1 /*
2 * Copyright © 2006-2008 Intel Corporation
3 * Jesse Barnes <jesse.barnes@intel.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 *
27 */
28
29 /** @file
30 * Integrated TV-out support for the 915GM and 945GM.
31 */
32
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_probe_helper.h>
37
38 #include "i915_drv.h"
39 #include "i915_reg.h"
40 #include "intel_connector.h"
41 #include "intel_crtc.h"
42 #include "intel_de.h"
43 #include "intel_display_irq.h"
44 #include "intel_display_driver.h"
45 #include "intel_display_types.h"
46 #include "intel_dpll.h"
47 #include "intel_hotplug.h"
48 #include "intel_load_detect.h"
49 #include "intel_tv.h"
50 #include "intel_tv_regs.h"
51
52 enum tv_margin {
53 TV_MARGIN_LEFT, TV_MARGIN_TOP,
54 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM
55 };
56
57 struct intel_tv {
58 struct intel_encoder base;
59
60 int type;
61 };
62
63 struct video_levels {
64 u16 blank, black;
65 u8 burst;
66 };
67
68 struct color_conversion {
69 u16 ry, gy, by, ay;
70 u16 ru, gu, bu, au;
71 u16 rv, gv, bv, av;
72 };
73
74 static const u32 filter_table[] = {
75 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140,
76 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000,
77 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160,
78 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780,
79 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50,
80 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20,
81 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0,
82 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0,
83 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020,
84 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140,
85 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20,
86 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848,
87 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900,
88 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080,
89 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060,
90 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140,
91 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000,
92 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160,
93 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780,
94 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50,
95 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20,
96 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0,
97 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0,
98 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020,
99 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140,
100 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20,
101 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848,
102 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900,
103 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080,
104 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060,
105 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0,
106 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540,
107 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00,
108 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000,
109 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00,
110 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40,
111 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240,
112 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00,
113 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0,
114 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840,
115 0x28003100, 0x28002F00, 0x00003100, 0x36403000,
116 0x2D002CC0, 0x30003640, 0x2D0036C0,
117 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540,
118 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00,
119 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000,
120 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00,
121 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40,
122 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240,
123 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00,
124 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0,
125 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840,
126 0x28003100, 0x28002F00, 0x00003100,
127 };
128
129 /*
130 * Color conversion values have 3 separate fixed point formats:
131 *
132 * 10 bit fields (ay, au)
133 * 1.9 fixed point (b.bbbbbbbbb)
134 * 11 bit fields (ry, by, ru, gu, gv)
135 * exp.mantissa (ee.mmmmmmmmm)
136 * ee = 00 = 10^-1 (0.mmmmmmmmm)
137 * ee = 01 = 10^-2 (0.0mmmmmmmmm)
138 * ee = 10 = 10^-3 (0.00mmmmmmmmm)
139 * ee = 11 = 10^-4 (0.000mmmmmmmmm)
140 * 12 bit fields (gy, rv, bu)
141 * exp.mantissa (eee.mmmmmmmmm)
142 * eee = 000 = 10^-1 (0.mmmmmmmmm)
143 * eee = 001 = 10^-2 (0.0mmmmmmmmm)
144 * eee = 010 = 10^-3 (0.00mmmmmmmmm)
145 * eee = 011 = 10^-4 (0.000mmmmmmmmm)
146 * eee = 100 = reserved
147 * eee = 101 = reserved
148 * eee = 110 = reserved
149 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation)
150 *
151 * Saturation and contrast are 8 bits, with their own representation:
152 * 8 bit field (saturation, contrast)
153 * exp.mantissa (ee.mmmmmm)
154 * ee = 00 = 10^-1 (0.mmmmmm)
155 * ee = 01 = 10^0 (m.mmmmm)
156 * ee = 10 = 10^1 (mm.mmmm)
157 * ee = 11 = 10^2 (mmm.mmm)
158 *
159 * Simple conversion function:
160 *
161 * static u32
162 * float_to_csc_11(float f)
163 * {
164 * u32 exp;
165 * u32 mant;
166 * u32 ret;
167 *
168 * if (f < 0)
169 * f = -f;
170 *
171 * if (f >= 1) {
172 * exp = 0x7;
173 * mant = 1 << 8;
174 * } else {
175 * for (exp = 0; exp < 3 && f < 0.5; exp++)
176 * f *= 2.0;
177 * mant = (f * (1 << 9) + 0.5);
178 * if (mant >= (1 << 9))
179 * mant = (1 << 9) - 1;
180 * }
181 * ret = (exp << 9) | mant;
182 * return ret;
183 * }
184 */
185
186 /*
187 * Behold, magic numbers! If we plant them they might grow a big
188 * s-video cable to the sky... or something.
189 *
190 * Pre-converted to appropriate hex value.
191 */
192
193 /*
194 * PAL & NTSC values for composite & s-video connections
195 */
196 static const struct color_conversion ntsc_m_csc_composite = {
197 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
198 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
199 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
200 };
201
202 static const struct video_levels ntsc_m_levels_composite = {
203 .blank = 225, .black = 267, .burst = 113,
204 };
205
206 static const struct color_conversion ntsc_m_csc_svideo = {
207 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
208 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
209 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
210 };
211
212 static const struct video_levels ntsc_m_levels_svideo = {
213 .blank = 266, .black = 316, .burst = 133,
214 };
215
216 static const struct color_conversion ntsc_j_csc_composite = {
217 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119,
218 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200,
219 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200,
220 };
221
222 static const struct video_levels ntsc_j_levels_composite = {
223 .blank = 225, .black = 225, .burst = 113,
224 };
225
226 static const struct color_conversion ntsc_j_csc_svideo = {
227 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c,
228 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200,
229 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200,
230 };
231
232 static const struct video_levels ntsc_j_levels_svideo = {
233 .blank = 266, .black = 266, .burst = 133,
234 };
235
236 static const struct color_conversion pal_csc_composite = {
237 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113,
238 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200,
239 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200,
240 };
241
242 static const struct video_levels pal_levels_composite = {
243 .blank = 237, .black = 237, .burst = 118,
244 };
245
246 static const struct color_conversion pal_csc_svideo = {
247 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145,
248 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200,
249 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200,
250 };
251
252 static const struct video_levels pal_levels_svideo = {
253 .blank = 280, .black = 280, .burst = 139,
254 };
255
256 static const struct color_conversion pal_m_csc_composite = {
257 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
258 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
259 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
260 };
261
262 static const struct video_levels pal_m_levels_composite = {
263 .blank = 225, .black = 267, .burst = 113,
264 };
265
266 static const struct color_conversion pal_m_csc_svideo = {
267 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
268 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
269 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
270 };
271
272 static const struct video_levels pal_m_levels_svideo = {
273 .blank = 266, .black = 316, .burst = 133,
274 };
275
276 static const struct color_conversion pal_n_csc_composite = {
277 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
278 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
279 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
280 };
281
282 static const struct video_levels pal_n_levels_composite = {
283 .blank = 225, .black = 267, .burst = 118,
284 };
285
286 static const struct color_conversion pal_n_csc_svideo = {
287 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
288 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
289 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
290 };
291
292 static const struct video_levels pal_n_levels_svideo = {
293 .blank = 266, .black = 316, .burst = 139,
294 };
295
296 /*
297 * Component connections
298 */
299 static const struct color_conversion sdtv_csc_yprpb = {
300 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145,
301 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200,
302 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200,
303 };
304
305 static const struct color_conversion hdtv_csc_yprpb = {
306 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145,
307 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200,
308 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200,
309 };
310
311 static const struct video_levels component_levels = {
312 .blank = 279, .black = 279, .burst = 0,
313 };
314
315
316 struct tv_mode {
317 const char *name;
318
319 u32 clock;
320 u16 refresh; /* in millihertz (for precision) */
321 u8 oversample;
322 u8 hsync_end;
323 u16 hblank_start, hblank_end, htotal;
324 bool progressive : 1, trilevel_sync : 1, component_only : 1;
325 u8 vsync_start_f1, vsync_start_f2, vsync_len;
326 bool veq_ena : 1;
327 u8 veq_start_f1, veq_start_f2, veq_len;
328 u8 vi_end_f1, vi_end_f2;
329 u16 nbr_end;
330 bool burst_ena : 1;
331 u8 hburst_start, hburst_len;
332 u8 vburst_start_f1;
333 u16 vburst_end_f1;
334 u8 vburst_start_f2;
335 u16 vburst_end_f2;
336 u8 vburst_start_f3;
337 u16 vburst_end_f3;
338 u8 vburst_start_f4;
339 u16 vburst_end_f4;
340 /*
341 * subcarrier programming
342 */
343 u16 dda2_size, dda3_size;
344 u8 dda1_inc;
345 u16 dda2_inc, dda3_inc;
346 u32 sc_reset;
347 bool pal_burst : 1;
348 /*
349 * blank/black levels
350 */
351 const struct video_levels *composite_levels, *svideo_levels;
352 const struct color_conversion *composite_color, *svideo_color;
353 const u32 *filter_table;
354 };
355
356
357 /*
358 * Sub carrier DDA
359 *
360 * I think this works as follows:
361 *
362 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096
363 *
364 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value
365 *
366 * So,
367 * dda1_ideal = subcarrier/pixel * 4096
368 * dda1_inc = floor (dda1_ideal)
369 * dda2 = dda1_ideal - dda1_inc
370 *
371 * then pick a ratio for dda2 that gives the closest approximation. If
372 * you can't get close enough, you can play with dda3 as well. This
373 * seems likely to happen when dda2 is small as the jumps would be larger
374 *
375 * To invert this,
376 *
377 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size)
378 *
379 * The constants below were all computed using a 107.520MHz clock
380 */
381
382 /*
383 * Register programming values for TV modes.
384 *
385 * These values account for -1s required.
386 */
387 static const struct tv_mode tv_modes[] = {
388 {
389 .name = "NTSC-M",
390 .clock = 108000,
391 .refresh = 59940,
392 .oversample = 8,
393 .component_only = false,
394 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
395
396 .hsync_end = 64, .hblank_end = 124,
397 .hblank_start = 836, .htotal = 857,
398
399 .progressive = false, .trilevel_sync = false,
400
401 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
402 .vsync_len = 6,
403
404 .veq_ena = true, .veq_start_f1 = 0,
405 .veq_start_f2 = 1, .veq_len = 18,
406
407 .vi_end_f1 = 20, .vi_end_f2 = 21,
408 .nbr_end = 240,
409
410 .burst_ena = true,
411 .hburst_start = 72, .hburst_len = 34,
412 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
413 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
414 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
415 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
416
417 /* desired 3.5800000 actual 3.5800000 clock 107.52 */
418 .dda1_inc = 135,
419 .dda2_inc = 20800, .dda2_size = 27456,
420 .dda3_inc = 0, .dda3_size = 0,
421 .sc_reset = TV_SC_RESET_EVERY_4,
422 .pal_burst = false,
423
424 .composite_levels = &ntsc_m_levels_composite,
425 .composite_color = &ntsc_m_csc_composite,
426 .svideo_levels = &ntsc_m_levels_svideo,
427 .svideo_color = &ntsc_m_csc_svideo,
428
429 .filter_table = filter_table,
430 },
431 {
432 .name = "NTSC-443",
433 .clock = 108000,
434 .refresh = 59940,
435 .oversample = 8,
436 .component_only = false,
437 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */
438 .hsync_end = 64, .hblank_end = 124,
439 .hblank_start = 836, .htotal = 857,
440
441 .progressive = false, .trilevel_sync = false,
442
443 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
444 .vsync_len = 6,
445
446 .veq_ena = true, .veq_start_f1 = 0,
447 .veq_start_f2 = 1, .veq_len = 18,
448
449 .vi_end_f1 = 20, .vi_end_f2 = 21,
450 .nbr_end = 240,
451
452 .burst_ena = true,
453 .hburst_start = 72, .hburst_len = 34,
454 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
455 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
456 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
457 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
458
459 /* desired 4.4336180 actual 4.4336180 clock 107.52 */
460 .dda1_inc = 168,
461 .dda2_inc = 4093, .dda2_size = 27456,
462 .dda3_inc = 310, .dda3_size = 525,
463 .sc_reset = TV_SC_RESET_NEVER,
464 .pal_burst = false,
465
466 .composite_levels = &ntsc_m_levels_composite,
467 .composite_color = &ntsc_m_csc_composite,
468 .svideo_levels = &ntsc_m_levels_svideo,
469 .svideo_color = &ntsc_m_csc_svideo,
470
471 .filter_table = filter_table,
472 },
473 {
474 .name = "NTSC-J",
475 .clock = 108000,
476 .refresh = 59940,
477 .oversample = 8,
478 .component_only = false,
479
480 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
481 .hsync_end = 64, .hblank_end = 124,
482 .hblank_start = 836, .htotal = 857,
483
484 .progressive = false, .trilevel_sync = false,
485
486 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
487 .vsync_len = 6,
488
489 .veq_ena = true, .veq_start_f1 = 0,
490 .veq_start_f2 = 1, .veq_len = 18,
491
492 .vi_end_f1 = 20, .vi_end_f2 = 21,
493 .nbr_end = 240,
494
495 .burst_ena = true,
496 .hburst_start = 72, .hburst_len = 34,
497 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
498 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
499 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
500 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
501
502 /* desired 3.5800000 actual 3.5800000 clock 107.52 */
503 .dda1_inc = 135,
504 .dda2_inc = 20800, .dda2_size = 27456,
505 .dda3_inc = 0, .dda3_size = 0,
506 .sc_reset = TV_SC_RESET_EVERY_4,
507 .pal_burst = false,
508
509 .composite_levels = &ntsc_j_levels_composite,
510 .composite_color = &ntsc_j_csc_composite,
511 .svideo_levels = &ntsc_j_levels_svideo,
512 .svideo_color = &ntsc_j_csc_svideo,
513
514 .filter_table = filter_table,
515 },
516 {
517 .name = "PAL-M",
518 .clock = 108000,
519 .refresh = 59940,
520 .oversample = 8,
521 .component_only = false,
522
523 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
524 .hsync_end = 64, .hblank_end = 124,
525 .hblank_start = 836, .htotal = 857,
526
527 .progressive = false, .trilevel_sync = false,
528
529 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
530 .vsync_len = 6,
531
532 .veq_ena = true, .veq_start_f1 = 0,
533 .veq_start_f2 = 1, .veq_len = 18,
534
535 .vi_end_f1 = 20, .vi_end_f2 = 21,
536 .nbr_end = 240,
537
538 .burst_ena = true,
539 .hburst_start = 72, .hburst_len = 34,
540 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
541 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
542 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
543 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
544
545 /* desired 3.5800000 actual 3.5800000 clock 107.52 */
546 .dda1_inc = 135,
547 .dda2_inc = 16704, .dda2_size = 27456,
548 .dda3_inc = 0, .dda3_size = 0,
549 .sc_reset = TV_SC_RESET_EVERY_8,
550 .pal_burst = true,
551
552 .composite_levels = &pal_m_levels_composite,
553 .composite_color = &pal_m_csc_composite,
554 .svideo_levels = &pal_m_levels_svideo,
555 .svideo_color = &pal_m_csc_svideo,
556
557 .filter_table = filter_table,
558 },
559 {
560 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */
561 .name = "PAL-N",
562 .clock = 108000,
563 .refresh = 50000,
564 .oversample = 8,
565 .component_only = false,
566
567 .hsync_end = 64, .hblank_end = 128,
568 .hblank_start = 844, .htotal = 863,
569
570 .progressive = false, .trilevel_sync = false,
571
572
573 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
574 .vsync_len = 6,
575
576 .veq_ena = true, .veq_start_f1 = 0,
577 .veq_start_f2 = 1, .veq_len = 18,
578
579 .vi_end_f1 = 24, .vi_end_f2 = 25,
580 .nbr_end = 286,
581
582 .burst_ena = true,
583 .hburst_start = 73, .hburst_len = 34,
584 .vburst_start_f1 = 8, .vburst_end_f1 = 285,
585 .vburst_start_f2 = 8, .vburst_end_f2 = 286,
586 .vburst_start_f3 = 9, .vburst_end_f3 = 286,
587 .vburst_start_f4 = 9, .vburst_end_f4 = 285,
588
589
590 /* desired 4.4336180 actual 4.4336180 clock 107.52 */
591 .dda1_inc = 135,
592 .dda2_inc = 23578, .dda2_size = 27648,
593 .dda3_inc = 134, .dda3_size = 625,
594 .sc_reset = TV_SC_RESET_EVERY_8,
595 .pal_burst = true,
596
597 .composite_levels = &pal_n_levels_composite,
598 .composite_color = &pal_n_csc_composite,
599 .svideo_levels = &pal_n_levels_svideo,
600 .svideo_color = &pal_n_csc_svideo,
601
602 .filter_table = filter_table,
603 },
604 {
605 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */
606 .name = "PAL",
607 .clock = 108000,
608 .refresh = 50000,
609 .oversample = 8,
610 .component_only = false,
611
612 .hsync_end = 64, .hblank_end = 142,
613 .hblank_start = 844, .htotal = 863,
614
615 .progressive = false, .trilevel_sync = false,
616
617 .vsync_start_f1 = 5, .vsync_start_f2 = 6,
618 .vsync_len = 5,
619
620 .veq_ena = true, .veq_start_f1 = 0,
621 .veq_start_f2 = 1, .veq_len = 15,
622
623 .vi_end_f1 = 24, .vi_end_f2 = 25,
624 .nbr_end = 286,
625
626 .burst_ena = true,
627 .hburst_start = 73, .hburst_len = 32,
628 .vburst_start_f1 = 8, .vburst_end_f1 = 285,
629 .vburst_start_f2 = 8, .vburst_end_f2 = 286,
630 .vburst_start_f3 = 9, .vburst_end_f3 = 286,
631 .vburst_start_f4 = 9, .vburst_end_f4 = 285,
632
633 /* desired 4.4336180 actual 4.4336180 clock 107.52 */
634 .dda1_inc = 168,
635 .dda2_inc = 4122, .dda2_size = 27648,
636 .dda3_inc = 67, .dda3_size = 625,
637 .sc_reset = TV_SC_RESET_EVERY_8,
638 .pal_burst = true,
639
640 .composite_levels = &pal_levels_composite,
641 .composite_color = &pal_csc_composite,
642 .svideo_levels = &pal_levels_svideo,
643 .svideo_color = &pal_csc_svideo,
644
645 .filter_table = filter_table,
646 },
647 {
648 .name = "480p",
649 .clock = 108000,
650 .refresh = 59940,
651 .oversample = 4,
652 .component_only = true,
653
654 .hsync_end = 64, .hblank_end = 122,
655 .hblank_start = 842, .htotal = 857,
656
657 .progressive = true, .trilevel_sync = false,
658
659 .vsync_start_f1 = 12, .vsync_start_f2 = 12,
660 .vsync_len = 12,
661
662 .veq_ena = false,
663
664 .vi_end_f1 = 44, .vi_end_f2 = 44,
665 .nbr_end = 479,
666
667 .burst_ena = false,
668
669 .filter_table = filter_table,
670 },
671 {
672 .name = "576p",
673 .clock = 108000,
674 .refresh = 50000,
675 .oversample = 4,
676 .component_only = true,
677
678 .hsync_end = 64, .hblank_end = 139,
679 .hblank_start = 859, .htotal = 863,
680
681 .progressive = true, .trilevel_sync = false,
682
683 .vsync_start_f1 = 10, .vsync_start_f2 = 10,
684 .vsync_len = 10,
685
686 .veq_ena = false,
687
688 .vi_end_f1 = 48, .vi_end_f2 = 48,
689 .nbr_end = 575,
690
691 .burst_ena = false,
692
693 .filter_table = filter_table,
694 },
695 {
696 .name = "720p@60Hz",
697 .clock = 148500,
698 .refresh = 60000,
699 .oversample = 2,
700 .component_only = true,
701
702 .hsync_end = 80, .hblank_end = 300,
703 .hblank_start = 1580, .htotal = 1649,
704
705 .progressive = true, .trilevel_sync = true,
706
707 .vsync_start_f1 = 10, .vsync_start_f2 = 10,
708 .vsync_len = 10,
709
710 .veq_ena = false,
711
712 .vi_end_f1 = 29, .vi_end_f2 = 29,
713 .nbr_end = 719,
714
715 .burst_ena = false,
716
717 .filter_table = filter_table,
718 },
719 {
720 .name = "720p@50Hz",
721 .clock = 148500,
722 .refresh = 50000,
723 .oversample = 2,
724 .component_only = true,
725
726 .hsync_end = 80, .hblank_end = 300,
727 .hblank_start = 1580, .htotal = 1979,
728
729 .progressive = true, .trilevel_sync = true,
730
731 .vsync_start_f1 = 10, .vsync_start_f2 = 10,
732 .vsync_len = 10,
733
734 .veq_ena = false,
735
736 .vi_end_f1 = 29, .vi_end_f2 = 29,
737 .nbr_end = 719,
738
739 .burst_ena = false,
740
741 .filter_table = filter_table,
742 },
743 {
744 .name = "1080i@50Hz",
745 .clock = 148500,
746 .refresh = 50000,
747 .oversample = 2,
748 .component_only = true,
749
750 .hsync_end = 88, .hblank_end = 235,
751 .hblank_start = 2155, .htotal = 2639,
752
753 .progressive = false, .trilevel_sync = true,
754
755 .vsync_start_f1 = 4, .vsync_start_f2 = 5,
756 .vsync_len = 10,
757
758 .veq_ena = true, .veq_start_f1 = 4,
759 .veq_start_f2 = 4, .veq_len = 10,
760
761
762 .vi_end_f1 = 21, .vi_end_f2 = 22,
763 .nbr_end = 539,
764
765 .burst_ena = false,
766
767 .filter_table = filter_table,
768 },
769 {
770 .name = "1080i@60Hz",
771 .clock = 148500,
772 .refresh = 60000,
773 .oversample = 2,
774 .component_only = true,
775
776 .hsync_end = 88, .hblank_end = 235,
777 .hblank_start = 2155, .htotal = 2199,
778
779 .progressive = false, .trilevel_sync = true,
780
781 .vsync_start_f1 = 4, .vsync_start_f2 = 5,
782 .vsync_len = 10,
783
784 .veq_ena = true, .veq_start_f1 = 4,
785 .veq_start_f2 = 4, .veq_len = 10,
786
787
788 .vi_end_f1 = 21, .vi_end_f2 = 22,
789 .nbr_end = 539,
790
791 .burst_ena = false,
792
793 .filter_table = filter_table,
794 },
795
796 {
797 .name = "1080p@30Hz",
798 .clock = 148500,
799 .refresh = 30000,
800 .oversample = 2,
801 .component_only = true,
802
803 .hsync_end = 88, .hblank_end = 235,
804 .hblank_start = 2155, .htotal = 2199,
805
806 .progressive = true, .trilevel_sync = true,
807
808 .vsync_start_f1 = 8, .vsync_start_f2 = 8,
809 .vsync_len = 10,
810
811 .veq_ena = false, .veq_start_f1 = 0,
812 .veq_start_f2 = 0, .veq_len = 0,
813
814 .vi_end_f1 = 44, .vi_end_f2 = 44,
815 .nbr_end = 1079,
816
817 .burst_ena = false,
818
819 .filter_table = filter_table,
820 },
821
822 {
823 .name = "1080p@50Hz",
824 .clock = 148500,
825 .refresh = 50000,
826 .oversample = 1,
827 .component_only = true,
828
829 .hsync_end = 88, .hblank_end = 235,
830 .hblank_start = 2155, .htotal = 2639,
831
832 .progressive = true, .trilevel_sync = true,
833
834 .vsync_start_f1 = 8, .vsync_start_f2 = 8,
835 .vsync_len = 10,
836
837 .veq_ena = false, .veq_start_f1 = 0,
838 .veq_start_f2 = 0, .veq_len = 0,
839
840 .vi_end_f1 = 44, .vi_end_f2 = 44,
841 .nbr_end = 1079,
842
843 .burst_ena = false,
844
845 .filter_table = filter_table,
846 },
847
848 {
849 .name = "1080p@60Hz",
850 .clock = 148500,
851 .refresh = 60000,
852 .oversample = 1,
853 .component_only = true,
854
855 .hsync_end = 88, .hblank_end = 235,
856 .hblank_start = 2155, .htotal = 2199,
857
858 .progressive = true, .trilevel_sync = true,
859
860 .vsync_start_f1 = 8, .vsync_start_f2 = 8,
861 .vsync_len = 10,
862
863 .veq_ena = false, .veq_start_f1 = 0,
864 .veq_start_f2 = 0, .veq_len = 0,
865
866 .vi_end_f1 = 44, .vi_end_f2 = 44,
867 .nbr_end = 1079,
868
869 .burst_ena = false,
870
871 .filter_table = filter_table,
872 },
873 };
874
875 struct intel_tv_connector_state {
876 struct drm_connector_state base;
877
878 /*
879 * May need to override the user margins for
880 * gen3 >1024 wide source vertical centering.
881 */
882 struct {
883 u16 top, bottom;
884 } margins;
885
886 bool bypass_vfilter;
887 };
888
889 #define to_intel_tv_connector_state(conn_state) \
890 container_of_const((conn_state), struct intel_tv_connector_state, base)
891
892 static struct drm_connector_state *
intel_tv_connector_duplicate_state(struct drm_connector * connector)893 intel_tv_connector_duplicate_state(struct drm_connector *connector)
894 {
895 struct intel_tv_connector_state *state;
896
897 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL);
898 if (!state)
899 return NULL;
900
901 __drm_atomic_helper_connector_duplicate_state(connector, &state->base);
902 return &state->base;
903 }
904
enc_to_tv(struct intel_encoder * encoder)905 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder)
906 {
907 return container_of(encoder, struct intel_tv, base);
908 }
909
intel_attached_tv(struct intel_connector * connector)910 static struct intel_tv *intel_attached_tv(struct intel_connector *connector)
911 {
912 return enc_to_tv(intel_attached_encoder(connector));
913 }
914
915 static bool
intel_tv_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)916 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe)
917 {
918 struct intel_display *display = to_intel_display(encoder);
919 u32 tmp = intel_de_read(display, TV_CTL);
920
921 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT;
922
923 return tmp & TV_ENC_ENABLE;
924 }
925
926 static void
intel_enable_tv(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)927 intel_enable_tv(struct intel_atomic_state *state,
928 struct intel_encoder *encoder,
929 const struct intel_crtc_state *pipe_config,
930 const struct drm_connector_state *conn_state)
931 {
932 struct intel_display *display = to_intel_display(encoder);
933
934 /* Prevents vblank waits from timing out in intel_tv_detect_type() */
935 intel_crtc_wait_for_next_vblank(to_intel_crtc(pipe_config->uapi.crtc));
936
937 intel_de_rmw(display, TV_CTL, 0, TV_ENC_ENABLE);
938 }
939
940 static void
intel_disable_tv(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)941 intel_disable_tv(struct intel_atomic_state *state,
942 struct intel_encoder *encoder,
943 const struct intel_crtc_state *old_crtc_state,
944 const struct drm_connector_state *old_conn_state)
945 {
946 struct intel_display *display = to_intel_display(encoder);
947
948 intel_de_rmw(display, TV_CTL, TV_ENC_ENABLE, 0);
949 }
950
intel_tv_mode_find(const struct drm_connector_state * conn_state)951 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state)
952 {
953 int format = conn_state->tv.legacy_mode;
954
955 return &tv_modes[format];
956 }
957
958 static enum drm_mode_status
intel_tv_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)959 intel_tv_mode_valid(struct drm_connector *connector,
960 struct drm_display_mode *mode)
961 {
962 struct intel_display *display = to_intel_display(connector->dev);
963 struct drm_i915_private *i915 = to_i915(connector->dev);
964 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
965 int max_dotclk = display->cdclk.max_dotclk_freq;
966 enum drm_mode_status status;
967
968 status = intel_cpu_transcoder_mode_valid(i915, mode);
969 if (status != MODE_OK)
970 return status;
971
972 if (mode->clock > max_dotclk)
973 return MODE_CLOCK_HIGH;
974
975 /* Ensure TV refresh is close to desired refresh */
976 if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000)
977 return MODE_CLOCK_RANGE;
978
979 return MODE_OK;
980 }
981
982 static int
intel_tv_mode_vdisplay(const struct tv_mode * tv_mode)983 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode)
984 {
985 if (tv_mode->progressive)
986 return tv_mode->nbr_end + 1;
987 else
988 return 2 * (tv_mode->nbr_end + 1);
989 }
990
991 static void
intel_tv_mode_to_mode(struct drm_display_mode * mode,const struct tv_mode * tv_mode,int clock)992 intel_tv_mode_to_mode(struct drm_display_mode *mode,
993 const struct tv_mode *tv_mode,
994 int clock)
995 {
996 mode->clock = clock / (tv_mode->oversample >> !tv_mode->progressive);
997
998 /*
999 * tv_mode horizontal timings:
1000 *
1001 * hsync_end
1002 * | hblank_end
1003 * | | hblank_start
1004 * | | | htotal
1005 * | _______ |
1006 * ____/ \___
1007 * \__/ \
1008 */
1009 mode->hdisplay =
1010 tv_mode->hblank_start - tv_mode->hblank_end;
1011 mode->hsync_start = mode->hdisplay +
1012 tv_mode->htotal - tv_mode->hblank_start;
1013 mode->hsync_end = mode->hsync_start +
1014 tv_mode->hsync_end;
1015 mode->htotal = tv_mode->htotal + 1;
1016
1017 /*
1018 * tv_mode vertical timings:
1019 *
1020 * vsync_start
1021 * | vsync_end
1022 * | | vi_end nbr_end
1023 * | | | |
1024 * | | _______
1025 * \__ ____/ \
1026 * \__/
1027 */
1028 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode);
1029 if (tv_mode->progressive) {
1030 mode->vsync_start = mode->vdisplay +
1031 tv_mode->vsync_start_f1 + 1;
1032 mode->vsync_end = mode->vsync_start +
1033 tv_mode->vsync_len;
1034 mode->vtotal = mode->vdisplay +
1035 tv_mode->vi_end_f1 + 1;
1036 } else {
1037 mode->vsync_start = mode->vdisplay +
1038 tv_mode->vsync_start_f1 + 1 +
1039 tv_mode->vsync_start_f2 + 1;
1040 mode->vsync_end = mode->vsync_start +
1041 2 * tv_mode->vsync_len;
1042 mode->vtotal = mode->vdisplay +
1043 tv_mode->vi_end_f1 + 1 +
1044 tv_mode->vi_end_f2 + 1;
1045 }
1046
1047 /* TV has it's own notion of sync and other mode flags, so clear them. */
1048 mode->flags = 0;
1049
1050 snprintf(mode->name, sizeof(mode->name),
1051 "%dx%d%c (%s)",
1052 mode->hdisplay, mode->vdisplay,
1053 tv_mode->progressive ? 'p' : 'i',
1054 tv_mode->name);
1055 }
1056
intel_tv_scale_mode_horiz(struct drm_display_mode * mode,int hdisplay,int left_margin,int right_margin)1057 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode,
1058 int hdisplay, int left_margin,
1059 int right_margin)
1060 {
1061 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin;
1062 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin;
1063 int new_htotal = mode->htotal * hdisplay /
1064 (mode->hdisplay - left_margin - right_margin);
1065
1066 mode->clock = mode->clock * new_htotal / mode->htotal;
1067
1068 mode->hdisplay = hdisplay;
1069 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal;
1070 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal;
1071 mode->htotal = new_htotal;
1072 }
1073
intel_tv_scale_mode_vert(struct drm_display_mode * mode,int vdisplay,int top_margin,int bottom_margin)1074 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode,
1075 int vdisplay, int top_margin,
1076 int bottom_margin)
1077 {
1078 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin;
1079 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin;
1080 int new_vtotal = mode->vtotal * vdisplay /
1081 (mode->vdisplay - top_margin - bottom_margin);
1082
1083 mode->clock = mode->clock * new_vtotal / mode->vtotal;
1084
1085 mode->vdisplay = vdisplay;
1086 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal;
1087 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal;
1088 mode->vtotal = new_vtotal;
1089 }
1090
1091 static void
intel_tv_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1092 intel_tv_get_config(struct intel_encoder *encoder,
1093 struct intel_crtc_state *pipe_config)
1094 {
1095 struct intel_display *display = to_intel_display(encoder);
1096 struct drm_display_mode *adjusted_mode =
1097 &pipe_config->hw.adjusted_mode;
1098 struct drm_display_mode mode = {};
1099 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp;
1100 struct tv_mode tv_mode = {};
1101 int hdisplay = adjusted_mode->crtc_hdisplay;
1102 int vdisplay = adjusted_mode->crtc_vdisplay;
1103 int xsize, ysize, xpos, ypos;
1104
1105 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT);
1106
1107 tv_ctl = intel_de_read(display, TV_CTL);
1108 hctl1 = intel_de_read(display, TV_H_CTL_1);
1109 hctl3 = intel_de_read(display, TV_H_CTL_3);
1110 vctl1 = intel_de_read(display, TV_V_CTL_1);
1111 vctl2 = intel_de_read(display, TV_V_CTL_2);
1112
1113 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT;
1114 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT;
1115
1116 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT;
1117 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT;
1118
1119 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT;
1120 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT;
1121 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT;
1122
1123 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT;
1124 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT;
1125 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT;
1126
1127 tv_mode.clock = pipe_config->port_clock;
1128
1129 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE;
1130
1131 switch (tv_ctl & TV_OVERSAMPLE_MASK) {
1132 case TV_OVERSAMPLE_8X:
1133 tv_mode.oversample = 8;
1134 break;
1135 case TV_OVERSAMPLE_4X:
1136 tv_mode.oversample = 4;
1137 break;
1138 case TV_OVERSAMPLE_2X:
1139 tv_mode.oversample = 2;
1140 break;
1141 default:
1142 tv_mode.oversample = 1;
1143 break;
1144 }
1145
1146 tmp = intel_de_read(display, TV_WIN_POS);
1147 xpos = tmp >> 16;
1148 ypos = tmp & 0xffff;
1149
1150 tmp = intel_de_read(display, TV_WIN_SIZE);
1151 xsize = tmp >> 16;
1152 ysize = tmp & 0xffff;
1153
1154 intel_tv_mode_to_mode(&mode, &tv_mode, pipe_config->port_clock);
1155
1156 drm_dbg_kms(display->drm, "TV mode: " DRM_MODE_FMT "\n",
1157 DRM_MODE_ARG(&mode));
1158
1159 intel_tv_scale_mode_horiz(&mode, hdisplay,
1160 xpos, mode.hdisplay - xsize - xpos);
1161 intel_tv_scale_mode_vert(&mode, vdisplay,
1162 ypos, mode.vdisplay - ysize - ypos);
1163
1164 adjusted_mode->crtc_clock = mode.clock;
1165 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
1166 adjusted_mode->crtc_clock /= 2;
1167
1168 /* pixel counter doesn't work on i965gm TV output */
1169 if (display->platform.i965gm)
1170 pipe_config->mode_flags |=
1171 I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1172 }
1173
intel_tv_source_too_wide(struct intel_display * display,int hdisplay)1174 static bool intel_tv_source_too_wide(struct intel_display *display,
1175 int hdisplay)
1176 {
1177 return DISPLAY_VER(display) == 3 && hdisplay > 1024;
1178 }
1179
intel_tv_vert_scaling(const struct drm_display_mode * tv_mode,const struct drm_connector_state * conn_state,int vdisplay)1180 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode,
1181 const struct drm_connector_state *conn_state,
1182 int vdisplay)
1183 {
1184 return tv_mode->crtc_vdisplay -
1185 conn_state->tv.margins.top -
1186 conn_state->tv.margins.bottom !=
1187 vdisplay;
1188 }
1189
1190 static int
intel_tv_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)1191 intel_tv_compute_config(struct intel_encoder *encoder,
1192 struct intel_crtc_state *pipe_config,
1193 struct drm_connector_state *conn_state)
1194 {
1195 struct intel_display *display = to_intel_display(encoder);
1196 struct intel_atomic_state *state =
1197 to_intel_atomic_state(pipe_config->uapi.state);
1198 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
1199 struct intel_tv_connector_state *tv_conn_state =
1200 to_intel_tv_connector_state(conn_state);
1201 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state);
1202 struct drm_display_mode *adjusted_mode =
1203 &pipe_config->hw.adjusted_mode;
1204 int hdisplay = adjusted_mode->crtc_hdisplay;
1205 int vdisplay = adjusted_mode->crtc_vdisplay;
1206 int ret;
1207
1208 if (!tv_mode)
1209 return -EINVAL;
1210
1211 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
1212 return -EINVAL;
1213
1214 pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB;
1215 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
1216
1217 drm_dbg_kms(display->drm, "forcing bpc to 8 for TV\n");
1218 pipe_config->pipe_bpp = 8*3;
1219
1220 pipe_config->port_clock = tv_mode->clock;
1221
1222 ret = intel_dpll_crtc_compute_clock(state, crtc);
1223 if (ret)
1224 return ret;
1225
1226 pipe_config->clock_set = true;
1227
1228 intel_tv_mode_to_mode(adjusted_mode, tv_mode, pipe_config->port_clock);
1229 drm_mode_set_crtcinfo(adjusted_mode, 0);
1230
1231 if (intel_tv_source_too_wide(display, hdisplay) ||
1232 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) {
1233 int extra, top, bottom;
1234
1235 extra = adjusted_mode->crtc_vdisplay - vdisplay;
1236
1237 if (extra < 0) {
1238 drm_dbg_kms(display->drm,
1239 "No vertical scaling for >1024 pixel wide modes\n");
1240 return -EINVAL;
1241 }
1242
1243 /* Need to turn off the vertical filter and center the image */
1244
1245 /* Attempt to maintain the relative sizes of the margins */
1246 top = conn_state->tv.margins.top;
1247 bottom = conn_state->tv.margins.bottom;
1248
1249 if (top + bottom)
1250 top = extra * top / (top + bottom);
1251 else
1252 top = extra / 2;
1253 bottom = extra - top;
1254
1255 tv_conn_state->margins.top = top;
1256 tv_conn_state->margins.bottom = bottom;
1257
1258 tv_conn_state->bypass_vfilter = true;
1259
1260 if (!tv_mode->progressive) {
1261 adjusted_mode->clock /= 2;
1262 adjusted_mode->crtc_clock /= 2;
1263 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE;
1264 }
1265 } else {
1266 tv_conn_state->margins.top = conn_state->tv.margins.top;
1267 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom;
1268
1269 tv_conn_state->bypass_vfilter = false;
1270 }
1271
1272 drm_dbg_kms(display->drm, "TV mode: " DRM_MODE_FMT "\n",
1273 DRM_MODE_ARG(adjusted_mode));
1274
1275 /*
1276 * The pipe scanline counter behaviour looks as follows when
1277 * using the TV encoder:
1278 *
1279 * time ->
1280 *
1281 * dsl=vtotal-1 | |
1282 * || ||
1283 * ___| | ___| |
1284 * / | / |
1285 * / | / |
1286 * dsl=0 ___/ |_____/ |
1287 * | | | | | |
1288 * ^ ^ ^ ^ ^
1289 * | | | | pipe vblank/first part of tv vblank
1290 * | | | bottom margin
1291 * | | active
1292 * | top margin
1293 * remainder of tv vblank
1294 *
1295 * When the TV encoder is used the pipe wants to run faster
1296 * than expected rate. During the active portion the TV
1297 * encoder stalls the pipe every few lines to keep it in
1298 * check. When the TV encoder reaches the bottom margin the
1299 * pipe simply stops. Once we reach the TV vblank the pipe is
1300 * no longer stalled and it runs at the max rate (apparently
1301 * oversample clock on gen3, cdclk on gen4). Once the pipe
1302 * reaches the pipe vtotal the pipe stops for the remainder
1303 * of the TV vblank/top margin. The pipe starts up again when
1304 * the TV encoder exits the top margin.
1305 *
1306 * To avoid huge hassles for vblank timestamping we scale
1307 * the pipe timings as if the pipe always runs at the average
1308 * rate it maintains during the active period. This also
1309 * gives us a reasonable guesstimate as to the pixel rate.
1310 * Due to the variation in the actual pipe speed the scanline
1311 * counter will give us slightly erroneous results during the
1312 * TV vblank/margins. But since vtotal was selected such that
1313 * it matches the average rate of the pipe during the active
1314 * portion the error shouldn't cause any serious grief to
1315 * vblank timestamps.
1316 *
1317 * For posterity here is the empirically derived formula
1318 * that gives us the maximum length of the pipe vblank
1319 * we can use without causing display corruption. Following
1320 * this would allow us to have a ticking scanline counter
1321 * everywhere except during the bottom margin (there the
1322 * pipe always stops). Ie. this would eliminate the second
1323 * flat portion of the above graph. However this would also
1324 * complicate vblank timestamping as the pipe vtotal would
1325 * no longer match the average rate the pipe runs at during
1326 * the active portion. Hence following this formula seems
1327 * more trouble that it's worth.
1328 *
1329 * if (DISPLAY_VER(dev_priv) == 4) {
1330 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive);
1331 * den = tv_mode->clock;
1332 * } else {
1333 * num = tv_mode->oversample >> !tv_mode->progressive;
1334 * den = 1;
1335 * }
1336 * max_pipe_vblank_len ~=
1337 * (num * tv_htotal * (tv_vblank_len + top_margin)) /
1338 * (den * pipe_htotal);
1339 */
1340 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay,
1341 conn_state->tv.margins.left,
1342 conn_state->tv.margins.right);
1343 intel_tv_scale_mode_vert(adjusted_mode, vdisplay,
1344 tv_conn_state->margins.top,
1345 tv_conn_state->margins.bottom);
1346 drm_mode_set_crtcinfo(adjusted_mode, 0);
1347 adjusted_mode->name[0] = '\0';
1348
1349 /* pixel counter doesn't work on i965gm TV output */
1350 if (display->platform.i965gm)
1351 pipe_config->mode_flags |=
1352 I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1353
1354 return 0;
1355 }
1356
1357 static void
set_tv_mode_timings(struct intel_display * display,const struct tv_mode * tv_mode,bool burst_ena)1358 set_tv_mode_timings(struct intel_display *display,
1359 const struct tv_mode *tv_mode,
1360 bool burst_ena)
1361 {
1362 u32 hctl1, hctl2, hctl3;
1363 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7;
1364
1365 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) |
1366 (tv_mode->htotal << TV_HTOTAL_SHIFT);
1367
1368 hctl2 = (tv_mode->hburst_start << 16) |
1369 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT);
1370
1371 if (burst_ena)
1372 hctl2 |= TV_BURST_ENA;
1373
1374 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) |
1375 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT);
1376
1377 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) |
1378 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) |
1379 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT);
1380
1381 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) |
1382 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) |
1383 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT);
1384
1385 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) |
1386 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) |
1387 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT);
1388
1389 if (tv_mode->veq_ena)
1390 vctl3 |= TV_EQUAL_ENA;
1391
1392 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) |
1393 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT);
1394
1395 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) |
1396 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT);
1397
1398 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) |
1399 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT);
1400
1401 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) |
1402 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT);
1403
1404 intel_de_write(display, TV_H_CTL_1, hctl1);
1405 intel_de_write(display, TV_H_CTL_2, hctl2);
1406 intel_de_write(display, TV_H_CTL_3, hctl3);
1407 intel_de_write(display, TV_V_CTL_1, vctl1);
1408 intel_de_write(display, TV_V_CTL_2, vctl2);
1409 intel_de_write(display, TV_V_CTL_3, vctl3);
1410 intel_de_write(display, TV_V_CTL_4, vctl4);
1411 intel_de_write(display, TV_V_CTL_5, vctl5);
1412 intel_de_write(display, TV_V_CTL_6, vctl6);
1413 intel_de_write(display, TV_V_CTL_7, vctl7);
1414 }
1415
set_color_conversion(struct intel_display * display,const struct color_conversion * color_conversion)1416 static void set_color_conversion(struct intel_display *display,
1417 const struct color_conversion *color_conversion)
1418 {
1419 intel_de_write(display, TV_CSC_Y,
1420 (color_conversion->ry << 16) | color_conversion->gy);
1421 intel_de_write(display, TV_CSC_Y2,
1422 (color_conversion->by << 16) | color_conversion->ay);
1423 intel_de_write(display, TV_CSC_U,
1424 (color_conversion->ru << 16) | color_conversion->gu);
1425 intel_de_write(display, TV_CSC_U2,
1426 (color_conversion->bu << 16) | color_conversion->au);
1427 intel_de_write(display, TV_CSC_V,
1428 (color_conversion->rv << 16) | color_conversion->gv);
1429 intel_de_write(display, TV_CSC_V2,
1430 (color_conversion->bv << 16) | color_conversion->av);
1431 }
1432
intel_tv_pre_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)1433 static void intel_tv_pre_enable(struct intel_atomic_state *state,
1434 struct intel_encoder *encoder,
1435 const struct intel_crtc_state *pipe_config,
1436 const struct drm_connector_state *conn_state)
1437 {
1438 struct intel_display *display = to_intel_display(encoder);
1439 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1440 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
1441 struct intel_tv *intel_tv = enc_to_tv(encoder);
1442 const struct intel_tv_connector_state *tv_conn_state =
1443 to_intel_tv_connector_state(conn_state);
1444 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state);
1445 u32 tv_ctl, tv_filter_ctl;
1446 u32 scctl1, scctl2, scctl3;
1447 int i, j;
1448 const struct video_levels *video_levels;
1449 const struct color_conversion *color_conversion;
1450 bool burst_ena;
1451 int xpos, ypos;
1452 unsigned int xsize, ysize;
1453
1454 tv_ctl = intel_de_read(display, TV_CTL);
1455 tv_ctl &= TV_CTL_SAVE;
1456
1457 switch (intel_tv->type) {
1458 default:
1459 case DRM_MODE_CONNECTOR_Unknown:
1460 case DRM_MODE_CONNECTOR_Composite:
1461 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE;
1462 video_levels = tv_mode->composite_levels;
1463 color_conversion = tv_mode->composite_color;
1464 burst_ena = tv_mode->burst_ena;
1465 break;
1466 case DRM_MODE_CONNECTOR_Component:
1467 tv_ctl |= TV_ENC_OUTPUT_COMPONENT;
1468 video_levels = &component_levels;
1469 if (tv_mode->burst_ena)
1470 color_conversion = &sdtv_csc_yprpb;
1471 else
1472 color_conversion = &hdtv_csc_yprpb;
1473 burst_ena = false;
1474 break;
1475 case DRM_MODE_CONNECTOR_SVIDEO:
1476 tv_ctl |= TV_ENC_OUTPUT_SVIDEO;
1477 video_levels = tv_mode->svideo_levels;
1478 color_conversion = tv_mode->svideo_color;
1479 burst_ena = tv_mode->burst_ena;
1480 break;
1481 }
1482
1483 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe);
1484
1485 switch (tv_mode->oversample) {
1486 case 8:
1487 tv_ctl |= TV_OVERSAMPLE_8X;
1488 break;
1489 case 4:
1490 tv_ctl |= TV_OVERSAMPLE_4X;
1491 break;
1492 case 2:
1493 tv_ctl |= TV_OVERSAMPLE_2X;
1494 break;
1495 default:
1496 tv_ctl |= TV_OVERSAMPLE_NONE;
1497 break;
1498 }
1499
1500 if (tv_mode->progressive)
1501 tv_ctl |= TV_PROGRESSIVE;
1502 if (tv_mode->trilevel_sync)
1503 tv_ctl |= TV_TRILEVEL_SYNC;
1504 if (tv_mode->pal_burst)
1505 tv_ctl |= TV_PAL_BURST;
1506
1507 scctl1 = 0;
1508 if (tv_mode->dda1_inc)
1509 scctl1 |= TV_SC_DDA1_EN;
1510 if (tv_mode->dda2_inc)
1511 scctl1 |= TV_SC_DDA2_EN;
1512 if (tv_mode->dda3_inc)
1513 scctl1 |= TV_SC_DDA3_EN;
1514 scctl1 |= tv_mode->sc_reset;
1515 if (video_levels)
1516 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT;
1517 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT;
1518
1519 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT |
1520 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT;
1521
1522 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT |
1523 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT;
1524
1525 /* Enable two fixes for the chips that need them. */
1526 if (display->platform.i915gm)
1527 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX;
1528
1529 set_tv_mode_timings(display, tv_mode, burst_ena);
1530
1531 intel_de_write(display, TV_SC_CTL_1, scctl1);
1532 intel_de_write(display, TV_SC_CTL_2, scctl2);
1533 intel_de_write(display, TV_SC_CTL_3, scctl3);
1534
1535 set_color_conversion(display, color_conversion);
1536
1537 if (DISPLAY_VER(display) >= 4)
1538 intel_de_write(display, TV_CLR_KNOBS, 0x00404000);
1539 else
1540 intel_de_write(display, TV_CLR_KNOBS, 0x00606000);
1541
1542 if (video_levels)
1543 intel_de_write(display, TV_CLR_LEVEL,
1544 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT)));
1545
1546 assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder);
1547
1548 /* Filter ctl must be set before TV_WIN_SIZE */
1549 tv_filter_ctl = TV_AUTO_SCALE;
1550 if (tv_conn_state->bypass_vfilter)
1551 tv_filter_ctl |= TV_V_FILTER_BYPASS;
1552 intel_de_write(display, TV_FILTER_CTL_1, tv_filter_ctl);
1553
1554 xsize = tv_mode->hblank_start - tv_mode->hblank_end;
1555 ysize = intel_tv_mode_vdisplay(tv_mode);
1556
1557 xpos = conn_state->tv.margins.left;
1558 ypos = tv_conn_state->margins.top;
1559 xsize -= (conn_state->tv.margins.left +
1560 conn_state->tv.margins.right);
1561 ysize -= (tv_conn_state->margins.top +
1562 tv_conn_state->margins.bottom);
1563 intel_de_write(display, TV_WIN_POS, (xpos << 16) | ypos);
1564 intel_de_write(display, TV_WIN_SIZE, (xsize << 16) | ysize);
1565
1566 j = 0;
1567 for (i = 0; i < 60; i++)
1568 intel_de_write(display, TV_H_LUMA(i),
1569 tv_mode->filter_table[j++]);
1570 for (i = 0; i < 60; i++)
1571 intel_de_write(display, TV_H_CHROMA(i),
1572 tv_mode->filter_table[j++]);
1573 for (i = 0; i < 43; i++)
1574 intel_de_write(display, TV_V_LUMA(i),
1575 tv_mode->filter_table[j++]);
1576 for (i = 0; i < 43; i++)
1577 intel_de_write(display, TV_V_CHROMA(i),
1578 tv_mode->filter_table[j++]);
1579 intel_de_write(display, TV_DAC,
1580 intel_de_read(display, TV_DAC) & TV_DAC_SAVE);
1581 intel_de_write(display, TV_CTL, tv_ctl);
1582 }
1583
1584 static int
intel_tv_detect_type(struct intel_tv * intel_tv,struct drm_connector * connector)1585 intel_tv_detect_type(struct intel_tv *intel_tv,
1586 struct drm_connector *connector)
1587 {
1588 struct intel_display *display = to_intel_display(connector->dev);
1589 struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc);
1590 struct drm_device *dev = connector->dev;
1591 struct drm_i915_private *dev_priv = to_i915(dev);
1592 u32 tv_ctl, save_tv_ctl;
1593 u32 tv_dac, save_tv_dac;
1594 int type;
1595
1596 /* Disable TV interrupts around load detect or we'll recurse */
1597 if (connector->polled & DRM_CONNECTOR_POLL_HPD) {
1598 spin_lock_irq(&dev_priv->irq_lock);
1599 i915_disable_pipestat(dev_priv, 0,
1600 PIPE_HOTPLUG_INTERRUPT_STATUS |
1601 PIPE_HOTPLUG_TV_INTERRUPT_STATUS);
1602 spin_unlock_irq(&dev_priv->irq_lock);
1603 }
1604
1605 save_tv_dac = tv_dac = intel_de_read(display, TV_DAC);
1606 save_tv_ctl = tv_ctl = intel_de_read(display, TV_CTL);
1607
1608 /* Poll for TV detection */
1609 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK);
1610 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT;
1611 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe);
1612
1613 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK);
1614 tv_dac |= (TVDAC_STATE_CHG_EN |
1615 TVDAC_A_SENSE_CTL |
1616 TVDAC_B_SENSE_CTL |
1617 TVDAC_C_SENSE_CTL |
1618 DAC_CTL_OVERRIDE |
1619 DAC_A_0_7_V |
1620 DAC_B_0_7_V |
1621 DAC_C_0_7_V);
1622
1623
1624 /*
1625 * The TV sense state should be cleared to zero on cantiga platform. Otherwise
1626 * the TV is misdetected. This is hardware requirement.
1627 */
1628 if (display->platform.gm45)
1629 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL |
1630 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL);
1631
1632 intel_de_write(display, TV_CTL, tv_ctl);
1633 intel_de_write(display, TV_DAC, tv_dac);
1634 intel_de_posting_read(display, TV_DAC);
1635
1636 intel_crtc_wait_for_next_vblank(crtc);
1637
1638 type = -1;
1639 tv_dac = intel_de_read(display, TV_DAC);
1640 drm_dbg_kms(display->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac);
1641 /*
1642 * A B C
1643 * 0 1 1 Composite
1644 * 1 0 X svideo
1645 * 0 0 0 Component
1646 */
1647 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) {
1648 drm_dbg_kms(display->drm,
1649 "Detected Composite TV connection\n");
1650 type = DRM_MODE_CONNECTOR_Composite;
1651 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) {
1652 drm_dbg_kms(display->drm,
1653 "Detected S-Video TV connection\n");
1654 type = DRM_MODE_CONNECTOR_SVIDEO;
1655 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) {
1656 drm_dbg_kms(display->drm,
1657 "Detected Component TV connection\n");
1658 type = DRM_MODE_CONNECTOR_Component;
1659 } else {
1660 drm_dbg_kms(display->drm, "Unrecognised TV connection\n");
1661 type = -1;
1662 }
1663
1664 intel_de_write(display, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN);
1665 intel_de_write(display, TV_CTL, save_tv_ctl);
1666 intel_de_posting_read(display, TV_CTL);
1667
1668 /* For unknown reasons the hw barfs if we don't do this vblank wait. */
1669 intel_crtc_wait_for_next_vblank(crtc);
1670
1671 /* Restore interrupt config */
1672 if (connector->polled & DRM_CONNECTOR_POLL_HPD) {
1673 spin_lock_irq(&dev_priv->irq_lock);
1674 i915_enable_pipestat(dev_priv, 0,
1675 PIPE_HOTPLUG_INTERRUPT_STATUS |
1676 PIPE_HOTPLUG_TV_INTERRUPT_STATUS);
1677 spin_unlock_irq(&dev_priv->irq_lock);
1678 }
1679
1680 return type;
1681 }
1682
1683 /*
1684 * Here we set accurate tv format according to connector type
1685 * i.e Component TV should not be assigned by NTSC or PAL
1686 */
intel_tv_find_better_format(struct drm_connector * connector)1687 static void intel_tv_find_better_format(struct drm_connector *connector)
1688 {
1689 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector));
1690 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
1691 int i;
1692
1693 /* Component supports everything so we can keep the current mode */
1694 if (intel_tv->type == DRM_MODE_CONNECTOR_Component)
1695 return;
1696
1697 /* If the current mode is fine don't change it */
1698 if (!tv_mode->component_only)
1699 return;
1700
1701 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) {
1702 tv_mode = &tv_modes[i];
1703
1704 if (!tv_mode->component_only)
1705 break;
1706 }
1707
1708 connector->state->tv.legacy_mode = i;
1709 }
1710
1711 static int
intel_tv_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1712 intel_tv_detect(struct drm_connector *connector,
1713 struct drm_modeset_acquire_ctx *ctx,
1714 bool force)
1715 {
1716 struct intel_display *display = to_intel_display(connector->dev);
1717 struct drm_i915_private *i915 = to_i915(connector->dev);
1718 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector));
1719 enum drm_connector_status status;
1720 int type;
1721
1722 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] force=%d\n",
1723 connector->base.id, connector->name, force);
1724
1725 if (!intel_display_device_enabled(i915))
1726 return connector_status_disconnected;
1727
1728 if (!intel_display_driver_check_access(i915))
1729 return connector->status;
1730
1731 if (force) {
1732 struct drm_atomic_state *state;
1733
1734 state = intel_load_detect_get_pipe(connector, ctx);
1735 if (IS_ERR(state))
1736 return PTR_ERR(state);
1737
1738 if (state) {
1739 type = intel_tv_detect_type(intel_tv, connector);
1740 intel_load_detect_release_pipe(connector, state, ctx);
1741 status = type < 0 ?
1742 connector_status_disconnected :
1743 connector_status_connected;
1744 } else {
1745 status = connector_status_unknown;
1746 }
1747
1748 if (status == connector_status_connected) {
1749 intel_tv->type = type;
1750 intel_tv_find_better_format(connector);
1751 }
1752
1753 return status;
1754 } else
1755 return connector->status;
1756 }
1757
1758 static const struct input_res {
1759 u16 w, h;
1760 } input_res_table[] = {
1761 { 640, 480 },
1762 { 800, 600 },
1763 { 1024, 768 },
1764 { 1280, 1024 },
1765 { 848, 480 },
1766 { 1280, 720 },
1767 { 1920, 1080 },
1768 };
1769
1770 /* Choose preferred mode according to line number of TV format */
1771 static bool
intel_tv_is_preferred_mode(const struct drm_display_mode * mode,const struct tv_mode * tv_mode)1772 intel_tv_is_preferred_mode(const struct drm_display_mode *mode,
1773 const struct tv_mode *tv_mode)
1774 {
1775 int vdisplay = intel_tv_mode_vdisplay(tv_mode);
1776
1777 /* prefer 480 line modes for all SD TV modes */
1778 if (vdisplay <= 576)
1779 vdisplay = 480;
1780
1781 return vdisplay == mode->vdisplay;
1782 }
1783
1784 static void
intel_tv_set_mode_type(struct drm_display_mode * mode,const struct tv_mode * tv_mode)1785 intel_tv_set_mode_type(struct drm_display_mode *mode,
1786 const struct tv_mode *tv_mode)
1787 {
1788 mode->type = DRM_MODE_TYPE_DRIVER;
1789
1790 if (intel_tv_is_preferred_mode(mode, tv_mode))
1791 mode->type |= DRM_MODE_TYPE_PREFERRED;
1792 }
1793
1794 static int
intel_tv_get_modes(struct drm_connector * connector)1795 intel_tv_get_modes(struct drm_connector *connector)
1796 {
1797 struct intel_display *display = to_intel_display(connector->dev);
1798 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
1799 int i, count = 0;
1800
1801 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) {
1802 const struct input_res *input = &input_res_table[i];
1803 struct drm_display_mode *mode;
1804
1805 if (input->w > 1024 &&
1806 !tv_mode->progressive &&
1807 !tv_mode->component_only)
1808 continue;
1809
1810 /* no vertical scaling with wide sources on gen3 */
1811 if (DISPLAY_VER(display) == 3 && input->w > 1024 &&
1812 input->h > intel_tv_mode_vdisplay(tv_mode))
1813 continue;
1814
1815 mode = drm_mode_create(connector->dev);
1816 if (!mode)
1817 continue;
1818
1819 /*
1820 * We take the TV mode and scale it to look
1821 * like it had the expected h/vdisplay. This
1822 * provides the most information to userspace
1823 * about the actual timings of the mode. We
1824 * do ignore the margins though.
1825 */
1826 intel_tv_mode_to_mode(mode, tv_mode, tv_mode->clock);
1827 if (count == 0) {
1828 drm_dbg_kms(display->drm,
1829 "TV mode: " DRM_MODE_FMT "\n",
1830 DRM_MODE_ARG(mode));
1831 }
1832 intel_tv_scale_mode_horiz(mode, input->w, 0, 0);
1833 intel_tv_scale_mode_vert(mode, input->h, 0, 0);
1834 intel_tv_set_mode_type(mode, tv_mode);
1835
1836 drm_mode_set_name(mode);
1837
1838 drm_mode_probed_add(connector, mode);
1839 count++;
1840 }
1841
1842 return count;
1843 }
1844
1845 static const struct drm_connector_funcs intel_tv_connector_funcs = {
1846 .late_register = intel_connector_register,
1847 .early_unregister = intel_connector_unregister,
1848 .destroy = intel_connector_destroy,
1849 .fill_modes = drm_helper_probe_single_connector_modes,
1850 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1851 .atomic_duplicate_state = intel_tv_connector_duplicate_state,
1852 };
1853
intel_tv_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1854 static int intel_tv_atomic_check(struct drm_connector *connector,
1855 struct drm_atomic_state *state)
1856 {
1857 struct drm_connector_state *new_state;
1858 struct drm_crtc_state *new_crtc_state;
1859 struct drm_connector_state *old_state;
1860
1861 new_state = drm_atomic_get_new_connector_state(state, connector);
1862 if (!new_state->crtc)
1863 return 0;
1864
1865 old_state = drm_atomic_get_old_connector_state(state, connector);
1866 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc);
1867
1868 if (old_state->tv.legacy_mode != new_state->tv.legacy_mode ||
1869 old_state->tv.margins.left != new_state->tv.margins.left ||
1870 old_state->tv.margins.right != new_state->tv.margins.right ||
1871 old_state->tv.margins.top != new_state->tv.margins.top ||
1872 old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
1873 /* Force a modeset. */
1874
1875 new_crtc_state->connectors_changed = true;
1876 }
1877
1878 return 0;
1879 }
1880
1881 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = {
1882 .detect_ctx = intel_tv_detect,
1883 .mode_valid = intel_tv_mode_valid,
1884 .get_modes = intel_tv_get_modes,
1885 .atomic_check = intel_tv_atomic_check,
1886 };
1887
1888 static const struct drm_encoder_funcs intel_tv_enc_funcs = {
1889 .destroy = intel_encoder_destroy,
1890 };
1891
intel_tv_add_properties(struct drm_connector * connector)1892 static void intel_tv_add_properties(struct drm_connector *connector)
1893 {
1894 struct intel_display *display = to_intel_display(connector->dev);
1895 struct drm_connector_state *conn_state = connector->state;
1896 const char *tv_format_names[ARRAY_SIZE(tv_modes)];
1897 int i;
1898
1899 /* BIOS margin values */
1900 conn_state->tv.margins.left = 54;
1901 conn_state->tv.margins.top = 36;
1902 conn_state->tv.margins.right = 46;
1903 conn_state->tv.margins.bottom = 37;
1904
1905 conn_state->tv.legacy_mode = 0;
1906
1907 /* Create TV properties then attach current values */
1908 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) {
1909 /* 1080p50/1080p60 not supported on gen3 */
1910 if (DISPLAY_VER(display) == 3 && tv_modes[i].oversample == 1)
1911 break;
1912
1913 tv_format_names[i] = tv_modes[i].name;
1914 }
1915 drm_mode_create_tv_properties_legacy(display->drm, i, tv_format_names);
1916
1917 drm_object_attach_property(&connector->base,
1918 display->drm->mode_config.legacy_tv_mode_property,
1919 conn_state->tv.legacy_mode);
1920 drm_object_attach_property(&connector->base,
1921 display->drm->mode_config.tv_left_margin_property,
1922 conn_state->tv.margins.left);
1923 drm_object_attach_property(&connector->base,
1924 display->drm->mode_config.tv_top_margin_property,
1925 conn_state->tv.margins.top);
1926 drm_object_attach_property(&connector->base,
1927 display->drm->mode_config.tv_right_margin_property,
1928 conn_state->tv.margins.right);
1929 drm_object_attach_property(&connector->base,
1930 display->drm->mode_config.tv_bottom_margin_property,
1931 conn_state->tv.margins.bottom);
1932 }
1933
1934 void
intel_tv_init(struct intel_display * display)1935 intel_tv_init(struct intel_display *display)
1936 {
1937 struct drm_connector *connector;
1938 struct intel_tv *intel_tv;
1939 struct intel_encoder *intel_encoder;
1940 struct intel_connector *intel_connector;
1941 u32 tv_dac_on, tv_dac_off, save_tv_dac;
1942
1943 if ((intel_de_read(display, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED)
1944 return;
1945
1946 if (!intel_bios_is_tv_present(display)) {
1947 drm_dbg_kms(display->drm, "Integrated TV is not present.\n");
1948 return;
1949 }
1950
1951 /*
1952 * Sanity check the TV output by checking to see if the
1953 * DAC register holds a value
1954 */
1955 save_tv_dac = intel_de_read(display, TV_DAC);
1956
1957 intel_de_write(display, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN);
1958 tv_dac_on = intel_de_read(display, TV_DAC);
1959
1960 intel_de_write(display, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN);
1961 tv_dac_off = intel_de_read(display, TV_DAC);
1962
1963 intel_de_write(display, TV_DAC, save_tv_dac);
1964
1965 /*
1966 * If the register does not hold the state change enable
1967 * bit, (either as a 0 or a 1), assume it doesn't really
1968 * exist
1969 */
1970 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 ||
1971 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0)
1972 return;
1973
1974 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL);
1975 if (!intel_tv) {
1976 return;
1977 }
1978
1979 intel_connector = intel_connector_alloc();
1980 if (!intel_connector) {
1981 kfree(intel_tv);
1982 return;
1983 }
1984
1985 intel_encoder = &intel_tv->base;
1986 connector = &intel_connector->base;
1987
1988 /*
1989 * The documentation, for the older chipsets at least, recommend
1990 * using a polling method rather than hotplug detection for TVs.
1991 * This is because in order to perform the hotplug detection, the PLLs
1992 * for the TV must be kept alive increasing power drain and starving
1993 * bandwidth from other encoders. Notably for instance, it causes
1994 * pipe underruns on Crestline when this encoder is supposedly idle.
1995 *
1996 * More recent chipsets favour HDMI rather than integrated S-Video.
1997 */
1998 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT;
1999 intel_connector->base.polled = intel_connector->polled;
2000
2001 drm_connector_init(display->drm, connector, &intel_tv_connector_funcs,
2002 DRM_MODE_CONNECTOR_SVIDEO);
2003
2004 drm_encoder_init(display->drm, &intel_encoder->base,
2005 &intel_tv_enc_funcs,
2006 DRM_MODE_ENCODER_TVDAC, "TV");
2007
2008 intel_encoder->compute_config = intel_tv_compute_config;
2009 intel_encoder->get_config = intel_tv_get_config;
2010 intel_encoder->pre_enable = intel_tv_pre_enable;
2011 intel_encoder->enable = intel_enable_tv;
2012 intel_encoder->disable = intel_disable_tv;
2013 intel_encoder->get_hw_state = intel_tv_get_hw_state;
2014 intel_connector->get_hw_state = intel_connector_get_hw_state;
2015
2016 intel_connector_attach_encoder(intel_connector, intel_encoder);
2017
2018 intel_encoder->type = INTEL_OUTPUT_TVOUT;
2019 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER;
2020 intel_encoder->port = PORT_NONE;
2021 intel_encoder->pipe_mask = ~0;
2022 intel_encoder->cloneable = 0;
2023 intel_tv->type = DRM_MODE_CONNECTOR_Unknown;
2024
2025 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs);
2026
2027 intel_tv_add_properties(connector);
2028 }
2029