1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
17 #include <linux/fs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/resctrl.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/user_namespace.h>
27
28 #include <uapi/linux/magic.h>
29
30 #include "internal.h"
31
32 /* Mutex to protect rdtgroup access. */
33 DEFINE_MUTEX(rdtgroup_mutex);
34
35 static struct kernfs_root *rdt_root;
36
37 struct rdtgroup rdtgroup_default;
38
39 LIST_HEAD(rdt_all_groups);
40
41 /* list of entries for the schemata file */
42 LIST_HEAD(resctrl_schema_all);
43
44 /*
45 * List of struct mon_data containing private data of event files for use by
46 * rdtgroup_mondata_show(). Protected by rdtgroup_mutex.
47 */
48 static LIST_HEAD(mon_data_kn_priv_list);
49
50 /* The filesystem can only be mounted once. */
51 bool resctrl_mounted;
52
53 /* Kernel fs node for "info" directory under root */
54 static struct kernfs_node *kn_info;
55
56 /* Kernel fs node for "mon_groups" directory under root */
57 static struct kernfs_node *kn_mongrp;
58
59 /* Kernel fs node for "mon_data" directory under root */
60 static struct kernfs_node *kn_mondata;
61
62 /*
63 * Used to store the max resource name width to display the schemata names in
64 * a tabular format.
65 */
66 int max_name_width;
67
68 static struct seq_buf last_cmd_status;
69
70 static char last_cmd_status_buf[512];
71
72 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
73
74 static void rdtgroup_destroy_root(void);
75
76 struct dentry *debugfs_resctrl;
77
78 /*
79 * Memory bandwidth monitoring event to use for the default CTRL_MON group
80 * and each new CTRL_MON group created by the user. Only relevant when
81 * the filesystem is mounted with the "mba_MBps" option so it does not
82 * matter that it remains uninitialized on systems that do not support
83 * the "mba_MBps" option.
84 */
85 enum resctrl_event_id mba_mbps_default_event;
86
87 static bool resctrl_debug;
88
rdt_last_cmd_clear(void)89 void rdt_last_cmd_clear(void)
90 {
91 lockdep_assert_held(&rdtgroup_mutex);
92 seq_buf_clear(&last_cmd_status);
93 }
94
rdt_last_cmd_puts(const char * s)95 void rdt_last_cmd_puts(const char *s)
96 {
97 lockdep_assert_held(&rdtgroup_mutex);
98 seq_buf_puts(&last_cmd_status, s);
99 }
100
rdt_last_cmd_printf(const char * fmt,...)101 void rdt_last_cmd_printf(const char *fmt, ...)
102 {
103 va_list ap;
104
105 va_start(ap, fmt);
106 lockdep_assert_held(&rdtgroup_mutex);
107 seq_buf_vprintf(&last_cmd_status, fmt, ap);
108 va_end(ap);
109 }
110
rdt_staged_configs_clear(void)111 void rdt_staged_configs_clear(void)
112 {
113 struct rdt_ctrl_domain *dom;
114 struct rdt_resource *r;
115
116 lockdep_assert_held(&rdtgroup_mutex);
117
118 for_each_alloc_capable_rdt_resource(r) {
119 list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
120 memset(dom->staged_config, 0, sizeof(dom->staged_config));
121 }
122 }
123
resctrl_is_mbm_enabled(void)124 static bool resctrl_is_mbm_enabled(void)
125 {
126 return (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID) ||
127 resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID));
128 }
129
130 /*
131 * Trivial allocator for CLOSIDs. Use BITMAP APIs to manipulate a bitmap
132 * of free CLOSIDs.
133 *
134 * Using a global CLOSID across all resources has some advantages and
135 * some drawbacks:
136 * + We can simply set current's closid to assign a task to a resource
137 * group.
138 * + Context switch code can avoid extra memory references deciding which
139 * CLOSID to load into the PQR_ASSOC MSR
140 * - We give up some options in configuring resource groups across multi-socket
141 * systems.
142 * - Our choices on how to configure each resource become progressively more
143 * limited as the number of resources grows.
144 */
145 static unsigned long *closid_free_map;
146
147 static int closid_free_map_len;
148
closids_supported(void)149 int closids_supported(void)
150 {
151 return closid_free_map_len;
152 }
153
closid_init(void)154 static int closid_init(void)
155 {
156 struct resctrl_schema *s;
157 u32 rdt_min_closid = ~0;
158
159 /* Monitor only platforms still call closid_init() */
160 if (list_empty(&resctrl_schema_all))
161 return 0;
162
163 /* Compute rdt_min_closid across all resources */
164 list_for_each_entry(s, &resctrl_schema_all, list)
165 rdt_min_closid = min(rdt_min_closid, s->num_closid);
166
167 closid_free_map = bitmap_alloc(rdt_min_closid, GFP_KERNEL);
168 if (!closid_free_map)
169 return -ENOMEM;
170 bitmap_fill(closid_free_map, rdt_min_closid);
171
172 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
173 __clear_bit(RESCTRL_RESERVED_CLOSID, closid_free_map);
174 closid_free_map_len = rdt_min_closid;
175
176 return 0;
177 }
178
closid_exit(void)179 static void closid_exit(void)
180 {
181 bitmap_free(closid_free_map);
182 closid_free_map = NULL;
183 }
184
closid_alloc(void)185 static int closid_alloc(void)
186 {
187 int cleanest_closid;
188 u32 closid;
189
190 lockdep_assert_held(&rdtgroup_mutex);
191
192 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) &&
193 resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) {
194 cleanest_closid = resctrl_find_cleanest_closid();
195 if (cleanest_closid < 0)
196 return cleanest_closid;
197 closid = cleanest_closid;
198 } else {
199 closid = find_first_bit(closid_free_map, closid_free_map_len);
200 if (closid == closid_free_map_len)
201 return -ENOSPC;
202 }
203 __clear_bit(closid, closid_free_map);
204
205 return closid;
206 }
207
closid_free(int closid)208 void closid_free(int closid)
209 {
210 lockdep_assert_held(&rdtgroup_mutex);
211
212 __set_bit(closid, closid_free_map);
213 }
214
215 /**
216 * closid_allocated - test if provided closid is in use
217 * @closid: closid to be tested
218 *
219 * Return: true if @closid is currently associated with a resource group,
220 * false if @closid is free
221 */
closid_allocated(unsigned int closid)222 bool closid_allocated(unsigned int closid)
223 {
224 lockdep_assert_held(&rdtgroup_mutex);
225
226 return !test_bit(closid, closid_free_map);
227 }
228
229 /**
230 * rdtgroup_mode_by_closid - Return mode of resource group with closid
231 * @closid: closid if the resource group
232 *
233 * Each resource group is associated with a @closid. Here the mode
234 * of a resource group can be queried by searching for it using its closid.
235 *
236 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
237 */
rdtgroup_mode_by_closid(int closid)238 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
239 {
240 struct rdtgroup *rdtgrp;
241
242 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
243 if (rdtgrp->closid == closid)
244 return rdtgrp->mode;
245 }
246
247 return RDT_NUM_MODES;
248 }
249
250 static const char * const rdt_mode_str[] = {
251 [RDT_MODE_SHAREABLE] = "shareable",
252 [RDT_MODE_EXCLUSIVE] = "exclusive",
253 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
254 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
255 };
256
257 /**
258 * rdtgroup_mode_str - Return the string representation of mode
259 * @mode: the resource group mode as &enum rdtgroup_mode
260 *
261 * Return: string representation of valid mode, "unknown" otherwise
262 */
rdtgroup_mode_str(enum rdtgrp_mode mode)263 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
264 {
265 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
266 return "unknown";
267
268 return rdt_mode_str[mode];
269 }
270
271 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)272 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
273 {
274 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
275 .ia_uid = current_fsuid(),
276 .ia_gid = current_fsgid(), };
277
278 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
279 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
280 return 0;
281
282 return kernfs_setattr(kn, &iattr);
283 }
284
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)285 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
286 {
287 struct kernfs_node *kn;
288 int ret;
289
290 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
291 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
292 0, rft->kf_ops, rft, NULL, NULL);
293 if (IS_ERR(kn))
294 return PTR_ERR(kn);
295
296 ret = rdtgroup_kn_set_ugid(kn);
297 if (ret) {
298 kernfs_remove(kn);
299 return ret;
300 }
301
302 return 0;
303 }
304
rdtgroup_seqfile_show(struct seq_file * m,void * arg)305 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
306 {
307 struct kernfs_open_file *of = m->private;
308 struct rftype *rft = of->kn->priv;
309
310 if (rft->seq_show)
311 return rft->seq_show(of, m, arg);
312 return 0;
313 }
314
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)315 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
316 size_t nbytes, loff_t off)
317 {
318 struct rftype *rft = of->kn->priv;
319
320 if (rft->write)
321 return rft->write(of, buf, nbytes, off);
322
323 return -EINVAL;
324 }
325
326 static const struct kernfs_ops rdtgroup_kf_single_ops = {
327 .atomic_write_len = PAGE_SIZE,
328 .write = rdtgroup_file_write,
329 .seq_show = rdtgroup_seqfile_show,
330 };
331
332 static const struct kernfs_ops kf_mondata_ops = {
333 .atomic_write_len = PAGE_SIZE,
334 .seq_show = rdtgroup_mondata_show,
335 };
336
is_cpu_list(struct kernfs_open_file * of)337 static bool is_cpu_list(struct kernfs_open_file *of)
338 {
339 struct rftype *rft = of->kn->priv;
340
341 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
342 }
343
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)344 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
345 struct seq_file *s, void *v)
346 {
347 struct rdtgroup *rdtgrp;
348 struct cpumask *mask;
349 int ret = 0;
350
351 rdtgrp = rdtgroup_kn_lock_live(of->kn);
352
353 if (rdtgrp) {
354 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
355 if (!rdtgrp->plr->d) {
356 rdt_last_cmd_clear();
357 rdt_last_cmd_puts("Cache domain offline\n");
358 ret = -ENODEV;
359 } else {
360 mask = &rdtgrp->plr->d->hdr.cpu_mask;
361 seq_printf(s, is_cpu_list(of) ?
362 "%*pbl\n" : "%*pb\n",
363 cpumask_pr_args(mask));
364 }
365 } else {
366 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
367 cpumask_pr_args(&rdtgrp->cpu_mask));
368 }
369 } else {
370 ret = -ENOENT;
371 }
372 rdtgroup_kn_unlock(of->kn);
373
374 return ret;
375 }
376
377 /*
378 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
379 *
380 * Per task closids/rmids must have been set up before calling this function.
381 * @r may be NULL.
382 */
383 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)384 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
385 {
386 struct resctrl_cpu_defaults defaults, *p = NULL;
387
388 if (r) {
389 defaults.closid = r->closid;
390 defaults.rmid = r->mon.rmid;
391 p = &defaults;
392 }
393
394 on_each_cpu_mask(cpu_mask, resctrl_arch_sync_cpu_closid_rmid, p, 1);
395 }
396
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)397 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
398 cpumask_var_t tmpmask)
399 {
400 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
401 struct list_head *head;
402
403 /* Check whether cpus belong to parent ctrl group */
404 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
405 if (!cpumask_empty(tmpmask)) {
406 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
407 return -EINVAL;
408 }
409
410 /* Check whether cpus are dropped from this group */
411 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
412 if (!cpumask_empty(tmpmask)) {
413 /* Give any dropped cpus to parent rdtgroup */
414 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
415 update_closid_rmid(tmpmask, prgrp);
416 }
417
418 /*
419 * If we added cpus, remove them from previous group that owned them
420 * and update per-cpu rmid
421 */
422 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
423 if (!cpumask_empty(tmpmask)) {
424 head = &prgrp->mon.crdtgrp_list;
425 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
426 if (crgrp == rdtgrp)
427 continue;
428 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
429 tmpmask);
430 }
431 update_closid_rmid(tmpmask, rdtgrp);
432 }
433
434 /* Done pushing/pulling - update this group with new mask */
435 cpumask_copy(&rdtgrp->cpu_mask, newmask);
436
437 return 0;
438 }
439
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)440 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
441 {
442 struct rdtgroup *crgrp;
443
444 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
445 /* update the child mon group masks as well*/
446 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
447 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
448 }
449
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)450 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
451 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
452 {
453 struct rdtgroup *r, *crgrp;
454 struct list_head *head;
455
456 /* Check whether cpus are dropped from this group */
457 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
458 if (!cpumask_empty(tmpmask)) {
459 /* Can't drop from default group */
460 if (rdtgrp == &rdtgroup_default) {
461 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
462 return -EINVAL;
463 }
464
465 /* Give any dropped cpus to rdtgroup_default */
466 cpumask_or(&rdtgroup_default.cpu_mask,
467 &rdtgroup_default.cpu_mask, tmpmask);
468 update_closid_rmid(tmpmask, &rdtgroup_default);
469 }
470
471 /*
472 * If we added cpus, remove them from previous group and
473 * the prev group's child groups that owned them
474 * and update per-cpu closid/rmid.
475 */
476 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
477 if (!cpumask_empty(tmpmask)) {
478 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
479 if (r == rdtgrp)
480 continue;
481 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
482 if (!cpumask_empty(tmpmask1))
483 cpumask_rdtgrp_clear(r, tmpmask1);
484 }
485 update_closid_rmid(tmpmask, rdtgrp);
486 }
487
488 /* Done pushing/pulling - update this group with new mask */
489 cpumask_copy(&rdtgrp->cpu_mask, newmask);
490
491 /*
492 * Clear child mon group masks since there is a new parent mask
493 * now and update the rmid for the cpus the child lost.
494 */
495 head = &rdtgrp->mon.crdtgrp_list;
496 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
497 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
498 update_closid_rmid(tmpmask, rdtgrp);
499 cpumask_clear(&crgrp->cpu_mask);
500 }
501
502 return 0;
503 }
504
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)505 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
506 char *buf, size_t nbytes, loff_t off)
507 {
508 cpumask_var_t tmpmask, newmask, tmpmask1;
509 struct rdtgroup *rdtgrp;
510 int ret;
511
512 if (!buf)
513 return -EINVAL;
514
515 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
516 return -ENOMEM;
517 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
518 free_cpumask_var(tmpmask);
519 return -ENOMEM;
520 }
521 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
522 free_cpumask_var(tmpmask);
523 free_cpumask_var(newmask);
524 return -ENOMEM;
525 }
526
527 rdtgrp = rdtgroup_kn_lock_live(of->kn);
528 if (!rdtgrp) {
529 ret = -ENOENT;
530 goto unlock;
531 }
532
533 rdt_last_cmd_clear();
534
535 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
536 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
537 ret = -EINVAL;
538 rdt_last_cmd_puts("Pseudo-locking in progress\n");
539 goto unlock;
540 }
541
542 if (is_cpu_list(of))
543 ret = cpulist_parse(buf, newmask);
544 else
545 ret = cpumask_parse(buf, newmask);
546
547 if (ret) {
548 rdt_last_cmd_puts("Bad CPU list/mask\n");
549 goto unlock;
550 }
551
552 /* check that user didn't specify any offline cpus */
553 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
554 if (!cpumask_empty(tmpmask)) {
555 ret = -EINVAL;
556 rdt_last_cmd_puts("Can only assign online CPUs\n");
557 goto unlock;
558 }
559
560 if (rdtgrp->type == RDTCTRL_GROUP)
561 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
562 else if (rdtgrp->type == RDTMON_GROUP)
563 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
564 else
565 ret = -EINVAL;
566
567 unlock:
568 rdtgroup_kn_unlock(of->kn);
569 free_cpumask_var(tmpmask);
570 free_cpumask_var(newmask);
571 free_cpumask_var(tmpmask1);
572
573 return ret ?: nbytes;
574 }
575
576 /**
577 * rdtgroup_remove - the helper to remove resource group safely
578 * @rdtgrp: resource group to remove
579 *
580 * On resource group creation via a mkdir, an extra kernfs_node reference is
581 * taken to ensure that the rdtgroup structure remains accessible for the
582 * rdtgroup_kn_unlock() calls where it is removed.
583 *
584 * Drop the extra reference here, then free the rdtgroup structure.
585 *
586 * Return: void
587 */
rdtgroup_remove(struct rdtgroup * rdtgrp)588 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
589 {
590 kernfs_put(rdtgrp->kn);
591 kfree(rdtgrp);
592 }
593
_update_task_closid_rmid(void * task)594 static void _update_task_closid_rmid(void *task)
595 {
596 /*
597 * If the task is still current on this CPU, update PQR_ASSOC MSR.
598 * Otherwise, the MSR is updated when the task is scheduled in.
599 */
600 if (task == current)
601 resctrl_arch_sched_in(task);
602 }
603
update_task_closid_rmid(struct task_struct * t)604 static void update_task_closid_rmid(struct task_struct *t)
605 {
606 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
607 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
608 else
609 _update_task_closid_rmid(t);
610 }
611
task_in_rdtgroup(struct task_struct * tsk,struct rdtgroup * rdtgrp)612 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
613 {
614 u32 closid, rmid = rdtgrp->mon.rmid;
615
616 if (rdtgrp->type == RDTCTRL_GROUP)
617 closid = rdtgrp->closid;
618 else if (rdtgrp->type == RDTMON_GROUP)
619 closid = rdtgrp->mon.parent->closid;
620 else
621 return false;
622
623 return resctrl_arch_match_closid(tsk, closid) &&
624 resctrl_arch_match_rmid(tsk, closid, rmid);
625 }
626
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)627 static int __rdtgroup_move_task(struct task_struct *tsk,
628 struct rdtgroup *rdtgrp)
629 {
630 /* If the task is already in rdtgrp, no need to move the task. */
631 if (task_in_rdtgroup(tsk, rdtgrp))
632 return 0;
633
634 /*
635 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
636 * updated by them.
637 *
638 * For ctrl_mon groups, move both closid and rmid.
639 * For monitor groups, can move the tasks only from
640 * their parent CTRL group.
641 */
642 if (rdtgrp->type == RDTMON_GROUP &&
643 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
644 rdt_last_cmd_puts("Can't move task to different control group\n");
645 return -EINVAL;
646 }
647
648 if (rdtgrp->type == RDTMON_GROUP)
649 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
650 rdtgrp->mon.rmid);
651 else
652 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
653 rdtgrp->mon.rmid);
654
655 /*
656 * Ensure the task's closid and rmid are written before determining if
657 * the task is current that will decide if it will be interrupted.
658 * This pairs with the full barrier between the rq->curr update and
659 * resctrl_arch_sched_in() during context switch.
660 */
661 smp_mb();
662
663 /*
664 * By now, the task's closid and rmid are set. If the task is current
665 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
666 * group go into effect. If the task is not current, the MSR will be
667 * updated when the task is scheduled in.
668 */
669 update_task_closid_rmid(tsk);
670
671 return 0;
672 }
673
is_closid_match(struct task_struct * t,struct rdtgroup * r)674 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
675 {
676 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
677 resctrl_arch_match_closid(t, r->closid));
678 }
679
is_rmid_match(struct task_struct * t,struct rdtgroup * r)680 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
681 {
682 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
683 resctrl_arch_match_rmid(t, r->mon.parent->closid,
684 r->mon.rmid));
685 }
686
687 /**
688 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
689 * @r: Resource group
690 *
691 * Return: 1 if tasks have been assigned to @r, 0 otherwise
692 */
rdtgroup_tasks_assigned(struct rdtgroup * r)693 int rdtgroup_tasks_assigned(struct rdtgroup *r)
694 {
695 struct task_struct *p, *t;
696 int ret = 0;
697
698 lockdep_assert_held(&rdtgroup_mutex);
699
700 rcu_read_lock();
701 for_each_process_thread(p, t) {
702 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
703 ret = 1;
704 break;
705 }
706 }
707 rcu_read_unlock();
708
709 return ret;
710 }
711
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)712 static int rdtgroup_task_write_permission(struct task_struct *task,
713 struct kernfs_open_file *of)
714 {
715 const struct cred *tcred = get_task_cred(task);
716 const struct cred *cred = current_cred();
717 int ret = 0;
718
719 /*
720 * Even if we're attaching all tasks in the thread group, we only
721 * need to check permissions on one of them.
722 */
723 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
724 !uid_eq(cred->euid, tcred->uid) &&
725 !uid_eq(cred->euid, tcred->suid)) {
726 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
727 ret = -EPERM;
728 }
729
730 put_cred(tcred);
731 return ret;
732 }
733
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)734 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
735 struct kernfs_open_file *of)
736 {
737 struct task_struct *tsk;
738 int ret;
739
740 rcu_read_lock();
741 if (pid) {
742 tsk = find_task_by_vpid(pid);
743 if (!tsk) {
744 rcu_read_unlock();
745 rdt_last_cmd_printf("No task %d\n", pid);
746 return -ESRCH;
747 }
748 } else {
749 tsk = current;
750 }
751
752 get_task_struct(tsk);
753 rcu_read_unlock();
754
755 ret = rdtgroup_task_write_permission(tsk, of);
756 if (!ret)
757 ret = __rdtgroup_move_task(tsk, rdtgrp);
758
759 put_task_struct(tsk);
760 return ret;
761 }
762
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)763 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
764 char *buf, size_t nbytes, loff_t off)
765 {
766 struct rdtgroup *rdtgrp;
767 char *pid_str;
768 int ret = 0;
769 pid_t pid;
770
771 rdtgrp = rdtgroup_kn_lock_live(of->kn);
772 if (!rdtgrp) {
773 rdtgroup_kn_unlock(of->kn);
774 return -ENOENT;
775 }
776 rdt_last_cmd_clear();
777
778 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
779 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
780 ret = -EINVAL;
781 rdt_last_cmd_puts("Pseudo-locking in progress\n");
782 goto unlock;
783 }
784
785 while (buf && buf[0] != '\0' && buf[0] != '\n') {
786 pid_str = strim(strsep(&buf, ","));
787
788 if (kstrtoint(pid_str, 0, &pid)) {
789 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
790 ret = -EINVAL;
791 break;
792 }
793
794 if (pid < 0) {
795 rdt_last_cmd_printf("Invalid pid %d\n", pid);
796 ret = -EINVAL;
797 break;
798 }
799
800 ret = rdtgroup_move_task(pid, rdtgrp, of);
801 if (ret) {
802 rdt_last_cmd_printf("Error while processing task %d\n", pid);
803 break;
804 }
805 }
806
807 unlock:
808 rdtgroup_kn_unlock(of->kn);
809
810 return ret ?: nbytes;
811 }
812
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)813 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
814 {
815 struct task_struct *p, *t;
816 pid_t pid;
817
818 rcu_read_lock();
819 for_each_process_thread(p, t) {
820 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
821 pid = task_pid_vnr(t);
822 if (pid)
823 seq_printf(s, "%d\n", pid);
824 }
825 }
826 rcu_read_unlock();
827 }
828
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)829 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
830 struct seq_file *s, void *v)
831 {
832 struct rdtgroup *rdtgrp;
833 int ret = 0;
834
835 rdtgrp = rdtgroup_kn_lock_live(of->kn);
836 if (rdtgrp)
837 show_rdt_tasks(rdtgrp, s);
838 else
839 ret = -ENOENT;
840 rdtgroup_kn_unlock(of->kn);
841
842 return ret;
843 }
844
rdtgroup_closid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)845 static int rdtgroup_closid_show(struct kernfs_open_file *of,
846 struct seq_file *s, void *v)
847 {
848 struct rdtgroup *rdtgrp;
849 int ret = 0;
850
851 rdtgrp = rdtgroup_kn_lock_live(of->kn);
852 if (rdtgrp)
853 seq_printf(s, "%u\n", rdtgrp->closid);
854 else
855 ret = -ENOENT;
856 rdtgroup_kn_unlock(of->kn);
857
858 return ret;
859 }
860
rdtgroup_rmid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)861 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
862 struct seq_file *s, void *v)
863 {
864 struct rdtgroup *rdtgrp;
865 int ret = 0;
866
867 rdtgrp = rdtgroup_kn_lock_live(of->kn);
868 if (rdtgrp)
869 seq_printf(s, "%u\n", rdtgrp->mon.rmid);
870 else
871 ret = -ENOENT;
872 rdtgroup_kn_unlock(of->kn);
873
874 return ret;
875 }
876
877 #ifdef CONFIG_PROC_CPU_RESCTRL
878 /*
879 * A task can only be part of one resctrl control group and of one monitor
880 * group which is associated to that control group.
881 *
882 * 1) res:
883 * mon:
884 *
885 * resctrl is not available.
886 *
887 * 2) res:/
888 * mon:
889 *
890 * Task is part of the root resctrl control group, and it is not associated
891 * to any monitor group.
892 *
893 * 3) res:/
894 * mon:mon0
895 *
896 * Task is part of the root resctrl control group and monitor group mon0.
897 *
898 * 4) res:group0
899 * mon:
900 *
901 * Task is part of resctrl control group group0, and it is not associated
902 * to any monitor group.
903 *
904 * 5) res:group0
905 * mon:mon1
906 *
907 * Task is part of resctrl control group group0 and monitor group mon1.
908 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)909 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
910 struct pid *pid, struct task_struct *tsk)
911 {
912 struct rdtgroup *rdtg;
913 int ret = 0;
914
915 mutex_lock(&rdtgroup_mutex);
916
917 /* Return empty if resctrl has not been mounted. */
918 if (!resctrl_mounted) {
919 seq_puts(s, "res:\nmon:\n");
920 goto unlock;
921 }
922
923 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
924 struct rdtgroup *crg;
925
926 /*
927 * Task information is only relevant for shareable
928 * and exclusive groups.
929 */
930 if (rdtg->mode != RDT_MODE_SHAREABLE &&
931 rdtg->mode != RDT_MODE_EXCLUSIVE)
932 continue;
933
934 if (!resctrl_arch_match_closid(tsk, rdtg->closid))
935 continue;
936
937 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
938 rdt_kn_name(rdtg->kn));
939 seq_puts(s, "mon:");
940 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
941 mon.crdtgrp_list) {
942 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
943 crg->mon.rmid))
944 continue;
945 seq_printf(s, "%s", rdt_kn_name(crg->kn));
946 break;
947 }
948 seq_putc(s, '\n');
949 goto unlock;
950 }
951 /*
952 * The above search should succeed. Otherwise return
953 * with an error.
954 */
955 ret = -ENOENT;
956 unlock:
957 mutex_unlock(&rdtgroup_mutex);
958
959 return ret;
960 }
961 #endif
962
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)963 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
964 struct seq_file *seq, void *v)
965 {
966 int len;
967
968 mutex_lock(&rdtgroup_mutex);
969 len = seq_buf_used(&last_cmd_status);
970 if (len)
971 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
972 else
973 seq_puts(seq, "ok\n");
974 mutex_unlock(&rdtgroup_mutex);
975 return 0;
976 }
977
rdt_kn_parent_priv(struct kernfs_node * kn)978 void *rdt_kn_parent_priv(struct kernfs_node *kn)
979 {
980 /*
981 * The parent pointer is only valid within RCU section since it can be
982 * replaced.
983 */
984 guard(rcu)();
985 return rcu_dereference(kn->__parent)->priv;
986 }
987
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)988 static int rdt_num_closids_show(struct kernfs_open_file *of,
989 struct seq_file *seq, void *v)
990 {
991 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
992
993 seq_printf(seq, "%u\n", s->num_closid);
994 return 0;
995 }
996
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)997 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
998 struct seq_file *seq, void *v)
999 {
1000 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1001 struct rdt_resource *r = s->res;
1002
1003 seq_printf(seq, "%x\n", resctrl_get_default_ctrl(r));
1004 return 0;
1005 }
1006
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1007 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
1008 struct seq_file *seq, void *v)
1009 {
1010 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1011 struct rdt_resource *r = s->res;
1012
1013 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
1014 return 0;
1015 }
1016
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1017 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
1018 struct seq_file *seq, void *v)
1019 {
1020 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1021 struct rdt_resource *r = s->res;
1022
1023 seq_printf(seq, "%x\n", r->cache.shareable_bits);
1024 return 0;
1025 }
1026
1027 /*
1028 * rdt_bit_usage_show - Display current usage of resources
1029 *
1030 * A domain is a shared resource that can now be allocated differently. Here
1031 * we display the current regions of the domain as an annotated bitmask.
1032 * For each domain of this resource its allocation bitmask
1033 * is annotated as below to indicate the current usage of the corresponding bit:
1034 * 0 - currently unused
1035 * X - currently available for sharing and used by software and hardware
1036 * H - currently used by hardware only but available for software use
1037 * S - currently used and shareable by software only
1038 * E - currently used exclusively by one resource group
1039 * P - currently pseudo-locked by one resource group
1040 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1041 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1042 struct seq_file *seq, void *v)
1043 {
1044 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1045 /*
1046 * Use unsigned long even though only 32 bits are used to ensure
1047 * test_bit() is used safely.
1048 */
1049 unsigned long sw_shareable = 0, hw_shareable = 0;
1050 unsigned long exclusive = 0, pseudo_locked = 0;
1051 struct rdt_resource *r = s->res;
1052 struct rdt_ctrl_domain *dom;
1053 int i, hwb, swb, excl, psl;
1054 enum rdtgrp_mode mode;
1055 bool sep = false;
1056 u32 ctrl_val;
1057
1058 cpus_read_lock();
1059 mutex_lock(&rdtgroup_mutex);
1060 hw_shareable = r->cache.shareable_bits;
1061 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1062 if (sep)
1063 seq_putc(seq, ';');
1064 sw_shareable = 0;
1065 exclusive = 0;
1066 seq_printf(seq, "%d=", dom->hdr.id);
1067 for (i = 0; i < closids_supported(); i++) {
1068 if (!closid_allocated(i))
1069 continue;
1070 ctrl_val = resctrl_arch_get_config(r, dom, i,
1071 s->conf_type);
1072 mode = rdtgroup_mode_by_closid(i);
1073 switch (mode) {
1074 case RDT_MODE_SHAREABLE:
1075 sw_shareable |= ctrl_val;
1076 break;
1077 case RDT_MODE_EXCLUSIVE:
1078 exclusive |= ctrl_val;
1079 break;
1080 case RDT_MODE_PSEUDO_LOCKSETUP:
1081 /*
1082 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1083 * here but not included since the CBM
1084 * associated with this CLOSID in this mode
1085 * is not initialized and no task or cpu can be
1086 * assigned this CLOSID.
1087 */
1088 break;
1089 case RDT_MODE_PSEUDO_LOCKED:
1090 case RDT_NUM_MODES:
1091 WARN(1,
1092 "invalid mode for closid %d\n", i);
1093 break;
1094 }
1095 }
1096 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1097 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1098 hwb = test_bit(i, &hw_shareable);
1099 swb = test_bit(i, &sw_shareable);
1100 excl = test_bit(i, &exclusive);
1101 psl = test_bit(i, &pseudo_locked);
1102 if (hwb && swb)
1103 seq_putc(seq, 'X');
1104 else if (hwb && !swb)
1105 seq_putc(seq, 'H');
1106 else if (!hwb && swb)
1107 seq_putc(seq, 'S');
1108 else if (excl)
1109 seq_putc(seq, 'E');
1110 else if (psl)
1111 seq_putc(seq, 'P');
1112 else /* Unused bits remain */
1113 seq_putc(seq, '0');
1114 }
1115 sep = true;
1116 }
1117 seq_putc(seq, '\n');
1118 mutex_unlock(&rdtgroup_mutex);
1119 cpus_read_unlock();
1120 return 0;
1121 }
1122
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1123 static int rdt_min_bw_show(struct kernfs_open_file *of,
1124 struct seq_file *seq, void *v)
1125 {
1126 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1127 struct rdt_resource *r = s->res;
1128
1129 seq_printf(seq, "%u\n", r->membw.min_bw);
1130 return 0;
1131 }
1132
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1133 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1134 struct seq_file *seq, void *v)
1135 {
1136 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1137
1138 seq_printf(seq, "%d\n", r->mon.num_rmid);
1139
1140 return 0;
1141 }
1142
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1143 static int rdt_mon_features_show(struct kernfs_open_file *of,
1144 struct seq_file *seq, void *v)
1145 {
1146 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1147 struct mon_evt *mevt;
1148
1149 for_each_mon_event(mevt) {
1150 if (mevt->rid != r->rid || !mevt->enabled)
1151 continue;
1152 seq_printf(seq, "%s\n", mevt->name);
1153 if (mevt->configurable &&
1154 !resctrl_arch_mbm_cntr_assign_enabled(r))
1155 seq_printf(seq, "%s_config\n", mevt->name);
1156 }
1157
1158 return 0;
1159 }
1160
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1161 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1162 struct seq_file *seq, void *v)
1163 {
1164 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1165 struct rdt_resource *r = s->res;
1166
1167 seq_printf(seq, "%u\n", r->membw.bw_gran);
1168 return 0;
1169 }
1170
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1171 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1172 struct seq_file *seq, void *v)
1173 {
1174 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1175 struct rdt_resource *r = s->res;
1176
1177 seq_printf(seq, "%u\n", r->membw.delay_linear);
1178 return 0;
1179 }
1180
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1181 static int max_threshold_occ_show(struct kernfs_open_file *of,
1182 struct seq_file *seq, void *v)
1183 {
1184 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1185
1186 return 0;
1187 }
1188
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1189 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1190 struct seq_file *seq, void *v)
1191 {
1192 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1193 struct rdt_resource *r = s->res;
1194
1195 switch (r->membw.throttle_mode) {
1196 case THREAD_THROTTLE_PER_THREAD:
1197 seq_puts(seq, "per-thread\n");
1198 return 0;
1199 case THREAD_THROTTLE_MAX:
1200 seq_puts(seq, "max\n");
1201 return 0;
1202 case THREAD_THROTTLE_UNDEFINED:
1203 seq_puts(seq, "undefined\n");
1204 return 0;
1205 }
1206
1207 WARN_ON_ONCE(1);
1208
1209 return 0;
1210 }
1211
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1212 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1213 char *buf, size_t nbytes, loff_t off)
1214 {
1215 unsigned int bytes;
1216 int ret;
1217
1218 ret = kstrtouint(buf, 0, &bytes);
1219 if (ret)
1220 return ret;
1221
1222 if (bytes > resctrl_rmid_realloc_limit)
1223 return -EINVAL;
1224
1225 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1226
1227 return nbytes;
1228 }
1229
1230 /*
1231 * rdtgroup_mode_show - Display mode of this resource group
1232 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1233 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1234 struct seq_file *s, void *v)
1235 {
1236 struct rdtgroup *rdtgrp;
1237
1238 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1239 if (!rdtgrp) {
1240 rdtgroup_kn_unlock(of->kn);
1241 return -ENOENT;
1242 }
1243
1244 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1245
1246 rdtgroup_kn_unlock(of->kn);
1247 return 0;
1248 }
1249
resctrl_peer_type(enum resctrl_conf_type my_type)1250 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1251 {
1252 switch (my_type) {
1253 case CDP_CODE:
1254 return CDP_DATA;
1255 case CDP_DATA:
1256 return CDP_CODE;
1257 default:
1258 case CDP_NONE:
1259 return CDP_NONE;
1260 }
1261 }
1262
rdt_has_sparse_bitmasks_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1263 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1264 struct seq_file *seq, void *v)
1265 {
1266 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1267 struct rdt_resource *r = s->res;
1268
1269 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1276 * @r: Resource to which domain instance @d belongs.
1277 * @d: The domain instance for which @closid is being tested.
1278 * @cbm: Capacity bitmask being tested.
1279 * @closid: Intended closid for @cbm.
1280 * @type: CDP type of @r.
1281 * @exclusive: Only check if overlaps with exclusive resource groups
1282 *
1283 * Checks if provided @cbm intended to be used for @closid on domain
1284 * @d overlaps with any other closids or other hardware usage associated
1285 * with this domain. If @exclusive is true then only overlaps with
1286 * resource groups in exclusive mode will be considered. If @exclusive
1287 * is false then overlaps with any resource group or hardware entities
1288 * will be considered.
1289 *
1290 * @cbm is unsigned long, even if only 32 bits are used, to make the
1291 * bitmap functions work correctly.
1292 *
1293 * Return: false if CBM does not overlap, true if it does.
1294 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1295 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1296 unsigned long cbm, int closid,
1297 enum resctrl_conf_type type, bool exclusive)
1298 {
1299 enum rdtgrp_mode mode;
1300 unsigned long ctrl_b;
1301 int i;
1302
1303 /* Check for any overlap with regions used by hardware directly */
1304 if (!exclusive) {
1305 ctrl_b = r->cache.shareable_bits;
1306 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1307 return true;
1308 }
1309
1310 /* Check for overlap with other resource groups */
1311 for (i = 0; i < closids_supported(); i++) {
1312 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1313 mode = rdtgroup_mode_by_closid(i);
1314 if (closid_allocated(i) && i != closid &&
1315 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1316 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1317 if (exclusive) {
1318 if (mode == RDT_MODE_EXCLUSIVE)
1319 return true;
1320 continue;
1321 }
1322 return true;
1323 }
1324 }
1325 }
1326
1327 return false;
1328 }
1329
1330 /**
1331 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1332 * @s: Schema for the resource to which domain instance @d belongs.
1333 * @d: The domain instance for which @closid is being tested.
1334 * @cbm: Capacity bitmask being tested.
1335 * @closid: Intended closid for @cbm.
1336 * @exclusive: Only check if overlaps with exclusive resource groups
1337 *
1338 * Resources that can be allocated using a CBM can use the CBM to control
1339 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1340 * for overlap. Overlap test is not limited to the specific resource for
1341 * which the CBM is intended though - when dealing with CDP resources that
1342 * share the underlying hardware the overlap check should be performed on
1343 * the CDP resource sharing the hardware also.
1344 *
1345 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1346 * overlap test.
1347 *
1348 * Return: true if CBM overlap detected, false if there is no overlap
1349 */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,bool exclusive)1350 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1351 unsigned long cbm, int closid, bool exclusive)
1352 {
1353 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1354 struct rdt_resource *r = s->res;
1355
1356 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1357 exclusive))
1358 return true;
1359
1360 if (!resctrl_arch_get_cdp_enabled(r->rid))
1361 return false;
1362 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1363 }
1364
1365 /**
1366 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1367 * @rdtgrp: Resource group identified through its closid.
1368 *
1369 * An exclusive resource group implies that there should be no sharing of
1370 * its allocated resources. At the time this group is considered to be
1371 * exclusive this test can determine if its current schemata supports this
1372 * setting by testing for overlap with all other resource groups.
1373 *
1374 * Return: true if resource group can be exclusive, false if there is overlap
1375 * with allocations of other resource groups and thus this resource group
1376 * cannot be exclusive.
1377 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1378 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1379 {
1380 int closid = rdtgrp->closid;
1381 struct rdt_ctrl_domain *d;
1382 struct resctrl_schema *s;
1383 struct rdt_resource *r;
1384 bool has_cache = false;
1385 u32 ctrl;
1386
1387 /* Walking r->domains, ensure it can't race with cpuhp */
1388 lockdep_assert_cpus_held();
1389
1390 list_for_each_entry(s, &resctrl_schema_all, list) {
1391 r = s->res;
1392 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1393 continue;
1394 has_cache = true;
1395 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1396 ctrl = resctrl_arch_get_config(r, d, closid,
1397 s->conf_type);
1398 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1399 rdt_last_cmd_puts("Schemata overlaps\n");
1400 return false;
1401 }
1402 }
1403 }
1404
1405 if (!has_cache) {
1406 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1407 return false;
1408 }
1409
1410 return true;
1411 }
1412
1413 /*
1414 * rdtgroup_mode_write - Modify the resource group's mode
1415 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1416 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1417 char *buf, size_t nbytes, loff_t off)
1418 {
1419 struct rdtgroup *rdtgrp;
1420 enum rdtgrp_mode mode;
1421 int ret = 0;
1422
1423 /* Valid input requires a trailing newline */
1424 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1425 return -EINVAL;
1426 buf[nbytes - 1] = '\0';
1427
1428 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1429 if (!rdtgrp) {
1430 rdtgroup_kn_unlock(of->kn);
1431 return -ENOENT;
1432 }
1433
1434 rdt_last_cmd_clear();
1435
1436 mode = rdtgrp->mode;
1437
1438 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1439 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1440 (!strcmp(buf, "pseudo-locksetup") &&
1441 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1442 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1443 goto out;
1444
1445 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1446 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1447 ret = -EINVAL;
1448 goto out;
1449 }
1450
1451 if (!strcmp(buf, "shareable")) {
1452 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1453 ret = rdtgroup_locksetup_exit(rdtgrp);
1454 if (ret)
1455 goto out;
1456 }
1457 rdtgrp->mode = RDT_MODE_SHAREABLE;
1458 } else if (!strcmp(buf, "exclusive")) {
1459 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1460 ret = -EINVAL;
1461 goto out;
1462 }
1463 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1464 ret = rdtgroup_locksetup_exit(rdtgrp);
1465 if (ret)
1466 goto out;
1467 }
1468 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1469 } else if (IS_ENABLED(CONFIG_RESCTRL_FS_PSEUDO_LOCK) &&
1470 !strcmp(buf, "pseudo-locksetup")) {
1471 ret = rdtgroup_locksetup_enter(rdtgrp);
1472 if (ret)
1473 goto out;
1474 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1475 } else {
1476 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1477 ret = -EINVAL;
1478 }
1479
1480 out:
1481 rdtgroup_kn_unlock(of->kn);
1482 return ret ?: nbytes;
1483 }
1484
1485 /**
1486 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1487 * @r: RDT resource to which @d belongs.
1488 * @d: RDT domain instance.
1489 * @cbm: bitmask for which the size should be computed.
1490 *
1491 * The bitmask provided associated with the RDT domain instance @d will be
1492 * translated into how many bytes it represents. The size in bytes is
1493 * computed by first dividing the total cache size by the CBM length to
1494 * determine how many bytes each bit in the bitmask represents. The result
1495 * is multiplied with the number of bits set in the bitmask.
1496 *
1497 * @cbm is unsigned long, even if only 32 bits are used to make the
1498 * bitmap functions work correctly.
1499 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm)1500 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1501 struct rdt_ctrl_domain *d, unsigned long cbm)
1502 {
1503 unsigned int size = 0;
1504 struct cacheinfo *ci;
1505 int num_b;
1506
1507 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1508 return size;
1509
1510 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1511 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1512 if (ci)
1513 size = ci->size / r->cache.cbm_len * num_b;
1514
1515 return size;
1516 }
1517
is_mba_sc(struct rdt_resource * r)1518 bool is_mba_sc(struct rdt_resource *r)
1519 {
1520 if (!r)
1521 r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
1522
1523 /*
1524 * The software controller support is only applicable to MBA resource.
1525 * Make sure to check for resource type.
1526 */
1527 if (r->rid != RDT_RESOURCE_MBA)
1528 return false;
1529
1530 return r->membw.mba_sc;
1531 }
1532
1533 /*
1534 * rdtgroup_size_show - Display size in bytes of allocated regions
1535 *
1536 * The "size" file mirrors the layout of the "schemata" file, printing the
1537 * size in bytes of each region instead of the capacity bitmask.
1538 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1539 static int rdtgroup_size_show(struct kernfs_open_file *of,
1540 struct seq_file *s, void *v)
1541 {
1542 struct resctrl_schema *schema;
1543 enum resctrl_conf_type type;
1544 struct rdt_ctrl_domain *d;
1545 struct rdtgroup *rdtgrp;
1546 struct rdt_resource *r;
1547 unsigned int size;
1548 int ret = 0;
1549 u32 closid;
1550 bool sep;
1551 u32 ctrl;
1552
1553 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1554 if (!rdtgrp) {
1555 rdtgroup_kn_unlock(of->kn);
1556 return -ENOENT;
1557 }
1558
1559 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1560 if (!rdtgrp->plr->d) {
1561 rdt_last_cmd_clear();
1562 rdt_last_cmd_puts("Cache domain offline\n");
1563 ret = -ENODEV;
1564 } else {
1565 seq_printf(s, "%*s:", max_name_width,
1566 rdtgrp->plr->s->name);
1567 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1568 rdtgrp->plr->d,
1569 rdtgrp->plr->cbm);
1570 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1571 }
1572 goto out;
1573 }
1574
1575 closid = rdtgrp->closid;
1576
1577 list_for_each_entry(schema, &resctrl_schema_all, list) {
1578 r = schema->res;
1579 type = schema->conf_type;
1580 sep = false;
1581 seq_printf(s, "%*s:", max_name_width, schema->name);
1582 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1583 if (sep)
1584 seq_putc(s, ';');
1585 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1586 size = 0;
1587 } else {
1588 if (is_mba_sc(r))
1589 ctrl = d->mbps_val[closid];
1590 else
1591 ctrl = resctrl_arch_get_config(r, d,
1592 closid,
1593 type);
1594 if (r->rid == RDT_RESOURCE_MBA ||
1595 r->rid == RDT_RESOURCE_SMBA)
1596 size = ctrl;
1597 else
1598 size = rdtgroup_cbm_to_size(r, d, ctrl);
1599 }
1600 seq_printf(s, "%d=%u", d->hdr.id, size);
1601 sep = true;
1602 }
1603 seq_putc(s, '\n');
1604 }
1605
1606 out:
1607 rdtgroup_kn_unlock(of->kn);
1608
1609 return ret;
1610 }
1611
mondata_config_read(struct resctrl_mon_config_info * mon_info)1612 static void mondata_config_read(struct resctrl_mon_config_info *mon_info)
1613 {
1614 smp_call_function_any(&mon_info->d->hdr.cpu_mask,
1615 resctrl_arch_mon_event_config_read, mon_info, 1);
1616 }
1617
mbm_config_show(struct seq_file * s,struct rdt_resource * r,u32 evtid)1618 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1619 {
1620 struct resctrl_mon_config_info mon_info;
1621 struct rdt_mon_domain *dom;
1622 bool sep = false;
1623
1624 cpus_read_lock();
1625 mutex_lock(&rdtgroup_mutex);
1626
1627 list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1628 if (sep)
1629 seq_puts(s, ";");
1630
1631 memset(&mon_info, 0, sizeof(struct resctrl_mon_config_info));
1632 mon_info.r = r;
1633 mon_info.d = dom;
1634 mon_info.evtid = evtid;
1635 mondata_config_read(&mon_info);
1636
1637 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1638 sep = true;
1639 }
1640 seq_puts(s, "\n");
1641
1642 mutex_unlock(&rdtgroup_mutex);
1643 cpus_read_unlock();
1644
1645 return 0;
1646 }
1647
mbm_total_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1648 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1649 struct seq_file *seq, void *v)
1650 {
1651 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1652
1653 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1654
1655 return 0;
1656 }
1657
mbm_local_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1658 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1659 struct seq_file *seq, void *v)
1660 {
1661 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1662
1663 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1664
1665 return 0;
1666 }
1667
mbm_config_write_domain(struct rdt_resource * r,struct rdt_mon_domain * d,u32 evtid,u32 val)1668 static void mbm_config_write_domain(struct rdt_resource *r,
1669 struct rdt_mon_domain *d, u32 evtid, u32 val)
1670 {
1671 struct resctrl_mon_config_info mon_info = {0};
1672
1673 /*
1674 * Read the current config value first. If both are the same then
1675 * no need to write it again.
1676 */
1677 mon_info.r = r;
1678 mon_info.d = d;
1679 mon_info.evtid = evtid;
1680 mondata_config_read(&mon_info);
1681 if (mon_info.mon_config == val)
1682 return;
1683
1684 mon_info.mon_config = val;
1685
1686 /*
1687 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1688 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1689 * are scoped at the domain level. Writing any of these MSRs
1690 * on one CPU is observed by all the CPUs in the domain.
1691 */
1692 smp_call_function_any(&d->hdr.cpu_mask, resctrl_arch_mon_event_config_write,
1693 &mon_info, 1);
1694
1695 /*
1696 * When an Event Configuration is changed, the bandwidth counters
1697 * for all RMIDs and Events will be cleared by the hardware. The
1698 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1699 * every RMID on the next read to any event for every RMID.
1700 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1701 * cleared while it is tracked by the hardware. Clear the
1702 * mbm_local and mbm_total counts for all the RMIDs.
1703 */
1704 resctrl_arch_reset_rmid_all(r, d);
1705 }
1706
mon_config_write(struct rdt_resource * r,char * tok,u32 evtid)1707 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1708 {
1709 char *dom_str = NULL, *id_str;
1710 unsigned long dom_id, val;
1711 struct rdt_mon_domain *d;
1712
1713 /* Walking r->domains, ensure it can't race with cpuhp */
1714 lockdep_assert_cpus_held();
1715
1716 next:
1717 if (!tok || tok[0] == '\0')
1718 return 0;
1719
1720 /* Start processing the strings for each domain */
1721 dom_str = strim(strsep(&tok, ";"));
1722 id_str = strsep(&dom_str, "=");
1723
1724 if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1725 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1726 return -EINVAL;
1727 }
1728
1729 if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1730 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1731 return -EINVAL;
1732 }
1733
1734 /* Value from user cannot be more than the supported set of events */
1735 if ((val & r->mon.mbm_cfg_mask) != val) {
1736 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1737 r->mon.mbm_cfg_mask);
1738 return -EINVAL;
1739 }
1740
1741 list_for_each_entry(d, &r->mon_domains, hdr.list) {
1742 if (d->hdr.id == dom_id) {
1743 mbm_config_write_domain(r, d, evtid, val);
1744 goto next;
1745 }
1746 }
1747
1748 return -EINVAL;
1749 }
1750
mbm_total_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1751 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1752 char *buf, size_t nbytes,
1753 loff_t off)
1754 {
1755 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1756 int ret;
1757
1758 /* Valid input requires a trailing newline */
1759 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1760 return -EINVAL;
1761
1762 cpus_read_lock();
1763 mutex_lock(&rdtgroup_mutex);
1764
1765 rdt_last_cmd_clear();
1766
1767 buf[nbytes - 1] = '\0';
1768
1769 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1770
1771 mutex_unlock(&rdtgroup_mutex);
1772 cpus_read_unlock();
1773
1774 return ret ?: nbytes;
1775 }
1776
mbm_local_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1777 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1778 char *buf, size_t nbytes,
1779 loff_t off)
1780 {
1781 struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1782 int ret;
1783
1784 /* Valid input requires a trailing newline */
1785 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1786 return -EINVAL;
1787
1788 cpus_read_lock();
1789 mutex_lock(&rdtgroup_mutex);
1790
1791 rdt_last_cmd_clear();
1792
1793 buf[nbytes - 1] = '\0';
1794
1795 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1796
1797 mutex_unlock(&rdtgroup_mutex);
1798 cpus_read_unlock();
1799
1800 return ret ?: nbytes;
1801 }
1802
1803 /*
1804 * resctrl_bmec_files_show() — Controls the visibility of BMEC-related resctrl
1805 * files. When @show is true, the files are displayed; when false, the files
1806 * are hidden.
1807 * Don't treat kernfs_find_and_get failure as an error, since this function may
1808 * be called regardless of whether BMEC is supported or the event is enabled.
1809 */
resctrl_bmec_files_show(struct rdt_resource * r,struct kernfs_node * l3_mon_kn,bool show)1810 void resctrl_bmec_files_show(struct rdt_resource *r, struct kernfs_node *l3_mon_kn,
1811 bool show)
1812 {
1813 struct kernfs_node *kn_config, *mon_kn = NULL;
1814 char name[32];
1815
1816 if (!l3_mon_kn) {
1817 sprintf(name, "%s_MON", r->name);
1818 mon_kn = kernfs_find_and_get(kn_info, name);
1819 if (!mon_kn)
1820 return;
1821 l3_mon_kn = mon_kn;
1822 }
1823
1824 kn_config = kernfs_find_and_get(l3_mon_kn, "mbm_total_bytes_config");
1825 if (kn_config) {
1826 kernfs_show(kn_config, show);
1827 kernfs_put(kn_config);
1828 }
1829
1830 kn_config = kernfs_find_and_get(l3_mon_kn, "mbm_local_bytes_config");
1831 if (kn_config) {
1832 kernfs_show(kn_config, show);
1833 kernfs_put(kn_config);
1834 }
1835
1836 /* Release the reference only if it was acquired */
1837 if (mon_kn)
1838 kernfs_put(mon_kn);
1839 }
1840
1841 /* rdtgroup information files for one cache resource. */
1842 static struct rftype res_common_files[] = {
1843 {
1844 .name = "last_cmd_status",
1845 .mode = 0444,
1846 .kf_ops = &rdtgroup_kf_single_ops,
1847 .seq_show = rdt_last_cmd_status_show,
1848 .fflags = RFTYPE_TOP_INFO,
1849 },
1850 {
1851 .name = "mbm_assign_on_mkdir",
1852 .mode = 0644,
1853 .kf_ops = &rdtgroup_kf_single_ops,
1854 .seq_show = resctrl_mbm_assign_on_mkdir_show,
1855 .write = resctrl_mbm_assign_on_mkdir_write,
1856 },
1857 {
1858 .name = "num_closids",
1859 .mode = 0444,
1860 .kf_ops = &rdtgroup_kf_single_ops,
1861 .seq_show = rdt_num_closids_show,
1862 .fflags = RFTYPE_CTRL_INFO,
1863 },
1864 {
1865 .name = "mon_features",
1866 .mode = 0444,
1867 .kf_ops = &rdtgroup_kf_single_ops,
1868 .seq_show = rdt_mon_features_show,
1869 .fflags = RFTYPE_MON_INFO,
1870 },
1871 {
1872 .name = "available_mbm_cntrs",
1873 .mode = 0444,
1874 .kf_ops = &rdtgroup_kf_single_ops,
1875 .seq_show = resctrl_available_mbm_cntrs_show,
1876 },
1877 {
1878 .name = "num_rmids",
1879 .mode = 0444,
1880 .kf_ops = &rdtgroup_kf_single_ops,
1881 .seq_show = rdt_num_rmids_show,
1882 .fflags = RFTYPE_MON_INFO,
1883 },
1884 {
1885 .name = "cbm_mask",
1886 .mode = 0444,
1887 .kf_ops = &rdtgroup_kf_single_ops,
1888 .seq_show = rdt_default_ctrl_show,
1889 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1890 },
1891 {
1892 .name = "num_mbm_cntrs",
1893 .mode = 0444,
1894 .kf_ops = &rdtgroup_kf_single_ops,
1895 .seq_show = resctrl_num_mbm_cntrs_show,
1896 },
1897 {
1898 .name = "min_cbm_bits",
1899 .mode = 0444,
1900 .kf_ops = &rdtgroup_kf_single_ops,
1901 .seq_show = rdt_min_cbm_bits_show,
1902 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1903 },
1904 {
1905 .name = "shareable_bits",
1906 .mode = 0444,
1907 .kf_ops = &rdtgroup_kf_single_ops,
1908 .seq_show = rdt_shareable_bits_show,
1909 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1910 },
1911 {
1912 .name = "bit_usage",
1913 .mode = 0444,
1914 .kf_ops = &rdtgroup_kf_single_ops,
1915 .seq_show = rdt_bit_usage_show,
1916 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1917 },
1918 {
1919 .name = "min_bandwidth",
1920 .mode = 0444,
1921 .kf_ops = &rdtgroup_kf_single_ops,
1922 .seq_show = rdt_min_bw_show,
1923 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1924 },
1925 {
1926 .name = "bandwidth_gran",
1927 .mode = 0444,
1928 .kf_ops = &rdtgroup_kf_single_ops,
1929 .seq_show = rdt_bw_gran_show,
1930 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1931 },
1932 {
1933 .name = "delay_linear",
1934 .mode = 0444,
1935 .kf_ops = &rdtgroup_kf_single_ops,
1936 .seq_show = rdt_delay_linear_show,
1937 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1938 },
1939 /*
1940 * Platform specific which (if any) capabilities are provided by
1941 * thread_throttle_mode. Defer "fflags" initialization to platform
1942 * discovery.
1943 */
1944 {
1945 .name = "thread_throttle_mode",
1946 .mode = 0444,
1947 .kf_ops = &rdtgroup_kf_single_ops,
1948 .seq_show = rdt_thread_throttle_mode_show,
1949 },
1950 {
1951 .name = "max_threshold_occupancy",
1952 .mode = 0644,
1953 .kf_ops = &rdtgroup_kf_single_ops,
1954 .write = max_threshold_occ_write,
1955 .seq_show = max_threshold_occ_show,
1956 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1957 },
1958 {
1959 .name = "mbm_total_bytes_config",
1960 .mode = 0644,
1961 .kf_ops = &rdtgroup_kf_single_ops,
1962 .seq_show = mbm_total_bytes_config_show,
1963 .write = mbm_total_bytes_config_write,
1964 },
1965 {
1966 .name = "mbm_local_bytes_config",
1967 .mode = 0644,
1968 .kf_ops = &rdtgroup_kf_single_ops,
1969 .seq_show = mbm_local_bytes_config_show,
1970 .write = mbm_local_bytes_config_write,
1971 },
1972 {
1973 .name = "event_filter",
1974 .mode = 0644,
1975 .kf_ops = &rdtgroup_kf_single_ops,
1976 .seq_show = event_filter_show,
1977 .write = event_filter_write,
1978 },
1979 {
1980 .name = "mbm_L3_assignments",
1981 .mode = 0644,
1982 .kf_ops = &rdtgroup_kf_single_ops,
1983 .seq_show = mbm_L3_assignments_show,
1984 .write = mbm_L3_assignments_write,
1985 },
1986 {
1987 .name = "mbm_assign_mode",
1988 .mode = 0644,
1989 .kf_ops = &rdtgroup_kf_single_ops,
1990 .seq_show = resctrl_mbm_assign_mode_show,
1991 .write = resctrl_mbm_assign_mode_write,
1992 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1993 },
1994 {
1995 .name = "cpus",
1996 .mode = 0644,
1997 .kf_ops = &rdtgroup_kf_single_ops,
1998 .write = rdtgroup_cpus_write,
1999 .seq_show = rdtgroup_cpus_show,
2000 .fflags = RFTYPE_BASE,
2001 },
2002 {
2003 .name = "cpus_list",
2004 .mode = 0644,
2005 .kf_ops = &rdtgroup_kf_single_ops,
2006 .write = rdtgroup_cpus_write,
2007 .seq_show = rdtgroup_cpus_show,
2008 .flags = RFTYPE_FLAGS_CPUS_LIST,
2009 .fflags = RFTYPE_BASE,
2010 },
2011 {
2012 .name = "tasks",
2013 .mode = 0644,
2014 .kf_ops = &rdtgroup_kf_single_ops,
2015 .write = rdtgroup_tasks_write,
2016 .seq_show = rdtgroup_tasks_show,
2017 .fflags = RFTYPE_BASE,
2018 },
2019 {
2020 .name = "mon_hw_id",
2021 .mode = 0444,
2022 .kf_ops = &rdtgroup_kf_single_ops,
2023 .seq_show = rdtgroup_rmid_show,
2024 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG,
2025 },
2026 {
2027 .name = "schemata",
2028 .mode = 0644,
2029 .kf_ops = &rdtgroup_kf_single_ops,
2030 .write = rdtgroup_schemata_write,
2031 .seq_show = rdtgroup_schemata_show,
2032 .fflags = RFTYPE_CTRL_BASE,
2033 },
2034 {
2035 .name = "mba_MBps_event",
2036 .mode = 0644,
2037 .kf_ops = &rdtgroup_kf_single_ops,
2038 .write = rdtgroup_mba_mbps_event_write,
2039 .seq_show = rdtgroup_mba_mbps_event_show,
2040 },
2041 {
2042 .name = "mode",
2043 .mode = 0644,
2044 .kf_ops = &rdtgroup_kf_single_ops,
2045 .write = rdtgroup_mode_write,
2046 .seq_show = rdtgroup_mode_show,
2047 .fflags = RFTYPE_CTRL_BASE,
2048 },
2049 {
2050 .name = "size",
2051 .mode = 0444,
2052 .kf_ops = &rdtgroup_kf_single_ops,
2053 .seq_show = rdtgroup_size_show,
2054 .fflags = RFTYPE_CTRL_BASE,
2055 },
2056 {
2057 .name = "sparse_masks",
2058 .mode = 0444,
2059 .kf_ops = &rdtgroup_kf_single_ops,
2060 .seq_show = rdt_has_sparse_bitmasks_show,
2061 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
2062 },
2063 {
2064 .name = "ctrl_hw_id",
2065 .mode = 0444,
2066 .kf_ops = &rdtgroup_kf_single_ops,
2067 .seq_show = rdtgroup_closid_show,
2068 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
2069 },
2070 };
2071
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)2072 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
2073 {
2074 struct rftype *rfts, *rft;
2075 int ret, len;
2076
2077 rfts = res_common_files;
2078 len = ARRAY_SIZE(res_common_files);
2079
2080 lockdep_assert_held(&rdtgroup_mutex);
2081
2082 if (resctrl_debug)
2083 fflags |= RFTYPE_DEBUG;
2084
2085 for (rft = rfts; rft < rfts + len; rft++) {
2086 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
2087 ret = rdtgroup_add_file(kn, rft);
2088 if (ret)
2089 goto error;
2090 }
2091 }
2092
2093 return 0;
2094 error:
2095 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2096 while (--rft >= rfts) {
2097 if ((fflags & rft->fflags) == rft->fflags)
2098 kernfs_remove_by_name(kn, rft->name);
2099 }
2100 return ret;
2101 }
2102
rdtgroup_get_rftype_by_name(const char * name)2103 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2104 {
2105 struct rftype *rfts, *rft;
2106 int len;
2107
2108 rfts = res_common_files;
2109 len = ARRAY_SIZE(res_common_files);
2110
2111 for (rft = rfts; rft < rfts + len; rft++) {
2112 if (!strcmp(rft->name, name))
2113 return rft;
2114 }
2115
2116 return NULL;
2117 }
2118
thread_throttle_mode_init(void)2119 static void thread_throttle_mode_init(void)
2120 {
2121 enum membw_throttle_mode throttle_mode = THREAD_THROTTLE_UNDEFINED;
2122 struct rdt_resource *r_mba, *r_smba;
2123
2124 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2125 if (r_mba->alloc_capable &&
2126 r_mba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED)
2127 throttle_mode = r_mba->membw.throttle_mode;
2128
2129 r_smba = resctrl_arch_get_resource(RDT_RESOURCE_SMBA);
2130 if (r_smba->alloc_capable &&
2131 r_smba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED)
2132 throttle_mode = r_smba->membw.throttle_mode;
2133
2134 if (throttle_mode == THREAD_THROTTLE_UNDEFINED)
2135 return;
2136
2137 resctrl_file_fflags_init("thread_throttle_mode",
2138 RFTYPE_CTRL_INFO | RFTYPE_RES_MB);
2139 }
2140
resctrl_file_fflags_init(const char * config,unsigned long fflags)2141 void resctrl_file_fflags_init(const char *config, unsigned long fflags)
2142 {
2143 struct rftype *rft;
2144
2145 rft = rdtgroup_get_rftype_by_name(config);
2146 if (rft)
2147 rft->fflags = fflags;
2148 }
2149
2150 /**
2151 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2152 * @r: The resource group with which the file is associated.
2153 * @name: Name of the file
2154 *
2155 * The permissions of named resctrl file, directory, or link are modified
2156 * to not allow read, write, or execute by any user.
2157 *
2158 * WARNING: This function is intended to communicate to the user that the
2159 * resctrl file has been locked down - that it is not relevant to the
2160 * particular state the system finds itself in. It should not be relied
2161 * on to protect from user access because after the file's permissions
2162 * are restricted the user can still change the permissions using chmod
2163 * from the command line.
2164 *
2165 * Return: 0 on success, <0 on failure.
2166 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)2167 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2168 {
2169 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2170 struct kernfs_node *kn;
2171 int ret = 0;
2172
2173 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2174 if (!kn)
2175 return -ENOENT;
2176
2177 switch (kernfs_type(kn)) {
2178 case KERNFS_DIR:
2179 iattr.ia_mode = S_IFDIR;
2180 break;
2181 case KERNFS_FILE:
2182 iattr.ia_mode = S_IFREG;
2183 break;
2184 case KERNFS_LINK:
2185 iattr.ia_mode = S_IFLNK;
2186 break;
2187 }
2188
2189 ret = kernfs_setattr(kn, &iattr);
2190 kernfs_put(kn);
2191 return ret;
2192 }
2193
2194 /**
2195 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2196 * @r: The resource group with which the file is associated.
2197 * @name: Name of the file
2198 * @mask: Mask of permissions that should be restored
2199 *
2200 * Restore the permissions of the named file. If @name is a directory the
2201 * permissions of its parent will be used.
2202 *
2203 * Return: 0 on success, <0 on failure.
2204 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)2205 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2206 umode_t mask)
2207 {
2208 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2209 struct kernfs_node *kn, *parent;
2210 struct rftype *rfts, *rft;
2211 int ret, len;
2212
2213 rfts = res_common_files;
2214 len = ARRAY_SIZE(res_common_files);
2215
2216 for (rft = rfts; rft < rfts + len; rft++) {
2217 if (!strcmp(rft->name, name))
2218 iattr.ia_mode = rft->mode & mask;
2219 }
2220
2221 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2222 if (!kn)
2223 return -ENOENT;
2224
2225 switch (kernfs_type(kn)) {
2226 case KERNFS_DIR:
2227 parent = kernfs_get_parent(kn);
2228 if (parent) {
2229 iattr.ia_mode |= parent->mode;
2230 kernfs_put(parent);
2231 }
2232 iattr.ia_mode |= S_IFDIR;
2233 break;
2234 case KERNFS_FILE:
2235 iattr.ia_mode |= S_IFREG;
2236 break;
2237 case KERNFS_LINK:
2238 iattr.ia_mode |= S_IFLNK;
2239 break;
2240 }
2241
2242 ret = kernfs_setattr(kn, &iattr);
2243 kernfs_put(kn);
2244 return ret;
2245 }
2246
resctrl_mkdir_event_configs(struct rdt_resource * r,struct kernfs_node * l3_mon_kn)2247 static int resctrl_mkdir_event_configs(struct rdt_resource *r, struct kernfs_node *l3_mon_kn)
2248 {
2249 struct kernfs_node *kn_subdir, *kn_subdir2;
2250 struct mon_evt *mevt;
2251 int ret;
2252
2253 kn_subdir = kernfs_create_dir(l3_mon_kn, "event_configs", l3_mon_kn->mode, NULL);
2254 if (IS_ERR(kn_subdir))
2255 return PTR_ERR(kn_subdir);
2256
2257 ret = rdtgroup_kn_set_ugid(kn_subdir);
2258 if (ret)
2259 return ret;
2260
2261 for_each_mon_event(mevt) {
2262 if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid))
2263 continue;
2264
2265 kn_subdir2 = kernfs_create_dir(kn_subdir, mevt->name, kn_subdir->mode, mevt);
2266 if (IS_ERR(kn_subdir2)) {
2267 ret = PTR_ERR(kn_subdir2);
2268 goto out;
2269 }
2270
2271 ret = rdtgroup_kn_set_ugid(kn_subdir2);
2272 if (ret)
2273 goto out;
2274
2275 ret = rdtgroup_add_files(kn_subdir2, RFTYPE_ASSIGN_CONFIG);
2276 if (ret)
2277 break;
2278 }
2279
2280 out:
2281 return ret;
2282 }
2283
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)2284 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2285 unsigned long fflags)
2286 {
2287 struct kernfs_node *kn_subdir;
2288 struct rdt_resource *r;
2289 int ret;
2290
2291 kn_subdir = kernfs_create_dir(kn_info, name,
2292 kn_info->mode, priv);
2293 if (IS_ERR(kn_subdir))
2294 return PTR_ERR(kn_subdir);
2295
2296 ret = rdtgroup_kn_set_ugid(kn_subdir);
2297 if (ret)
2298 return ret;
2299
2300 ret = rdtgroup_add_files(kn_subdir, fflags);
2301 if (ret)
2302 return ret;
2303
2304 if ((fflags & RFTYPE_MON_INFO) == RFTYPE_MON_INFO) {
2305 r = priv;
2306 if (r->mon.mbm_cntr_assignable) {
2307 ret = resctrl_mkdir_event_configs(r, kn_subdir);
2308 if (ret)
2309 return ret;
2310 /*
2311 * Hide BMEC related files if mbm_event mode
2312 * is enabled.
2313 */
2314 if (resctrl_arch_mbm_cntr_assign_enabled(r))
2315 resctrl_bmec_files_show(r, kn_subdir, false);
2316 }
2317 }
2318
2319 kernfs_activate(kn_subdir);
2320
2321 return ret;
2322 }
2323
fflags_from_resource(struct rdt_resource * r)2324 static unsigned long fflags_from_resource(struct rdt_resource *r)
2325 {
2326 switch (r->rid) {
2327 case RDT_RESOURCE_L3:
2328 case RDT_RESOURCE_L2:
2329 return RFTYPE_RES_CACHE;
2330 case RDT_RESOURCE_MBA:
2331 case RDT_RESOURCE_SMBA:
2332 return RFTYPE_RES_MB;
2333 }
2334
2335 return WARN_ON_ONCE(1);
2336 }
2337
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)2338 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2339 {
2340 struct resctrl_schema *s;
2341 struct rdt_resource *r;
2342 unsigned long fflags;
2343 char name[32];
2344 int ret;
2345
2346 /* create the directory */
2347 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2348 if (IS_ERR(kn_info))
2349 return PTR_ERR(kn_info);
2350
2351 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2352 if (ret)
2353 goto out_destroy;
2354
2355 /* loop over enabled controls, these are all alloc_capable */
2356 list_for_each_entry(s, &resctrl_schema_all, list) {
2357 r = s->res;
2358 fflags = fflags_from_resource(r) | RFTYPE_CTRL_INFO;
2359 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2360 if (ret)
2361 goto out_destroy;
2362 }
2363
2364 for_each_mon_capable_rdt_resource(r) {
2365 fflags = fflags_from_resource(r) | RFTYPE_MON_INFO;
2366 sprintf(name, "%s_MON", r->name);
2367 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2368 if (ret)
2369 goto out_destroy;
2370 }
2371
2372 ret = rdtgroup_kn_set_ugid(kn_info);
2373 if (ret)
2374 goto out_destroy;
2375
2376 kernfs_activate(kn_info);
2377
2378 return 0;
2379
2380 out_destroy:
2381 kernfs_remove(kn_info);
2382 return ret;
2383 }
2384
2385 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)2386 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2387 char *name, struct kernfs_node **dest_kn)
2388 {
2389 struct kernfs_node *kn;
2390 int ret;
2391
2392 /* create the directory */
2393 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2394 if (IS_ERR(kn))
2395 return PTR_ERR(kn);
2396
2397 if (dest_kn)
2398 *dest_kn = kn;
2399
2400 ret = rdtgroup_kn_set_ugid(kn);
2401 if (ret)
2402 goto out_destroy;
2403
2404 kernfs_activate(kn);
2405
2406 return 0;
2407
2408 out_destroy:
2409 kernfs_remove(kn);
2410 return ret;
2411 }
2412
is_mba_linear(void)2413 static inline bool is_mba_linear(void)
2414 {
2415 return resctrl_arch_get_resource(RDT_RESOURCE_MBA)->membw.delay_linear;
2416 }
2417
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_ctrl_domain * d)2418 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2419 {
2420 u32 num_closid = resctrl_arch_get_num_closid(r);
2421 int cpu = cpumask_any(&d->hdr.cpu_mask);
2422 int i;
2423
2424 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2425 GFP_KERNEL, cpu_to_node(cpu));
2426 if (!d->mbps_val)
2427 return -ENOMEM;
2428
2429 for (i = 0; i < num_closid; i++)
2430 d->mbps_val[i] = MBA_MAX_MBPS;
2431
2432 return 0;
2433 }
2434
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_ctrl_domain * d)2435 static void mba_sc_domain_destroy(struct rdt_resource *r,
2436 struct rdt_ctrl_domain *d)
2437 {
2438 kfree(d->mbps_val);
2439 d->mbps_val = NULL;
2440 }
2441
2442 /*
2443 * MBA software controller is supported only if
2444 * MBM is supported and MBA is in linear scale,
2445 * and the MBM monitor scope is the same as MBA
2446 * control scope.
2447 */
supports_mba_mbps(void)2448 static bool supports_mba_mbps(void)
2449 {
2450 struct rdt_resource *rmbm = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2451 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2452
2453 return (resctrl_is_mbm_enabled() &&
2454 r->alloc_capable && is_mba_linear() &&
2455 r->ctrl_scope == rmbm->mon_scope);
2456 }
2457
2458 /*
2459 * Enable or disable the MBA software controller
2460 * which helps user specify bandwidth in MBps.
2461 */
set_mba_sc(bool mba_sc)2462 static int set_mba_sc(bool mba_sc)
2463 {
2464 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2465 u32 num_closid = resctrl_arch_get_num_closid(r);
2466 struct rdt_ctrl_domain *d;
2467 unsigned long fflags;
2468 int i;
2469
2470 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2471 return -EINVAL;
2472
2473 r->membw.mba_sc = mba_sc;
2474
2475 rdtgroup_default.mba_mbps_event = mba_mbps_default_event;
2476
2477 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2478 for (i = 0; i < num_closid; i++)
2479 d->mbps_val[i] = MBA_MAX_MBPS;
2480 }
2481
2482 fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0;
2483 resctrl_file_fflags_init("mba_MBps_event", fflags);
2484
2485 return 0;
2486 }
2487
2488 /*
2489 * We don't allow rdtgroup directories to be created anywhere
2490 * except the root directory. Thus when looking for the rdtgroup
2491 * structure for a kernfs node we are either looking at a directory,
2492 * in which case the rdtgroup structure is pointed at by the "priv"
2493 * field, otherwise we have a file, and need only look to the parent
2494 * to find the rdtgroup.
2495 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2496 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2497 {
2498 if (kernfs_type(kn) == KERNFS_DIR) {
2499 /*
2500 * All the resource directories use "kn->priv"
2501 * to point to the "struct rdtgroup" for the
2502 * resource. "info" and its subdirectories don't
2503 * have rdtgroup structures, so return NULL here.
2504 */
2505 if (kn == kn_info ||
2506 rcu_access_pointer(kn->__parent) == kn_info)
2507 return NULL;
2508 else
2509 return kn->priv;
2510 } else {
2511 return rdt_kn_parent_priv(kn);
2512 }
2513 }
2514
rdtgroup_kn_get(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2515 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2516 {
2517 atomic_inc(&rdtgrp->waitcount);
2518 kernfs_break_active_protection(kn);
2519 }
2520
rdtgroup_kn_put(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2521 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2522 {
2523 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2524 (rdtgrp->flags & RDT_DELETED)) {
2525 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2526 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2527 rdtgroup_pseudo_lock_remove(rdtgrp);
2528 kernfs_unbreak_active_protection(kn);
2529 rdtgroup_remove(rdtgrp);
2530 } else {
2531 kernfs_unbreak_active_protection(kn);
2532 }
2533 }
2534
rdtgroup_kn_lock_live(struct kernfs_node * kn)2535 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2536 {
2537 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2538
2539 if (!rdtgrp)
2540 return NULL;
2541
2542 rdtgroup_kn_get(rdtgrp, kn);
2543
2544 cpus_read_lock();
2545 mutex_lock(&rdtgroup_mutex);
2546
2547 /* Was this group deleted while we waited? */
2548 if (rdtgrp->flags & RDT_DELETED)
2549 return NULL;
2550
2551 return rdtgrp;
2552 }
2553
rdtgroup_kn_unlock(struct kernfs_node * kn)2554 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2555 {
2556 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2557
2558 if (!rdtgrp)
2559 return;
2560
2561 mutex_unlock(&rdtgroup_mutex);
2562 cpus_read_unlock();
2563
2564 rdtgroup_kn_put(rdtgrp, kn);
2565 }
2566
2567 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2568 struct rdtgroup *prgrp,
2569 struct kernfs_node **mon_data_kn);
2570
rdt_disable_ctx(void)2571 static void rdt_disable_ctx(void)
2572 {
2573 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2574 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2575 set_mba_sc(false);
2576
2577 resctrl_debug = false;
2578 }
2579
rdt_enable_ctx(struct rdt_fs_context * ctx)2580 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2581 {
2582 int ret = 0;
2583
2584 if (ctx->enable_cdpl2) {
2585 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2586 if (ret)
2587 goto out_done;
2588 }
2589
2590 if (ctx->enable_cdpl3) {
2591 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2592 if (ret)
2593 goto out_cdpl2;
2594 }
2595
2596 if (ctx->enable_mba_mbps) {
2597 ret = set_mba_sc(true);
2598 if (ret)
2599 goto out_cdpl3;
2600 }
2601
2602 if (ctx->enable_debug)
2603 resctrl_debug = true;
2604
2605 return 0;
2606
2607 out_cdpl3:
2608 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2609 out_cdpl2:
2610 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2611 out_done:
2612 return ret;
2613 }
2614
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2615 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2616 {
2617 struct resctrl_schema *s;
2618 const char *suffix = "";
2619 int ret, cl;
2620
2621 s = kzalloc(sizeof(*s), GFP_KERNEL);
2622 if (!s)
2623 return -ENOMEM;
2624
2625 s->res = r;
2626 s->num_closid = resctrl_arch_get_num_closid(r);
2627 if (resctrl_arch_get_cdp_enabled(r->rid))
2628 s->num_closid /= 2;
2629
2630 s->conf_type = type;
2631 switch (type) {
2632 case CDP_CODE:
2633 suffix = "CODE";
2634 break;
2635 case CDP_DATA:
2636 suffix = "DATA";
2637 break;
2638 case CDP_NONE:
2639 suffix = "";
2640 break;
2641 }
2642
2643 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2644 if (ret >= sizeof(s->name)) {
2645 kfree(s);
2646 return -EINVAL;
2647 }
2648
2649 cl = strlen(s->name);
2650
2651 /*
2652 * If CDP is supported by this resource, but not enabled,
2653 * include the suffix. This ensures the tabular format of the
2654 * schemata file does not change between mounts of the filesystem.
2655 */
2656 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2657 cl += 4;
2658
2659 if (cl > max_name_width)
2660 max_name_width = cl;
2661
2662 switch (r->schema_fmt) {
2663 case RESCTRL_SCHEMA_BITMAP:
2664 s->fmt_str = "%d=%x";
2665 break;
2666 case RESCTRL_SCHEMA_RANGE:
2667 s->fmt_str = "%d=%u";
2668 break;
2669 }
2670
2671 if (WARN_ON_ONCE(!s->fmt_str)) {
2672 kfree(s);
2673 return -EINVAL;
2674 }
2675
2676 INIT_LIST_HEAD(&s->list);
2677 list_add(&s->list, &resctrl_schema_all);
2678
2679 return 0;
2680 }
2681
schemata_list_create(void)2682 static int schemata_list_create(void)
2683 {
2684 struct rdt_resource *r;
2685 int ret = 0;
2686
2687 for_each_alloc_capable_rdt_resource(r) {
2688 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2689 ret = schemata_list_add(r, CDP_CODE);
2690 if (ret)
2691 break;
2692
2693 ret = schemata_list_add(r, CDP_DATA);
2694 } else {
2695 ret = schemata_list_add(r, CDP_NONE);
2696 }
2697
2698 if (ret)
2699 break;
2700 }
2701
2702 return ret;
2703 }
2704
schemata_list_destroy(void)2705 static void schemata_list_destroy(void)
2706 {
2707 struct resctrl_schema *s, *tmp;
2708
2709 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2710 list_del(&s->list);
2711 kfree(s);
2712 }
2713 }
2714
rdt_get_tree(struct fs_context * fc)2715 static int rdt_get_tree(struct fs_context *fc)
2716 {
2717 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2718 unsigned long flags = RFTYPE_CTRL_BASE;
2719 struct rdt_mon_domain *dom;
2720 struct rdt_resource *r;
2721 int ret;
2722
2723 cpus_read_lock();
2724 mutex_lock(&rdtgroup_mutex);
2725 /*
2726 * resctrl file system can only be mounted once.
2727 */
2728 if (resctrl_mounted) {
2729 ret = -EBUSY;
2730 goto out;
2731 }
2732
2733 ret = rdtgroup_setup_root(ctx);
2734 if (ret)
2735 goto out;
2736
2737 ret = rdt_enable_ctx(ctx);
2738 if (ret)
2739 goto out_root;
2740
2741 ret = schemata_list_create();
2742 if (ret)
2743 goto out_schemata_free;
2744
2745 ret = closid_init();
2746 if (ret)
2747 goto out_schemata_free;
2748
2749 if (resctrl_arch_mon_capable())
2750 flags |= RFTYPE_MON;
2751
2752 ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2753 if (ret)
2754 goto out_closid_exit;
2755
2756 kernfs_activate(rdtgroup_default.kn);
2757
2758 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2759 if (ret < 0)
2760 goto out_closid_exit;
2761
2762 if (resctrl_arch_mon_capable()) {
2763 ret = mongroup_create_dir(rdtgroup_default.kn,
2764 &rdtgroup_default, "mon_groups",
2765 &kn_mongrp);
2766 if (ret < 0)
2767 goto out_info;
2768
2769 rdtgroup_assign_cntrs(&rdtgroup_default);
2770
2771 ret = mkdir_mondata_all(rdtgroup_default.kn,
2772 &rdtgroup_default, &kn_mondata);
2773 if (ret < 0)
2774 goto out_mongrp;
2775 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2776 }
2777
2778 ret = rdt_pseudo_lock_init();
2779 if (ret)
2780 goto out_mondata;
2781
2782 ret = kernfs_get_tree(fc);
2783 if (ret < 0)
2784 goto out_psl;
2785
2786 if (resctrl_arch_alloc_capable())
2787 resctrl_arch_enable_alloc();
2788 if (resctrl_arch_mon_capable())
2789 resctrl_arch_enable_mon();
2790
2791 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2792 resctrl_mounted = true;
2793
2794 if (resctrl_is_mbm_enabled()) {
2795 r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2796 list_for_each_entry(dom, &r->mon_domains, hdr.list)
2797 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2798 RESCTRL_PICK_ANY_CPU);
2799 }
2800
2801 goto out;
2802
2803 out_psl:
2804 rdt_pseudo_lock_release();
2805 out_mondata:
2806 if (resctrl_arch_mon_capable())
2807 kernfs_remove(kn_mondata);
2808 out_mongrp:
2809 if (resctrl_arch_mon_capable()) {
2810 rdtgroup_unassign_cntrs(&rdtgroup_default);
2811 kernfs_remove(kn_mongrp);
2812 }
2813 out_info:
2814 kernfs_remove(kn_info);
2815 out_closid_exit:
2816 closid_exit();
2817 out_schemata_free:
2818 schemata_list_destroy();
2819 rdt_disable_ctx();
2820 out_root:
2821 rdtgroup_destroy_root();
2822 out:
2823 rdt_last_cmd_clear();
2824 mutex_unlock(&rdtgroup_mutex);
2825 cpus_read_unlock();
2826 return ret;
2827 }
2828
2829 enum rdt_param {
2830 Opt_cdp,
2831 Opt_cdpl2,
2832 Opt_mba_mbps,
2833 Opt_debug,
2834 nr__rdt_params
2835 };
2836
2837 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2838 fsparam_flag("cdp", Opt_cdp),
2839 fsparam_flag("cdpl2", Opt_cdpl2),
2840 fsparam_flag("mba_MBps", Opt_mba_mbps),
2841 fsparam_flag("debug", Opt_debug),
2842 {}
2843 };
2844
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2845 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2846 {
2847 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2848 struct fs_parse_result result;
2849 const char *msg;
2850 int opt;
2851
2852 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2853 if (opt < 0)
2854 return opt;
2855
2856 switch (opt) {
2857 case Opt_cdp:
2858 ctx->enable_cdpl3 = true;
2859 return 0;
2860 case Opt_cdpl2:
2861 ctx->enable_cdpl2 = true;
2862 return 0;
2863 case Opt_mba_mbps:
2864 msg = "mba_MBps requires MBM and linear scale MBA at L3 scope";
2865 if (!supports_mba_mbps())
2866 return invalfc(fc, msg);
2867 ctx->enable_mba_mbps = true;
2868 return 0;
2869 case Opt_debug:
2870 ctx->enable_debug = true;
2871 return 0;
2872 }
2873
2874 return -EINVAL;
2875 }
2876
rdt_fs_context_free(struct fs_context * fc)2877 static void rdt_fs_context_free(struct fs_context *fc)
2878 {
2879 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2880
2881 kernfs_free_fs_context(fc);
2882 kfree(ctx);
2883 }
2884
2885 static const struct fs_context_operations rdt_fs_context_ops = {
2886 .free = rdt_fs_context_free,
2887 .parse_param = rdt_parse_param,
2888 .get_tree = rdt_get_tree,
2889 };
2890
rdt_init_fs_context(struct fs_context * fc)2891 static int rdt_init_fs_context(struct fs_context *fc)
2892 {
2893 struct rdt_fs_context *ctx;
2894
2895 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2896 if (!ctx)
2897 return -ENOMEM;
2898
2899 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2900 fc->fs_private = &ctx->kfc;
2901 fc->ops = &rdt_fs_context_ops;
2902 put_user_ns(fc->user_ns);
2903 fc->user_ns = get_user_ns(&init_user_ns);
2904 fc->global = true;
2905 return 0;
2906 }
2907
2908 /*
2909 * Move tasks from one to the other group. If @from is NULL, then all tasks
2910 * in the systems are moved unconditionally (used for teardown).
2911 *
2912 * If @mask is not NULL the cpus on which moved tasks are running are set
2913 * in that mask so the update smp function call is restricted to affected
2914 * cpus.
2915 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2916 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2917 struct cpumask *mask)
2918 {
2919 struct task_struct *p, *t;
2920
2921 read_lock(&tasklist_lock);
2922 for_each_process_thread(p, t) {
2923 if (!from || is_closid_match(t, from) ||
2924 is_rmid_match(t, from)) {
2925 resctrl_arch_set_closid_rmid(t, to->closid,
2926 to->mon.rmid);
2927
2928 /*
2929 * Order the closid/rmid stores above before the loads
2930 * in task_curr(). This pairs with the full barrier
2931 * between the rq->curr update and
2932 * resctrl_arch_sched_in() during context switch.
2933 */
2934 smp_mb();
2935
2936 /*
2937 * If the task is on a CPU, set the CPU in the mask.
2938 * The detection is inaccurate as tasks might move or
2939 * schedule before the smp function call takes place.
2940 * In such a case the function call is pointless, but
2941 * there is no other side effect.
2942 */
2943 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2944 cpumask_set_cpu(task_cpu(t), mask);
2945 }
2946 }
2947 read_unlock(&tasklist_lock);
2948 }
2949
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2950 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2951 {
2952 struct rdtgroup *sentry, *stmp;
2953 struct list_head *head;
2954
2955 head = &rdtgrp->mon.crdtgrp_list;
2956 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2957 rdtgroup_unassign_cntrs(sentry);
2958 free_rmid(sentry->closid, sentry->mon.rmid);
2959 list_del(&sentry->mon.crdtgrp_list);
2960
2961 if (atomic_read(&sentry->waitcount) != 0)
2962 sentry->flags = RDT_DELETED;
2963 else
2964 rdtgroup_remove(sentry);
2965 }
2966 }
2967
2968 /*
2969 * Forcibly remove all of subdirectories under root.
2970 */
rmdir_all_sub(void)2971 static void rmdir_all_sub(void)
2972 {
2973 struct rdtgroup *rdtgrp, *tmp;
2974
2975 /* Move all tasks to the default resource group */
2976 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2977
2978 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2979 /* Free any child rmids */
2980 free_all_child_rdtgrp(rdtgrp);
2981
2982 /* Remove each rdtgroup other than root */
2983 if (rdtgrp == &rdtgroup_default)
2984 continue;
2985
2986 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2987 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2988 rdtgroup_pseudo_lock_remove(rdtgrp);
2989
2990 /*
2991 * Give any CPUs back to the default group. We cannot copy
2992 * cpu_online_mask because a CPU might have executed the
2993 * offline callback already, but is still marked online.
2994 */
2995 cpumask_or(&rdtgroup_default.cpu_mask,
2996 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2997
2998 rdtgroup_unassign_cntrs(rdtgrp);
2999
3000 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3001
3002 kernfs_remove(rdtgrp->kn);
3003 list_del(&rdtgrp->rdtgroup_list);
3004
3005 if (atomic_read(&rdtgrp->waitcount) != 0)
3006 rdtgrp->flags = RDT_DELETED;
3007 else
3008 rdtgroup_remove(rdtgrp);
3009 }
3010 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
3011 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
3012
3013 kernfs_remove(kn_info);
3014 kernfs_remove(kn_mongrp);
3015 kernfs_remove(kn_mondata);
3016 }
3017
3018 /**
3019 * mon_get_kn_priv() - Get the mon_data priv data for this event.
3020 *
3021 * The same values are used across the mon_data directories of all control and
3022 * monitor groups for the same event in the same domain. Keep a list of
3023 * allocated structures and re-use an existing one with the same values for
3024 * @rid, @domid, etc.
3025 *
3026 * @rid: The resource id for the event file being created.
3027 * @domid: The domain id for the event file being created.
3028 * @mevt: The type of event file being created.
3029 * @do_sum: Whether SNC summing monitors are being created.
3030 */
mon_get_kn_priv(enum resctrl_res_level rid,int domid,struct mon_evt * mevt,bool do_sum)3031 static struct mon_data *mon_get_kn_priv(enum resctrl_res_level rid, int domid,
3032 struct mon_evt *mevt,
3033 bool do_sum)
3034 {
3035 struct mon_data *priv;
3036
3037 lockdep_assert_held(&rdtgroup_mutex);
3038
3039 list_for_each_entry(priv, &mon_data_kn_priv_list, list) {
3040 if (priv->rid == rid && priv->domid == domid &&
3041 priv->sum == do_sum && priv->evtid == mevt->evtid)
3042 return priv;
3043 }
3044
3045 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
3046 if (!priv)
3047 return NULL;
3048
3049 priv->rid = rid;
3050 priv->domid = domid;
3051 priv->sum = do_sum;
3052 priv->evtid = mevt->evtid;
3053 list_add_tail(&priv->list, &mon_data_kn_priv_list);
3054
3055 return priv;
3056 }
3057
3058 /**
3059 * mon_put_kn_priv() - Free all allocated mon_data structures.
3060 *
3061 * Called when resctrl file system is unmounted.
3062 */
mon_put_kn_priv(void)3063 static void mon_put_kn_priv(void)
3064 {
3065 struct mon_data *priv, *tmp;
3066
3067 lockdep_assert_held(&rdtgroup_mutex);
3068
3069 list_for_each_entry_safe(priv, tmp, &mon_data_kn_priv_list, list) {
3070 list_del(&priv->list);
3071 kfree(priv);
3072 }
3073 }
3074
resctrl_fs_teardown(void)3075 static void resctrl_fs_teardown(void)
3076 {
3077 lockdep_assert_held(&rdtgroup_mutex);
3078
3079 /* Cleared by rdtgroup_destroy_root() */
3080 if (!rdtgroup_default.kn)
3081 return;
3082
3083 rmdir_all_sub();
3084 rdtgroup_unassign_cntrs(&rdtgroup_default);
3085 mon_put_kn_priv();
3086 rdt_pseudo_lock_release();
3087 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
3088 closid_exit();
3089 schemata_list_destroy();
3090 rdtgroup_destroy_root();
3091 }
3092
rdt_kill_sb(struct super_block * sb)3093 static void rdt_kill_sb(struct super_block *sb)
3094 {
3095 struct rdt_resource *r;
3096
3097 cpus_read_lock();
3098 mutex_lock(&rdtgroup_mutex);
3099
3100 rdt_disable_ctx();
3101
3102 /* Put everything back to default values. */
3103 for_each_alloc_capable_rdt_resource(r)
3104 resctrl_arch_reset_all_ctrls(r);
3105
3106 resctrl_fs_teardown();
3107 if (resctrl_arch_alloc_capable())
3108 resctrl_arch_disable_alloc();
3109 if (resctrl_arch_mon_capable())
3110 resctrl_arch_disable_mon();
3111 resctrl_mounted = false;
3112 kernfs_kill_sb(sb);
3113 mutex_unlock(&rdtgroup_mutex);
3114 cpus_read_unlock();
3115 }
3116
3117 static struct file_system_type rdt_fs_type = {
3118 .name = "resctrl",
3119 .init_fs_context = rdt_init_fs_context,
3120 .parameters = rdt_fs_parameters,
3121 .kill_sb = rdt_kill_sb,
3122 };
3123
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)3124 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
3125 void *priv)
3126 {
3127 struct kernfs_node *kn;
3128 int ret = 0;
3129
3130 kn = __kernfs_create_file(parent_kn, name, 0444,
3131 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
3132 &kf_mondata_ops, priv, NULL, NULL);
3133 if (IS_ERR(kn))
3134 return PTR_ERR(kn);
3135
3136 ret = rdtgroup_kn_set_ugid(kn);
3137 if (ret) {
3138 kernfs_remove(kn);
3139 return ret;
3140 }
3141
3142 return ret;
3143 }
3144
mon_rmdir_one_subdir(struct kernfs_node * pkn,char * name,char * subname)3145 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3146 {
3147 struct kernfs_node *kn;
3148
3149 kn = kernfs_find_and_get(pkn, name);
3150 if (!kn)
3151 return;
3152 kernfs_put(kn);
3153
3154 if (kn->dir.subdirs <= 1)
3155 kernfs_remove(kn);
3156 else
3157 kernfs_remove_by_name(kn, subname);
3158 }
3159
3160 /*
3161 * Remove all subdirectories of mon_data of ctrl_mon groups
3162 * and monitor groups for the given domain.
3163 * Remove files and directories containing "sum" of domain data
3164 * when last domain being summed is removed.
3165 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3166 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3167 struct rdt_mon_domain *d)
3168 {
3169 struct rdtgroup *prgrp, *crgrp;
3170 char subname[32];
3171 bool snc_mode;
3172 char name[32];
3173
3174 snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3175 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci_id : d->hdr.id);
3176 if (snc_mode)
3177 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3178
3179 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3180 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3181
3182 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3183 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3184 }
3185 }
3186
mon_add_all_files(struct kernfs_node * kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp,bool do_sum)3187 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3188 struct rdt_resource *r, struct rdtgroup *prgrp,
3189 bool do_sum)
3190 {
3191 struct rmid_read rr = {0};
3192 struct mon_data *priv;
3193 struct mon_evt *mevt;
3194 int ret, domid;
3195
3196 for_each_mon_event(mevt) {
3197 if (mevt->rid != r->rid || !mevt->enabled)
3198 continue;
3199 domid = do_sum ? d->ci_id : d->hdr.id;
3200 priv = mon_get_kn_priv(r->rid, domid, mevt, do_sum);
3201 if (WARN_ON_ONCE(!priv))
3202 return -EINVAL;
3203
3204 ret = mon_addfile(kn, mevt->name, priv);
3205 if (ret)
3206 return ret;
3207
3208 if (!do_sum && resctrl_is_mbm_event(mevt->evtid))
3209 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3210 }
3211
3212 return 0;
3213 }
3214
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)3215 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3216 struct rdt_mon_domain *d,
3217 struct rdt_resource *r, struct rdtgroup *prgrp)
3218 {
3219 struct kernfs_node *kn, *ckn;
3220 char name[32];
3221 bool snc_mode;
3222 int ret = 0;
3223
3224 lockdep_assert_held(&rdtgroup_mutex);
3225
3226 snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3227 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci_id : d->hdr.id);
3228 kn = kernfs_find_and_get(parent_kn, name);
3229 if (kn) {
3230 /*
3231 * rdtgroup_mutex will prevent this directory from being
3232 * removed. No need to keep this hold.
3233 */
3234 kernfs_put(kn);
3235 } else {
3236 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3237 if (IS_ERR(kn))
3238 return PTR_ERR(kn);
3239
3240 ret = rdtgroup_kn_set_ugid(kn);
3241 if (ret)
3242 goto out_destroy;
3243 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3244 if (ret)
3245 goto out_destroy;
3246 }
3247
3248 if (snc_mode) {
3249 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3250 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3251 if (IS_ERR(ckn)) {
3252 ret = -EINVAL;
3253 goto out_destroy;
3254 }
3255
3256 ret = rdtgroup_kn_set_ugid(ckn);
3257 if (ret)
3258 goto out_destroy;
3259
3260 ret = mon_add_all_files(ckn, d, r, prgrp, false);
3261 if (ret)
3262 goto out_destroy;
3263 }
3264
3265 kernfs_activate(kn);
3266 return 0;
3267
3268 out_destroy:
3269 kernfs_remove(kn);
3270 return ret;
3271 }
3272
3273 /*
3274 * Add all subdirectories of mon_data for "ctrl_mon" groups
3275 * and "monitor" groups with given domain id.
3276 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3277 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3278 struct rdt_mon_domain *d)
3279 {
3280 struct kernfs_node *parent_kn;
3281 struct rdtgroup *prgrp, *crgrp;
3282 struct list_head *head;
3283
3284 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3285 parent_kn = prgrp->mon.mon_data_kn;
3286 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3287
3288 head = &prgrp->mon.crdtgrp_list;
3289 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3290 parent_kn = crgrp->mon.mon_data_kn;
3291 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3292 }
3293 }
3294 }
3295
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)3296 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3297 struct rdt_resource *r,
3298 struct rdtgroup *prgrp)
3299 {
3300 struct rdt_mon_domain *dom;
3301 int ret;
3302
3303 /* Walking r->domains, ensure it can't race with cpuhp */
3304 lockdep_assert_cpus_held();
3305
3306 list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3307 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3308 if (ret)
3309 return ret;
3310 }
3311
3312 return 0;
3313 }
3314
3315 /*
3316 * This creates a directory mon_data which contains the monitored data.
3317 *
3318 * mon_data has one directory for each domain which are named
3319 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3320 * with L3 domain looks as below:
3321 * ./mon_data:
3322 * mon_L3_00
3323 * mon_L3_01
3324 * mon_L3_02
3325 * ...
3326 *
3327 * Each domain directory has one file per event:
3328 * ./mon_L3_00/:
3329 * llc_occupancy
3330 *
3331 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)3332 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3333 struct rdtgroup *prgrp,
3334 struct kernfs_node **dest_kn)
3335 {
3336 struct rdt_resource *r;
3337 struct kernfs_node *kn;
3338 int ret;
3339
3340 /*
3341 * Create the mon_data directory first.
3342 */
3343 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3344 if (ret)
3345 return ret;
3346
3347 if (dest_kn)
3348 *dest_kn = kn;
3349
3350 /*
3351 * Create the subdirectories for each domain. Note that all events
3352 * in a domain like L3 are grouped into a resource whose domain is L3
3353 */
3354 for_each_mon_capable_rdt_resource(r) {
3355 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3356 if (ret)
3357 goto out_destroy;
3358 }
3359
3360 return 0;
3361
3362 out_destroy:
3363 kernfs_remove(kn);
3364 return ret;
3365 }
3366
3367 /**
3368 * cbm_ensure_valid - Enforce validity on provided CBM
3369 * @_val: Candidate CBM
3370 * @r: RDT resource to which the CBM belongs
3371 *
3372 * The provided CBM represents all cache portions available for use. This
3373 * may be represented by a bitmap that does not consist of contiguous ones
3374 * and thus be an invalid CBM.
3375 * Here the provided CBM is forced to be a valid CBM by only considering
3376 * the first set of contiguous bits as valid and clearing all bits.
3377 * The intention here is to provide a valid default CBM with which a new
3378 * resource group is initialized. The user can follow this with a
3379 * modification to the CBM if the default does not satisfy the
3380 * requirements.
3381 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)3382 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3383 {
3384 unsigned int cbm_len = r->cache.cbm_len;
3385 unsigned long first_bit, zero_bit;
3386 unsigned long val = _val;
3387
3388 if (!val)
3389 return 0;
3390
3391 first_bit = find_first_bit(&val, cbm_len);
3392 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3393
3394 /* Clear any remaining bits to ensure contiguous region */
3395 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3396 return (u32)val;
3397 }
3398
3399 /*
3400 * Initialize cache resources per RDT domain
3401 *
3402 * Set the RDT domain up to start off with all usable allocations. That is,
3403 * all shareable and unused bits. All-zero CBM is invalid.
3404 */
__init_one_rdt_domain(struct rdt_ctrl_domain * d,struct resctrl_schema * s,u32 closid)3405 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3406 u32 closid)
3407 {
3408 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3409 enum resctrl_conf_type t = s->conf_type;
3410 struct resctrl_staged_config *cfg;
3411 struct rdt_resource *r = s->res;
3412 u32 used_b = 0, unused_b = 0;
3413 unsigned long tmp_cbm;
3414 enum rdtgrp_mode mode;
3415 u32 peer_ctl, ctrl_val;
3416 int i;
3417
3418 cfg = &d->staged_config[t];
3419 cfg->have_new_ctrl = false;
3420 cfg->new_ctrl = r->cache.shareable_bits;
3421 used_b = r->cache.shareable_bits;
3422 for (i = 0; i < closids_supported(); i++) {
3423 if (closid_allocated(i) && i != closid) {
3424 mode = rdtgroup_mode_by_closid(i);
3425 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3426 /*
3427 * ctrl values for locksetup aren't relevant
3428 * until the schemata is written, and the mode
3429 * becomes RDT_MODE_PSEUDO_LOCKED.
3430 */
3431 continue;
3432 /*
3433 * If CDP is active include peer domain's
3434 * usage to ensure there is no overlap
3435 * with an exclusive group.
3436 */
3437 if (resctrl_arch_get_cdp_enabled(r->rid))
3438 peer_ctl = resctrl_arch_get_config(r, d, i,
3439 peer_type);
3440 else
3441 peer_ctl = 0;
3442 ctrl_val = resctrl_arch_get_config(r, d, i,
3443 s->conf_type);
3444 used_b |= ctrl_val | peer_ctl;
3445 if (mode == RDT_MODE_SHAREABLE)
3446 cfg->new_ctrl |= ctrl_val | peer_ctl;
3447 }
3448 }
3449 if (d->plr && d->plr->cbm > 0)
3450 used_b |= d->plr->cbm;
3451 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3452 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3453 cfg->new_ctrl |= unused_b;
3454 /*
3455 * Force the initial CBM to be valid, user can
3456 * modify the CBM based on system availability.
3457 */
3458 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3459 /*
3460 * Assign the u32 CBM to an unsigned long to ensure that
3461 * bitmap_weight() does not access out-of-bound memory.
3462 */
3463 tmp_cbm = cfg->new_ctrl;
3464 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3465 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3466 return -ENOSPC;
3467 }
3468 cfg->have_new_ctrl = true;
3469
3470 return 0;
3471 }
3472
3473 /*
3474 * Initialize cache resources with default values.
3475 *
3476 * A new RDT group is being created on an allocation capable (CAT)
3477 * supporting system. Set this group up to start off with all usable
3478 * allocations.
3479 *
3480 * If there are no more shareable bits available on any domain then
3481 * the entire allocation will fail.
3482 */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)3483 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3484 {
3485 struct rdt_ctrl_domain *d;
3486 int ret;
3487
3488 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3489 ret = __init_one_rdt_domain(d, s, closid);
3490 if (ret < 0)
3491 return ret;
3492 }
3493
3494 return 0;
3495 }
3496
3497 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)3498 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3499 {
3500 struct resctrl_staged_config *cfg;
3501 struct rdt_ctrl_domain *d;
3502
3503 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3504 if (is_mba_sc(r)) {
3505 d->mbps_val[closid] = MBA_MAX_MBPS;
3506 continue;
3507 }
3508
3509 cfg = &d->staged_config[CDP_NONE];
3510 cfg->new_ctrl = resctrl_get_default_ctrl(r);
3511 cfg->have_new_ctrl = true;
3512 }
3513 }
3514
3515 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)3516 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3517 {
3518 struct resctrl_schema *s;
3519 struct rdt_resource *r;
3520 int ret = 0;
3521
3522 rdt_staged_configs_clear();
3523
3524 list_for_each_entry(s, &resctrl_schema_all, list) {
3525 r = s->res;
3526 if (r->rid == RDT_RESOURCE_MBA ||
3527 r->rid == RDT_RESOURCE_SMBA) {
3528 rdtgroup_init_mba(r, rdtgrp->closid);
3529 if (is_mba_sc(r))
3530 continue;
3531 } else {
3532 ret = rdtgroup_init_cat(s, rdtgrp->closid);
3533 if (ret < 0)
3534 goto out;
3535 }
3536
3537 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3538 if (ret < 0) {
3539 rdt_last_cmd_puts("Failed to initialize allocations\n");
3540 goto out;
3541 }
3542 }
3543
3544 rdtgrp->mode = RDT_MODE_SHAREABLE;
3545
3546 out:
3547 rdt_staged_configs_clear();
3548 return ret;
3549 }
3550
mkdir_rdt_prepare_rmid_alloc(struct rdtgroup * rdtgrp)3551 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3552 {
3553 int ret;
3554
3555 if (!resctrl_arch_mon_capable())
3556 return 0;
3557
3558 ret = alloc_rmid(rdtgrp->closid);
3559 if (ret < 0) {
3560 rdt_last_cmd_puts("Out of RMIDs\n");
3561 return ret;
3562 }
3563 rdtgrp->mon.rmid = ret;
3564
3565 rdtgroup_assign_cntrs(rdtgrp);
3566
3567 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3568 if (ret) {
3569 rdt_last_cmd_puts("kernfs subdir error\n");
3570 rdtgroup_unassign_cntrs(rdtgrp);
3571 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3572 return ret;
3573 }
3574
3575 return 0;
3576 }
3577
mkdir_rdt_prepare_rmid_free(struct rdtgroup * rgrp)3578 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3579 {
3580 if (resctrl_arch_mon_capable()) {
3581 rdtgroup_unassign_cntrs(rgrp);
3582 free_rmid(rgrp->closid, rgrp->mon.rmid);
3583 }
3584 }
3585
3586 /*
3587 * We allow creating mon groups only with in a directory called "mon_groups"
3588 * which is present in every ctrl_mon group. Check if this is a valid
3589 * "mon_groups" directory.
3590 *
3591 * 1. The directory should be named "mon_groups".
3592 * 2. The mon group itself should "not" be named "mon_groups".
3593 * This makes sure "mon_groups" directory always has a ctrl_mon group
3594 * as parent.
3595 */
is_mon_groups(struct kernfs_node * kn,const char * name)3596 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3597 {
3598 return (!strcmp(rdt_kn_name(kn), "mon_groups") &&
3599 strcmp(name, "mon_groups"));
3600 }
3601
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)3602 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3603 const char *name, umode_t mode,
3604 enum rdt_group_type rtype, struct rdtgroup **r)
3605 {
3606 struct rdtgroup *prdtgrp, *rdtgrp;
3607 unsigned long files = 0;
3608 struct kernfs_node *kn;
3609 int ret;
3610
3611 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3612 if (!prdtgrp) {
3613 ret = -ENODEV;
3614 goto out_unlock;
3615 }
3616
3617 rdt_last_cmd_clear();
3618
3619 /*
3620 * Check that the parent directory for a monitor group is a "mon_groups"
3621 * directory.
3622 */
3623 if (rtype == RDTMON_GROUP && !is_mon_groups(parent_kn, name)) {
3624 ret = -EPERM;
3625 goto out_unlock;
3626 }
3627
3628 if (rtype == RDTMON_GROUP &&
3629 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3630 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3631 ret = -EINVAL;
3632 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3633 goto out_unlock;
3634 }
3635
3636 /* allocate the rdtgroup. */
3637 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3638 if (!rdtgrp) {
3639 ret = -ENOSPC;
3640 rdt_last_cmd_puts("Kernel out of memory\n");
3641 goto out_unlock;
3642 }
3643 *r = rdtgrp;
3644 rdtgrp->mon.parent = prdtgrp;
3645 rdtgrp->type = rtype;
3646 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3647
3648 /* kernfs creates the directory for rdtgrp */
3649 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3650 if (IS_ERR(kn)) {
3651 ret = PTR_ERR(kn);
3652 rdt_last_cmd_puts("kernfs create error\n");
3653 goto out_free_rgrp;
3654 }
3655 rdtgrp->kn = kn;
3656
3657 /*
3658 * kernfs_remove() will drop the reference count on "kn" which
3659 * will free it. But we still need it to stick around for the
3660 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3661 * which will be dropped by kernfs_put() in rdtgroup_remove().
3662 */
3663 kernfs_get(kn);
3664
3665 ret = rdtgroup_kn_set_ugid(kn);
3666 if (ret) {
3667 rdt_last_cmd_puts("kernfs perm error\n");
3668 goto out_destroy;
3669 }
3670
3671 if (rtype == RDTCTRL_GROUP) {
3672 files = RFTYPE_BASE | RFTYPE_CTRL;
3673 if (resctrl_arch_mon_capable())
3674 files |= RFTYPE_MON;
3675 } else {
3676 files = RFTYPE_BASE | RFTYPE_MON;
3677 }
3678
3679 ret = rdtgroup_add_files(kn, files);
3680 if (ret) {
3681 rdt_last_cmd_puts("kernfs fill error\n");
3682 goto out_destroy;
3683 }
3684
3685 /*
3686 * The caller unlocks the parent_kn upon success.
3687 */
3688 return 0;
3689
3690 out_destroy:
3691 kernfs_put(rdtgrp->kn);
3692 kernfs_remove(rdtgrp->kn);
3693 out_free_rgrp:
3694 kfree(rdtgrp);
3695 out_unlock:
3696 rdtgroup_kn_unlock(parent_kn);
3697 return ret;
3698 }
3699
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)3700 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3701 {
3702 kernfs_remove(rgrp->kn);
3703 rdtgroup_remove(rgrp);
3704 }
3705
3706 /*
3707 * Create a monitor group under "mon_groups" directory of a control
3708 * and monitor group(ctrl_mon). This is a resource group
3709 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3710 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3711 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3712 const char *name, umode_t mode)
3713 {
3714 struct rdtgroup *rdtgrp, *prgrp;
3715 int ret;
3716
3717 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3718 if (ret)
3719 return ret;
3720
3721 prgrp = rdtgrp->mon.parent;
3722 rdtgrp->closid = prgrp->closid;
3723
3724 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3725 if (ret) {
3726 mkdir_rdt_prepare_clean(rdtgrp);
3727 goto out_unlock;
3728 }
3729
3730 kernfs_activate(rdtgrp->kn);
3731
3732 /*
3733 * Add the rdtgrp to the list of rdtgrps the parent
3734 * ctrl_mon group has to track.
3735 */
3736 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3737
3738 out_unlock:
3739 rdtgroup_kn_unlock(parent_kn);
3740 return ret;
3741 }
3742
3743 /*
3744 * These are rdtgroups created under the root directory. Can be used
3745 * to allocate and monitor resources.
3746 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3747 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3748 const char *name, umode_t mode)
3749 {
3750 struct rdtgroup *rdtgrp;
3751 struct kernfs_node *kn;
3752 u32 closid;
3753 int ret;
3754
3755 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3756 if (ret)
3757 return ret;
3758
3759 kn = rdtgrp->kn;
3760 ret = closid_alloc();
3761 if (ret < 0) {
3762 rdt_last_cmd_puts("Out of CLOSIDs\n");
3763 goto out_common_fail;
3764 }
3765 closid = ret;
3766 ret = 0;
3767
3768 rdtgrp->closid = closid;
3769
3770 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3771 if (ret)
3772 goto out_closid_free;
3773
3774 kernfs_activate(rdtgrp->kn);
3775
3776 ret = rdtgroup_init_alloc(rdtgrp);
3777 if (ret < 0)
3778 goto out_rmid_free;
3779
3780 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3781
3782 if (resctrl_arch_mon_capable()) {
3783 /*
3784 * Create an empty mon_groups directory to hold the subset
3785 * of tasks and cpus to monitor.
3786 */
3787 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3788 if (ret) {
3789 rdt_last_cmd_puts("kernfs subdir error\n");
3790 goto out_del_list;
3791 }
3792 if (is_mba_sc(NULL))
3793 rdtgrp->mba_mbps_event = mba_mbps_default_event;
3794 }
3795
3796 goto out_unlock;
3797
3798 out_del_list:
3799 list_del(&rdtgrp->rdtgroup_list);
3800 out_rmid_free:
3801 mkdir_rdt_prepare_rmid_free(rdtgrp);
3802 out_closid_free:
3803 closid_free(closid);
3804 out_common_fail:
3805 mkdir_rdt_prepare_clean(rdtgrp);
3806 out_unlock:
3807 rdtgroup_kn_unlock(parent_kn);
3808 return ret;
3809 }
3810
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3811 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3812 umode_t mode)
3813 {
3814 /* Do not accept '\n' to avoid unparsable situation. */
3815 if (strchr(name, '\n'))
3816 return -EINVAL;
3817
3818 /*
3819 * If the parent directory is the root directory and RDT
3820 * allocation is supported, add a control and monitoring
3821 * subdirectory
3822 */
3823 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3824 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3825
3826 /* Else, attempt to add a monitoring subdirectory. */
3827 if (resctrl_arch_mon_capable())
3828 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3829
3830 return -EPERM;
3831 }
3832
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3833 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3834 {
3835 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3836 u32 closid, rmid;
3837 int cpu;
3838
3839 /* Give any tasks back to the parent group */
3840 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3841
3842 /*
3843 * Update per cpu closid/rmid of the moved CPUs first.
3844 * Note: the closid will not change, but the arch code still needs it.
3845 */
3846 closid = prdtgrp->closid;
3847 rmid = prdtgrp->mon.rmid;
3848 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3849 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid);
3850
3851 /*
3852 * Update the MSR on moved CPUs and CPUs which have moved
3853 * task running on them.
3854 */
3855 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3856 update_closid_rmid(tmpmask, NULL);
3857
3858 rdtgrp->flags = RDT_DELETED;
3859
3860 rdtgroup_unassign_cntrs(rdtgrp);
3861
3862 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3863
3864 /*
3865 * Remove the rdtgrp from the parent ctrl_mon group's list
3866 */
3867 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3868 list_del(&rdtgrp->mon.crdtgrp_list);
3869
3870 kernfs_remove(rdtgrp->kn);
3871
3872 return 0;
3873 }
3874
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3875 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3876 {
3877 rdtgrp->flags = RDT_DELETED;
3878 list_del(&rdtgrp->rdtgroup_list);
3879
3880 kernfs_remove(rdtgrp->kn);
3881 return 0;
3882 }
3883
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3884 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3885 {
3886 u32 closid, rmid;
3887 int cpu;
3888
3889 /* Give any tasks back to the default group */
3890 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3891
3892 /* Give any CPUs back to the default group */
3893 cpumask_or(&rdtgroup_default.cpu_mask,
3894 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3895
3896 /* Update per cpu closid and rmid of the moved CPUs first */
3897 closid = rdtgroup_default.closid;
3898 rmid = rdtgroup_default.mon.rmid;
3899 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3900 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid);
3901
3902 /*
3903 * Update the MSR on moved CPUs and CPUs which have moved
3904 * task running on them.
3905 */
3906 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3907 update_closid_rmid(tmpmask, NULL);
3908
3909 rdtgroup_unassign_cntrs(rdtgrp);
3910
3911 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3912 closid_free(rdtgrp->closid);
3913
3914 rdtgroup_ctrl_remove(rdtgrp);
3915
3916 /*
3917 * Free all the child monitor group rmids.
3918 */
3919 free_all_child_rdtgrp(rdtgrp);
3920
3921 return 0;
3922 }
3923
rdt_kn_parent(struct kernfs_node * kn)3924 static struct kernfs_node *rdt_kn_parent(struct kernfs_node *kn)
3925 {
3926 /*
3927 * Valid within the RCU section it was obtained or while rdtgroup_mutex
3928 * is held.
3929 */
3930 return rcu_dereference_check(kn->__parent, lockdep_is_held(&rdtgroup_mutex));
3931 }
3932
rdtgroup_rmdir(struct kernfs_node * kn)3933 static int rdtgroup_rmdir(struct kernfs_node *kn)
3934 {
3935 struct kernfs_node *parent_kn;
3936 struct rdtgroup *rdtgrp;
3937 cpumask_var_t tmpmask;
3938 int ret = 0;
3939
3940 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3941 return -ENOMEM;
3942
3943 rdtgrp = rdtgroup_kn_lock_live(kn);
3944 if (!rdtgrp) {
3945 ret = -EPERM;
3946 goto out;
3947 }
3948 parent_kn = rdt_kn_parent(kn);
3949
3950 /*
3951 * If the rdtgroup is a ctrl_mon group and parent directory
3952 * is the root directory, remove the ctrl_mon group.
3953 *
3954 * If the rdtgroup is a mon group and parent directory
3955 * is a valid "mon_groups" directory, remove the mon group.
3956 */
3957 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3958 rdtgrp != &rdtgroup_default) {
3959 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3960 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3961 ret = rdtgroup_ctrl_remove(rdtgrp);
3962 } else {
3963 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3964 }
3965 } else if (rdtgrp->type == RDTMON_GROUP &&
3966 is_mon_groups(parent_kn, rdt_kn_name(kn))) {
3967 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3968 } else {
3969 ret = -EPERM;
3970 }
3971
3972 out:
3973 rdtgroup_kn_unlock(kn);
3974 free_cpumask_var(tmpmask);
3975 return ret;
3976 }
3977
3978 /**
3979 * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3980 * @rdtgrp: the MON group whose parent should be replaced
3981 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp
3982 * @cpus: cpumask provided by the caller for use during this call
3983 *
3984 * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3985 * tasks' CLOSID immediately changing to that of the new parent group.
3986 * Monitoring data for the group is unaffected by this operation.
3987 */
mongrp_reparent(struct rdtgroup * rdtgrp,struct rdtgroup * new_prdtgrp,cpumask_var_t cpus)3988 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3989 struct rdtgroup *new_prdtgrp,
3990 cpumask_var_t cpus)
3991 {
3992 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3993
3994 WARN_ON(rdtgrp->type != RDTMON_GROUP);
3995 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3996
3997 /* Nothing to do when simply renaming a MON group. */
3998 if (prdtgrp == new_prdtgrp)
3999 return;
4000
4001 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
4002 list_move_tail(&rdtgrp->mon.crdtgrp_list,
4003 &new_prdtgrp->mon.crdtgrp_list);
4004
4005 rdtgrp->mon.parent = new_prdtgrp;
4006 rdtgrp->closid = new_prdtgrp->closid;
4007
4008 /* Propagate updated closid to all tasks in this group. */
4009 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
4010
4011 update_closid_rmid(cpus, NULL);
4012 }
4013
rdtgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name)4014 static int rdtgroup_rename(struct kernfs_node *kn,
4015 struct kernfs_node *new_parent, const char *new_name)
4016 {
4017 struct kernfs_node *kn_parent;
4018 struct rdtgroup *new_prdtgrp;
4019 struct rdtgroup *rdtgrp;
4020 cpumask_var_t tmpmask;
4021 int ret;
4022
4023 rdtgrp = kernfs_to_rdtgroup(kn);
4024 new_prdtgrp = kernfs_to_rdtgroup(new_parent);
4025 if (!rdtgrp || !new_prdtgrp)
4026 return -ENOENT;
4027
4028 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */
4029 rdtgroup_kn_get(rdtgrp, kn);
4030 rdtgroup_kn_get(new_prdtgrp, new_parent);
4031
4032 mutex_lock(&rdtgroup_mutex);
4033
4034 rdt_last_cmd_clear();
4035
4036 /*
4037 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
4038 * either kernfs_node is a file.
4039 */
4040 if (kernfs_type(kn) != KERNFS_DIR ||
4041 kernfs_type(new_parent) != KERNFS_DIR) {
4042 rdt_last_cmd_puts("Source and destination must be directories");
4043 ret = -EPERM;
4044 goto out;
4045 }
4046
4047 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
4048 ret = -ENOENT;
4049 goto out;
4050 }
4051
4052 kn_parent = rdt_kn_parent(kn);
4053 if (rdtgrp->type != RDTMON_GROUP || !kn_parent ||
4054 !is_mon_groups(kn_parent, rdt_kn_name(kn))) {
4055 rdt_last_cmd_puts("Source must be a MON group\n");
4056 ret = -EPERM;
4057 goto out;
4058 }
4059
4060 if (!is_mon_groups(new_parent, new_name)) {
4061 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
4062 ret = -EPERM;
4063 goto out;
4064 }
4065
4066 /*
4067 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
4068 * current parent CTRL_MON group and therefore cannot be assigned to
4069 * the new parent, making the move illegal.
4070 */
4071 if (!cpumask_empty(&rdtgrp->cpu_mask) &&
4072 rdtgrp->mon.parent != new_prdtgrp) {
4073 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
4074 ret = -EPERM;
4075 goto out;
4076 }
4077
4078 /*
4079 * Allocate the cpumask for use in mongrp_reparent() to avoid the
4080 * possibility of failing to allocate it after kernfs_rename() has
4081 * succeeded.
4082 */
4083 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
4084 ret = -ENOMEM;
4085 goto out;
4086 }
4087
4088 /*
4089 * Perform all input validation and allocations needed to ensure
4090 * mongrp_reparent() will succeed before calling kernfs_rename(),
4091 * otherwise it would be necessary to revert this call if
4092 * mongrp_reparent() failed.
4093 */
4094 ret = kernfs_rename(kn, new_parent, new_name);
4095 if (!ret)
4096 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
4097
4098 free_cpumask_var(tmpmask);
4099
4100 out:
4101 mutex_unlock(&rdtgroup_mutex);
4102 rdtgroup_kn_put(rdtgrp, kn);
4103 rdtgroup_kn_put(new_prdtgrp, new_parent);
4104 return ret;
4105 }
4106
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)4107 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
4108 {
4109 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
4110 seq_puts(seq, ",cdp");
4111
4112 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
4113 seq_puts(seq, ",cdpl2");
4114
4115 if (is_mba_sc(resctrl_arch_get_resource(RDT_RESOURCE_MBA)))
4116 seq_puts(seq, ",mba_MBps");
4117
4118 if (resctrl_debug)
4119 seq_puts(seq, ",debug");
4120
4121 return 0;
4122 }
4123
4124 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
4125 .mkdir = rdtgroup_mkdir,
4126 .rmdir = rdtgroup_rmdir,
4127 .rename = rdtgroup_rename,
4128 .show_options = rdtgroup_show_options,
4129 };
4130
rdtgroup_setup_root(struct rdt_fs_context * ctx)4131 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
4132 {
4133 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
4134 KERNFS_ROOT_CREATE_DEACTIVATED |
4135 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
4136 &rdtgroup_default);
4137 if (IS_ERR(rdt_root))
4138 return PTR_ERR(rdt_root);
4139
4140 ctx->kfc.root = rdt_root;
4141 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
4142
4143 return 0;
4144 }
4145
rdtgroup_destroy_root(void)4146 static void rdtgroup_destroy_root(void)
4147 {
4148 lockdep_assert_held(&rdtgroup_mutex);
4149
4150 kernfs_destroy_root(rdt_root);
4151 rdtgroup_default.kn = NULL;
4152 }
4153
rdtgroup_setup_default(void)4154 static void rdtgroup_setup_default(void)
4155 {
4156 mutex_lock(&rdtgroup_mutex);
4157
4158 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
4159 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
4160 rdtgroup_default.type = RDTCTRL_GROUP;
4161 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
4162
4163 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
4164
4165 mutex_unlock(&rdtgroup_mutex);
4166 }
4167
domain_destroy_mon_state(struct rdt_mon_domain * d)4168 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
4169 {
4170 int idx;
4171
4172 kfree(d->cntr_cfg);
4173 bitmap_free(d->rmid_busy_llc);
4174 for_each_mbm_idx(idx) {
4175 kfree(d->mbm_states[idx]);
4176 d->mbm_states[idx] = NULL;
4177 }
4178 }
4179
resctrl_offline_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)4180 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4181 {
4182 mutex_lock(&rdtgroup_mutex);
4183
4184 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4185 mba_sc_domain_destroy(r, d);
4186
4187 mutex_unlock(&rdtgroup_mutex);
4188 }
4189
resctrl_offline_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4190 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4191 {
4192 mutex_lock(&rdtgroup_mutex);
4193
4194 /*
4195 * If resctrl is mounted, remove all the
4196 * per domain monitor data directories.
4197 */
4198 if (resctrl_mounted && resctrl_arch_mon_capable())
4199 rmdir_mondata_subdir_allrdtgrp(r, d);
4200
4201 if (resctrl_is_mbm_enabled())
4202 cancel_delayed_work(&d->mbm_over);
4203 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID) && has_busy_rmid(d)) {
4204 /*
4205 * When a package is going down, forcefully
4206 * decrement rmid->ebusy. There is no way to know
4207 * that the L3 was flushed and hence may lead to
4208 * incorrect counts in rare scenarios, but leaving
4209 * the RMID as busy creates RMID leaks if the
4210 * package never comes back.
4211 */
4212 __check_limbo(d, true);
4213 cancel_delayed_work(&d->cqm_limbo);
4214 }
4215
4216 domain_destroy_mon_state(d);
4217
4218 mutex_unlock(&rdtgroup_mutex);
4219 }
4220
4221 /**
4222 * domain_setup_mon_state() - Initialise domain monitoring structures.
4223 * @r: The resource for the newly online domain.
4224 * @d: The newly online domain.
4225 *
4226 * Allocate monitor resources that belong to this domain.
4227 * Called when the first CPU of a domain comes online, regardless of whether
4228 * the filesystem is mounted.
4229 * During boot this may be called before global allocations have been made by
4230 * resctrl_mon_resource_init().
4231 *
4232 * Returns 0 for success, or -ENOMEM.
4233 */
domain_setup_mon_state(struct rdt_resource * r,struct rdt_mon_domain * d)4234 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4235 {
4236 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4237 size_t tsize = sizeof(*d->mbm_states[0]);
4238 enum resctrl_event_id eventid;
4239 int idx;
4240
4241 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) {
4242 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4243 if (!d->rmid_busy_llc)
4244 return -ENOMEM;
4245 }
4246
4247 for_each_mbm_event_id(eventid) {
4248 if (!resctrl_is_mon_event_enabled(eventid))
4249 continue;
4250 idx = MBM_STATE_IDX(eventid);
4251 d->mbm_states[idx] = kcalloc(idx_limit, tsize, GFP_KERNEL);
4252 if (!d->mbm_states[idx])
4253 goto cleanup;
4254 }
4255
4256 if (resctrl_is_mbm_enabled() && r->mon.mbm_cntr_assignable) {
4257 tsize = sizeof(*d->cntr_cfg);
4258 d->cntr_cfg = kcalloc(r->mon.num_mbm_cntrs, tsize, GFP_KERNEL);
4259 if (!d->cntr_cfg)
4260 goto cleanup;
4261 }
4262
4263 return 0;
4264 cleanup:
4265 bitmap_free(d->rmid_busy_llc);
4266 for_each_mbm_idx(idx) {
4267 kfree(d->mbm_states[idx]);
4268 d->mbm_states[idx] = NULL;
4269 }
4270
4271 return -ENOMEM;
4272 }
4273
resctrl_online_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)4274 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4275 {
4276 int err = 0;
4277
4278 mutex_lock(&rdtgroup_mutex);
4279
4280 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4281 /* RDT_RESOURCE_MBA is never mon_capable */
4282 err = mba_sc_domain_allocate(r, d);
4283 }
4284
4285 mutex_unlock(&rdtgroup_mutex);
4286
4287 return err;
4288 }
4289
resctrl_online_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4290 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4291 {
4292 int err;
4293
4294 mutex_lock(&rdtgroup_mutex);
4295
4296 err = domain_setup_mon_state(r, d);
4297 if (err)
4298 goto out_unlock;
4299
4300 if (resctrl_is_mbm_enabled()) {
4301 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4302 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4303 RESCTRL_PICK_ANY_CPU);
4304 }
4305
4306 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID))
4307 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4308
4309 /*
4310 * If the filesystem is not mounted then only the default resource group
4311 * exists. Creation of its directories is deferred until mount time
4312 * by rdt_get_tree() calling mkdir_mondata_all().
4313 * If resctrl is mounted, add per domain monitor data directories.
4314 */
4315 if (resctrl_mounted && resctrl_arch_mon_capable())
4316 mkdir_mondata_subdir_allrdtgrp(r, d);
4317
4318 out_unlock:
4319 mutex_unlock(&rdtgroup_mutex);
4320
4321 return err;
4322 }
4323
resctrl_online_cpu(unsigned int cpu)4324 void resctrl_online_cpu(unsigned int cpu)
4325 {
4326 mutex_lock(&rdtgroup_mutex);
4327 /* The CPU is set in default rdtgroup after online. */
4328 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4329 mutex_unlock(&rdtgroup_mutex);
4330 }
4331
clear_childcpus(struct rdtgroup * r,unsigned int cpu)4332 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4333 {
4334 struct rdtgroup *cr;
4335
4336 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4337 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4338 break;
4339 }
4340 }
4341
get_mon_domain_from_cpu(int cpu,struct rdt_resource * r)4342 static struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu,
4343 struct rdt_resource *r)
4344 {
4345 struct rdt_mon_domain *d;
4346
4347 lockdep_assert_cpus_held();
4348
4349 list_for_each_entry(d, &r->mon_domains, hdr.list) {
4350 /* Find the domain that contains this CPU */
4351 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
4352 return d;
4353 }
4354
4355 return NULL;
4356 }
4357
resctrl_offline_cpu(unsigned int cpu)4358 void resctrl_offline_cpu(unsigned int cpu)
4359 {
4360 struct rdt_resource *l3 = resctrl_arch_get_resource(RDT_RESOURCE_L3);
4361 struct rdt_mon_domain *d;
4362 struct rdtgroup *rdtgrp;
4363
4364 mutex_lock(&rdtgroup_mutex);
4365 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4366 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4367 clear_childcpus(rdtgrp, cpu);
4368 break;
4369 }
4370 }
4371
4372 if (!l3->mon_capable)
4373 goto out_unlock;
4374
4375 d = get_mon_domain_from_cpu(cpu, l3);
4376 if (d) {
4377 if (resctrl_is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4378 cancel_delayed_work(&d->mbm_over);
4379 mbm_setup_overflow_handler(d, 0, cpu);
4380 }
4381 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID) &&
4382 cpu == d->cqm_work_cpu && has_busy_rmid(d)) {
4383 cancel_delayed_work(&d->cqm_limbo);
4384 cqm_setup_limbo_handler(d, 0, cpu);
4385 }
4386 }
4387
4388 out_unlock:
4389 mutex_unlock(&rdtgroup_mutex);
4390 }
4391
4392 /*
4393 * resctrl_init - resctrl filesystem initialization
4394 *
4395 * Setup resctrl file system including set up root, create mount point,
4396 * register resctrl filesystem, and initialize files under root directory.
4397 *
4398 * Return: 0 on success or -errno
4399 */
resctrl_init(void)4400 int resctrl_init(void)
4401 {
4402 int ret = 0;
4403
4404 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4405 sizeof(last_cmd_status_buf));
4406
4407 rdtgroup_setup_default();
4408
4409 thread_throttle_mode_init();
4410
4411 ret = resctrl_mon_resource_init();
4412 if (ret)
4413 return ret;
4414
4415 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4416 if (ret) {
4417 resctrl_mon_resource_exit();
4418 return ret;
4419 }
4420
4421 ret = register_filesystem(&rdt_fs_type);
4422 if (ret)
4423 goto cleanup_mountpoint;
4424
4425 /*
4426 * Adding the resctrl debugfs directory here may not be ideal since
4427 * it would let the resctrl debugfs directory appear on the debugfs
4428 * filesystem before the resctrl filesystem is mounted.
4429 * It may also be ok since that would enable debugging of RDT before
4430 * resctrl is mounted.
4431 * The reason why the debugfs directory is created here and not in
4432 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4433 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4434 * (the lockdep class of inode->i_rwsem). Other filesystem
4435 * interactions (eg. SyS_getdents) have the lock ordering:
4436 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4437 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4438 * is taken, thus creating dependency:
4439 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4440 * issues considering the other two lock dependencies.
4441 * By creating the debugfs directory here we avoid a dependency
4442 * that may cause deadlock (even though file operations cannot
4443 * occur until the filesystem is mounted, but I do not know how to
4444 * tell lockdep that).
4445 */
4446 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4447
4448 return 0;
4449
4450 cleanup_mountpoint:
4451 sysfs_remove_mount_point(fs_kobj, "resctrl");
4452 resctrl_mon_resource_exit();
4453
4454 return ret;
4455 }
4456
resctrl_online_domains_exist(void)4457 static bool resctrl_online_domains_exist(void)
4458 {
4459 struct rdt_resource *r;
4460
4461 /*
4462 * Only walk capable resources to allow resctrl_arch_get_resource()
4463 * to return dummy 'not capable' resources.
4464 */
4465 for_each_alloc_capable_rdt_resource(r) {
4466 if (!list_empty(&r->ctrl_domains))
4467 return true;
4468 }
4469
4470 for_each_mon_capable_rdt_resource(r) {
4471 if (!list_empty(&r->mon_domains))
4472 return true;
4473 }
4474
4475 return false;
4476 }
4477
4478 /**
4479 * resctrl_exit() - Remove the resctrl filesystem and free resources.
4480 *
4481 * Called by the architecture code in response to a fatal error.
4482 * Removes resctrl files and structures from kernfs to prevent further
4483 * configuration.
4484 *
4485 * When called by the architecture code, all CPUs and resctrl domains must be
4486 * offline. This ensures the limbo and overflow handlers are not scheduled to
4487 * run, meaning the data structures they access can be freed by
4488 * resctrl_mon_resource_exit().
4489 *
4490 * After resctrl_exit() returns, the architecture code should return an
4491 * error from all resctrl_arch_ functions that can do this.
4492 * resctrl_arch_get_resource() must continue to return struct rdt_resources
4493 * with the correct rid field to ensure the filesystem can be unmounted.
4494 */
resctrl_exit(void)4495 void resctrl_exit(void)
4496 {
4497 cpus_read_lock();
4498 WARN_ON_ONCE(resctrl_online_domains_exist());
4499
4500 mutex_lock(&rdtgroup_mutex);
4501 resctrl_fs_teardown();
4502 mutex_unlock(&rdtgroup_mutex);
4503
4504 cpus_read_unlock();
4505
4506 debugfs_remove_recursive(debugfs_resctrl);
4507 debugfs_resctrl = NULL;
4508 unregister_filesystem(&rdt_fs_type);
4509
4510 /*
4511 * Do not remove the sysfs mount point added by resctrl_init() so that
4512 * it can be used to umount resctrl.
4513 */
4514
4515 resctrl_mon_resource_exit();
4516 }
4517