /*
4343 * if this frag belongs to an inode and is not the start of a block
4344 * then see if it is part of a frag range for this inode
4345 */
4346 if (ino && (frag % sblock.fs_frag))
4347 for (cfp = *cfap; cfp; cfp = cfp->next) {
4348 if (ino != cfp->ino)
4349 continue;
4350 if (frag != cfp->ofrag + cfp->frags)
4351 continue;
4352 cfp->frags++;
4353 cfp->size += sblock.fs_fsize;
4354 return;
4355 }
4356 /*
4357 * allocate a csfrag entry and insert it in an increasing order into the
4358 * specified list
4359 */
4360 cfp = (struct csfrag *)calloc(1, sizeof (struct csfrag));
4361 cfp->ino = ino;
4362 cfp->ofrag = frag;
4363 cfp->frags = 1;
4364 cfp->size = sblock.fs_fsize;
4365 for (prev = NULL, curr = *cfap; curr != NULL;
4366 prev = curr, curr = curr->next) {
4367 if (frag < curr->ofrag) {
4368 cfp->next = curr;
4369 if (prev)
4370 prev->next = cfp; /* middle element */
4371 else
4372 *cfap = cfp; /* first element */
4373 break;
4374 }
4375 if (curr->next == NULL) {
4376 curr->next = cfp; /* last element */
4377 break;
4378 }
4379 }
4380 if (*cfap == NULL) /* will happen only once */
4381 *cfap = cfp;
4382 }
4383
4384 void
delcsfrag(daddr32_t frag,struct csfrag ** cfap)4385 delcsfrag(daddr32_t frag, struct csfrag **cfap)
4386 {
4387 struct csfrag *cfp;
4388 struct csfrag **cfpp;
4389
4390 /*
4391 * free up entry whose beginning frag matches
4392 */
4393 for (cfpp = cfap; *cfpp; cfpp = &(*cfpp)->next) {
4394 if (frag == (*cfpp)->ofrag) {
4395 cfp = *cfpp;
4396 *cfpp = (*cfpp)->next;
4397 free((char *)cfp);
4398 return;
4399 }
4400 }
4401 }
4402
4403 /*
4404 * See whether any of the direct blocks in the array pointed by "db" and of
4405 * length "ne" are within the range of frags needed to extend the cylinder
4406 * summary. If so, remove those frags from the "as-yet-unclassified" list
4407 * (csfrag) and add them to the "owned-by-inode" list (csfragino).
4408 * For each such frag found, decrement the frag count pointed to by fragsp.
4409 * "ino" is the inode that contains (either directly or indirectly) the frags
4410 * being checked.
4411 */
4412 void
checkdirect(ino_t ino,daddr32_t * fragsp,daddr32_t * db,int ne)4413 checkdirect(ino_t ino, daddr32_t *fragsp, daddr32_t *db, int ne)
4414 {
4415 int i;
4416 int j;
4417 int found;
4418 diskaddr_t frag;
4419
4420 /*
4421 * scan for allocation within the new summary info range
4422 */
4423 for (i = 0; i < ne && *fragsp; ++i) {
4424 if ((frag = *db++) != 0) {
4425 found = 0;
4426 for (j = 0; j < sblock.fs_frag && *fragsp; ++j) {
4427 if (found || (found = csfraginrange(frag))) {
4428 addcsfrag(ino, frag, &csfragino);
4429 delcsfrag(frag, &csfrag);
4430 }
4431 ++frag;
4432 --(*fragsp);
4433 }
4434 }
4435 }
4436 }
4437
4438 void
findcsfragino()4439 findcsfragino()
4440 {
4441 int i;
4442 int j;
4443 daddr32_t frags;
4444 struct dinode *dp;
4445
4446 /*
4447 * scan all old inodes looking for allocations in the new
4448 * summary info range. Move the affected frag from the
4449 * generic csfrag list onto the `owned-by-inode' list csfragino.
4450 */
4451 for (i = UFSROOTINO; i < grow_fs_ncg*sblock.fs_ipg && csfrag; ++i) {
4452 dp = gdinode((ino_t)i);
4453 switch (dp->di_mode & IFMT) {
4454 case IFSHAD :
4455 case IFLNK :
4456 case IFDIR :
4457 case IFREG : break;
4458 default : continue;
4459 }
4460
4461 frags = dbtofsb(&sblock, dp->di_blocks);
4462
4463 checkdirect((ino_t)i, &frags, &dp->di_db[0], NDADDR+NIADDR);
4464 for (j = 0; j < NIADDR && frags; ++j) {
4465 /* Negate the block if its an fallocate'd block */
4466 if (dp->di_ib[j] < 0 && dp->di_ib[j] != UFS_HOLE)
4467 checkindirect((ino_t)i, &frags,
4468 -(dp->di_ib[j]), j);
4469 else
4470 checkindirect((ino_t)i, &frags,
4471 dp->di_ib[j], j);
4472 }
4473 }
4474 }
4475
4476 void
fixindirect(daddr32_t frag,int level)4477 fixindirect(daddr32_t frag, int level)
4478 {
4479 int i;
4480 int ne = sblock.fs_bsize / sizeof (daddr32_t);
4481 daddr32_t fsb[MAXBSIZE / sizeof (daddr32_t)];
4482
4483 if (frag == 0)
4484 return;
4485
4486 rdfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4487 (char *)fsb);
4488
4489 fixdirect((caddr_t)fsb, frag, fsb, ne);
4490
4491 if (level)
4492 for (i = 0; i < ne; ++i)
4493 fixindirect(fsb[i], level-1);
4494 }
4495
4496 void
fixdirect(caddr_t bp,daddr32_t frag,daddr32_t * db,int ne)4497 fixdirect(caddr_t bp, daddr32_t frag, daddr32_t *db, int ne)
4498 {
4499 int i;
4500 struct csfrag *cfp;
4501
4502 for (i = 0; i < ne; ++i, ++db) {
4503 if (*db == 0)
4504 continue;
4505 if ((cfp = findcsfrag(*db, &csfragino)) == NULL)
4506 continue;
4507 *db = cfp->nfrag;
4508 cfp->fixed = 1;
4509 wtfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4510 bp);
4511 }
4512 }
4513
4514 void
fixcsfragino()4515 fixcsfragino()
4516 {
4517 int i;
4518 struct dinode *dp;
4519 struct csfrag *cfp;
4520
4521 for (cfp = csfragino; cfp; cfp = cfp->next) {
4522 if (cfp->fixed)
4523 continue;
4524 dp = gdinode((ino_t)cfp->ino);
4525 fixdirect((caddr_t)dibuf, difrag, dp->di_db, NDADDR+NIADDR);
4526 for (i = 0; i < NIADDR; ++i)
4527 fixindirect(dp->di_ib[i], i);
4528 }
4529 }
4530
4531 /*
4532 * Read the cylinders summary information specified by settings in the
4533 * passed 'fs' structure into a new allocated array of csum structures.
4534 * The caller is responsible for freeing the returned array.
4535 * Return a pointer to an array of csum structures.
4536 */
4537 static struct csum *
read_summaryinfo(struct fs * fsp)4538 read_summaryinfo(struct fs *fsp)
4539 {
4540 struct csum *csp;
4541 int i;
4542
4543 if ((csp = malloc((size_t)fsp->fs_cssize)) == NULL) {
4544 (void) fprintf(stderr, gettext("cannot create csum list,"
4545 " not enough memory\n"));
4546 exit(32);
4547 }
4548
4549 for (i = 0; i < fsp->fs_cssize; i += fsp->fs_bsize) {
4550 rdfs(fsbtodb(fsp,
4551 (uint64_t)(fsp->fs_csaddr + numfrags(fsp, i))),
4552 (int)(fsp->fs_cssize - i < fsp->fs_bsize ?
4553 fsp->fs_cssize - i : fsp->fs_bsize), ((caddr_t)csp) + i);
4554 }
4555
4556 return (csp);
4557 }
4558
4559 /*
4560 * Check the allocation of fragments that are to be made part of a csum block.
4561 * A fragment is allocated if it is either in the csfragfree list or, it is
4562 * in the csfragino list and has new frags associated with it.
4563 * Return the number of allocated fragments.
4564 */
4565 int64_t
checkfragallocated(daddr32_t frag)4566 checkfragallocated(daddr32_t frag)
4567 {
4568 struct csfrag *cfp;
4569 /*
4570 * Since the lists are sorted we can break the search if the asked
4571 * frag is smaller then the one in the list.
4572 */
4573 for (cfp = csfragfree; cfp != NULL && frag >= cfp->ofrag;
4574 cfp = cfp->next) {
4575 if (frag == cfp->ofrag)
4576 return (1);
4577 }
4578 for (cfp = csfragino; cfp != NULL && frag >= cfp->ofrag;
4579 cfp = cfp->next) {
4580 if (frag == cfp->ofrag && cfp->nfrag != 0)
4581 return (cfp->frags);
4582 }
4583
4584 return (0);
4585 }
4586
4587 /*
4588 * Figure out how much the filesystem can be grown. The limiting factor is
4589 * the available free space needed to extend the cg summary info block.
4590 * The free space is determined in three steps:
4591 * - Try to extend the cg summary block to the required size.
4592 * - Find free blocks in last cg.
4593 * - Find free space in the last already allocated fragment of the summary info
4594 * block, and use it for additional csum structures.
4595 * Return the maximum size of the new filesystem or 0 if it can't be grown.
4596 * Please note that this function leaves the global list pointers csfrag,
4597 * csfragfree, and csfragino initialized, and the caller is responsible for
4598 * freeing the lists.
4599 */
4600 diskaddr_t
probe_summaryinfo()4601 probe_summaryinfo()
4602 {
4603 /* fragments by which the csum block can be extended. */
4604 int64_t growth_csum_frags = 0;
4605 /* fragments by which the filesystem can be extended. */
4606 int64_t growth_fs_frags = 0;
4607 int64_t new_fs_cssize; /* size of csum blk in the new FS */
4608 int64_t new_fs_ncg; /* number of cg in the new FS */
4609 int64_t spare_csum;
4610 daddr32_t oldfrag_daddr;
4611 daddr32_t newfrag_daddr;
4612 daddr32_t daddr;
4613 int i;
4614
4615 /*
4616 * read and verify the superblock
4617 */
4618 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4619 (void) checksblock(sblock, 0);
4620
4621 /*
4622 * check how much we can extend the cg summary info block
4623 */
4624
4625 /*
4626 * read current summary information
4627 */
4628 fscs = read_summaryinfo(&sblock);
4629
4630 /*
4631 * build list of frags needed for cg summary info block extension
4632 */
4633 oldfrag_daddr = howmany(sblock.fs_cssize, sblock.fs_fsize) +
4634 sblock.fs_csaddr;
4635 new_fs_ncg = howmany(dbtofsb(&sblock, fssize_db), sblock.fs_fpg);
4636 new_fs_cssize = fragroundup(&sblock, new_fs_ncg * sizeof (struct csum));
4637 newfrag_daddr = howmany(new_fs_cssize, sblock.fs_fsize) +
4638 sblock.fs_csaddr;
4639 /*
4640 * add all of the frags that are required to grow the cyl summary to the
4641 * csfrag list, which is the generic/unknown list, since at this point
4642 * we don't yet know the state of those frags.
4643 */
4644 for (daddr = oldfrag_daddr; daddr < newfrag_daddr; daddr++)
4645 addcsfrag((ino_t)0, daddr, &csfrag);
4646
4647 /*
4648 * filter free fragments and allocate them. Note that the free frags
4649 * must be allocated first otherwise they could be grabbed by
4650 * alloccsfragino() for data frags.
4651 */
4652 findcsfragfree();
4653 alloccsfragfree();
4654
4655 /*
4656 * filter fragments owned by inodes and allocate them
4657 */
4658 grow_fs_ncg = sblock.fs_ncg; /* findcsfragino() needs this glob. var. */
4659 findcsfragino();
4660 alloccsfragino();
4661
4662 if (notenoughspace()) {
4663 /*
4664 * check how many consecutive fragments could be allocated
4665 * in both lists.
4666 */
4667 int64_t tmp_frags;
4668 for (daddr = oldfrag_daddr; daddr < newfrag_daddr;
4669 daddr += tmp_frags) {
4670 if ((tmp_frags = checkfragallocated(daddr)) > 0)
4671 growth_csum_frags += tmp_frags;
4672 else
4673 break;
4674 }
4675 } else {
4676 /*
4677 * We have all we need for the new desired size,
4678 * so clean up and report back.
4679 */
4680 return (fssize_db);
4681 }
4682
4683 /*
4684 * given the number of fragments by which the csum block can be grown
4685 * compute by how many new fragments the FS can be increased.
4686 * It is the number of csum instances per fragment multiplied by
4687 * `growth_csum_frags' and the number of fragments per cylinder group.
4688 */
4689 growth_fs_frags = howmany(sblock.fs_fsize, sizeof (struct csum)) *
4690 growth_csum_frags * sblock.fs_fpg;
4691
4692 /*
4693 * compute free fragments in the last cylinder group
4694 */
4695 rdcg(sblock.fs_ncg - 1);
4696 growth_fs_frags += sblock.fs_fpg - acg.cg_ndblk;
4697
4698 /*
4699 * compute how many csum instances are unused in the old csum block.
4700 * For each unused csum instance the FS can be grown by one cylinder
4701 * group without extending the csum block.
4702 */
4703 spare_csum = howmany(sblock.fs_cssize, sizeof (struct csum)) -
4704 sblock.fs_ncg;
4705 if (spare_csum > 0)
4706 growth_fs_frags += spare_csum * sblock.fs_fpg;
4707
4708 /*
4709 * recalculate the new filesystem size in sectors, shorten it by
4710 * the requested size `fssize_db' if necessary.
4711 */
4712 if (growth_fs_frags > 0) {
4713 diskaddr_t sect;
4714 sect = (sblock.fs_size + growth_fs_frags) * sblock.fs_nspf;
4715 return ((sect > fssize_db) ? fssize_db : sect);
4716 }
4717
4718 return (0);
4719 }
4720
4721 void
extendsummaryinfo()4722 extendsummaryinfo()
4723 {
4724 int64_t i;
4725 int localtest = test;
4726 int64_t frags;
4727 daddr32_t oldfrag;
4728 daddr32_t newfrag;
4729
4730 /*
4731 * if no-write (-N), don't bother
4732 */
4733 if (Nflag)
4734 return;
4735
4736 again:
4737 flcg();
4738 /*
4739 * summary info did not change size -- do nothing unless in test mode
4740 */
4741 if (grow_fs_cssize == sblock.fs_cssize)
4742 if (!localtest)
4743 return;
4744
4745 /*
4746 * build list of frags needed for additional summary information
4747 */
4748 oldfrag = howmany(grow_fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4749 newfrag = howmany(sblock.fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4750 /*
4751 * add all of the frags that are required to grow the cyl summary to the
4752 * csfrag list, which is the generic/unknown list, since at this point
4753 * we don't yet know the state of those frags.
4754 */
4755 for (i = oldfrag, frags = 0; i < newfrag; ++i, ++frags)
4756 addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4757 /*
4758 * reduce the number of data blocks in the file system (fs_dsize) by
4759 * the number of frags that need to be added to the cyl summary
4760 */
4761 sblock.fs_dsize -= (newfrag - oldfrag);
4762
4763 /*
4764 * In test mode, we move more data than necessary from
4765 * cylinder group 0. The lookup/allocate/move code can be
4766 * better stressed without having to create HUGE file systems.
4767 */
4768 if (localtest)
4769 for (i = newfrag; i < grow_sifrag; ++i) {
4770 if (frags >= testfrags)
4771 break;
4772 frags++;
4773 addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4774 }
4775
4776 /*
4777 * move frags to free or inode lists, depending on owner
4778 */
4779 findcsfragfree();
4780 findcsfragino();
4781
4782 /*
4783 * if not all frags can be located, file system must be inconsistent
4784 */
4785 if (csfrag) {
4786 isbad = 1; /* should already be set, but make sure */
4787 lockexit(32);
4788 }
4789
4790 /*
4791 * allocate the free frags. Note that the free frags must be allocated
4792 * first otherwise they could be grabbed by alloccsfragino() for data
4793 * frags.
4794 */
4795 alloccsfragfree();
4796 /*
4797 * allocate extra space for inode frags
4798 */
4799 alloccsfragino();
4800
4801 /*
4802 * not enough space
4803 */
4804 if (notenoughspace()) {
4805 unalloccsfragfree();
4806 unalloccsfragino();
4807 if (localtest && !testforce) {
4808 localtest = 0;
4809 goto again;
4810 }
4811 (void) fprintf(stderr, gettext("Not enough free space\n"));
4812 lockexit(NOTENOUGHSPACE);
4813 }
4814
4815 /*
4816 * copy the data from old frags to new frags
4817 */
4818 copycsfragino();
4819
4820 /*
4821 * fix the inodes to point to the new frags
4822 */
4823 fixcsfragino();
4824
4825 /*
4826 * We may have moved more frags than we needed. Free them.
4827 */
4828 rdcg((long)0);
4829 for (i = newfrag; i <= maxcsfrag; ++i)
4830 setbit(cg_blksfree(&acg), i-cgbase(&sblock, 0));
4831 wtcg();
4832
4833 flcg();
4834 }
4835
4836 /*
4837 * Check if all fragments in the `csfragino' list were reallocated.
4838 */
4839 int
notenoughspace()4840 notenoughspace()
4841 {
4842 struct csfrag *cfp;
4843
4844 /*
4845 * If any element in the csfragino array has a "new frag location"
4846 * of 0, the allocfrags() function was unsuccessful in allocating
4847 * space for moving the frag represented by this array element.
4848 */
4849 for (cfp = csfragino; cfp; cfp = cfp->next)
4850 if (cfp->nfrag == 0)
4851 return (1);
4852 return (0);
4853 }
4854
4855 void
unalloccsfragino()4856 unalloccsfragino()
4857 {
4858 struct csfrag *cfp;
4859
4860 while ((cfp = csfragino) != NULL) {
4861 if (cfp->nfrag)
4862 freefrags(cfp->nfrag, cfp->frags, cfp->cylno);
4863 delcsfrag(cfp->ofrag, &csfragino);
4864 }
4865 }
4866
4867 void
unalloccsfragfree()4868 unalloccsfragfree()
4869 {
4870 struct csfrag *cfp;
4871
4872 while ((cfp = csfragfree) != NULL) {
4873 freefrags(cfp->ofrag, cfp->frags, cfp->cylno);
4874 delcsfrag(cfp->ofrag, &csfragfree);
4875 }
4876 }
4877
4878 /*
4879 * For each frag in the "as-yet-unclassified" list (csfrag), see if
4880 * it's free (i.e., its bit is set in the free frag bit map). If so,
4881 * move it from the "as-yet-unclassified" list to the csfragfree list.
4882 */
4883 void
findcsfragfree()4884 findcsfragfree()
4885 {
4886 struct csfrag *cfp;
4887 struct csfrag *cfpnext;
4888
4889 /*
4890 * move free frags onto the free-frag list
4891 */
4892 rdcg((long)0);
4893 for (cfp = csfrag; cfp; cfp = cfpnext) {
4894 cfpnext = cfp->next;
4895 if (isset(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0))) {
4896 addcsfrag(cfp->ino, cfp->ofrag, &csfragfree);
4897 delcsfrag(cfp->ofrag, &csfrag);
4898 }
4899 }
4900 }
4901
4902 void
copycsfragino()4903 copycsfragino()
4904 {
4905 struct csfrag *cfp;
4906 char buf[MAXBSIZE];
4907
4908 /*
4909 * copy data from old frags to newly allocated frags
4910 */
4911 for (cfp = csfragino; cfp; cfp = cfp->next) {
4912 rdfs(fsbtodb(&sblock, (uint64_t)cfp->ofrag), (int)cfp->size,
4913 buf);
4914 wtfs(fsbtodb(&sblock, (uint64_t)cfp->nfrag), (int)cfp->size,
4915 buf);
4916 }
4917 }
4918
4919 long curcylno = -1;
4920 int cylnodirty = 0;
4921
4922 void
rdcg(long cylno)4923 rdcg(long cylno)
4924 {
4925 if (cylno != curcylno) {
4926 flcg();
4927 curcylno = cylno;
4928 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4929 (int)sblock.fs_cgsize, (char *)&acg);
4930 }
4931 }
4932
4933 void
flcg()4934 flcg()
4935 {
4936 if (cylnodirty) {
4937 if (debug && Pflag) {
4938 (void) fprintf(stderr,
4939 "Assert: cylnodirty set in probe mode\n");
4940 return;
4941 }
4942 resetallocinfo();
4943 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4944 (int)sblock.fs_cgsize, (char *)&acg);
4945 cylnodirty = 0;
4946 }
4947 curcylno = -1;
4948 }
4949
4950 void
wtcg()4951 wtcg()
4952 {
4953 if (!Pflag) {
4954 /* probe mode should never write to disk */
4955 cylnodirty = 1;
4956 }
4957 }
4958
4959 void
allocfrags(long frags,daddr32_t * fragp,long * cylnop)4960 allocfrags(long frags, daddr32_t *fragp, long *cylnop)
4961 {
4962 int i;
4963 int j;
4964 long bits;
4965 long bit;
4966
4967 /*
4968 * Allocate a free-frag range in an old cylinder group
4969 */
4970 for (i = 0, *fragp = 0; i < grow_fs_ncg; ++i) {
4971 if (((fscs+i)->cs_nffree < frags) && ((fscs+i)->cs_nbfree == 0))
4972 continue;
4973 rdcg((long)i);
4974 bit = bits = 0;
4975 while (findfreerange(&bit, &bits)) {
4976 if (frags <= bits) {
4977 for (j = 0; j < frags; ++j)
4978 clrbit(cg_blksfree(&acg), bit+j);
4979 wtcg();
4980 *cylnop = i;
4981 *fragp = bit + cgbase(&sblock, i);
4982 return;
4983 }
4984 bit += bits;
4985 }
4986 }
4987 }
4988
4989 /*
4990 * Allocate space for frags that need to be moved in order to free up space for
4991 * expanding the cylinder summary info.
4992 * For each frag that needs to be moved (each frag or range of frags in
4993 * the csfragino list), allocate a new location and store the frag number
4994 * of that new location in the nfrag field of the csfrag struct.
4995 * If a new frag can't be allocated for any element in the csfragino list,
4996 * set the new frag number for that element to 0 and return immediately.
4997 * The notenoughspace() function will detect this condition.
4998 */
4999 void
alloccsfragino()5000 alloccsfragino()
5001 {
5002 struct csfrag *cfp;
5003
5004 /*
5005 * allocate space for inode frag ranges
5006 */
5007 for (cfp = csfragino; cfp; cfp = cfp->next) {
5008 allocfrags(cfp->frags, &cfp->nfrag, &cfp->cylno);
5009 if (cfp->nfrag == 0)
5010 break;
5011 }
5012 }
5013
5014 void
alloccsfragfree()5015 alloccsfragfree()
5016 {
5017 struct csfrag *cfp;
5018
5019 /*
5020 * allocate the free frags needed for extended summary info
5021 */
5022 rdcg((long)0);
5023
5024 for (cfp = csfragfree; cfp; cfp = cfp->next)
5025 clrbit(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0));
5026
5027 wtcg();
5028 }
5029
5030 void
freefrags(daddr32_t frag,long frags,long cylno)5031 freefrags(daddr32_t frag, long frags, long cylno)
5032 {
5033 int i;
5034
5035 /*
5036 * free frags
5037 */
5038 rdcg(cylno);
5039 for (i = 0; i < frags; ++i) {
5040 setbit(cg_blksfree(&acg), (frag+i) - cgbase(&sblock, cylno));
5041 }
5042 wtcg();
5043 }
5044
5045 int
findfreerange(long * bitp,long * bitsp)5046 findfreerange(long *bitp, long *bitsp)
5047 {
5048 long bit;
5049
5050 /*
5051 * find a range of free bits in a cylinder group bit map
5052 */
5053 for (bit = *bitp, *bitsp = 0; bit < acg.cg_ndblk; ++bit)
5054 if (isset(cg_blksfree(&acg), bit))
5055 break;
5056
5057 if (bit >= acg.cg_ndblk)
5058 return (0);
5059
5060 *bitp = bit;
5061 *bitsp = 1;
5062 for (++bit; bit < acg.cg_ndblk; ++bit, ++(*bitsp)) {
5063 if ((bit % sblock.fs_frag) == 0)
5064 break;
5065 if (isclr(cg_blksfree(&acg), bit))
5066 break;
5067 }
5068 return (1);
5069 }
5070
5071 void
resetallocinfo()5072 resetallocinfo()
5073 {
5074 long cno;
5075 long bit;
5076 long bits;
5077
5078 /*
5079 * Compute the free blocks/frags info and update the appropriate
5080 * inmemory superblock, summary info, and cylinder group fields
5081 */
5082 sblock.fs_cstotal.cs_nffree -= acg.cg_cs.cs_nffree;
5083 sblock.fs_cstotal.cs_nbfree -= acg.cg_cs.cs_nbfree;
5084
5085 acg.cg_cs.cs_nffree = 0;
5086 acg.cg_cs.cs_nbfree = 0;
5087
5088 bzero((caddr_t)acg.cg_frsum, sizeof (acg.cg_frsum));
5089 bzero((caddr_t)cg_blktot(&acg), (int)(acg.cg_iusedoff-acg.cg_btotoff));
5090
5091 bit = bits = 0;
5092 while (findfreerange(&bit, &bits)) {
5093 if (bits == sblock.fs_frag) {
5094 acg.cg_cs.cs_nbfree++;
5095 cno = cbtocylno(&sblock, bit);
5096 cg_blktot(&acg)[cno]++;
5097 cg_blks(&sblock, &acg, cno)[cbtorpos(&sblock, bit)]++;
5098 } else {
5099 acg.cg_cs.cs_nffree += bits;
5100 acg.cg_frsum[bits]++;
5101 }
5102 bit += bits;
5103 }
5104
5105 *(fscs + acg.cg_cgx) = acg.cg_cs;
5106
5107 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
5108 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
5109 }
5110
5111 void
extendcg(long cylno)5112 extendcg(long cylno)
5113 {
5114 int i;
5115 diskaddr_t dupper;
5116 diskaddr_t cbase;
5117 diskaddr_t dmax;
5118
5119 /*
5120 * extend the cylinder group at the end of the old file system
5121 * if it was partially allocated becase of lack of space
5122 */
5123 flcg();
5124 rdcg(cylno);
5125
5126 dupper = acg.cg_ndblk;
5127 if (cylno == sblock.fs_ncg - 1)
5128 acg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
5129 else
5130 acg.cg_ncyl = sblock.fs_cpg;
5131 cbase = cgbase(&sblock, cylno);
5132 dmax = cbase + sblock.fs_fpg;
5133 if (dmax > sblock.fs_size)
5134 dmax = sblock.fs_size;
5135 acg.cg_ndblk = dmax - cbase;
5136
5137 for (i = dupper; i < acg.cg_ndblk; ++i)
5138 setbit(cg_blksfree(&acg), i);
5139
5140 sblock.fs_dsize += (acg.cg_ndblk - dupper);
5141
5142 wtcg();
5143 flcg();
5144 }
5145
5146 struct lockfs lockfs;
5147 int lockfd;
5148 int islocked;
5149 int lockfskey;
5150 char lockfscomment[128];
5151
5152 void
ulockfs()5153 ulockfs()
5154 {
5155 /*
5156 * if the file system was locked, unlock it before exiting
5157 */
5158 if (islocked == 0)
5159 return;
5160
5161 /*
5162 * first, check if the lock held
5163 */
5164 lockfs.lf_flags = LOCKFS_MOD;
5165 if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5166 perror(directory);
5167 lockexit(32);
5168 }
5169
5170 if (LOCKFS_IS_MOD(&lockfs)) {
5171 (void) fprintf(stderr,
5172 gettext("FILE SYSTEM CHANGED DURING GROWFS!\n"));
5173 (void) fprintf(stderr,
5174 gettext(" See lockfs(1), umount(1), and fsck(1)\n"));
5175 lockexit(32);
5176 }
5177 /*
5178 * unlock the file system
5179 */
5180 lockfs.lf_lock = LOCKFS_ULOCK;
5181 lockfs.lf_flags = 0;
5182 lockfs.lf_key = lockfskey;
5183 clockfs();
5184 if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5185 perror(directory);
5186 lockexit(32);
5187 }
5188 }
5189
5190 void
wlockfs()5191 wlockfs()
5192 {
5193
5194 /*
5195 * if no-write (-N), don't bother
5196 */
5197 if (Nflag)
5198 return;
5199 /*
5200 * open the mountpoint, and write lock the file system
5201 */
5202 if ((lockfd = open64(directory, O_RDONLY)) == -1) {
5203 perror(directory);
5204 lockexit(32);
5205 }
5206
5207 /*
5208 * check if it is already locked
5209 */
5210 if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5211 perror(directory);
5212 lockexit(32);
5213 }
5214
5215 if (lockfs.lf_lock != LOCKFS_WLOCK) {
5216 lockfs.lf_lock = LOCKFS_WLOCK;
5217 lockfs.lf_flags = 0;
5218 lockfs.lf_key = 0;
5219 clockfs();
5220 if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5221 perror(directory);
5222 lockexit(32);
5223 }
5224 }
5225 islocked = 1;
5226 lockfskey = lockfs.lf_key;
5227 }
5228
5229 void
clockfs()5230 clockfs()
5231 {
5232 time_t t;
5233 char *ct;
5234
5235 (void) time(&t);
5236 ct = ctime(&t);
5237 ct[strlen(ct)-1] = '\0';
5238
5239 (void) sprintf(lockfscomment, "%s -- mkfs pid %d", ct, getpid());
5240 lockfs.lf_comlen = strlen(lockfscomment)+1;
5241 lockfs.lf_comment = lockfscomment;
5242 }
5243
5244 /*
5245 * Write the csum records and the superblock
5246 */
5247 void
wtsb()5248 wtsb()
5249 {
5250 long i;
5251
5252 /*
5253 * write summary information
5254 */
5255 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
5256 wtfs(fsbtodb(&sblock, (uint64_t)(sblock.fs_csaddr +
5257 numfrags(&sblock, i))),
5258 (int)(sblock.fs_cssize - i < sblock.fs_bsize ?
5259 sblock.fs_cssize - i : sblock.fs_bsize),
5260 ((char *)fscs) + i);
5261
5262 /*
5263 * write superblock
5264 */
5265 sblock.fs_time = mkfstime;
5266 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
5267 }
5268
5269 /*
5270 * Verify that the optimization selection is reasonable, and advance
5271 * the global "string" appropriately.
5272 */
5273 static char
checkopt(char * optim)5274 checkopt(char *optim)
5275 {
5276 char opt;
5277 int limit = strcspn(optim, ",");
5278
5279 switch (limit) {
5280 case 0: /* missing indicator (have comma or nul) */
5281 (void) fprintf(stderr, gettext(
5282 "mkfs: missing optimization flag reset to `t' (time)\n"));
5283 opt = 't';
5284 break;
5285
5286 case 1: /* single-character indicator */
5287 opt = *optim;
5288 if ((opt != 's') && (opt != 't')) {
5289 (void) fprintf(stderr, gettext(
5290 "mkfs: bad optimization value `%c' reset to `t' (time)\n"),
5291 opt);
5292 opt = 't';
5293 }
5294 break;
5295
5296 default: /* multi-character indicator */
5297 (void) fprintf(stderr, gettext(
5298 "mkfs: bad optimization value `%*.*s' reset to `t' (time)\n"),
5299 limit, limit, optim);
5300 opt = 't';
5301 break;
5302 }
5303
5304 string += limit;
5305
5306 return (opt);
5307 }
5308
5309 /*
5310 * Verify that the mtb selection is reasonable, and advance
5311 * the global "string" appropriately.
5312 */
5313 static char
checkmtb(char * mtbarg)5314 checkmtb(char *mtbarg)
5315 {
5316 char mtbc;
5317 int limit = strcspn(mtbarg, ",");
5318
5319 switch (limit) {
5320 case 0: /* missing indicator (have comma or nul) */
5321 (void) fprintf(stderr, gettext(
5322 "mkfs: missing mtb flag reset to `n' (no mtb support)\n"));
5323 mtbc = 'n';
5324 break;
5325
5326 case 1: /* single-character indicator */
5327 mtbc = tolower(*mtbarg);
5328 if ((mtbc != 'y') && (mtbc != 'n')) {
5329 (void) fprintf(stderr, gettext(
5330 "mkfs: bad mtb value `%c' reset to `n' (no mtb support)\n"),
5331 mtbc);
5332 mtbc = 'n';
5333 }
5334 break;
5335
5336 default: /* multi-character indicator */
5337 (void) fprintf(stderr, gettext(
5338 "mkfs: bad mtb value `%*.*s' reset to `n' (no mtb support)\n"),
5339 limit, limit, mtbarg);
5340 opt = 'n';
5341 break;
5342 }
5343
5344 string += limit;
5345
5346 return (mtbc);
5347 }
5348
5349 /*
5350 * Verify that a value is in a range. If it is not, resets it to
5351 * its default value if one is supplied, exits otherwise.
5352 *
5353 * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5354 */
5355 static void
range_check(long * varp,char * name,long minimum,long maximum,long def_val,int user_supplied)5356 range_check(long *varp, char *name, long minimum, long maximum,
5357 long def_val, int user_supplied)
5358 {
5359 dprintf(("DeBuG %s : %ld (%ld %ld %ld)\n",
5360 name, *varp, minimum, maximum, def_val));
5361
5362 if ((*varp < minimum) || (*varp > maximum)) {
5363 if (user_supplied != RC_DEFAULT) {
5364 (void) fprintf(stderr, gettext(
5365 "mkfs: bad value for %s: %ld must be between %ld and %ld\n"),
5366 name, *varp, minimum, maximum);
5367 }
5368 if (def_val != NO_DEFAULT) {
5369 if (user_supplied) {
5370 (void) fprintf(stderr,
5371 gettext("mkfs: %s reset to default %ld\n"),
5372 name, def_val);
5373 }
5374 *varp = def_val;
5375 dprintf(("DeBuG %s : %ld\n", name, *varp));
5376 return;
5377 }
5378 lockexit(2);
5379 /*NOTREACHED*/
5380 }
5381 }
5382
5383 /*
5384 * Verify that a value is in a range. If it is not, resets it to
5385 * its default value if one is supplied, exits otherwise.
5386 *
5387 * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5388 */
5389 static void
range_check_64(uint64_t * varp,char * name,uint64_t minimum,uint64_t maximum,uint64_t def_val,int user_supplied)5390 range_check_64(uint64_t *varp, char *name, uint64_t minimum, uint64_t maximum,
5391 uint64_t def_val, int user_supplied)
5392 {
5393 if ((*varp < minimum) || (*varp > maximum)) {
5394 if (user_supplied != RC_DEFAULT) {
5395 (void) fprintf(stderr, gettext(
5396 "mkfs: bad value for %s: %lld must be between %lld and %lld\n"),
5397 name, *varp, minimum, maximum);
5398 }
5399 if (def_val != NO_DEFAULT) {
5400 if (user_supplied) {
5401 (void) fprintf(stderr,
5402 gettext("mkfs: %s reset to default %lld\n"),
5403 name, def_val);
5404 }
5405 *varp = def_val;
5406 return;
5407 }
5408 lockexit(2);
5409 /*NOTREACHED*/
5410 }
5411 }
5412
5413 /*
5414 * Blocks SIGINT from delivery. Returns the previous mask in the
5415 * buffer provided, so that mask may be later restored.
5416 */
5417 static void
block_sigint(sigset_t * old_mask)5418 block_sigint(sigset_t *old_mask)
5419 {
5420 sigset_t block_mask;
5421
5422 if (sigemptyset(&block_mask) < 0) {
5423 fprintf(stderr, gettext("Could not clear signal mask\n"));
5424 lockexit(3);
5425 }
5426 if (sigaddset(&block_mask, SIGINT) < 0) {
5427 fprintf(stderr, gettext("Could not set signal mask\n"));
5428 lockexit(3);
5429 }
5430 if (sigprocmask(SIG_BLOCK, &block_mask, old_mask) < 0) {
5431 fprintf(stderr, gettext("Could not block SIGINT\n"));
5432 lockexit(3);
5433 }
5434 }
5435
5436 /*
5437 * Restores the signal mask that was in force before a call
5438 * to block_sigint(). This may actually still have SIGINT blocked,
5439 * if we've been recursively invoked.
5440 */
5441 static void
unblock_sigint(sigset_t * old_mask)5442 unblock_sigint(sigset_t *old_mask)
5443 {
5444 if (sigprocmask(SIG_UNBLOCK, old_mask, (sigset_t *)NULL) < 0) {
5445 fprintf(stderr, gettext("Could not restore signal mask\n"));
5446 lockexit(3);
5447 }
5448 }
5449
5450 /*
5451 * Attempt to be somewhat graceful about being interrupted, rather than
5452 * just silently leaving the filesystem in an unusable state.
5453 *
5454 * The kernel has blocked SIGINT upon entry, so we don't have to worry
5455 * about recursion if the user starts pounding on the keyboard.
5456 */
5457 static void
recover_from_sigint(int signum)5458 recover_from_sigint(int signum)
5459 {
5460 if (fso > -1) {
5461 if ((Nflag != 0) || confirm_abort()) {
5462 lockexit(4);
5463 }
5464 }
5465 }
5466
5467 static int
confirm_abort(void)5468 confirm_abort(void)
5469 {
5470 char line[80];
5471
5472 printf(gettext("\n\nAborting at this point will leave the filesystem "
5473 "in an inconsistent\nstate. If you do choose to stop, "
5474 "you will be given instructions on how to\nrecover "
5475 "the filesystem. Do you wish to cancel the filesystem "
5476 "grow\noperation (y/n)?"));
5477 if (getaline(stdin, line, sizeof (line)) == EOF)
5478 line[0] = 'y';
5479
5480 printf("\n");
5481 if (line[0] == 'y' || line[0] == 'Y')
5482 return (1);
5483 else {
5484 return (0);
5485 }
5486 }
5487
5488 static int
getaline(FILE * fp,char * loc,int maxlen)5489 getaline(FILE *fp, char *loc, int maxlen)
5490 {
5491 int n;
5492 char *p, *lastloc;
5493
5494 p = loc;
5495 lastloc = &p[maxlen-1];
5496 while ((n = getc(fp)) != '\n') {
5497 if (n == EOF)
5498 return (EOF);
5499 if (!isspace(n) && p < lastloc)
5500 *p++ = n;
5501 }
5502 *p = 0;
5503 return (p - loc);
5504 }
5505
5506 /*
5507 * Calculate the maximum value of cylinders-per-group for a file
5508 * system with the characteristics:
5509 *
5510 * bsize - file system block size
5511 * fragsize - frag size
5512 * nbpi - number of bytes of disk space per inode
5513 * nrpos - number of rotational positions
5514 * spc - sectors per cylinder
5515 *
5516 * These five characteristic are not adjustable (by this function).
5517 * The only attribute of the file system which IS adjusted by this
5518 * function in order to maximize cylinders-per-group is the proportion
5519 * of the cylinder group overhead block used for the inode map. The
5520 * inode map cannot occupy more than one-third of the cylinder group
5521 * overhead block, but it's OK for it to occupy less than one-third
5522 * of the overhead block.
5523 *
5524 * The setting of nbpi determines one possible value for the maximum
5525 * size of a cylinder group. It does so because it determines the total
5526 * number of inodes in the file system (file system size is fixed, and
5527 * nbpi is fixed, so the total number of inodes is fixed too). The
5528 * cylinder group has to be small enough so that the number of inodes
5529 * in the cylinder group is less than or equal to the number of bits
5530 * in one-third (or whatever proportion is assumed) of a file system
5531 * block. The details of the calculation are:
5532 *
5533 * The macro MAXIpG_B(bsize, inode_divisor) determines the maximum
5534 * number of inodes that can be in a cylinder group, given the
5535 * proportion of the cylinder group overhead block used for the
5536 * inode bitmaps (an inode_divisor of 3 means that 1/3 of the
5537 * block is used for inode bitmaps; an inode_divisor of 12 means
5538 * that 1/12 of the block is used for inode bitmaps.)
5539 *
5540 * Once the number of inodes per cylinder group is known, the
5541 * maximum value of cylinders-per-group (determined by nbpi)
5542 * is calculated by the formula
5543 *
5544 * maxcpg_given_nbpi = (size of a cylinder group)/(size of a cylinder)
5545 *
5546 * = (inodes-per-cg * nbpi)/(spc * DEV_BSIZE)
5547 *
5548 * (Interestingly, the size of the file system never enters
5549 * into this calculation.)
5550 *
5551 * Another possible value for the maximum cylinder group size is determined
5552 * by frag_size and nrpos. The frags in the cylinder group must be
5553 * representable in the frag bitmaps in the cylinder overhead block and the
5554 * rotational positions for each cylinder must be represented in the
5555 * rotational position tables. The calculation of the maximum cpg
5556 * value, given the frag and nrpos vales, is:
5557 *
5558 * maxcpg_given_fragsize =
5559 * (available space in the overhead block) / (size of per-cylinder data)
5560 *
5561 * The available space in the overhead block =
5562 * bsize - sizeof (struct cg) - space_used_for_inode_bitmaps
5563 *
5564 * The size of the per-cylinder data is:
5565 * sizeof(long) # for the "blocks avail per cylinder" field
5566 * + nrpos * sizeof(short) # for the rotational position table entry
5567 * + frags-per-cylinder/NBBY # number of bytes to represent this
5568 * # cylinder in the frag bitmap
5569 *
5570 * The two calculated maximum values of cylinder-per-group will typically
5571 * turn out to be different, since they are derived from two different
5572 * constraints. Usually, maxcpg_given_nbpi is much bigger than
5573 * maxcpg_given_fragsize. But they can be brought together by
5574 * adjusting the proportion of the overhead block dedicated to
5575 * the inode bitmaps. Decreasing the proportion of the cylinder
5576 * group overhead block used for inode maps will decrease
5577 * maxcpg_given_nbpi and increase maxcpg_given_fragsize.
5578 *
5579 * This function calculates the initial values of maxcpg_given_nbpi
5580 * and maxcpg_given_fragsize assuming that 1/3 of the cg overhead
5581 * block is used for inode bitmaps. Then it decreases the proportion
5582 * of the cg overhead block used for inode bitmaps (by increasing
5583 * the value of inode_divisor) until maxcpg_given_nbpi and
5584 * maxcpg_given_fragsize are the same, or stop changing, or
5585 * maxcpg_given_nbpi is less than maxcpg_given_fragsize.
5586 *
5587 * The loop terminates when any of the following occur:
5588 * * maxcpg_given_fragsize is greater than or equal to
5589 * maxcpg_given_nbpi
5590 * * neither maxcpg_given_fragsize nor maxcpg_given_nbpi
5591 * change in the expected direction
5592 *
5593 * The loop is guaranteed to terminate because it only continues
5594 * while maxcpg_given_fragsize and maxcpg_given_nbpi are approaching
5595 * each other. As soon they cross each other, or neither one changes
5596 * in the direction of the other, or one of them moves in the wrong
5597 * direction, the loop completes.
5598 */
5599
5600 static long
compute_maxcpg(long bsize,long fragsize,long nbpi,long nrpos,long spc)5601 compute_maxcpg(long bsize, long fragsize, long nbpi, long nrpos, long spc)
5602 {
5603 int maxcpg_given_nbpi; /* in cylinders */
5604 int maxcpg_given_fragsize; /* in cylinders */
5605 int spf; /* sectors per frag */
5606 int inode_divisor;
5607 int old_max_given_frag = 0;
5608 int old_max_given_nbpi = INT_MAX;
5609
5610 spf = fragsize / DEV_BSIZE;
5611 inode_divisor = 3;
5612
5613 while (1) {
5614 maxcpg_given_nbpi =
5615 (((int64_t)(MAXIpG_B(bsize, inode_divisor))) * nbpi) /
5616 (DEV_BSIZE * ((int64_t)spc));
5617 maxcpg_given_fragsize =
5618 (bsize - (sizeof (struct cg)) - (bsize / inode_divisor)) /
5619 (sizeof (long) + nrpos * sizeof (short) +
5620 (spc / spf) / NBBY);
5621
5622 if (maxcpg_given_fragsize >= maxcpg_given_nbpi)
5623 return (maxcpg_given_nbpi);
5624
5625 /*
5626 * If neither value moves toward the other, return the
5627 * least of the old values (we use the old instead of the
5628 * new because: if the old is the same as the new, it
5629 * doesn't matter which ones we use. If one of the
5630 * values changed, but in the wrong direction, the
5631 * new values are suspect. Better use the old. This
5632 * shouldn't happen, but it's best to check.
5633 */
5634
5635 if (!(maxcpg_given_nbpi < old_max_given_nbpi) &&
5636 !(maxcpg_given_fragsize > old_max_given_frag))
5637 return (MIN(old_max_given_nbpi, old_max_given_frag));
5638
5639 /*
5640 * This is probably impossible, but if one of the maxcpg
5641 * values moved in the "right" direction and one moved
5642 * in the "wrong" direction (that is, the two values moved
5643 * in the same direction), the previous conditional won't
5644 * recognize that the values aren't converging (since at
5645 * least one value moved in the "right" direction, the
5646 * last conditional says "keep going").
5647 *
5648 * Just to make absolutely certain that the loop terminates,
5649 * check for one of the values moving in the "wrong" direction
5650 * and terminate the loop if it happens.
5651 */
5652
5653 if (maxcpg_given_nbpi > old_max_given_nbpi ||
5654 maxcpg_given_fragsize < old_max_given_frag)
5655 return (MIN(old_max_given_nbpi, old_max_given_frag));
5656
5657 old_max_given_nbpi = maxcpg_given_nbpi;
5658 old_max_given_frag = maxcpg_given_fragsize;
5659
5660 inode_divisor++;
5661 }
5662 }
5663
5664 static int
in_64bit_mode(void)5665 in_64bit_mode(void)
5666 {
5667 /* cmd must be an absolute path, for security */
5668 char *cmd = "/usr/bin/isainfo -b";
5669 char buf[BUFSIZ];
5670 FILE *ptr;
5671 int retval = 0;
5672
5673 putenv("IFS= \t");
5674 if ((ptr = popen(cmd, "r")) != NULL) {
5675 if (fgets(buf, BUFSIZ, ptr) != NULL &&
5676 strncmp(buf, "64", 2) == 0)
5677 retval = 1;
5678 (void) pclose(ptr);
5679 }
5680 return (retval);
5681 }
5682
5683 /*
5684 * validate_size
5685 *
5686 * Return 1 if the device appears to be at least "size" sectors long.
5687 * Return 0 if it's shorter or we can't read it.
5688 */
5689
5690 static int
validate_size(int fd,diskaddr_t size)5691 validate_size(int fd, diskaddr_t size)
5692 {
5693 char buf[DEV_BSIZE];
5694 int rc;
5695
5696 if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
5697 (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
5698 rc = 0;
5699 else
5700 rc = 1;
5701 return (rc);
5702 }
5703
5704 /*
5705 * Print every field of the calculated superblock, along with
5706 * its value. To make parsing easier on the caller, the value
5707 * is printed first, then the name. Additionally, there's only
5708 * one name/value pair per line. All values are reported in
5709 * hexadecimal (with the traditional 0x prefix), as that's slightly
5710 * easier for humans to read. Not that they're expected to, but
5711 * debugging happens.
5712 */
5713 static void
dump_sblock(void)5714 dump_sblock(void)
5715 {
5716 int row, column, pending, written;
5717 caddr_t source;
5718
5719 if (Rflag) {
5720 pending = sizeof (sblock);
5721 source = (caddr_t)&sblock;
5722 do {
5723 written = write(fileno(stdout), source, pending);
5724 pending -= written;
5725 source += written;
5726 } while ((pending > 0) && (written > 0));
5727
5728 if (written < 0) {
5729 perror(gettext("Binary dump of superblock failed"));
5730 lockexit(1);
5731 }
5732 return;
5733 } else {
5734 printf("0x%x sblock.fs_link\n", sblock.fs_link);
5735 printf("0x%x sblock.fs_rolled\n", sblock.fs_rolled);
5736 printf("0x%x sblock.fs_sblkno\n", sblock.fs_sblkno);
5737 printf("0x%x sblock.fs_cblkno\n", sblock.fs_cblkno);
5738 printf("0x%x sblock.fs_iblkno\n", sblock.fs_iblkno);
5739 printf("0x%x sblock.fs_dblkno\n", sblock.fs_dblkno);
5740 printf("0x%x sblock.fs_cgoffset\n", sblock.fs_cgoffset);
5741 printf("0x%x sblock.fs_cgmask\n", sblock.fs_cgmask);
5742 printf("0x%x sblock.fs_time\n", sblock.fs_time);
5743 printf("0x%x sblock.fs_size\n", sblock.fs_size);
5744 printf("0x%x sblock.fs_dsize\n", sblock.fs_dsize);
5745 printf("0x%x sblock.fs_ncg\n", sblock.fs_ncg);
5746 printf("0x%x sblock.fs_bsize\n", sblock.fs_bsize);
5747 printf("0x%x sblock.fs_fsize\n", sblock.fs_fsize);
5748 printf("0x%x sblock.fs_frag\n", sblock.fs_frag);
5749 printf("0x%x sblock.fs_minfree\n", sblock.fs_minfree);
5750 printf("0x%x sblock.fs_rotdelay\n", sblock.fs_rotdelay);
5751 printf("0x%x sblock.fs_rps\n", sblock.fs_rps);
5752 printf("0x%x sblock.fs_bmask\n", sblock.fs_bmask);
5753 printf("0x%x sblock.fs_fmask\n", sblock.fs_fmask);
5754 printf("0x%x sblock.fs_bshift\n", sblock.fs_bshift);
5755 printf("0x%x sblock.fs_fshift\n", sblock.fs_fshift);
5756 printf("0x%x sblock.fs_maxcontig\n", sblock.fs_maxcontig);
5757 printf("0x%x sblock.fs_maxbpg\n", sblock.fs_maxbpg);
5758 printf("0x%x sblock.fs_fragshift\n", sblock.fs_fragshift);
5759 printf("0x%x sblock.fs_fsbtodb\n", sblock.fs_fsbtodb);
5760 printf("0x%x sblock.fs_sbsize\n", sblock.fs_sbsize);
5761 printf("0x%x sblock.fs_csmask\n", sblock.fs_csmask);
5762 printf("0x%x sblock.fs_csshift\n", sblock.fs_csshift);
5763 printf("0x%x sblock.fs_nindir\n", sblock.fs_nindir);
5764 printf("0x%x sblock.fs_inopb\n", sblock.fs_inopb);
5765 printf("0x%x sblock.fs_nspf\n", sblock.fs_nspf);
5766 printf("0x%x sblock.fs_optim\n", sblock.fs_optim);
5767 #ifdef _LITTLE_ENDIAN
5768 printf("0x%x sblock.fs_state\n", sblock.fs_state);
5769 #else
5770 printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5771 #endif
5772 printf("0x%x sblock.fs_si\n", sblock.fs_si);
5773 printf("0x%x sblock.fs_trackskew\n", sblock.fs_trackskew);
5774 printf("0x%x sblock.fs_id[0]\n", sblock.fs_id[0]);
5775 printf("0x%x sblock.fs_id[1]\n", sblock.fs_id[1]);
5776 printf("0x%x sblock.fs_csaddr\n", sblock.fs_csaddr);
5777 printf("0x%x sblock.fs_cssize\n", sblock.fs_cssize);
5778 printf("0x%x sblock.fs_cgsize\n", sblock.fs_cgsize);
5779 printf("0x%x sblock.fs_ntrak\n", sblock.fs_ntrak);
5780 printf("0x%x sblock.fs_nsect\n", sblock.fs_nsect);
5781 printf("0x%x sblock.fs_spc\n", sblock.fs_spc);
5782 printf("0x%x sblock.fs_ncyl\n", sblock.fs_ncyl);
5783 printf("0x%x sblock.fs_cpg\n", sblock.fs_cpg);
5784 printf("0x%x sblock.fs_ipg\n", sblock.fs_ipg);
5785 printf("0x%x sblock.fs_fpg\n", sblock.fs_fpg);
5786 printf("0x%x sblock.fs_cstotal\n", sblock.fs_cstotal);
5787 printf("0x%x sblock.fs_fmod\n", sblock.fs_fmod);
5788 printf("0x%x sblock.fs_clean\n", sblock.fs_clean);
5789 printf("0x%x sblock.fs_ronly\n", sblock.fs_ronly);
5790 printf("0x%x sblock.fs_flags\n", sblock.fs_flags);
5791 printf("0x%x sblock.fs_fsmnt\n", sblock.fs_fsmnt);
5792 printf("0x%x sblock.fs_cgrotor\n", sblock.fs_cgrotor);
5793 printf("0x%x sblock.fs_u.fs_csp\n", sblock.fs_u.fs_csp);
5794 printf("0x%x sblock.fs_cpc\n", sblock.fs_cpc);
5795
5796 /*
5797 * No macros are defined for the dimensions of the
5798 * opostbl array.
5799 */
5800 for (row = 0; row < 16; row++) {
5801 for (column = 0; column < 8; column++) {
5802 printf("0x%x sblock.fs_opostbl[%d][%d]\n",
5803 sblock.fs_opostbl[row][column],
5804 row, column);
5805 }
5806 }
5807
5808 /*
5809 * Ditto the size of sparecon.
5810 */
5811 for (row = 0; row < 51; row++) {
5812 printf("0x%x sblock.fs_sparecon[%d]\n",
5813 sblock.fs_sparecon[row], row);
5814 }
5815
5816 printf("0x%x sblock.fs_version\n", sblock.fs_version);
5817 printf("0x%x sblock.fs_logbno\n", sblock.fs_logbno);
5818 printf("0x%x sblock.fs_reclaim\n", sblock.fs_reclaim);
5819 printf("0x%x sblock.fs_sparecon2\n", sblock.fs_sparecon2);
5820 #ifdef _LITTLE_ENDIAN
5821 printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5822 #else
5823 printf("0x%x sblock.fs_state\n", sblock.fs_state);
5824 #endif
5825 printf("0x%llx sblock.fs_qbmask\n", sblock.fs_qbmask);
5826 printf("0x%llx sblock.fs_qfmask\n", sblock.fs_qfmask);
5827 printf("0x%x sblock.fs_postblformat\n", sblock.fs_postblformat);
5828 printf("0x%x sblock.fs_nrpos\n", sblock.fs_nrpos);
5829 printf("0x%x sblock.fs_postbloff\n", sblock.fs_postbloff);
5830 printf("0x%x sblock.fs_rotbloff\n", sblock.fs_rotbloff);
5831 printf("0x%x sblock.fs_magic\n", sblock.fs_magic);
5832
5833 /*
5834 * fs_space isn't of much use in this context, so we'll
5835 * just ignore it for now.
5836 */
5837 }
5838 }
5839