1 /*
2 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
3 *
4 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5 *
6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7 *
8 * Features:
9 * DCF77 decoding
10 * simple NTP loopfilter logic for local clock
11 * interactive display for debugging
12 *
13 * Lacks:
14 * Leap second handling (at that level you should switch to NTP Version 4 - really!)
15 *
16 * Copyright (c) 1995-2015 by Frank Kardel <kardel <AT> ntp.org>
17 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. Neither the name of the author nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 */
44
45 #ifdef HAVE_CONFIG_H
46 # include <config.h>
47 #endif
48
49 #include <sys/ioctl.h>
50 #include <unistd.h>
51 #include <stdio.h>
52 #include <fcntl.h>
53 #include <sys/types.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <syslog.h>
57 #include <time.h>
58
59 /*
60 * NTP compilation environment
61 */
62 #include "ntp_stdlib.h"
63 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */
64
65 /*
66 * select which terminal handling to use (currently only SysV variants)
67 */
68 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
69 #include <termios.h>
70 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
71 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
72 #else /* not HAVE_TERMIOS_H || STREAM */
73 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
74 # include <termio.h>
75 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
76 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
77 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
78 #endif /* not HAVE_TERMIOS_H || STREAM */
79
80
81 #ifndef TTY_GETATTR
82 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
83 #endif
84
85 #ifndef days_per_year
86 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
87 #endif
88
89 #define timernormalize(_a_) \
90 if ((_a_)->tv_usec >= 1000000) \
91 { \
92 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \
93 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \
94 } \
95 if ((_a_)->tv_usec < 0) \
96 { \
97 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \
98 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
99 }
100
101 #ifdef timeradd
102 #undef timeradd
103 #endif
104 #define timeradd(_a_, _b_) \
105 (_a_)->tv_sec += (_b_)->tv_sec; \
106 (_a_)->tv_usec += (_b_)->tv_usec; \
107 timernormalize((_a_))
108
109 #ifdef timersub
110 #undef timersub
111 #endif
112 #define timersub(_a_, _b_) \
113 (_a_)->tv_sec -= (_b_)->tv_sec; \
114 (_a_)->tv_usec -= (_b_)->tv_usec; \
115 timernormalize((_a_))
116
117 /*
118 * debug macros
119 */
120 #define PRINTF if (interactive) printf
121 #define LPRINTF if (interactive && loop_filter_debug) printf
122
123 #ifdef DEBUG
124 #define DPRINTF(_x_) LPRINTF _x_
125 #else
126 #define DPRINTF(_x_)
127 #endif
128
129 #ifdef DECL_ERRNO
130 extern int errno;
131 #endif
132
133 static char *revision = "4.18";
134
135 /*
136 * display received data (avoids also detaching from tty)
137 */
138 static int interactive = 0;
139
140 /*
141 * display loopfilter (clock control) variables
142 */
143 static int loop_filter_debug = 0;
144
145 /*
146 * do not set/adjust system time
147 */
148 static int no_set = 0;
149
150 /*
151 * time that passes between start of DCF impulse and time stamping (fine
152 * adjustment) in microseconds (receiver/OS dependent)
153 */
154 #define DEFAULT_DELAY 230000 /* rough estimate */
155
156 /*
157 * The two states we can be in - eithe we receive nothing
158 * usable or we have the correct time
159 */
160 #define NO_SYNC 0x01
161 #define SYNC 0x02
162
163 static int sync_state = NO_SYNC;
164 static time_t last_sync;
165
166 static unsigned long ticks = 0;
167
168 static char pat[] = "-\\|/";
169
170 #define LINES (24-2) /* error lines after which the two headlines are repeated */
171
172 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */
173 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */
174
175 /*
176 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
177 */
178
179 #define USECSCALE 10
180 #define TIMECONSTANT 2
181 #define ADJINTERVAL 0
182 #define FREQ_WEIGHT 18
183 #define PHASE_WEIGHT 7
184 #define MAX_DRIFT 0x3FFFFFFF
185
186 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
187
188 static long max_adj_offset_usec = 128000;
189
190 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */
191 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */
192 static long adjustments = 0;
193 static char skip_adjust = 1; /* discard first adjustment (bad samples) */
194
195 /*
196 * DCF77 state flags
197 */
198 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */
199 #define DCFB_DST 0x0002 /* DST in effect */
200 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurrence) */
201 #define DCFB_CALLBIT 0x0008 /* "call bit" used to signalize irregularities in the control facilities */
202
203 struct clocktime /* clock time broken up from time code */
204 {
205 long wday; /* Day of week: 1: Monday - 7: Sunday */
206 long day;
207 long month;
208 long year;
209 long hour;
210 long minute;
211 long second;
212 long usecond;
213 long utcoffset; /* in minutes */
214 long flags; /* current clock status (DCF77 state flags) */
215 };
216
217 typedef struct clocktime clocktime_t;
218
219 /*
220 * (usually) quick constant multiplications
221 */
222 #ifndef TIMES10
223 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */
224 #endif
225 #ifndef TIMES24
226 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */
227 #endif
228 #ifndef TIMES60
229 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */
230 #endif
231
232 /*
233 * generic l_abs() function
234 */
235 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_))
236
237 /*
238 * conversion related return/error codes
239 */
240 #define CVT_MASK 0x0000000F /* conversion exit code */
241 #define CVT_NONE 0x00000001 /* format not applicable */
242 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */
243 #define CVT_OK 0x00000004 /* conversion succeeded */
244 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */
245 #define CVT_BADDATE 0x00000020 /* invalid date */
246 #define CVT_BADTIME 0x00000040 /* invalid time */
247
248 /*
249 * DCF77 raw time code
250 *
251 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
252 * und Berlin, Maerz 1989
253 *
254 * Timecode transmission:
255 * AM:
256 * time marks are send every second except for the second before the
257 * next minute mark
258 * time marks consist of a reduction of transmitter power to 25%
259 * of the nominal level
260 * the falling edge is the time indication (on time)
261 * time marks of a 100ms duration constitute a logical 0
262 * time marks of a 200ms duration constitute a logical 1
263 * FM:
264 * see the spec. (basically a (non-)inverted psuedo random phase shift)
265 *
266 * Encoding:
267 * Second Contents
268 * 0 - 10 AM: free, FM: 0
269 * 11 - 14 free
270 * 15 R - "call bit" used to signalize irregularities in the control facilities
271 * (until 2003 indicated transmission via alternate antenna)
272 * 16 A1 - expect zone change (1 hour before)
273 * 17 - 18 Z1,Z2 - time zone
274 * 0 0 illegal
275 * 0 1 MEZ (MET)
276 * 1 0 MESZ (MED, MET DST)
277 * 1 1 illegal
278 * 19 A2 - expect leap insertion/deletion (1 hour before)
279 * 20 S - start of time code (1)
280 * 21 - 24 M1 - BCD (lsb first) Minutes
281 * 25 - 27 M10 - BCD (lsb first) 10 Minutes
282 * 28 P1 - Minute Parity (even)
283 * 29 - 32 H1 - BCD (lsb first) Hours
284 * 33 - 34 H10 - BCD (lsb first) 10 Hours
285 * 35 P2 - Hour Parity (even)
286 * 36 - 39 D1 - BCD (lsb first) Days
287 * 40 - 41 D10 - BCD (lsb first) 10 Days
288 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
289 * 45 - 49 MO - BCD (lsb first) Month
290 * 50 MO0 - 10 Months
291 * 51 - 53 Y1 - BCD (lsb first) Years
292 * 54 - 57 Y10 - BCD (lsb first) 10 Years
293 * 58 P3 - Date Parity (even)
294 * 59 - usually missing (minute indication), except for leap insertion
295 */
296
297 /*-----------------------------------------------------------------------
298 * conversion table to map DCF77 bit stream into data fields.
299 * Encoding:
300 * Each field of the DCF77 code is described with two adjacent entries in
301 * this table. The first entry specifies the offset into the DCF77 data stream
302 * while the length is given as the difference between the start index and
303 * the start index of the following field.
304 */
305 static struct rawdcfcode
306 {
307 char offset; /* start bit */
308 } rawdcfcode[] =
309 {
310 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
311 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
312 };
313
314 /*-----------------------------------------------------------------------
315 * symbolic names for the fields of DCF77 describes in "rawdcfcode".
316 * see comment above for the structure of the DCF77 data
317 */
318 #define DCF_M 0
319 #define DCF_R 1
320 #define DCF_A1 2
321 #define DCF_Z 3
322 #define DCF_A2 4
323 #define DCF_S 5
324 #define DCF_M1 6
325 #define DCF_M10 7
326 #define DCF_P1 8
327 #define DCF_H1 9
328 #define DCF_H10 10
329 #define DCF_P2 11
330 #define DCF_D1 12
331 #define DCF_D10 13
332 #define DCF_DW 14
333 #define DCF_MO 15
334 #define DCF_MO0 16
335 #define DCF_Y1 17
336 #define DCF_Y10 18
337 #define DCF_P3 19
338
339 /*-----------------------------------------------------------------------
340 * parity field table (same encoding as rawdcfcode)
341 * This table describes the sections of the DCF77 code that are
342 * parity protected
343 */
344 static struct partab
345 {
346 char offset; /* start bit of parity field */
347 } partab[] =
348 {
349 { 21 }, { 29 }, { 36 }, { 59 }
350 };
351
352 /*-----------------------------------------------------------------------
353 * offsets for parity field descriptions
354 */
355 #define DCF_P_P1 0
356 #define DCF_P_P2 1
357 #define DCF_P_P3 2
358
359 /*-----------------------------------------------------------------------
360 * legal values for time zone information
361 */
362 #define DCF_Z_MET 0x2
363 #define DCF_Z_MED 0x1
364
365 /*-----------------------------------------------------------------------
366 * symbolic representation if the DCF77 data stream
367 */
368 static struct dcfparam
369 {
370 unsigned char onebits[60];
371 unsigned char zerobits[60];
372 } dcfparam =
373 {
374 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
375 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */
376 };
377
378 /*-----------------------------------------------------------------------
379 * extract a bitfield from DCF77 datastream
380 * All numeric fields are LSB first.
381 * buf holds a pointer to a DCF77 data buffer in symbolic
382 * representation
383 * idx holds the index to the field description in rawdcfcode
384 */
385 static unsigned long
ext_bf(register unsigned char * buf,register int idx)386 ext_bf(
387 register unsigned char *buf,
388 register int idx
389 )
390 {
391 register unsigned long sum = 0;
392 register int i, first;
393
394 first = rawdcfcode[idx].offset;
395
396 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
397 {
398 sum <<= 1;
399 sum |= (buf[i] != dcfparam.zerobits[i]);
400 }
401 return sum;
402 }
403
404 /*-----------------------------------------------------------------------
405 * check even parity integrity for a bitfield
406 *
407 * buf holds a pointer to a DCF77 data buffer in symbolic
408 * representation
409 * idx holds the index to the field description in partab
410 */
411 static unsigned
pcheck(register unsigned char * buf,register int idx)412 pcheck(
413 register unsigned char *buf,
414 register int idx
415 )
416 {
417 register int i,last;
418 register unsigned psum = 1;
419
420 last = partab[idx+1].offset;
421
422 for (i = partab[idx].offset; i < last; i++)
423 psum ^= (buf[i] != dcfparam.zerobits[i]);
424
425 return psum;
426 }
427
428 /*-----------------------------------------------------------------------
429 * convert a DCF77 data buffer into wall clock time + flags
430 *
431 * buffer holds a pointer to a DCF77 data buffer in symbolic
432 * representation
433 * size describes the length of DCF77 information in bits (represented
434 * as chars in symbolic notation
435 * clock points to a wall clock time description of the DCF77 data (result)
436 */
437 static unsigned long
convert_rawdcf(unsigned char * buffer,int size,clocktime_t * clock_time)438 convert_rawdcf(
439 unsigned char *buffer,
440 int size,
441 clocktime_t *clock_time
442 )
443 {
444 if (size < 57)
445 {
446 PRINTF("%-30s", "*** INCOMPLETE");
447 return CVT_NONE;
448 }
449
450 /*
451 * check Start and Parity bits
452 */
453 if ((ext_bf(buffer, DCF_S) == 1) &&
454 pcheck(buffer, DCF_P_P1) &&
455 pcheck(buffer, DCF_P_P2) &&
456 pcheck(buffer, DCF_P_P3))
457 {
458 /*
459 * buffer OK - extract all fields and build wall clock time from them
460 */
461
462 clock_time->flags = 0;
463 clock_time->usecond= 0;
464 clock_time->second = 0;
465 clock_time->minute = ext_bf(buffer, DCF_M10);
466 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
467 clock_time->hour = ext_bf(buffer, DCF_H10);
468 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1);
469 clock_time->day = ext_bf(buffer, DCF_D10);
470 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1);
471 clock_time->month = ext_bf(buffer, DCF_MO0);
472 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO);
473 clock_time->year = ext_bf(buffer, DCF_Y10);
474 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1);
475 clock_time->wday = ext_bf(buffer, DCF_DW);
476
477 /*
478 * determine offset to UTC by examining the time zone
479 */
480 switch (ext_bf(buffer, DCF_Z))
481 {
482 case DCF_Z_MET:
483 clock_time->utcoffset = -60;
484 break;
485
486 case DCF_Z_MED:
487 clock_time->flags |= DCFB_DST;
488 clock_time->utcoffset = -120;
489 break;
490
491 default:
492 PRINTF("%-30s", "*** BAD TIME ZONE");
493 return CVT_FAIL|CVT_BADFMT;
494 }
495
496 /*
497 * extract various warnings from DCF77
498 */
499 if (ext_bf(buffer, DCF_A1))
500 clock_time->flags |= DCFB_ANNOUNCE;
501
502 if (ext_bf(buffer, DCF_A2))
503 clock_time->flags |= DCFB_LEAP;
504
505 if (ext_bf(buffer, DCF_R))
506 clock_time->flags |= DCFB_CALLBIT;
507
508 return CVT_OK;
509 }
510 else
511 {
512 /*
513 * bad format - not for us
514 */
515 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
516 return CVT_FAIL|CVT_BADFMT;
517 }
518 }
519
520 /*-----------------------------------------------------------------------
521 * raw dcf input routine - fix up 50 baud
522 * characters for 1/0 decision
523 */
524 static unsigned long
cvt_rawdcf(unsigned char * buffer,int size,clocktime_t * clock_time)525 cvt_rawdcf(
526 unsigned char *buffer,
527 int size,
528 clocktime_t *clock_time
529 )
530 {
531 register unsigned char *s = buffer;
532 register unsigned char *e = buffer + size;
533 register unsigned char *b = dcfparam.onebits;
534 register unsigned char *c = dcfparam.zerobits;
535 register unsigned rtc = CVT_NONE;
536 register unsigned int i, lowmax, highmax, cutoff, span;
537 #define BITS 9
538 unsigned char histbuf[BITS];
539 /*
540 * the input buffer contains characters with runs of consecutive
541 * bits set. These set bits are an indication of the DCF77 pulse
542 * length. We assume that we receive the pulse at 50 Baud. Thus
543 * a 100ms pulse would generate a 4 bit train (20ms per bit and
544 * start bit)
545 * a 200ms pulse would create all zeroes (and probably a frame error)
546 *
547 * The basic idea is that on corret reception we must have two
548 * maxima in the pulse length distribution histogram. (one for
549 * the zero representing pulses and one for the one representing
550 * pulses)
551 * There will always be ones in the datastream, thus we have to see
552 * two maxima.
553 * The best point to cut for a 1/0 decision is the minimum between those
554 * between the maxima. The following code tries to find this cutoff point.
555 */
556
557 /*
558 * clear histogram buffer
559 */
560 for (i = 0; i < BITS; i++)
561 {
562 histbuf[i] = 0;
563 }
564
565 cutoff = 0;
566 lowmax = 0;
567
568 /*
569 * convert sequences of set bits into bits counts updating
570 * the histogram alongway
571 */
572 while (s < e)
573 {
574 register unsigned int ch = *s ^ 0xFF;
575 /*
576 * check integrity and update histogramm
577 */
578 if (!((ch+1) & ch) || !*s)
579 {
580 /*
581 * character ok
582 */
583 for (i = 0; ch; i++)
584 {
585 ch >>= 1;
586 }
587
588 *s = i;
589 histbuf[i]++;
590 cutoff += i;
591 lowmax++;
592 }
593 else
594 {
595 /*
596 * invalid character (no consecutive bit sequence)
597 */
598 DPRINTF(("parse: cvt_rawdcf: character check for 0x%x@%ld FAILED\n",
599 (u_int)*s, (long)(s - buffer)));
600 *s = (unsigned char)~0;
601 rtc = CVT_FAIL|CVT_BADFMT;
602 }
603 s++;
604 }
605
606 /*
607 * first cutoff estimate (average bit count - must be between both
608 * maxima)
609 */
610 if (lowmax)
611 {
612 cutoff /= lowmax;
613 }
614 else
615 {
616 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */
617 }
618
619 DPRINTF(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
620
621 lowmax = 0; /* weighted sum */
622 highmax = 0; /* bitcount */
623
624 /*
625 * collect weighted sum of lower bits (left of initial guess)
626 */
627 DPRINTF(("parse: cvt_rawdcf: histogram:"));
628 for (i = 0; i <= cutoff; i++)
629 {
630 lowmax += histbuf[i] * i;
631 highmax += histbuf[i];
632 DPRINTF((" %d", histbuf[i]));
633 }
634 DPRINTF((" <M>"));
635
636 /*
637 * round up
638 */
639 lowmax += highmax / 2;
640
641 /*
642 * calculate lower bit maximum (weighted sum / bit count)
643 *
644 * avoid divide by zero
645 */
646 if (highmax)
647 {
648 lowmax /= highmax;
649 }
650 else
651 {
652 lowmax = 0;
653 }
654
655 highmax = 0; /* weighted sum of upper bits counts */
656 cutoff = 0; /* bitcount */
657
658 /*
659 * collect weighted sum of lower bits (right of initial guess)
660 */
661 for (; i < BITS; i++)
662 {
663 highmax+=histbuf[i] * i;
664 cutoff +=histbuf[i];
665 DPRINTF((" %d", histbuf[i]));
666 }
667 DPRINTF(("\n"));
668
669 /*
670 * determine upper maximum (weighted sum / bit count)
671 */
672 if (cutoff)
673 {
674 highmax /= cutoff;
675 }
676 else
677 {
678 highmax = BITS-1;
679 }
680
681 /*
682 * following now holds:
683 * lowmax <= cutoff(initial guess) <= highmax
684 * best cutoff is the minimum nearest to higher bits
685 */
686
687 /*
688 * find the minimum between lowmax and highmax (detecting
689 * possibly a minimum span)
690 */
691 span = cutoff = lowmax;
692 for (i = lowmax; i <= highmax; i++)
693 {
694 if (histbuf[cutoff] > histbuf[i])
695 {
696 /*
697 * got a new minimum move beginning of minimum (cutoff) and
698 * end of minimum (span) there
699 */
700 cutoff = span = i;
701 }
702 else
703 if (histbuf[cutoff] == histbuf[i])
704 {
705 /*
706 * minimum not better yet - but it spans more than
707 * one bit value - follow it
708 */
709 span = i;
710 }
711 }
712
713 /*
714 * cutoff point for 1/0 decision is the middle of the minimum section
715 * in the histogram
716 */
717 cutoff = (cutoff + span) / 2;
718
719 DPRINTF(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
720
721 /*
722 * convert the bit counts to symbolic 1/0 information for data conversion
723 */
724 s = buffer;
725 while ((s < e) && *c && *b)
726 {
727 if (*s == (unsigned char)~0)
728 {
729 /*
730 * invalid character
731 */
732 *s = '?';
733 }
734 else
735 {
736 /*
737 * symbolic 1/0 representation
738 */
739 *s = (*s >= cutoff) ? *b : *c;
740 }
741 s++;
742 b++;
743 c++;
744 }
745
746 /*
747 * if everything went well so far return the result of the symbolic
748 * conversion routine else just the accumulated errors
749 */
750 if (rtc != CVT_NONE)
751 {
752 PRINTF("%-30s", "*** BAD DATA");
753 }
754
755 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
756 }
757
758 /*-----------------------------------------------------------------------
759 * convert a wall clock time description of DCF77 to a Unix time (seconds
760 * since 1.1. 1970 UTC)
761 */
762 static time_t
dcf_to_unixtime(clocktime_t * clock_time,unsigned * cvtrtc)763 dcf_to_unixtime(
764 clocktime_t *clock_time,
765 unsigned *cvtrtc
766 )
767 {
768 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); }
769 static int days_of_month[] =
770 {
771 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
772 };
773 register int i;
774 time_t t;
775
776 /*
777 * map 2 digit years to 19xx (DCF77 is a 20th century item)
778 */
779 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */
780 clock_time->year += 100; /* *year%100, make tm_year */
781 /* *(do we need this?) */
782 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */
783 clock_time->year += 1900; /* Y2KFixes ] */
784
785 /*
786 * must have been a really bad year code - drop it
787 */
788 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */
789 {
790 SETRTC(CVT_FAIL|CVT_BADDATE);
791 return -1;
792 }
793 /*
794 * sorry, slow section here - but it's not time critical anyway
795 */
796
797 /*
798 * calculate days since 1970 (watching leap years)
799 */
800 t = julian0( clock_time->year ) - julian0( 1970 );
801
802 /* month */
803 if (clock_time->month <= 0 || clock_time->month > 12)
804 {
805 SETRTC(CVT_FAIL|CVT_BADDATE);
806 return -1; /* bad month */
807 }
808 /* adjust current leap year */
809 #if 0
810 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
811 t--;
812 #endif
813
814 /*
815 * collect days from months excluding the current one
816 */
817 for (i = 1; i < clock_time->month; i++)
818 {
819 t += days_of_month[i];
820 }
821 /* day */
822 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
823 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
824 {
825 SETRTC(CVT_FAIL|CVT_BADDATE);
826 return -1; /* bad day */
827 }
828
829 /*
830 * collect days from date excluding the current one
831 */
832 t += clock_time->day - 1;
833
834 /* hour */
835 if (clock_time->hour < 0 || clock_time->hour >= 24)
836 {
837 SETRTC(CVT_FAIL|CVT_BADTIME);
838 return -1; /* bad hour */
839 }
840
841 /*
842 * calculate hours from 1. 1. 1970
843 */
844 t = TIMES24(t) + clock_time->hour;
845
846 /* min */
847 if (clock_time->minute < 0 || clock_time->minute > 59)
848 {
849 SETRTC(CVT_FAIL|CVT_BADTIME);
850 return -1; /* bad min */
851 }
852
853 /*
854 * calculate minutes from 1. 1. 1970
855 */
856 t = TIMES60(t) + clock_time->minute;
857 /* sec */
858
859 /*
860 * calculate UTC in minutes
861 */
862 t += clock_time->utcoffset;
863
864 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */
865 {
866 SETRTC(CVT_FAIL|CVT_BADTIME);
867 return -1; /* bad sec */
868 }
869
870 /*
871 * calculate UTC in seconds - phew !
872 */
873 t = TIMES60(t) + clock_time->second;
874 /* done */
875 return t;
876 }
877
878 /*-----------------------------------------------------------------------
879 * cheap half baked 1/0 decision - for interactive operation only
880 */
881 static char
type(unsigned int c)882 type(
883 unsigned int c
884 )
885 {
886 c ^= 0xFF;
887 return (c > 0xF);
888 }
889
890 /*-----------------------------------------------------------------------
891 * week day representation
892 */
893 static const char *wday[8] =
894 {
895 "??",
896 "Mo",
897 "Tu",
898 "We",
899 "Th",
900 "Fr",
901 "Sa",
902 "Su"
903 };
904
905 /*-----------------------------------------------------------------------
906 * generate a string representation for a timeval
907 */
908 static char *
pr_timeval(struct timeval * val)909 pr_timeval(
910 struct timeval *val
911 )
912 {
913 static char buf[20];
914
915 if (val->tv_sec == 0)
916 snprintf(buf, sizeof(buf), "%c0.%06ld",
917 (val->tv_usec < 0) ? '-' : '+',
918 (long int)l_abs(val->tv_usec));
919 else
920 snprintf(buf, sizeof(buf), "%ld.%06ld",
921 (long int)val->tv_sec,
922 (long int)l_abs(val->tv_usec));
923 return buf;
924 }
925
926 /*-----------------------------------------------------------------------
927 * correct the current time by an offset by setting the time rigorously
928 */
929 static void
set_time(struct timeval * offset)930 set_time(
931 struct timeval *offset
932 )
933 {
934 struct timeval the_time;
935
936 if (no_set)
937 return;
938
939 LPRINTF("set_time: %s ", pr_timeval(offset));
940 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
941
942 if (gettimeofday(&the_time, 0L) == -1)
943 {
944 perror("gettimeofday()");
945 }
946 else
947 {
948 timeradd(&the_time, offset);
949 if (settimeofday(&the_time, 0L) == -1)
950 {
951 perror("settimeofday()");
952 }
953 }
954 }
955
956 /*-----------------------------------------------------------------------
957 * slew the time by a given offset
958 */
959 static void
adj_time(long offset)960 adj_time(
961 long offset
962 )
963 {
964 struct timeval time_offset;
965
966 if (no_set)
967 return;
968
969 time_offset.tv_sec = offset / 1000000;
970 time_offset.tv_usec = offset % 1000000;
971
972 LPRINTF("adj_time: %ld us ", (long int)offset);
973 if (adjtime(&time_offset, 0L) == -1)
974 perror("adjtime()");
975 }
976
977 /*-----------------------------------------------------------------------
978 * read in a possibly previously written drift value
979 */
980 static void
read_drift(const char * drift_file)981 read_drift(
982 const char *drift_file
983 )
984 {
985 FILE *df;
986
987 df = fopen(drift_file, "r");
988 if (df != NULL)
989 {
990 int idrift = 0, fdrift = 0;
991
992 if (2 != fscanf(df, "%4d.%03d", &idrift, &fdrift))
993 LPRINTF("read_drift: trouble reading drift file");
994 fclose(df);
995 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
996
997 accum_drift = idrift << USECSCALE;
998 fdrift = (fdrift << USECSCALE) / 1000;
999 accum_drift += fdrift & (1<<USECSCALE);
1000 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
1001 }
1002 }
1003
1004 /*-----------------------------------------------------------------------
1005 * write out the current drift value
1006 */
1007 static void
update_drift(const char * drift_file,long offset,time_t reftime)1008 update_drift(
1009 const char *drift_file,
1010 long offset,
1011 time_t reftime
1012 )
1013 {
1014 FILE *df;
1015
1016 df = fopen(drift_file, "w");
1017 if (df != NULL)
1018 {
1019 int idrift = R_SHIFT(accum_drift, USECSCALE);
1020 int fdrift = accum_drift & ((1<<USECSCALE)-1);
1021
1022 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1023 fdrift = (fdrift * 1000) / (1<<USECSCALE);
1024 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1025 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1026 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1027 fclose(df);
1028 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1029 }
1030 }
1031
1032 /*-----------------------------------------------------------------------
1033 * process adjustments derived from the DCF77 observation
1034 * (controls clock PLL)
1035 */
1036 static void
adjust_clock(struct timeval * offset,const char * drift_file,time_t reftime)1037 adjust_clock(
1038 struct timeval *offset,
1039 const char *drift_file,
1040 time_t reftime
1041 )
1042 {
1043 struct timeval toffset;
1044 register long usecoffset;
1045 int tmp;
1046
1047 if (no_set)
1048 return;
1049
1050 if (skip_adjust)
1051 {
1052 skip_adjust = 0;
1053 return;
1054 }
1055
1056 toffset = *offset;
1057 toffset.tv_sec = l_abs(toffset.tv_sec);
1058 toffset.tv_usec = l_abs(toffset.tv_usec);
1059 if (toffset.tv_sec ||
1060 (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec))
1061 {
1062 /*
1063 * hopeless - set the clock - and clear the timing
1064 */
1065 set_time(offset);
1066 clock_adjust = 0;
1067 skip_adjust = 1;
1068 return;
1069 }
1070
1071 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec;
1072
1073 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */
1074
1075 tmp = 0;
1076 while (adjustments > (1 << tmp))
1077 tmp++;
1078 adjustments = 0;
1079 if (tmp > FREQ_WEIGHT)
1080 tmp = FREQ_WEIGHT;
1081
1082 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1083
1084 if (accum_drift > MAX_DRIFT) /* clamp into interval */
1085 accum_drift = MAX_DRIFT;
1086 else
1087 if (accum_drift < -MAX_DRIFT)
1088 accum_drift = -MAX_DRIFT;
1089
1090 update_drift(drift_file, usecoffset, reftime);
1091 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1092 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1093 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1094 }
1095
1096 /*-----------------------------------------------------------------------
1097 * adjust the clock by a small mount to simulate frequency correction
1098 */
1099 static void
periodic_adjust(void)1100 periodic_adjust(
1101 void
1102 )
1103 {
1104 register long adjustment;
1105
1106 adjustments++;
1107
1108 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1109
1110 clock_adjust -= adjustment;
1111
1112 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1113
1114 adj_time(adjustment);
1115 }
1116
1117 /*-----------------------------------------------------------------------
1118 * control synchronisation status (warnings) and do periodic adjusts
1119 * (frequency control simulation)
1120 */
1121 static void
tick(int signum)1122 tick(
1123 int signum
1124 )
1125 {
1126 static unsigned long last_notice = 0;
1127
1128 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1129 (void)signal(SIGALRM, tick);
1130 #endif
1131
1132 periodic_adjust();
1133
1134 ticks += 1<<ADJINTERVAL;
1135
1136 if ((ticks - last_sync) > MAX_UNSYNC)
1137 {
1138 /*
1139 * not getting time for a while
1140 */
1141 if (sync_state == SYNC)
1142 {
1143 /*
1144 * completely lost information
1145 */
1146 sync_state = NO_SYNC;
1147 syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1148 last_notice = ticks;
1149 }
1150 else
1151 /*
1152 * in NO_SYNC state - look whether its time to speak up again
1153 */
1154 if ((ticks - last_notice) > NOTICE_INTERVAL)
1155 {
1156 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1157 last_notice = ticks;
1158 }
1159 }
1160
1161 #ifndef ITIMER_REAL
1162 (void) alarm(1<<ADJINTERVAL);
1163 #endif
1164 }
1165
1166 /*-----------------------------------------------------------------------
1167 * break association from terminal to avoid catching terminal
1168 * or process group related signals (-> daemon operation)
1169 */
1170 static void
detach(void)1171 detach(
1172 void
1173 )
1174 {
1175 # ifdef HAVE_DAEMON
1176 if (daemon(0, 0)) {
1177 fprintf(stderr, "'daemon()' fails: %d(%s)\n",
1178 errno, strerror(errno));
1179 }
1180 # else /* not HAVE_DAEMON */
1181 if (fork())
1182 exit(0);
1183
1184 {
1185 u_long s;
1186 int max_fd;
1187
1188 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1189 max_fd = sysconf(_SC_OPEN_MAX);
1190 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1191 max_fd = getdtablesize();
1192 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1193 for (s = 0; s < max_fd; s++)
1194 (void) close((int)s);
1195 (void) open("/", 0);
1196 (void) dup2(0, 1);
1197 (void) dup2(0, 2);
1198 #ifdef SYS_DOMAINOS
1199 {
1200 uid_$t puid;
1201 status_$t st;
1202
1203 proc2_$who_am_i(&puid);
1204 proc2_$make_server(&puid, &st);
1205 }
1206 #endif /* SYS_DOMAINOS */
1207 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1208 # ifdef HAVE_SETSID
1209 if (setsid() == (pid_t)-1)
1210 syslog(LOG_ERR, "dcfd: setsid(): %m");
1211 # else
1212 if (setpgid(0, 0) == -1)
1213 syslog(LOG_ERR, "dcfd: setpgid(): %m");
1214 # endif
1215 #else /* HAVE_SETPGID || HAVE_SETSID */
1216 {
1217 int fid;
1218
1219 fid = open("/dev/tty", 2);
1220 if (fid >= 0)
1221 {
1222 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1223 (void) close(fid);
1224 }
1225 # ifdef HAVE_SETPGRP_0
1226 (void) setpgrp();
1227 # else /* HAVE_SETPGRP_0 */
1228 (void) setpgrp(0, getpid());
1229 # endif /* HAVE_SETPGRP_0 */
1230 }
1231 #endif /* HAVE_SETPGID || HAVE_SETSID */
1232 }
1233 #endif /* not HAVE_DAEMON */
1234 }
1235
1236 /*-----------------------------------------------------------------------
1237 * list possible arguments and options
1238 */
1239 static void
usage(char * program)1240 usage(
1241 char *program
1242 )
1243 {
1244 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1245 fprintf(stderr, "\t-n do not change time\n");
1246 fprintf(stderr, "\t-i interactive\n");
1247 fprintf(stderr, "\t-t trace (print all datagrams)\n");
1248 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n");
1249 fprintf(stderr, "\t-l print loop filter debug information\n");
1250 fprintf(stderr, "\t-o print offet average for current minute\n");
1251 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */
1252 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1253 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1254 }
1255
1256 /*-----------------------------------------------------------------------
1257 * check_y2k() - internal check of Y2K logic
1258 * (a lot of this logic lifted from ../ntpd/check_y2k.c)
1259 */
1260 static int
check_y2k(void)1261 check_y2k( void )
1262 {
1263 int year; /* current working year */
1264 int year0 = 1900; /* sarting year for NTP time */
1265 int yearend; /* ending year we test for NTP time.
1266 * 32-bit systems: through 2036, the
1267 **year in which NTP time overflows.
1268 * 64-bit systems: a reasonable upper
1269 **limit (well, maybe somewhat beyond
1270 **reasonable, but well before the
1271 **max time, by which time the earth
1272 **will be dead.) */
1273 time_t Time;
1274 struct tm LocalTime;
1275
1276 int Fatals, Warnings;
1277 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1278 Warnings++; else Fatals++
1279
1280 Fatals = Warnings = 0;
1281
1282 Time = time( (time_t *)NULL );
1283 LocalTime = *localtime( &Time );
1284
1285 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */
1286 ? ( 400 * 3 ) /* three greater gregorian cycles */
1287 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1288 /* NOTE: will automacially expand test years on
1289 * 64 bit machines.... this may cause some of the
1290 * existing ntp logic to fail for years beyond
1291 * 2036 (the current 32-bit limit). If all checks
1292 * fail ONLY beyond year 2036 you may ignore such
1293 * errors, at least for a decade or so. */
1294 yearend = year0 + year;
1295
1296 year = 1900+YEAR_PIVOT;
1297 printf( " starting year %04d\n", (int) year );
1298 printf( " ending year %04d\n", (int) yearend );
1299
1300 for ( ; year < yearend; year++ )
1301 {
1302 clocktime_t ct;
1303 time_t Observed;
1304 time_t Expected;
1305 unsigned Flag;
1306 unsigned long t;
1307
1308 ct.day = 1;
1309 ct.month = 1;
1310 ct.year = year;
1311 ct.hour = ct.minute = ct.second = ct.usecond = 0;
1312 ct.utcoffset = 0;
1313 ct.flags = 0;
1314
1315 Flag = 0;
1316 Observed = dcf_to_unixtime( &ct, &Flag );
1317 /* seems to be a clone of parse_to_unixtime() with
1318 * *a minor difference to arg2 type */
1319 if ( ct.year != year )
1320 {
1321 fprintf( stdout,
1322 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1323 (int)year, (int)Flag, (int)ct.year );
1324 Error(year);
1325 break;
1326 }
1327 t = julian0(year) - julian0(1970); /* Julian day from 1970 */
1328 Expected = t * 24 * 60 * 60;
1329 if ( Observed != Expected || Flag )
1330 { /* time difference */
1331 fprintf( stdout,
1332 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n",
1333 year, (int)Flag,
1334 (unsigned long)Observed, (unsigned long)Expected,
1335 ((long)Observed - (long)Expected) );
1336 Error(year);
1337 break;
1338 }
1339
1340 }
1341
1342 return ( Fatals );
1343 }
1344
1345 /*--------------------------------------------------
1346 * rawdcf_init - set up modem lines for RAWDCF receivers
1347 */
1348 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1349 static void
rawdcf_init(int fd)1350 rawdcf_init(
1351 int fd
1352 )
1353 {
1354 /*
1355 * You can use the RS232 to supply the power for a DCF77 receiver.
1356 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1357 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1358 */
1359
1360 #ifdef TIOCM_DTR
1361 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */
1362 #else
1363 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */
1364 #endif
1365
1366 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1367 {
1368 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1369 }
1370 }
1371 #else
1372 static void
rawdcf_init(int fd)1373 rawdcf_init(
1374 int fd
1375 )
1376 {
1377 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1378 }
1379 #endif /* DTR initialisation type */
1380
1381 /*-----------------------------------------------------------------------
1382 * main loop - argument interpreter / setup / main loop
1383 */
1384 int
main(int argc,char ** argv)1385 main(
1386 int argc,
1387 char **argv
1388 )
1389 {
1390 unsigned char c;
1391 char **a = argv;
1392 int ac = argc;
1393 char *file = NULL;
1394 const char *drift_file = "/etc/dcfd.drift";
1395 int fd;
1396 int offset = 15;
1397 int offsets = 0;
1398 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */
1399 int trace = 0;
1400 int errs = 0;
1401
1402 /*
1403 * process arguments
1404 */
1405 while (--ac)
1406 {
1407 char *arg = *++a;
1408 if (*arg == '-')
1409 while ((c = *++arg))
1410 switch (c)
1411 {
1412 case 't':
1413 trace = 1;
1414 interactive = 1;
1415 break;
1416
1417 case 'f':
1418 offset = 0;
1419 interactive = 1;
1420 break;
1421
1422 case 'l':
1423 loop_filter_debug = 1;
1424 offsets = 1;
1425 interactive = 1;
1426 break;
1427
1428 case 'n':
1429 no_set = 1;
1430 break;
1431
1432 case 'o':
1433 offsets = 1;
1434 interactive = 1;
1435 break;
1436
1437 case 'i':
1438 interactive = 1;
1439 break;
1440
1441 case 'D':
1442 if (ac > 1)
1443 {
1444 delay = atoi(*++a);
1445 ac--;
1446 }
1447 else
1448 {
1449 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1450 errs=1;
1451 }
1452 break;
1453
1454 case 'd':
1455 if (ac > 1)
1456 {
1457 drift_file = *++a;
1458 ac--;
1459 }
1460 else
1461 {
1462 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1463 errs=1;
1464 }
1465 break;
1466
1467 case 'Y':
1468 errs=check_y2k();
1469 exit( errs ? 1 : 0 );
1470
1471 default:
1472 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1473 errs=1;
1474 break;
1475 }
1476 else
1477 if (file == NULL)
1478 file = arg;
1479 else
1480 {
1481 fprintf(stderr, "%s: device specified twice\n", argv[0]);
1482 errs=1;
1483 }
1484 }
1485
1486 if (errs)
1487 {
1488 usage(argv[0]);
1489 exit(1);
1490 }
1491 else
1492 if (file == NULL)
1493 {
1494 fprintf(stderr, "%s: device not specified\n", argv[0]);
1495 usage(argv[0]);
1496 exit(1);
1497 }
1498
1499 errs = LINES+1;
1500
1501 /*
1502 * get access to DCF77 tty port
1503 */
1504 fd = open(file, O_RDONLY);
1505 if (fd == -1)
1506 {
1507 perror(file);
1508 exit(1);
1509 }
1510 else
1511 {
1512 int i, rrc;
1513 struct timeval t, tt, tlast;
1514 struct timeval timeout;
1515 struct timeval phase;
1516 struct timeval time_offset;
1517 char pbuf[61]; /* printable version */
1518 char buf[61]; /* raw data */
1519 clocktime_t clock_time; /* wall clock time */
1520 time_t utc_time = 0;
1521 time_t last_utc_time = 0;
1522 long usecerror = 0;
1523 long lasterror = 0;
1524 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
1525 struct termios term;
1526 #else /* not HAVE_TERMIOS_H || STREAM */
1527 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1528 struct termio term;
1529 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1530 #endif /* not HAVE_TERMIOS_H || STREAM */
1531 unsigned int rtc = CVT_NONE;
1532
1533 rawdcf_init(fd);
1534
1535 timeout.tv_sec = 1;
1536 timeout.tv_usec = 500000;
1537
1538 phase.tv_sec = 0;
1539 phase.tv_usec = delay;
1540
1541 /*
1542 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1543 */
1544 if (TTY_GETATTR(fd, &term) == -1)
1545 {
1546 perror("tcgetattr");
1547 exit(1);
1548 }
1549
1550 memset(term.c_cc, 0, sizeof(term.c_cc));
1551 term.c_cc[VMIN] = 1;
1552 #ifdef NO_PARENB_IGNPAR
1553 term.c_cflag = CS8|CREAD|CLOCAL;
1554 #else
1555 term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1556 #endif
1557 term.c_iflag = IGNPAR;
1558 term.c_oflag = 0;
1559 term.c_lflag = 0;
1560
1561 cfsetispeed(&term, B50);
1562 cfsetospeed(&term, B50);
1563
1564 if (TTY_SETATTR(fd, &term) == -1)
1565 {
1566 perror("tcsetattr");
1567 exit(1);
1568 }
1569
1570 /*
1571 * lose terminal if in daemon operation
1572 */
1573 if (!interactive)
1574 detach();
1575
1576 /*
1577 * get syslog() initialized
1578 */
1579 #ifdef LOG_DAEMON
1580 openlog("dcfd", LOG_PID, LOG_DAEMON);
1581 #else
1582 openlog("dcfd", LOG_PID);
1583 #endif
1584
1585 /*
1586 * setup periodic operations (state control / frequency control)
1587 */
1588 #ifdef HAVE_SIGACTION
1589 {
1590 struct sigaction act;
1591
1592 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1593 act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0;
1594 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1595 act.sa_handler = tick;
1596 sigemptyset(&act.sa_mask);
1597 act.sa_flags = 0;
1598
1599 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1600 {
1601 syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1602 exit(1);
1603 }
1604 }
1605 #else
1606 #ifdef HAVE_SIGVEC
1607 {
1608 struct sigvec vec;
1609
1610 vec.sv_handler = tick;
1611 vec.sv_mask = 0;
1612 vec.sv_flags = 0;
1613
1614 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1615 {
1616 syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1617 exit(1);
1618 }
1619 }
1620 #else
1621 (void) signal(SIGALRM, tick);
1622 #endif
1623 #endif
1624
1625 #ifdef ITIMER_REAL
1626 {
1627 struct itimerval it;
1628
1629 it.it_interval.tv_sec = 1<<ADJINTERVAL;
1630 it.it_interval.tv_usec = 0;
1631 it.it_value.tv_sec = 1<<ADJINTERVAL;
1632 it.it_value.tv_usec = 0;
1633
1634 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1635 {
1636 syslog(LOG_ERR, "setitimer: %m");
1637 exit(1);
1638 }
1639 }
1640 #else
1641 (void) alarm(1<<ADJINTERVAL);
1642 #endif
1643
1644 PRINTF(" DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1645
1646 pbuf[60] = '\0';
1647 for ( i = 0; i < 60; i++)
1648 pbuf[i] = '.';
1649
1650 read_drift(drift_file);
1651
1652 /*
1653 * what time is it now (for interval measurement)
1654 */
1655 gettimeofday(&tlast, 0L);
1656 i = 0;
1657 /*
1658 * loop until input trouble ...
1659 */
1660 do
1661 {
1662 /*
1663 * get an impulse
1664 */
1665 while ((rrc = read(fd, &c, 1)) == 1)
1666 {
1667 gettimeofday(&t, 0L);
1668 tt = t;
1669 timersub(&t, &tlast);
1670
1671 if (errs > LINES)
1672 {
1673 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1674 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1675 errs = 0;
1676 }
1677
1678 /*
1679 * timeout -> possible minute mark -> interpretation
1680 */
1681 if (timercmp(&t, &timeout, >))
1682 {
1683 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1684
1685 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1686 {
1687 /*
1688 * this data was bad - well - forget synchronisation for now
1689 */
1690 PRINTF("\n");
1691 if (sync_state == SYNC)
1692 {
1693 sync_state = NO_SYNC;
1694 syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1695 }
1696 errs++;
1697 }
1698 else
1699 if (trace)
1700 {
1701 PRINTF("\r %.*s ", 59 - offset, &buf[offset]);
1702 }
1703
1704
1705 buf[0] = c;
1706
1707 /*
1708 * collect first character
1709 */
1710 if (((c^0xFF)+1) & (c^0xFF))
1711 pbuf[0] = '?';
1712 else
1713 pbuf[0] = type(c) ? '#' : '-';
1714
1715 for ( i = 1; i < 60; i++)
1716 pbuf[i] = '.';
1717
1718 i = 0;
1719 }
1720 else
1721 {
1722 /*
1723 * collect character
1724 */
1725 buf[i] = c;
1726
1727 /*
1728 * initial guess (usually correct)
1729 */
1730 if (((c^0xFF)+1) & (c^0xFF))
1731 pbuf[i] = '?';
1732 else
1733 pbuf[i] = type(c) ? '#' : '-';
1734
1735 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1736 }
1737
1738 if (i == 0 && rtc == CVT_OK)
1739 {
1740 /*
1741 * we got a good time code here - try to convert it to
1742 * UTC
1743 */
1744 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1745 {
1746 PRINTF("*** BAD CONVERSION\n");
1747 }
1748
1749 if (utc_time != (last_utc_time + 60))
1750 {
1751 /*
1752 * well, two successive sucessful telegrams are not 60 seconds
1753 * apart
1754 */
1755 PRINTF("*** NO MINUTE INC\n");
1756 if (sync_state == SYNC)
1757 {
1758 sync_state = NO_SYNC;
1759 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1760 }
1761 errs++;
1762 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1763 }
1764 else
1765 usecerror = 0;
1766
1767 last_utc_time = utc_time;
1768 }
1769
1770 if (rtc == CVT_OK)
1771 {
1772 if (i == 0)
1773 {
1774 /*
1775 * valid time code - determine offset and
1776 * note regained reception
1777 */
1778 last_sync = ticks;
1779 if (sync_state == NO_SYNC)
1780 {
1781 syslog(LOG_INFO, "receiving DCF77");
1782 }
1783 else
1784 {
1785 /*
1786 * we had at least one minute SYNC - thus
1787 * last error is valid
1788 */
1789 time_offset.tv_sec = lasterror / 1000000;
1790 time_offset.tv_usec = lasterror % 1000000;
1791 adjust_clock(&time_offset, drift_file, utc_time);
1792 }
1793 sync_state = SYNC;
1794 }
1795
1796 time_offset.tv_sec = utc_time + i;
1797 time_offset.tv_usec = 0;
1798
1799 timeradd(&time_offset, &phase);
1800
1801 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1802 -tt.tv_usec;
1803
1804 /*
1805 * output interpreted DCF77 data
1806 */
1807 PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1808 "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1809 wday[clock_time.wday],
1810 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1811 clock_time.year,
1812 (clock_time.flags & DCFB_CALLBIT) ? "R" : "_",
1813 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1814 (clock_time.flags & DCFB_DST) ? "D" : "_",
1815 (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1816 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1817 );
1818
1819 if (trace && (i == 0))
1820 {
1821 PRINTF("\n");
1822 errs++;
1823 }
1824 lasterror = usecerror / (i+1);
1825 }
1826 else
1827 {
1828 lasterror = 0; /* we cannot calculate phase errors on bad reception */
1829 }
1830
1831 PRINTF("\r");
1832
1833 if (i < 60)
1834 {
1835 i++;
1836 }
1837
1838 tlast = tt;
1839
1840 if (interactive)
1841 fflush(stdout);
1842 }
1843 } while ((rrc == -1) && (errno == EINTR));
1844
1845 /*
1846 * lost IO - sorry guys
1847 */
1848 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1849
1850 (void)close(fd);
1851 }
1852
1853 closelog();
1854
1855 return 0;
1856 }
1857
1858 /*
1859 * History:
1860 *
1861 * dcfd.c,v
1862 * Revision 4.18 2005/10/07 22:08:18 kardel
1863 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1864 *
1865 * Revision 4.17.2.1 2005/10/03 19:15:16 kardel
1866 * work around configure not detecting a missing sigvec compatibility
1867 * interface on NetBSD 3.99.9 and above
1868 *
1869 * Revision 4.17 2005/08/10 10:09:44 kardel
1870 * output revision information
1871 *
1872 * Revision 4.16 2005/08/10 06:33:25 kardel
1873 * cleanup warnings
1874 *
1875 * Revision 4.15 2005/08/10 06:28:45 kardel
1876 * fix setting of baud rate
1877 *
1878 * Revision 4.14 2005/04/16 17:32:10 kardel
1879 * update copyright
1880 *
1881 * Revision 4.13 2004/11/14 15:29:41 kardel
1882 * support PPSAPI, upgrade Copyright to Berkeley style
1883 *
1884 */
1885