1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dm_helpers.h" 29 #include "core_types.h" 30 #include "resource.h" 31 #include "dccg.h" 32 #include "dce/dce_hwseq.h" 33 #include "dcn30/dcn30_cm_common.h" 34 #include "reg_helper.h" 35 #include "abm.h" 36 #include "hubp.h" 37 #include "dchubbub.h" 38 #include "timing_generator.h" 39 #include "opp.h" 40 #include "ipp.h" 41 #include "mpc.h" 42 #include "mcif_wb.h" 43 #include "dc_dmub_srv.h" 44 #include "link_hwss.h" 45 #include "dpcd_defs.h" 46 #include "dcn32_hwseq.h" 47 #include "clk_mgr.h" 48 #include "dsc.h" 49 #include "dcn20/dcn20_optc.h" 50 #include "dce/dmub_hw_lock_mgr.h" 51 #include "dcn32/dcn32_resource.h" 52 #include "link.h" 53 #include "../dcn20/dcn20_hwseq.h" 54 #include "dc_state_priv.h" 55 56 #define DC_LOGGER_INIT(logger) 57 58 #define CTX \ 59 hws->ctx 60 #define REG(reg)\ 61 hws->regs->reg 62 #define DC_LOGGER \ 63 dc->ctx->logger 64 65 #undef FN 66 #define FN(reg_name, field_name) \ 67 hws->shifts->field_name, hws->masks->field_name 68 69 void dcn32_dsc_pg_control( 70 struct dce_hwseq *hws, 71 unsigned int dsc_inst, 72 bool power_on) 73 { 74 uint32_t power_gate = power_on ? 0 : 1; 75 uint32_t pwr_status = power_on ? 0 : 2; 76 uint32_t org_ip_request_cntl = 0; 77 struct dc *dc = hws->ctx->dc; 78 79 if (dc->debug.disable_dsc_power_gate) 80 return; 81 82 if (!dc->debug.enable_double_buffered_dsc_pg_support) 83 return; 84 85 REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); 86 if (org_ip_request_cntl == 0) 87 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); 88 89 DC_LOG_DSC("%s DSC power gate for inst %d", power_gate ? "enable" : "disable", dsc_inst); 90 switch (dsc_inst) { 91 case 0: /* DSC0 */ 92 REG_UPDATE(DOMAIN16_PG_CONFIG, 93 DOMAIN_POWER_GATE, power_gate); 94 95 REG_WAIT(DOMAIN16_PG_STATUS, 96 DOMAIN_PGFSM_PWR_STATUS, pwr_status, 97 1, 1000); 98 break; 99 case 1: /* DSC1 */ 100 REG_UPDATE(DOMAIN17_PG_CONFIG, 101 DOMAIN_POWER_GATE, power_gate); 102 103 REG_WAIT(DOMAIN17_PG_STATUS, 104 DOMAIN_PGFSM_PWR_STATUS, pwr_status, 105 1, 1000); 106 break; 107 case 2: /* DSC2 */ 108 REG_UPDATE(DOMAIN18_PG_CONFIG, 109 DOMAIN_POWER_GATE, power_gate); 110 111 REG_WAIT(DOMAIN18_PG_STATUS, 112 DOMAIN_PGFSM_PWR_STATUS, pwr_status, 113 1, 1000); 114 break; 115 case 3: /* DSC3 */ 116 REG_UPDATE(DOMAIN19_PG_CONFIG, 117 DOMAIN_POWER_GATE, power_gate); 118 119 REG_WAIT(DOMAIN19_PG_STATUS, 120 DOMAIN_PGFSM_PWR_STATUS, pwr_status, 121 1, 1000); 122 break; 123 default: 124 BREAK_TO_DEBUGGER(); 125 break; 126 } 127 128 if (org_ip_request_cntl == 0) 129 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); 130 } 131 132 133 void dcn32_enable_power_gating_plane( 134 struct dce_hwseq *hws, 135 bool enable) 136 { 137 bool force_on = true; /* disable power gating */ 138 uint32_t org_ip_request_cntl = 0; 139 140 if (enable) 141 force_on = false; 142 143 REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); 144 if (org_ip_request_cntl == 0) 145 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); 146 147 /* DCHUBP0/1/2/3 */ 148 REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 149 REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 150 REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 151 REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 152 153 /* DCS0/1/2/3 */ 154 REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 155 REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 156 REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 157 REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); 158 159 if (org_ip_request_cntl == 0) 160 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); 161 } 162 163 void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on) 164 { 165 uint32_t power_gate = power_on ? 0 : 1; 166 uint32_t pwr_status = power_on ? 0 : 2; 167 168 if (hws->ctx->dc->debug.disable_hubp_power_gate) 169 return; 170 171 if (REG(DOMAIN0_PG_CONFIG) == 0) 172 return; 173 174 switch (hubp_inst) { 175 case 0: 176 REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); 177 REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); 178 break; 179 case 1: 180 REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); 181 REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); 182 break; 183 case 2: 184 REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); 185 REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); 186 break; 187 case 3: 188 REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); 189 REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); 190 break; 191 default: 192 BREAK_TO_DEBUGGER(); 193 break; 194 } 195 } 196 197 static bool dcn32_check_no_memory_request_for_cab(struct dc *dc) 198 { 199 int i; 200 201 /* First, check no-memory-request case */ 202 for (i = 0; i < dc->current_state->stream_count; i++) { 203 if ((dc->current_state->stream_status[i].plane_count) && 204 (dc->current_state->streams[i]->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED)) 205 /* Fail eligibility on a visible stream */ 206 break; 207 } 208 209 if (i == dc->current_state->stream_count) 210 return true; 211 212 return false; 213 } 214 215 216 /* This function loops through every surface that needs to be cached in CAB for SS, 217 * and calculates the total number of ways required to store all surfaces (primary, 218 * meta, cursor). 219 */ 220 static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx) 221 { 222 int i; 223 uint32_t num_ways = 0; 224 uint32_t mall_ss_size_bytes = 0; 225 226 mall_ss_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_size_bytes; 227 // TODO add additional logic for PSR active stream exclusion optimization 228 // mall_ss_psr_active_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes; 229 230 // Include cursor size for CAB allocation 231 for (i = 0; i < dc->res_pool->pipe_count; i++) { 232 struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[i]; 233 234 if (!pipe->stream || !pipe->plane_state) 235 continue; 236 237 mall_ss_size_bytes += dcn32_helper_calculate_mall_bytes_for_cursor(dc, pipe, false); 238 } 239 240 // Convert number of cache lines required to number of ways 241 if (dc->debug.force_mall_ss_num_ways > 0) { 242 num_ways = dc->debug.force_mall_ss_num_ways; 243 } else if (dc->res_pool->funcs->calculate_mall_ways_from_bytes) { 244 num_ways = dc->res_pool->funcs->calculate_mall_ways_from_bytes(dc, mall_ss_size_bytes); 245 } else { 246 num_ways = 0; 247 } 248 249 return num_ways; 250 } 251 252 bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable) 253 { 254 union dmub_rb_cmd cmd; 255 uint8_t i; 256 uint32_t ways; 257 int j; 258 bool mall_ss_unsupported = false; 259 struct dc_plane_state *plane = NULL; 260 261 if (!dc->ctx->dmub_srv) 262 return false; 263 264 for (i = 0; i < dc->current_state->stream_count; i++) { 265 /* MALL SS messaging is not supported with PSR at this time */ 266 if (dc->current_state->streams[i] != NULL && 267 dc->current_state->streams[i]->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED && 268 (dc->current_state->stream_count > 1 || (!dc->current_state->streams[i]->dpms_off && 269 dc->current_state->stream_status[i].plane_count > 0))) 270 return false; 271 } 272 273 if (enable) { 274 /* 1. Check no memory request case for CAB. 275 * If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message 276 */ 277 if (dcn32_check_no_memory_request_for_cab(dc)) { 278 /* Enable no-memory-requests case */ 279 memset(&cmd, 0, sizeof(cmd)); 280 cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS; 281 cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ; 282 cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header); 283 284 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); 285 286 return true; 287 } 288 289 /* 2. Check if all surfaces can fit in CAB. 290 * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message 291 * and configure HUBP's to fetch from MALL 292 */ 293 ways = dcn32_calculate_cab_allocation(dc, dc->current_state); 294 295 /* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo, 296 * or TMZ surface, don't try to enter MALL. 297 */ 298 for (i = 0; i < dc->current_state->stream_count; i++) { 299 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) { 300 plane = dc->current_state->stream_status[i].plane_states[j]; 301 302 if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO || 303 plane->address.tmz_surface) { 304 mall_ss_unsupported = true; 305 break; 306 } 307 } 308 if (mall_ss_unsupported) 309 break; 310 } 311 if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) { 312 memset(&cmd, 0, sizeof(cmd)); 313 cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS; 314 cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB; 315 cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header); 316 cmd.cab.cab_alloc_ways = (uint8_t)ways; 317 318 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); 319 DC_LOG_MALL("enable scanout from MALL"); 320 321 return true; 322 } 323 324 DC_LOG_MALL("surface cannot fit in CAB, disabling scanout from MALL\n"); 325 return false; 326 } 327 328 /* Disable CAB */ 329 memset(&cmd, 0, sizeof(cmd)); 330 cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS; 331 cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION; 332 cmd.cab.header.payload_bytes = 333 sizeof(cmd.cab) - sizeof(cmd.cab.header); 334 335 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 336 337 return true; 338 } 339 340 /* Send DMCUB message with SubVP pipe info 341 * - For each pipe in context, populate payload with required SubVP information 342 * if the pipe is using SubVP for MCLK switch 343 * - This function must be called while the DMUB HW lock is acquired by driver 344 */ 345 void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context) 346 { 347 int i; 348 bool enable_subvp = false; 349 350 if (!dc->ctx || !dc->ctx->dmub_srv) 351 return; 352 353 for (i = 0; i < dc->res_pool->pipe_count; i++) { 354 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 355 356 if (pipe_ctx->stream && dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) { 357 // There is at least 1 SubVP pipe, so enable SubVP 358 enable_subvp = true; 359 break; 360 } 361 } 362 dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp); 363 } 364 365 /* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and: 366 * 1. Any full update for any SubVP main pipe 367 * 2. Any immediate flip for any SubVP pipe 368 * 3. Any flip for DRR pipe 369 * 4. If SubVP was previously in use (i.e. in old context) 370 */ 371 void dcn32_subvp_pipe_control_lock(struct dc *dc, 372 struct dc_state *context, 373 bool lock, 374 bool should_lock_all_pipes, 375 struct pipe_ctx *top_pipe_to_program, 376 bool subvp_prev_use) 377 { 378 unsigned int i = 0; 379 bool subvp_immediate_flip = false; 380 bool subvp_in_use = false; 381 struct pipe_ctx *pipe; 382 enum mall_stream_type pipe_mall_type = SUBVP_NONE; 383 384 for (i = 0; i < dc->res_pool->pipe_count; i++) { 385 pipe = &context->res_ctx.pipe_ctx[i]; 386 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); 387 388 if (pipe->stream && pipe->plane_state && pipe_mall_type == SUBVP_MAIN) { 389 subvp_in_use = true; 390 break; 391 } 392 } 393 394 if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) { 395 if (dc_state_get_pipe_subvp_type(context, top_pipe_to_program) == SUBVP_MAIN && 396 top_pipe_to_program->plane_state->flip_immediate) 397 subvp_immediate_flip = true; 398 } 399 400 // Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared. 401 if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) { 402 union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 }; 403 404 if (!lock) { 405 for (i = 0; i < dc->res_pool->pipe_count; i++) { 406 pipe = &context->res_ctx.pipe_ctx[i]; 407 if (pipe->stream && pipe->plane_state && pipe_mall_type == SUBVP_MAIN && 408 should_lock_all_pipes) 409 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK); 410 } 411 } 412 413 hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK; 414 hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER; 415 hw_lock_cmd.bits.lock = lock; 416 hw_lock_cmd.bits.should_release = !lock; 417 dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd); 418 } 419 } 420 421 void dcn32_subvp_pipe_control_lock_fast(union block_sequence_params *params) 422 { 423 struct dc *dc = params->subvp_pipe_control_lock_fast_params.dc; 424 bool lock = params->subvp_pipe_control_lock_fast_params.lock; 425 bool subvp_immediate_flip = params->subvp_pipe_control_lock_fast_params.subvp_immediate_flip; 426 427 // Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared. 428 if (subvp_immediate_flip) { 429 union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 }; 430 431 hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK; 432 hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER; 433 hw_lock_cmd.bits.lock = lock; 434 hw_lock_cmd.bits.should_release = !lock; 435 dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd); 436 } 437 } 438 439 bool dcn32_set_mpc_shaper_3dlut( 440 struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) 441 { 442 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 443 int mpcc_id = pipe_ctx->plane_res.hubp->inst; 444 struct dc *dc = pipe_ctx->stream->ctx->dc; 445 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; 446 bool result = false; 447 448 const struct pwl_params *shaper_lut = NULL; 449 //get the shaper lut params 450 if (stream->func_shaper) { 451 if (stream->func_shaper->type == TF_TYPE_HWPWL) 452 shaper_lut = &stream->func_shaper->pwl; 453 else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) { 454 cm_helper_translate_curve_to_hw_format(stream->ctx, 455 stream->func_shaper, 456 &dpp_base->shaper_params, true); 457 shaper_lut = &dpp_base->shaper_params; 458 } 459 } 460 461 if (stream->lut3d_func && 462 stream->lut3d_func->state.bits.initialized == 1) { 463 464 result = mpc->funcs->program_3dlut(mpc, &stream->lut3d_func->lut_3d, mpcc_id); 465 if (!result) 466 DC_LOG_ERROR("%s: program_3dlut failed\n", __func__); 467 468 result = mpc->funcs->program_shaper(mpc, shaper_lut, mpcc_id); 469 if (!result) 470 DC_LOG_ERROR("%s: program_shaper failed\n", __func__); 471 } 472 473 return result; 474 } 475 476 bool dcn32_set_mcm_luts( 477 struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) 478 { 479 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 480 int mpcc_id = pipe_ctx->plane_res.hubp->inst; 481 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; 482 bool result = true; 483 const struct pwl_params *lut_params = NULL; 484 485 // 1D LUT 486 if (plane_state->blend_tf.type == TF_TYPE_HWPWL) 487 lut_params = &plane_state->blend_tf.pwl; 488 else if (plane_state->blend_tf.type == TF_TYPE_DISTRIBUTED_POINTS) { 489 result = cm3_helper_translate_curve_to_hw_format(&plane_state->blend_tf, 490 &dpp_base->regamma_params, false); 491 if (!result) 492 return result; 493 494 lut_params = &dpp_base->regamma_params; 495 } 496 mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id); 497 lut_params = NULL; 498 499 // Shaper 500 if (plane_state->in_shaper_func.type == TF_TYPE_HWPWL) 501 lut_params = &plane_state->in_shaper_func.pwl; 502 else if (plane_state->in_shaper_func.type == TF_TYPE_DISTRIBUTED_POINTS) { 503 // TODO: dpp_base replace 504 ASSERT(false); 505 cm3_helper_translate_curve_to_hw_format(&plane_state->in_shaper_func, 506 &dpp_base->shaper_params, true); 507 lut_params = &dpp_base->shaper_params; 508 } 509 510 mpc->funcs->program_shaper(mpc, lut_params, mpcc_id); 511 512 // 3D 513 if (plane_state->lut3d_func.state.bits.initialized == 1) 514 result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func.lut_3d, mpcc_id); 515 else 516 result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id); 517 518 return result; 519 } 520 521 bool dcn32_set_input_transfer_func(struct dc *dc, 522 struct pipe_ctx *pipe_ctx, 523 const struct dc_plane_state *plane_state) 524 { 525 struct dce_hwseq *hws = dc->hwseq; 526 struct mpc *mpc = dc->res_pool->mpc; 527 struct dpp *dpp_base = pipe_ctx->plane_res.dpp; 528 529 enum dc_transfer_func_predefined tf; 530 bool result = true; 531 const struct pwl_params *params = NULL; 532 533 if (mpc == NULL || plane_state == NULL) 534 return false; 535 536 tf = TRANSFER_FUNCTION_UNITY; 537 538 if (plane_state->in_transfer_func.type == TF_TYPE_PREDEFINED) 539 tf = plane_state->in_transfer_func.tf; 540 541 dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf); 542 543 if (plane_state->in_transfer_func.type == TF_TYPE_HWPWL) 544 params = &plane_state->in_transfer_func.pwl; 545 else if (plane_state->in_transfer_func.type == TF_TYPE_DISTRIBUTED_POINTS && 546 cm3_helper_translate_curve_to_hw_format(&plane_state->in_transfer_func, 547 &dpp_base->degamma_params, false)) 548 params = &dpp_base->degamma_params; 549 550 dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params); 551 552 if (pipe_ctx->stream_res.opp && 553 pipe_ctx->stream_res.opp->ctx && 554 hws->funcs.set_mcm_luts) 555 result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state); 556 557 return result; 558 } 559 560 bool dcn32_set_output_transfer_func(struct dc *dc, 561 struct pipe_ctx *pipe_ctx, 562 const struct dc_stream_state *stream) 563 { 564 int mpcc_id = pipe_ctx->plane_res.hubp->inst; 565 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; 566 const struct pwl_params *params = NULL; 567 bool ret = false; 568 569 /* program OGAM or 3DLUT only for the top pipe*/ 570 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD)) { 571 /*program shaper and 3dlut in MPC*/ 572 ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream); 573 if (ret == false && mpc->funcs->set_output_gamma) { 574 if (stream->out_transfer_func.type == TF_TYPE_HWPWL) 575 params = &stream->out_transfer_func.pwl; 576 else if (pipe_ctx->stream->out_transfer_func.type == 577 TF_TYPE_DISTRIBUTED_POINTS && 578 cm3_helper_translate_curve_to_hw_format( 579 &stream->out_transfer_func, 580 &mpc->blender_params, false)) 581 params = &mpc->blender_params; 582 /* there are no ROM LUTs in OUTGAM */ 583 if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED) 584 BREAK_TO_DEBUGGER(); 585 } 586 } 587 588 if (mpc->funcs->set_output_gamma) 589 mpc->funcs->set_output_gamma(mpc, mpcc_id, params); 590 591 return ret; 592 } 593 594 /* Program P-State force value according to if pipe is using SubVP / FPO or not: 595 * 1. Reset P-State force on all pipes first 596 * 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB) 597 */ 598 void dcn32_update_force_pstate(struct dc *dc, struct dc_state *context) 599 { 600 int i; 601 602 /* Unforce p-state for each pipe if it is not FPO or SubVP. 603 * For FPO and SubVP, if it's already forced disallow, leave 604 * it as disallow. 605 */ 606 for (i = 0; i < dc->res_pool->pipe_count; i++) { 607 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 608 struct hubp *hubp = pipe->plane_res.hubp; 609 struct dc_stream_status *stream_status = NULL; 610 611 if (pipe->stream) 612 stream_status = dc_state_get_stream_status(context, pipe->stream); 613 614 if (!pipe->stream || !(dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN || 615 (stream_status && stream_status->fpo_in_use))) { 616 if (hubp && hubp->funcs->hubp_update_force_pstate_disallow) 617 hubp->funcs->hubp_update_force_pstate_disallow(hubp, false); 618 if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow) 619 hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, false); 620 } 621 } 622 623 /* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false. 624 */ 625 for (i = 0; i < dc->res_pool->pipe_count; i++) { 626 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 627 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 628 struct hubp *hubp = pipe->plane_res.hubp; 629 struct dc_stream_status *stream_status = NULL; 630 struct dc_stream_status *old_stream_status = NULL; 631 632 /* Today for MED update type we do not call update clocks. However, for FPO 633 * the assumption is that update clocks should be called to disable P-State 634 * switch before any HW programming since FPO in FW and driver are not 635 * synchronized. This causes an issue where on a MED update, an FPO P-State 636 * switch could be taking place, then driver forces P-State disallow in the below 637 * code and prevents FPO from completing the sequence. In this case we add a check 638 * to avoid re-programming (and thus re-setting) the P-State force register by 639 * only reprogramming if the pipe was not previously Subvp or FPO. The assumption 640 * is that the P-State force register should be programmed correctly the first 641 * time SubVP / FPO was enabled, so there's no need to update / reset it if the 642 * pipe config has never exited SubVP / FPO. 643 */ 644 if (pipe->stream) 645 stream_status = dc_state_get_stream_status(context, pipe->stream); 646 if (old_pipe->stream) 647 old_stream_status = dc_state_get_stream_status(dc->current_state, old_pipe->stream); 648 649 if (pipe->stream && (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN || 650 (stream_status && stream_status->fpo_in_use)) && 651 (!old_pipe->stream || (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) != SUBVP_MAIN && 652 (old_stream_status && !old_stream_status->fpo_in_use)))) { 653 if (hubp && hubp->funcs->hubp_update_force_pstate_disallow) 654 hubp->funcs->hubp_update_force_pstate_disallow(hubp, true); 655 if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow) 656 hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, true); 657 } 658 } 659 } 660 661 /* Update MALL_SEL register based on if pipe / plane 662 * is a phantom pipe, main pipe, and if using MALL 663 * for SS. 664 */ 665 void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context) 666 { 667 int i; 668 unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context); 669 bool cache_cursor = false; 670 671 for (i = 0; i < dc->res_pool->pipe_count; i++) { 672 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 673 struct hubp *hubp = pipe->plane_res.hubp; 674 675 if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) { 676 int cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height; 677 678 switch (hubp->curs_attr.color_format) { 679 case CURSOR_MODE_MONO: 680 cursor_size /= 2; 681 break; 682 case CURSOR_MODE_COLOR_1BIT_AND: 683 case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA: 684 case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA: 685 cursor_size *= 4; 686 break; 687 688 case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED: 689 case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED: 690 default: 691 cursor_size *= 8; 692 break; 693 } 694 695 if (cursor_size > 16384) 696 cache_cursor = true; 697 698 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) { 699 hubp->funcs->hubp_update_mall_sel(hubp, 1, false); 700 } else { 701 // MALL not supported with Stereo3D 702 hubp->funcs->hubp_update_mall_sel(hubp, 703 num_ways <= dc->caps.cache_num_ways && 704 pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED && 705 pipe->plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO && 706 !pipe->plane_state->address.tmz_surface ? 2 : 0, 707 cache_cursor); 708 } 709 } 710 } 711 } 712 713 /* Program the sub-viewport pipe configuration after the main / phantom pipes 714 * have been programmed in hardware. 715 * 1. Update force P-State for all the main pipes (disallow P-state) 716 * 2. Update MALL_SEL register 717 * 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes 718 */ 719 void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context) 720 { 721 int i; 722 struct dce_hwseq *hws = dc->hwseq; 723 724 // Don't force p-state disallow -- can't block dummy p-state 725 726 // Update MALL_SEL register for each pipe 727 if (hws && hws->funcs.update_mall_sel) 728 hws->funcs.update_mall_sel(dc, context); 729 730 // Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes 731 for (i = 0; i < dc->res_pool->pipe_count; i++) { 732 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 733 struct hubp *hubp = pipe->plane_res.hubp; 734 735 if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) { 736 /* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases 737 * - need to investigate single pipe MPO + SubVP case to 738 * see if CURSOR_REQ_MODE will be back to 1 for SubVP 739 * when it should be 0 for MPO 740 */ 741 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) 742 hubp->funcs->hubp_prepare_subvp_buffering(hubp, true); 743 } 744 } 745 } 746 747 static void dcn32_initialize_min_clocks(struct dc *dc) 748 { 749 struct dc_clocks *clocks = &dc->current_state->bw_ctx.bw.dcn.clk; 750 751 clocks->dcfclk_deep_sleep_khz = DCN3_2_DCFCLK_DS_INIT_KHZ; 752 clocks->dcfclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz * 1000; 753 clocks->socclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].socclk_mhz * 1000; 754 clocks->dramclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 1000; 755 clocks->dppclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dppclk_mhz * 1000; 756 clocks->ref_dtbclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dtbclk_mhz * 1000; 757 clocks->fclk_p_state_change_support = true; 758 clocks->p_state_change_support = true; 759 if (dc->debug.disable_boot_optimizations) { 760 clocks->dispclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz * 1000; 761 } else { 762 /* Even though DPG_EN = 1 for the connected display, it still requires the 763 * correct timing so we cannot set DISPCLK to min freq or it could cause 764 * audio corruption. Read current DISPCLK from DENTIST and request the same 765 * freq to ensure that the timing is valid and unchanged. 766 */ 767 clocks->dispclk_khz = dc->clk_mgr->funcs->get_dispclk_from_dentist(dc->clk_mgr); 768 } 769 770 dc->clk_mgr->funcs->update_clocks( 771 dc->clk_mgr, 772 dc->current_state, 773 true); 774 } 775 776 void dcn32_init_hw(struct dc *dc) 777 { 778 struct abm **abms = dc->res_pool->multiple_abms; 779 struct dce_hwseq *hws = dc->hwseq; 780 struct dc_bios *dcb = dc->ctx->dc_bios; 781 struct resource_pool *res_pool = dc->res_pool; 782 int i; 783 int edp_num; 784 uint32_t backlight = MAX_BACKLIGHT_LEVEL; 785 uint32_t user_level = MAX_BACKLIGHT_LEVEL; 786 787 if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->init_clocks) 788 dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); 789 790 // Initialize the dccg 791 if (res_pool->dccg->funcs->dccg_init) 792 res_pool->dccg->funcs->dccg_init(res_pool->dccg); 793 794 if (!dcb->funcs->is_accelerated_mode(dcb)) { 795 hws->funcs.bios_golden_init(dc); 796 hws->funcs.disable_vga(dc->hwseq); 797 } 798 799 // Set default OPTC memory power states 800 if (dc->debug.enable_mem_low_power.bits.optc) { 801 // Shutdown when unassigned and light sleep in VBLANK 802 REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1); 803 } 804 805 if (dc->debug.enable_mem_low_power.bits.vga) { 806 // Power down VGA memory 807 REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1); 808 } 809 810 if (dc->ctx->dc_bios->fw_info_valid) { 811 res_pool->ref_clocks.xtalin_clock_inKhz = 812 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency; 813 814 if (res_pool->hubbub) { 815 (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg, 816 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency, 817 &res_pool->ref_clocks.dccg_ref_clock_inKhz); 818 819 (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub, 820 res_pool->ref_clocks.dccg_ref_clock_inKhz, 821 &res_pool->ref_clocks.dchub_ref_clock_inKhz); 822 } else { 823 // Not all ASICs have DCCG sw component 824 res_pool->ref_clocks.dccg_ref_clock_inKhz = 825 res_pool->ref_clocks.xtalin_clock_inKhz; 826 res_pool->ref_clocks.dchub_ref_clock_inKhz = 827 res_pool->ref_clocks.xtalin_clock_inKhz; 828 } 829 } else 830 ASSERT_CRITICAL(false); 831 832 for (i = 0; i < dc->link_count; i++) { 833 /* Power up AND update implementation according to the 834 * required signal (which may be different from the 835 * default signal on connector). 836 */ 837 struct dc_link *link = dc->links[i]; 838 839 link->link_enc->funcs->hw_init(link->link_enc); 840 841 /* Check for enabled DIG to identify enabled display */ 842 if (link->link_enc->funcs->is_dig_enabled && 843 link->link_enc->funcs->is_dig_enabled(link->link_enc)) { 844 link->link_status.link_active = true; 845 link->phy_state.symclk_state = SYMCLK_ON_TX_ON; 846 if (link->link_enc->funcs->fec_is_active && 847 link->link_enc->funcs->fec_is_active(link->link_enc)) 848 link->fec_state = dc_link_fec_enabled; 849 } 850 } 851 852 /* enable_power_gating_plane before dsc_pg_control because 853 * FORCEON = 1 with hw default value on bootup, resume from s3 854 */ 855 if (hws->funcs.enable_power_gating_plane) 856 hws->funcs.enable_power_gating_plane(dc->hwseq, true); 857 858 /* we want to turn off all dp displays before doing detection */ 859 dc->link_srv->blank_all_dp_displays(dc); 860 861 /* If taking control over from VBIOS, we may want to optimize our first 862 * mode set, so we need to skip powering down pipes until we know which 863 * pipes we want to use. 864 * Otherwise, if taking control is not possible, we need to power 865 * everything down. 866 */ 867 if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) { 868 /* Disable boot optimizations means power down everything including PHY, DIG, 869 * and OTG (i.e. the boot is not optimized because we do a full power down). 870 */ 871 if (dc->hwss.enable_accelerated_mode && dc->debug.disable_boot_optimizations) 872 dc->hwss.enable_accelerated_mode(dc, dc->current_state); 873 else 874 hws->funcs.init_pipes(dc, dc->current_state); 875 876 if (dc->res_pool->hubbub->funcs->allow_self_refresh_control) 877 dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, 878 !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter); 879 880 dcn32_initialize_min_clocks(dc); 881 882 /* On HW init, allow idle optimizations after pipes have been turned off. 883 * 884 * In certain D3 cases (i.e. BOCO / BOMACO) it's possible that hardware state 885 * is reset (i.e. not in idle at the time hw init is called), but software state 886 * still has idle_optimizations = true, so we must disable idle optimizations first 887 * (i.e. set false), then re-enable (set true). 888 */ 889 dc_allow_idle_optimizations(dc, false); 890 dc_allow_idle_optimizations(dc, true); 891 } 892 893 /* In headless boot cases, DIG may be turned 894 * on which causes HW/SW discrepancies. 895 * To avoid this, power down hardware on boot 896 * if DIG is turned on and seamless boot not enabled 897 */ 898 if (!dc->config.seamless_boot_edp_requested) { 899 struct dc_link *edp_links[MAX_NUM_EDP]; 900 struct dc_link *edp_link; 901 902 dc_get_edp_links(dc, edp_links, &edp_num); 903 if (edp_num) { 904 for (i = 0; i < edp_num; i++) { 905 edp_link = edp_links[i]; 906 if (edp_link->link_enc->funcs->is_dig_enabled && 907 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) && 908 dc->hwss.edp_backlight_control && 909 hws->funcs.power_down && 910 dc->hwss.edp_power_control) { 911 dc->hwss.edp_backlight_control(edp_link, false); 912 hws->funcs.power_down(dc); 913 dc->hwss.edp_power_control(edp_link, false); 914 } 915 } 916 } else { 917 for (i = 0; i < dc->link_count; i++) { 918 struct dc_link *link = dc->links[i]; 919 920 if (link->link_enc->funcs->is_dig_enabled && 921 link->link_enc->funcs->is_dig_enabled(link->link_enc) && 922 hws->funcs.power_down) { 923 hws->funcs.power_down(dc); 924 break; 925 } 926 927 } 928 } 929 } 930 931 for (i = 0; i < res_pool->audio_count; i++) { 932 struct audio *audio = res_pool->audios[i]; 933 934 audio->funcs->hw_init(audio); 935 } 936 937 for (i = 0; i < dc->link_count; i++) { 938 struct dc_link *link = dc->links[i]; 939 940 if (link->panel_cntl) { 941 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl); 942 user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL; 943 } 944 } 945 946 for (i = 0; i < dc->res_pool->pipe_count; i++) { 947 if (abms[i] != NULL && abms[i]->funcs != NULL) 948 abms[i]->funcs->abm_init(abms[i], backlight, user_level); 949 } 950 951 /* power AFMT HDMI memory TODO: may move to dis/en output save power*/ 952 REG_WRITE(DIO_MEM_PWR_CTRL, 0); 953 954 if (!dc->debug.disable_clock_gate) { 955 /* enable all DCN clock gating */ 956 REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0); 957 958 REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0); 959 960 REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); 961 } 962 963 if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks) 964 dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub); 965 966 if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->notify_wm_ranges) 967 dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr); 968 969 if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->set_hard_max_memclk && 970 !dc->clk_mgr->dc_mode_softmax_enabled) 971 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); 972 973 if (dc->res_pool->hubbub->funcs->force_pstate_change_control) 974 dc->res_pool->hubbub->funcs->force_pstate_change_control( 975 dc->res_pool->hubbub, false, false); 976 977 if (dc->res_pool->hubbub->funcs->init_crb) 978 dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub); 979 980 if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0) 981 dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc); 982 983 // Get DMCUB capabilities 984 if (dc->ctx->dmub_srv) { 985 dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv); 986 dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr; 987 dc->caps.dmub_caps.subvp_psr = dc->ctx->dmub_srv->dmub->feature_caps.subvp_psr_support; 988 dc->caps.dmub_caps.gecc_enable = dc->ctx->dmub_srv->dmub->feature_caps.gecc_enable; 989 dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver; 990 dc->caps.dmub_caps.aux_backlight_support = dc->ctx->dmub_srv->dmub->feature_caps.abm_aux_backlight_support; 991 992 /* for DCN401 testing only */ 993 dc->caps.dmub_caps.fams_ver = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver; 994 if (dc->caps.dmub_caps.fams_ver == 2) { 995 /* FAMS2 is enabled */ 996 dc->debug.fams2_config.bits.enable &= true; 997 } else if (dc->ctx->dmub_srv->dmub->fw_version < 998 DMUB_FW_VERSION(7, 0, 35)) { 999 /* FAMS2 is disabled */ 1000 dc->debug.fams2_config.bits.enable = false; 1001 if (dc->debug.using_dml2 && dc->res_pool->funcs->update_bw_bounding_box) { 1002 /* update bounding box if FAMS2 disabled */ 1003 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params); 1004 } 1005 dc->debug.force_disable_subvp = true; 1006 dc->debug.disable_fpo_optimizations = true; 1007 } 1008 } 1009 } 1010 1011 void dcn32_update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable) 1012 { 1013 struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc; 1014 struct dc *dc = pipe_ctx->stream->ctx->dc; 1015 struct dc_stream_state *stream = pipe_ctx->stream; 1016 struct pipe_ctx *odm_pipe; 1017 int opp_cnt = 1; 1018 struct dccg *dccg = dc->res_pool->dccg; 1019 /* It has been found that when DSCCLK is lower than 16Mhz, we will get DCN 1020 * register access hung. When DSCCLk is based on refclk, DSCCLk is always a 1021 * fixed value higher than 16Mhz so the issue doesn't occur. When DSCCLK is 1022 * generated by DTO, DSCCLK would be based on 1/3 dispclk. For small timings 1023 * with DSC such as 480p60Hz, the dispclk could be low enough to trigger 1024 * this problem. We are implementing a workaround here to keep using dscclk 1025 * based on fixed value refclk when timing is smaller than 3x16Mhz (i.e 1026 * 48Mhz) pixel clock to avoid hitting this problem. 1027 */ 1028 bool should_use_dto_dscclk = (dccg->funcs->set_dto_dscclk != NULL) && 1029 stream->timing.pix_clk_100hz > 480000; 1030 1031 ASSERT(dsc); 1032 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1033 opp_cnt++; 1034 1035 if (enable) { 1036 struct dsc_config dsc_cfg; 1037 struct dsc_optc_config dsc_optc_cfg = {0}; 1038 enum optc_dsc_mode optc_dsc_mode; 1039 struct dcn_dsc_state dsc_state = {0}; 1040 1041 if (!dsc) { 1042 DC_LOG_DSC("DSC is NULL for tg instance %d:", pipe_ctx->stream_res.tg->inst); 1043 return; 1044 } 1045 1046 if (dsc->funcs->dsc_read_state) { 1047 dsc->funcs->dsc_read_state(dsc, &dsc_state); 1048 if (!dsc_state.dsc_fw_en) { 1049 DC_LOG_DSC("DSC has been disabled for tg instance %d:", pipe_ctx->stream_res.tg->inst); 1050 return; 1051 } 1052 } 1053 1054 /* Enable DSC hw block */ 1055 dsc_cfg.pic_width = (stream->timing.h_addressable + pipe_ctx->hblank_borrow + 1056 stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt; 1057 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom; 1058 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; 1059 dsc_cfg.color_depth = stream->timing.display_color_depth; 1060 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; 1061 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; 1062 ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0); 1063 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; 1064 1065 if (should_use_dto_dscclk) 1066 dccg->funcs->set_dto_dscclk(dccg, dsc->inst); 1067 dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg); 1068 dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst); 1069 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 1070 struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc; 1071 1072 ASSERT(odm_dsc); 1073 if (should_use_dto_dscclk) 1074 dccg->funcs->set_dto_dscclk(dccg, odm_dsc->inst); 1075 odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg); 1076 odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst); 1077 } 1078 optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED; 1079 /* Enable DSC in OPTC */ 1080 DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst); 1081 pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg, 1082 optc_dsc_mode, 1083 dsc_optc_cfg.bytes_per_pixel, 1084 dsc_optc_cfg.slice_width); 1085 } else { 1086 /* disable DSC in OPTC */ 1087 pipe_ctx->stream_res.tg->funcs->set_dsc_config( 1088 pipe_ctx->stream_res.tg, 1089 OPTC_DSC_DISABLED, 0, 0); 1090 1091 /* only disconnect DSC block, DSC is disabled when OPP head pipe is reset */ 1092 dsc->funcs->dsc_disconnect(pipe_ctx->stream_res.dsc); 1093 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 1094 ASSERT(odm_pipe->stream_res.dsc); 1095 odm_pipe->stream_res.dsc->funcs->dsc_disconnect(odm_pipe->stream_res.dsc); 1096 } 1097 } 1098 } 1099 1100 /* 1101 * Given any pipe_ctx, return the total ODM combine factor, and optionally return 1102 * the OPPids which are used 1103 * */ 1104 static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances) 1105 { 1106 unsigned int opp_count = 1; 1107 struct pipe_ctx *odm_pipe; 1108 1109 /* First get to the top pipe */ 1110 for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe) 1111 ; 1112 1113 /* First pipe is always used */ 1114 if (opp_instances) 1115 opp_instances[0] = odm_pipe->stream_res.opp->inst; 1116 1117 /* Find and count odm pipes, if any */ 1118 for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 1119 if (opp_instances) 1120 opp_instances[opp_count] = odm_pipe->stream_res.opp->inst; 1121 opp_count++; 1122 } 1123 1124 return opp_count; 1125 } 1126 1127 void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) 1128 { 1129 struct pipe_ctx *odm_pipe; 1130 int opp_cnt = 0; 1131 int opp_inst[MAX_PIPES] = {0}; 1132 int odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, false); 1133 int last_odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, true); 1134 1135 opp_cnt = get_odm_config(pipe_ctx, opp_inst); 1136 1137 if (opp_cnt > 1) 1138 pipe_ctx->stream_res.tg->funcs->set_odm_combine( 1139 pipe_ctx->stream_res.tg, 1140 opp_inst, opp_cnt, 1141 odm_slice_width, last_odm_slice_width); 1142 else 1143 pipe_ctx->stream_res.tg->funcs->set_odm_bypass( 1144 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); 1145 1146 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 1147 odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( 1148 odm_pipe->stream_res.opp, 1149 true); 1150 odm_pipe->stream_res.opp->funcs->opp_program_left_edge_extra_pixel( 1151 odm_pipe->stream_res.opp, 1152 pipe_ctx->stream->timing.pixel_encoding, 1153 resource_is_pipe_type(odm_pipe, OTG_MASTER)); 1154 } 1155 1156 if (pipe_ctx->stream_res.dsc) { 1157 struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx]; 1158 1159 dcn32_update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC); 1160 1161 /* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */ 1162 if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe && 1163 current_pipe_ctx->next_odm_pipe->stream_res.dsc) { 1164 struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc; 1165 1166 /* disconnect DSC block from stream */ 1167 dsc->funcs->dsc_disconnect(dsc); 1168 } 1169 } 1170 1171 if (!resource_is_pipe_type(pipe_ctx, DPP_PIPE)) 1172 /* 1173 * blank pattern is generated by OPP, reprogram blank pattern 1174 * due to OPP count change 1175 */ 1176 dc->hwseq->funcs.blank_pixel_data(dc, pipe_ctx, true); 1177 } 1178 1179 unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div) 1180 { 1181 struct dc_stream_state *stream = pipe_ctx->stream; 1182 unsigned int odm_combine_factor = 0; 1183 bool two_pix_per_container = false; 1184 1185 two_pix_per_container = pipe_ctx->stream_res.tg->funcs->is_two_pixels_per_container(&stream->timing); 1186 odm_combine_factor = get_odm_config(pipe_ctx, NULL); 1187 1188 if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { 1189 *k1_div = PIXEL_RATE_DIV_BY_1; 1190 *k2_div = PIXEL_RATE_DIV_BY_1; 1191 } else if (dc_is_hdmi_tmds_signal(stream->signal) || dc_is_dvi_signal(stream->signal)) { 1192 *k1_div = PIXEL_RATE_DIV_BY_1; 1193 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) 1194 *k2_div = PIXEL_RATE_DIV_BY_2; 1195 else 1196 *k2_div = PIXEL_RATE_DIV_BY_4; 1197 } else if (dc_is_dp_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) { 1198 if (two_pix_per_container) { 1199 *k1_div = PIXEL_RATE_DIV_BY_1; 1200 *k2_div = PIXEL_RATE_DIV_BY_2; 1201 } else { 1202 *k1_div = PIXEL_RATE_DIV_BY_1; 1203 *k2_div = PIXEL_RATE_DIV_BY_4; 1204 if ((odm_combine_factor == 2) || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) 1205 *k2_div = PIXEL_RATE_DIV_BY_2; 1206 } 1207 } 1208 1209 if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA)) 1210 ASSERT(false); 1211 1212 return odm_combine_factor; 1213 } 1214 1215 void dcn32_calculate_pix_rate_divider( 1216 struct dc *dc, 1217 struct dc_state *context, 1218 const struct dc_stream_state *stream) 1219 { 1220 struct dce_hwseq *hws = dc->hwseq; 1221 struct pipe_ctx *pipe_ctx = NULL; 1222 unsigned int k1_div = PIXEL_RATE_DIV_NA; 1223 unsigned int k2_div = PIXEL_RATE_DIV_NA; 1224 1225 pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream); 1226 1227 if (pipe_ctx) { 1228 1229 if (hws->funcs.calculate_dccg_k1_k2_values) 1230 hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div); 1231 1232 pipe_ctx->pixel_rate_divider.div_factor1 = k1_div; 1233 pipe_ctx->pixel_rate_divider.div_factor2 = k2_div; 1234 } 1235 } 1236 1237 void dcn32_resync_fifo_dccg_dio(struct dce_hwseq *hws, struct dc *dc, struct dc_state *context, unsigned int current_pipe_idx) 1238 { 1239 unsigned int i; 1240 struct pipe_ctx *pipe = NULL; 1241 bool otg_disabled[MAX_PIPES] = {false}; 1242 struct dc_state *dc_state = NULL; 1243 1244 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1245 if (i <= current_pipe_idx) { 1246 pipe = &context->res_ctx.pipe_ctx[i]; 1247 dc_state = context; 1248 } else { 1249 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1250 dc_state = dc->current_state; 1251 } 1252 1253 if (!resource_is_pipe_type(pipe, OTG_MASTER)) 1254 continue; 1255 1256 if ((pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal)) 1257 && dc_state_get_pipe_subvp_type(dc_state, pipe) != SUBVP_PHANTOM) { 1258 pipe->stream_res.tg->funcs->disable_crtc(pipe->stream_res.tg); 1259 reset_sync_context_for_pipe(dc, context, i); 1260 otg_disabled[i] = true; 1261 } 1262 } 1263 1264 hws->ctx->dc->res_pool->dccg->funcs->trigger_dio_fifo_resync(hws->ctx->dc->res_pool->dccg); 1265 1266 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1267 if (i <= current_pipe_idx) 1268 pipe = &context->res_ctx.pipe_ctx[i]; 1269 else 1270 pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1271 1272 if (otg_disabled[i]) { 1273 int opp_inst[MAX_PIPES] = { pipe->stream_res.opp->inst }; 1274 int opp_cnt = 1; 1275 int last_odm_slice_width = resource_get_odm_slice_dst_width(pipe, true); 1276 int odm_slice_width = resource_get_odm_slice_dst_width(pipe, false); 1277 struct pipe_ctx *odm_pipe; 1278 1279 for (odm_pipe = pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { 1280 opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; 1281 opp_cnt++; 1282 } 1283 if (opp_cnt > 1) 1284 pipe->stream_res.tg->funcs->set_odm_combine( 1285 pipe->stream_res.tg, 1286 opp_inst, opp_cnt, 1287 odm_slice_width, 1288 last_odm_slice_width); 1289 pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg); 1290 } 1291 } 1292 1293 dc_trigger_sync(dc, dc->current_state); 1294 } 1295 1296 void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx, 1297 struct dc_link_settings *link_settings) 1298 { 1299 struct encoder_unblank_param params = {0}; 1300 struct dc_stream_state *stream = pipe_ctx->stream; 1301 struct dc_link *link = stream->link; 1302 struct dce_hwseq *hws = link->dc->hwseq; 1303 struct pipe_ctx *odm_pipe; 1304 1305 params.opp_cnt = 1; 1306 params.pix_per_cycle = pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle; 1307 1308 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) 1309 params.opp_cnt++; 1310 1311 /* only 3 items below are used by unblank */ 1312 params.timing = pipe_ctx->stream->timing; 1313 1314 params.link_settings.link_rate = link_settings->link_rate; 1315 1316 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { 1317 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */ 1318 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank( 1319 pipe_ctx->stream_res.hpo_dp_stream_enc, 1320 pipe_ctx->stream_res.tg->inst); 1321 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) { 1322 if (pipe_ctx->stream_res.tg->funcs->is_two_pixels_per_container(&stream->timing) || 1323 params.opp_cnt > 1) { 1324 params.timing.pix_clk_100hz /= 2; 1325 params.pix_per_cycle = 2; 1326 } 1327 if (pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine) 1328 pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine( 1329 pipe_ctx->stream_res.stream_enc, params.pix_per_cycle > 1); 1330 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms); 1331 } 1332 1333 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) 1334 hws->funcs.edp_backlight_control(link, true); 1335 } 1336 1337 bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx) 1338 { 1339 struct dc *dc = pipe_ctx->stream->ctx->dc; 1340 1341 if (!is_h_timing_divisible_by_2(pipe_ctx->stream)) 1342 return false; 1343 1344 if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && 1345 dc->debug.enable_dp_dig_pixel_rate_div_policy) 1346 return true; 1347 return false; 1348 } 1349 1350 static void apply_symclk_on_tx_off_wa(struct dc_link *link) 1351 { 1352 /* There are use cases where SYMCLK is referenced by OTG. For instance 1353 * for TMDS signal, OTG relies SYMCLK even if TX video output is off. 1354 * However current link interface will power off PHY when disabling link 1355 * output. This will turn off SYMCLK generated by PHY. The workaround is 1356 * to identify such case where SYMCLK is still in use by OTG when we 1357 * power off PHY. When this is detected, we will temporarily power PHY 1358 * back on and move PHY's SYMCLK state to SYMCLK_ON_TX_OFF by calling 1359 * program_pix_clk interface. When OTG is disabled, we will then power 1360 * off PHY by calling disable link output again. 1361 * 1362 * In future dcn generations, we plan to rework transmitter control 1363 * interface so that we could have an option to set SYMCLK ON TX OFF 1364 * state in one step without this workaround 1365 */ 1366 1367 struct dc *dc = link->ctx->dc; 1368 struct pipe_ctx *pipe_ctx = NULL; 1369 uint8_t i; 1370 1371 if (link->phy_state.symclk_ref_cnts.otg > 0) { 1372 for (i = 0; i < MAX_PIPES; i++) { 1373 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; 1374 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) && pipe_ctx->stream->link == link) { 1375 pipe_ctx->clock_source->funcs->program_pix_clk( 1376 pipe_ctx->clock_source, 1377 &pipe_ctx->stream_res.pix_clk_params, 1378 dc->link_srv->dp_get_encoding_format( 1379 &pipe_ctx->link_config.dp_link_settings), 1380 &pipe_ctx->pll_settings); 1381 link->phy_state.symclk_state = SYMCLK_ON_TX_OFF; 1382 break; 1383 } 1384 } 1385 } 1386 } 1387 1388 void dcn32_disable_link_output(struct dc_link *link, 1389 const struct link_resource *link_res, 1390 enum signal_type signal) 1391 { 1392 struct dc *dc = link->ctx->dc; 1393 const struct link_hwss *link_hwss = get_link_hwss(link, link_res); 1394 struct dmcu *dmcu = dc->res_pool->dmcu; 1395 1396 if (signal == SIGNAL_TYPE_EDP && 1397 link->dc->hwss.edp_backlight_control && 1398 !link->skip_implict_edp_power_control) 1399 link->dc->hwss.edp_backlight_control(link, false); 1400 else if (dmcu != NULL && dmcu->funcs->lock_phy) 1401 dmcu->funcs->lock_phy(dmcu); 1402 1403 link_hwss->disable_link_output(link, link_res, signal); 1404 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF; 1405 /* 1406 * Add the logic to extract BOTH power up and power down sequences 1407 * from enable/disable link output and only call edp panel control 1408 * in enable_link_dp and disable_link_dp once. 1409 */ 1410 if (dmcu != NULL && dmcu->funcs->unlock_phy) 1411 dmcu->funcs->unlock_phy(dmcu); 1412 1413 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY); 1414 1415 apply_symclk_on_tx_off_wa(link); 1416 } 1417 1418 /* For SubVP the main pipe can have a viewport position change 1419 * without a full update. In this case we must also update the 1420 * viewport positions for the phantom pipe accordingly. 1421 */ 1422 void dcn32_update_phantom_vp_position(struct dc *dc, 1423 struct dc_state *context, 1424 struct pipe_ctx *phantom_pipe) 1425 { 1426 uint32_t i; 1427 struct dc_plane_state *phantom_plane = phantom_pipe->plane_state; 1428 1429 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1430 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1431 1432 if (pipe->stream && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN && 1433 dc_state_get_paired_subvp_stream(context, pipe->stream) == phantom_pipe->stream) { 1434 if (pipe->plane_state && pipe->plane_state->update_flags.bits.position_change) { 1435 1436 phantom_plane->src_rect.x = pipe->plane_state->src_rect.x; 1437 phantom_plane->src_rect.y = pipe->plane_state->src_rect.y; 1438 phantom_plane->clip_rect.x = pipe->plane_state->clip_rect.x; 1439 phantom_plane->dst_rect.x = pipe->plane_state->dst_rect.x; 1440 phantom_plane->dst_rect.y = pipe->plane_state->dst_rect.y; 1441 1442 phantom_pipe->plane_state->update_flags.bits.position_change = 1; 1443 resource_build_scaling_params(phantom_pipe); 1444 return; 1445 } 1446 } 1447 } 1448 } 1449 1450 /* Treat the phantom pipe as if it needs to be fully enabled. 1451 * If the pipe was previously in use but not phantom, it would 1452 * have been disabled earlier in the sequence so we need to run 1453 * the full enable sequence. 1454 */ 1455 void dcn32_apply_update_flags_for_phantom(struct pipe_ctx *phantom_pipe) 1456 { 1457 phantom_pipe->update_flags.raw = 0; 1458 if (resource_is_pipe_type(phantom_pipe, DPP_PIPE)) { 1459 phantom_pipe->update_flags.bits.enable = 1; 1460 phantom_pipe->update_flags.bits.mpcc = 1; 1461 phantom_pipe->update_flags.bits.dppclk = 1; 1462 phantom_pipe->update_flags.bits.hubp_interdependent = 1; 1463 phantom_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1; 1464 phantom_pipe->update_flags.bits.gamut_remap = 1; 1465 phantom_pipe->update_flags.bits.scaler = 1; 1466 phantom_pipe->update_flags.bits.viewport = 1; 1467 phantom_pipe->update_flags.bits.det_size = 1; 1468 if (resource_is_pipe_type(phantom_pipe, OTG_MASTER)) { 1469 phantom_pipe->update_flags.bits.odm = 1; 1470 phantom_pipe->update_flags.bits.global_sync = 1; 1471 } 1472 } 1473 } 1474 1475 bool dcn32_dsc_pg_status( 1476 struct dce_hwseq *hws, 1477 unsigned int dsc_inst) 1478 { 1479 uint32_t pwr_status = 0; 1480 1481 switch (dsc_inst) { 1482 case 0: /* DSC0 */ 1483 REG_GET(DOMAIN16_PG_STATUS, 1484 DOMAIN_PGFSM_PWR_STATUS, &pwr_status); 1485 break; 1486 case 1: /* DSC1 */ 1487 1488 REG_GET(DOMAIN17_PG_STATUS, 1489 DOMAIN_PGFSM_PWR_STATUS, &pwr_status); 1490 break; 1491 case 2: /* DSC2 */ 1492 REG_GET(DOMAIN18_PG_STATUS, 1493 DOMAIN_PGFSM_PWR_STATUS, &pwr_status); 1494 break; 1495 case 3: /* DSC3 */ 1496 REG_GET(DOMAIN19_PG_STATUS, 1497 DOMAIN_PGFSM_PWR_STATUS, &pwr_status); 1498 break; 1499 default: 1500 BREAK_TO_DEBUGGER(); 1501 break; 1502 } 1503 1504 return pwr_status == 0; 1505 } 1506 1507 void dcn32_update_dsc_pg(struct dc *dc, 1508 struct dc_state *context, 1509 bool safe_to_disable) 1510 { 1511 struct dce_hwseq *hws = dc->hwseq; 1512 int i; 1513 1514 for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) { 1515 struct display_stream_compressor *dsc = dc->res_pool->dscs[i]; 1516 bool is_dsc_ungated = hws->funcs.dsc_pg_status(hws, dsc->inst); 1517 1518 if (context->res_ctx.is_dsc_acquired[i]) { 1519 if (!is_dsc_ungated) { 1520 hws->funcs.dsc_pg_control(hws, dsc->inst, true); 1521 } 1522 } else if (safe_to_disable) { 1523 if (is_dsc_ungated) { 1524 hws->funcs.dsc_pg_control(hws, dsc->inst, false); 1525 } 1526 } 1527 } 1528 } 1529 1530 void dcn32_disable_phantom_streams(struct dc *dc, struct dc_state *context) 1531 { 1532 struct dce_hwseq *hws = dc->hwseq; 1533 int i; 1534 1535 for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) { 1536 struct pipe_ctx *pipe_ctx_old = 1537 &dc->current_state->res_ctx.pipe_ctx[i]; 1538 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1539 1540 if (!pipe_ctx_old->stream) 1541 continue; 1542 1543 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe_ctx_old) != SUBVP_PHANTOM) 1544 continue; 1545 1546 if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe) 1547 continue; 1548 1549 if (!pipe_ctx->stream || pipe_need_reprogram(pipe_ctx_old, pipe_ctx) || 1550 (pipe_ctx->stream && dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM)) { 1551 struct clock_source *old_clk = pipe_ctx_old->clock_source; 1552 1553 if (hws->funcs.reset_back_end_for_pipe) 1554 hws->funcs.reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state); 1555 if (hws->funcs.enable_stream_gating) 1556 hws->funcs.enable_stream_gating(dc, pipe_ctx_old); 1557 if (old_clk) 1558 old_clk->funcs->cs_power_down(old_clk); 1559 } 1560 } 1561 } 1562 1563 void dcn32_enable_phantom_streams(struct dc *dc, struct dc_state *context) 1564 { 1565 unsigned int i; 1566 enum dc_status status = DC_OK; 1567 struct dce_hwseq *hws = dc->hwseq; 1568 1569 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1570 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1571 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1572 1573 /* If an active, non-phantom pipe is being transitioned into a phantom 1574 * pipe, wait for the double buffer update to complete first before we do 1575 * ANY phantom pipe programming. 1576 */ 1577 if (pipe->stream && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM && 1578 old_pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) != SUBVP_PHANTOM) { 1579 old_pipe->stream_res.tg->funcs->wait_for_state( 1580 old_pipe->stream_res.tg, 1581 CRTC_STATE_VBLANK); 1582 old_pipe->stream_res.tg->funcs->wait_for_state( 1583 old_pipe->stream_res.tg, 1584 CRTC_STATE_VACTIVE); 1585 } 1586 } 1587 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1588 struct pipe_ctx *pipe_ctx_old = 1589 &dc->current_state->res_ctx.pipe_ctx[i]; 1590 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; 1591 1592 if (pipe_ctx->stream == NULL) 1593 continue; 1594 1595 if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) 1596 continue; 1597 1598 if (pipe_ctx->stream == pipe_ctx_old->stream && 1599 pipe_ctx->stream->link->link_state_valid) { 1600 continue; 1601 } 1602 1603 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) 1604 continue; 1605 1606 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe) 1607 continue; 1608 1609 if (hws->funcs.apply_single_controller_ctx_to_hw) 1610 status = hws->funcs.apply_single_controller_ctx_to_hw( 1611 pipe_ctx, 1612 context, 1613 dc); 1614 1615 ASSERT(status == DC_OK); 1616 1617 #ifdef CONFIG_DRM_AMD_DC_FP 1618 if (hws->funcs.resync_fifo_dccg_dio) 1619 hws->funcs.resync_fifo_dccg_dio(hws, dc, context, i); 1620 #endif 1621 } 1622 } 1623 1624 /* Blank pixel data during initialization */ 1625 void dcn32_init_blank( 1626 struct dc *dc, 1627 struct timing_generator *tg) 1628 { 1629 struct dce_hwseq *hws = dc->hwseq; 1630 enum dc_color_space color_space; 1631 struct tg_color black_color = {0}; 1632 struct output_pixel_processor *opp = NULL; 1633 struct output_pixel_processor *bottom_opp = NULL; 1634 uint32_t num_opps, opp_id_src0, opp_id_src1; 1635 uint32_t otg_active_width = 0, otg_active_height = 0; 1636 uint32_t i; 1637 1638 /* program opp dpg blank color */ 1639 color_space = COLOR_SPACE_SRGB; 1640 color_space_to_black_color(dc, color_space, &black_color); 1641 1642 /* get the OTG active size */ 1643 tg->funcs->get_otg_active_size(tg, 1644 &otg_active_width, 1645 &otg_active_height); 1646 1647 /* get the OPTC source */ 1648 tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); 1649 1650 if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) { 1651 ASSERT(false); 1652 return; 1653 } 1654 1655 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { 1656 if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) { 1657 opp = dc->res_pool->opps[i]; 1658 break; 1659 } 1660 } 1661 1662 if (num_opps == 2) { 1663 otg_active_width = otg_active_width / 2; 1664 1665 if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) { 1666 ASSERT(false); 1667 return; 1668 } 1669 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { 1670 if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src1) { 1671 bottom_opp = dc->res_pool->opps[i]; 1672 break; 1673 } 1674 } 1675 } 1676 1677 if (opp && opp->funcs->opp_set_disp_pattern_generator) 1678 opp->funcs->opp_set_disp_pattern_generator( 1679 opp, 1680 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, 1681 CONTROLLER_DP_COLOR_SPACE_UDEFINED, 1682 COLOR_DEPTH_UNDEFINED, 1683 &black_color, 1684 otg_active_width, 1685 otg_active_height, 1686 0); 1687 1688 if (num_opps == 2) { 1689 if (bottom_opp && bottom_opp->funcs->opp_set_disp_pattern_generator) { 1690 bottom_opp->funcs->opp_set_disp_pattern_generator( 1691 bottom_opp, 1692 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, 1693 CONTROLLER_DP_COLOR_SPACE_UDEFINED, 1694 COLOR_DEPTH_UNDEFINED, 1695 &black_color, 1696 otg_active_width, 1697 otg_active_height, 1698 0); 1699 hws->funcs.wait_for_blank_complete(bottom_opp); 1700 } 1701 } 1702 1703 if (opp) 1704 hws->funcs.wait_for_blank_complete(opp); 1705 } 1706 1707 /* phantom stream id's can change often, but can be identical between contexts. 1708 * This function checks for the condition the streams are identical to avoid 1709 * redundant pipe transitions. 1710 */ 1711 static bool is_subvp_phantom_topology_transition_seamless( 1712 const struct dc_state *cur_ctx, 1713 const struct dc_state *new_ctx, 1714 const struct pipe_ctx *cur_pipe, 1715 const struct pipe_ctx *new_pipe) 1716 { 1717 enum mall_stream_type cur_pipe_type = dc_state_get_pipe_subvp_type(cur_ctx, cur_pipe); 1718 enum mall_stream_type new_pipe_type = dc_state_get_pipe_subvp_type(new_ctx, new_pipe); 1719 1720 const struct dc_stream_state *cur_paired_stream = dc_state_get_paired_subvp_stream(cur_ctx, cur_pipe->stream); 1721 const struct dc_stream_state *new_paired_stream = dc_state_get_paired_subvp_stream(new_ctx, new_pipe->stream); 1722 1723 return cur_pipe_type == SUBVP_PHANTOM && 1724 cur_pipe_type == new_pipe_type && 1725 cur_paired_stream && new_paired_stream && 1726 cur_paired_stream->stream_id == new_paired_stream->stream_id; 1727 } 1728 1729 bool dcn32_is_pipe_topology_transition_seamless(struct dc *dc, 1730 const struct dc_state *cur_ctx, 1731 const struct dc_state *new_ctx) 1732 { 1733 int i; 1734 const struct pipe_ctx *cur_pipe, *new_pipe; 1735 bool is_seamless = true; 1736 1737 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1738 cur_pipe = &cur_ctx->res_ctx.pipe_ctx[i]; 1739 new_pipe = &new_ctx->res_ctx.pipe_ctx[i]; 1740 1741 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) || 1742 resource_is_pipe_type(new_pipe, FREE_PIPE)) 1743 /* adding or removing free pipes is always seamless */ 1744 continue; 1745 else if (resource_is_pipe_type(cur_pipe, OTG_MASTER)) { 1746 if (resource_is_pipe_type(new_pipe, OTG_MASTER)) 1747 if (cur_pipe->stream->stream_id == new_pipe->stream->stream_id || 1748 is_subvp_phantom_topology_transition_seamless(cur_ctx, new_ctx, cur_pipe, new_pipe)) 1749 /* OTG master with the same stream is seamless */ 1750 continue; 1751 } else if (resource_is_pipe_type(cur_pipe, OPP_HEAD)) { 1752 if (resource_is_pipe_type(new_pipe, OPP_HEAD)) { 1753 if (cur_pipe->stream_res.tg == new_pipe->stream_res.tg) 1754 /* 1755 * OPP heads sharing the same timing 1756 * generator is seamless 1757 */ 1758 continue; 1759 } 1760 } else if (resource_is_pipe_type(cur_pipe, DPP_PIPE)) { 1761 if (resource_is_pipe_type(new_pipe, DPP_PIPE)) { 1762 if (cur_pipe->stream_res.opp == new_pipe->stream_res.opp) 1763 /* 1764 * DPP pipes sharing the same OPP head is 1765 * seamless 1766 */ 1767 continue; 1768 } 1769 } 1770 1771 /* 1772 * This pipe's transition doesn't fall under any seamless 1773 * conditions 1774 */ 1775 is_seamless = false; 1776 break; 1777 } 1778 1779 return is_seamless; 1780 } 1781 1782 void dcn32_prepare_bandwidth(struct dc *dc, 1783 struct dc_state *context) 1784 { 1785 bool p_state_change_support = context->bw_ctx.bw.dcn.clk.p_state_change_support; 1786 /* Any transition into an FPO config should disable MCLK switching first to avoid 1787 * driver and FW P-State synchronization issues. 1788 */ 1789 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dc->clk_mgr->clks.fw_based_mclk_switching) { 1790 dc->optimized_required = true; 1791 context->bw_ctx.bw.dcn.clk.p_state_change_support = false; 1792 } 1793 1794 if (dc->clk_mgr->dc_mode_softmax_enabled) 1795 if (dc->clk_mgr->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 && 1796 context->bw_ctx.bw.dcn.clk.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000) 1797 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz); 1798 1799 dcn20_prepare_bandwidth(dc, context); 1800 1801 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) 1802 dc_dmub_srv_p_state_delegate(dc, false, context); 1803 1804 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dc->clk_mgr->clks.fw_based_mclk_switching) { 1805 /* After disabling P-State, restore the original value to ensure we get the correct P-State 1806 * on the next optimize. 1807 */ 1808 context->bw_ctx.bw.dcn.clk.p_state_change_support = p_state_change_support; 1809 } 1810 } 1811 1812 void dcn32_interdependent_update_lock(struct dc *dc, 1813 struct dc_state *context, bool lock) 1814 { 1815 unsigned int i; 1816 struct pipe_ctx *pipe; 1817 struct timing_generator *tg; 1818 1819 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1820 pipe = &context->res_ctx.pipe_ctx[i]; 1821 tg = pipe->stream_res.tg; 1822 1823 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 1824 !tg->funcs->is_tg_enabled(tg) || 1825 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) 1826 continue; 1827 1828 if (lock) 1829 dc->hwss.pipe_control_lock(dc, pipe, true); 1830 else 1831 dc->hwss.pipe_control_lock(dc, pipe, false); 1832 } 1833 } 1834 1835 void dcn32_program_outstanding_updates(struct dc *dc, 1836 struct dc_state *context) 1837 { 1838 struct hubbub *hubbub = dc->res_pool->hubbub; 1839 1840 /* update compbuf if required */ 1841 if (hubbub->funcs->program_compbuf_size) 1842 hubbub->funcs->program_compbuf_size(hubbub, context->bw_ctx.bw.dcn.compbuf_size_kb, true); 1843 } 1844