1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for Intel client SoC with integrated memory controller using IBECC
4 *
5 * Copyright (C) 2020 Intel Corporation
6 *
7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8 * regions of the physical memory space. It's used for memory controllers
9 * that don't support the out-of-band ECC which often needs an additional
10 * storage device to each channel for storing ECC data.
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26
27 #include "edac_mc.h"
28 #include "edac_module.h"
29
30 #define IGEN6_REVISION "v2.5.1"
31
32 #define EDAC_MOD_STR "igen6_edac"
33 #define IGEN6_NMI_NAME "igen6_ibecc"
34
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...) \
37 edac_printk(level, "igen6", fmt, ##arg)
38
39 #define igen6_mc_printk(mci, level, fmt, arg...) \
40 edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43
44 #define NUM_IMC 2 /* Max memory controllers */
45 #define NUM_CHANNELS 2 /* Max channels */
46 #define NUM_DIMMS 2 /* Max DIMMs per channel */
47
48 #define _4GB BIT_ULL(32)
49
50 /* Size of physical memory */
51 #define TOM_OFFSET 0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET 0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET 0xec
56 #define CAPID_C_IBECC BIT(15)
57
58 /* Capability register E */
59 #define CAPID_E_OFFSET 0xf0
60 #define CAPID_E_IBECC BIT(12)
61 #define CAPID_E_IBECC_BIT18 BIT(18)
62
63 /* Error Status */
64 #define ERRSTS_OFFSET 0xc8
65 #define ERRSTS_CE BIT_ULL(6)
66 #define ERRSTS_UE BIT_ULL(7)
67
68 /* Error Command */
69 #define ERRCMD_OFFSET 0xca
70 #define ERRCMD_CE BIT_ULL(6)
71 #define ERRCMD_UE BIT_ULL(7)
72
73 /* IBECC MMIO base address */
74 #define IBECC_BASE (res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET IBECC_BASE
76 #define IBECC_ACTIVATE_EN BIT(0)
77
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET (IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT 5
83 #define ECC_ERROR_LOG_ADDR(v) GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v) GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v) GET_BITFIELD(v, 46, 61)
86
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET 0x48
89 #define MCHBAR_EN BIT_ULL(0)
90 #define MCHBAR_BASE(v) (GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE 0x10000
92
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE (res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v) GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v) GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v) GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v) ((u64)GET_BITFIELD(v, 12, 19) << 29)
100
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET (IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v) GET_BITFIELD(v, 0, 0)
104
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET (IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v) ((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v) GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v) ((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v) GET_BITFIELD(v, 24, 25)
111
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET (IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v) GET_BITFIELD(v, 1, 3)
115
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET (IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET (IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v) GET_BITFIELD(v, 28, 28)
123
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
127
128 static struct res_config {
129 bool machine_check;
130 int num_imc;
131 u32 imc_base;
132 u32 cmf_base;
133 u32 cmf_size;
134 u32 ms_hash_offset;
135 u32 ibecc_base;
136 u32 ibecc_error_log_offset;
137 bool (*ibecc_available)(struct pci_dev *pdev);
138 /* Extract error address logged in IBECC */
139 u64 (*err_addr)(u64 ecclog);
140 /* Convert error address logged in IBECC to system physical address */
141 u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 /* Convert error address logged in IBECC to integrated memory controller address */
143 u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
145
146 struct igen6_imc {
147 int mc;
148 struct mem_ctl_info *mci;
149 struct pci_dev *pdev;
150 struct device dev;
151 void __iomem *window;
152 u64 size;
153 u64 ch_s_size;
154 int ch_l_map;
155 u64 dimm_s_size[NUM_CHANNELS];
156 u64 dimm_l_size[NUM_CHANNELS];
157 int dimm_l_map[NUM_CHANNELS];
158 };
159
160 static struct igen6_pvt {
161 struct igen6_imc imc[NUM_IMC];
162 u64 ms_hash;
163 u64 ms_s_size;
164 int ms_l_map;
165 } *igen6_pvt;
166
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
171
172 struct decoded_addr {
173 int mc;
174 u64 imc_addr;
175 u64 sys_addr;
176 int channel_idx;
177 u64 channel_addr;
178 int sub_channel_idx;
179 u64 sub_channel_addr;
180 };
181
182 struct ecclog_node {
183 struct llist_node llnode;
184 int mc;
185 u64 ecclog;
186 };
187
188 /*
189 * In the NMI handler, the driver uses the lock-less memory allocator
190 * to allocate memory to store the IBECC error logs and links the logs
191 * to the lock-less list. Delay printk() and the work of error reporting
192 * to EDAC core in a worker.
193 */
194 #define ECCLOG_POOL_SIZE PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
200
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5 0x4514
203 #define DID_EHL_SKU6 0x4528
204 #define DID_EHL_SKU7 0x452a
205 #define DID_EHL_SKU8 0x4516
206 #define DID_EHL_SKU9 0x452c
207 #define DID_EHL_SKU10 0x452e
208 #define DID_EHL_SKU11 0x4532
209 #define DID_EHL_SKU12 0x4518
210 #define DID_EHL_SKU13 0x451a
211 #define DID_EHL_SKU14 0x4534
212 #define DID_EHL_SKU15 0x4536
213
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8 0x4581
216 #define DID_ICL_SKU10 0x4585
217 #define DID_ICL_SKU11 0x4589
218 #define DID_ICL_SKU12 0x458d
219
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU 0x9a14
222
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1 0x4601
225 #define DID_ADL_SKU2 0x4602
226 #define DID_ADL_SKU3 0x4621
227 #define DID_ADL_SKU4 0x4641
228
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1 0x4614
231 #define DID_ADL_N_SKU2 0x4617
232 #define DID_ADL_N_SKU3 0x461b
233 #define DID_ADL_N_SKU4 0x461c
234 #define DID_ADL_N_SKU5 0x4673
235 #define DID_ADL_N_SKU6 0x4674
236 #define DID_ADL_N_SKU7 0x4675
237 #define DID_ADL_N_SKU8 0x4677
238 #define DID_ADL_N_SKU9 0x4678
239 #define DID_ADL_N_SKU10 0x4679
240 #define DID_ADL_N_SKU11 0x467c
241 #define DID_ADL_N_SKU12 0x4632
242
243 /* Compute die IDs for Raptor Lake-P with IBECC */
244 #define DID_RPL_P_SKU1 0xa706
245 #define DID_RPL_P_SKU2 0xa707
246 #define DID_RPL_P_SKU3 0xa708
247 #define DID_RPL_P_SKU4 0xa716
248 #define DID_RPL_P_SKU5 0xa718
249
250 /* Compute die IDs for Meteor Lake-PS with IBECC */
251 #define DID_MTL_PS_SKU1 0x7d21
252 #define DID_MTL_PS_SKU2 0x7d22
253 #define DID_MTL_PS_SKU3 0x7d23
254 #define DID_MTL_PS_SKU4 0x7d24
255
256 /* Compute die IDs for Meteor Lake-P with IBECC */
257 #define DID_MTL_P_SKU1 0x7d01
258 #define DID_MTL_P_SKU2 0x7d02
259 #define DID_MTL_P_SKU3 0x7d14
260
261 /* Compute die IDs for Arrow Lake-UH with IBECC */
262 #define DID_ARL_UH_SKU1 0x7d06
263 #define DID_ARL_UH_SKU2 0x7d20
264 #define DID_ARL_UH_SKU3 0x7d30
265
266 /* Compute die IDs for Panther Lake-H with IBECC */
267 #define DID_PTL_H_SKU1 0xb000
268 #define DID_PTL_H_SKU2 0xb001
269 #define DID_PTL_H_SKU3 0xb002
270
get_mchbar(struct pci_dev * pdev,u64 * mchbar)271 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
272 {
273 union {
274 u64 v;
275 struct {
276 u32 v_lo;
277 u32 v_hi;
278 };
279 } u;
280
281 if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
282 igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
283 return -ENODEV;
284 }
285
286 if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
287 igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
288 return -ENODEV;
289 }
290
291 if (!(u.v & MCHBAR_EN)) {
292 igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
293 return -ENODEV;
294 }
295
296 *mchbar = MCHBAR_BASE(u.v);
297
298 return 0;
299 }
300
ehl_ibecc_available(struct pci_dev * pdev)301 static bool ehl_ibecc_available(struct pci_dev *pdev)
302 {
303 u32 v;
304
305 if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
306 return false;
307
308 return !!(CAPID_C_IBECC & v);
309 }
310
ehl_err_addr_to_sys_addr(u64 eaddr,int mc)311 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
312 {
313 return eaddr;
314 }
315
ehl_err_addr_to_imc_addr(u64 eaddr,int mc)316 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
317 {
318 if (eaddr < igen6_tolud)
319 return eaddr;
320
321 if (igen6_tom <= _4GB)
322 return eaddr + igen6_tolud - _4GB;
323
324 if (eaddr >= igen6_tom)
325 return eaddr + igen6_tolud - igen6_tom;
326
327 return eaddr;
328 }
329
icl_ibecc_available(struct pci_dev * pdev)330 static bool icl_ibecc_available(struct pci_dev *pdev)
331 {
332 u32 v;
333
334 if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
335 return false;
336
337 return !(CAPID_C_IBECC & v) &&
338 (boot_cpu_data.x86_stepping >= 1);
339 }
340
tgl_ibecc_available(struct pci_dev * pdev)341 static bool tgl_ibecc_available(struct pci_dev *pdev)
342 {
343 u32 v;
344
345 if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
346 return false;
347
348 return !(CAPID_E_IBECC & v);
349 }
350
mtl_p_ibecc_available(struct pci_dev * pdev)351 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
352 {
353 u32 v;
354
355 if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
356 return false;
357
358 return !(CAPID_E_IBECC_BIT18 & v);
359 }
360
mtl_ps_ibecc_available(struct pci_dev * pdev)361 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
362 {
363 #define MCHBAR_MEMSS_IBECCDIS 0x13c00
364 void __iomem *window;
365 u64 mchbar;
366 u32 val;
367
368 if (get_mchbar(pdev, &mchbar))
369 return false;
370
371 window = ioremap(mchbar, MCHBAR_SIZE * 2);
372 if (!window) {
373 igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
374 return false;
375 }
376
377 val = readl(window + MCHBAR_MEMSS_IBECCDIS);
378 iounmap(window);
379
380 /* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
381 return !GET_BITFIELD(val, 6, 6);
382 }
383
mem_addr_to_sys_addr(u64 maddr)384 static u64 mem_addr_to_sys_addr(u64 maddr)
385 {
386 if (maddr < igen6_tolud)
387 return maddr;
388
389 if (igen6_tom <= _4GB)
390 return maddr - igen6_tolud + _4GB;
391
392 if (maddr < _4GB)
393 return maddr - igen6_tolud + igen6_tom;
394
395 return maddr;
396 }
397
mem_slice_hash(u64 addr,u64 mask,u64 hash_init,int intlv_bit)398 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
399 {
400 u64 hash_addr = addr & mask, hash = hash_init;
401 u64 intlv = (addr >> intlv_bit) & 1;
402 int i;
403
404 for (i = 6; i < 20; i++)
405 hash ^= (hash_addr >> i) & 1;
406
407 return hash ^ intlv;
408 }
409
tgl_err_addr_to_mem_addr(u64 eaddr,int mc)410 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
411 {
412 u64 maddr, hash, mask, ms_s_size;
413 int intlv_bit;
414 u32 ms_hash;
415
416 ms_s_size = igen6_pvt->ms_s_size;
417 if (eaddr >= ms_s_size)
418 return eaddr + ms_s_size;
419
420 ms_hash = igen6_pvt->ms_hash;
421
422 mask = MEM_SLICE_HASH_MASK(ms_hash);
423 intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
424
425 maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
426 GET_BITFIELD(eaddr, 0, intlv_bit - 1);
427
428 hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
429
430 return maddr | (hash << intlv_bit);
431 }
432
tgl_err_addr_to_sys_addr(u64 eaddr,int mc)433 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
434 {
435 u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
436
437 return mem_addr_to_sys_addr(maddr);
438 }
439
tgl_err_addr_to_imc_addr(u64 eaddr,int mc)440 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
441 {
442 return eaddr;
443 }
444
adl_err_addr_to_sys_addr(u64 eaddr,int mc)445 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
446 {
447 return mem_addr_to_sys_addr(eaddr);
448 }
449
adl_err_addr_to_imc_addr(u64 eaddr,int mc)450 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
451 {
452 u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
453 struct igen6_imc *imc = &igen6_pvt->imc[mc];
454 int intlv_bit;
455 u32 mc_hash;
456
457 if (eaddr >= 2 * ms_s_size)
458 return eaddr - ms_s_size;
459
460 mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
461
462 intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
463
464 imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
465 GET_BITFIELD(eaddr, 0, intlv_bit - 1);
466
467 return imc_addr;
468 }
469
rpl_p_err_addr(u64 ecclog)470 static u64 rpl_p_err_addr(u64 ecclog)
471 {
472 return ECC_ERROR_LOG_ADDR45(ecclog);
473 }
474
475 static struct res_config ehl_cfg = {
476 .num_imc = 1,
477 .imc_base = 0x5000,
478 .ibecc_base = 0xdc00,
479 .ibecc_available = ehl_ibecc_available,
480 .ibecc_error_log_offset = 0x170,
481 .err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
482 .err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
483 };
484
485 static struct res_config icl_cfg = {
486 .num_imc = 1,
487 .imc_base = 0x5000,
488 .ibecc_base = 0xd800,
489 .ibecc_error_log_offset = 0x170,
490 .ibecc_available = icl_ibecc_available,
491 .err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
492 .err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
493 };
494
495 static struct res_config tgl_cfg = {
496 .machine_check = true,
497 .num_imc = 2,
498 .imc_base = 0x5000,
499 .cmf_base = 0x11000,
500 .cmf_size = 0x800,
501 .ms_hash_offset = 0xac,
502 .ibecc_base = 0xd400,
503 .ibecc_error_log_offset = 0x170,
504 .ibecc_available = tgl_ibecc_available,
505 .err_addr_to_sys_addr = tgl_err_addr_to_sys_addr,
506 .err_addr_to_imc_addr = tgl_err_addr_to_imc_addr,
507 };
508
509 static struct res_config adl_cfg = {
510 .machine_check = true,
511 .num_imc = 2,
512 .imc_base = 0xd800,
513 .ibecc_base = 0xd400,
514 .ibecc_error_log_offset = 0x68,
515 .ibecc_available = tgl_ibecc_available,
516 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
517 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
518 };
519
520 static struct res_config adl_n_cfg = {
521 .machine_check = true,
522 .num_imc = 1,
523 .imc_base = 0xd800,
524 .ibecc_base = 0xd400,
525 .ibecc_error_log_offset = 0x68,
526 .ibecc_available = tgl_ibecc_available,
527 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
528 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
529 };
530
531 static struct res_config rpl_p_cfg = {
532 .machine_check = true,
533 .num_imc = 2,
534 .imc_base = 0xd800,
535 .ibecc_base = 0xd400,
536 .ibecc_error_log_offset = 0x68,
537 .ibecc_available = tgl_ibecc_available,
538 .err_addr = rpl_p_err_addr,
539 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
540 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
541 };
542
543 static struct res_config mtl_ps_cfg = {
544 .machine_check = true,
545 .num_imc = 2,
546 .imc_base = 0xd800,
547 .ibecc_base = 0xd400,
548 .ibecc_error_log_offset = 0x170,
549 .ibecc_available = mtl_ps_ibecc_available,
550 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
551 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
552 };
553
554 static struct res_config mtl_p_cfg = {
555 .machine_check = true,
556 .num_imc = 2,
557 .imc_base = 0xd800,
558 .ibecc_base = 0xd400,
559 .ibecc_error_log_offset = 0x170,
560 .ibecc_available = mtl_p_ibecc_available,
561 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
562 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
563 };
564
565 static const struct pci_device_id igen6_pci_tbl[] = {
566 { PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
567 { PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
568 { PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
569 { PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
570 { PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
571 { PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
572 { PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
573 { PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
574 { PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
575 { PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
576 { PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
577 { PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
578 { PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
579 { PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
580 { PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
581 { PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
582 { PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
583 { PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
584 { PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
585 { PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
586 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
587 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
588 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
589 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
590 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
591 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
592 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
593 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
594 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
595 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
596 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
597 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
598 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
599 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
600 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
601 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
602 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
603 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
604 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
605 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
606 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
607 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
608 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
609 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
610 { PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
611 { PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
612 { PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
613 { PCI_VDEVICE(INTEL, DID_PTL_H_SKU1), (kernel_ulong_t)&mtl_p_cfg },
614 { PCI_VDEVICE(INTEL, DID_PTL_H_SKU2), (kernel_ulong_t)&mtl_p_cfg },
615 { PCI_VDEVICE(INTEL, DID_PTL_H_SKU3), (kernel_ulong_t)&mtl_p_cfg },
616 { },
617 };
618 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
619
get_width(int dimm_l,u32 mad_dimm)620 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
621 {
622 u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
623 MAD_DIMM_CH_DSW(mad_dimm);
624
625 switch (w) {
626 case 0:
627 return DEV_X8;
628 case 1:
629 return DEV_X16;
630 case 2:
631 return DEV_X32;
632 default:
633 return DEV_UNKNOWN;
634 }
635 }
636
get_memory_type(u32 mad_inter)637 static enum mem_type get_memory_type(u32 mad_inter)
638 {
639 u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
640
641 switch (t) {
642 case 0:
643 return MEM_DDR4;
644 case 1:
645 return MEM_DDR3;
646 case 2:
647 return MEM_LPDDR3;
648 case 3:
649 return MEM_LPDDR4;
650 case 4:
651 return MEM_WIO2;
652 default:
653 return MEM_UNKNOWN;
654 }
655 }
656
decode_chan_idx(u64 addr,u64 mask,int intlv_bit)657 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
658 {
659 u64 hash_addr = addr & mask, hash = 0;
660 u64 intlv = (addr >> intlv_bit) & 1;
661 int i;
662
663 for (i = 6; i < 20; i++)
664 hash ^= (hash_addr >> i) & 1;
665
666 return (int)hash ^ intlv;
667 }
668
decode_channel_addr(u64 addr,int intlv_bit)669 static u64 decode_channel_addr(u64 addr, int intlv_bit)
670 {
671 u64 channel_addr;
672
673 /* Remove the interleave bit and shift upper part down to fill gap */
674 channel_addr = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
675 channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
676
677 return channel_addr;
678 }
679
decode_addr(u64 addr,u32 hash,u64 s_size,int l_map,int * idx,u64 * sub_addr)680 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
681 int *idx, u64 *sub_addr)
682 {
683 int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
684
685 if (addr > 2 * s_size) {
686 *sub_addr = addr - s_size;
687 *idx = l_map;
688 return;
689 }
690
691 if (CHANNEL_HASH_MODE(hash)) {
692 *sub_addr = decode_channel_addr(addr, intlv_bit);
693 *idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
694 } else {
695 *sub_addr = decode_channel_addr(addr, 6);
696 *idx = GET_BITFIELD(addr, 6, 6);
697 }
698 }
699
igen6_decode(struct decoded_addr * res)700 static int igen6_decode(struct decoded_addr *res)
701 {
702 struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
703 u64 addr = res->imc_addr, sub_addr, s_size;
704 int idx, l_map;
705 u32 hash;
706
707 if (addr >= igen6_tom) {
708 edac_dbg(0, "Address 0x%llx out of range\n", addr);
709 return -EINVAL;
710 }
711
712 /* Decode channel */
713 hash = readl(imc->window + CHANNEL_HASH_OFFSET);
714 s_size = imc->ch_s_size;
715 l_map = imc->ch_l_map;
716 decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
717 res->channel_idx = idx;
718 res->channel_addr = sub_addr;
719
720 /* Decode sub-channel/DIMM */
721 hash = readl(imc->window + CHANNEL_EHASH_OFFSET);
722 s_size = imc->dimm_s_size[idx];
723 l_map = imc->dimm_l_map[idx];
724 decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
725 res->sub_channel_idx = idx;
726 res->sub_channel_addr = sub_addr;
727
728 return 0;
729 }
730
igen6_output_error(struct decoded_addr * res,struct mem_ctl_info * mci,u64 ecclog)731 static void igen6_output_error(struct decoded_addr *res,
732 struct mem_ctl_info *mci, u64 ecclog)
733 {
734 enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
735 HW_EVENT_ERR_UNCORRECTED :
736 HW_EVENT_ERR_CORRECTED;
737
738 edac_mc_handle_error(type, mci, 1,
739 res->sys_addr >> PAGE_SHIFT,
740 res->sys_addr & ~PAGE_MASK,
741 ECC_ERROR_LOG_SYND(ecclog),
742 res->channel_idx, res->sub_channel_idx,
743 -1, "", "");
744 }
745
ecclog_gen_pool_create(void)746 static struct gen_pool *ecclog_gen_pool_create(void)
747 {
748 struct gen_pool *pool;
749
750 pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
751 if (!pool)
752 return NULL;
753
754 if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
755 gen_pool_destroy(pool);
756 return NULL;
757 }
758
759 return pool;
760 }
761
ecclog_gen_pool_add(int mc,u64 ecclog)762 static int ecclog_gen_pool_add(int mc, u64 ecclog)
763 {
764 struct ecclog_node *node;
765
766 node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
767 if (!node)
768 return -ENOMEM;
769
770 node->mc = mc;
771 node->ecclog = ecclog;
772 llist_add(&node->llnode, &ecclog_llist);
773
774 return 0;
775 }
776
777 /*
778 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
779 * configuration space status register ERRSTS can indicate whether a
780 * correctable error or an uncorrectable error occurred. We only use the
781 * ECC_ERROR_LOG register to check error type, but need to clear both
782 * registers to enable future error events.
783 */
ecclog_read_and_clear(struct igen6_imc * imc)784 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
785 {
786 u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
787
788 if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
789 /* Clear CE/UE bits by writing 1s */
790 writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
791 return ecclog;
792 }
793
794 return 0;
795 }
796
errsts_clear(struct igen6_imc * imc)797 static void errsts_clear(struct igen6_imc *imc)
798 {
799 u16 errsts;
800
801 if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
802 igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
803 return;
804 }
805
806 /* Clear CE/UE bits by writing 1s */
807 if (errsts & (ERRSTS_CE | ERRSTS_UE))
808 pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
809 }
810
errcmd_enable_error_reporting(bool enable)811 static int errcmd_enable_error_reporting(bool enable)
812 {
813 struct igen6_imc *imc = &igen6_pvt->imc[0];
814 u16 errcmd;
815 int rc;
816
817 rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
818 if (rc)
819 return pcibios_err_to_errno(rc);
820
821 if (enable)
822 errcmd |= ERRCMD_CE | ERRSTS_UE;
823 else
824 errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
825
826 rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
827 if (rc)
828 return pcibios_err_to_errno(rc);
829
830 return 0;
831 }
832
ecclog_handler(void)833 static int ecclog_handler(void)
834 {
835 struct igen6_imc *imc;
836 int i, n = 0;
837 u64 ecclog;
838
839 for (i = 0; i < res_cfg->num_imc; i++) {
840 imc = &igen6_pvt->imc[i];
841
842 /* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
843
844 ecclog = ecclog_read_and_clear(imc);
845 if (!ecclog)
846 continue;
847
848 if (!ecclog_gen_pool_add(i, ecclog))
849 irq_work_queue(&ecclog_irq_work);
850
851 n++;
852 }
853
854 return n;
855 }
856
ecclog_work_cb(struct work_struct * work)857 static void ecclog_work_cb(struct work_struct *work)
858 {
859 struct ecclog_node *node, *tmp;
860 struct mem_ctl_info *mci;
861 struct llist_node *head;
862 struct decoded_addr res;
863 u64 eaddr;
864
865 head = llist_del_all(&ecclog_llist);
866 if (!head)
867 return;
868
869 llist_for_each_entry_safe(node, tmp, head, llnode) {
870 memset(&res, 0, sizeof(res));
871 if (res_cfg->err_addr)
872 eaddr = res_cfg->err_addr(node->ecclog);
873 else
874 eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
875 ECC_ERROR_LOG_ADDR_SHIFT;
876 res.mc = node->mc;
877 res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
878 res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
879
880 mci = igen6_pvt->imc[res.mc].mci;
881
882 edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
883 igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
884 igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
885
886 if (!igen6_decode(&res))
887 igen6_output_error(&res, mci, node->ecclog);
888
889 gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
890 }
891 }
892
ecclog_irq_work_cb(struct irq_work * irq_work)893 static void ecclog_irq_work_cb(struct irq_work *irq_work)
894 {
895 int i;
896
897 for (i = 0; i < res_cfg->num_imc; i++)
898 errsts_clear(&igen6_pvt->imc[i]);
899
900 if (!llist_empty(&ecclog_llist))
901 schedule_work(&ecclog_work);
902 }
903
ecclog_nmi_handler(unsigned int cmd,struct pt_regs * regs)904 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
905 {
906 unsigned char reason;
907
908 if (!ecclog_handler())
909 return NMI_DONE;
910
911 /*
912 * Both In-Band ECC correctable error and uncorrectable error are
913 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
914 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
915 * re-enable the SERR# NMI after NMI handling. So clear this bit here
916 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
917 */
918 reason = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
919 reason |= NMI_REASON_CLEAR_SERR;
920 outb(reason, NMI_REASON_PORT);
921 reason &= ~NMI_REASON_CLEAR_SERR;
922 outb(reason, NMI_REASON_PORT);
923
924 return NMI_HANDLED;
925 }
926
ecclog_mce_handler(struct notifier_block * nb,unsigned long val,void * data)927 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
928 void *data)
929 {
930 struct mce *mce = (struct mce *)data;
931 char *type;
932
933 if (mce->kflags & MCE_HANDLED_CEC)
934 return NOTIFY_DONE;
935
936 /*
937 * Ignore unless this is a memory related error.
938 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
939 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
940 */
941 if ((mce->status & 0xefff) >> 7 != 1)
942 return NOTIFY_DONE;
943
944 if (mce->mcgstatus & MCG_STATUS_MCIP)
945 type = "Exception";
946 else
947 type = "Event";
948
949 edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
950 mce->extcpu, type, mce->mcgstatus,
951 mce->bank, mce->status);
952 edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
953 edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
954 edac_dbg(0, "MISC 0x%llx\n", mce->misc);
955 edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
956 mce->cpuvendor, mce->cpuid, mce->time,
957 mce->socketid, mce->apicid);
958 /*
959 * We just use the Machine Check for the memory error notification.
960 * Each memory controller is associated with an IBECC instance.
961 * Directly read and clear the error information(error address and
962 * error type) on all the IBECC instances so that we know on which
963 * memory controller the memory error(s) occurred.
964 */
965 if (!ecclog_handler())
966 return NOTIFY_DONE;
967
968 mce->kflags |= MCE_HANDLED_EDAC;
969
970 return NOTIFY_DONE;
971 }
972
973 static struct notifier_block ecclog_mce_dec = {
974 .notifier_call = ecclog_mce_handler,
975 .priority = MCE_PRIO_EDAC,
976 };
977
igen6_check_ecc(struct igen6_imc * imc)978 static bool igen6_check_ecc(struct igen6_imc *imc)
979 {
980 u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
981
982 return !!(activate & IBECC_ACTIVATE_EN);
983 }
984
igen6_get_dimm_config(struct mem_ctl_info * mci)985 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
986 {
987 struct igen6_imc *imc = mci->pvt_info;
988 u32 mad_inter, mad_intra, mad_dimm;
989 int i, j, ndimms, mc = imc->mc;
990 struct dimm_info *dimm;
991 enum mem_type mtype;
992 enum dev_type dtype;
993 u64 dsize;
994 bool ecc;
995
996 edac_dbg(2, "\n");
997
998 mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
999 mtype = get_memory_type(mad_inter);
1000 ecc = igen6_check_ecc(imc);
1001 imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
1002 imc->ch_l_map = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
1003
1004 for (i = 0; i < NUM_CHANNELS; i++) {
1005 mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
1006 mad_dimm = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
1007
1008 imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
1009 imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
1010 imc->dimm_l_map[i] = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
1011 imc->size += imc->dimm_s_size[i];
1012 imc->size += imc->dimm_l_size[i];
1013 ndimms = 0;
1014
1015 for (j = 0; j < NUM_DIMMS; j++) {
1016 dimm = edac_get_dimm(mci, i, j, 0);
1017
1018 if (j ^ imc->dimm_l_map[i]) {
1019 dtype = get_width(0, mad_dimm);
1020 dsize = imc->dimm_s_size[i];
1021 } else {
1022 dtype = get_width(1, mad_dimm);
1023 dsize = imc->dimm_l_size[i];
1024 }
1025
1026 if (!dsize)
1027 continue;
1028
1029 dimm->grain = 64;
1030 dimm->mtype = mtype;
1031 dimm->dtype = dtype;
1032 dimm->nr_pages = MiB_TO_PAGES(dsize >> 20);
1033 dimm->edac_mode = EDAC_SECDED;
1034 snprintf(dimm->label, sizeof(dimm->label),
1035 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1036 edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1037 mc, i, j, dsize >> 20, dimm->nr_pages);
1038
1039 ndimms++;
1040 }
1041
1042 if (ndimms && !ecc) {
1043 igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1044 return -ENODEV;
1045 }
1046 }
1047
1048 edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1049
1050 return 0;
1051 }
1052
1053 #ifdef CONFIG_EDAC_DEBUG
1054 /* Top of upper usable DRAM */
1055 static u64 igen6_touud;
1056 #define TOUUD_OFFSET 0xa8
1057
igen6_reg_dump(struct igen6_imc * imc)1058 static void igen6_reg_dump(struct igen6_imc *imc)
1059 {
1060 int i;
1061
1062 edac_dbg(2, "CHANNEL_HASH : 0x%x\n",
1063 readl(imc->window + CHANNEL_HASH_OFFSET));
1064 edac_dbg(2, "CHANNEL_EHASH : 0x%x\n",
1065 readl(imc->window + CHANNEL_EHASH_OFFSET));
1066 edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1067 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1068 edac_dbg(2, "ECC_ERROR_LOG : 0x%llx\n",
1069 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1070
1071 for (i = 0; i < NUM_CHANNELS; i++) {
1072 edac_dbg(2, "MAD_INTRA_CH%d : 0x%x\n", i,
1073 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1074 edac_dbg(2, "MAD_DIMM_CH%d : 0x%x\n", i,
1075 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1076 }
1077 edac_dbg(2, "TOLUD : 0x%x", igen6_tolud);
1078 edac_dbg(2, "TOUUD : 0x%llx", igen6_touud);
1079 edac_dbg(2, "TOM : 0x%llx", igen6_tom);
1080 }
1081
1082 static struct dentry *igen6_test;
1083
debugfs_u64_set(void * data,u64 val)1084 static int debugfs_u64_set(void *data, u64 val)
1085 {
1086 u64 ecclog;
1087
1088 if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1089 edac_dbg(0, "Address 0x%llx out of range\n", val);
1090 return 0;
1091 }
1092
1093 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1094
1095 val >>= ECC_ERROR_LOG_ADDR_SHIFT;
1096 ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1097
1098 if (!ecclog_gen_pool_add(0, ecclog))
1099 irq_work_queue(&ecclog_irq_work);
1100
1101 return 0;
1102 }
1103 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1104
igen6_debug_setup(void)1105 static void igen6_debug_setup(void)
1106 {
1107 igen6_test = edac_debugfs_create_dir("igen6_test");
1108 if (!igen6_test)
1109 return;
1110
1111 if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1112 NULL, &fops_u64_wo)) {
1113 debugfs_remove(igen6_test);
1114 igen6_test = NULL;
1115 }
1116 }
1117
igen6_debug_teardown(void)1118 static void igen6_debug_teardown(void)
1119 {
1120 debugfs_remove_recursive(igen6_test);
1121 }
1122 #else
igen6_reg_dump(struct igen6_imc * imc)1123 static void igen6_reg_dump(struct igen6_imc *imc) {}
igen6_debug_setup(void)1124 static void igen6_debug_setup(void) {}
igen6_debug_teardown(void)1125 static void igen6_debug_teardown(void) {}
1126 #endif
1127
igen6_pci_setup(struct pci_dev * pdev,u64 * mchbar)1128 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1129 {
1130 union {
1131 u64 v;
1132 struct {
1133 u32 v_lo;
1134 u32 v_hi;
1135 };
1136 } u;
1137
1138 edac_dbg(2, "\n");
1139
1140 if (!res_cfg->ibecc_available(pdev)) {
1141 edac_dbg(2, "No In-Band ECC IP\n");
1142 goto fail;
1143 }
1144
1145 if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1146 igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1147 goto fail;
1148 }
1149
1150 igen6_tolud &= GENMASK(31, 20);
1151
1152 if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1153 igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1154 goto fail;
1155 }
1156
1157 if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1158 igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1159 goto fail;
1160 }
1161
1162 igen6_tom = u.v & GENMASK_ULL(38, 20);
1163
1164 if (get_mchbar(pdev, mchbar))
1165 goto fail;
1166
1167 #ifdef CONFIG_EDAC_DEBUG
1168 if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1169 edac_dbg(2, "Failed to read lower TOUUD\n");
1170 else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1171 edac_dbg(2, "Failed to read upper TOUUD\n");
1172 else
1173 igen6_touud = u.v & GENMASK_ULL(38, 20);
1174 #endif
1175
1176 return 0;
1177 fail:
1178 return -ENODEV;
1179 }
1180
igen6_check(struct mem_ctl_info * mci)1181 static void igen6_check(struct mem_ctl_info *mci)
1182 {
1183 struct igen6_imc *imc = mci->pvt_info;
1184 u64 ecclog;
1185
1186 /* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
1187 ecclog = ecclog_read_and_clear(imc);
1188 if (!ecclog)
1189 return;
1190
1191 if (!ecclog_gen_pool_add(imc->mc, ecclog))
1192 irq_work_queue(&ecclog_irq_work);
1193 }
1194
igen6_register_mci(int mc,u64 mchbar,struct pci_dev * pdev)1195 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1196 {
1197 struct edac_mc_layer layers[2];
1198 struct mem_ctl_info *mci;
1199 struct igen6_imc *imc;
1200 void __iomem *window;
1201 int rc;
1202
1203 edac_dbg(2, "\n");
1204
1205 mchbar += mc * MCHBAR_SIZE;
1206 window = ioremap(mchbar, MCHBAR_SIZE);
1207 if (!window) {
1208 igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1209 return -ENODEV;
1210 }
1211
1212 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1213 layers[0].size = NUM_CHANNELS;
1214 layers[0].is_virt_csrow = false;
1215 layers[1].type = EDAC_MC_LAYER_SLOT;
1216 layers[1].size = NUM_DIMMS;
1217 layers[1].is_virt_csrow = true;
1218
1219 mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1220 if (!mci) {
1221 rc = -ENOMEM;
1222 goto fail;
1223 }
1224
1225 mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1226 if (!mci->ctl_name) {
1227 rc = -ENOMEM;
1228 goto fail2;
1229 }
1230
1231 mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1232 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1233 mci->edac_cap = EDAC_FLAG_SECDED;
1234 mci->mod_name = EDAC_MOD_STR;
1235 mci->dev_name = pci_name(pdev);
1236 if (edac_op_state == EDAC_OPSTATE_POLL)
1237 mci->edac_check = igen6_check;
1238 mci->pvt_info = &igen6_pvt->imc[mc];
1239
1240 imc = mci->pvt_info;
1241 device_initialize(&imc->dev);
1242 /*
1243 * EDAC core uses mci->pdev(pointer of structure device) as
1244 * memory controller ID. The client SoCs attach one or more
1245 * memory controllers to single pci_dev (single pci_dev->dev
1246 * can be for multiple memory controllers).
1247 *
1248 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1249 * for the first memory controller and assign a unique imc->dev
1250 * to mci->pdev for each non-first memory controller.
1251 */
1252 mci->pdev = mc ? &imc->dev : &pdev->dev;
1253 imc->mc = mc;
1254 imc->pdev = pdev;
1255 imc->window = window;
1256
1257 igen6_reg_dump(imc);
1258
1259 rc = igen6_get_dimm_config(mci);
1260 if (rc)
1261 goto fail3;
1262
1263 rc = edac_mc_add_mc(mci);
1264 if (rc) {
1265 igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1266 goto fail3;
1267 }
1268
1269 imc->mci = mci;
1270 return 0;
1271 fail3:
1272 mci->pvt_info = NULL;
1273 kfree(mci->ctl_name);
1274 fail2:
1275 edac_mc_free(mci);
1276 fail:
1277 iounmap(window);
1278 return rc;
1279 }
1280
igen6_unregister_mcis(void)1281 static void igen6_unregister_mcis(void)
1282 {
1283 struct mem_ctl_info *mci;
1284 struct igen6_imc *imc;
1285 int i;
1286
1287 edac_dbg(2, "\n");
1288
1289 for (i = 0; i < res_cfg->num_imc; i++) {
1290 imc = &igen6_pvt->imc[i];
1291 mci = imc->mci;
1292 if (!mci)
1293 continue;
1294
1295 edac_mc_del_mc(mci->pdev);
1296 kfree(mci->ctl_name);
1297 mci->pvt_info = NULL;
1298 edac_mc_free(mci);
1299 iounmap(imc->window);
1300 }
1301 }
1302
igen6_mem_slice_setup(u64 mchbar)1303 static int igen6_mem_slice_setup(u64 mchbar)
1304 {
1305 struct igen6_imc *imc = &igen6_pvt->imc[0];
1306 u64 base = mchbar + res_cfg->cmf_base;
1307 u32 offset = res_cfg->ms_hash_offset;
1308 u32 size = res_cfg->cmf_size;
1309 u64 ms_s_size, ms_hash;
1310 void __iomem *cmf;
1311 int ms_l_map;
1312
1313 edac_dbg(2, "\n");
1314
1315 if (imc[0].size < imc[1].size) {
1316 ms_s_size = imc[0].size;
1317 ms_l_map = 1;
1318 } else {
1319 ms_s_size = imc[1].size;
1320 ms_l_map = 0;
1321 }
1322
1323 igen6_pvt->ms_s_size = ms_s_size;
1324 igen6_pvt->ms_l_map = ms_l_map;
1325
1326 edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1327 ms_s_size >> 20, ms_l_map);
1328
1329 if (!size)
1330 return 0;
1331
1332 cmf = ioremap(base, size);
1333 if (!cmf) {
1334 igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1335 return -ENODEV;
1336 }
1337
1338 ms_hash = readq(cmf + offset);
1339 igen6_pvt->ms_hash = ms_hash;
1340
1341 edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1342
1343 iounmap(cmf);
1344
1345 return 0;
1346 }
1347
register_err_handler(void)1348 static int register_err_handler(void)
1349 {
1350 int rc;
1351
1352 if (res_cfg->machine_check) {
1353 mce_register_decode_chain(&ecclog_mce_dec);
1354 return 0;
1355 }
1356
1357 rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1358 0, IGEN6_NMI_NAME);
1359 if (rc) {
1360 igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1361 return rc;
1362 }
1363
1364 return 0;
1365 }
1366
unregister_err_handler(void)1367 static void unregister_err_handler(void)
1368 {
1369 if (res_cfg->machine_check) {
1370 mce_unregister_decode_chain(&ecclog_mce_dec);
1371 return;
1372 }
1373
1374 unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1375 }
1376
opstate_set(struct res_config * cfg,const struct pci_device_id * ent)1377 static void opstate_set(struct res_config *cfg, const struct pci_device_id *ent)
1378 {
1379 /*
1380 * Quirk: Certain SoCs' error reporting interrupts don't work.
1381 * Force polling mode for them to ensure that memory error
1382 * events can be handled.
1383 */
1384 if (ent->device == DID_ADL_N_SKU4) {
1385 edac_op_state = EDAC_OPSTATE_POLL;
1386 return;
1387 }
1388
1389 /* Set the mode according to the configuration data. */
1390 if (cfg->machine_check)
1391 edac_op_state = EDAC_OPSTATE_INT;
1392 else
1393 edac_op_state = EDAC_OPSTATE_NMI;
1394 }
1395
igen6_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1396 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1397 {
1398 u64 mchbar;
1399 int i, rc;
1400
1401 edac_dbg(2, "\n");
1402
1403 igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1404 if (!igen6_pvt)
1405 return -ENOMEM;
1406
1407 res_cfg = (struct res_config *)ent->driver_data;
1408
1409 rc = igen6_pci_setup(pdev, &mchbar);
1410 if (rc)
1411 goto fail;
1412
1413 opstate_set(res_cfg, ent);
1414
1415 for (i = 0; i < res_cfg->num_imc; i++) {
1416 rc = igen6_register_mci(i, mchbar, pdev);
1417 if (rc)
1418 goto fail2;
1419 }
1420
1421 if (res_cfg->num_imc > 1) {
1422 rc = igen6_mem_slice_setup(mchbar);
1423 if (rc)
1424 goto fail2;
1425 }
1426
1427 ecclog_pool = ecclog_gen_pool_create();
1428 if (!ecclog_pool) {
1429 rc = -ENOMEM;
1430 goto fail2;
1431 }
1432
1433 INIT_WORK(&ecclog_work, ecclog_work_cb);
1434 init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1435
1436 rc = register_err_handler();
1437 if (rc)
1438 goto fail3;
1439
1440 /* Enable error reporting */
1441 rc = errcmd_enable_error_reporting(true);
1442 if (rc) {
1443 igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1444 goto fail4;
1445 }
1446
1447 /* Check if any pending errors before/during the registration of the error handler */
1448 ecclog_handler();
1449
1450 igen6_debug_setup();
1451 return 0;
1452 fail4:
1453 unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1454 fail3:
1455 gen_pool_destroy(ecclog_pool);
1456 fail2:
1457 igen6_unregister_mcis();
1458 fail:
1459 kfree(igen6_pvt);
1460 return rc;
1461 }
1462
igen6_remove(struct pci_dev * pdev)1463 static void igen6_remove(struct pci_dev *pdev)
1464 {
1465 edac_dbg(2, "\n");
1466
1467 igen6_debug_teardown();
1468 errcmd_enable_error_reporting(false);
1469 unregister_err_handler();
1470 irq_work_sync(&ecclog_irq_work);
1471 flush_work(&ecclog_work);
1472 gen_pool_destroy(ecclog_pool);
1473 igen6_unregister_mcis();
1474 kfree(igen6_pvt);
1475 }
1476
1477 static struct pci_driver igen6_driver = {
1478 .name = EDAC_MOD_STR,
1479 .probe = igen6_probe,
1480 .remove = igen6_remove,
1481 .id_table = igen6_pci_tbl,
1482 };
1483
igen6_init(void)1484 static int __init igen6_init(void)
1485 {
1486 const char *owner;
1487 int rc;
1488
1489 edac_dbg(2, "\n");
1490
1491 if (ghes_get_devices())
1492 return -EBUSY;
1493
1494 owner = edac_get_owner();
1495 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1496 return -EBUSY;
1497
1498 rc = pci_register_driver(&igen6_driver);
1499 if (rc)
1500 return rc;
1501
1502 igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1503
1504 return 0;
1505 }
1506
igen6_exit(void)1507 static void __exit igen6_exit(void)
1508 {
1509 edac_dbg(2, "\n");
1510
1511 pci_unregister_driver(&igen6_driver);
1512 }
1513
1514 module_init(igen6_init);
1515 module_exit(igen6_exit);
1516
1517 MODULE_LICENSE("GPL v2");
1518 MODULE_AUTHOR("Qiuxu Zhuo");
1519 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1520