1 /*
2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /* deflate.c -- compress data using the deflation algorithm
7 * Copyright (C) 1995-2005 Jean-loup Gailly.
8 * For conditions of distribution and use, see copyright notice in zlib.h
9 */
10
11 #pragma ident "%Z%%M% %I% %E% SMI"
12
13 /*
14 * ALGORITHM
15 *
16 * The "deflation" process depends on being able to identify portions
17 * of the input text which are identical to earlier input (within a
18 * sliding window trailing behind the input currently being processed).
19 *
20 * The most straightforward technique turns out to be the fastest for
21 * most input files: try all possible matches and select the longest.
22 * The key feature of this algorithm is that insertions into the string
23 * dictionary are very simple and thus fast, and deletions are avoided
24 * completely. Insertions are performed at each input character, whereas
25 * string matches are performed only when the previous match ends. So it
26 * is preferable to spend more time in matches to allow very fast string
27 * insertions and avoid deletions. The matching algorithm for small
28 * strings is inspired from that of Rabin & Karp. A brute force approach
29 * is used to find longer strings when a small match has been found.
30 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
31 * (by Leonid Broukhis).
32 * A previous version of this file used a more sophisticated algorithm
33 * (by Fiala and Greene) which is guaranteed to run in linear amortized
34 * time, but has a larger average cost, uses more memory and is patented.
35 * However the F&G algorithm may be faster for some highly redundant
36 * files if the parameter max_chain_length (described below) is too large.
37 *
38 * ACKNOWLEDGEMENTS
39 *
40 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
41 * I found it in 'freeze' written by Leonid Broukhis.
42 * Thanks to many people for bug reports and testing.
43 *
44 * REFERENCES
45 *
46 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
47 * Available in http://www.ietf.org/rfc/rfc1951.txt
48 *
49 * A description of the Rabin and Karp algorithm is given in the book
50 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
51 *
52 * Fiala,E.R., and Greene,D.H.
53 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
54 *
55 */
56
57 #include "deflate.h"
58
59 static const char deflate_copyright[] =
60 " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
61 /*
62 If you use the zlib library in a product, an acknowledgment is welcome
63 in the documentation of your product. If for some reason you cannot
64 include such an acknowledgment, I would appreciate that you keep this
65 copyright string in the executable of your product.
66 */
67
68 /* ===========================================================================
69 * Function prototypes.
70 */
71 typedef enum {
72 need_more, /* block not completed, need more input or more output */
73 block_done, /* block flush performed */
74 finish_started, /* finish started, need only more output at next deflate */
75 finish_done /* finish done, accept no more input or output */
76 } block_state;
77
78 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
79 /* Compression function. Returns the block state after the call. */
80
81 local void fill_window OF((deflate_state *s));
82 local block_state deflate_stored OF((deflate_state *s, int flush));
83 local block_state deflate_fast OF((deflate_state *s, int flush));
84 #ifndef FASTEST
85 local block_state deflate_slow OF((deflate_state *s, int flush));
86 #endif
87 local void lm_init OF((deflate_state *s));
88 local void putShortMSB OF((deflate_state *s, uInt b));
89 local void flush_pending OF((z_streamp strm));
90 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
91 #ifndef FASTEST
92 #ifdef ASMV
93 void match_init OF((void)); /* asm code initialization */
94 uInt longest_match OF((deflate_state *s, IPos cur_match));
95 #else
96 local uInt longest_match OF((deflate_state *s, IPos cur_match));
97 #endif
98 #endif
99 local uInt longest_match_fast OF((deflate_state *s, IPos cur_match));
100
101 #ifdef DEBUG
102 local void check_match OF((deflate_state *s, IPos start, IPos match,
103 int length));
104 #endif
105
106 /* ===========================================================================
107 * Local data
108 */
109
110 #define NIL 0
111 /* Tail of hash chains */
112
113 #ifndef TOO_FAR
114 # define TOO_FAR 4096
115 #endif
116 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
117
118 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
119 /* Minimum amount of lookahead, except at the end of the input file.
120 * See deflate.c for comments about the MIN_MATCH+1.
121 */
122
123 /* Values for max_lazy_match, good_match and max_chain_length, depending on
124 * the desired pack level (0..9). The values given below have been tuned to
125 * exclude worst case performance for pathological files. Better values may be
126 * found for specific files.
127 */
128 typedef struct config_s {
129 ush good_length; /* reduce lazy search above this match length */
130 ush max_lazy; /* do not perform lazy search above this match length */
131 ush nice_length; /* quit search above this match length */
132 ush max_chain;
133 compress_func func;
134 } config;
135
136 #ifdef FASTEST
137 local const config configuration_table[2] = {
138 /* good lazy nice chain */
139 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
140 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
141 #else
142 local const config configuration_table[10] = {
143 /* good lazy nice chain */
144 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
145 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
146 /* 2 */ {4, 5, 16, 8, deflate_fast},
147 /* 3 */ {4, 6, 32, 32, deflate_fast},
148
149 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
150 /* 5 */ {8, 16, 32, 32, deflate_slow},
151 /* 6 */ {8, 16, 128, 128, deflate_slow},
152 /* 7 */ {8, 32, 128, 256, deflate_slow},
153 /* 8 */ {32, 128, 258, 1024, deflate_slow},
154 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
155 #endif
156
157 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
158 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
159 * meaning.
160 */
161
162 #define EQUAL 0
163 /* result of memcmp for equal strings */
164
165 #ifndef NO_DUMMY_DECL
166 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
167 #endif
168
169 /* ===========================================================================
170 * Update a hash value with the given input byte
171 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
172 * input characters, so that a running hash key can be computed from the
173 * previous key instead of complete recalculation each time.
174 */
175 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
176
177
178 /* ===========================================================================
179 * Insert string str in the dictionary and set match_head to the previous head
180 * of the hash chain (the most recent string with same hash key). Return
181 * the previous length of the hash chain.
182 * If this file is compiled with -DFASTEST, the compression level is forced
183 * to 1, and no hash chains are maintained.
184 * IN assertion: all calls to to INSERT_STRING are made with consecutive
185 * input characters and the first MIN_MATCH bytes of str are valid
186 * (except for the last MIN_MATCH-1 bytes of the input file).
187 */
188 #ifdef FASTEST
189 #define INSERT_STRING(s, str, match_head) \
190 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
191 match_head = s->head[s->ins_h], \
192 s->head[s->ins_h] = (Pos)(str))
193 #else
194 #define INSERT_STRING(s, str, match_head) \
195 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
196 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
197 s->head[s->ins_h] = (Pos)(str))
198 #endif
199
200 /* ===========================================================================
201 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
202 * prev[] will be initialized on the fly.
203 */
204 #define CLEAR_HASH(s) \
205 s->head[s->hash_size-1] = NIL; \
206 (void) zmemzero((Bytef *)s->head, \
207 (unsigned)(s->hash_size-1)*sizeof(*s->head));
208
209 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)210 int ZEXPORT deflateInit_(strm, level, version, stream_size)
211 z_streamp strm;
212 int level;
213 const char *version;
214 int stream_size;
215 {
216 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
217 Z_DEFAULT_STRATEGY, version, stream_size);
218 /* To do: ignore strm->next_in if we use it as window */
219 }
220
221 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)222 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
223 version, stream_size)
224 z_streamp strm;
225 int level;
226 int method;
227 int windowBits;
228 int memLevel;
229 int strategy;
230 const char *version;
231 int stream_size;
232 {
233 deflate_state *s;
234 int wrap = 1;
235 static const char my_version[] = ZLIB_VERSION;
236
237 ushf *overlay;
238 /* We overlay pending_buf and d_buf+l_buf. This works since the average
239 * output size for (length,distance) codes is <= 24 bits.
240 */
241
242 if (version == Z_NULL || version[0] != my_version[0] ||
243 stream_size != sizeof(z_stream)) {
244 return Z_VERSION_ERROR;
245 }
246 if (strm == Z_NULL) return Z_STREAM_ERROR;
247
248 strm->msg = Z_NULL;
249 if (strm->zalloc == (alloc_func)0) {
250 strm->zalloc = zcalloc;
251 strm->opaque = (voidpf)0;
252 }
253 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
254
255 #ifdef FASTEST
256 if (level != 0) level = 1;
257 #else
258 if (level == Z_DEFAULT_COMPRESSION) level = 6;
259 #endif
260
261 if (windowBits < 0) { /* suppress zlib wrapper */
262 wrap = 0;
263 windowBits = -windowBits;
264 }
265 #ifdef GZIP
266 else if (windowBits > 15) {
267 wrap = 2; /* write gzip wrapper instead */
268 windowBits -= 16;
269 }
270 #endif
271 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
272 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
273 strategy < 0 || strategy > Z_FIXED) {
274 return Z_STREAM_ERROR;
275 }
276 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
277 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
278 if (s == Z_NULL) return Z_MEM_ERROR;
279 strm->state = (struct internal_state FAR *)s;
280 s->strm = strm;
281
282 s->wrap = wrap;
283 s->gzhead = Z_NULL;
284 s->w_bits = windowBits;
285 s->w_size = 1 << s->w_bits;
286 s->w_mask = s->w_size - 1;
287
288 s->hash_bits = memLevel + 7;
289 s->hash_size = 1 << s->hash_bits;
290 s->hash_mask = s->hash_size - 1;
291 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
292
293 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
294 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
295 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
296
297 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
298
299 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
300 s->pending_buf = (uchf *) overlay;
301 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
302
303 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
304 s->pending_buf == Z_NULL) {
305 s->status = FINISH_STATE;
306 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
307 (void) deflateEnd (strm);
308 return Z_MEM_ERROR;
309 }
310 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
311 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
312
313 s->level = level;
314 s->strategy = strategy;
315 s->method = (Byte)method;
316
317 return deflateReset(strm);
318 }
319
320 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)321 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
322 z_streamp strm;
323 const Bytef *dictionary;
324 uInt dictLength;
325 {
326 deflate_state *s;
327 uInt length = dictLength;
328 uInt n;
329 IPos hash_head = 0;
330
331 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
332 strm->state->wrap == 2 ||
333 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
334 return Z_STREAM_ERROR;
335
336 s = strm->state;
337 if (s->wrap)
338 strm->adler = adler32(strm->adler, dictionary, dictLength);
339
340 if (length < MIN_MATCH) return Z_OK;
341 if (length > MAX_DIST(s)) {
342 length = MAX_DIST(s);
343 dictionary += dictLength - length; /* use the tail of the dictionary */
344 }
345 (void) zmemcpy(s->window, dictionary, length);
346 s->strstart = length;
347 s->block_start = (long)length;
348
349 /* Insert all strings in the hash table (except for the last two bytes).
350 * s->lookahead stays null, so s->ins_h will be recomputed at the next
351 * call of fill_window.
352 */
353 s->ins_h = s->window[0];
354 UPDATE_HASH(s, s->ins_h, s->window[1]);
355 for (n = 0; n <= length - MIN_MATCH; n++) {
356 INSERT_STRING(s, n, hash_head);
357 }
358 if (hash_head) hash_head = 0; /* to make compiler happy */
359 return Z_OK;
360 }
361
362 /* ========================================================================= */
deflateReset(strm)363 int ZEXPORT deflateReset (strm)
364 z_streamp strm;
365 {
366 deflate_state *s;
367
368 if (strm == Z_NULL || strm->state == Z_NULL ||
369 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
370 return Z_STREAM_ERROR;
371 }
372
373 strm->total_in = strm->total_out = 0;
374 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
375 strm->data_type = Z_UNKNOWN;
376
377 s = (deflate_state *)strm->state;
378 s->pending = 0;
379 s->pending_out = s->pending_buf;
380
381 if (s->wrap < 0) {
382 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
383 }
384 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
385 strm->adler =
386 #ifdef GZIP
387 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
388 #endif
389 adler32(0L, Z_NULL, 0);
390 s->last_flush = Z_NO_FLUSH;
391
392 _tr_init(s);
393 lm_init(s);
394
395 return Z_OK;
396 }
397
398 /* ========================================================================= */
deflateSetHeader(strm,head)399 int ZEXPORT deflateSetHeader (strm, head)
400 z_streamp strm;
401 gz_headerp head;
402 {
403 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
404 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
405 strm->state->gzhead = head;
406 return Z_OK;
407 }
408
409 /* ========================================================================= */
deflatePrime(strm,bits,value)410 int ZEXPORT deflatePrime (strm, bits, value)
411 z_streamp strm;
412 int bits;
413 int value;
414 {
415 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
416 strm->state->bi_valid = bits;
417 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
418 return Z_OK;
419 }
420
421 /* ========================================================================= */
deflateParams(strm,level,strategy)422 int ZEXPORT deflateParams(strm, level, strategy)
423 z_streamp strm;
424 int level;
425 int strategy;
426 {
427 deflate_state *s;
428 compress_func func;
429 int err = Z_OK;
430
431 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
432 s = strm->state;
433
434 #ifdef FASTEST
435 if (level != 0) level = 1;
436 #else
437 if (level == Z_DEFAULT_COMPRESSION) level = 6;
438 #endif
439 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
440 return Z_STREAM_ERROR;
441 }
442 func = configuration_table[s->level].func;
443
444 if (func != configuration_table[level].func && strm->total_in != 0) {
445 /* Flush the last buffer: */
446 err = deflate(strm, Z_PARTIAL_FLUSH);
447 }
448 if (s->level != level) {
449 s->level = level;
450 s->max_lazy_match = configuration_table[level].max_lazy;
451 s->good_match = configuration_table[level].good_length;
452 s->nice_match = configuration_table[level].nice_length;
453 s->max_chain_length = configuration_table[level].max_chain;
454 }
455 s->strategy = strategy;
456 return err;
457 }
458
459 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)460 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
461 z_streamp strm;
462 int good_length;
463 int max_lazy;
464 int nice_length;
465 int max_chain;
466 {
467 deflate_state *s;
468
469 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
470 s = strm->state;
471 s->good_match = good_length;
472 s->max_lazy_match = max_lazy;
473 s->nice_match = nice_length;
474 s->max_chain_length = max_chain;
475 return Z_OK;
476 }
477
478 /* =========================================================================
479 * For the default windowBits of 15 and memLevel of 8, this function returns
480 * a close to exact, as well as small, upper bound on the compressed size.
481 * They are coded as constants here for a reason--if the #define's are
482 * changed, then this function needs to be changed as well. The return
483 * value for 15 and 8 only works for those exact settings.
484 *
485 * For any setting other than those defaults for windowBits and memLevel,
486 * the value returned is a conservative worst case for the maximum expansion
487 * resulting from using fixed blocks instead of stored blocks, which deflate
488 * can emit on compressed data for some combinations of the parameters.
489 *
490 * This function could be more sophisticated to provide closer upper bounds
491 * for every combination of windowBits and memLevel, as well as wrap.
492 * But even the conservative upper bound of about 14% expansion does not
493 * seem onerous for output buffer allocation.
494 */
deflateBound(strm,sourceLen)495 uLong ZEXPORT deflateBound(strm, sourceLen)
496 z_streamp strm;
497 uLong sourceLen;
498 {
499 deflate_state *s;
500 uLong destLen;
501
502 /* conservative upper bound */
503 destLen = sourceLen +
504 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11;
505
506 /* if can't get parameters, return conservative bound */
507 if (strm == Z_NULL || strm->state == Z_NULL)
508 return destLen;
509
510 /* if not default parameters, return conservative bound */
511 s = strm->state;
512 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
513 return destLen;
514
515 /* default settings: return tight bound for that case */
516 return compressBound(sourceLen);
517 }
518
519 /* =========================================================================
520 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
521 * IN assertion: the stream state is correct and there is enough room in
522 * pending_buf.
523 */
putShortMSB(s,b)524 local void putShortMSB (s, b)
525 deflate_state *s;
526 uInt b;
527 {
528 put_byte(s, (Byte)(b >> 8));
529 put_byte(s, (Byte)(b & 0xff));
530 }
531
532 /* =========================================================================
533 * Flush as much pending output as possible. All deflate() output goes
534 * through this function so some applications may wish to modify it
535 * to avoid allocating a large strm->next_out buffer and copying into it.
536 * (See also read_buf()).
537 */
flush_pending(strm)538 local void flush_pending(strm)
539 z_streamp strm;
540 {
541 unsigned len = strm->state->pending;
542
543 if (len > strm->avail_out) len = strm->avail_out;
544 if (len == 0) return;
545
546 zmemcpy(strm->next_out, strm->state->pending_out, len);
547 strm->next_out += len;
548 strm->state->pending_out += len;
549 strm->total_out += len;
550 strm->avail_out -= len;
551 strm->state->pending -= len;
552 if (strm->state->pending == 0) {
553 strm->state->pending_out = strm->state->pending_buf;
554 }
555 }
556
557 /* ========================================================================= */
deflate(strm,flush)558 int ZEXPORT deflate (strm, flush)
559 z_streamp strm;
560 int flush;
561 {
562 int old_flush; /* value of flush param for previous deflate call */
563 deflate_state *s;
564
565 if (strm == Z_NULL || strm->state == Z_NULL ||
566 flush > Z_FINISH || flush < 0) {
567 return Z_STREAM_ERROR;
568 }
569 s = strm->state;
570
571 if (strm->next_out == Z_NULL ||
572 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
573 (s->status == FINISH_STATE && flush != Z_FINISH)) {
574 ERR_RETURN(strm, Z_STREAM_ERROR);
575 }
576 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
577
578 s->strm = strm; /* just in case */
579 old_flush = s->last_flush;
580 s->last_flush = flush;
581
582 /* Write the header */
583 if (s->status == INIT_STATE) {
584 #ifdef GZIP
585 if (s->wrap == 2) {
586 strm->adler = crc32(0L, Z_NULL, 0);
587 put_byte(s, 31);
588 put_byte(s, 139);
589 put_byte(s, 8);
590 if (s->gzhead == NULL) {
591 put_byte(s, 0);
592 put_byte(s, 0);
593 put_byte(s, 0);
594 put_byte(s, 0);
595 put_byte(s, 0);
596 put_byte(s, s->level == 9 ? 2 :
597 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
598 4 : 0));
599 put_byte(s, OS_CODE);
600 s->status = BUSY_STATE;
601 }
602 else {
603 put_byte(s, (s->gzhead->text ? 1 : 0) +
604 (s->gzhead->hcrc ? 2 : 0) +
605 (s->gzhead->extra == Z_NULL ? 0 : 4) +
606 (s->gzhead->name == Z_NULL ? 0 : 8) +
607 (s->gzhead->comment == Z_NULL ? 0 : 16)
608 );
609 put_byte(s, (Byte)(s->gzhead->time & 0xff));
610 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
611 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
612 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
613 put_byte(s, s->level == 9 ? 2 :
614 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
615 4 : 0));
616 put_byte(s, s->gzhead->os & 0xff);
617 if (s->gzhead->extra != NULL) {
618 put_byte(s, s->gzhead->extra_len & 0xff);
619 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
620 }
621 if (s->gzhead->hcrc)
622 strm->adler = crc32(strm->adler, s->pending_buf,
623 s->pending);
624 s->gzindex = 0;
625 s->status = EXTRA_STATE;
626 }
627 }
628 else
629 #endif
630 {
631 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
632 uInt level_flags;
633
634 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
635 level_flags = 0;
636 else if (s->level < 6)
637 level_flags = 1;
638 else if (s->level == 6)
639 level_flags = 2;
640 else
641 level_flags = 3;
642 header |= (level_flags << 6);
643 if (s->strstart != 0) header |= PRESET_DICT;
644 header += 31 - (header % 31);
645
646 s->status = BUSY_STATE;
647 putShortMSB(s, header);
648
649 /* Save the adler32 of the preset dictionary: */
650 if (s->strstart != 0) {
651 putShortMSB(s, (uInt)(strm->adler >> 16));
652 putShortMSB(s, (uInt)(strm->adler & 0xffff));
653 }
654 strm->adler = adler32(0L, Z_NULL, 0);
655 }
656 }
657 #ifdef GZIP
658 if (s->status == EXTRA_STATE) {
659 if (s->gzhead->extra != NULL) {
660 uInt beg = s->pending; /* start of bytes to update crc */
661
662 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
663 if (s->pending == s->pending_buf_size) {
664 if (s->gzhead->hcrc && s->pending > beg)
665 strm->adler = crc32(strm->adler, s->pending_buf + beg,
666 s->pending - beg);
667 flush_pending(strm);
668 beg = s->pending;
669 if (s->pending == s->pending_buf_size)
670 break;
671 }
672 put_byte(s, s->gzhead->extra[s->gzindex]);
673 s->gzindex++;
674 }
675 if (s->gzhead->hcrc && s->pending > beg)
676 strm->adler = crc32(strm->adler, s->pending_buf + beg,
677 s->pending - beg);
678 if (s->gzindex == s->gzhead->extra_len) {
679 s->gzindex = 0;
680 s->status = NAME_STATE;
681 }
682 }
683 else
684 s->status = NAME_STATE;
685 }
686 if (s->status == NAME_STATE) {
687 if (s->gzhead->name != NULL) {
688 uInt beg = s->pending; /* start of bytes to update crc */
689 int val;
690
691 do {
692 if (s->pending == s->pending_buf_size) {
693 if (s->gzhead->hcrc && s->pending > beg)
694 strm->adler = crc32(strm->adler, s->pending_buf + beg,
695 s->pending - beg);
696 flush_pending(strm);
697 beg = s->pending;
698 if (s->pending == s->pending_buf_size) {
699 val = 1;
700 break;
701 }
702 }
703 val = s->gzhead->name[s->gzindex++];
704 put_byte(s, val);
705 } while (val != 0);
706 if (s->gzhead->hcrc && s->pending > beg)
707 strm->adler = crc32(strm->adler, s->pending_buf + beg,
708 s->pending - beg);
709 if (val == 0) {
710 s->gzindex = 0;
711 s->status = COMMENT_STATE;
712 }
713 }
714 else
715 s->status = COMMENT_STATE;
716 }
717 if (s->status == COMMENT_STATE) {
718 if (s->gzhead->comment != NULL) {
719 uInt beg = s->pending; /* start of bytes to update crc */
720 int val;
721
722 do {
723 if (s->pending == s->pending_buf_size) {
724 if (s->gzhead->hcrc && s->pending > beg)
725 strm->adler = crc32(strm->adler, s->pending_buf + beg,
726 s->pending - beg);
727 flush_pending(strm);
728 beg = s->pending;
729 if (s->pending == s->pending_buf_size) {
730 val = 1;
731 break;
732 }
733 }
734 val = s->gzhead->comment[s->gzindex++];
735 put_byte(s, val);
736 } while (val != 0);
737 if (s->gzhead->hcrc && s->pending > beg)
738 strm->adler = crc32(strm->adler, s->pending_buf + beg,
739 s->pending - beg);
740 if (val == 0)
741 s->status = HCRC_STATE;
742 }
743 else
744 s->status = HCRC_STATE;
745 }
746 if (s->status == HCRC_STATE) {
747 if (s->gzhead->hcrc) {
748 if (s->pending + 2 > s->pending_buf_size)
749 flush_pending(strm);
750 if (s->pending + 2 <= s->pending_buf_size) {
751 put_byte(s, (Byte)(strm->adler & 0xff));
752 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
753 strm->adler = crc32(0L, Z_NULL, 0);
754 s->status = BUSY_STATE;
755 }
756 }
757 else
758 s->status = BUSY_STATE;
759 }
760 #endif
761
762 /* Flush as much pending output as possible */
763 if (s->pending != 0) {
764 flush_pending(strm);
765 if (strm->avail_out == 0) {
766 /* Since avail_out is 0, deflate will be called again with
767 * more output space, but possibly with both pending and
768 * avail_in equal to zero. There won't be anything to do,
769 * but this is not an error situation so make sure we
770 * return OK instead of BUF_ERROR at next call of deflate:
771 */
772 s->last_flush = -1;
773 return Z_OK;
774 }
775
776 /* Make sure there is something to do and avoid duplicate consecutive
777 * flushes. For repeated and useless calls with Z_FINISH, we keep
778 * returning Z_STREAM_END instead of Z_BUF_ERROR.
779 */
780 } else if (strm->avail_in == 0 && flush <= old_flush &&
781 flush != Z_FINISH) {
782 ERR_RETURN(strm, Z_BUF_ERROR);
783 }
784
785 /* User must not provide more input after the first FINISH: */
786 if (s->status == FINISH_STATE && strm->avail_in != 0) {
787 ERR_RETURN(strm, Z_BUF_ERROR);
788 }
789
790 /* Start a new block or continue the current one.
791 */
792 if (strm->avail_in != 0 || s->lookahead != 0 ||
793 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
794 block_state bstate;
795
796 bstate = (*(configuration_table[s->level].func))(s, flush);
797
798 if (bstate == finish_started || bstate == finish_done) {
799 s->status = FINISH_STATE;
800 }
801 if (bstate == need_more || bstate == finish_started) {
802 if (strm->avail_out == 0) {
803 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
804 }
805 return Z_OK;
806 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
807 * of deflate should use the same flush parameter to make sure
808 * that the flush is complete. So we don't have to output an
809 * empty block here, this will be done at next call. This also
810 * ensures that for a very small output buffer, we emit at most
811 * one empty block.
812 */
813 }
814 if (bstate == block_done) {
815 if (flush == Z_PARTIAL_FLUSH) {
816 _tr_align(s);
817 } else { /* FULL_FLUSH or SYNC_FLUSH */
818 _tr_stored_block(s, (char*)0, 0L, 0);
819 /* For a full flush, this empty block will be recognized
820 * as a special marker by inflate_sync().
821 */
822 if (flush == Z_FULL_FLUSH) {
823 CLEAR_HASH(s); /* forget history */
824 }
825 }
826 flush_pending(strm);
827 if (strm->avail_out == 0) {
828 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
829 return Z_OK;
830 }
831 }
832 }
833 Assert(strm->avail_out > 0, "bug2");
834
835 if (flush != Z_FINISH) return Z_OK;
836 if (s->wrap <= 0) return Z_STREAM_END;
837
838 /* Write the trailer */
839 #ifdef GZIP
840 if (s->wrap == 2) {
841 put_byte(s, (Byte)(strm->adler & 0xff));
842 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
843 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
844 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
845 put_byte(s, (Byte)(strm->total_in & 0xff));
846 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
847 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
848 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
849 }
850 else
851 #endif
852 {
853 putShortMSB(s, (uInt)(strm->adler >> 16));
854 putShortMSB(s, (uInt)(strm->adler & 0xffff));
855 }
856 flush_pending(strm);
857 /* If avail_out is zero, the application will call deflate again
858 * to flush the rest.
859 */
860 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
861 return s->pending != 0 ? Z_OK : Z_STREAM_END;
862 }
863
864 /* ========================================================================= */
deflateEnd(strm)865 int ZEXPORT deflateEnd (strm)
866 z_streamp strm;
867 {
868 int status;
869
870 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
871
872 status = strm->state->status;
873 if (status != INIT_STATE &&
874 status != EXTRA_STATE &&
875 status != NAME_STATE &&
876 status != COMMENT_STATE &&
877 status != HCRC_STATE &&
878 status != BUSY_STATE &&
879 status != FINISH_STATE) {
880 return Z_STREAM_ERROR;
881 }
882
883 /* Deallocate in reverse order of allocations: */
884 TRY_FREE(strm, strm->state->pending_buf);
885 TRY_FREE(strm, strm->state->head);
886 TRY_FREE(strm, strm->state->prev);
887 TRY_FREE(strm, strm->state->window);
888
889 ZFREE(strm, strm->state);
890 strm->state = Z_NULL;
891
892 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
893 }
894
895 /* =========================================================================
896 * Copy the source state to the destination state.
897 * To simplify the source, this is not supported for 16-bit MSDOS (which
898 * doesn't have enough memory anyway to duplicate compression states).
899 */
deflateCopy(dest,source)900 int ZEXPORT deflateCopy (dest, source)
901 z_streamp dest;
902 z_streamp source;
903 {
904 #ifdef MAXSEG_64K
905 return Z_STREAM_ERROR;
906 #else
907 deflate_state *ds;
908 deflate_state *ss;
909 ushf *overlay;
910
911
912 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
913 return Z_STREAM_ERROR;
914 }
915
916 ss = source->state;
917
918 zmemcpy(dest, source, sizeof(z_stream));
919
920 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
921 if (ds == Z_NULL) return Z_MEM_ERROR;
922 dest->state = (struct internal_state FAR *) ds;
923 zmemcpy(ds, ss, sizeof(deflate_state));
924 ds->strm = dest;
925
926 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
927 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
928 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
929 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
930 ds->pending_buf = (uchf *) overlay;
931
932 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
933 ds->pending_buf == Z_NULL) {
934 deflateEnd (dest);
935 return Z_MEM_ERROR;
936 }
937 /* following zmemcpy do not work for 16-bit MSDOS */
938 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
939 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
940 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
941 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
942
943 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
944 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
945 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
946
947 ds->l_desc.dyn_tree = ds->dyn_ltree;
948 ds->d_desc.dyn_tree = ds->dyn_dtree;
949 ds->bl_desc.dyn_tree = ds->bl_tree;
950
951 return Z_OK;
952 #endif /* MAXSEG_64K */
953 }
954
955 /* ===========================================================================
956 * Read a new buffer from the current input stream, update the adler32
957 * and total number of bytes read. All deflate() input goes through
958 * this function so some applications may wish to modify it to avoid
959 * allocating a large strm->next_in buffer and copying from it.
960 * (See also flush_pending()).
961 */
read_buf(strm,buf,size)962 local int read_buf(strm, buf, size)
963 z_streamp strm;
964 Bytef *buf;
965 unsigned size;
966 {
967 unsigned len = strm->avail_in;
968
969 if (len > size) len = size;
970 if (len == 0) return 0;
971
972 strm->avail_in -= len;
973
974 if (strm->state->wrap == 1) {
975 strm->adler = adler32(strm->adler, strm->next_in, len);
976 }
977 #ifdef GZIP
978 else if (strm->state->wrap == 2) {
979 strm->adler = crc32(strm->adler, strm->next_in, len);
980 }
981 #endif
982 zmemcpy(buf, strm->next_in, len);
983 strm->next_in += len;
984 strm->total_in += len;
985
986 return (int)len;
987 }
988
989 /* ===========================================================================
990 * Initialize the "longest match" routines for a new zlib stream
991 */
lm_init(s)992 local void lm_init (s)
993 deflate_state *s;
994 {
995 s->window_size = (ulg)2L*s->w_size;
996
997 CLEAR_HASH(s);
998
999 /* Set the default configuration parameters:
1000 */
1001 s->max_lazy_match = configuration_table[s->level].max_lazy;
1002 s->good_match = configuration_table[s->level].good_length;
1003 s->nice_match = configuration_table[s->level].nice_length;
1004 s->max_chain_length = configuration_table[s->level].max_chain;
1005
1006 s->strstart = 0;
1007 s->block_start = 0L;
1008 s->lookahead = 0;
1009 s->match_length = s->prev_length = MIN_MATCH-1;
1010 s->match_available = 0;
1011 s->ins_h = 0;
1012 #ifndef FASTEST
1013 #ifdef ASMV
1014 match_init(); /* initialize the asm code */
1015 #endif
1016 #endif
1017 }
1018
1019 #ifndef FASTEST
1020 /* ===========================================================================
1021 * Set match_start to the longest match starting at the given string and
1022 * return its length. Matches shorter or equal to prev_length are discarded,
1023 * in which case the result is equal to prev_length and match_start is
1024 * garbage.
1025 * IN assertions: cur_match is the head of the hash chain for the current
1026 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1027 * OUT assertion: the match length is not greater than s->lookahead.
1028 */
1029 #ifndef ASMV
1030 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1031 * match.S. The code will be functionally equivalent.
1032 */
longest_match(s,cur_match)1033 local uInt longest_match(s, cur_match)
1034 deflate_state *s;
1035 IPos cur_match; /* current match */
1036 {
1037 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1038 register Bytef *scan = s->window + s->strstart; /* current string */
1039 register Bytef *match; /* matched string */
1040 register int len; /* length of current match */
1041 int best_len = s->prev_length; /* best match length so far */
1042 int nice_match = s->nice_match; /* stop if match long enough */
1043 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1044 s->strstart - (IPos)MAX_DIST(s) : NIL;
1045 /* Stop when cur_match becomes <= limit. To simplify the code,
1046 * we prevent matches with the string of window index 0.
1047 */
1048 Posf *prev = s->prev;
1049 uInt wmask = s->w_mask;
1050
1051 #ifdef UNALIGNED_OK
1052 /* Compare two bytes at a time. Note: this is not always beneficial.
1053 * Try with and without -DUNALIGNED_OK to check.
1054 */
1055 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1056 register ush scan_start = *(ushf*)scan;
1057 register ush scan_end = *(ushf*)(scan+best_len-1);
1058 #else
1059 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1060 register Byte scan_end1 = scan[best_len-1];
1061 register Byte scan_end = scan[best_len];
1062 #endif
1063
1064 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1065 * It is easy to get rid of this optimization if necessary.
1066 */
1067 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1068
1069 /* Do not waste too much time if we already have a good match: */
1070 if (s->prev_length >= s->good_match) {
1071 chain_length >>= 2;
1072 }
1073 /* Do not look for matches beyond the end of the input. This is necessary
1074 * to make deflate deterministic.
1075 */
1076 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1077
1078 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1079
1080 do {
1081 Assert(cur_match < s->strstart, "no future");
1082 match = s->window + cur_match;
1083
1084 /* Skip to next match if the match length cannot increase
1085 * or if the match length is less than 2. Note that the checks below
1086 * for insufficient lookahead only occur occasionally for performance
1087 * reasons. Therefore uninitialized memory will be accessed, and
1088 * conditional jumps will be made that depend on those values.
1089 * However the length of the match is limited to the lookahead, so
1090 * the output of deflate is not affected by the uninitialized values.
1091 */
1092 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1093 /* This code assumes sizeof(unsigned short) == 2. Do not use
1094 * UNALIGNED_OK if your compiler uses a different size.
1095 */
1096 if (*(ushf*)(match+best_len-1) != scan_end ||
1097 *(ushf*)match != scan_start) continue;
1098
1099 /* It is not necessary to compare scan[2] and match[2] since they are
1100 * always equal when the other bytes match, given that the hash keys
1101 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1102 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1103 * lookahead only every 4th comparison; the 128th check will be made
1104 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1105 * necessary to put more guard bytes at the end of the window, or
1106 * to check more often for insufficient lookahead.
1107 */
1108 Assert(scan[2] == match[2], "scan[2]?");
1109 scan++, match++;
1110 do {
1111 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1112 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1113 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1114 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1115 scan < strend);
1116 /* The funny "do {}" generates better code on most compilers */
1117
1118 /* Here, scan <= window+strstart+257 */
1119 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1120 if (*scan == *match) scan++;
1121
1122 len = (MAX_MATCH - 1) - (int)(strend-scan);
1123 scan = strend - (MAX_MATCH-1);
1124
1125 #else /* UNALIGNED_OK */
1126
1127 if (match[best_len] != scan_end ||
1128 match[best_len-1] != scan_end1 ||
1129 *match != *scan ||
1130 *++match != scan[1]) continue;
1131
1132 /* The check at best_len-1 can be removed because it will be made
1133 * again later. (This heuristic is not always a win.)
1134 * It is not necessary to compare scan[2] and match[2] since they
1135 * are always equal when the other bytes match, given that
1136 * the hash keys are equal and that HASH_BITS >= 8.
1137 */
1138 scan += 2, match++;
1139 Assert(*scan == *match, "match[2]?");
1140
1141 /* We check for insufficient lookahead only every 8th comparison;
1142 * the 256th check will be made at strstart+258.
1143 */
1144 do {
1145 } while (*++scan == *++match && *++scan == *++match &&
1146 *++scan == *++match && *++scan == *++match &&
1147 *++scan == *++match && *++scan == *++match &&
1148 *++scan == *++match && *++scan == *++match &&
1149 scan < strend);
1150
1151 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1152
1153 len = MAX_MATCH - (int)(strend - scan);
1154 scan = strend - MAX_MATCH;
1155
1156 #endif /* UNALIGNED_OK */
1157
1158 if (len > best_len) {
1159 s->match_start = cur_match;
1160 best_len = len;
1161 if (len >= nice_match) break;
1162 #ifdef UNALIGNED_OK
1163 scan_end = *(ushf*)(scan+best_len-1);
1164 #else
1165 scan_end1 = scan[best_len-1];
1166 scan_end = scan[best_len];
1167 #endif
1168 }
1169 } while ((cur_match = prev[cur_match & wmask]) > limit
1170 && --chain_length != 0);
1171
1172 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1173 return s->lookahead;
1174 }
1175 #endif /* ASMV */
1176 #endif /* FASTEST */
1177
1178 /* ---------------------------------------------------------------------------
1179 * Optimized version for level == 1 or strategy == Z_RLE only
1180 */
longest_match_fast(s,cur_match)1181 local uInt longest_match_fast(s, cur_match)
1182 deflate_state *s;
1183 IPos cur_match; /* current match */
1184 {
1185 register Bytef *scan = s->window + s->strstart; /* current string */
1186 register Bytef *match; /* matched string */
1187 register int len; /* length of current match */
1188 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1189
1190 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1191 * It is easy to get rid of this optimization if necessary.
1192 */
1193 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1194
1195 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1196
1197 Assert(cur_match < s->strstart, "no future");
1198
1199 match = s->window + cur_match;
1200
1201 /* Return failure if the match length is less than 2:
1202 */
1203 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1204
1205 /* The check at best_len-1 can be removed because it will be made
1206 * again later. (This heuristic is not always a win.)
1207 * It is not necessary to compare scan[2] and match[2] since they
1208 * are always equal when the other bytes match, given that
1209 * the hash keys are equal and that HASH_BITS >= 8.
1210 */
1211 scan += 2, match += 2;
1212 Assert(*scan == *match, "match[2]?");
1213
1214 /* We check for insufficient lookahead only every 8th comparison;
1215 * the 256th check will be made at strstart+258.
1216 */
1217 do {
1218 } while (*++scan == *++match && *++scan == *++match &&
1219 *++scan == *++match && *++scan == *++match &&
1220 *++scan == *++match && *++scan == *++match &&
1221 *++scan == *++match && *++scan == *++match &&
1222 scan < strend);
1223
1224 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1225
1226 len = MAX_MATCH - (int)(strend - scan);
1227
1228 if (len < MIN_MATCH) return MIN_MATCH - 1;
1229
1230 s->match_start = cur_match;
1231 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1232 }
1233
1234 #ifdef DEBUG
1235 /* ===========================================================================
1236 * Check that the match at match_start is indeed a match.
1237 */
check_match(s,start,match,length)1238 local void check_match(s, start, match, length)
1239 deflate_state *s;
1240 IPos start, match;
1241 int length;
1242 {
1243 /* check that the match is indeed a match */
1244 if (zmemcmp(s->window + match,
1245 s->window + start, length) != EQUAL) {
1246 fprintf(stderr, " start %u, match %u, length %d\n",
1247 start, match, length);
1248 do {
1249 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1250 } while (--length != 0);
1251 z_error("invalid match");
1252 }
1253 if (z_verbose > 1) {
1254 fprintf(stderr,"\\[%d,%d]", start-match, length);
1255 do { putc(s->window[start++], stderr); } while (--length != 0);
1256 }
1257 }
1258 #else
1259 # define check_match(s, start, match, length)
1260 #endif /* DEBUG */
1261
1262 /* ===========================================================================
1263 * Fill the window when the lookahead becomes insufficient.
1264 * Updates strstart and lookahead.
1265 *
1266 * IN assertion: lookahead < MIN_LOOKAHEAD
1267 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1268 * At least one byte has been read, or avail_in == 0; reads are
1269 * performed for at least two bytes (required for the zip translate_eol
1270 * option -- not supported here).
1271 */
fill_window(s)1272 local void fill_window(s)
1273 deflate_state *s;
1274 {
1275 register unsigned n, m;
1276 register Posf *p;
1277 unsigned more; /* Amount of free space at the end of the window. */
1278 uInt wsize = s->w_size;
1279
1280 do {
1281 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1282
1283 /* Deal with !@#$% 64K limit: */
1284 if (sizeof(int) <= 2) {
1285 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1286 more = wsize;
1287
1288 } else if (more == (unsigned)(-1)) {
1289 /* Very unlikely, but possible on 16 bit machine if
1290 * strstart == 0 && lookahead == 1 (input done a byte at time)
1291 */
1292 more--;
1293 }
1294 }
1295
1296 /* If the window is almost full and there is insufficient lookahead,
1297 * move the upper half to the lower one to make room in the upper half.
1298 */
1299 if (s->strstart >= wsize+MAX_DIST(s)) {
1300
1301 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1302 s->match_start -= wsize;
1303 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1304 s->block_start -= (long) wsize;
1305
1306 /* Slide the hash table (could be avoided with 32 bit values
1307 at the expense of memory usage). We slide even when level == 0
1308 to keep the hash table consistent if we switch back to level > 0
1309 later. (Using level 0 permanently is not an optimal usage of
1310 zlib, so we don't care about this pathological case.)
1311 */
1312 /* %%% avoid this when Z_RLE */
1313 n = s->hash_size;
1314 p = &s->head[n];
1315 do {
1316 m = *--p;
1317 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1318 } while (--n);
1319
1320 n = wsize;
1321 #ifndef FASTEST
1322 p = &s->prev[n];
1323 do {
1324 m = *--p;
1325 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1326 /* If n is not on any hash chain, prev[n] is garbage but
1327 * its value will never be used.
1328 */
1329 } while (--n);
1330 #endif
1331 more += wsize;
1332 }
1333 if (s->strm->avail_in == 0) return;
1334
1335 /* If there was no sliding:
1336 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1337 * more == window_size - lookahead - strstart
1338 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1339 * => more >= window_size - 2*WSIZE + 2
1340 * In the BIG_MEM or MMAP case (not yet supported),
1341 * window_size == input_size + MIN_LOOKAHEAD &&
1342 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1343 * Otherwise, window_size == 2*WSIZE so more >= 2.
1344 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1345 */
1346 Assert(more >= 2, "more < 2");
1347
1348 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1349 s->lookahead += n;
1350
1351 /* Initialize the hash value now that we have some input: */
1352 if (s->lookahead >= MIN_MATCH) {
1353 s->ins_h = s->window[s->strstart];
1354 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1355 #if MIN_MATCH != 3
1356 Call UPDATE_HASH() MIN_MATCH-3 more times
1357 #endif
1358 }
1359 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1360 * but this is not important since only literal bytes will be emitted.
1361 */
1362
1363 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1364 }
1365
1366 /* ===========================================================================
1367 * Flush the current block, with given end-of-file flag.
1368 * IN assertion: strstart is set to the end of the current match.
1369 */
1370 #define FLUSH_BLOCK_ONLY(s, eof) { \
1371 _tr_flush_block(s, (s->block_start >= 0L ? \
1372 (charf *)&s->window[(unsigned)s->block_start] : \
1373 (charf *)Z_NULL), \
1374 (ulg)((long)s->strstart - s->block_start), \
1375 (eof)); \
1376 s->block_start = s->strstart; \
1377 flush_pending(s->strm); \
1378 Tracev((stderr,"[FLUSH]")); \
1379 }
1380
1381 /* Same but force premature exit if necessary. */
1382 #define FLUSH_BLOCK(s, eof) { \
1383 FLUSH_BLOCK_ONLY(s, eof); \
1384 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1385 }
1386
1387 /* ===========================================================================
1388 * Copy without compression as much as possible from the input stream, return
1389 * the current block state.
1390 * This function does not insert new strings in the dictionary since
1391 * uncompressible data is probably not useful. This function is used
1392 * only for the level=0 compression option.
1393 * NOTE: this function should be optimized to avoid extra copying from
1394 * window to pending_buf.
1395 */
deflate_stored(s,flush)1396 local block_state deflate_stored(s, flush)
1397 deflate_state *s;
1398 int flush;
1399 {
1400 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1401 * to pending_buf_size, and each stored block has a 5 byte header:
1402 */
1403 ulg max_block_size = 0xffff;
1404 ulg max_start;
1405
1406 if (max_block_size > s->pending_buf_size - 5) {
1407 max_block_size = s->pending_buf_size - 5;
1408 }
1409
1410 /* Copy as much as possible from input to output: */
1411 for (;;) {
1412 /* Fill the window as much as possible: */
1413 if (s->lookahead <= 1) {
1414
1415 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1416 s->block_start >= (long)s->w_size, "slide too late");
1417
1418 fill_window(s);
1419 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1420
1421 if (s->lookahead == 0) break; /* flush the current block */
1422 }
1423 Assert(s->block_start >= 0L, "block gone");
1424
1425 s->strstart += s->lookahead;
1426 s->lookahead = 0;
1427
1428 /* Emit a stored block if pending_buf will be full: */
1429 max_start = s->block_start + max_block_size;
1430 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1431 /* strstart == 0 is possible when wraparound on 16-bit machine */
1432 s->lookahead = (uInt)(s->strstart - max_start);
1433 s->strstart = (uInt)max_start;
1434 FLUSH_BLOCK(s, 0);
1435 }
1436 /* Flush if we may have to slide, otherwise block_start may become
1437 * negative and the data will be gone:
1438 */
1439 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1440 FLUSH_BLOCK(s, 0);
1441 }
1442 }
1443 FLUSH_BLOCK(s, flush == Z_FINISH);
1444 return flush == Z_FINISH ? finish_done : block_done;
1445 }
1446
1447 /* ===========================================================================
1448 * Compress as much as possible from the input stream, return the current
1449 * block state.
1450 * This function does not perform lazy evaluation of matches and inserts
1451 * new strings in the dictionary only for unmatched strings or for short
1452 * matches. It is used only for the fast compression options.
1453 */
deflate_fast(s,flush)1454 local block_state deflate_fast(s, flush)
1455 deflate_state *s;
1456 int flush;
1457 {
1458 IPos hash_head = NIL; /* head of the hash chain */
1459 int bflush; /* set if current block must be flushed */
1460
1461 for (;;) {
1462 /* Make sure that we always have enough lookahead, except
1463 * at the end of the input file. We need MAX_MATCH bytes
1464 * for the next match, plus MIN_MATCH bytes to insert the
1465 * string following the next match.
1466 */
1467 if (s->lookahead < MIN_LOOKAHEAD) {
1468 fill_window(s);
1469 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1470 return need_more;
1471 }
1472 if (s->lookahead == 0) break; /* flush the current block */
1473 }
1474
1475 /* Insert the string window[strstart .. strstart+2] in the
1476 * dictionary, and set hash_head to the head of the hash chain:
1477 */
1478 if (s->lookahead >= MIN_MATCH) {
1479 INSERT_STRING(s, s->strstart, hash_head);
1480 }
1481
1482 /* Find the longest match, discarding those <= prev_length.
1483 * At this point we have always match_length < MIN_MATCH
1484 */
1485 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1486 /* To simplify the code, we prevent matches with the string
1487 * of window index 0 (in particular we have to avoid a match
1488 * of the string with itself at the start of the input file).
1489 */
1490 #ifdef FASTEST
1491 if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) ||
1492 (s->strategy == Z_RLE && s->strstart - hash_head == 1)) {
1493 s->match_length = longest_match_fast (s, hash_head);
1494 }
1495 #else
1496 if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
1497 s->match_length = longest_match (s, hash_head);
1498 } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1499 s->match_length = longest_match_fast (s, hash_head);
1500 }
1501 #endif
1502 /* longest_match() or longest_match_fast() sets match_start */
1503 }
1504 if (s->match_length >= MIN_MATCH) {
1505 check_match(s, s->strstart, s->match_start, s->match_length);
1506
1507 _tr_tally_dist(s, s->strstart - s->match_start,
1508 s->match_length - MIN_MATCH, bflush);
1509
1510 s->lookahead -= s->match_length;
1511
1512 /* Insert new strings in the hash table only if the match length
1513 * is not too large. This saves time but degrades compression.
1514 */
1515 #ifndef FASTEST
1516 if (s->match_length <= s->max_insert_length &&
1517 s->lookahead >= MIN_MATCH) {
1518 s->match_length--; /* string at strstart already in table */
1519 do {
1520 s->strstart++;
1521 INSERT_STRING(s, s->strstart, hash_head);
1522 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1523 * always MIN_MATCH bytes ahead.
1524 */
1525 } while (--s->match_length != 0);
1526 s->strstart++;
1527 } else
1528 #endif
1529 {
1530 s->strstart += s->match_length;
1531 s->match_length = 0;
1532 s->ins_h = s->window[s->strstart];
1533 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1534 #if MIN_MATCH != 3
1535 Call UPDATE_HASH() MIN_MATCH-3 more times
1536 #endif
1537 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1538 * matter since it will be recomputed at next deflate call.
1539 */
1540 }
1541 } else {
1542 /* No match, output a literal byte */
1543 Tracevv((stderr,"%c", s->window[s->strstart]));
1544 _tr_tally_lit (s, s->window[s->strstart], bflush);
1545 s->lookahead--;
1546 s->strstart++;
1547 }
1548 if (bflush) FLUSH_BLOCK(s, 0);
1549 }
1550 FLUSH_BLOCK(s, flush == Z_FINISH);
1551 return flush == Z_FINISH ? finish_done : block_done;
1552 }
1553
1554 #ifndef FASTEST
1555 /* ===========================================================================
1556 * Same as above, but achieves better compression. We use a lazy
1557 * evaluation for matches: a match is finally adopted only if there is
1558 * no better match at the next window position.
1559 */
deflate_slow(s,flush)1560 local block_state deflate_slow(s, flush)
1561 deflate_state *s;
1562 int flush;
1563 {
1564 IPos hash_head = NIL; /* head of hash chain */
1565 int bflush; /* set if current block must be flushed */
1566
1567 /* Process the input block. */
1568 for (;;) {
1569 /* Make sure that we always have enough lookahead, except
1570 * at the end of the input file. We need MAX_MATCH bytes
1571 * for the next match, plus MIN_MATCH bytes to insert the
1572 * string following the next match.
1573 */
1574 if (s->lookahead < MIN_LOOKAHEAD) {
1575 fill_window(s);
1576 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1577 return need_more;
1578 }
1579 if (s->lookahead == 0) break; /* flush the current block */
1580 }
1581
1582 /* Insert the string window[strstart .. strstart+2] in the
1583 * dictionary, and set hash_head to the head of the hash chain:
1584 */
1585 if (s->lookahead >= MIN_MATCH) {
1586 INSERT_STRING(s, s->strstart, hash_head);
1587 }
1588
1589 /* Find the longest match, discarding those <= prev_length.
1590 */
1591 s->prev_length = s->match_length, s->prev_match = s->match_start;
1592 s->match_length = MIN_MATCH-1;
1593
1594 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1595 s->strstart - hash_head <= MAX_DIST(s)) {
1596 /* To simplify the code, we prevent matches with the string
1597 * of window index 0 (in particular we have to avoid a match
1598 * of the string with itself at the start of the input file).
1599 */
1600 if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
1601 s->match_length = longest_match (s, hash_head);
1602 } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1603 s->match_length = longest_match_fast (s, hash_head);
1604 }
1605 /* longest_match() or longest_match_fast() sets match_start */
1606
1607 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1608 #if TOO_FAR <= 32767
1609 || (s->match_length == MIN_MATCH &&
1610 s->strstart - s->match_start > TOO_FAR)
1611 #endif
1612 )) {
1613
1614 /* If prev_match is also MIN_MATCH, match_start is garbage
1615 * but we will ignore the current match anyway.
1616 */
1617 s->match_length = MIN_MATCH-1;
1618 }
1619 }
1620 /* If there was a match at the previous step and the current
1621 * match is not better, output the previous match:
1622 */
1623 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1624 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1625 /* Do not insert strings in hash table beyond this. */
1626
1627 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1628
1629 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1630 s->prev_length - MIN_MATCH, bflush);
1631
1632 /* Insert in hash table all strings up to the end of the match.
1633 * strstart-1 and strstart are already inserted. If there is not
1634 * enough lookahead, the last two strings are not inserted in
1635 * the hash table.
1636 */
1637 s->lookahead -= s->prev_length-1;
1638 s->prev_length -= 2;
1639 do {
1640 if (++s->strstart <= max_insert) {
1641 INSERT_STRING(s, s->strstart, hash_head);
1642 }
1643 } while (--s->prev_length != 0);
1644 s->match_available = 0;
1645 s->match_length = MIN_MATCH-1;
1646 s->strstart++;
1647
1648 if (bflush) FLUSH_BLOCK(s, 0);
1649
1650 } else if (s->match_available) {
1651 /* If there was no match at the previous position, output a
1652 * single literal. If there was a match but the current match
1653 * is longer, truncate the previous match to a single literal.
1654 */
1655 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1656 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1657 if (bflush) {
1658 FLUSH_BLOCK_ONLY(s, 0);
1659 }
1660 s->strstart++;
1661 s->lookahead--;
1662 if (s->strm->avail_out == 0) return need_more;
1663 } else {
1664 /* There is no previous match to compare with, wait for
1665 * the next step to decide.
1666 */
1667 s->match_available = 1;
1668 s->strstart++;
1669 s->lookahead--;
1670 }
1671 }
1672 Assert (flush != Z_NO_FLUSH, "no flush?");
1673 if (s->match_available) {
1674 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1675 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1676 s->match_available = 0;
1677 }
1678 FLUSH_BLOCK(s, flush == Z_FINISH);
1679 return flush == Z_FINISH ? finish_done : block_done;
1680 }
1681 #endif /* FASTEST */
1682
1683 #if 0
1684 /* ===========================================================================
1685 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1686 * one. Do not maintain a hash table. (It will be regenerated if this run of
1687 * deflate switches away from Z_RLE.)
1688 */
1689 local block_state deflate_rle(s, flush)
1690 deflate_state *s;
1691 int flush;
1692 {
1693 int bflush; /* set if current block must be flushed */
1694 uInt run; /* length of run */
1695 uInt max; /* maximum length of run */
1696 uInt prev; /* byte at distance one to match */
1697 Bytef *scan; /* scan for end of run */
1698
1699 for (;;) {
1700 /* Make sure that we always have enough lookahead, except
1701 * at the end of the input file. We need MAX_MATCH bytes
1702 * for the longest encodable run.
1703 */
1704 if (s->lookahead < MAX_MATCH) {
1705 fill_window(s);
1706 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1707 return need_more;
1708 }
1709 if (s->lookahead == 0) break; /* flush the current block */
1710 }
1711
1712 /* See how many times the previous byte repeats */
1713 run = 0;
1714 if (s->strstart > 0) { /* if there is a previous byte, that is */
1715 max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH;
1716 scan = s->window + s->strstart - 1;
1717 prev = *scan++;
1718 do {
1719 if (*scan++ != prev)
1720 break;
1721 } while (++run < max);
1722 }
1723
1724 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1725 if (run >= MIN_MATCH) {
1726 check_match(s, s->strstart, s->strstart - 1, run);
1727 _tr_tally_dist(s, 1, run - MIN_MATCH, bflush);
1728 s->lookahead -= run;
1729 s->strstart += run;
1730 } else {
1731 /* No match, output a literal byte */
1732 Tracevv((stderr,"%c", s->window[s->strstart]));
1733 _tr_tally_lit (s, s->window[s->strstart], bflush);
1734 s->lookahead--;
1735 s->strstart++;
1736 }
1737 if (bflush) FLUSH_BLOCK(s, 0);
1738 }
1739 FLUSH_BLOCK(s, flush == Z_FINISH);
1740 return flush == Z_FINISH ? finish_done : block_done;
1741 }
1742 #endif
1743