xref: /linux/drivers/gpu/drm/i915/display/intel_bw.c (revision 785151f50ddacac06c7a3c5f3d31642794507fdf)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_atomic_state_helper.h>
7 
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "i915_utils.h"
11 #include "intel_atomic.h"
12 #include "intel_bw.h"
13 #include "intel_cdclk.h"
14 #include "intel_display_core.h"
15 #include "intel_display_types.h"
16 #include "skl_watermark.h"
17 #include "intel_mchbar_regs.h"
18 #include "intel_pcode.h"
19 
20 /* Parameters for Qclk Geyserville (QGV) */
21 struct intel_qgv_point {
22 	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
23 };
24 
25 #define DEPROGBWPCLIMIT		60
26 
27 struct intel_psf_gv_point {
28 	u8 clk; /* clock in multiples of 16.6666 MHz */
29 };
30 
31 struct intel_qgv_info {
32 	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
33 	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
34 	u8 num_points;
35 	u8 num_psf_points;
36 	u8 t_bl;
37 	u8 max_numchannels;
38 	u8 channel_width;
39 	u8 deinterleave;
40 };
41 
dg1_mchbar_read_qgv_point_info(struct intel_display * display,struct intel_qgv_point * sp,int point)42 static int dg1_mchbar_read_qgv_point_info(struct intel_display *display,
43 					  struct intel_qgv_point *sp,
44 					  int point)
45 {
46 	struct drm_i915_private *i915 = to_i915(display->drm);
47 	u32 dclk_ratio, dclk_reference;
48 	u32 val;
49 
50 	val = intel_uncore_read(&i915->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
51 	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
52 	if (val & DG1_QCLK_REFERENCE)
53 		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
54 	else
55 		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
56 	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
57 
58 	val = intel_uncore_read(&i915->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
59 	if (val & DG1_GEAR_TYPE)
60 		sp->dclk *= 2;
61 
62 	if (sp->dclk == 0)
63 		return -EINVAL;
64 
65 	val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
66 	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
67 	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
68 
69 	val = intel_uncore_read(&i915->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
70 	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
71 	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
72 
73 	sp->t_rc = sp->t_rp + sp->t_ras;
74 
75 	return 0;
76 }
77 
icl_pcode_read_qgv_point_info(struct intel_display * display,struct intel_qgv_point * sp,int point)78 static int icl_pcode_read_qgv_point_info(struct intel_display *display,
79 					 struct intel_qgv_point *sp,
80 					 int point)
81 {
82 	struct drm_i915_private *i915 = to_i915(display->drm);
83 	u32 val = 0, val2 = 0;
84 	u16 dclk;
85 	int ret;
86 
87 	ret = snb_pcode_read(&i915->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
88 			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
89 			     &val, &val2);
90 	if (ret)
91 		return ret;
92 
93 	dclk = val & 0xffff;
94 	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(display) >= 12 ? 500 : 0),
95 				1000);
96 	sp->t_rp = (val & 0xff0000) >> 16;
97 	sp->t_rcd = (val & 0xff000000) >> 24;
98 
99 	sp->t_rdpre = val2 & 0xff;
100 	sp->t_ras = (val2 & 0xff00) >> 8;
101 
102 	sp->t_rc = sp->t_rp + sp->t_ras;
103 
104 	return 0;
105 }
106 
adls_pcode_read_psf_gv_point_info(struct intel_display * display,struct intel_psf_gv_point * points)107 static int adls_pcode_read_psf_gv_point_info(struct intel_display *display,
108 					     struct intel_psf_gv_point *points)
109 {
110 	struct drm_i915_private *i915 = to_i915(display->drm);
111 	u32 val = 0;
112 	int ret;
113 	int i;
114 
115 	ret = snb_pcode_read(&i915->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
116 			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
117 	if (ret)
118 		return ret;
119 
120 	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
121 		points[i].clk = val & 0xff;
122 		val >>= 8;
123 	}
124 
125 	return 0;
126 }
127 
icl_qgv_points_mask(struct intel_display * display)128 static u16 icl_qgv_points_mask(struct intel_display *display)
129 {
130 	unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points;
131 	unsigned int num_qgv_points = display->bw.max[0].num_qgv_points;
132 	u16 qgv_points = 0, psf_points = 0;
133 
134 	/*
135 	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
136 	 * it with failure if we try masking any unadvertised points.
137 	 * So need to operate only with those returned from PCode.
138 	 */
139 	if (num_qgv_points > 0)
140 		qgv_points = GENMASK(num_qgv_points - 1, 0);
141 
142 	if (num_psf_gv_points > 0)
143 		psf_points = GENMASK(num_psf_gv_points - 1, 0);
144 
145 	return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
146 }
147 
is_sagv_enabled(struct intel_display * display,u16 points_mask)148 static bool is_sagv_enabled(struct intel_display *display, u16 points_mask)
149 {
150 	return !is_power_of_2(~points_mask & icl_qgv_points_mask(display) &
151 			      ICL_PCODE_REQ_QGV_PT_MASK);
152 }
153 
icl_pcode_restrict_qgv_points(struct intel_display * display,u32 points_mask)154 int icl_pcode_restrict_qgv_points(struct intel_display *display,
155 				  u32 points_mask)
156 {
157 	struct drm_i915_private *i915 = to_i915(display->drm);
158 	int ret;
159 
160 	if (DISPLAY_VER(display) >= 14)
161 		return 0;
162 
163 	/* bspec says to keep retrying for at least 1 ms */
164 	ret = skl_pcode_request(&i915->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
165 				points_mask,
166 				ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
167 				ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
168 				1);
169 
170 	if (ret < 0) {
171 		drm_err(display->drm,
172 			"Failed to disable qgv points (0x%x) points: 0x%x\n",
173 			ret, points_mask);
174 		return ret;
175 	}
176 
177 	display->sagv.status = is_sagv_enabled(display, points_mask) ?
178 		I915_SAGV_ENABLED : I915_SAGV_DISABLED;
179 
180 	return 0;
181 }
182 
mtl_read_qgv_point_info(struct intel_display * display,struct intel_qgv_point * sp,int point)183 static int mtl_read_qgv_point_info(struct intel_display *display,
184 				   struct intel_qgv_point *sp, int point)
185 {
186 	struct drm_i915_private *i915 = to_i915(display->drm);
187 	u32 val, val2;
188 	u16 dclk;
189 
190 	val = intel_uncore_read(&i915->uncore,
191 				MTL_MEM_SS_INFO_QGV_POINT_LOW(point));
192 	val2 = intel_uncore_read(&i915->uncore,
193 				 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point));
194 	dclk = REG_FIELD_GET(MTL_DCLK_MASK, val);
195 	sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000);
196 	sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val);
197 	sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val);
198 
199 	sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2);
200 	sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2);
201 
202 	sp->t_rc = sp->t_rp + sp->t_ras;
203 
204 	return 0;
205 }
206 
207 static int
intel_read_qgv_point_info(struct intel_display * display,struct intel_qgv_point * sp,int point)208 intel_read_qgv_point_info(struct intel_display *display,
209 			  struct intel_qgv_point *sp,
210 			  int point)
211 {
212 	if (DISPLAY_VER(display) >= 14)
213 		return mtl_read_qgv_point_info(display, sp, point);
214 	else if (display->platform.dg1)
215 		return dg1_mchbar_read_qgv_point_info(display, sp, point);
216 	else
217 		return icl_pcode_read_qgv_point_info(display, sp, point);
218 }
219 
icl_get_qgv_points(struct intel_display * display,struct intel_qgv_info * qi,bool is_y_tile)220 static int icl_get_qgv_points(struct intel_display *display,
221 			      struct intel_qgv_info *qi,
222 			      bool is_y_tile)
223 {
224 	struct drm_i915_private *i915 = to_i915(display->drm);
225 	const struct dram_info *dram_info = &i915->dram_info;
226 	int i, ret;
227 
228 	qi->num_points = dram_info->num_qgv_points;
229 	qi->num_psf_points = dram_info->num_psf_gv_points;
230 
231 	if (DISPLAY_VER(display) >= 14) {
232 		switch (dram_info->type) {
233 		case INTEL_DRAM_DDR4:
234 			qi->t_bl = 4;
235 			qi->max_numchannels = 2;
236 			qi->channel_width = 64;
237 			qi->deinterleave = 2;
238 			break;
239 		case INTEL_DRAM_DDR5:
240 			qi->t_bl = 8;
241 			qi->max_numchannels = 4;
242 			qi->channel_width = 32;
243 			qi->deinterleave = 2;
244 			break;
245 		case INTEL_DRAM_LPDDR4:
246 		case INTEL_DRAM_LPDDR5:
247 			qi->t_bl = 16;
248 			qi->max_numchannels = 8;
249 			qi->channel_width = 16;
250 			qi->deinterleave = 4;
251 			break;
252 		case INTEL_DRAM_GDDR:
253 		case INTEL_DRAM_GDDR_ECC:
254 			qi->channel_width = 32;
255 			break;
256 		default:
257 			MISSING_CASE(dram_info->type);
258 			return -EINVAL;
259 		}
260 	} else if (DISPLAY_VER(display) >= 12) {
261 		switch (dram_info->type) {
262 		case INTEL_DRAM_DDR4:
263 			qi->t_bl = is_y_tile ? 8 : 4;
264 			qi->max_numchannels = 2;
265 			qi->channel_width = 64;
266 			qi->deinterleave = is_y_tile ? 1 : 2;
267 			break;
268 		case INTEL_DRAM_DDR5:
269 			qi->t_bl = is_y_tile ? 16 : 8;
270 			qi->max_numchannels = 4;
271 			qi->channel_width = 32;
272 			qi->deinterleave = is_y_tile ? 1 : 2;
273 			break;
274 		case INTEL_DRAM_LPDDR4:
275 			if (display->platform.rocketlake) {
276 				qi->t_bl = 8;
277 				qi->max_numchannels = 4;
278 				qi->channel_width = 32;
279 				qi->deinterleave = 2;
280 				break;
281 			}
282 			fallthrough;
283 		case INTEL_DRAM_LPDDR5:
284 			qi->t_bl = 16;
285 			qi->max_numchannels = 8;
286 			qi->channel_width = 16;
287 			qi->deinterleave = is_y_tile ? 2 : 4;
288 			break;
289 		default:
290 			qi->t_bl = 16;
291 			qi->max_numchannels = 1;
292 			break;
293 		}
294 	} else if (DISPLAY_VER(display) == 11) {
295 		qi->t_bl = dram_info->type == INTEL_DRAM_DDR4 ? 4 : 8;
296 		qi->max_numchannels = 1;
297 	}
298 
299 	if (drm_WARN_ON(display->drm,
300 			qi->num_points > ARRAY_SIZE(qi->points)))
301 		qi->num_points = ARRAY_SIZE(qi->points);
302 
303 	for (i = 0; i < qi->num_points; i++) {
304 		struct intel_qgv_point *sp = &qi->points[i];
305 
306 		ret = intel_read_qgv_point_info(display, sp, i);
307 		if (ret) {
308 			drm_dbg_kms(display->drm, "Could not read QGV %d info\n", i);
309 			return ret;
310 		}
311 
312 		drm_dbg_kms(display->drm,
313 			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
314 			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
315 			    sp->t_rcd, sp->t_rc);
316 	}
317 
318 	if (qi->num_psf_points > 0) {
319 		ret = adls_pcode_read_psf_gv_point_info(display, qi->psf_points);
320 		if (ret) {
321 			drm_err(display->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
322 			qi->num_psf_points = 0;
323 		}
324 
325 		for (i = 0; i < qi->num_psf_points; i++)
326 			drm_dbg_kms(display->drm,
327 				    "PSF GV %d: CLK=%d \n",
328 				    i, qi->psf_points[i].clk);
329 	}
330 
331 	return 0;
332 }
333 
adl_calc_psf_bw(int clk)334 static int adl_calc_psf_bw(int clk)
335 {
336 	/*
337 	 * clk is multiples of 16.666MHz (100/6)
338 	 * According to BSpec PSF GV bandwidth is
339 	 * calculated as BW = 64 * clk * 16.666Mhz
340 	 */
341 	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
342 }
343 
icl_sagv_max_dclk(const struct intel_qgv_info * qi)344 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
345 {
346 	u16 dclk = 0;
347 	int i;
348 
349 	for (i = 0; i < qi->num_points; i++)
350 		dclk = max(dclk, qi->points[i].dclk);
351 
352 	return dclk;
353 }
354 
355 struct intel_sa_info {
356 	u16 displayrtids;
357 	u8 deburst, deprogbwlimit, derating;
358 };
359 
360 static const struct intel_sa_info icl_sa_info = {
361 	.deburst = 8,
362 	.deprogbwlimit = 25, /* GB/s */
363 	.displayrtids = 128,
364 	.derating = 10,
365 };
366 
367 static const struct intel_sa_info tgl_sa_info = {
368 	.deburst = 16,
369 	.deprogbwlimit = 34, /* GB/s */
370 	.displayrtids = 256,
371 	.derating = 10,
372 };
373 
374 static const struct intel_sa_info rkl_sa_info = {
375 	.deburst = 8,
376 	.deprogbwlimit = 20, /* GB/s */
377 	.displayrtids = 128,
378 	.derating = 10,
379 };
380 
381 static const struct intel_sa_info adls_sa_info = {
382 	.deburst = 16,
383 	.deprogbwlimit = 38, /* GB/s */
384 	.displayrtids = 256,
385 	.derating = 10,
386 };
387 
388 static const struct intel_sa_info adlp_sa_info = {
389 	.deburst = 16,
390 	.deprogbwlimit = 38, /* GB/s */
391 	.displayrtids = 256,
392 	.derating = 20,
393 };
394 
395 static const struct intel_sa_info mtl_sa_info = {
396 	.deburst = 32,
397 	.deprogbwlimit = 38, /* GB/s */
398 	.displayrtids = 256,
399 	.derating = 10,
400 };
401 
402 static const struct intel_sa_info xe2_hpd_sa_info = {
403 	.derating = 30,
404 	.deprogbwlimit = 53,
405 	/* Other values not used by simplified algorithm */
406 };
407 
408 static const struct intel_sa_info xe2_hpd_ecc_sa_info = {
409 	.derating = 45,
410 	.deprogbwlimit = 53,
411 	/* Other values not used by simplified algorithm */
412 };
413 
414 static const struct intel_sa_info xe3lpd_sa_info = {
415 	.deburst = 32,
416 	.deprogbwlimit = 65, /* GB/s */
417 	.displayrtids = 256,
418 	.derating = 10,
419 };
420 
icl_get_bw_info(struct intel_display * display,const struct intel_sa_info * sa)421 static int icl_get_bw_info(struct intel_display *display, const struct intel_sa_info *sa)
422 {
423 	struct drm_i915_private *i915 = to_i915(display->drm);
424 	struct intel_qgv_info qi = {};
425 	bool is_y_tile = true; /* assume y tile may be used */
426 	int num_channels = max_t(u8, 1, i915->dram_info.num_channels);
427 	int ipqdepth, ipqdepthpch = 16;
428 	int dclk_max;
429 	int maxdebw;
430 	int num_groups = ARRAY_SIZE(display->bw.max);
431 	int i, ret;
432 
433 	ret = icl_get_qgv_points(display, &qi, is_y_tile);
434 	if (ret) {
435 		drm_dbg_kms(display->drm,
436 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
437 		return ret;
438 	}
439 
440 	dclk_max = icl_sagv_max_dclk(&qi);
441 	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
442 	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
443 	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
444 
445 	for (i = 0; i < num_groups; i++) {
446 		struct intel_bw_info *bi = &display->bw.max[i];
447 		int clpchgroup;
448 		int j;
449 
450 		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
451 		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
452 
453 		bi->num_qgv_points = qi.num_points;
454 		bi->num_psf_gv_points = qi.num_psf_points;
455 
456 		for (j = 0; j < qi.num_points; j++) {
457 			const struct intel_qgv_point *sp = &qi.points[j];
458 			int ct, bw;
459 
460 			/*
461 			 * Max row cycle time
462 			 *
463 			 * FIXME what is the logic behind the
464 			 * assumed burst length?
465 			 */
466 			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
467 				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
468 			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
469 
470 			bi->deratedbw[j] = min(maxdebw,
471 					       bw * (100 - sa->derating) / 100);
472 
473 			drm_dbg_kms(display->drm,
474 				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
475 				    i, j, bi->num_planes, bi->deratedbw[j]);
476 		}
477 	}
478 	/*
479 	 * In case if SAGV is disabled in BIOS, we always get 1
480 	 * SAGV point, but we can't send PCode commands to restrict it
481 	 * as it will fail and pointless anyway.
482 	 */
483 	if (qi.num_points == 1)
484 		display->sagv.status = I915_SAGV_NOT_CONTROLLED;
485 	else
486 		display->sagv.status = I915_SAGV_ENABLED;
487 
488 	return 0;
489 }
490 
tgl_get_bw_info(struct intel_display * display,const struct intel_sa_info * sa)491 static int tgl_get_bw_info(struct intel_display *display, const struct intel_sa_info *sa)
492 {
493 	struct drm_i915_private *i915 = to_i915(display->drm);
494 	struct intel_qgv_info qi = {};
495 	const struct dram_info *dram_info = &i915->dram_info;
496 	bool is_y_tile = true; /* assume y tile may be used */
497 	int num_channels = max_t(u8, 1, dram_info->num_channels);
498 	int ipqdepth, ipqdepthpch = 16;
499 	int dclk_max;
500 	int maxdebw, peakbw;
501 	int clperchgroup;
502 	int num_groups = ARRAY_SIZE(display->bw.max);
503 	int i, ret;
504 
505 	ret = icl_get_qgv_points(display, &qi, is_y_tile);
506 	if (ret) {
507 		drm_dbg_kms(display->drm,
508 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
509 		return ret;
510 	}
511 
512 	if (DISPLAY_VER(display) < 14 &&
513 	    (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5))
514 		num_channels *= 2;
515 
516 	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
517 
518 	if (num_channels < qi.max_numchannels && DISPLAY_VER(display) >= 12)
519 		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
520 
521 	if (DISPLAY_VER(display) >= 12 && num_channels > qi.max_numchannels)
522 		drm_warn(display->drm, "Number of channels exceeds max number of channels.");
523 	if (qi.max_numchannels != 0)
524 		num_channels = min_t(u8, num_channels, qi.max_numchannels);
525 
526 	dclk_max = icl_sagv_max_dclk(&qi);
527 
528 	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
529 	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 100);
530 
531 	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
532 	/*
533 	 * clperchgroup = 4kpagespermempage * clperchperblock,
534 	 * clperchperblock = 8 / num_channels * interleave
535 	 */
536 	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
537 
538 	for (i = 0; i < num_groups; i++) {
539 		struct intel_bw_info *bi = &display->bw.max[i];
540 		struct intel_bw_info *bi_next;
541 		int clpchgroup;
542 		int j;
543 
544 		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
545 
546 		if (i < num_groups - 1) {
547 			bi_next = &display->bw.max[i + 1];
548 
549 			if (clpchgroup < clperchgroup)
550 				bi_next->num_planes = (ipqdepth - clpchgroup) /
551 						       clpchgroup + 1;
552 			else
553 				bi_next->num_planes = 0;
554 		}
555 
556 		bi->num_qgv_points = qi.num_points;
557 		bi->num_psf_gv_points = qi.num_psf_points;
558 
559 		for (j = 0; j < qi.num_points; j++) {
560 			const struct intel_qgv_point *sp = &qi.points[j];
561 			int ct, bw;
562 
563 			/*
564 			 * Max row cycle time
565 			 *
566 			 * FIXME what is the logic behind the
567 			 * assumed burst length?
568 			 */
569 			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
570 				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
571 			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
572 
573 			bi->deratedbw[j] = min(maxdebw,
574 					       bw * (100 - sa->derating) / 100);
575 			bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk *
576 							  num_channels *
577 							  qi.channel_width, 8);
578 
579 			drm_dbg_kms(display->drm,
580 				    "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n",
581 				    i, j, bi->num_planes, bi->deratedbw[j],
582 				    bi->peakbw[j]);
583 		}
584 
585 		for (j = 0; j < qi.num_psf_points; j++) {
586 			const struct intel_psf_gv_point *sp = &qi.psf_points[j];
587 
588 			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
589 
590 			drm_dbg_kms(display->drm,
591 				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
592 				    i, j, bi->num_planes, bi->psf_bw[j]);
593 		}
594 	}
595 
596 	/*
597 	 * In case if SAGV is disabled in BIOS, we always get 1
598 	 * SAGV point, but we can't send PCode commands to restrict it
599 	 * as it will fail and pointless anyway.
600 	 */
601 	if (qi.num_points == 1)
602 		display->sagv.status = I915_SAGV_NOT_CONTROLLED;
603 	else
604 		display->sagv.status = I915_SAGV_ENABLED;
605 
606 	return 0;
607 }
608 
dg2_get_bw_info(struct intel_display * display)609 static void dg2_get_bw_info(struct intel_display *display)
610 {
611 	unsigned int deratedbw = display->platform.dg2_g11 ? 38000 : 50000;
612 	int num_groups = ARRAY_SIZE(display->bw.max);
613 	int i;
614 
615 	/*
616 	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
617 	 * that doesn't depend on the number of planes enabled. So fill all the
618 	 * plane group with constant bw information for uniformity with other
619 	 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
620 	 * whereas DG2-G11 platforms have 38 GB/s.
621 	 */
622 	for (i = 0; i < num_groups; i++) {
623 		struct intel_bw_info *bi = &display->bw.max[i];
624 
625 		bi->num_planes = 1;
626 		/* Need only one dummy QGV point per group */
627 		bi->num_qgv_points = 1;
628 		bi->deratedbw[0] = deratedbw;
629 	}
630 
631 	display->sagv.status = I915_SAGV_NOT_CONTROLLED;
632 }
633 
xe2_hpd_get_bw_info(struct intel_display * display,const struct intel_sa_info * sa)634 static int xe2_hpd_get_bw_info(struct intel_display *display,
635 			       const struct intel_sa_info *sa)
636 {
637 	struct drm_i915_private *i915 = to_i915(display->drm);
638 	struct intel_qgv_info qi = {};
639 	int num_channels = i915->dram_info.num_channels;
640 	int peakbw, maxdebw;
641 	int ret, i;
642 
643 	ret = icl_get_qgv_points(display, &qi, true);
644 	if (ret) {
645 		drm_dbg_kms(display->drm,
646 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
647 		return ret;
648 	}
649 
650 	peakbw = num_channels * qi.channel_width / 8 * icl_sagv_max_dclk(&qi);
651 	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * DEPROGBWPCLIMIT / 10);
652 
653 	for (i = 0; i < qi.num_points; i++) {
654 		const struct intel_qgv_point *point = &qi.points[i];
655 		int bw = num_channels * (qi.channel_width / 8) * point->dclk;
656 
657 		display->bw.max[0].deratedbw[i] =
658 			min(maxdebw, (100 - sa->derating) * bw / 100);
659 		display->bw.max[0].peakbw[i] = bw;
660 
661 		drm_dbg_kms(display->drm, "QGV %d: deratedbw=%u peakbw: %u\n",
662 			    i, display->bw.max[0].deratedbw[i],
663 			    display->bw.max[0].peakbw[i]);
664 	}
665 
666 	/* Bandwidth does not depend on # of planes; set all groups the same */
667 	display->bw.max[0].num_planes = 1;
668 	display->bw.max[0].num_qgv_points = qi.num_points;
669 	for (i = 1; i < ARRAY_SIZE(display->bw.max); i++)
670 		memcpy(&display->bw.max[i], &display->bw.max[0],
671 		       sizeof(display->bw.max[0]));
672 
673 	/*
674 	 * Xe2_HPD should always have exactly two QGV points representing
675 	 * battery and plugged-in operation.
676 	 */
677 	drm_WARN_ON(display->drm, qi.num_points != 2);
678 	display->sagv.status = I915_SAGV_ENABLED;
679 
680 	return 0;
681 }
682 
icl_max_bw_index(struct intel_display * display,int num_planes,int qgv_point)683 static unsigned int icl_max_bw_index(struct intel_display *display,
684 				     int num_planes, int qgv_point)
685 {
686 	int i;
687 
688 	/*
689 	 * Let's return max bw for 0 planes
690 	 */
691 	num_planes = max(1, num_planes);
692 
693 	for (i = 0; i < ARRAY_SIZE(display->bw.max); i++) {
694 		const struct intel_bw_info *bi =
695 			&display->bw.max[i];
696 
697 		/*
698 		 * Pcode will not expose all QGV points when
699 		 * SAGV is forced to off/min/med/max.
700 		 */
701 		if (qgv_point >= bi->num_qgv_points)
702 			return UINT_MAX;
703 
704 		if (num_planes >= bi->num_planes)
705 			return i;
706 	}
707 
708 	return UINT_MAX;
709 }
710 
tgl_max_bw_index(struct intel_display * display,int num_planes,int qgv_point)711 static unsigned int tgl_max_bw_index(struct intel_display *display,
712 				     int num_planes, int qgv_point)
713 {
714 	int i;
715 
716 	/*
717 	 * Let's return max bw for 0 planes
718 	 */
719 	num_planes = max(1, num_planes);
720 
721 	for (i = ARRAY_SIZE(display->bw.max) - 1; i >= 0; i--) {
722 		const struct intel_bw_info *bi =
723 			&display->bw.max[i];
724 
725 		/*
726 		 * Pcode will not expose all QGV points when
727 		 * SAGV is forced to off/min/med/max.
728 		 */
729 		if (qgv_point >= bi->num_qgv_points)
730 			return UINT_MAX;
731 
732 		if (num_planes <= bi->num_planes)
733 			return i;
734 	}
735 
736 	return 0;
737 }
738 
adl_psf_bw(struct intel_display * display,int psf_gv_point)739 static unsigned int adl_psf_bw(struct intel_display *display,
740 			       int psf_gv_point)
741 {
742 	const struct intel_bw_info *bi =
743 			&display->bw.max[0];
744 
745 	return bi->psf_bw[psf_gv_point];
746 }
747 
icl_qgv_bw(struct intel_display * display,int num_active_planes,int qgv_point)748 static unsigned int icl_qgv_bw(struct intel_display *display,
749 			       int num_active_planes, int qgv_point)
750 {
751 	unsigned int idx;
752 
753 	if (DISPLAY_VER(display) >= 12)
754 		idx = tgl_max_bw_index(display, num_active_planes, qgv_point);
755 	else
756 		idx = icl_max_bw_index(display, num_active_planes, qgv_point);
757 
758 	if (idx >= ARRAY_SIZE(display->bw.max))
759 		return 0;
760 
761 	return display->bw.max[idx].deratedbw[qgv_point];
762 }
763 
intel_bw_init_hw(struct intel_display * display)764 void intel_bw_init_hw(struct intel_display *display)
765 {
766 	const struct dram_info *dram_info = &to_i915(display->drm)->dram_info;
767 
768 	if (!HAS_DISPLAY(display))
769 		return;
770 
771 	if (DISPLAY_VER(display) >= 30)
772 		tgl_get_bw_info(display, &xe3lpd_sa_info);
773 	else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx &&
774 		 dram_info->type == INTEL_DRAM_GDDR_ECC)
775 		xe2_hpd_get_bw_info(display, &xe2_hpd_ecc_sa_info);
776 	else if (DISPLAY_VERx100(display) >= 1401 && display->platform.dgfx)
777 		xe2_hpd_get_bw_info(display, &xe2_hpd_sa_info);
778 	else if (DISPLAY_VER(display) >= 14)
779 		tgl_get_bw_info(display, &mtl_sa_info);
780 	else if (display->platform.dg2)
781 		dg2_get_bw_info(display);
782 	else if (display->platform.alderlake_p)
783 		tgl_get_bw_info(display, &adlp_sa_info);
784 	else if (display->platform.alderlake_s)
785 		tgl_get_bw_info(display, &adls_sa_info);
786 	else if (display->platform.rocketlake)
787 		tgl_get_bw_info(display, &rkl_sa_info);
788 	else if (DISPLAY_VER(display) == 12)
789 		tgl_get_bw_info(display, &tgl_sa_info);
790 	else if (DISPLAY_VER(display) == 11)
791 		icl_get_bw_info(display, &icl_sa_info);
792 }
793 
intel_bw_crtc_num_active_planes(const struct intel_crtc_state * crtc_state)794 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
795 {
796 	/*
797 	 * We assume cursors are small enough
798 	 * to not not cause bandwidth problems.
799 	 */
800 	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
801 }
802 
intel_bw_crtc_data_rate(const struct intel_crtc_state * crtc_state)803 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
804 {
805 	struct intel_display *display = to_intel_display(crtc_state);
806 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
807 	unsigned int data_rate = 0;
808 	enum plane_id plane_id;
809 
810 	for_each_plane_id_on_crtc(crtc, plane_id) {
811 		/*
812 		 * We assume cursors are small enough
813 		 * to not not cause bandwidth problems.
814 		 */
815 		if (plane_id == PLANE_CURSOR)
816 			continue;
817 
818 		data_rate += crtc_state->data_rate[plane_id];
819 
820 		if (DISPLAY_VER(display) < 11)
821 			data_rate += crtc_state->data_rate_y[plane_id];
822 	}
823 
824 	return data_rate;
825 }
826 
827 /* "Maximum Pipe Read Bandwidth" */
intel_bw_crtc_min_cdclk(struct intel_display * display,unsigned int data_rate)828 static int intel_bw_crtc_min_cdclk(struct intel_display *display,
829 				   unsigned int data_rate)
830 {
831 	if (DISPLAY_VER(display) < 12)
832 		return 0;
833 
834 	return DIV_ROUND_UP_ULL(mul_u32_u32(data_rate, 10), 512);
835 }
836 
intel_bw_num_active_planes(struct intel_display * display,const struct intel_bw_state * bw_state)837 static unsigned int intel_bw_num_active_planes(struct intel_display *display,
838 					       const struct intel_bw_state *bw_state)
839 {
840 	unsigned int num_active_planes = 0;
841 	enum pipe pipe;
842 
843 	for_each_pipe(display, pipe)
844 		num_active_planes += bw_state->num_active_planes[pipe];
845 
846 	return num_active_planes;
847 }
848 
intel_bw_data_rate(struct intel_display * display,const struct intel_bw_state * bw_state)849 static unsigned int intel_bw_data_rate(struct intel_display *display,
850 				       const struct intel_bw_state *bw_state)
851 {
852 	struct drm_i915_private *i915 = to_i915(display->drm);
853 	unsigned int data_rate = 0;
854 	enum pipe pipe;
855 
856 	for_each_pipe(display, pipe)
857 		data_rate += bw_state->data_rate[pipe];
858 
859 	if (DISPLAY_VER(display) >= 13 && i915_vtd_active(i915))
860 		data_rate = DIV_ROUND_UP(data_rate * 105, 100);
861 
862 	return data_rate;
863 }
864 
865 struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state * state)866 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
867 {
868 	struct intel_display *display = to_intel_display(state);
869 	struct intel_global_state *bw_state;
870 
871 	bw_state = intel_atomic_get_old_global_obj_state(state, &display->bw.obj);
872 
873 	return to_intel_bw_state(bw_state);
874 }
875 
876 struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state * state)877 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
878 {
879 	struct intel_display *display = to_intel_display(state);
880 	struct intel_global_state *bw_state;
881 
882 	bw_state = intel_atomic_get_new_global_obj_state(state, &display->bw.obj);
883 
884 	return to_intel_bw_state(bw_state);
885 }
886 
887 struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state * state)888 intel_atomic_get_bw_state(struct intel_atomic_state *state)
889 {
890 	struct intel_display *display = to_intel_display(state);
891 	struct intel_global_state *bw_state;
892 
893 	bw_state = intel_atomic_get_global_obj_state(state, &display->bw.obj);
894 	if (IS_ERR(bw_state))
895 		return ERR_CAST(bw_state);
896 
897 	return to_intel_bw_state(bw_state);
898 }
899 
icl_max_bw_qgv_point_mask(struct intel_display * display,int num_active_planes)900 static unsigned int icl_max_bw_qgv_point_mask(struct intel_display *display,
901 					      int num_active_planes)
902 {
903 	unsigned int num_qgv_points = display->bw.max[0].num_qgv_points;
904 	unsigned int max_bw_point = 0;
905 	unsigned int max_bw = 0;
906 	int i;
907 
908 	for (i = 0; i < num_qgv_points; i++) {
909 		unsigned int max_data_rate =
910 			icl_qgv_bw(display, num_active_planes, i);
911 
912 		/*
913 		 * We need to know which qgv point gives us
914 		 * maximum bandwidth in order to disable SAGV
915 		 * if we find that we exceed SAGV block time
916 		 * with watermarks. By that moment we already
917 		 * have those, as it is calculated earlier in
918 		 * intel_atomic_check,
919 		 */
920 		if (max_data_rate > max_bw) {
921 			max_bw_point = BIT(i);
922 			max_bw = max_data_rate;
923 		}
924 	}
925 
926 	return max_bw_point;
927 }
928 
icl_prepare_qgv_points_mask(struct intel_display * display,unsigned int qgv_points,unsigned int psf_points)929 static u16 icl_prepare_qgv_points_mask(struct intel_display *display,
930 				       unsigned int qgv_points,
931 				       unsigned int psf_points)
932 {
933 	return ~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
934 		 ADLS_PCODE_REQ_PSF_PT(psf_points)) & icl_qgv_points_mask(display);
935 }
936 
icl_max_bw_psf_gv_point_mask(struct intel_display * display)937 static unsigned int icl_max_bw_psf_gv_point_mask(struct intel_display *display)
938 {
939 	unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points;
940 	unsigned int max_bw_point_mask = 0;
941 	unsigned int max_bw = 0;
942 	int i;
943 
944 	for (i = 0; i < num_psf_gv_points; i++) {
945 		unsigned int max_data_rate = adl_psf_bw(display, i);
946 
947 		if (max_data_rate > max_bw) {
948 			max_bw_point_mask = BIT(i);
949 			max_bw = max_data_rate;
950 		} else if (max_data_rate == max_bw) {
951 			max_bw_point_mask |= BIT(i);
952 		}
953 	}
954 
955 	return max_bw_point_mask;
956 }
957 
icl_force_disable_sagv(struct intel_display * display,struct intel_bw_state * bw_state)958 static void icl_force_disable_sagv(struct intel_display *display,
959 				   struct intel_bw_state *bw_state)
960 {
961 	unsigned int qgv_points = icl_max_bw_qgv_point_mask(display, 0);
962 	unsigned int psf_points = icl_max_bw_psf_gv_point_mask(display);
963 
964 	bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display,
965 								qgv_points,
966 								psf_points);
967 
968 	drm_dbg_kms(display->drm, "Forcing SAGV disable: mask 0x%x\n",
969 		    bw_state->qgv_points_mask);
970 
971 	icl_pcode_restrict_qgv_points(display, bw_state->qgv_points_mask);
972 }
973 
mtl_find_qgv_points(struct intel_display * display,unsigned int data_rate,unsigned int num_active_planes,struct intel_bw_state * new_bw_state)974 static int mtl_find_qgv_points(struct intel_display *display,
975 			       unsigned int data_rate,
976 			       unsigned int num_active_planes,
977 			       struct intel_bw_state *new_bw_state)
978 {
979 	unsigned int best_rate = UINT_MAX;
980 	unsigned int num_qgv_points = display->bw.max[0].num_qgv_points;
981 	unsigned int qgv_peak_bw  = 0;
982 	int i;
983 	int ret;
984 
985 	ret = intel_atomic_lock_global_state(&new_bw_state->base);
986 	if (ret)
987 		return ret;
988 
989 	/*
990 	 * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's
991 	 * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is
992 	 * not enabled. PM Demand code will clamp the value for the register
993 	 */
994 	if (!intel_can_enable_sagv(display, new_bw_state)) {
995 		new_bw_state->qgv_point_peakbw = U16_MAX;
996 		drm_dbg_kms(display->drm, "No SAGV, use UINT_MAX as peak bw.");
997 		return 0;
998 	}
999 
1000 	/*
1001 	 * Find the best QGV point by comparing the data_rate with max data rate
1002 	 * offered per plane group
1003 	 */
1004 	for (i = 0; i < num_qgv_points; i++) {
1005 		unsigned int bw_index =
1006 			tgl_max_bw_index(display, num_active_planes, i);
1007 		unsigned int max_data_rate;
1008 
1009 		if (bw_index >= ARRAY_SIZE(display->bw.max))
1010 			continue;
1011 
1012 		max_data_rate = display->bw.max[bw_index].deratedbw[i];
1013 
1014 		if (max_data_rate < data_rate)
1015 			continue;
1016 
1017 		if (max_data_rate - data_rate < best_rate) {
1018 			best_rate = max_data_rate - data_rate;
1019 			qgv_peak_bw = display->bw.max[bw_index].peakbw[i];
1020 		}
1021 
1022 		drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n",
1023 			    i, max_data_rate, data_rate, qgv_peak_bw);
1024 	}
1025 
1026 	drm_dbg_kms(display->drm, "Matching peaks QGV bw: %d for required data rate: %d\n",
1027 		    qgv_peak_bw, data_rate);
1028 
1029 	/*
1030 	 * The display configuration cannot be supported if no QGV point
1031 	 * satisfying the required data rate is found
1032 	 */
1033 	if (qgv_peak_bw == 0) {
1034 		drm_dbg_kms(display->drm, "No QGV points for bw %d for display configuration(%d active planes).\n",
1035 			    data_rate, num_active_planes);
1036 		return -EINVAL;
1037 	}
1038 
1039 	/* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */
1040 	new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100);
1041 
1042 	return 0;
1043 }
1044 
icl_find_qgv_points(struct intel_display * display,unsigned int data_rate,unsigned int num_active_planes,const struct intel_bw_state * old_bw_state,struct intel_bw_state * new_bw_state)1045 static int icl_find_qgv_points(struct intel_display *display,
1046 			       unsigned int data_rate,
1047 			       unsigned int num_active_planes,
1048 			       const struct intel_bw_state *old_bw_state,
1049 			       struct intel_bw_state *new_bw_state)
1050 {
1051 	unsigned int num_psf_gv_points = display->bw.max[0].num_psf_gv_points;
1052 	unsigned int num_qgv_points = display->bw.max[0].num_qgv_points;
1053 	u16 psf_points = 0;
1054 	u16 qgv_points = 0;
1055 	int i;
1056 	int ret;
1057 
1058 	ret = intel_atomic_lock_global_state(&new_bw_state->base);
1059 	if (ret)
1060 		return ret;
1061 
1062 	for (i = 0; i < num_qgv_points; i++) {
1063 		unsigned int max_data_rate = icl_qgv_bw(display,
1064 							num_active_planes, i);
1065 		if (max_data_rate >= data_rate)
1066 			qgv_points |= BIT(i);
1067 
1068 		drm_dbg_kms(display->drm, "QGV point %d: max bw %d required %d\n",
1069 			    i, max_data_rate, data_rate);
1070 	}
1071 
1072 	for (i = 0; i < num_psf_gv_points; i++) {
1073 		unsigned int max_data_rate = adl_psf_bw(display, i);
1074 
1075 		if (max_data_rate >= data_rate)
1076 			psf_points |= BIT(i);
1077 
1078 		drm_dbg_kms(display->drm, "PSF GV point %d: max bw %d"
1079 			    " required %d\n",
1080 			    i, max_data_rate, data_rate);
1081 	}
1082 
1083 	/*
1084 	 * BSpec states that we always should have at least one allowed point
1085 	 * left, so if we couldn't - simply reject the configuration for obvious
1086 	 * reasons.
1087 	 */
1088 	if (qgv_points == 0) {
1089 		drm_dbg_kms(display->drm, "No QGV points provide sufficient memory"
1090 			    " bandwidth %d for display configuration(%d active planes).\n",
1091 			    data_rate, num_active_planes);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (num_psf_gv_points > 0 && psf_points == 0) {
1096 		drm_dbg_kms(display->drm, "No PSF GV points provide sufficient memory"
1097 			    " bandwidth %d for display configuration(%d active planes).\n",
1098 			    data_rate, num_active_planes);
1099 		return -EINVAL;
1100 	}
1101 
1102 	/*
1103 	 * Leave only single point with highest bandwidth, if
1104 	 * we can't enable SAGV due to the increased memory latency it may
1105 	 * cause.
1106 	 */
1107 	if (!intel_can_enable_sagv(display, new_bw_state)) {
1108 		qgv_points = icl_max_bw_qgv_point_mask(display, num_active_planes);
1109 		drm_dbg_kms(display->drm, "No SAGV, using single QGV point mask 0x%x\n",
1110 			    qgv_points);
1111 	}
1112 
1113 	/*
1114 	 * We store the ones which need to be masked as that is what PCode
1115 	 * actually accepts as a parameter.
1116 	 */
1117 	new_bw_state->qgv_points_mask = icl_prepare_qgv_points_mask(display,
1118 								    qgv_points,
1119 								    psf_points);
1120 	/*
1121 	 * If the actual mask had changed we need to make sure that
1122 	 * the commits are serialized(in case this is a nomodeset, nonblocking)
1123 	 */
1124 	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
1125 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
1126 		if (ret)
1127 			return ret;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
intel_bw_check_qgv_points(struct intel_display * display,const struct intel_bw_state * old_bw_state,struct intel_bw_state * new_bw_state)1133 static int intel_bw_check_qgv_points(struct intel_display *display,
1134 				     const struct intel_bw_state *old_bw_state,
1135 				     struct intel_bw_state *new_bw_state)
1136 {
1137 	unsigned int data_rate = intel_bw_data_rate(display, new_bw_state);
1138 	unsigned int num_active_planes =
1139 			intel_bw_num_active_planes(display, new_bw_state);
1140 
1141 	data_rate = DIV_ROUND_UP(data_rate, 1000);
1142 
1143 	if (DISPLAY_VER(display) >= 14)
1144 		return mtl_find_qgv_points(display, data_rate, num_active_planes,
1145 					   new_bw_state);
1146 	else
1147 		return icl_find_qgv_points(display, data_rate, num_active_planes,
1148 					   old_bw_state, new_bw_state);
1149 }
1150 
intel_dbuf_bw_changed(struct intel_display * display,const struct intel_dbuf_bw * old_dbuf_bw,const struct intel_dbuf_bw * new_dbuf_bw)1151 static bool intel_dbuf_bw_changed(struct intel_display *display,
1152 				  const struct intel_dbuf_bw *old_dbuf_bw,
1153 				  const struct intel_dbuf_bw *new_dbuf_bw)
1154 {
1155 	enum dbuf_slice slice;
1156 
1157 	for_each_dbuf_slice(display, slice) {
1158 		if (old_dbuf_bw->max_bw[slice] != new_dbuf_bw->max_bw[slice] ||
1159 		    old_dbuf_bw->active_planes[slice] != new_dbuf_bw->active_planes[slice])
1160 			return true;
1161 	}
1162 
1163 	return false;
1164 }
1165 
intel_bw_state_changed(struct intel_display * display,const struct intel_bw_state * old_bw_state,const struct intel_bw_state * new_bw_state)1166 static bool intel_bw_state_changed(struct intel_display *display,
1167 				   const struct intel_bw_state *old_bw_state,
1168 				   const struct intel_bw_state *new_bw_state)
1169 {
1170 	enum pipe pipe;
1171 
1172 	for_each_pipe(display, pipe) {
1173 		const struct intel_dbuf_bw *old_dbuf_bw =
1174 			&old_bw_state->dbuf_bw[pipe];
1175 		const struct intel_dbuf_bw *new_dbuf_bw =
1176 			&new_bw_state->dbuf_bw[pipe];
1177 
1178 		if (intel_dbuf_bw_changed(display, old_dbuf_bw, new_dbuf_bw))
1179 			return true;
1180 
1181 		if (intel_bw_crtc_min_cdclk(display, old_bw_state->data_rate[pipe]) !=
1182 		    intel_bw_crtc_min_cdclk(display, new_bw_state->data_rate[pipe]))
1183 			return true;
1184 	}
1185 
1186 	return false;
1187 }
1188 
skl_plane_calc_dbuf_bw(struct intel_dbuf_bw * dbuf_bw,struct intel_crtc * crtc,enum plane_id plane_id,const struct skl_ddb_entry * ddb,unsigned int data_rate)1189 static void skl_plane_calc_dbuf_bw(struct intel_dbuf_bw *dbuf_bw,
1190 				   struct intel_crtc *crtc,
1191 				   enum plane_id plane_id,
1192 				   const struct skl_ddb_entry *ddb,
1193 				   unsigned int data_rate)
1194 {
1195 	struct intel_display *display = to_intel_display(crtc);
1196 	unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(display, ddb);
1197 	enum dbuf_slice slice;
1198 
1199 	/*
1200 	 * The arbiter can only really guarantee an
1201 	 * equal share of the total bw to each plane.
1202 	 */
1203 	for_each_dbuf_slice_in_mask(display, slice, dbuf_mask) {
1204 		dbuf_bw->max_bw[slice] = max(dbuf_bw->max_bw[slice], data_rate);
1205 		dbuf_bw->active_planes[slice] |= BIT(plane_id);
1206 	}
1207 }
1208 
skl_crtc_calc_dbuf_bw(struct intel_dbuf_bw * dbuf_bw,const struct intel_crtc_state * crtc_state)1209 static void skl_crtc_calc_dbuf_bw(struct intel_dbuf_bw *dbuf_bw,
1210 				  const struct intel_crtc_state *crtc_state)
1211 {
1212 	struct intel_display *display = to_intel_display(crtc_state);
1213 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1214 	enum plane_id plane_id;
1215 
1216 	memset(dbuf_bw, 0, sizeof(*dbuf_bw));
1217 
1218 	if (!crtc_state->hw.active)
1219 		return;
1220 
1221 	for_each_plane_id_on_crtc(crtc, plane_id) {
1222 		/*
1223 		 * We assume cursors are small enough
1224 		 * to not cause bandwidth problems.
1225 		 */
1226 		if (plane_id == PLANE_CURSOR)
1227 			continue;
1228 
1229 		skl_plane_calc_dbuf_bw(dbuf_bw, crtc, plane_id,
1230 				       &crtc_state->wm.skl.plane_ddb[plane_id],
1231 				       crtc_state->data_rate[plane_id]);
1232 
1233 		if (DISPLAY_VER(display) < 11)
1234 			skl_plane_calc_dbuf_bw(dbuf_bw, crtc, plane_id,
1235 					       &crtc_state->wm.skl.plane_ddb_y[plane_id],
1236 					       crtc_state->data_rate[plane_id]);
1237 	}
1238 }
1239 
1240 /* "Maximum Data Buffer Bandwidth" */
1241 static int
intel_bw_dbuf_min_cdclk(struct intel_display * display,const struct intel_bw_state * bw_state)1242 intel_bw_dbuf_min_cdclk(struct intel_display *display,
1243 			const struct intel_bw_state *bw_state)
1244 {
1245 	unsigned int total_max_bw = 0;
1246 	enum dbuf_slice slice;
1247 
1248 	for_each_dbuf_slice(display, slice) {
1249 		int num_active_planes = 0;
1250 		unsigned int max_bw = 0;
1251 		enum pipe pipe;
1252 
1253 		/*
1254 		 * The arbiter can only really guarantee an
1255 		 * equal share of the total bw to each plane.
1256 		 */
1257 		for_each_pipe(display, pipe) {
1258 			const struct intel_dbuf_bw *dbuf_bw = &bw_state->dbuf_bw[pipe];
1259 
1260 			max_bw = max(dbuf_bw->max_bw[slice], max_bw);
1261 			num_active_planes += hweight8(dbuf_bw->active_planes[slice]);
1262 		}
1263 		max_bw *= num_active_planes;
1264 
1265 		total_max_bw = max(total_max_bw, max_bw);
1266 	}
1267 
1268 	return DIV_ROUND_UP(total_max_bw, 64);
1269 }
1270 
intel_bw_min_cdclk(struct intel_display * display,const struct intel_bw_state * bw_state)1271 int intel_bw_min_cdclk(struct intel_display *display,
1272 		       const struct intel_bw_state *bw_state)
1273 {
1274 	enum pipe pipe;
1275 	int min_cdclk;
1276 
1277 	min_cdclk = intel_bw_dbuf_min_cdclk(display, bw_state);
1278 
1279 	for_each_pipe(display, pipe)
1280 		min_cdclk = max(min_cdclk,
1281 				intel_bw_crtc_min_cdclk(display,
1282 							bw_state->data_rate[pipe]));
1283 
1284 	return min_cdclk;
1285 }
1286 
intel_bw_calc_min_cdclk(struct intel_atomic_state * state,bool * need_cdclk_calc)1287 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
1288 			    bool *need_cdclk_calc)
1289 {
1290 	struct intel_display *display = to_intel_display(state);
1291 	struct intel_bw_state *new_bw_state = NULL;
1292 	const struct intel_bw_state *old_bw_state = NULL;
1293 	const struct intel_cdclk_state *cdclk_state;
1294 	const struct intel_crtc_state *old_crtc_state;
1295 	const struct intel_crtc_state *new_crtc_state;
1296 	int old_min_cdclk, new_min_cdclk;
1297 	struct intel_crtc *crtc;
1298 	int i;
1299 
1300 	if (DISPLAY_VER(display) < 9)
1301 		return 0;
1302 
1303 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
1304 					    new_crtc_state, i) {
1305 		struct intel_dbuf_bw old_dbuf_bw, new_dbuf_bw;
1306 
1307 		skl_crtc_calc_dbuf_bw(&old_dbuf_bw, old_crtc_state);
1308 		skl_crtc_calc_dbuf_bw(&new_dbuf_bw, new_crtc_state);
1309 
1310 		if (!intel_dbuf_bw_changed(display, &old_dbuf_bw, &new_dbuf_bw))
1311 			continue;
1312 
1313 		new_bw_state = intel_atomic_get_bw_state(state);
1314 		if (IS_ERR(new_bw_state))
1315 			return PTR_ERR(new_bw_state);
1316 
1317 		old_bw_state = intel_atomic_get_old_bw_state(state);
1318 
1319 		new_bw_state->dbuf_bw[crtc->pipe] = new_dbuf_bw;
1320 	}
1321 
1322 	if (!old_bw_state)
1323 		return 0;
1324 
1325 	if (intel_bw_state_changed(display, old_bw_state, new_bw_state)) {
1326 		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
1327 		if (ret)
1328 			return ret;
1329 	}
1330 
1331 	old_min_cdclk = intel_bw_min_cdclk(display, old_bw_state);
1332 	new_min_cdclk = intel_bw_min_cdclk(display, new_bw_state);
1333 
1334 	/*
1335 	 * No need to check against the cdclk state if
1336 	 * the min cdclk doesn't increase.
1337 	 *
1338 	 * Ie. we only ever increase the cdclk due to bandwidth
1339 	 * requirements. This can reduce back and forth
1340 	 * display blinking due to constant cdclk changes.
1341 	 */
1342 	if (new_min_cdclk <= old_min_cdclk)
1343 		return 0;
1344 
1345 	cdclk_state = intel_atomic_get_cdclk_state(state);
1346 	if (IS_ERR(cdclk_state))
1347 		return PTR_ERR(cdclk_state);
1348 
1349 	/*
1350 	 * No need to recalculate the cdclk state if
1351 	 * the min cdclk doesn't increase.
1352 	 *
1353 	 * Ie. we only ever increase the cdclk due to bandwidth
1354 	 * requirements. This can reduce back and forth
1355 	 * display blinking due to constant cdclk changes.
1356 	 */
1357 	if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
1358 		return 0;
1359 
1360 	drm_dbg_kms(display->drm,
1361 		    "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
1362 		    new_min_cdclk, cdclk_state->bw_min_cdclk);
1363 	*need_cdclk_calc = true;
1364 
1365 	return 0;
1366 }
1367 
intel_bw_check_data_rate(struct intel_atomic_state * state,bool * changed)1368 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
1369 {
1370 	struct intel_display *display = to_intel_display(state);
1371 	const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
1372 	struct intel_crtc *crtc;
1373 	int i;
1374 
1375 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
1376 					    new_crtc_state, i) {
1377 		unsigned int old_data_rate =
1378 			intel_bw_crtc_data_rate(old_crtc_state);
1379 		unsigned int new_data_rate =
1380 			intel_bw_crtc_data_rate(new_crtc_state);
1381 		unsigned int old_active_planes =
1382 			intel_bw_crtc_num_active_planes(old_crtc_state);
1383 		unsigned int new_active_planes =
1384 			intel_bw_crtc_num_active_planes(new_crtc_state);
1385 		struct intel_bw_state *new_bw_state;
1386 
1387 		/*
1388 		 * Avoid locking the bw state when
1389 		 * nothing significant has changed.
1390 		 */
1391 		if (old_data_rate == new_data_rate &&
1392 		    old_active_planes == new_active_planes)
1393 			continue;
1394 
1395 		new_bw_state = intel_atomic_get_bw_state(state);
1396 		if (IS_ERR(new_bw_state))
1397 			return PTR_ERR(new_bw_state);
1398 
1399 		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
1400 		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
1401 
1402 		*changed = true;
1403 
1404 		drm_dbg_kms(display->drm,
1405 			    "[CRTC:%d:%s] data rate %u num active planes %u\n",
1406 			    crtc->base.base.id, crtc->base.name,
1407 			    new_bw_state->data_rate[crtc->pipe],
1408 			    new_bw_state->num_active_planes[crtc->pipe]);
1409 	}
1410 
1411 	return 0;
1412 }
1413 
intel_bw_modeset_checks(struct intel_atomic_state * state)1414 static int intel_bw_modeset_checks(struct intel_atomic_state *state)
1415 {
1416 	struct intel_display *display = to_intel_display(state);
1417 	const struct intel_bw_state *old_bw_state;
1418 	struct intel_bw_state *new_bw_state;
1419 
1420 	if (DISPLAY_VER(display) < 9)
1421 		return 0;
1422 
1423 	new_bw_state = intel_atomic_get_bw_state(state);
1424 	if (IS_ERR(new_bw_state))
1425 		return PTR_ERR(new_bw_state);
1426 
1427 	old_bw_state = intel_atomic_get_old_bw_state(state);
1428 
1429 	new_bw_state->active_pipes =
1430 		intel_calc_active_pipes(state, old_bw_state->active_pipes);
1431 
1432 	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
1433 		int ret;
1434 
1435 		ret = intel_atomic_lock_global_state(&new_bw_state->base);
1436 		if (ret)
1437 			return ret;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
intel_bw_check_sagv_mask(struct intel_atomic_state * state)1443 static int intel_bw_check_sagv_mask(struct intel_atomic_state *state)
1444 {
1445 	struct intel_display *display = to_intel_display(state);
1446 	const struct intel_crtc_state *old_crtc_state;
1447 	const struct intel_crtc_state *new_crtc_state;
1448 	const struct intel_bw_state *old_bw_state = NULL;
1449 	struct intel_bw_state *new_bw_state = NULL;
1450 	struct intel_crtc *crtc;
1451 	int ret, i;
1452 
1453 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
1454 					    new_crtc_state, i) {
1455 		if (intel_crtc_can_enable_sagv(old_crtc_state) ==
1456 		    intel_crtc_can_enable_sagv(new_crtc_state))
1457 			continue;
1458 
1459 		new_bw_state = intel_atomic_get_bw_state(state);
1460 		if (IS_ERR(new_bw_state))
1461 			return PTR_ERR(new_bw_state);
1462 
1463 		old_bw_state = intel_atomic_get_old_bw_state(state);
1464 
1465 		if (intel_crtc_can_enable_sagv(new_crtc_state))
1466 			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
1467 		else
1468 			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
1469 	}
1470 
1471 	if (!new_bw_state)
1472 		return 0;
1473 
1474 	if (intel_can_enable_sagv(display, new_bw_state) !=
1475 	    intel_can_enable_sagv(display, old_bw_state)) {
1476 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
1477 		if (ret)
1478 			return ret;
1479 	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
1480 		ret = intel_atomic_lock_global_state(&new_bw_state->base);
1481 		if (ret)
1482 			return ret;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
intel_bw_atomic_check(struct intel_atomic_state * state,bool any_ms)1488 int intel_bw_atomic_check(struct intel_atomic_state *state, bool any_ms)
1489 {
1490 	struct intel_display *display = to_intel_display(state);
1491 	bool changed = false;
1492 	struct intel_bw_state *new_bw_state;
1493 	const struct intel_bw_state *old_bw_state;
1494 	int ret;
1495 
1496 	if (DISPLAY_VER(display) < 9)
1497 		return 0;
1498 
1499 	if (any_ms) {
1500 		ret = intel_bw_modeset_checks(state);
1501 		if (ret)
1502 			return ret;
1503 	}
1504 
1505 	ret = intel_bw_check_sagv_mask(state);
1506 	if (ret)
1507 		return ret;
1508 
1509 	/* FIXME earlier gens need some checks too */
1510 	if (DISPLAY_VER(display) < 11)
1511 		return 0;
1512 
1513 	ret = intel_bw_check_data_rate(state, &changed);
1514 	if (ret)
1515 		return ret;
1516 
1517 	old_bw_state = intel_atomic_get_old_bw_state(state);
1518 	new_bw_state = intel_atomic_get_new_bw_state(state);
1519 
1520 	if (new_bw_state &&
1521 	    intel_can_enable_sagv(display, old_bw_state) !=
1522 	    intel_can_enable_sagv(display, new_bw_state))
1523 		changed = true;
1524 
1525 	/*
1526 	 * If none of our inputs (data rates, number of active
1527 	 * planes, SAGV yes/no) changed then nothing to do here.
1528 	 */
1529 	if (!changed)
1530 		return 0;
1531 
1532 	ret = intel_bw_check_qgv_points(display, old_bw_state, new_bw_state);
1533 	if (ret)
1534 		return ret;
1535 
1536 	return 0;
1537 }
1538 
intel_bw_crtc_update(struct intel_bw_state * bw_state,const struct intel_crtc_state * crtc_state)1539 static void intel_bw_crtc_update(struct intel_bw_state *bw_state,
1540 				 const struct intel_crtc_state *crtc_state)
1541 {
1542 	struct intel_display *display = to_intel_display(crtc_state);
1543 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1544 
1545 	bw_state->data_rate[crtc->pipe] =
1546 		intel_bw_crtc_data_rate(crtc_state);
1547 	bw_state->num_active_planes[crtc->pipe] =
1548 		intel_bw_crtc_num_active_planes(crtc_state);
1549 
1550 	drm_dbg_kms(display->drm, "pipe %c data rate %u num active planes %u\n",
1551 		    pipe_name(crtc->pipe),
1552 		    bw_state->data_rate[crtc->pipe],
1553 		    bw_state->num_active_planes[crtc->pipe]);
1554 }
1555 
intel_bw_update_hw_state(struct intel_display * display)1556 void intel_bw_update_hw_state(struct intel_display *display)
1557 {
1558 	struct intel_bw_state *bw_state =
1559 		to_intel_bw_state(display->bw.obj.state);
1560 	struct intel_crtc *crtc;
1561 
1562 	if (DISPLAY_VER(display) < 9)
1563 		return;
1564 
1565 	bw_state->active_pipes = 0;
1566 	bw_state->pipe_sagv_reject = 0;
1567 
1568 	for_each_intel_crtc(display->drm, crtc) {
1569 		const struct intel_crtc_state *crtc_state =
1570 			to_intel_crtc_state(crtc->base.state);
1571 		enum pipe pipe = crtc->pipe;
1572 
1573 		if (crtc_state->hw.active)
1574 			bw_state->active_pipes |= BIT(pipe);
1575 
1576 		if (DISPLAY_VER(display) >= 11)
1577 			intel_bw_crtc_update(bw_state, crtc_state);
1578 
1579 		skl_crtc_calc_dbuf_bw(&bw_state->dbuf_bw[pipe], crtc_state);
1580 
1581 		/* initially SAGV has been forced off */
1582 		bw_state->pipe_sagv_reject |= BIT(pipe);
1583 	}
1584 }
1585 
intel_bw_crtc_disable_noatomic(struct intel_crtc * crtc)1586 void intel_bw_crtc_disable_noatomic(struct intel_crtc *crtc)
1587 {
1588 	struct intel_display *display = to_intel_display(crtc);
1589 	struct intel_bw_state *bw_state =
1590 		to_intel_bw_state(display->bw.obj.state);
1591 	enum pipe pipe = crtc->pipe;
1592 
1593 	if (DISPLAY_VER(display) < 9)
1594 		return;
1595 
1596 	bw_state->data_rate[pipe] = 0;
1597 	bw_state->num_active_planes[pipe] = 0;
1598 	memset(&bw_state->dbuf_bw[pipe], 0, sizeof(bw_state->dbuf_bw[pipe]));
1599 }
1600 
1601 static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj * obj)1602 intel_bw_duplicate_state(struct intel_global_obj *obj)
1603 {
1604 	struct intel_bw_state *state;
1605 
1606 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
1607 	if (!state)
1608 		return NULL;
1609 
1610 	return &state->base;
1611 }
1612 
intel_bw_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)1613 static void intel_bw_destroy_state(struct intel_global_obj *obj,
1614 				   struct intel_global_state *state)
1615 {
1616 	kfree(state);
1617 }
1618 
1619 static const struct intel_global_state_funcs intel_bw_funcs = {
1620 	.atomic_duplicate_state = intel_bw_duplicate_state,
1621 	.atomic_destroy_state = intel_bw_destroy_state,
1622 };
1623 
intel_bw_init(struct intel_display * display)1624 int intel_bw_init(struct intel_display *display)
1625 {
1626 	struct intel_bw_state *state;
1627 
1628 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1629 	if (!state)
1630 		return -ENOMEM;
1631 
1632 	intel_atomic_global_obj_init(display, &display->bw.obj,
1633 				     &state->base, &intel_bw_funcs);
1634 
1635 	/*
1636 	 * Limit this only if we have SAGV. And for Display version 14 onwards
1637 	 * sagv is handled though pmdemand requests
1638 	 */
1639 	if (intel_has_sagv(display) && IS_DISPLAY_VER(display, 11, 13))
1640 		icl_force_disable_sagv(display, state);
1641 
1642 	return 0;
1643 }
1644