1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane.h"
40 #include "dc_plane_priv.h"
41 #include "dc_stream_priv.h"
42
43 #include "gpio_service_interface.h"
44 #include "clk_mgr.h"
45 #include "clock_source.h"
46 #include "dc_bios_types.h"
47
48 #include "bios_parser_interface.h"
49 #include "bios/bios_parser_helper.h"
50 #include "include/irq_service_interface.h"
51 #include "transform.h"
52 #include "dmcu.h"
53 #include "dpp.h"
54 #include "timing_generator.h"
55 #include "abm.h"
56 #include "virtual/virtual_link_encoder.h"
57 #include "hubp.h"
58
59 #include "link_hwss.h"
60 #include "link_encoder.h"
61 #include "link_enc_cfg.h"
62
63 #include "link.h"
64 #include "dm_helpers.h"
65 #include "mem_input.h"
66
67 #include "dc_dmub_srv.h"
68
69 #include "dsc.h"
70
71 #include "vm_helper.h"
72
73 #include "dce/dce_i2c.h"
74
75 #include "dmub/dmub_srv.h"
76
77 #include "dce/dmub_psr.h"
78
79 #include "dce/dmub_hw_lock_mgr.h"
80
81 #include "dc_trace.h"
82
83 #include "hw_sequencer_private.h"
84
85 #if defined(CONFIG_DRM_AMD_DC_FP)
86 #include "dml2/dml2_internal_types.h"
87 #endif
88
89 #include "dce/dmub_outbox.h"
90
91 #define CTX \
92 dc->ctx
93
94 #define DC_LOGGER \
95 dc->ctx->logger
96
97 static const char DC_BUILD_ID[] = "production-build";
98
99 /**
100 * DOC: Overview
101 *
102 * DC is the OS-agnostic component of the amdgpu DC driver.
103 *
104 * DC maintains and validates a set of structs representing the state of the
105 * driver and writes that state to AMD hardware
106 *
107 * Main DC HW structs:
108 *
109 * struct dc - The central struct. One per driver. Created on driver load,
110 * destroyed on driver unload.
111 *
112 * struct dc_context - One per driver.
113 * Used as a backpointer by most other structs in dc.
114 *
115 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
116 * plugpoints). Created on driver load, destroyed on driver unload.
117 *
118 * struct dc_sink - One per display. Created on boot or hotplug.
119 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
120 * (the display directly attached). It may also have one or more remote
121 * sinks (in the Multi-Stream Transport case)
122 *
123 * struct resource_pool - One per driver. Represents the hw blocks not in the
124 * main pipeline. Not directly accessible by dm.
125 *
126 * Main dc state structs:
127 *
128 * These structs can be created and destroyed as needed. There is a full set of
129 * these structs in dc->current_state representing the currently programmed state.
130 *
131 * struct dc_state - The global DC state to track global state information,
132 * such as bandwidth values.
133 *
134 * struct dc_stream_state - Represents the hw configuration for the pipeline from
135 * a framebuffer to a display. Maps one-to-one with dc_sink.
136 *
137 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
138 * and may have more in the Multi-Plane Overlay case.
139 *
140 * struct resource_context - Represents the programmable state of everything in
141 * the resource_pool. Not directly accessible by dm.
142 *
143 * struct pipe_ctx - A member of struct resource_context. Represents the
144 * internal hardware pipeline components. Each dc_plane_state has either
145 * one or two (in the pipe-split case).
146 */
147
148 /* Private functions */
149
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)150 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
151 {
152 if (new > *original)
153 *original = new;
154 }
155
destroy_links(struct dc * dc)156 static void destroy_links(struct dc *dc)
157 {
158 uint32_t i;
159
160 for (i = 0; i < dc->link_count; i++) {
161 if (NULL != dc->links[i])
162 dc->link_srv->destroy_link(&dc->links[i]);
163 }
164 }
165
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)166 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
167 {
168 int i;
169 uint32_t count = 0;
170
171 for (i = 0; i < num_links; i++) {
172 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
173 links[i]->is_internal_display)
174 count++;
175 }
176
177 return count;
178 }
179
get_seamless_boot_stream_count(struct dc_state * ctx)180 static int get_seamless_boot_stream_count(struct dc_state *ctx)
181 {
182 uint8_t i;
183 uint8_t seamless_boot_stream_count = 0;
184
185 for (i = 0; i < ctx->stream_count; i++)
186 if (ctx->streams[i]->apply_seamless_boot_optimization)
187 seamless_boot_stream_count++;
188
189 return seamless_boot_stream_count;
190 }
191
create_links(struct dc * dc,uint32_t num_virtual_links)192 static bool create_links(
193 struct dc *dc,
194 uint32_t num_virtual_links)
195 {
196 int i;
197 int connectors_num;
198 struct dc_bios *bios = dc->ctx->dc_bios;
199
200 dc->link_count = 0;
201
202 connectors_num = bios->funcs->get_connectors_number(bios);
203
204 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
205
206 if (connectors_num > ENUM_ID_COUNT) {
207 dm_error(
208 "DC: Number of connectors %d exceeds maximum of %d!\n",
209 connectors_num,
210 ENUM_ID_COUNT);
211 return false;
212 }
213
214 dm_output_to_console(
215 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
216 __func__,
217 connectors_num,
218 num_virtual_links);
219
220 // condition loop on link_count to allow skipping invalid indices
221 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
222 struct link_init_data link_init_params = {0};
223 struct dc_link *link;
224
225 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
226
227 link_init_params.ctx = dc->ctx;
228 /* next BIOS object table connector */
229 link_init_params.connector_index = i;
230 link_init_params.link_index = dc->link_count;
231 link_init_params.dc = dc;
232 link = dc->link_srv->create_link(&link_init_params);
233
234 if (link) {
235 dc->links[dc->link_count] = link;
236 link->dc = dc;
237 ++dc->link_count;
238 }
239 }
240
241 DC_LOG_DC("BIOS object table - end");
242
243 /* Create a link for each usb4 dpia port */
244 dc->lowest_dpia_link_index = MAX_LINKS;
245 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
246 struct link_init_data link_init_params = {0};
247 struct dc_link *link;
248
249 link_init_params.ctx = dc->ctx;
250 link_init_params.connector_index = i;
251 link_init_params.link_index = dc->link_count;
252 link_init_params.dc = dc;
253 link_init_params.is_dpia_link = true;
254
255 link = dc->link_srv->create_link(&link_init_params);
256 if (link) {
257 if (dc->lowest_dpia_link_index > dc->link_count)
258 dc->lowest_dpia_link_index = dc->link_count;
259
260 dc->links[dc->link_count] = link;
261 link->dc = dc;
262 ++dc->link_count;
263 }
264 }
265
266 for (i = 0; i < num_virtual_links; i++) {
267 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
268 struct encoder_init_data enc_init = {0};
269
270 if (link == NULL) {
271 BREAK_TO_DEBUGGER();
272 goto failed_alloc;
273 }
274
275 link->link_index = dc->link_count;
276 dc->links[dc->link_count] = link;
277 dc->link_count++;
278
279 link->ctx = dc->ctx;
280 link->dc = dc;
281 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
282 link->link_id.type = OBJECT_TYPE_CONNECTOR;
283 link->link_id.id = CONNECTOR_ID_VIRTUAL;
284 link->link_id.enum_id = ENUM_ID_1;
285 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
286 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
287
288 if (!link->link_enc) {
289 BREAK_TO_DEBUGGER();
290 goto failed_alloc;
291 }
292
293 link->link_status.dpcd_caps = &link->dpcd_caps;
294
295 enc_init.ctx = dc->ctx;
296 enc_init.channel = CHANNEL_ID_UNKNOWN;
297 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
298 enc_init.transmitter = TRANSMITTER_UNKNOWN;
299 enc_init.connector = link->link_id;
300 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
301 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
302 enc_init.encoder.enum_id = ENUM_ID_1;
303 virtual_link_encoder_construct(link->link_enc, &enc_init);
304 }
305
306 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
307
308 return true;
309
310 failed_alloc:
311 return false;
312 }
313
314 /* Create additional DIG link encoder objects if fewer than the platform
315 * supports were created during link construction. This can happen if the
316 * number of physical connectors is less than the number of DIGs.
317 */
create_link_encoders(struct dc * dc)318 static bool create_link_encoders(struct dc *dc)
319 {
320 bool res = true;
321 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
322 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
323 int i;
324
325 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
326 * link encoders and physical display endpoints and does not require
327 * additional link encoder objects.
328 */
329 if (num_usb4_dpia == 0)
330 return res;
331
332 /* Create as many link encoder objects as the platform supports. DPIA
333 * endpoints can be programmably mapped to any DIG.
334 */
335 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
336 for (i = 0; i < num_dig_link_enc; i++) {
337 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
338
339 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
340 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
341 (enum engine_id)(ENGINE_ID_DIGA + i));
342 if (link_enc) {
343 dc->res_pool->link_encoders[i] = link_enc;
344 dc->res_pool->dig_link_enc_count++;
345 } else {
346 res = false;
347 }
348 }
349 }
350 }
351
352 return res;
353 }
354
355 /* Destroy any additional DIG link encoder objects created by
356 * create_link_encoders().
357 * NB: Must only be called after destroy_links().
358 */
destroy_link_encoders(struct dc * dc)359 static void destroy_link_encoders(struct dc *dc)
360 {
361 unsigned int num_usb4_dpia;
362 unsigned int num_dig_link_enc;
363 int i;
364
365 if (!dc->res_pool)
366 return;
367
368 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
369 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
370
371 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
372 * link encoders and physical display endpoints and does not require
373 * additional link encoder objects.
374 */
375 if (num_usb4_dpia == 0)
376 return;
377
378 for (i = 0; i < num_dig_link_enc; i++) {
379 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
380
381 if (link_enc) {
382 link_enc->funcs->destroy(&link_enc);
383 dc->res_pool->link_encoders[i] = NULL;
384 dc->res_pool->dig_link_enc_count--;
385 }
386 }
387 }
388
dc_perf_trace_create(void)389 static struct dc_perf_trace *dc_perf_trace_create(void)
390 {
391 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
392 }
393
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)394 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
395 {
396 kfree(*perf_trace);
397 *perf_trace = NULL;
398 }
399
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)400 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
401 {
402 if (!dc || !stream || !adjust)
403 return false;
404
405 if (!dc->current_state)
406 return false;
407
408 int i;
409
410 for (i = 0; i < MAX_PIPES; i++) {
411 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
412
413 if (pipe->stream == stream && pipe->stream_res.tg) {
414 if (dc->hwss.set_long_vtotal)
415 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
416
417 return true;
418 }
419 }
420
421 return false;
422 }
423
424 /**
425 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
426 * @dc: dc reference
427 * @stream: Initial dc stream state
428 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
429 *
430 * Looks up the pipe context of dc_stream_state and updates the
431 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
432 * Rate, which is a power-saving feature that targets reducing panel
433 * refresh rate while the screen is static
434 *
435 * Return: %true if the pipe context is found and adjusted;
436 * %false if the pipe context is not found.
437 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)438 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
439 struct dc_stream_state *stream,
440 struct dc_crtc_timing_adjust *adjust)
441 {
442 int i;
443
444 /*
445 * Don't adjust DRR while there's bandwidth optimizations pending to
446 * avoid conflicting with firmware updates.
447 */
448 if (dc->ctx->dce_version > DCE_VERSION_MAX) {
449 if (dc->optimized_required || dc->wm_optimized_required) {
450 stream->adjust.timing_adjust_pending = true;
451 return false;
452 }
453 }
454
455 dc_exit_ips_for_hw_access(dc);
456
457 stream->adjust.v_total_max = adjust->v_total_max;
458 stream->adjust.v_total_mid = adjust->v_total_mid;
459 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
460 stream->adjust.v_total_min = adjust->v_total_min;
461 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
462
463 if (dc->caps.max_v_total != 0 &&
464 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
465 stream->adjust.timing_adjust_pending = false;
466 if (adjust->allow_otg_v_count_halt)
467 return set_long_vtotal(dc, stream, adjust);
468 else
469 return false;
470 }
471
472 for (i = 0; i < MAX_PIPES; i++) {
473 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
474
475 if (pipe->stream == stream && pipe->stream_res.tg) {
476 dc->hwss.set_drr(&pipe,
477 1,
478 *adjust);
479 stream->adjust.timing_adjust_pending = false;
480 return true;
481 }
482 }
483 return false;
484 }
485
486 /**
487 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
488 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
489 *
490 * @dc: [in] dc reference
491 * @stream: [in] Initial dc stream state
492 * @refresh_rate: [in] new refresh_rate
493 *
494 * Return: %true if the pipe context is found and there is an associated
495 * timing_generator for the DC;
496 * %false if the pipe context is not found or there is no
497 * timing_generator for the DC.
498 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)499 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
500 struct dc_stream_state *stream,
501 uint32_t *refresh_rate)
502 {
503 bool status = false;
504
505 int i = 0;
506
507 dc_exit_ips_for_hw_access(dc);
508
509 for (i = 0; i < MAX_PIPES; i++) {
510 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
511
512 if (pipe->stream == stream && pipe->stream_res.tg) {
513 /* Only execute if a function pointer has been defined for
514 * the DC version in question
515 */
516 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
517 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
518
519 status = true;
520
521 break;
522 }
523 }
524 }
525
526 return status;
527 }
528
529 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
530 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)531 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
532 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
533 {
534 union dmub_rb_cmd cmd = {0};
535
536 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
537 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
538
539 if (is_stop) {
540 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
541 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
542 } else {
543 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
544 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
545 cmd.secure_display.roi_info.x_start = rect->x;
546 cmd.secure_display.roi_info.y_start = rect->y;
547 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
548 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
549 }
550
551 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
552 }
553
554 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)555 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
556 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
557 {
558 if (is_stop)
559 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
560 else
561 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
562 }
563
564 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)565 dc_stream_forward_crc_window(struct dc_stream_state *stream,
566 struct rect *rect, uint8_t phy_id, bool is_stop)
567 {
568 struct dmcu *dmcu;
569 struct dc_dmub_srv *dmub_srv;
570 struct otg_phy_mux mux_mapping;
571 struct pipe_ctx *pipe;
572 int i;
573 struct dc *dc = stream->ctx->dc;
574
575 for (i = 0; i < MAX_PIPES; i++) {
576 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
577 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
578 break;
579 }
580
581 /* Stream not found */
582 if (i == MAX_PIPES)
583 return false;
584
585 mux_mapping.phy_output_num = phy_id;
586 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
587
588 dmcu = dc->res_pool->dmcu;
589 dmub_srv = dc->ctx->dmub_srv;
590
591 /* forward to dmub */
592 if (dmub_srv)
593 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
594 /* forward to dmcu */
595 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
596 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
597 else
598 return false;
599
600 return true;
601 }
602
603 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)604 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
605 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
606 {
607 int i;
608 union dmub_rb_cmd cmd = {0};
609
610 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
611 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
612
613 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
614
615 if (stop) {
616 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
617 } else {
618 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
619 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
620 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
621 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
622 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
623 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
624 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
625 }
626 }
627
628 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
629 }
630
631 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)632 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
633 struct crc_window *window, uint8_t phy_id, bool stop)
634 {
635 struct dc_dmub_srv *dmub_srv;
636 struct otg_phy_mux mux_mapping;
637 struct pipe_ctx *pipe;
638 int i;
639 struct dc *dc = stream->ctx->dc;
640
641 for (i = 0; i < MAX_PIPES; i++) {
642 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
643 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
644 break;
645 }
646
647 /* Stream not found */
648 if (i == MAX_PIPES)
649 return false;
650
651 mux_mapping.phy_output_num = phy_id;
652 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
653
654 dmub_srv = dc->ctx->dmub_srv;
655
656 /* forward to dmub only. no dmcu support*/
657 if (dmub_srv)
658 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
659 else
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
665
666 /**
667 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
668 * @dc: DC Object
669 * @stream: The stream to configure CRC on.
670 * @crc_window: CRC window (x/y start/end) information
671 * @enable: Enable CRC if true, disable otherwise.
672 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
673 * once.
674 * @idx: Capture CRC on which CRC engine instance
675 * @reset: Reset CRC engine before the configuration
676 *
677 * By default, the entire frame is used to calculate the CRC.
678 *
679 * Return: %false if the stream is not found or CRC capture is not supported;
680 * %true if the stream has been configured.
681 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)682 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
683 struct crc_params *crc_window, bool enable, bool continuous,
684 uint8_t idx, bool reset)
685 {
686 struct pipe_ctx *pipe;
687 struct crc_params param;
688 struct timing_generator *tg;
689
690 pipe = resource_get_otg_master_for_stream(
691 &dc->current_state->res_ctx, stream);
692
693 /* Stream not found */
694 if (pipe == NULL)
695 return false;
696
697 dc_exit_ips_for_hw_access(dc);
698
699 /* By default, capture the full frame */
700 param.windowa_x_start = 0;
701 param.windowa_y_start = 0;
702 param.windowa_x_end = pipe->stream->timing.h_addressable;
703 param.windowa_y_end = pipe->stream->timing.v_addressable;
704 param.windowb_x_start = 0;
705 param.windowb_y_start = 0;
706 param.windowb_x_end = pipe->stream->timing.h_addressable;
707 param.windowb_y_end = pipe->stream->timing.v_addressable;
708
709 if (crc_window) {
710 param.windowa_x_start = crc_window->windowa_x_start;
711 param.windowa_y_start = crc_window->windowa_y_start;
712 param.windowa_x_end = crc_window->windowa_x_end;
713 param.windowa_y_end = crc_window->windowa_y_end;
714 param.windowb_x_start = crc_window->windowb_x_start;
715 param.windowb_y_start = crc_window->windowb_y_start;
716 param.windowb_x_end = crc_window->windowb_x_end;
717 param.windowb_y_end = crc_window->windowb_y_end;
718 }
719
720 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
721 param.odm_mode = pipe->next_odm_pipe ? 1:0;
722
723 /* Default to the union of both windows */
724 param.selection = UNION_WINDOW_A_B;
725 param.continuous_mode = continuous;
726 param.enable = enable;
727
728 param.crc_eng_inst = idx;
729 param.reset = reset;
730
731 tg = pipe->stream_res.tg;
732
733 /* Only call if supported */
734 if (tg->funcs->configure_crc)
735 return tg->funcs->configure_crc(tg, ¶m);
736 DC_LOG_WARNING("CRC capture not supported.");
737 return false;
738 }
739
740 /**
741 * dc_stream_get_crc() - Get CRC values for the given stream.
742 *
743 * @dc: DC object.
744 * @stream: The DC stream state of the stream to get CRCs from.
745 * @idx: index of crc engine to get CRC from
746 * @r_cr: CRC value for the red component.
747 * @g_y: CRC value for the green component.
748 * @b_cb: CRC value for the blue component.
749 *
750 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
751 *
752 * Return:
753 * %false if stream is not found, or if CRCs are not enabled.
754 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)755 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
756 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
757 {
758 int i;
759 struct pipe_ctx *pipe;
760 struct timing_generator *tg;
761
762 dc_exit_ips_for_hw_access(dc);
763
764 for (i = 0; i < MAX_PIPES; i++) {
765 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
766 if (pipe->stream == stream)
767 break;
768 }
769 /* Stream not found */
770 if (i == MAX_PIPES)
771 return false;
772
773 tg = pipe->stream_res.tg;
774
775 if (tg->funcs->get_crc)
776 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
777 DC_LOG_WARNING("CRC capture not supported.");
778 return false;
779 }
780
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)781 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
782 enum dc_dynamic_expansion option)
783 {
784 /* OPP FMT dyn expansion updates*/
785 int i;
786 struct pipe_ctx *pipe_ctx;
787
788 dc_exit_ips_for_hw_access(dc);
789
790 for (i = 0; i < MAX_PIPES; i++) {
791 if (dc->current_state->res_ctx.pipe_ctx[i].stream
792 == stream) {
793 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
794 pipe_ctx->stream_res.opp->dyn_expansion = option;
795 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
796 pipe_ctx->stream_res.opp,
797 COLOR_SPACE_YCBCR601,
798 stream->timing.display_color_depth,
799 stream->signal);
800 }
801 }
802 }
803
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)804 void dc_stream_set_dither_option(struct dc_stream_state *stream,
805 enum dc_dither_option option)
806 {
807 struct bit_depth_reduction_params params;
808 struct dc_link *link = stream->link;
809 struct pipe_ctx *pipes = NULL;
810 int i;
811
812 for (i = 0; i < MAX_PIPES; i++) {
813 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
814 stream) {
815 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
816 break;
817 }
818 }
819
820 if (!pipes)
821 return;
822 if (option > DITHER_OPTION_MAX)
823 return;
824
825 dc_exit_ips_for_hw_access(stream->ctx->dc);
826
827 stream->dither_option = option;
828
829 memset(¶ms, 0, sizeof(params));
830 resource_build_bit_depth_reduction_params(stream, ¶ms);
831 stream->bit_depth_params = params;
832
833 if (pipes->plane_res.xfm &&
834 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
835 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
836 pipes->plane_res.xfm,
837 pipes->plane_res.scl_data.lb_params.depth,
838 &stream->bit_depth_params);
839 }
840
841 pipes->stream_res.opp->funcs->
842 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
843 }
844
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)845 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
846 {
847 int i;
848 bool ret = false;
849 struct pipe_ctx *pipes;
850
851 dc_exit_ips_for_hw_access(dc);
852
853 for (i = 0; i < MAX_PIPES; i++) {
854 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
855 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
856 dc->hwss.program_gamut_remap(pipes);
857 ret = true;
858 }
859 }
860
861 return ret;
862 }
863
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)864 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
865 {
866 int i;
867 bool ret = false;
868 struct pipe_ctx *pipes;
869
870 dc_exit_ips_for_hw_access(dc);
871
872 for (i = 0; i < MAX_PIPES; i++) {
873 if (dc->current_state->res_ctx.pipe_ctx[i].stream
874 == stream) {
875
876 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
877 dc->hwss.program_output_csc(dc,
878 pipes,
879 stream->output_color_space,
880 stream->csc_color_matrix.matrix,
881 pipes->stream_res.opp->inst);
882 ret = true;
883 }
884 }
885
886 return ret;
887 }
888
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)889 void dc_stream_set_static_screen_params(struct dc *dc,
890 struct dc_stream_state **streams,
891 int num_streams,
892 const struct dc_static_screen_params *params)
893 {
894 int i, j;
895 struct pipe_ctx *pipes_affected[MAX_PIPES];
896 int num_pipes_affected = 0;
897
898 dc_exit_ips_for_hw_access(dc);
899
900 for (i = 0; i < num_streams; i++) {
901 struct dc_stream_state *stream = streams[i];
902
903 for (j = 0; j < MAX_PIPES; j++) {
904 if (dc->current_state->res_ctx.pipe_ctx[j].stream
905 == stream) {
906 pipes_affected[num_pipes_affected++] =
907 &dc->current_state->res_ctx.pipe_ctx[j];
908 }
909 }
910 }
911
912 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
913 }
914
dc_destruct(struct dc * dc)915 static void dc_destruct(struct dc *dc)
916 {
917 // reset link encoder assignment table on destruct
918 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign &&
919 !dc->config.unify_link_enc_assignment)
920 link_enc_cfg_init(dc, dc->current_state);
921
922 if (dc->current_state) {
923 dc_state_release(dc->current_state);
924 dc->current_state = NULL;
925 }
926
927 destroy_links(dc);
928
929 destroy_link_encoders(dc);
930
931 if (dc->clk_mgr) {
932 dc_destroy_clk_mgr(dc->clk_mgr);
933 dc->clk_mgr = NULL;
934 }
935
936 dc_destroy_resource_pool(dc);
937
938 if (dc->link_srv)
939 link_destroy_link_service(&dc->link_srv);
940
941 if (dc->ctx->gpio_service)
942 dal_gpio_service_destroy(&dc->ctx->gpio_service);
943
944 if (dc->ctx->created_bios)
945 dal_bios_parser_destroy(&dc->ctx->dc_bios);
946
947 kfree(dc->ctx->logger);
948 dc_perf_trace_destroy(&dc->ctx->perf_trace);
949
950 kfree(dc->ctx);
951 dc->ctx = NULL;
952
953 kfree(dc->bw_vbios);
954 dc->bw_vbios = NULL;
955
956 kfree(dc->bw_dceip);
957 dc->bw_dceip = NULL;
958
959 kfree(dc->dcn_soc);
960 dc->dcn_soc = NULL;
961
962 kfree(dc->dcn_ip);
963 dc->dcn_ip = NULL;
964
965 kfree(dc->vm_helper);
966 dc->vm_helper = NULL;
967
968 }
969
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)970 static bool dc_construct_ctx(struct dc *dc,
971 const struct dc_init_data *init_params)
972 {
973 struct dc_context *dc_ctx;
974
975 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
976 if (!dc_ctx)
977 return false;
978
979 dc_stream_init_rmcm_3dlut(dc);
980
981 dc_ctx->cgs_device = init_params->cgs_device;
982 dc_ctx->driver_context = init_params->driver;
983 dc_ctx->dc = dc;
984 dc_ctx->asic_id = init_params->asic_id;
985 dc_ctx->dc_sink_id_count = 0;
986 dc_ctx->dc_stream_id_count = 0;
987 dc_ctx->dce_environment = init_params->dce_environment;
988 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
989 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
990 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
991
992 /* Create logger */
993 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
994
995 if (!dc_ctx->logger) {
996 kfree(dc_ctx);
997 return false;
998 }
999
1000 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
1001 dc->dml.logger = dc_ctx->logger;
1002
1003 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1004
1005 dc_ctx->perf_trace = dc_perf_trace_create();
1006 if (!dc_ctx->perf_trace) {
1007 kfree(dc_ctx);
1008 ASSERT_CRITICAL(false);
1009 return false;
1010 }
1011
1012 dc->ctx = dc_ctx;
1013
1014 dc->link_srv = link_create_link_service();
1015 if (!dc->link_srv)
1016 return false;
1017
1018 return true;
1019 }
1020
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1021 static bool dc_construct(struct dc *dc,
1022 const struct dc_init_data *init_params)
1023 {
1024 struct dc_context *dc_ctx;
1025 struct bw_calcs_dceip *dc_dceip;
1026 struct bw_calcs_vbios *dc_vbios;
1027 struct dcn_soc_bounding_box *dcn_soc;
1028 struct dcn_ip_params *dcn_ip;
1029
1030 dc->config = init_params->flags;
1031
1032 // Allocate memory for the vm_helper
1033 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1034 if (!dc->vm_helper) {
1035 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1036 goto fail;
1037 }
1038
1039 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1040
1041 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1042 if (!dc_dceip) {
1043 dm_error("%s: failed to create dceip\n", __func__);
1044 goto fail;
1045 }
1046
1047 dc->bw_dceip = dc_dceip;
1048
1049 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1050 if (!dc_vbios) {
1051 dm_error("%s: failed to create vbios\n", __func__);
1052 goto fail;
1053 }
1054
1055 dc->bw_vbios = dc_vbios;
1056 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1057 if (!dcn_soc) {
1058 dm_error("%s: failed to create dcn_soc\n", __func__);
1059 goto fail;
1060 }
1061
1062 dc->dcn_soc = dcn_soc;
1063
1064 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1065 if (!dcn_ip) {
1066 dm_error("%s: failed to create dcn_ip\n", __func__);
1067 goto fail;
1068 }
1069
1070 dc->dcn_ip = dcn_ip;
1071
1072 if (init_params->bb_from_dmub)
1073 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1074 else
1075 dc->dml2_options.bb_from_dmub = NULL;
1076
1077 if (!dc_construct_ctx(dc, init_params)) {
1078 dm_error("%s: failed to create ctx\n", __func__);
1079 goto fail;
1080 }
1081
1082 dc_ctx = dc->ctx;
1083
1084 /* Resource should construct all asic specific resources.
1085 * This should be the only place where we need to parse the asic id
1086 */
1087 if (init_params->vbios_override)
1088 dc_ctx->dc_bios = init_params->vbios_override;
1089 else {
1090 /* Create BIOS parser */
1091 struct bp_init_data bp_init_data;
1092
1093 bp_init_data.ctx = dc_ctx;
1094 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1095
1096 dc_ctx->dc_bios = dal_bios_parser_create(
1097 &bp_init_data, dc_ctx->dce_version);
1098
1099 if (!dc_ctx->dc_bios) {
1100 ASSERT_CRITICAL(false);
1101 goto fail;
1102 }
1103
1104 dc_ctx->created_bios = true;
1105 }
1106
1107 dc->vendor_signature = init_params->vendor_signature;
1108
1109 /* Create GPIO service */
1110 dc_ctx->gpio_service = dal_gpio_service_create(
1111 dc_ctx->dce_version,
1112 dc_ctx->dce_environment,
1113 dc_ctx);
1114
1115 if (!dc_ctx->gpio_service) {
1116 ASSERT_CRITICAL(false);
1117 goto fail;
1118 }
1119
1120 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1121 if (!dc->res_pool)
1122 goto fail;
1123
1124 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1125 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1126 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1127 if (dc->caps.max_optimizable_video_width == 0)
1128 dc->caps.max_optimizable_video_width = 5120;
1129 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1130 if (!dc->clk_mgr)
1131 goto fail;
1132 #ifdef CONFIG_DRM_AMD_DC_FP
1133 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1134
1135 if (dc->res_pool->funcs->update_bw_bounding_box) {
1136 DC_FP_START();
1137 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1138 DC_FP_END();
1139 }
1140 #endif
1141
1142 if (!create_links(dc, init_params->num_virtual_links))
1143 goto fail;
1144
1145 /* Create additional DIG link encoder objects if fewer than the platform
1146 * supports were created during link construction.
1147 */
1148 if (!create_link_encoders(dc))
1149 goto fail;
1150
1151 /* Creation of current_state must occur after dc->dml
1152 * is initialized in dc_create_resource_pool because
1153 * on creation it copies the contents of dc->dml
1154 */
1155 dc->current_state = dc_state_create(dc, NULL);
1156
1157 if (!dc->current_state) {
1158 dm_error("%s: failed to create validate ctx\n", __func__);
1159 goto fail;
1160 }
1161
1162 return true;
1163
1164 fail:
1165 return false;
1166 }
1167
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1168 static void disable_all_writeback_pipes_for_stream(
1169 const struct dc *dc,
1170 struct dc_stream_state *stream,
1171 struct dc_state *context)
1172 {
1173 int i;
1174
1175 for (i = 0; i < stream->num_wb_info; i++)
1176 stream->writeback_info[i].wb_enabled = false;
1177 }
1178
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1179 static void apply_ctx_interdependent_lock(struct dc *dc,
1180 struct dc_state *context,
1181 struct dc_stream_state *stream,
1182 bool lock)
1183 {
1184 int i;
1185
1186 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1187 if (dc->hwss.interdependent_update_lock)
1188 dc->hwss.interdependent_update_lock(dc, context, lock);
1189 else {
1190 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1191 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1192 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1193
1194 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1195 if (stream == pipe_ctx->stream) {
1196 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1197 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1198 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1199 }
1200 }
1201 }
1202 }
1203
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1204 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1205 {
1206 if (dc->debug.visual_confirm & VISUAL_CONFIRM_EXPLICIT) {
1207 memcpy(&pipe_ctx->visual_confirm_color, &pipe_ctx->plane_state->visual_confirm_color,
1208 sizeof(pipe_ctx->visual_confirm_color));
1209 return;
1210 }
1211
1212 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1213 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1214
1215 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1216 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1217 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1218 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1219 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1220 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1221 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1222 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1223 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_DCC)
1224 get_dcc_visual_confirm_color(dc, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1225 else {
1226 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1227 color_space_to_black_color(
1228 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1229 }
1230 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1231 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1232 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1233 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1234 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1235 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1236 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1237 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1238 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1239 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1240 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1241 }
1242 }
1243 }
1244
dc_get_visual_confirm_for_stream(struct dc * dc,struct dc_stream_state * stream_state,struct tg_color * color)1245 void dc_get_visual_confirm_for_stream(
1246 struct dc *dc,
1247 struct dc_stream_state *stream_state,
1248 struct tg_color *color)
1249 {
1250 struct dc_stream_status *stream_status = dc_stream_get_status(stream_state);
1251 struct pipe_ctx *pipe_ctx;
1252 int i;
1253 struct dc_plane_state *plane_state = NULL;
1254
1255 if (!stream_status)
1256 return;
1257
1258 switch (dc->debug.visual_confirm) {
1259 case VISUAL_CONFIRM_DISABLE:
1260 return;
1261 case VISUAL_CONFIRM_PSR:
1262 case VISUAL_CONFIRM_FAMS:
1263 pipe_ctx = dc_stream_get_pipe_ctx(stream_state);
1264 if (!pipe_ctx)
1265 return;
1266 dc_dmub_srv_get_visual_confirm_color_cmd(dc, pipe_ctx);
1267 memcpy(color, &dc->ctx->dmub_srv->dmub->visual_confirm_color, sizeof(struct tg_color));
1268 return;
1269
1270 default:
1271 /* find plane with highest layer_index */
1272 for (i = 0; i < stream_status->plane_count; i++) {
1273 if (stream_status->plane_states[i]->visible)
1274 plane_state = stream_status->plane_states[i];
1275 }
1276 if (!plane_state)
1277 return;
1278 /* find pipe that contains plane with highest layer index */
1279 for (i = 0; i < MAX_PIPES; i++) {
1280 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1281
1282 if (pipe->plane_state == plane_state) {
1283 memcpy(color, &pipe->visual_confirm_color, sizeof(struct tg_color));
1284 return;
1285 }
1286 }
1287 }
1288 }
1289
disable_dangling_plane(struct dc * dc,struct dc_state * context)1290 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1291 {
1292 int i, j;
1293 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1294 struct dc_state *current_ctx;
1295 struct pipe_ctx *pipe;
1296 struct timing_generator *tg;
1297
1298 if (dangling_context == NULL)
1299 return;
1300
1301 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1302 struct dc_stream_state *old_stream =
1303 dc->current_state->res_ctx.pipe_ctx[i].stream;
1304 bool should_disable = true;
1305 bool pipe_split_change = false;
1306
1307 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1308 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1309 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1310 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1311 else
1312 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1313 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1314
1315 for (j = 0; j < context->stream_count; j++) {
1316 if (old_stream == context->streams[j]) {
1317 should_disable = false;
1318 break;
1319 }
1320 }
1321 if (!should_disable && pipe_split_change &&
1322 dc->current_state->stream_count != context->stream_count)
1323 should_disable = true;
1324
1325 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1326 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1327 struct pipe_ctx *old_pipe, *new_pipe;
1328
1329 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1330 new_pipe = &context->res_ctx.pipe_ctx[i];
1331
1332 if (old_pipe->plane_state && !new_pipe->plane_state)
1333 should_disable = true;
1334 }
1335
1336 if (should_disable && old_stream) {
1337 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1338 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1339 tg = pipe->stream_res.tg;
1340 /* When disabling plane for a phantom pipe, we must turn on the
1341 * phantom OTG so the disable programming gets the double buffer
1342 * update. Otherwise the pipe will be left in a partially disabled
1343 * state that can result in underflow or hang when enabling it
1344 * again for different use.
1345 */
1346 if (is_phantom) {
1347 if (tg->funcs->enable_crtc) {
1348 if (dc->hwseq->funcs.blank_pixel_data)
1349 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1350 tg->funcs->enable_crtc(tg);
1351 }
1352 }
1353
1354 if (is_phantom)
1355 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1356 else
1357 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1358 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1359
1360 if (pipe->stream && pipe->plane_state) {
1361 if (!dc->debug.using_dml2)
1362 set_p_state_switch_method(dc, context, pipe);
1363 dc_update_visual_confirm_color(dc, context, pipe);
1364 }
1365
1366 if (dc->hwss.apply_ctx_for_surface) {
1367 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1368 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1369 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1370 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1371 }
1372
1373 if (dc->res_pool->funcs->prepare_mcache_programming)
1374 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1375 if (dc->hwss.program_front_end_for_ctx) {
1376 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1377 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1378 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1379 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1380 }
1381 /* We need to put the phantom OTG back into it's default (disabled) state or we
1382 * can get corruption when transition from one SubVP config to a different one.
1383 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1384 * will still get it's double buffer update.
1385 */
1386 if (is_phantom) {
1387 if (tg->funcs->disable_phantom_crtc)
1388 tg->funcs->disable_phantom_crtc(tg);
1389 }
1390 }
1391 }
1392
1393 current_ctx = dc->current_state;
1394 dc->current_state = dangling_context;
1395 dc_state_release(current_ctx);
1396 }
1397
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1398 static void disable_vbios_mode_if_required(
1399 struct dc *dc,
1400 struct dc_state *context)
1401 {
1402 unsigned int i, j;
1403
1404 /* check if timing_changed, disable stream*/
1405 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1406 struct dc_stream_state *stream = NULL;
1407 struct dc_link *link = NULL;
1408 struct pipe_ctx *pipe = NULL;
1409
1410 pipe = &context->res_ctx.pipe_ctx[i];
1411 stream = pipe->stream;
1412 if (stream == NULL)
1413 continue;
1414
1415 if (stream->apply_seamless_boot_optimization)
1416 continue;
1417
1418 // only looking for first odm pipe
1419 if (pipe->prev_odm_pipe)
1420 continue;
1421
1422 if (stream->link->local_sink &&
1423 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1424 link = stream->link;
1425 }
1426
1427 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1428 unsigned int enc_inst, tg_inst = 0;
1429 unsigned int pix_clk_100hz = 0;
1430
1431 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1432 if (enc_inst != ENGINE_ID_UNKNOWN) {
1433 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1434 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1435 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1436 dc->res_pool->stream_enc[j]);
1437 break;
1438 }
1439 }
1440
1441 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1442 dc->res_pool->dp_clock_source,
1443 tg_inst, &pix_clk_100hz);
1444
1445 if (link->link_status.link_active) {
1446 uint32_t requested_pix_clk_100hz =
1447 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1448
1449 if (pix_clk_100hz != requested_pix_clk_100hz) {
1450 dc->link_srv->set_dpms_off(pipe);
1451 pipe->stream->dpms_off = false;
1452 }
1453 }
1454 }
1455 }
1456 }
1457 }
1458
1459 /* Public functions */
1460
dc_create(const struct dc_init_data * init_params)1461 struct dc *dc_create(const struct dc_init_data *init_params)
1462 {
1463 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1464 unsigned int full_pipe_count;
1465
1466 if (!dc)
1467 return NULL;
1468
1469 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1470 dc->caps.linear_pitch_alignment = 64;
1471 if (!dc_construct_ctx(dc, init_params))
1472 goto destruct_dc;
1473 } else {
1474 if (!dc_construct(dc, init_params))
1475 goto destruct_dc;
1476
1477 full_pipe_count = dc->res_pool->pipe_count;
1478 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1479 full_pipe_count--;
1480 dc->caps.max_streams = min(
1481 full_pipe_count,
1482 dc->res_pool->stream_enc_count);
1483
1484 dc->caps.max_links = dc->link_count;
1485 dc->caps.max_audios = dc->res_pool->audio_count;
1486 dc->caps.linear_pitch_alignment = 64;
1487
1488 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1489
1490 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1491
1492 if (dc->res_pool->dmcu != NULL)
1493 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1494 }
1495
1496 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1497 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1498 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1499
1500 /* Populate versioning information */
1501 dc->versions.dc_ver = DC_VER;
1502
1503 dc->build_id = DC_BUILD_ID;
1504
1505 DC_LOG_DC("Display Core initialized\n");
1506
1507 return dc;
1508
1509 destruct_dc:
1510 dc_destruct(dc);
1511 kfree(dc);
1512 return NULL;
1513 }
1514
detect_edp_presence(struct dc * dc)1515 static void detect_edp_presence(struct dc *dc)
1516 {
1517 struct dc_link *edp_links[MAX_NUM_EDP];
1518 struct dc_link *edp_link = NULL;
1519 enum dc_connection_type type;
1520 int i;
1521 int edp_num;
1522
1523 dc_get_edp_links(dc, edp_links, &edp_num);
1524 if (!edp_num)
1525 return;
1526
1527 for (i = 0; i < edp_num; i++) {
1528 edp_link = edp_links[i];
1529 if (dc->config.edp_not_connected) {
1530 edp_link->edp_sink_present = false;
1531 } else {
1532 dc_link_detect_connection_type(edp_link, &type);
1533 edp_link->edp_sink_present = (type != dc_connection_none);
1534 }
1535 }
1536 }
1537
dc_hardware_init(struct dc * dc)1538 void dc_hardware_init(struct dc *dc)
1539 {
1540
1541 detect_edp_presence(dc);
1542 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1543 dc->hwss.init_hw(dc);
1544 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1545 }
1546
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1547 void dc_init_callbacks(struct dc *dc,
1548 const struct dc_callback_init *init_params)
1549 {
1550 dc->ctx->cp_psp = init_params->cp_psp;
1551 }
1552
dc_deinit_callbacks(struct dc * dc)1553 void dc_deinit_callbacks(struct dc *dc)
1554 {
1555 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1556 }
1557
dc_destroy(struct dc ** dc)1558 void dc_destroy(struct dc **dc)
1559 {
1560 dc_destruct(*dc);
1561 kfree(*dc);
1562 *dc = NULL;
1563 }
1564
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1565 static void enable_timing_multisync(
1566 struct dc *dc,
1567 struct dc_state *ctx)
1568 {
1569 int i, multisync_count = 0;
1570 int pipe_count = dc->res_pool->pipe_count;
1571 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1572
1573 for (i = 0; i < pipe_count; i++) {
1574 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1575 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1576 continue;
1577 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1578 continue;
1579 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1580 multisync_count++;
1581 }
1582
1583 if (multisync_count > 0) {
1584 dc->hwss.enable_per_frame_crtc_position_reset(
1585 dc, multisync_count, multisync_pipes);
1586 }
1587 }
1588
program_timing_sync(struct dc * dc,struct dc_state * ctx)1589 static void program_timing_sync(
1590 struct dc *dc,
1591 struct dc_state *ctx)
1592 {
1593 int i, j, k;
1594 int group_index = 0;
1595 int num_group = 0;
1596 int pipe_count = dc->res_pool->pipe_count;
1597 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1598
1599 for (i = 0; i < pipe_count; i++) {
1600 if (!ctx->res_ctx.pipe_ctx[i].stream
1601 || ctx->res_ctx.pipe_ctx[i].top_pipe
1602 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1603 continue;
1604
1605 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1606 }
1607
1608 for (i = 0; i < pipe_count; i++) {
1609 int group_size = 1;
1610 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1611 struct pipe_ctx *pipe_set[MAX_PIPES];
1612
1613 if (!unsynced_pipes[i])
1614 continue;
1615
1616 pipe_set[0] = unsynced_pipes[i];
1617 unsynced_pipes[i] = NULL;
1618
1619 /* Add tg to the set, search rest of the tg's for ones with
1620 * same timing, add all tgs with same timing to the group
1621 */
1622 for (j = i + 1; j < pipe_count; j++) {
1623 if (!unsynced_pipes[j])
1624 continue;
1625 if (sync_type != TIMING_SYNCHRONIZABLE &&
1626 dc->hwss.enable_vblanks_synchronization &&
1627 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1628 resource_are_vblanks_synchronizable(
1629 unsynced_pipes[j]->stream,
1630 pipe_set[0]->stream)) {
1631 sync_type = VBLANK_SYNCHRONIZABLE;
1632 pipe_set[group_size] = unsynced_pipes[j];
1633 unsynced_pipes[j] = NULL;
1634 group_size++;
1635 } else
1636 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1637 resource_are_streams_timing_synchronizable(
1638 unsynced_pipes[j]->stream,
1639 pipe_set[0]->stream)) {
1640 sync_type = TIMING_SYNCHRONIZABLE;
1641 pipe_set[group_size] = unsynced_pipes[j];
1642 unsynced_pipes[j] = NULL;
1643 group_size++;
1644 }
1645 }
1646
1647 /* set first unblanked pipe as master */
1648 for (j = 0; j < group_size; j++) {
1649 bool is_blanked;
1650
1651 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1652 is_blanked =
1653 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1654 else
1655 is_blanked =
1656 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1657 if (!is_blanked) {
1658 if (j == 0)
1659 break;
1660
1661 swap(pipe_set[0], pipe_set[j]);
1662 break;
1663 }
1664 }
1665
1666 for (k = 0; k < group_size; k++) {
1667 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1668
1669 if (!status)
1670 continue;
1671
1672 status->timing_sync_info.group_id = num_group;
1673 status->timing_sync_info.group_size = group_size;
1674 if (k == 0)
1675 status->timing_sync_info.master = true;
1676 else
1677 status->timing_sync_info.master = false;
1678
1679 }
1680
1681 /* remove any other unblanked pipes as they have already been synced */
1682 if (dc->config.use_pipe_ctx_sync_logic) {
1683 /* check pipe's syncd to decide which pipe to be removed */
1684 for (j = 1; j < group_size; j++) {
1685 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1686 group_size--;
1687 pipe_set[j] = pipe_set[group_size];
1688 j--;
1689 } else
1690 /* link slave pipe's syncd with master pipe */
1691 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1692 }
1693 } else {
1694 /* remove any other pipes by checking valid plane */
1695 for (j = j + 1; j < group_size; j++) {
1696 bool is_blanked;
1697
1698 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1699 is_blanked =
1700 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1701 else
1702 is_blanked =
1703 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1704 if (!is_blanked) {
1705 group_size--;
1706 pipe_set[j] = pipe_set[group_size];
1707 j--;
1708 }
1709 }
1710 }
1711
1712 if (group_size > 1) {
1713 if (sync_type == TIMING_SYNCHRONIZABLE) {
1714 dc->hwss.enable_timing_synchronization(
1715 dc, ctx, group_index, group_size, pipe_set);
1716 } else
1717 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1718 dc->hwss.enable_vblanks_synchronization(
1719 dc, group_index, group_size, pipe_set);
1720 }
1721 group_index++;
1722 }
1723 num_group++;
1724 }
1725 }
1726
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1727 static bool streams_changed(struct dc *dc,
1728 struct dc_stream_state *streams[],
1729 uint8_t stream_count)
1730 {
1731 uint8_t i;
1732
1733 if (stream_count != dc->current_state->stream_count)
1734 return true;
1735
1736 for (i = 0; i < dc->current_state->stream_count; i++) {
1737 if (dc->current_state->streams[i] != streams[i])
1738 return true;
1739 if (!streams[i]->link->link_state_valid)
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1746 bool dc_validate_boot_timing(const struct dc *dc,
1747 const struct dc_sink *sink,
1748 struct dc_crtc_timing *crtc_timing)
1749 {
1750 struct timing_generator *tg;
1751 struct stream_encoder *se = NULL;
1752
1753 struct dc_crtc_timing hw_crtc_timing = {0};
1754
1755 struct dc_link *link = sink->link;
1756 unsigned int i, enc_inst, tg_inst = 0;
1757
1758 /* Support seamless boot on EDP displays only */
1759 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1760 return false;
1761 }
1762
1763 if (dc->debug.force_odm_combine) {
1764 DC_LOG_DEBUG("boot timing validation failed due to force_odm_combine\n");
1765 return false;
1766 }
1767
1768 /* Check for enabled DIG to identify enabled display */
1769 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1770 DC_LOG_DEBUG("boot timing validation failed due to disabled DIG\n");
1771 return false;
1772 }
1773
1774 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1775
1776 if (enc_inst == ENGINE_ID_UNKNOWN) {
1777 DC_LOG_DEBUG("boot timing validation failed due to unknown DIG engine ID\n");
1778 return false;
1779 }
1780
1781 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1782 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1783
1784 se = dc->res_pool->stream_enc[i];
1785
1786 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1787 dc->res_pool->stream_enc[i]);
1788 break;
1789 }
1790 }
1791
1792 // tg_inst not found
1793 if (i == dc->res_pool->stream_enc_count) {
1794 DC_LOG_DEBUG("boot timing validation failed due to timing generator instance not found\n");
1795 return false;
1796 }
1797
1798 if (tg_inst >= dc->res_pool->timing_generator_count) {
1799 DC_LOG_DEBUG("boot timing validation failed due to invalid timing generator count\n");
1800 return false;
1801 }
1802
1803 if (tg_inst != link->link_enc->preferred_engine) {
1804 DC_LOG_DEBUG("boot timing validation failed due to non-preferred timing generator\n");
1805 return false;
1806 }
1807
1808 tg = dc->res_pool->timing_generators[tg_inst];
1809
1810 if (!tg->funcs->get_hw_timing) {
1811 DC_LOG_DEBUG("boot timing validation failed due to missing get_hw_timing callback\n");
1812 return false;
1813 }
1814
1815 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) {
1816 DC_LOG_DEBUG("boot timing validation failed due to failed get_hw_timing return\n");
1817 return false;
1818 }
1819
1820 if (crtc_timing->h_total != hw_crtc_timing.h_total) {
1821 DC_LOG_DEBUG("boot timing validation failed due to h_total mismatch\n");
1822 return false;
1823 }
1824
1825 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) {
1826 DC_LOG_DEBUG("boot timing validation failed due to h_border_left mismatch\n");
1827 return false;
1828 }
1829
1830 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) {
1831 DC_LOG_DEBUG("boot timing validation failed due to h_addressable mismatch\n");
1832 return false;
1833 }
1834
1835 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) {
1836 DC_LOG_DEBUG("boot timing validation failed due to h_border_right mismatch\n");
1837 return false;
1838 }
1839
1840 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) {
1841 DC_LOG_DEBUG("boot timing validation failed due to h_front_porch mismatch\n");
1842 return false;
1843 }
1844
1845 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) {
1846 DC_LOG_DEBUG("boot timing validation failed due to h_sync_width mismatch\n");
1847 return false;
1848 }
1849
1850 if (crtc_timing->v_total != hw_crtc_timing.v_total) {
1851 DC_LOG_DEBUG("boot timing validation failed due to v_total mismatch\n");
1852 return false;
1853 }
1854
1855 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) {
1856 DC_LOG_DEBUG("boot timing validation failed due to v_border_top mismatch\n");
1857 return false;
1858 }
1859
1860 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) {
1861 DC_LOG_DEBUG("boot timing validation failed due to v_addressable mismatch\n");
1862 return false;
1863 }
1864
1865 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) {
1866 DC_LOG_DEBUG("boot timing validation failed due to v_border_bottom mismatch\n");
1867 return false;
1868 }
1869
1870 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) {
1871 DC_LOG_DEBUG("boot timing validation failed due to v_front_porch mismatch\n");
1872 return false;
1873 }
1874
1875 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) {
1876 DC_LOG_DEBUG("boot timing validation failed due to v_sync_width mismatch\n");
1877 return false;
1878 }
1879
1880 /* block DSC for now, as VBIOS does not currently support DSC timings */
1881 if (crtc_timing->flags.DSC) {
1882 DC_LOG_DEBUG("boot timing validation failed due to DSC\n");
1883 return false;
1884 }
1885
1886 if (dc_is_dp_signal(link->connector_signal)) {
1887 unsigned int pix_clk_100hz = 0;
1888 uint32_t numOdmPipes = 1;
1889 uint32_t id_src[4] = {0};
1890
1891 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1892 dc->res_pool->dp_clock_source,
1893 tg_inst, &pix_clk_100hz);
1894
1895 if (tg->funcs->get_optc_source)
1896 tg->funcs->get_optc_source(tg,
1897 &numOdmPipes, &id_src[0], &id_src[1]);
1898
1899 if (numOdmPipes == 2) {
1900 pix_clk_100hz *= 2;
1901 } else if (numOdmPipes == 4) {
1902 pix_clk_100hz *= 4;
1903 } else if (se && se->funcs->get_pixels_per_cycle) {
1904 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1905
1906 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1907 DC_LOG_DEBUG("boot timing validation failed due to pixels_per_cycle\n");
1908 return false;
1909 }
1910
1911 pix_clk_100hz *= pixels_per_cycle;
1912 }
1913
1914 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1915 // slightly due to rounding issues in 10 kHz units.
1916 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) {
1917 DC_LOG_DEBUG("boot timing validation failed due to pix_clk_100hz mismatch\n");
1918 return false;
1919 }
1920
1921 if (!se || !se->funcs->dp_get_pixel_format) {
1922 DC_LOG_DEBUG("boot timing validation failed due to missing dp_get_pixel_format\n");
1923 return false;
1924 }
1925
1926 if (!se->funcs->dp_get_pixel_format(
1927 se,
1928 &hw_crtc_timing.pixel_encoding,
1929 &hw_crtc_timing.display_color_depth)) {
1930 DC_LOG_DEBUG("boot timing validation failed due to dp_get_pixel_format failure\n");
1931 return false;
1932 }
1933
1934 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) {
1935 DC_LOG_DEBUG("boot timing validation failed due to display_color_depth mismatch\n");
1936 return false;
1937 }
1938
1939 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) {
1940 DC_LOG_DEBUG("boot timing validation failed due to pixel_encoding mismatch\n");
1941 return false;
1942 }
1943 }
1944
1945
1946 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1947 DC_LOG_DEBUG("boot timing validation failed due to VSC SDP colorimetry\n");
1948 return false;
1949 }
1950
1951 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
1952 DC_LOG_DEBUG("boot timing validation failed due to DP 128b/132b\n");
1953 return false;
1954 }
1955
1956 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1957 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1958 return false;
1959 }
1960
1961 return true;
1962 }
1963
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1964 static inline bool should_update_pipe_for_stream(
1965 struct dc_state *context,
1966 struct pipe_ctx *pipe_ctx,
1967 struct dc_stream_state *stream)
1968 {
1969 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1970 }
1971
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1972 static inline bool should_update_pipe_for_plane(
1973 struct dc_state *context,
1974 struct pipe_ctx *pipe_ctx,
1975 struct dc_plane_state *plane_state)
1976 {
1977 return (pipe_ctx->plane_state == plane_state);
1978 }
1979
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1980 void dc_enable_stereo(
1981 struct dc *dc,
1982 struct dc_state *context,
1983 struct dc_stream_state *streams[],
1984 uint8_t stream_count)
1985 {
1986 int i, j;
1987 struct pipe_ctx *pipe;
1988
1989 dc_exit_ips_for_hw_access(dc);
1990
1991 for (i = 0; i < MAX_PIPES; i++) {
1992 if (context != NULL) {
1993 pipe = &context->res_ctx.pipe_ctx[i];
1994 } else {
1995 context = dc->current_state;
1996 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1997 }
1998
1999 for (j = 0; pipe && j < stream_count; j++) {
2000 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
2001 dc->hwss.setup_stereo)
2002 dc->hwss.setup_stereo(pipe, dc);
2003 }
2004 }
2005 }
2006
dc_trigger_sync(struct dc * dc,struct dc_state * context)2007 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
2008 {
2009 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
2010 dc_exit_ips_for_hw_access(dc);
2011
2012 enable_timing_multisync(dc, context);
2013 program_timing_sync(dc, context);
2014 }
2015 }
2016
get_stream_mask(struct dc * dc,struct dc_state * context)2017 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
2018 {
2019 int i;
2020 unsigned int stream_mask = 0;
2021
2022 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2023 if (context->res_ctx.pipe_ctx[i].stream)
2024 stream_mask |= 1 << i;
2025 }
2026
2027 return stream_mask;
2028 }
2029
dc_z10_restore(const struct dc * dc)2030 void dc_z10_restore(const struct dc *dc)
2031 {
2032 if (dc->hwss.z10_restore)
2033 dc->hwss.z10_restore(dc);
2034 }
2035
dc_z10_save_init(struct dc * dc)2036 void dc_z10_save_init(struct dc *dc)
2037 {
2038 if (dc->hwss.z10_save_init)
2039 dc->hwss.z10_save_init(dc);
2040 }
2041
2042 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
2043 * Prevents over allocation of DET during unlock process
2044 * e.g. 2 pipe config with different streams with a max of 20 DET segments
2045 * Before: After:
2046 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
2047 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
2048 * If Pipe0 gets updated first, 22 DET segments will be allocated
2049 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)2050 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
2051 {
2052 unsigned int i = 0;
2053 struct pipe_ctx *pipe = NULL;
2054 struct timing_generator *tg = NULL;
2055
2056 if (!dc->config.set_pipe_unlock_order)
2057 return;
2058
2059 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
2060 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2061 pipe = &context->res_ctx.pipe_ctx[i];
2062 tg = pipe->stream_res.tg;
2063
2064 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
2065 !tg->funcs->is_tg_enabled(tg) ||
2066 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
2067 continue;
2068 }
2069
2070 if (resource_calculate_det_for_stream(context, pipe) <
2071 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
2072 dc->scratch.pipes_to_unlock_first[i] = true;
2073 }
2074 }
2075 }
2076
2077 /**
2078 * dc_commit_state_no_check - Apply context to the hardware
2079 *
2080 * @dc: DC object with the current status to be updated
2081 * @context: New state that will become the current status at the end of this function
2082 *
2083 * Applies given context to the hardware and copy it into current context.
2084 * It's up to the user to release the src context afterwards.
2085 *
2086 * Return: an enum dc_status result code for the operation
2087 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)2088 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
2089 {
2090 struct dc_bios *dcb = dc->ctx->dc_bios;
2091 enum dc_status result = DC_ERROR_UNEXPECTED;
2092 struct pipe_ctx *pipe;
2093 int i, k, l;
2094 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
2095 struct dc_state *old_state;
2096 bool subvp_prev_use = false;
2097
2098 dc_z10_restore(dc);
2099 dc_allow_idle_optimizations(dc, false);
2100
2101 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2102 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2103
2104 /* Check old context for SubVP */
2105 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2106 if (subvp_prev_use)
2107 break;
2108 }
2109
2110 for (i = 0; i < context->stream_count; i++)
2111 dc_streams[i] = context->streams[i];
2112
2113 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2114 disable_vbios_mode_if_required(dc, context);
2115 dc->hwss.enable_accelerated_mode(dc, context);
2116 }
2117
2118 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed) {
2119 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2120 pipe = &context->res_ctx.pipe_ctx[i];
2121 //Only delay otg master for a given config
2122 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
2123 //dc_commit_state_no_check is always a full update
2124 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, pipe, false);
2125 break;
2126 }
2127 }
2128 }
2129
2130 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2131 context->stream_count == 0)
2132 dc->hwss.prepare_bandwidth(dc, context);
2133
2134 /* When SubVP is active, all HW programming must be done while
2135 * SubVP lock is acquired
2136 */
2137 if (dc->hwss.subvp_pipe_control_lock)
2138 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2139 if (dc->hwss.fams2_global_control_lock)
2140 dc->hwss.fams2_global_control_lock(dc, context, true);
2141
2142 if (dc->hwss.update_dsc_pg)
2143 dc->hwss.update_dsc_pg(dc, context, false);
2144
2145 disable_dangling_plane(dc, context);
2146 /* re-program planes for existing stream, in case we need to
2147 * free up plane resource for later use
2148 */
2149 if (dc->hwss.apply_ctx_for_surface) {
2150 for (i = 0; i < context->stream_count; i++) {
2151 if (context->streams[i]->mode_changed)
2152 continue;
2153 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2154 dc->hwss.apply_ctx_for_surface(
2155 dc, context->streams[i],
2156 context->stream_status[i].plane_count,
2157 context); /* use new pipe config in new context */
2158 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2159 dc->hwss.post_unlock_program_front_end(dc, context);
2160 }
2161 }
2162
2163 /* Program hardware */
2164 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2165 pipe = &context->res_ctx.pipe_ctx[i];
2166 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2167 }
2168
2169 result = dc->hwss.apply_ctx_to_hw(dc, context);
2170
2171 if (result != DC_OK) {
2172 /* Application of dc_state to hardware stopped. */
2173 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2174 return result;
2175 }
2176
2177 dc_trigger_sync(dc, context);
2178
2179 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2180 for (i = 0; i < context->stream_count; i++) {
2181 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2182
2183 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2184 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2185 }
2186
2187 determine_pipe_unlock_order(dc, context);
2188 /* Program all planes within new context*/
2189 if (dc->res_pool->funcs->prepare_mcache_programming)
2190 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2191 if (dc->hwss.program_front_end_for_ctx) {
2192 dc->hwss.interdependent_update_lock(dc, context, true);
2193 dc->hwss.program_front_end_for_ctx(dc, context);
2194
2195 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe) {
2196 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2197 pipe = &context->res_ctx.pipe_ctx[i];
2198 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe);
2199 }
2200 }
2201
2202 dc->hwss.interdependent_update_lock(dc, context, false);
2203 dc->hwss.post_unlock_program_front_end(dc, context);
2204 }
2205
2206 if (dc->hwss.commit_subvp_config)
2207 dc->hwss.commit_subvp_config(dc, context);
2208 if (dc->hwss.subvp_pipe_control_lock)
2209 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2210 if (dc->hwss.fams2_global_control_lock)
2211 dc->hwss.fams2_global_control_lock(dc, context, false);
2212
2213 for (i = 0; i < context->stream_count; i++) {
2214 const struct dc_link *link = context->streams[i]->link;
2215
2216 if (!context->streams[i]->mode_changed)
2217 continue;
2218
2219 if (dc->hwss.apply_ctx_for_surface) {
2220 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2221 dc->hwss.apply_ctx_for_surface(
2222 dc, context->streams[i],
2223 context->stream_status[i].plane_count,
2224 context);
2225 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2226 dc->hwss.post_unlock_program_front_end(dc, context);
2227 }
2228
2229 /*
2230 * enable stereo
2231 * TODO rework dc_enable_stereo call to work with validation sets?
2232 */
2233 for (k = 0; k < MAX_PIPES; k++) {
2234 pipe = &context->res_ctx.pipe_ctx[k];
2235
2236 for (l = 0 ; pipe && l < context->stream_count; l++) {
2237 if (context->streams[l] &&
2238 context->streams[l] == pipe->stream &&
2239 dc->hwss.setup_stereo)
2240 dc->hwss.setup_stereo(pipe, dc);
2241 }
2242 }
2243
2244 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2245 context->streams[i]->timing.h_addressable,
2246 context->streams[i]->timing.v_addressable,
2247 context->streams[i]->timing.h_total,
2248 context->streams[i]->timing.v_total,
2249 context->streams[i]->timing.pix_clk_100hz / 10);
2250 }
2251
2252 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2253
2254 if (get_seamless_boot_stream_count(context) == 0 ||
2255 context->stream_count == 0) {
2256 /* Must wait for no flips to be pending before doing optimize bw */
2257 hwss_wait_for_no_pipes_pending(dc, context);
2258 /*
2259 * optimized dispclk depends on ODM setup. Need to wait for ODM
2260 * update pending complete before optimizing bandwidth.
2261 */
2262 hwss_wait_for_odm_update_pending_complete(dc, context);
2263 /* pplib is notified if disp_num changed */
2264 dc->hwss.optimize_bandwidth(dc, context);
2265 /* Need to do otg sync again as otg could be out of sync due to otg
2266 * workaround applied during clock update
2267 */
2268 dc_trigger_sync(dc, context);
2269 }
2270
2271 if (dc->hwss.update_dsc_pg)
2272 dc->hwss.update_dsc_pg(dc, context, true);
2273
2274 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2275 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2276 else
2277 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2278
2279 context->stream_mask = get_stream_mask(dc, context);
2280
2281 if (context->stream_mask != dc->current_state->stream_mask)
2282 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2283
2284 for (i = 0; i < context->stream_count; i++)
2285 context->streams[i]->mode_changed = false;
2286
2287 /* Clear update flags that were set earlier to avoid redundant programming */
2288 for (i = 0; i < context->stream_count; i++) {
2289 context->streams[i]->update_flags.raw = 0x0;
2290 }
2291
2292 old_state = dc->current_state;
2293 dc->current_state = context;
2294
2295 dc_state_release(old_state);
2296
2297 dc_state_retain(dc->current_state);
2298
2299 return result;
2300 }
2301
2302 static bool commit_minimal_transition_state(struct dc *dc,
2303 struct dc_state *transition_base_context);
2304
2305 /**
2306 * dc_commit_streams - Commit current stream state
2307 *
2308 * @dc: DC object with the commit state to be configured in the hardware
2309 * @params: Parameters for the commit, including the streams to be committed
2310 *
2311 * Function responsible for commit streams change to the hardware.
2312 *
2313 * Return:
2314 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2315 * code.
2316 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2317 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2318 {
2319 int i, j;
2320 struct dc_state *context;
2321 enum dc_status res = DC_OK;
2322 struct dc_validation_set set[MAX_STREAMS] = {0};
2323 struct pipe_ctx *pipe;
2324 bool handle_exit_odm2to1 = false;
2325
2326 if (!params)
2327 return DC_ERROR_UNEXPECTED;
2328
2329 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2330 return res;
2331
2332 if (!streams_changed(dc, params->streams, params->stream_count) &&
2333 dc->current_state->power_source == params->power_source)
2334 return res;
2335
2336 dc_exit_ips_for_hw_access(dc);
2337
2338 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2339
2340 for (i = 0; i < params->stream_count; i++) {
2341 struct dc_stream_state *stream = params->streams[i];
2342 struct dc_stream_status *status = dc_stream_get_status(stream);
2343 struct dc_sink *sink = stream->sink;
2344
2345 /* revalidate streams */
2346 if (!dc_is_virtual_signal(sink->sink_signal)) {
2347 res = dc_validate_stream(dc, stream);
2348 if (res != DC_OK)
2349 return res;
2350 }
2351
2352
2353 dc_stream_log(dc, stream);
2354
2355 set[i].stream = stream;
2356
2357 if (status) {
2358 set[i].plane_count = status->plane_count;
2359 for (j = 0; j < status->plane_count; j++)
2360 set[i].plane_states[j] = status->plane_states[j];
2361 }
2362 }
2363
2364 /* ODM Combine 2:1 power optimization is only applied for single stream
2365 * scenario, it uses extra pipes than needed to reduce power consumption
2366 * We need to switch off this feature to make room for new streams.
2367 */
2368 if (params->stream_count > dc->current_state->stream_count &&
2369 dc->current_state->stream_count == 1) {
2370 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2371 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2372 if (pipe->next_odm_pipe)
2373 handle_exit_odm2to1 = true;
2374 }
2375 }
2376
2377 if (handle_exit_odm2to1)
2378 res = commit_minimal_transition_state(dc, dc->current_state);
2379
2380 context = dc_state_create_current_copy(dc);
2381 if (!context)
2382 goto context_alloc_fail;
2383
2384 context->power_source = params->power_source;
2385
2386 res = dc_validate_with_context(dc, set, params->stream_count, context, DC_VALIDATE_MODE_AND_PROGRAMMING);
2387
2388 /*
2389 * Only update link encoder to stream assignment after bandwidth validation passed.
2390 */
2391 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign && !dc->config.unify_link_enc_assignment)
2392 dc->res_pool->funcs->link_encs_assign(
2393 dc, context, context->streams, context->stream_count);
2394
2395 if (res != DC_OK) {
2396 BREAK_TO_DEBUGGER();
2397 goto fail;
2398 }
2399
2400 res = dc_commit_state_no_check(dc, context);
2401
2402 for (i = 0; i < params->stream_count; i++) {
2403 for (j = 0; j < context->stream_count; j++) {
2404 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2405 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2406
2407 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2408 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2409
2410 if (!status)
2411 continue;
2412
2413 if (dc->hwss.is_abm_supported)
2414 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2415 else
2416 status->is_abm_supported = true;
2417 }
2418 }
2419 }
2420
2421 fail:
2422 dc_state_release(context);
2423
2424 context_alloc_fail:
2425
2426 DC_LOG_DC("%s Finished.\n", __func__);
2427
2428 return res;
2429 }
2430
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2431 bool dc_acquire_release_mpc_3dlut(
2432 struct dc *dc, bool acquire,
2433 struct dc_stream_state *stream,
2434 struct dc_3dlut **lut,
2435 struct dc_transfer_func **shaper)
2436 {
2437 int pipe_idx;
2438 bool ret = false;
2439 bool found_pipe_idx = false;
2440 const struct resource_pool *pool = dc->res_pool;
2441 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2442 int mpcc_id = 0;
2443
2444 if (pool && res_ctx) {
2445 if (acquire) {
2446 /*find pipe idx for the given stream*/
2447 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2448 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2449 found_pipe_idx = true;
2450 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2451 break;
2452 }
2453 }
2454 } else
2455 found_pipe_idx = true;/*for release pipe_idx is not required*/
2456
2457 if (found_pipe_idx) {
2458 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2459 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2460 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2461 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2462 }
2463 }
2464 return ret;
2465 }
2466
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2467 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2468 {
2469 int i;
2470 struct pipe_ctx *pipe;
2471
2472 for (i = 0; i < MAX_PIPES; i++) {
2473 pipe = &context->res_ctx.pipe_ctx[i];
2474
2475 // Don't check flip pending on phantom pipes
2476 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2477 continue;
2478
2479 /* Must set to false to start with, due to OR in update function */
2480 pipe->plane_state->status.is_flip_pending = false;
2481 dc->hwss.update_pending_status(pipe);
2482 if (pipe->plane_state->status.is_flip_pending)
2483 return true;
2484 }
2485 return false;
2486 }
2487
2488 /* Perform updates here which need to be deferred until next vupdate
2489 *
2490 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2491 * but forcing lut memory to shutdown state is immediate. This causes
2492 * single frame corruption as lut gets disabled mid-frame unless shutdown
2493 * is deferred until after entering bypass.
2494 */
process_deferred_updates(struct dc * dc)2495 static void process_deferred_updates(struct dc *dc)
2496 {
2497 int i = 0;
2498
2499 if (dc->debug.enable_mem_low_power.bits.cm) {
2500 ASSERT(dc->dcn_ip->max_num_dpp);
2501 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2502 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2503 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2504 }
2505 }
2506
dc_post_update_surfaces_to_stream(struct dc * dc)2507 void dc_post_update_surfaces_to_stream(struct dc *dc)
2508 {
2509 int i;
2510 struct dc_state *context = dc->current_state;
2511
2512 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2513 return;
2514
2515 post_surface_trace(dc);
2516
2517 /*
2518 * Only relevant for DCN behavior where we can guarantee the optimization
2519 * is safe to apply - retain the legacy behavior for DCE.
2520 */
2521
2522 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2523 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2524 else {
2525 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2526
2527 if (is_flip_pending_in_pipes(dc, context))
2528 return;
2529
2530 for (i = 0; i < dc->res_pool->pipe_count; i++)
2531 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2532 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2533 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2534 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2535 }
2536
2537 process_deferred_updates(dc);
2538
2539 dc->hwss.optimize_bandwidth(dc, context);
2540
2541 if (dc->hwss.update_dsc_pg)
2542 dc->hwss.update_dsc_pg(dc, context, true);
2543 }
2544
2545 dc->optimized_required = false;
2546 dc->wm_optimized_required = false;
2547 }
2548
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2549 bool dc_set_generic_gpio_for_stereo(bool enable,
2550 struct gpio_service *gpio_service)
2551 {
2552 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2553 struct gpio_pin_info pin_info;
2554 struct gpio *generic;
2555 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2556 GFP_KERNEL);
2557
2558 if (!config)
2559 return false;
2560 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2561
2562 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2563 kfree(config);
2564 return false;
2565 } else {
2566 generic = dal_gpio_service_create_generic_mux(
2567 gpio_service,
2568 pin_info.offset,
2569 pin_info.mask);
2570 }
2571
2572 if (!generic) {
2573 kfree(config);
2574 return false;
2575 }
2576
2577 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2578
2579 config->enable_output_from_mux = enable;
2580 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2581
2582 if (gpio_result == GPIO_RESULT_OK)
2583 gpio_result = dal_mux_setup_config(generic, config);
2584
2585 if (gpio_result == GPIO_RESULT_OK) {
2586 dal_gpio_close(generic);
2587 dal_gpio_destroy_generic_mux(&generic);
2588 kfree(config);
2589 return true;
2590 } else {
2591 dal_gpio_close(generic);
2592 dal_gpio_destroy_generic_mux(&generic);
2593 kfree(config);
2594 return false;
2595 }
2596 }
2597
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2598 static bool is_surface_in_context(
2599 const struct dc_state *context,
2600 const struct dc_plane_state *plane_state)
2601 {
2602 int j;
2603
2604 for (j = 0; j < MAX_PIPES; j++) {
2605 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2606
2607 if (plane_state == pipe_ctx->plane_state) {
2608 return true;
2609 }
2610 }
2611
2612 return false;
2613 }
2614
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2615 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2616 {
2617 union surface_update_flags *update_flags = &u->surface->update_flags;
2618 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2619
2620 if (!u->plane_info)
2621 return UPDATE_TYPE_FAST;
2622
2623 if (u->plane_info->color_space != u->surface->color_space) {
2624 update_flags->bits.color_space_change = 1;
2625 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2626 }
2627
2628 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2629 update_flags->bits.horizontal_mirror_change = 1;
2630 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2631 }
2632
2633 if (u->plane_info->rotation != u->surface->rotation) {
2634 update_flags->bits.rotation_change = 1;
2635 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2636 }
2637
2638 if (u->plane_info->format != u->surface->format) {
2639 update_flags->bits.pixel_format_change = 1;
2640 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2641 }
2642
2643 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2644 update_flags->bits.stereo_format_change = 1;
2645 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2646 }
2647
2648 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2649 update_flags->bits.per_pixel_alpha_change = 1;
2650 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2651 }
2652
2653 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2654 update_flags->bits.global_alpha_change = 1;
2655 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2656 }
2657
2658 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2659 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2660 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2661 /* During DCC on/off, stutter period is calculated before
2662 * DCC has fully transitioned. This results in incorrect
2663 * stutter period calculation. Triggering a full update will
2664 * recalculate stutter period.
2665 */
2666 update_flags->bits.dcc_change = 1;
2667 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2668 }
2669
2670 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2671 resource_pixel_format_to_bpp(u->surface->format)) {
2672 /* different bytes per element will require full bandwidth
2673 * and DML calculation
2674 */
2675 update_flags->bits.bpp_change = 1;
2676 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2677 }
2678
2679 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2680 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2681 update_flags->bits.plane_size_change = 1;
2682 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2683 }
2684
2685
2686 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2687 sizeof(struct dc_tiling_info)) != 0) {
2688 update_flags->bits.swizzle_change = 1;
2689 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2690
2691 /* todo: below are HW dependent, we should add a hook to
2692 * DCE/N resource and validated there.
2693 */
2694 if (!dc->debug.skip_full_updated_if_possible) {
2695 /* swizzled mode requires RQ to be setup properly,
2696 * thus need to run DML to calculate RQ settings
2697 */
2698 update_flags->bits.bandwidth_change = 1;
2699 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2700 }
2701 }
2702
2703 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2704 return update_type;
2705 }
2706
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2707 static enum surface_update_type get_scaling_info_update_type(
2708 const struct dc *dc,
2709 const struct dc_surface_update *u)
2710 {
2711 union surface_update_flags *update_flags = &u->surface->update_flags;
2712
2713 if (!u->scaling_info)
2714 return UPDATE_TYPE_FAST;
2715
2716 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2717 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2718 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2719 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2720 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2721 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2722 || u->scaling_info->scaling_quality.integer_scaling !=
2723 u->surface->scaling_quality.integer_scaling) {
2724 update_flags->bits.scaling_change = 1;
2725
2726 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2727 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2728 /* Making src rect bigger requires a bandwidth change */
2729 update_flags->bits.clock_change = 1;
2730
2731 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2732 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2733 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2734 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2735 /* Making dst rect smaller requires a bandwidth change */
2736 update_flags->bits.bandwidth_change = 1;
2737
2738 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2739 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2740 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2741 /* Changing clip size of a large surface may result in MPC slice count change */
2742 update_flags->bits.bandwidth_change = 1;
2743 }
2744
2745 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2746 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2747 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2748 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2749 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2750 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2751 update_flags->bits.position_change = 1;
2752
2753 /* process every update flag before returning */
2754 if (update_flags->bits.clock_change
2755 || update_flags->bits.bandwidth_change
2756 || update_flags->bits.scaling_change)
2757 return UPDATE_TYPE_FULL;
2758
2759 if (update_flags->bits.position_change)
2760 return UPDATE_TYPE_MED;
2761
2762 return UPDATE_TYPE_FAST;
2763 }
2764
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2765 static enum surface_update_type det_surface_update(const struct dc *dc,
2766 const struct dc_surface_update *u)
2767 {
2768 const struct dc_state *context = dc->current_state;
2769 enum surface_update_type type;
2770 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2771 union surface_update_flags *update_flags = &u->surface->update_flags;
2772
2773 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2774 update_flags->raw = 0xFFFFFFFF;
2775 return UPDATE_TYPE_FULL;
2776 }
2777
2778 update_flags->raw = 0; // Reset all flags
2779
2780 type = get_plane_info_update_type(dc, u);
2781 elevate_update_type(&overall_type, type);
2782
2783 type = get_scaling_info_update_type(dc, u);
2784 elevate_update_type(&overall_type, type);
2785
2786 if (u->flip_addr) {
2787 update_flags->bits.addr_update = 1;
2788 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2789 update_flags->bits.tmz_changed = 1;
2790 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2791 }
2792 }
2793 if (u->in_transfer_func)
2794 update_flags->bits.in_transfer_func_change = 1;
2795
2796 if (u->input_csc_color_matrix)
2797 update_flags->bits.input_csc_change = 1;
2798
2799 if (u->coeff_reduction_factor)
2800 update_flags->bits.coeff_reduction_change = 1;
2801
2802 if (u->gamut_remap_matrix)
2803 update_flags->bits.gamut_remap_change = 1;
2804
2805 if (u->blend_tf)
2806 update_flags->bits.gamma_change = 1;
2807
2808 if (u->gamma) {
2809 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2810
2811 if (u->plane_info)
2812 format = u->plane_info->format;
2813 else
2814 format = u->surface->format;
2815
2816 if (dce_use_lut(format))
2817 update_flags->bits.gamma_change = 1;
2818 }
2819
2820 if (u->lut3d_func || u->func_shaper)
2821 update_flags->bits.lut_3d = 1;
2822
2823 if (u->hdr_mult.value)
2824 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2825 update_flags->bits.hdr_mult = 1;
2826 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2827 }
2828
2829 if (u->sdr_white_level_nits)
2830 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2831 update_flags->bits.sdr_white_level_nits = 1;
2832 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2833 }
2834
2835 if (u->cm2_params) {
2836 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2837 != u->surface->mcm_shaper_3dlut_setting)
2838 || (u->cm2_params->component_settings.lut1d_enable
2839 != u->surface->mcm_lut1d_enable))
2840 update_flags->bits.mcm_transfer_function_enable_change = 1;
2841 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2842 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2843 update_flags->bits.mcm_transfer_function_enable_change = 1;
2844 }
2845 if (update_flags->bits.in_transfer_func_change) {
2846 type = UPDATE_TYPE_MED;
2847 elevate_update_type(&overall_type, type);
2848 }
2849
2850 if (update_flags->bits.lut_3d &&
2851 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2852 type = UPDATE_TYPE_FULL;
2853 elevate_update_type(&overall_type, type);
2854 }
2855 if (update_flags->bits.mcm_transfer_function_enable_change) {
2856 type = UPDATE_TYPE_FULL;
2857 elevate_update_type(&overall_type, type);
2858 }
2859
2860 if (dc->debug.enable_legacy_fast_update &&
2861 (update_flags->bits.gamma_change ||
2862 update_flags->bits.gamut_remap_change ||
2863 update_flags->bits.input_csc_change ||
2864 update_flags->bits.coeff_reduction_change)) {
2865 type = UPDATE_TYPE_FULL;
2866 elevate_update_type(&overall_type, type);
2867 }
2868 return overall_type;
2869 }
2870
2871 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2872 * while both planes are flip_immediate
2873 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2874 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2875 {
2876 bool has_flip_immediate_plane = false;
2877 int i;
2878
2879 for (i = 0; i < surface_count; i++) {
2880 if (updates[i].surface->flip_immediate) {
2881 has_flip_immediate_plane = true;
2882 break;
2883 }
2884 }
2885
2886 if (has_flip_immediate_plane && surface_count > 1) {
2887 for (i = 0; i < surface_count; i++) {
2888 if (updates[i].surface->flip_immediate)
2889 updates[i].surface->update_flags.bits.addr_update = 1;
2890 }
2891 }
2892 }
2893
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2894 static enum surface_update_type check_update_surfaces_for_stream(
2895 struct dc *dc,
2896 struct dc_surface_update *updates,
2897 int surface_count,
2898 struct dc_stream_update *stream_update,
2899 const struct dc_stream_status *stream_status)
2900 {
2901 int i;
2902 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2903
2904 if (dc->idle_optimizations_allowed || dc_can_clear_cursor_limit(dc))
2905 overall_type = UPDATE_TYPE_FULL;
2906
2907 if (stream_status == NULL || stream_status->plane_count != surface_count)
2908 overall_type = UPDATE_TYPE_FULL;
2909
2910 if (stream_update && stream_update->pending_test_pattern) {
2911 overall_type = UPDATE_TYPE_FULL;
2912 }
2913
2914 if (stream_update && stream_update->hw_cursor_req) {
2915 overall_type = UPDATE_TYPE_FULL;
2916 }
2917
2918 /* some stream updates require passive update */
2919 if (stream_update) {
2920 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2921
2922 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2923 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2924 stream_update->integer_scaling_update)
2925 su_flags->bits.scaling = 1;
2926
2927 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2928 su_flags->bits.out_tf = 1;
2929
2930 if (stream_update->abm_level)
2931 su_flags->bits.abm_level = 1;
2932
2933 if (stream_update->dpms_off)
2934 su_flags->bits.dpms_off = 1;
2935
2936 if (stream_update->gamut_remap)
2937 su_flags->bits.gamut_remap = 1;
2938
2939 if (stream_update->wb_update)
2940 su_flags->bits.wb_update = 1;
2941
2942 if (stream_update->dsc_config)
2943 su_flags->bits.dsc_changed = 1;
2944
2945 if (stream_update->mst_bw_update)
2946 su_flags->bits.mst_bw = 1;
2947
2948 if (stream_update->stream->freesync_on_desktop &&
2949 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2950 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2951 su_flags->bits.fams_changed = 1;
2952
2953 if (stream_update->scaler_sharpener_update)
2954 su_flags->bits.scaler_sharpener = 1;
2955
2956 if (stream_update->sharpening_required)
2957 su_flags->bits.sharpening_required = 1;
2958
2959 if (stream_update->output_color_space)
2960 su_flags->bits.out_csc = 1;
2961
2962 if (su_flags->raw != 0)
2963 overall_type = UPDATE_TYPE_FULL;
2964
2965 if (stream_update->output_csc_transform)
2966 su_flags->bits.out_csc = 1;
2967
2968 /* Output transfer function changes do not require bandwidth recalculation,
2969 * so don't trigger a full update
2970 */
2971 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2972 su_flags->bits.out_tf = 1;
2973 }
2974
2975 for (i = 0 ; i < surface_count; i++) {
2976 enum surface_update_type type =
2977 det_surface_update(dc, &updates[i]);
2978
2979 elevate_update_type(&overall_type, type);
2980 }
2981
2982 return overall_type;
2983 }
2984
2985 /*
2986 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2987 *
2988 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2989 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2990 enum surface_update_type dc_check_update_surfaces_for_stream(
2991 struct dc *dc,
2992 struct dc_surface_update *updates,
2993 int surface_count,
2994 struct dc_stream_update *stream_update,
2995 const struct dc_stream_status *stream_status)
2996 {
2997 int i;
2998 enum surface_update_type type;
2999
3000 if (stream_update)
3001 stream_update->stream->update_flags.raw = 0;
3002 for (i = 0; i < surface_count; i++)
3003 updates[i].surface->update_flags.raw = 0;
3004
3005 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
3006 if (type == UPDATE_TYPE_FULL) {
3007 if (stream_update) {
3008 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
3009 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
3010 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
3011 }
3012 for (i = 0; i < surface_count; i++)
3013 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
3014 }
3015
3016 if (type == UPDATE_TYPE_FAST) {
3017 // If there's an available clock comparator, we use that.
3018 if (dc->clk_mgr->funcs->are_clock_states_equal) {
3019 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
3020 dc->optimized_required = true;
3021 // Else we fallback to mem compare.
3022 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
3023 dc->optimized_required = true;
3024 }
3025
3026 dc->optimized_required |= dc->wm_optimized_required;
3027 }
3028
3029 return type;
3030 }
3031
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)3032 static struct dc_stream_status *stream_get_status(
3033 struct dc_state *ctx,
3034 struct dc_stream_state *stream)
3035 {
3036 uint8_t i;
3037
3038 for (i = 0; i < ctx->stream_count; i++) {
3039 if (stream == ctx->streams[i]) {
3040 return &ctx->stream_status[i];
3041 }
3042 }
3043
3044 return NULL;
3045 }
3046
3047 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
3048
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)3049 static void copy_surface_update_to_plane(
3050 struct dc_plane_state *surface,
3051 struct dc_surface_update *srf_update)
3052 {
3053 if (srf_update->flip_addr) {
3054 surface->address = srf_update->flip_addr->address;
3055 surface->flip_immediate =
3056 srf_update->flip_addr->flip_immediate;
3057 surface->time.time_elapsed_in_us[surface->time.index] =
3058 srf_update->flip_addr->flip_timestamp_in_us -
3059 surface->time.prev_update_time_in_us;
3060 surface->time.prev_update_time_in_us =
3061 srf_update->flip_addr->flip_timestamp_in_us;
3062 surface->time.index++;
3063 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
3064 surface->time.index = 0;
3065
3066 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
3067 }
3068
3069 if (srf_update->scaling_info) {
3070 surface->scaling_quality =
3071 srf_update->scaling_info->scaling_quality;
3072 surface->dst_rect =
3073 srf_update->scaling_info->dst_rect;
3074 surface->src_rect =
3075 srf_update->scaling_info->src_rect;
3076 surface->clip_rect =
3077 srf_update->scaling_info->clip_rect;
3078 }
3079
3080 if (srf_update->plane_info) {
3081 surface->color_space =
3082 srf_update->plane_info->color_space;
3083 surface->format =
3084 srf_update->plane_info->format;
3085 surface->plane_size =
3086 srf_update->plane_info->plane_size;
3087 surface->rotation =
3088 srf_update->plane_info->rotation;
3089 surface->horizontal_mirror =
3090 srf_update->plane_info->horizontal_mirror;
3091 surface->stereo_format =
3092 srf_update->plane_info->stereo_format;
3093 surface->tiling_info =
3094 srf_update->plane_info->tiling_info;
3095 surface->visible =
3096 srf_update->plane_info->visible;
3097 surface->per_pixel_alpha =
3098 srf_update->plane_info->per_pixel_alpha;
3099 surface->global_alpha =
3100 srf_update->plane_info->global_alpha;
3101 surface->global_alpha_value =
3102 srf_update->plane_info->global_alpha_value;
3103 surface->dcc =
3104 srf_update->plane_info->dcc;
3105 surface->layer_index =
3106 srf_update->plane_info->layer_index;
3107 }
3108
3109 if (srf_update->gamma) {
3110 memcpy(&surface->gamma_correction.entries,
3111 &srf_update->gamma->entries,
3112 sizeof(struct dc_gamma_entries));
3113 surface->gamma_correction.is_identity =
3114 srf_update->gamma->is_identity;
3115 surface->gamma_correction.num_entries =
3116 srf_update->gamma->num_entries;
3117 surface->gamma_correction.type =
3118 srf_update->gamma->type;
3119 }
3120
3121 if (srf_update->in_transfer_func) {
3122 surface->in_transfer_func.sdr_ref_white_level =
3123 srf_update->in_transfer_func->sdr_ref_white_level;
3124 surface->in_transfer_func.tf =
3125 srf_update->in_transfer_func->tf;
3126 surface->in_transfer_func.type =
3127 srf_update->in_transfer_func->type;
3128 memcpy(&surface->in_transfer_func.tf_pts,
3129 &srf_update->in_transfer_func->tf_pts,
3130 sizeof(struct dc_transfer_func_distributed_points));
3131 }
3132
3133 if (srf_update->cm2_params) {
3134 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3135 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3136 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3137 }
3138
3139 if (srf_update->func_shaper) {
3140 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3141 sizeof(surface->in_shaper_func));
3142
3143 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3144 surface->mcm_luts.shaper = &surface->in_shaper_func;
3145 }
3146
3147 if (srf_update->lut3d_func)
3148 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3149 sizeof(surface->lut3d_func));
3150
3151 if (srf_update->hdr_mult.value)
3152 surface->hdr_mult =
3153 srf_update->hdr_mult;
3154
3155 if (srf_update->sdr_white_level_nits)
3156 surface->sdr_white_level_nits =
3157 srf_update->sdr_white_level_nits;
3158
3159 if (srf_update->blend_tf) {
3160 memcpy(&surface->blend_tf, srf_update->blend_tf,
3161 sizeof(surface->blend_tf));
3162
3163 if (surface->mcm_lut1d_enable)
3164 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3165 }
3166
3167 if (srf_update->cm2_params || srf_update->blend_tf)
3168 surface->lut_bank_a = !surface->lut_bank_a;
3169
3170 if (srf_update->input_csc_color_matrix)
3171 surface->input_csc_color_matrix =
3172 *srf_update->input_csc_color_matrix;
3173
3174 if (srf_update->coeff_reduction_factor)
3175 surface->coeff_reduction_factor =
3176 *srf_update->coeff_reduction_factor;
3177
3178 if (srf_update->gamut_remap_matrix)
3179 surface->gamut_remap_matrix =
3180 *srf_update->gamut_remap_matrix;
3181
3182 if (srf_update->cursor_csc_color_matrix)
3183 surface->cursor_csc_color_matrix =
3184 *srf_update->cursor_csc_color_matrix;
3185
3186 if (srf_update->bias_and_scale.bias_and_scale_valid)
3187 surface->bias_and_scale =
3188 srf_update->bias_and_scale;
3189 }
3190
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3191 static void copy_stream_update_to_stream(struct dc *dc,
3192 struct dc_state *context,
3193 struct dc_stream_state *stream,
3194 struct dc_stream_update *update)
3195 {
3196 struct dc_context *dc_ctx = dc->ctx;
3197
3198 if (update == NULL || stream == NULL)
3199 return;
3200
3201 if (update->src.height && update->src.width)
3202 stream->src = update->src;
3203
3204 if (update->dst.height && update->dst.width)
3205 stream->dst = update->dst;
3206
3207 if (update->out_transfer_func) {
3208 stream->out_transfer_func.sdr_ref_white_level =
3209 update->out_transfer_func->sdr_ref_white_level;
3210 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3211 stream->out_transfer_func.type =
3212 update->out_transfer_func->type;
3213 memcpy(&stream->out_transfer_func.tf_pts,
3214 &update->out_transfer_func->tf_pts,
3215 sizeof(struct dc_transfer_func_distributed_points));
3216 }
3217
3218 if (update->hdr_static_metadata)
3219 stream->hdr_static_metadata = *update->hdr_static_metadata;
3220
3221 if (update->abm_level)
3222 stream->abm_level = *update->abm_level;
3223
3224 if (update->periodic_interrupt)
3225 stream->periodic_interrupt = *update->periodic_interrupt;
3226
3227 if (update->gamut_remap)
3228 stream->gamut_remap_matrix = *update->gamut_remap;
3229
3230 /* Note: this being updated after mode set is currently not a use case
3231 * however if it arises OCSC would need to be reprogrammed at the
3232 * minimum
3233 */
3234 if (update->output_color_space)
3235 stream->output_color_space = *update->output_color_space;
3236
3237 if (update->output_csc_transform)
3238 stream->csc_color_matrix = *update->output_csc_transform;
3239
3240 if (update->vrr_infopacket)
3241 stream->vrr_infopacket = *update->vrr_infopacket;
3242
3243 if (update->hw_cursor_req)
3244 stream->hw_cursor_req = *update->hw_cursor_req;
3245
3246 if (update->allow_freesync)
3247 stream->allow_freesync = *update->allow_freesync;
3248
3249 if (update->vrr_active_variable)
3250 stream->vrr_active_variable = *update->vrr_active_variable;
3251
3252 if (update->vrr_active_fixed)
3253 stream->vrr_active_fixed = *update->vrr_active_fixed;
3254
3255 if (update->crtc_timing_adjust) {
3256 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
3257 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max ||
3258 stream->adjust.timing_adjust_pending)
3259 update->crtc_timing_adjust->timing_adjust_pending = true;
3260 stream->adjust = *update->crtc_timing_adjust;
3261 update->crtc_timing_adjust->timing_adjust_pending = false;
3262 }
3263
3264 if (update->dpms_off)
3265 stream->dpms_off = *update->dpms_off;
3266
3267 if (update->hfvsif_infopacket)
3268 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3269
3270 if (update->vtem_infopacket)
3271 stream->vtem_infopacket = *update->vtem_infopacket;
3272
3273 if (update->vsc_infopacket)
3274 stream->vsc_infopacket = *update->vsc_infopacket;
3275
3276 if (update->vsp_infopacket)
3277 stream->vsp_infopacket = *update->vsp_infopacket;
3278
3279 if (update->adaptive_sync_infopacket)
3280 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3281
3282 if (update->dither_option)
3283 stream->dither_option = *update->dither_option;
3284
3285 if (update->pending_test_pattern)
3286 stream->test_pattern = *update->pending_test_pattern;
3287 /* update current stream with writeback info */
3288 if (update->wb_update) {
3289 int i;
3290
3291 stream->num_wb_info = update->wb_update->num_wb_info;
3292 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3293 for (i = 0; i < stream->num_wb_info; i++)
3294 stream->writeback_info[i] =
3295 update->wb_update->writeback_info[i];
3296 }
3297 if (update->dsc_config) {
3298 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3299 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3300 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3301 update->dsc_config->num_slices_v != 0);
3302
3303 /* Use temporarry context for validating new DSC config */
3304 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3305
3306 if (dsc_validate_context) {
3307 stream->timing.dsc_cfg = *update->dsc_config;
3308 stream->timing.flags.DSC = enable_dsc;
3309 if (dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context,
3310 DC_VALIDATE_MODE_ONLY) != DC_OK) {
3311 stream->timing.dsc_cfg = old_dsc_cfg;
3312 stream->timing.flags.DSC = old_dsc_enabled;
3313 update->dsc_config = NULL;
3314 }
3315
3316 dc_state_release(dsc_validate_context);
3317 } else {
3318 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3319 update->dsc_config = NULL;
3320 }
3321 }
3322 if (update->scaler_sharpener_update)
3323 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3324 if (update->sharpening_required)
3325 stream->sharpening_required = *update->sharpening_required;
3326 }
3327
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3328 static void backup_planes_and_stream_state(
3329 struct dc_scratch_space *scratch,
3330 struct dc_stream_state *stream)
3331 {
3332 int i;
3333 struct dc_stream_status *status = dc_stream_get_status(stream);
3334
3335 if (!status)
3336 return;
3337
3338 for (i = 0; i < status->plane_count; i++) {
3339 dc_plane_copy_config(&scratch->plane_states[i], status->plane_states[i]);
3340 }
3341 scratch->stream_state = *stream;
3342 }
3343
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3344 static void restore_planes_and_stream_state(
3345 struct dc_scratch_space *scratch,
3346 struct dc_stream_state *stream)
3347 {
3348 int i;
3349 struct dc_stream_status *status = dc_stream_get_status(stream);
3350
3351 if (!status)
3352 return;
3353
3354 for (i = 0; i < status->plane_count; i++) {
3355 dc_plane_copy_config(status->plane_states[i], &scratch->plane_states[i]);
3356 }
3357 *stream = scratch->stream_state;
3358 }
3359
3360 /**
3361 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3362 *
3363 * @dc: Current DC state
3364 * @context: New DC state to be programmed
3365 * @surface_count: Number of surfaces that have an updated
3366 * @stream: Corresponding stream to be updated in the current flip
3367 *
3368 * Updating seamless boot flags do not need to be part of the commit sequence. This
3369 * helper function will update the seamless boot flags on each flip (if required)
3370 * outside of the HW commit sequence (fast or slow).
3371 *
3372 * Return: void
3373 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3374 static void update_seamless_boot_flags(struct dc *dc,
3375 struct dc_state *context,
3376 int surface_count,
3377 struct dc_stream_state *stream)
3378 {
3379 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3380 /* Optimize seamless boot flag keeps clocks and watermarks high until
3381 * first flip. After first flip, optimization is required to lower
3382 * bandwidth. Important to note that it is expected UEFI will
3383 * only light up a single display on POST, therefore we only expect
3384 * one stream with seamless boot flag set.
3385 */
3386 if (stream->apply_seamless_boot_optimization) {
3387 stream->apply_seamless_boot_optimization = false;
3388
3389 if (get_seamless_boot_stream_count(context) == 0)
3390 dc->optimized_required = true;
3391 }
3392 }
3393 }
3394
3395 /**
3396 * update_planes_and_stream_state() - The function takes planes and stream
3397 * updates as inputs and determines the appropriate update type. If update type
3398 * is FULL, the function allocates a new context, populates and validates it.
3399 * Otherwise, it updates current dc context. The function will return both
3400 * new_context and new_update_type back to the caller. The function also backs
3401 * up both current and new contexts into corresponding dc state scratch memory.
3402 * TODO: The function does too many things, and even conditionally allocates dc
3403 * context memory implicitly. We should consider to break it down.
3404 *
3405 * @dc: Current DC state
3406 * @srf_updates: an array of surface updates
3407 * @surface_count: surface update count
3408 * @stream: Corresponding stream to be updated
3409 * @stream_update: stream update
3410 * @new_update_type: [out] determined update type by the function
3411 * @new_context: [out] new context allocated and validated if update type is
3412 * FULL, reference to current context if update type is less than FULL.
3413 *
3414 * Return: true if a valid update is populated into new_context, false
3415 * otherwise.
3416 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3417 static bool update_planes_and_stream_state(struct dc *dc,
3418 struct dc_surface_update *srf_updates, int surface_count,
3419 struct dc_stream_state *stream,
3420 struct dc_stream_update *stream_update,
3421 enum surface_update_type *new_update_type,
3422 struct dc_state **new_context)
3423 {
3424 struct dc_state *context;
3425 int i, j;
3426 enum surface_update_type update_type;
3427 const struct dc_stream_status *stream_status;
3428 struct dc_context *dc_ctx = dc->ctx;
3429
3430 stream_status = dc_stream_get_status(stream);
3431
3432 if (!stream_status) {
3433 if (surface_count) /* Only an error condition if surf_count non-zero*/
3434 ASSERT(false);
3435
3436 return false; /* Cannot commit surface to stream that is not committed */
3437 }
3438
3439 context = dc->current_state;
3440 update_type = dc_check_update_surfaces_for_stream(
3441 dc, srf_updates, surface_count, stream_update, stream_status);
3442 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3443 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3444 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3445 */
3446 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3447 if (update_type == UPDATE_TYPE_FULL)
3448 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3449
3450 /* update current stream with the new updates */
3451 copy_stream_update_to_stream(dc, context, stream, stream_update);
3452
3453 /* do not perform surface update if surface has invalid dimensions
3454 * (all zero) and no scaling_info is provided
3455 */
3456 if (surface_count > 0) {
3457 for (i = 0; i < surface_count; i++) {
3458 if ((srf_updates[i].surface->src_rect.width == 0 ||
3459 srf_updates[i].surface->src_rect.height == 0 ||
3460 srf_updates[i].surface->dst_rect.width == 0 ||
3461 srf_updates[i].surface->dst_rect.height == 0) &&
3462 (!srf_updates[i].scaling_info ||
3463 srf_updates[i].scaling_info->src_rect.width == 0 ||
3464 srf_updates[i].scaling_info->src_rect.height == 0 ||
3465 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3466 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3467 DC_ERROR("Invalid src/dst rects in surface update!\n");
3468 return false;
3469 }
3470 }
3471 }
3472
3473 if (update_type >= update_surface_trace_level)
3474 update_surface_trace(dc, srf_updates, surface_count);
3475
3476 for (i = 0; i < surface_count; i++)
3477 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3478
3479 if (update_type >= UPDATE_TYPE_FULL) {
3480 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3481
3482 for (i = 0; i < surface_count; i++)
3483 new_planes[i] = srf_updates[i].surface;
3484
3485 /* initialize scratch memory for building context */
3486 context = dc_state_create_copy(dc->current_state);
3487 if (context == NULL) {
3488 DC_ERROR("Failed to allocate new validate context!\n");
3489 return false;
3490 }
3491
3492 /* For each full update, remove all existing phantom pipes first.
3493 * Ensures that we have enough pipes for newly added MPO planes
3494 */
3495 dc_state_remove_phantom_streams_and_planes(dc, context);
3496 dc_state_release_phantom_streams_and_planes(dc, context);
3497
3498 /*remove old surfaces from context */
3499 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3500
3501 BREAK_TO_DEBUGGER();
3502 goto fail;
3503 }
3504
3505 /* add surface to context */
3506 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3507
3508 BREAK_TO_DEBUGGER();
3509 goto fail;
3510 }
3511 }
3512
3513 /* save update parameters into surface */
3514 for (i = 0; i < surface_count; i++) {
3515 struct dc_plane_state *surface = srf_updates[i].surface;
3516
3517 if (update_type != UPDATE_TYPE_MED)
3518 continue;
3519 if (surface->update_flags.bits.position_change) {
3520 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3521 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3522
3523 if (pipe_ctx->plane_state != surface)
3524 continue;
3525
3526 resource_build_scaling_params(pipe_ctx);
3527 }
3528 }
3529 }
3530
3531 if (update_type == UPDATE_TYPE_FULL) {
3532 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
3533 BREAK_TO_DEBUGGER();
3534 goto fail;
3535 }
3536 }
3537 update_seamless_boot_flags(dc, context, surface_count, stream);
3538
3539 *new_context = context;
3540 *new_update_type = update_type;
3541 if (update_type == UPDATE_TYPE_FULL)
3542 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3543
3544 return true;
3545
3546 fail:
3547 dc_state_release(context);
3548
3549 return false;
3550
3551 }
3552
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3553 static void commit_planes_do_stream_update(struct dc *dc,
3554 struct dc_stream_state *stream,
3555 struct dc_stream_update *stream_update,
3556 enum surface_update_type update_type,
3557 struct dc_state *context)
3558 {
3559 int j;
3560
3561 // Stream updates
3562 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3563 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3564
3565 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3566
3567 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3568 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3569
3570 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3571 stream_update->vrr_infopacket ||
3572 stream_update->vsc_infopacket ||
3573 stream_update->vsp_infopacket ||
3574 stream_update->hfvsif_infopacket ||
3575 stream_update->adaptive_sync_infopacket ||
3576 stream_update->vtem_infopacket) {
3577 resource_build_info_frame(pipe_ctx);
3578 dc->hwss.update_info_frame(pipe_ctx);
3579
3580 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3581 dc->link_srv->dp_trace_source_sequence(
3582 pipe_ctx->stream->link,
3583 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3584 }
3585
3586 if (stream_update->hdr_static_metadata &&
3587 stream->use_dynamic_meta &&
3588 dc->hwss.set_dmdata_attributes &&
3589 pipe_ctx->stream->dmdata_address.quad_part != 0)
3590 dc->hwss.set_dmdata_attributes(pipe_ctx);
3591
3592 if (stream_update->gamut_remap)
3593 dc_stream_set_gamut_remap(dc, stream);
3594
3595 if (stream_update->output_csc_transform)
3596 dc_stream_program_csc_matrix(dc, stream);
3597
3598 if (stream_update->dither_option) {
3599 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3600 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3601 &pipe_ctx->stream->bit_depth_params);
3602 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3603 &stream->bit_depth_params,
3604 &stream->clamping);
3605 while (odm_pipe) {
3606 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3607 &stream->bit_depth_params,
3608 &stream->clamping);
3609 odm_pipe = odm_pipe->next_odm_pipe;
3610 }
3611 }
3612
3613 if (stream_update->cursor_attributes)
3614 program_cursor_attributes(dc, stream);
3615
3616 if (stream_update->cursor_position)
3617 program_cursor_position(dc, stream);
3618
3619 /* Full fe update*/
3620 if (update_type == UPDATE_TYPE_FAST)
3621 continue;
3622
3623 if (stream_update->dsc_config)
3624 dc->link_srv->update_dsc_config(pipe_ctx);
3625
3626 if (stream_update->mst_bw_update) {
3627 if (stream_update->mst_bw_update->is_increase)
3628 dc->link_srv->increase_mst_payload(pipe_ctx,
3629 stream_update->mst_bw_update->mst_stream_bw);
3630 else
3631 dc->link_srv->reduce_mst_payload(pipe_ctx,
3632 stream_update->mst_bw_update->mst_stream_bw);
3633 }
3634
3635 if (stream_update->pending_test_pattern) {
3636 /*
3637 * test pattern params depends on ODM topology
3638 * changes that we could be applying to front
3639 * end. Since at the current stage front end
3640 * changes are not yet applied. We can only
3641 * apply test pattern in hw based on current
3642 * state and populate the final test pattern
3643 * params in new state. If current and new test
3644 * pattern params are different as result of
3645 * different ODM topology being used, it will be
3646 * detected and handle during front end
3647 * programming update.
3648 */
3649 dc->link_srv->dp_set_test_pattern(stream->link,
3650 stream->test_pattern.type,
3651 stream->test_pattern.color_space,
3652 stream->test_pattern.p_link_settings,
3653 stream->test_pattern.p_custom_pattern,
3654 stream->test_pattern.cust_pattern_size);
3655 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3656 }
3657
3658 if (stream_update->dpms_off) {
3659 if (*stream_update->dpms_off) {
3660 dc->link_srv->set_dpms_off(pipe_ctx);
3661 /* for dpms, keep acquired resources*/
3662 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3663 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3664
3665 dc->optimized_required = true;
3666
3667 } else {
3668 if (get_seamless_boot_stream_count(context) == 0)
3669 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3670 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3671 }
3672 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3673 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3674 /*
3675 * Workaround for firmware issue in some receivers where they don't pick up
3676 * correct output color space unless DP link is disabled/re-enabled
3677 */
3678 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3679 }
3680
3681 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3682 bool should_program_abm = true;
3683
3684 // if otg funcs defined check if blanked before programming
3685 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3686 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3687 should_program_abm = false;
3688
3689 if (should_program_abm) {
3690 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3691 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3692 } else {
3693 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3694 pipe_ctx->stream_res.abm, stream->abm_level);
3695 }
3696 }
3697 }
3698 }
3699 }
3700 }
3701
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3702 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3703 {
3704 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3705 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3706 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3707 return true;
3708
3709 if (stream->link->replay_settings.config.replay_supported)
3710 return true;
3711
3712 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3713 return true;
3714
3715 return false;
3716 }
3717
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3718 void dc_dmub_update_dirty_rect(struct dc *dc,
3719 int surface_count,
3720 struct dc_stream_state *stream,
3721 struct dc_surface_update *srf_updates,
3722 struct dc_state *context)
3723 {
3724 union dmub_rb_cmd cmd;
3725 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3726 unsigned int i, j;
3727 unsigned int panel_inst = 0;
3728
3729 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3730 return;
3731
3732 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3733 return;
3734
3735 memset(&cmd, 0x0, sizeof(cmd));
3736 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3737 cmd.update_dirty_rect.header.sub_type = 0;
3738 cmd.update_dirty_rect.header.payload_bytes =
3739 sizeof(cmd.update_dirty_rect) -
3740 sizeof(cmd.update_dirty_rect.header);
3741 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3742 for (i = 0; i < surface_count; i++) {
3743 struct dc_plane_state *plane_state = srf_updates[i].surface;
3744 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3745
3746 if (!srf_updates[i].surface || !flip_addr)
3747 continue;
3748 /* Do not send in immediate flip mode */
3749 if (srf_updates[i].surface->flip_immediate)
3750 continue;
3751
3752 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3753 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3754 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3755 sizeof(flip_addr->dirty_rects));
3756 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3757 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3758
3759 if (pipe_ctx->stream != stream)
3760 continue;
3761 if (pipe_ctx->plane_state != plane_state)
3762 continue;
3763
3764 update_dirty_rect->panel_inst = panel_inst;
3765 update_dirty_rect->pipe_idx = j;
3766 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3767 }
3768 }
3769 }
3770
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3771 static void build_dmub_update_dirty_rect(
3772 struct dc *dc,
3773 int surface_count,
3774 struct dc_stream_state *stream,
3775 struct dc_surface_update *srf_updates,
3776 struct dc_state *context,
3777 struct dc_dmub_cmd dc_dmub_cmd[],
3778 unsigned int *dmub_cmd_count)
3779 {
3780 union dmub_rb_cmd cmd;
3781 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3782 unsigned int i, j;
3783 unsigned int panel_inst = 0;
3784
3785 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3786 return;
3787
3788 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3789 return;
3790
3791 memset(&cmd, 0x0, sizeof(cmd));
3792 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3793 cmd.update_dirty_rect.header.sub_type = 0;
3794 cmd.update_dirty_rect.header.payload_bytes =
3795 sizeof(cmd.update_dirty_rect) -
3796 sizeof(cmd.update_dirty_rect.header);
3797 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3798 for (i = 0; i < surface_count; i++) {
3799 struct dc_plane_state *plane_state = srf_updates[i].surface;
3800 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3801
3802 if (!srf_updates[i].surface || !flip_addr)
3803 continue;
3804 /* Do not send in immediate flip mode */
3805 if (srf_updates[i].surface->flip_immediate)
3806 continue;
3807 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3808 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3809 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3810 sizeof(flip_addr->dirty_rects));
3811 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3812 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3813
3814 if (pipe_ctx->stream != stream)
3815 continue;
3816 if (pipe_ctx->plane_state != plane_state)
3817 continue;
3818 update_dirty_rect->panel_inst = panel_inst;
3819 update_dirty_rect->pipe_idx = j;
3820 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3821 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3822 (*dmub_cmd_count)++;
3823 }
3824 }
3825 }
3826
check_address_only_update(union surface_update_flags update_flags)3827 static bool check_address_only_update(union surface_update_flags update_flags)
3828 {
3829 union surface_update_flags addr_only_update_flags;
3830 addr_only_update_flags.raw = 0;
3831 addr_only_update_flags.bits.addr_update = 1;
3832
3833 return update_flags.bits.addr_update &&
3834 !(update_flags.raw & ~addr_only_update_flags.raw);
3835 }
3836
3837 /**
3838 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3839 *
3840 * @dc: Current DC state
3841 * @srf_updates: Array of surface updates
3842 * @surface_count: Number of surfaces that have an updated
3843 * @stream: Corresponding stream to be updated in the current flip
3844 * @context: New DC state to be programmed
3845 *
3846 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3847 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3848 *
3849 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3850 * to build an array of commands and have them sent while the OTG lock is acquired.
3851 *
3852 * Return: void
3853 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3854 static void build_dmub_cmd_list(struct dc *dc,
3855 struct dc_surface_update *srf_updates,
3856 int surface_count,
3857 struct dc_stream_state *stream,
3858 struct dc_state *context,
3859 struct dc_dmub_cmd dc_dmub_cmd[],
3860 unsigned int *dmub_cmd_count)
3861 {
3862 // Initialize cmd count to 0
3863 *dmub_cmd_count = 0;
3864 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3865 }
3866
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3867 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3868 struct dc_surface_update *srf_updates,
3869 int surface_count,
3870 struct dc_stream_state *stream,
3871 struct dc_state *context)
3872 {
3873 int i, j;
3874
3875 /* update dirty rect for PSR */
3876 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3877 srf_updates, context);
3878
3879 /* Perform requested Updates */
3880 for (i = 0; i < surface_count; i++) {
3881 struct dc_plane_state *plane_state = srf_updates[i].surface;
3882
3883 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3884 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3885
3886 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3887 continue;
3888
3889 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3890 continue;
3891
3892 /* update pipe context for plane */
3893 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3894 dc->hwss.update_plane_addr(dc, pipe_ctx);
3895 }
3896 }
3897
3898 /* Send commands to DMCUB */
3899 dc_dmub_srv_fams2_passthrough_flip(dc,
3900 context,
3901 stream,
3902 srf_updates,
3903 surface_count);
3904 }
3905
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3906 static void commit_planes_for_stream_fast(struct dc *dc,
3907 struct dc_surface_update *srf_updates,
3908 int surface_count,
3909 struct dc_stream_state *stream,
3910 struct dc_stream_update *stream_update,
3911 enum surface_update_type update_type,
3912 struct dc_state *context)
3913 {
3914 int i, j;
3915 struct pipe_ctx *top_pipe_to_program = NULL;
3916 struct dc_stream_status *stream_status = NULL;
3917 bool should_offload_fams2_flip = false;
3918 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3919
3920 if (should_lock_all_pipes)
3921 determine_pipe_unlock_order(dc, context);
3922
3923 if (dc->debug.fams2_config.bits.enable &&
3924 dc->debug.fams2_config.bits.enable_offload_flip &&
3925 dc_state_is_fams2_in_use(dc, context)) {
3926 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3927 should_offload_fams2_flip = true;
3928 for (i = 0; i < surface_count; i++) {
3929 if (srf_updates[i].surface &&
3930 srf_updates[i].surface->update_flags.raw &&
3931 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3932 /* more than address update, need to acquire FAMS2 lock */
3933 should_offload_fams2_flip = false;
3934 break;
3935 }
3936 }
3937 if (stream_update) {
3938 /* more than address update, need to acquire FAMS2 lock */
3939 should_offload_fams2_flip = false;
3940 }
3941 }
3942
3943 dc_exit_ips_for_hw_access(dc);
3944
3945 dc_z10_restore(dc);
3946
3947 top_pipe_to_program = resource_get_otg_master_for_stream(
3948 &context->res_ctx,
3949 stream);
3950
3951 if (!top_pipe_to_program)
3952 return;
3953
3954 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3955 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3956
3957 if (pipe->stream && pipe->plane_state) {
3958 if (!dc->debug.using_dml2)
3959 set_p_state_switch_method(dc, context, pipe);
3960
3961 if (dc->debug.visual_confirm)
3962 dc_update_visual_confirm_color(dc, context, pipe);
3963 }
3964 }
3965
3966 for (i = 0; i < surface_count; i++) {
3967 struct dc_plane_state *plane_state = srf_updates[i].surface;
3968 /*set logical flag for lock/unlock use*/
3969 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3970 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3971
3972 if (!pipe_ctx->plane_state)
3973 continue;
3974 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3975 continue;
3976
3977 pipe_ctx->plane_state->triplebuffer_flips = false;
3978 if (update_type == UPDATE_TYPE_FAST &&
3979 dc->hwss.program_triplebuffer != NULL &&
3980 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3981 /*triple buffer for VUpdate only*/
3982 pipe_ctx->plane_state->triplebuffer_flips = true;
3983 }
3984 }
3985 }
3986
3987 stream_status = dc_state_get_stream_status(context, stream);
3988
3989 if (should_offload_fams2_flip) {
3990 commit_plane_for_stream_offload_fams2_flip(dc,
3991 srf_updates,
3992 surface_count,
3993 stream,
3994 context);
3995 } else if (stream_status) {
3996 build_dmub_cmd_list(dc,
3997 srf_updates,
3998 surface_count,
3999 stream,
4000 context,
4001 context->dc_dmub_cmd,
4002 &(context->dmub_cmd_count));
4003 hwss_build_fast_sequence(dc,
4004 context->dc_dmub_cmd,
4005 context->dmub_cmd_count,
4006 context->block_sequence,
4007 &(context->block_sequence_steps),
4008 top_pipe_to_program,
4009 stream_status,
4010 context);
4011 hwss_execute_sequence(dc,
4012 context->block_sequence,
4013 context->block_sequence_steps);
4014 }
4015
4016 /* Clear update flags so next flip doesn't have redundant programming
4017 * (if there's no stream update, the update flags are not cleared).
4018 * Surface updates are cleared unconditionally at the beginning of each flip,
4019 * so no need to clear here.
4020 */
4021 if (top_pipe_to_program->stream)
4022 top_pipe_to_program->stream->update_flags.raw = 0;
4023 }
4024
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)4025 static void commit_planes_for_stream(struct dc *dc,
4026 struct dc_surface_update *srf_updates,
4027 int surface_count,
4028 struct dc_stream_state *stream,
4029 struct dc_stream_update *stream_update,
4030 enum surface_update_type update_type,
4031 struct dc_state *context)
4032 {
4033 int i, j;
4034 struct pipe_ctx *top_pipe_to_program = NULL;
4035 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
4036 bool subvp_prev_use = false;
4037 bool subvp_curr_use = false;
4038 uint8_t current_stream_mask = 0;
4039
4040 if (should_lock_all_pipes)
4041 determine_pipe_unlock_order(dc, context);
4042 // Once we apply the new subvp context to hardware it won't be in the
4043 // dc->current_state anymore, so we have to cache it before we apply
4044 // the new SubVP context
4045 subvp_prev_use = false;
4046 dc_exit_ips_for_hw_access(dc);
4047
4048 dc_z10_restore(dc);
4049 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
4050 hwss_process_outstanding_hw_updates(dc, dc->current_state);
4051
4052 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
4053 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
4054
4055 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4056 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4057
4058 if (pipe->stream && pipe->plane_state) {
4059 if (!dc->debug.using_dml2)
4060 set_p_state_switch_method(dc, context, pipe);
4061
4062 if (dc->debug.visual_confirm)
4063 dc_update_visual_confirm_color(dc, context, pipe);
4064 }
4065 }
4066
4067 if (update_type == UPDATE_TYPE_FULL) {
4068 dc_allow_idle_optimizations(dc, false);
4069
4070 if (get_seamless_boot_stream_count(context) == 0)
4071 dc->hwss.prepare_bandwidth(dc, context);
4072
4073 if (dc->hwss.update_dsc_pg)
4074 dc->hwss.update_dsc_pg(dc, context, false);
4075
4076 context_clock_trace(dc, context);
4077 }
4078
4079 if (update_type == UPDATE_TYPE_FULL)
4080 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
4081
4082 top_pipe_to_program = resource_get_otg_master_for_stream(
4083 &context->res_ctx,
4084 stream);
4085 ASSERT(top_pipe_to_program != NULL);
4086
4087 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4088 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4089
4090 // Check old context for SubVP
4091 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
4092 if (subvp_prev_use)
4093 break;
4094 }
4095
4096 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4097 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4098
4099 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
4100 subvp_curr_use = true;
4101 break;
4102 }
4103 }
4104
4105 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
4106 struct pipe_ctx *mpcc_pipe;
4107 struct pipe_ctx *odm_pipe;
4108
4109 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
4110 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
4111 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
4112 }
4113
4114 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4115 if (top_pipe_to_program &&
4116 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4117 if (should_use_dmub_lock(stream->link)) {
4118 union dmub_hw_lock_flags hw_locks = { 0 };
4119 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4120
4121 hw_locks.bits.lock_dig = 1;
4122 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4123
4124 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4125 true,
4126 &hw_locks,
4127 &inst_flags);
4128 } else
4129 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4130 top_pipe_to_program->stream_res.tg);
4131 }
4132
4133 if (dc->hwss.wait_for_dcc_meta_propagation) {
4134 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4135 }
4136
4137 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed)
4138 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, top_pipe_to_program, update_type == UPDATE_TYPE_FAST);
4139
4140 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4141 if (dc->hwss.subvp_pipe_control_lock)
4142 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4143
4144 if (dc->hwss.fams2_global_control_lock)
4145 dc->hwss.fams2_global_control_lock(dc, context, true);
4146
4147 dc->hwss.interdependent_update_lock(dc, context, true);
4148 } else {
4149 if (dc->hwss.subvp_pipe_control_lock)
4150 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4151
4152 if (dc->hwss.fams2_global_control_lock)
4153 dc->hwss.fams2_global_control_lock(dc, context, true);
4154
4155 /* Lock the top pipe while updating plane addrs, since freesync requires
4156 * plane addr update event triggers to be synchronized.
4157 * top_pipe_to_program is expected to never be NULL
4158 */
4159 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4160 }
4161
4162 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4163
4164 // Stream updates
4165 if (stream_update)
4166 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4167
4168 if (surface_count == 0) {
4169 /*
4170 * In case of turning off screen, no need to program front end a second time.
4171 * just return after program blank.
4172 */
4173 if (dc->hwss.apply_ctx_for_surface)
4174 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4175 if (dc->hwss.program_front_end_for_ctx)
4176 dc->hwss.program_front_end_for_ctx(dc, context);
4177
4178 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4179 dc->hwss.interdependent_update_lock(dc, context, false);
4180 } else {
4181 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4182 }
4183 dc->hwss.post_unlock_program_front_end(dc, context);
4184
4185 if (update_type != UPDATE_TYPE_FAST)
4186 if (dc->hwss.commit_subvp_config)
4187 dc->hwss.commit_subvp_config(dc, context);
4188
4189 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4190 * move the SubVP lock to after the phantom pipes have been setup
4191 */
4192 if (dc->hwss.subvp_pipe_control_lock)
4193 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4194 NULL, subvp_prev_use);
4195
4196 if (dc->hwss.fams2_global_control_lock)
4197 dc->hwss.fams2_global_control_lock(dc, context, false);
4198
4199 return;
4200 }
4201
4202 if (update_type != UPDATE_TYPE_FAST) {
4203 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4204 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4205
4206 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4207 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4208 pipe_ctx->stream && pipe_ctx->plane_state) {
4209 /* Only update visual confirm for SUBVP and Mclk switching here.
4210 * The bar appears on all pipes, so we need to update the bar on all displays,
4211 * so the information doesn't get stale.
4212 */
4213 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4214 pipe_ctx->plane_res.hubp->inst);
4215 }
4216 }
4217 }
4218
4219 for (i = 0; i < surface_count; i++) {
4220 struct dc_plane_state *plane_state = srf_updates[i].surface;
4221
4222 /*set logical flag for lock/unlock use*/
4223 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4224 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4225 if (!pipe_ctx->plane_state)
4226 continue;
4227 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4228 continue;
4229 pipe_ctx->plane_state->triplebuffer_flips = false;
4230 if (update_type == UPDATE_TYPE_FAST &&
4231 dc->hwss.program_triplebuffer != NULL &&
4232 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4233 /*triple buffer for VUpdate only*/
4234 pipe_ctx->plane_state->triplebuffer_flips = true;
4235 }
4236 }
4237 if (update_type == UPDATE_TYPE_FULL) {
4238 /* force vsync flip when reconfiguring pipes to prevent underflow */
4239 plane_state->flip_immediate = false;
4240 plane_state->triplebuffer_flips = false;
4241 }
4242 }
4243
4244 // Update Type FULL, Surface updates
4245 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4246 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4247
4248 if (!pipe_ctx->top_pipe &&
4249 !pipe_ctx->prev_odm_pipe &&
4250 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4251 struct dc_stream_status *stream_status = NULL;
4252
4253 if (!pipe_ctx->plane_state)
4254 continue;
4255
4256 /* Full fe update*/
4257 if (update_type == UPDATE_TYPE_FAST)
4258 continue;
4259
4260 stream_status =
4261 stream_get_status(context, pipe_ctx->stream);
4262
4263 if (dc->hwss.apply_ctx_for_surface && stream_status)
4264 dc->hwss.apply_ctx_for_surface(
4265 dc, pipe_ctx->stream, stream_status->plane_count, context);
4266 }
4267 }
4268
4269 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4270 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4271
4272 if (!pipe_ctx->plane_state)
4273 continue;
4274
4275 /* Full fe update*/
4276 if (update_type == UPDATE_TYPE_FAST)
4277 continue;
4278
4279 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4280 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4281 /*turn off triple buffer for full update*/
4282 dc->hwss.program_triplebuffer(
4283 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4284 }
4285 }
4286
4287 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4288 dc->hwss.program_front_end_for_ctx(dc, context);
4289
4290 //Pipe busy until some frame and line #
4291 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe && update_type == UPDATE_TYPE_FULL) {
4292 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4293 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4294
4295 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe_ctx);
4296 }
4297 }
4298
4299 if (dc->debug.validate_dml_output) {
4300 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4301 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4302 if (cur_pipe->stream == NULL)
4303 continue;
4304
4305 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4306 cur_pipe->plane_res.hubp, dc->ctx,
4307 &context->res_ctx.pipe_ctx[i].rq_regs,
4308 &context->res_ctx.pipe_ctx[i].dlg_regs,
4309 &context->res_ctx.pipe_ctx[i].ttu_regs);
4310 }
4311 }
4312 }
4313
4314 // Update Type FAST, Surface updates
4315 if (update_type == UPDATE_TYPE_FAST) {
4316 if (dc->hwss.set_flip_control_gsl)
4317 for (i = 0; i < surface_count; i++) {
4318 struct dc_plane_state *plane_state = srf_updates[i].surface;
4319
4320 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4321 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4322
4323 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4324 continue;
4325
4326 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4327 continue;
4328
4329 // GSL has to be used for flip immediate
4330 dc->hwss.set_flip_control_gsl(pipe_ctx,
4331 pipe_ctx->plane_state->flip_immediate);
4332 }
4333 }
4334
4335 /* Perform requested Updates */
4336 for (i = 0; i < surface_count; i++) {
4337 struct dc_plane_state *plane_state = srf_updates[i].surface;
4338
4339 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4340 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4341
4342 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4343 continue;
4344
4345 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4346 continue;
4347
4348 if (srf_updates[i].cm2_params &&
4349 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4350 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4351 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4352 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4353 dc->hwss.trigger_3dlut_dma_load)
4354 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4355
4356 /*program triple buffer after lock based on flip type*/
4357 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4358 /*only enable triplebuffer for fast_update*/
4359 dc->hwss.program_triplebuffer(
4360 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4361 }
4362 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4363 dc->hwss.update_plane_addr(dc, pipe_ctx);
4364 }
4365 }
4366 }
4367
4368 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4369 dc->hwss.interdependent_update_lock(dc, context, false);
4370 } else {
4371 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4372 }
4373
4374 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4375 if (top_pipe_to_program &&
4376 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4377 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4378 top_pipe_to_program->stream_res.tg,
4379 CRTC_STATE_VACTIVE);
4380 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4381 top_pipe_to_program->stream_res.tg,
4382 CRTC_STATE_VBLANK);
4383 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4384 top_pipe_to_program->stream_res.tg,
4385 CRTC_STATE_VACTIVE);
4386
4387 if (should_use_dmub_lock(stream->link)) {
4388 union dmub_hw_lock_flags hw_locks = { 0 };
4389 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4390
4391 hw_locks.bits.lock_dig = 1;
4392 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4393
4394 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4395 false,
4396 &hw_locks,
4397 &inst_flags);
4398 } else
4399 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4400 top_pipe_to_program->stream_res.tg);
4401 }
4402
4403 if (subvp_curr_use) {
4404 /* If enabling subvp or transitioning from subvp->subvp, enable the
4405 * phantom streams before we program front end for the phantom pipes.
4406 */
4407 if (update_type != UPDATE_TYPE_FAST) {
4408 if (dc->hwss.enable_phantom_streams)
4409 dc->hwss.enable_phantom_streams(dc, context);
4410 }
4411 }
4412
4413 if (update_type != UPDATE_TYPE_FAST)
4414 dc->hwss.post_unlock_program_front_end(dc, context);
4415
4416 if (subvp_prev_use && !subvp_curr_use) {
4417 /* If disabling subvp, disable phantom streams after front end
4418 * programming has completed (we turn on phantom OTG in order
4419 * to complete the plane disable for phantom pipes).
4420 */
4421
4422 if (dc->hwss.disable_phantom_streams)
4423 dc->hwss.disable_phantom_streams(dc, context);
4424 }
4425
4426 if (update_type != UPDATE_TYPE_FAST)
4427 if (dc->hwss.commit_subvp_config)
4428 dc->hwss.commit_subvp_config(dc, context);
4429 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4430 * move the SubVP lock to after the phantom pipes have been setup
4431 */
4432 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4433 if (dc->hwss.subvp_pipe_control_lock)
4434 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4435 if (dc->hwss.fams2_global_control_lock)
4436 dc->hwss.fams2_global_control_lock(dc, context, false);
4437 } else {
4438 if (dc->hwss.subvp_pipe_control_lock)
4439 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4440 if (dc->hwss.fams2_global_control_lock)
4441 dc->hwss.fams2_global_control_lock(dc, context, false);
4442 }
4443
4444 // Fire manual trigger only when bottom plane is flipped
4445 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4446 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4447
4448 if (!pipe_ctx->plane_state)
4449 continue;
4450
4451 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4452 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4453 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4454 pipe_ctx->plane_state->skip_manual_trigger)
4455 continue;
4456
4457 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4458 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4459 }
4460
4461 current_stream_mask = get_stream_mask(dc, context);
4462 if (current_stream_mask != context->stream_mask) {
4463 context->stream_mask = current_stream_mask;
4464 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4465 }
4466 }
4467
4468 /**
4469 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4470 *
4471 * @dc: Used to get the current state status
4472 * @stream: Target stream, which we want to remove the attached planes
4473 * @srf_updates: Array of surface updates
4474 * @surface_count: Number of surface update
4475 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4476 *
4477 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4478 * the MPO if used simultaneously in some specific configurations (e.g.,
4479 * 4k@144). This function checks if the incoming context requires applying a
4480 * transition state with unnecessary pipe splitting and ODM disabled to
4481 * circumvent our hardware limitations to prevent this edge case. If the OPP
4482 * associated with an MPCC might change due to plane additions, this function
4483 * returns true.
4484 *
4485 * Return:
4486 * Return true if OPP and MPCC might change, otherwise, return false.
4487 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4488 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4489 struct dc_stream_state *stream,
4490 struct dc_surface_update *srf_updates,
4491 int surface_count,
4492 bool *is_plane_addition)
4493 {
4494
4495 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4496 bool force_minimal_pipe_splitting = false;
4497 bool subvp_active = false;
4498 uint32_t i;
4499
4500 *is_plane_addition = false;
4501
4502 if (cur_stream_status &&
4503 dc->current_state->stream_count > 0 &&
4504 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4505 /* determine if minimal transition is required due to MPC*/
4506 if (surface_count > 0) {
4507 if (cur_stream_status->plane_count > surface_count) {
4508 force_minimal_pipe_splitting = true;
4509 } else if (cur_stream_status->plane_count < surface_count) {
4510 force_minimal_pipe_splitting = true;
4511 *is_plane_addition = true;
4512 }
4513 }
4514 }
4515
4516 if (cur_stream_status &&
4517 dc->current_state->stream_count == 1 &&
4518 dc->debug.enable_single_display_2to1_odm_policy) {
4519 /* determine if minimal transition is required due to dynamic ODM*/
4520 if (surface_count > 0) {
4521 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4522 force_minimal_pipe_splitting = true;
4523 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4524 force_minimal_pipe_splitting = true;
4525 *is_plane_addition = true;
4526 }
4527 }
4528 }
4529
4530 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4531 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4532
4533 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4534 subvp_active = true;
4535 break;
4536 }
4537 }
4538
4539 /* For SubVP when adding or removing planes we need to add a minimal transition
4540 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4541 * must use the minimal transition path to disable the pipe correctly.
4542 *
4543 * We want to use the minimal transition whenever subvp is active, not only if
4544 * a plane is being added / removed from a subvp stream (MPO plane can be added
4545 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4546 * a min transition to disable subvp.
4547 */
4548 if (cur_stream_status && subvp_active) {
4549 /* determine if minimal transition is required due to SubVP*/
4550 if (cur_stream_status->plane_count > surface_count) {
4551 force_minimal_pipe_splitting = true;
4552 } else if (cur_stream_status->plane_count < surface_count) {
4553 force_minimal_pipe_splitting = true;
4554 *is_plane_addition = true;
4555 }
4556 }
4557
4558 return force_minimal_pipe_splitting;
4559 }
4560
4561 struct pipe_split_policy_backup {
4562 bool dynamic_odm_policy;
4563 bool subvp_policy;
4564 enum pipe_split_policy mpc_policy;
4565 char force_odm[MAX_PIPES];
4566 };
4567
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4568 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4569 struct dc_state *context,
4570 struct pipe_split_policy_backup *policy)
4571 {
4572 int i;
4573
4574 if (!dc->config.is_vmin_only_asic) {
4575 policy->mpc_policy = dc->debug.pipe_split_policy;
4576 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4577 }
4578 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4579 dc->debug.enable_single_display_2to1_odm_policy = false;
4580 policy->subvp_policy = dc->debug.force_disable_subvp;
4581 dc->debug.force_disable_subvp = true;
4582 for (i = 0; i < context->stream_count; i++) {
4583 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4584 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4585 context->streams[i]->debug.force_odm_combine_segments = 0;
4586 }
4587 }
4588
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4589 static void restore_minimal_pipe_split_policy(struct dc *dc,
4590 struct dc_state *context,
4591 struct pipe_split_policy_backup *policy)
4592 {
4593 uint8_t i;
4594
4595 if (!dc->config.is_vmin_only_asic)
4596 dc->debug.pipe_split_policy = policy->mpc_policy;
4597 dc->debug.enable_single_display_2to1_odm_policy =
4598 policy->dynamic_odm_policy;
4599 dc->debug.force_disable_subvp = policy->subvp_policy;
4600 for (i = 0; i < context->stream_count; i++)
4601 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4602 }
4603
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4604 static void release_minimal_transition_state(struct dc *dc,
4605 struct dc_state *minimal_transition_context,
4606 struct dc_state *base_context,
4607 struct pipe_split_policy_backup *policy)
4608 {
4609 restore_minimal_pipe_split_policy(dc, base_context, policy);
4610 dc_state_release(minimal_transition_context);
4611 }
4612
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4613 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4614 {
4615 uint8_t i;
4616 int j;
4617 struct dc_stream_status *stream_status;
4618
4619 for (i = 0; i < context->stream_count; i++) {
4620 stream_status = &context->stream_status[i];
4621
4622 for (j = 0; j < stream_status->plane_count; j++)
4623 stream_status->plane_states[j]->flip_immediate = false;
4624 }
4625 }
4626
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4627 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4628 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4629 {
4630 struct dc_state *minimal_transition_context = NULL;
4631
4632 minimal_transition_context = dc_state_create_copy(base_context);
4633 if (!minimal_transition_context)
4634 return NULL;
4635
4636 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4637 /* commit minimal state */
4638 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context,
4639 DC_VALIDATE_MODE_AND_PROGRAMMING) == DC_OK) {
4640 /* prevent underflow and corruption when reconfiguring pipes */
4641 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4642 } else {
4643 /*
4644 * This should never happen, minimal transition state should
4645 * always be validated first before adding pipe split features.
4646 */
4647 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4648 BREAK_TO_DEBUGGER();
4649 minimal_transition_context = NULL;
4650 }
4651 return minimal_transition_context;
4652 }
4653
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4654 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4655 struct dc *dc,
4656 struct dc_state *initial_state,
4657 struct dc_state *intermediate_state,
4658 struct dc_state *final_state)
4659 {
4660 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4661 intermediate_state) &&
4662 dc->hwss.is_pipe_topology_transition_seamless(dc,
4663 intermediate_state, final_state);
4664 }
4665
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4666 static void swap_and_release_current_context(struct dc *dc,
4667 struct dc_state *new_context, struct dc_stream_state *stream)
4668 {
4669
4670 int i;
4671 struct dc_state *old = dc->current_state;
4672 struct pipe_ctx *pipe_ctx;
4673
4674 /* Since memory free requires elevated IRQ, an interrupt
4675 * request is generated by mem free. If this happens
4676 * between freeing and reassigning the context, our vsync
4677 * interrupt will call into dc and cause a memory
4678 * corruption. Hence, we first reassign the context,
4679 * then free the old context.
4680 */
4681 dc->current_state = new_context;
4682 dc_state_release(old);
4683
4684 // clear any forced full updates
4685 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4686 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4687
4688 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4689 pipe_ctx->plane_state->force_full_update = false;
4690 }
4691 }
4692
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4693 static int initialize_empty_surface_updates(
4694 struct dc_stream_state *stream,
4695 struct dc_surface_update *srf_updates)
4696 {
4697 struct dc_stream_status *status = dc_stream_get_status(stream);
4698 int i;
4699
4700 if (!status)
4701 return 0;
4702
4703 for (i = 0; i < status->plane_count; i++)
4704 srf_updates[i].surface = status->plane_states[i];
4705
4706 return status->plane_count;
4707 }
4708
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4709 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4710 struct dc_state *new_context,
4711 struct dc_stream_state *stream,
4712 struct dc_surface_update *srf_updates,
4713 int surface_count)
4714 {
4715 bool success = false;
4716 struct pipe_split_policy_backup policy;
4717 struct dc_state *intermediate_context =
4718 create_minimal_transition_state(dc, new_context,
4719 &policy);
4720
4721 if (intermediate_context) {
4722 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4723 dc,
4724 dc->current_state,
4725 intermediate_context,
4726 new_context)) {
4727 DC_LOG_DC("commit minimal transition state: base = new state\n");
4728 commit_planes_for_stream(dc, srf_updates,
4729 surface_count, stream, NULL,
4730 UPDATE_TYPE_FULL, intermediate_context);
4731 swap_and_release_current_context(
4732 dc, intermediate_context, stream);
4733 dc_state_retain(dc->current_state);
4734 success = true;
4735 }
4736 release_minimal_transition_state(
4737 dc, intermediate_context, new_context, &policy);
4738 }
4739 return success;
4740 }
4741
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4742 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4743 struct dc_state *new_context, struct dc_stream_state *stream)
4744 {
4745 bool success = false;
4746 struct pipe_split_policy_backup policy;
4747 struct dc_state *intermediate_context;
4748 struct dc_state *old_current_state = dc->current_state;
4749 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4750 int surface_count;
4751
4752 /*
4753 * Both current and new contexts share the same stream and plane state
4754 * pointers. When new context is validated, stream and planes get
4755 * populated with new updates such as new plane addresses. This makes
4756 * the current context no longer valid because stream and planes are
4757 * modified from the original. We backup current stream and plane states
4758 * into scratch space whenever we are populating new context. So we can
4759 * restore the original values back by calling the restore function now.
4760 * This restores back the original stream and plane states associated
4761 * with the current state.
4762 */
4763 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4764 dc_state_retain(old_current_state);
4765 intermediate_context = create_minimal_transition_state(dc,
4766 old_current_state, &policy);
4767
4768 if (intermediate_context) {
4769 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4770 dc,
4771 dc->current_state,
4772 intermediate_context,
4773 new_context)) {
4774 DC_LOG_DC("commit minimal transition state: base = current state\n");
4775 surface_count = initialize_empty_surface_updates(
4776 stream, srf_updates);
4777 commit_planes_for_stream(dc, srf_updates,
4778 surface_count, stream, NULL,
4779 UPDATE_TYPE_FULL, intermediate_context);
4780 swap_and_release_current_context(
4781 dc, intermediate_context, stream);
4782 dc_state_retain(dc->current_state);
4783 success = true;
4784 }
4785 release_minimal_transition_state(dc, intermediate_context,
4786 old_current_state, &policy);
4787 }
4788 dc_state_release(old_current_state);
4789 /*
4790 * Restore stream and plane states back to the values associated with
4791 * new context.
4792 */
4793 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4794 return success;
4795 }
4796
4797 /**
4798 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4799 * on current or new context
4800 *
4801 * @dc: DC structure, used to get the current state
4802 * @new_context: New context
4803 * @stream: Stream getting the update for the flip
4804 * @srf_updates: Surface updates
4805 * @surface_count: Number of surfaces
4806 *
4807 * The function takes in current state and new state and determine a minimal
4808 * transition state as the intermediate step which could make the transition
4809 * between current and new states seamless. If found, it will commit the minimal
4810 * transition state and update current state to this minimal transition state
4811 * and return true, if not, it will return false.
4812 *
4813 * Return:
4814 * Return True if the minimal transition succeeded, false otherwise
4815 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4816 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4817 struct dc_state *new_context,
4818 struct dc_stream_state *stream,
4819 struct dc_surface_update *srf_updates,
4820 int surface_count)
4821 {
4822 bool success = commit_minimal_transition_based_on_new_context(
4823 dc, new_context, stream, srf_updates,
4824 surface_count);
4825 if (!success)
4826 success = commit_minimal_transition_based_on_current_context(dc,
4827 new_context, stream);
4828 if (!success)
4829 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4830 return success;
4831 }
4832
4833 /**
4834 * commit_minimal_transition_state - Create a transition pipe split state
4835 *
4836 * @dc: Used to get the current state status
4837 * @transition_base_context: New transition state
4838 *
4839 * In some specific configurations, such as pipe split on multi-display with
4840 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4841 * programming when moving to new planes. To mitigate those types of problems,
4842 * this function adds a transition state that minimizes pipe usage before
4843 * programming the new configuration. When adding a new plane, the current
4844 * state requires the least pipes, so it is applied without splitting. When
4845 * removing a plane, the new state requires the least pipes, so it is applied
4846 * without splitting.
4847 *
4848 * Return:
4849 * Return false if something is wrong in the transition state.
4850 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4851 static bool commit_minimal_transition_state(struct dc *dc,
4852 struct dc_state *transition_base_context)
4853 {
4854 struct dc_state *transition_context;
4855 struct pipe_split_policy_backup policy;
4856 enum dc_status ret = DC_ERROR_UNEXPECTED;
4857 unsigned int i, j;
4858 unsigned int pipe_in_use = 0;
4859 bool subvp_in_use = false;
4860 bool odm_in_use = false;
4861
4862 /* check current pipes in use*/
4863 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4864 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4865
4866 if (pipe->plane_state)
4867 pipe_in_use++;
4868 }
4869
4870 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4871 * pipe, we must use the minimal transition.
4872 */
4873 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4874 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4875
4876 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4877 subvp_in_use = true;
4878 break;
4879 }
4880 }
4881
4882 /* If ODM is enabled and we are adding or removing planes from any ODM
4883 * pipe, we must use the minimal transition.
4884 */
4885 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4886 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4887
4888 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4889 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4890 break;
4891 }
4892 }
4893
4894 /* When the OS add a new surface if we have been used all of pipes with odm combine
4895 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4896 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4897 * call it again. Otherwise return true to skip.
4898 *
4899 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4900 * enter/exit MPO when DCN still have enough resources.
4901 */
4902 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4903 return true;
4904
4905 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4906 dc->current_state == transition_base_context ? "current" : "new",
4907 subvp_in_use ? "Subvp In Use" :
4908 odm_in_use ? "ODM in Use" :
4909 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4910 "Unknown");
4911
4912 dc_state_retain(transition_base_context);
4913 transition_context = create_minimal_transition_state(dc,
4914 transition_base_context, &policy);
4915 if (transition_context) {
4916 ret = dc_commit_state_no_check(dc, transition_context);
4917 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4918 }
4919 dc_state_release(transition_base_context);
4920
4921 if (ret != DC_OK) {
4922 /* this should never happen */
4923 BREAK_TO_DEBUGGER();
4924 return false;
4925 }
4926
4927 /* force full surface update */
4928 for (i = 0; i < dc->current_state->stream_count; i++) {
4929 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4930 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4931 }
4932 }
4933
4934 return true;
4935 }
4936
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4937 void populate_fast_updates(struct dc_fast_update *fast_update,
4938 struct dc_surface_update *srf_updates,
4939 int surface_count,
4940 struct dc_stream_update *stream_update)
4941 {
4942 int i = 0;
4943
4944 if (stream_update) {
4945 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4946 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4947 } else {
4948 fast_update[0].out_transfer_func = NULL;
4949 fast_update[0].output_csc_transform = NULL;
4950 }
4951
4952 for (i = 0; i < surface_count; i++) {
4953 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4954 fast_update[i].gamma = srf_updates[i].gamma;
4955 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4956 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4957 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4958 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4959 }
4960 }
4961
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4962 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4963 {
4964 int i;
4965
4966 if (fast_update[0].out_transfer_func ||
4967 fast_update[0].output_csc_transform)
4968 return true;
4969
4970 for (i = 0; i < surface_count; i++) {
4971 if (fast_update[i].flip_addr ||
4972 fast_update[i].gamma ||
4973 fast_update[i].gamut_remap_matrix ||
4974 fast_update[i].input_csc_color_matrix ||
4975 fast_update[i].cursor_csc_color_matrix ||
4976 fast_update[i].coeff_reduction_factor)
4977 return true;
4978 }
4979
4980 return false;
4981 }
4982
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4983 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4984 {
4985 int i;
4986
4987 if (fast_update[0].out_transfer_func ||
4988 fast_update[0].output_csc_transform)
4989 return true;
4990
4991 for (i = 0; i < surface_count; i++) {
4992 if (fast_update[i].input_csc_color_matrix ||
4993 fast_update[i].gamma ||
4994 fast_update[i].gamut_remap_matrix ||
4995 fast_update[i].coeff_reduction_factor ||
4996 fast_update[i].cursor_csc_color_matrix)
4997 return true;
4998 }
4999
5000 return false;
5001 }
5002
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5003 static bool full_update_required(struct dc *dc,
5004 struct dc_surface_update *srf_updates,
5005 int surface_count,
5006 struct dc_stream_update *stream_update,
5007 struct dc_stream_state *stream)
5008 {
5009
5010 int i;
5011 struct dc_stream_status *stream_status;
5012 const struct dc_state *context = dc->current_state;
5013
5014 for (i = 0; i < surface_count; i++) {
5015 if (srf_updates &&
5016 (srf_updates[i].plane_info ||
5017 srf_updates[i].scaling_info ||
5018 (srf_updates[i].hdr_mult.value &&
5019 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
5020 (srf_updates[i].sdr_white_level_nits &&
5021 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
5022 srf_updates[i].in_transfer_func ||
5023 srf_updates[i].func_shaper ||
5024 srf_updates[i].lut3d_func ||
5025 srf_updates[i].surface->force_full_update ||
5026 (srf_updates[i].flip_addr &&
5027 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
5028 (srf_updates[i].cm2_params &&
5029 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
5030 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
5031 !is_surface_in_context(context, srf_updates[i].surface)))
5032 return true;
5033 }
5034
5035 if (stream_update &&
5036 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
5037 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
5038 stream_update->integer_scaling_update) ||
5039 stream_update->hdr_static_metadata ||
5040 stream_update->abm_level ||
5041 stream_update->periodic_interrupt ||
5042 stream_update->vrr_infopacket ||
5043 stream_update->vsc_infopacket ||
5044 stream_update->vsp_infopacket ||
5045 stream_update->hfvsif_infopacket ||
5046 stream_update->vtem_infopacket ||
5047 stream_update->adaptive_sync_infopacket ||
5048 stream_update->dpms_off ||
5049 stream_update->allow_freesync ||
5050 stream_update->vrr_active_variable ||
5051 stream_update->vrr_active_fixed ||
5052 stream_update->gamut_remap ||
5053 stream_update->output_color_space ||
5054 stream_update->dither_option ||
5055 stream_update->wb_update ||
5056 stream_update->dsc_config ||
5057 stream_update->mst_bw_update ||
5058 stream_update->func_shaper ||
5059 stream_update->lut3d_func ||
5060 stream_update->pending_test_pattern ||
5061 stream_update->crtc_timing_adjust ||
5062 stream_update->scaler_sharpener_update ||
5063 stream_update->hw_cursor_req))
5064 return true;
5065
5066 if (stream) {
5067 stream_status = dc_stream_get_status(stream);
5068 if (stream_status == NULL || stream_status->plane_count != surface_count)
5069 return true;
5070 }
5071 if (dc->idle_optimizations_allowed)
5072 return true;
5073
5074 if (dc_can_clear_cursor_limit(dc))
5075 return true;
5076
5077 return false;
5078 }
5079
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5080 static bool fast_update_only(struct dc *dc,
5081 struct dc_fast_update *fast_update,
5082 struct dc_surface_update *srf_updates,
5083 int surface_count,
5084 struct dc_stream_update *stream_update,
5085 struct dc_stream_state *stream)
5086 {
5087 return fast_updates_exist(fast_update, surface_count)
5088 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
5089 }
5090
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5091 static bool update_planes_and_stream_v1(struct dc *dc,
5092 struct dc_surface_update *srf_updates, int surface_count,
5093 struct dc_stream_state *stream,
5094 struct dc_stream_update *stream_update,
5095 struct dc_state *state)
5096 {
5097 const struct dc_stream_status *stream_status;
5098 enum surface_update_type update_type;
5099 struct dc_state *context;
5100 struct dc_context *dc_ctx = dc->ctx;
5101 int i, j;
5102 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5103
5104 dc_exit_ips_for_hw_access(dc);
5105
5106 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5107 stream_status = dc_stream_get_status(stream);
5108 context = dc->current_state;
5109
5110 update_type = dc_check_update_surfaces_for_stream(
5111 dc, srf_updates, surface_count, stream_update, stream_status);
5112 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
5113 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
5114 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
5115 */
5116 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
5117
5118 if (update_type >= UPDATE_TYPE_FULL) {
5119
5120 /* initialize scratch memory for building context */
5121 context = dc_state_create_copy(state);
5122 if (context == NULL) {
5123 DC_ERROR("Failed to allocate new validate context!\n");
5124 return false;
5125 }
5126
5127 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5128 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
5129 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5130
5131 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
5132 new_pipe->plane_state->force_full_update = true;
5133 }
5134 } else if (update_type == UPDATE_TYPE_FAST) {
5135 /*
5136 * Previous frame finished and HW is ready for optimization.
5137 */
5138 dc_post_update_surfaces_to_stream(dc);
5139 }
5140
5141 for (i = 0; i < surface_count; i++) {
5142 struct dc_plane_state *surface = srf_updates[i].surface;
5143
5144 copy_surface_update_to_plane(surface, &srf_updates[i]);
5145
5146 if (update_type >= UPDATE_TYPE_MED) {
5147 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5148 struct pipe_ctx *pipe_ctx =
5149 &context->res_ctx.pipe_ctx[j];
5150
5151 if (pipe_ctx->plane_state != surface)
5152 continue;
5153
5154 resource_build_scaling_params(pipe_ctx);
5155 }
5156 }
5157 }
5158
5159 copy_stream_update_to_stream(dc, context, stream, stream_update);
5160
5161 if (update_type >= UPDATE_TYPE_FULL) {
5162 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
5163 DC_ERROR("Mode validation failed for stream update!\n");
5164 dc_state_release(context);
5165 return false;
5166 }
5167 }
5168
5169 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5170
5171 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5172 !dc->debug.enable_legacy_fast_update) {
5173 commit_planes_for_stream_fast(dc,
5174 srf_updates,
5175 surface_count,
5176 stream,
5177 stream_update,
5178 update_type,
5179 context);
5180 } else {
5181 commit_planes_for_stream(
5182 dc,
5183 srf_updates,
5184 surface_count,
5185 stream,
5186 stream_update,
5187 update_type,
5188 context);
5189 }
5190 /*update current_State*/
5191 if (dc->current_state != context) {
5192
5193 struct dc_state *old = dc->current_state;
5194
5195 dc->current_state = context;
5196 dc_state_release(old);
5197
5198 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5199 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5200
5201 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5202 pipe_ctx->plane_state->force_full_update = false;
5203 }
5204 }
5205
5206 /* Legacy optimization path for DCE. */
5207 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5208 dc_post_update_surfaces_to_stream(dc);
5209 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5210 }
5211 return true;
5212 }
5213
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5214 static bool update_planes_and_stream_v2(struct dc *dc,
5215 struct dc_surface_update *srf_updates, int surface_count,
5216 struct dc_stream_state *stream,
5217 struct dc_stream_update *stream_update)
5218 {
5219 struct dc_state *context;
5220 enum surface_update_type update_type;
5221 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5222
5223 /* In cases where MPO and split or ODM are used transitions can
5224 * cause underflow. Apply stream configuration with minimal pipe
5225 * split first to avoid unsupported transitions for active pipes.
5226 */
5227 bool force_minimal_pipe_splitting = 0;
5228 bool is_plane_addition = 0;
5229 bool is_fast_update_only;
5230
5231 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5232 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5233 surface_count, stream_update, stream);
5234 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5235 dc,
5236 stream,
5237 srf_updates,
5238 surface_count,
5239 &is_plane_addition);
5240
5241 /* on plane addition, minimal state is the current one */
5242 if (force_minimal_pipe_splitting && is_plane_addition &&
5243 !commit_minimal_transition_state(dc, dc->current_state))
5244 return false;
5245
5246 if (!update_planes_and_stream_state(
5247 dc,
5248 srf_updates,
5249 surface_count,
5250 stream,
5251 stream_update,
5252 &update_type,
5253 &context))
5254 return false;
5255
5256 /* on plane removal, minimal state is the new one */
5257 if (force_minimal_pipe_splitting && !is_plane_addition) {
5258 if (!commit_minimal_transition_state(dc, context)) {
5259 dc_state_release(context);
5260 return false;
5261 }
5262 update_type = UPDATE_TYPE_FULL;
5263 }
5264
5265 if (dc->hwss.is_pipe_topology_transition_seamless &&
5266 !dc->hwss.is_pipe_topology_transition_seamless(
5267 dc, dc->current_state, context))
5268 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5269 srf_updates, surface_count);
5270
5271 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5272 commit_planes_for_stream_fast(dc,
5273 srf_updates,
5274 surface_count,
5275 stream,
5276 stream_update,
5277 update_type,
5278 context);
5279 } else {
5280 if (!stream_update &&
5281 dc->hwss.is_pipe_topology_transition_seamless &&
5282 !dc->hwss.is_pipe_topology_transition_seamless(
5283 dc, dc->current_state, context)) {
5284 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5285 BREAK_TO_DEBUGGER();
5286 }
5287 commit_planes_for_stream(
5288 dc,
5289 srf_updates,
5290 surface_count,
5291 stream,
5292 stream_update,
5293 update_type,
5294 context);
5295 }
5296 if (dc->current_state != context)
5297 swap_and_release_current_context(dc, context, stream);
5298 return true;
5299 }
5300
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5301 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5302 struct dc_surface_update *srf_updates, int surface_count,
5303 struct dc_stream_state *stream,
5304 struct dc_stream_update *stream_update,
5305 enum surface_update_type update_type)
5306 {
5307 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5308
5309 ASSERT(update_type < UPDATE_TYPE_FULL);
5310 populate_fast_updates(fast_update, srf_updates, surface_count,
5311 stream_update);
5312 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5313 stream_update, stream) &&
5314 !dc->debug.enable_legacy_fast_update)
5315 commit_planes_for_stream_fast(dc,
5316 srf_updates,
5317 surface_count,
5318 stream,
5319 stream_update,
5320 update_type,
5321 dc->current_state);
5322 else
5323 commit_planes_for_stream(
5324 dc,
5325 srf_updates,
5326 surface_count,
5327 stream,
5328 stream_update,
5329 update_type,
5330 dc->current_state);
5331 }
5332
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5333 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5334 struct dc_surface_update *srf_updates, int surface_count,
5335 struct dc_stream_state *stream,
5336 struct dc_stream_update *stream_update,
5337 enum surface_update_type update_type,
5338 struct dc_state *new_context)
5339 {
5340 ASSERT(update_type >= UPDATE_TYPE_FULL);
5341 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5342 dc->current_state, new_context))
5343 /*
5344 * It is required by the feature design that all pipe topologies
5345 * using extra free pipes for power saving purposes such as
5346 * dynamic ODM or SubVp shall only be enabled when it can be
5347 * transitioned seamlessly to AND from its minimal transition
5348 * state. A minimal transition state is defined as the same dc
5349 * state but with all power saving features disabled. So it uses
5350 * the minimum pipe topology. When we can't seamlessly
5351 * transition from state A to state B, we will insert the
5352 * minimal transition state A' or B' in between so seamless
5353 * transition between A and B can be made possible.
5354 */
5355 commit_minimal_transition_state_in_dc_update(dc, new_context,
5356 stream, srf_updates, surface_count);
5357
5358 commit_planes_for_stream(
5359 dc,
5360 srf_updates,
5361 surface_count,
5362 stream,
5363 stream_update,
5364 update_type,
5365 new_context);
5366 }
5367
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5368 static bool update_planes_and_stream_v3(struct dc *dc,
5369 struct dc_surface_update *srf_updates, int surface_count,
5370 struct dc_stream_state *stream,
5371 struct dc_stream_update *stream_update)
5372 {
5373 struct dc_state *new_context;
5374 enum surface_update_type update_type;
5375
5376 /*
5377 * When this function returns true and new_context is not equal to
5378 * current state, the function allocates and validates a new dc state
5379 * and assigns it to new_context. The function expects that the caller
5380 * is responsible to free this memory when new_context is no longer
5381 * used. We swap current with new context and free current instead. So
5382 * new_context's memory will live until the next full update after it is
5383 * replaced by a newer context. Refer to the use of
5384 * swap_and_free_current_context below.
5385 */
5386 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5387 stream, stream_update, &update_type,
5388 &new_context))
5389 return false;
5390
5391 if (new_context == dc->current_state) {
5392 commit_planes_and_stream_update_on_current_context(dc,
5393 srf_updates, surface_count, stream,
5394 stream_update, update_type);
5395 } else {
5396 commit_planes_and_stream_update_with_new_context(dc,
5397 srf_updates, surface_count, stream,
5398 stream_update, update_type, new_context);
5399 swap_and_release_current_context(dc, new_context, stream);
5400 }
5401
5402 return true;
5403 }
5404
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5405 static void clear_update_flags(struct dc_surface_update *srf_updates,
5406 int surface_count, struct dc_stream_state *stream)
5407 {
5408 int i;
5409
5410 if (stream)
5411 stream->update_flags.raw = 0;
5412
5413 for (i = 0; i < surface_count; i++)
5414 if (srf_updates[i].surface)
5415 srf_updates[i].surface->update_flags.raw = 0;
5416 }
5417
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5418 bool dc_update_planes_and_stream(struct dc *dc,
5419 struct dc_surface_update *srf_updates, int surface_count,
5420 struct dc_stream_state *stream,
5421 struct dc_stream_update *stream_update)
5422 {
5423 bool ret = false;
5424
5425 dc_exit_ips_for_hw_access(dc);
5426 /*
5427 * update planes and stream version 3 separates FULL and FAST updates
5428 * to their own sequences. It aims to clean up frequent checks for
5429 * update type resulting unnecessary branching in logic flow. It also
5430 * adds a new commit minimal transition sequence, which detects the need
5431 * for minimal transition based on the actual comparison of current and
5432 * new states instead of "predicting" it based on per feature software
5433 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5434 * minimal transition sequence is made universal to any power saving
5435 * features that would use extra free pipes such as Dynamic ODM/MPC
5436 * Combine, MPO or SubVp. Therefore there is no longer a need to
5437 * specially handle compatibility problems with transitions among those
5438 * features as they are now transparent to the new sequence.
5439 */
5440 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5441 ret = update_planes_and_stream_v3(dc, srf_updates,
5442 surface_count, stream, stream_update);
5443 else
5444 ret = update_planes_and_stream_v2(dc, srf_updates,
5445 surface_count, stream, stream_update);
5446 if (ret && (dc->ctx->dce_version >= DCN_VERSION_3_2 ||
5447 dc->ctx->dce_version == DCN_VERSION_3_01))
5448 clear_update_flags(srf_updates, surface_count, stream);
5449
5450 return ret;
5451 }
5452
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5453 void dc_commit_updates_for_stream(struct dc *dc,
5454 struct dc_surface_update *srf_updates,
5455 int surface_count,
5456 struct dc_stream_state *stream,
5457 struct dc_stream_update *stream_update,
5458 struct dc_state *state)
5459 {
5460 bool ret = false;
5461
5462 dc_exit_ips_for_hw_access(dc);
5463 /* TODO: Since change commit sequence can have a huge impact,
5464 * we decided to only enable it for DCN3x. However, as soon as
5465 * we get more confident about this change we'll need to enable
5466 * the new sequence for all ASICs.
5467 */
5468 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5469 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5470 stream, stream_update);
5471 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5472 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5473 stream, stream_update);
5474 } else
5475 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5476 stream_update, state);
5477
5478 if (ret && dc->ctx->dce_version >= DCN_VERSION_3_2)
5479 clear_update_flags(srf_updates, surface_count, stream);
5480 }
5481
dc_get_current_stream_count(struct dc * dc)5482 uint8_t dc_get_current_stream_count(struct dc *dc)
5483 {
5484 return dc->current_state->stream_count;
5485 }
5486
dc_get_stream_at_index(struct dc * dc,uint8_t i)5487 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5488 {
5489 if (i < dc->current_state->stream_count)
5490 return dc->current_state->streams[i];
5491 return NULL;
5492 }
5493
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5494 enum dc_irq_source dc_interrupt_to_irq_source(
5495 struct dc *dc,
5496 uint32_t src_id,
5497 uint32_t ext_id)
5498 {
5499 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5500 }
5501
5502 /*
5503 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5504 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5505 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5506 {
5507
5508 if (dc == NULL)
5509 return false;
5510
5511 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5512 }
5513
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5514 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5515 {
5516 dal_irq_service_ack(dc->res_pool->irqs, src);
5517 }
5518
dc_power_down_on_boot(struct dc * dc)5519 void dc_power_down_on_boot(struct dc *dc)
5520 {
5521 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5522 dc->hwss.power_down_on_boot) {
5523 if (dc->caps.ips_support)
5524 dc_exit_ips_for_hw_access(dc);
5525 dc->hwss.power_down_on_boot(dc);
5526 }
5527 }
5528
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5529 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5530 {
5531 if (!dc->current_state)
5532 return;
5533
5534 switch (power_state) {
5535 case DC_ACPI_CM_POWER_STATE_D0:
5536 dc_state_construct(dc, dc->current_state);
5537
5538 dc_exit_ips_for_hw_access(dc);
5539
5540 dc_z10_restore(dc);
5541
5542 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5543
5544 dc->hwss.init_hw(dc);
5545
5546 if (dc->hwss.init_sys_ctx != NULL &&
5547 dc->vm_pa_config.valid) {
5548 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5549 }
5550 break;
5551 case DC_ACPI_CM_POWER_STATE_D3:
5552 if (dc->caps.ips_support)
5553 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D3);
5554
5555 if (dc->caps.ips_v2_support) {
5556 if (dc->clk_mgr->funcs->set_low_power_state)
5557 dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
5558 }
5559 break;
5560 default:
5561 ASSERT(dc->current_state->stream_count == 0);
5562 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5563
5564 dc_state_destruct(dc->current_state);
5565
5566 break;
5567 }
5568 }
5569
dc_resume(struct dc * dc)5570 void dc_resume(struct dc *dc)
5571 {
5572 uint32_t i;
5573
5574 for (i = 0; i < dc->link_count; i++)
5575 dc->link_srv->resume(dc->links[i]);
5576 }
5577
dc_is_dmcu_initialized(struct dc * dc)5578 bool dc_is_dmcu_initialized(struct dc *dc)
5579 {
5580 struct dmcu *dmcu = dc->res_pool->dmcu;
5581
5582 if (dmcu)
5583 return dmcu->funcs->is_dmcu_initialized(dmcu);
5584 return false;
5585 }
5586
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5587 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5588 {
5589 if (dc->hwss.set_clock)
5590 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5591 return DC_ERROR_UNEXPECTED;
5592 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5593 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5594 {
5595 if (dc->hwss.get_clock)
5596 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5597 }
5598
5599 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5600 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5601 {
5602 int i;
5603 bool allow_active;
5604
5605 for (i = 0; i < dc->current_state->stream_count ; i++) {
5606 struct dc_link *link;
5607 struct dc_stream_state *stream = dc->current_state->streams[i];
5608
5609 link = stream->link;
5610 if (!link)
5611 continue;
5612
5613 if (link->psr_settings.psr_feature_enabled) {
5614 if (enable && !link->psr_settings.psr_allow_active) {
5615 allow_active = true;
5616 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5617 return false;
5618 } else if (!enable && link->psr_settings.psr_allow_active) {
5619 allow_active = false;
5620 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5621 return false;
5622 }
5623 }
5624 }
5625
5626 return true;
5627 }
5628
5629 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5630 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5631 {
5632 int i;
5633 bool allow_active;
5634
5635 for (i = 0; i < dc->current_state->stream_count; i++) {
5636 struct dc_link *link;
5637 struct dc_stream_state *stream = dc->current_state->streams[i];
5638
5639 link = stream->link;
5640 if (!link)
5641 continue;
5642
5643 if (link->replay_settings.replay_feature_enabled) {
5644 if (active && !link->replay_settings.replay_allow_active) {
5645 allow_active = true;
5646 if (!dc_link_set_replay_allow_active(link, &allow_active,
5647 false, false, NULL))
5648 return false;
5649 } else if (!active && link->replay_settings.replay_allow_active) {
5650 allow_active = false;
5651 if (!dc_link_set_replay_allow_active(link, &allow_active,
5652 true, false, NULL))
5653 return false;
5654 }
5655 }
5656 }
5657
5658 return true;
5659 }
5660
5661 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5662 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5663 {
5664 dc_exit_ips_for_hw_access(dc);
5665
5666 dc->config.disable_ips = disable_ips;
5667
5668 return true;
5669 }
5670
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5671 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5672 {
5673 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5674 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5675 struct pipe_ctx *pipe = NULL;
5676 struct dc_state *context = dc->current_state;
5677
5678 if (dc->debug.disable_idle_power_optimizations) {
5679 DC_LOG_DEBUG("%s: disabled\n", __func__);
5680 return;
5681 }
5682
5683 if (allow != dc->idle_optimizations_allowed)
5684 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5685 dc->idle_optimizations_allowed, allow, caller_name);
5686
5687 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5688 return;
5689
5690 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5691 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5692 return;
5693
5694 if (allow == dc->idle_optimizations_allowed)
5695 return;
5696
5697 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5698 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5699 dc->idle_optimizations_allowed = allow;
5700 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5701 }
5702
5703 // log idle clocks and sub vp pipe types at idle optimization time
5704 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5705 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5706
5707 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5708 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5709
5710 if (dc->res_pool && context) {
5711 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5712 pipe = &context->res_ctx.pipe_ctx[i];
5713 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5714 }
5715 }
5716
5717 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5718 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5719 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5720
5721 }
5722
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5723 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5724 {
5725 if (dc->caps.ips_support)
5726 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5727 }
5728
dc_dmub_is_ips_idle_state(struct dc * dc)5729 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5730 {
5731 if (dc->debug.disable_idle_power_optimizations)
5732 return false;
5733
5734 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5735 return false;
5736
5737 if (!dc->ctx->dmub_srv)
5738 return false;
5739
5740 return dc->ctx->dmub_srv->idle_allowed;
5741 }
5742
5743 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5744 void dc_unlock_memory_clock_frequency(struct dc *dc)
5745 {
5746 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5747 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5748
5749 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5750 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5751 }
5752
5753 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5754 void dc_lock_memory_clock_frequency(struct dc *dc)
5755 {
5756 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5757 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5758
5759 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5760 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5761
5762 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5763 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5764 }
5765
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5766 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5767 {
5768 struct dc_state *context = dc->current_state;
5769 struct hubp *hubp;
5770 struct pipe_ctx *pipe;
5771 int i;
5772
5773 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5774 pipe = &context->res_ctx.pipe_ctx[i];
5775
5776 if (pipe->stream != NULL) {
5777 dc->hwss.disable_pixel_data(dc, pipe, true);
5778
5779 // wait for double buffer
5780 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5781 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5782 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5783
5784 hubp = pipe->plane_res.hubp;
5785 hubp->funcs->set_blank_regs(hubp, true);
5786 }
5787 }
5788 if (dc->clk_mgr->funcs->set_max_memclk)
5789 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5790 if (dc->clk_mgr->funcs->set_min_memclk)
5791 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5792
5793 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5794 pipe = &context->res_ctx.pipe_ctx[i];
5795
5796 if (pipe->stream != NULL) {
5797 dc->hwss.disable_pixel_data(dc, pipe, false);
5798
5799 hubp = pipe->plane_res.hubp;
5800 hubp->funcs->set_blank_regs(hubp, false);
5801 }
5802 }
5803 }
5804
5805
5806 /**
5807 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5808 * @dc: pointer to dc of the dm calling this
5809 * @enable: True = transition to DC mode, false = transition back to AC mode
5810 *
5811 * Some SoCs define additional clock limits when in DC mode, DM should
5812 * invoke this function when the platform undergoes a power source transition
5813 * so DC can apply/unapply the limit. This interface may be disruptive to
5814 * the onscreen content.
5815 *
5816 * Context: Triggered by OS through DM interface, or manually by escape calls.
5817 * Need to hold a dclock when doing so.
5818 *
5819 * Return: none (void function)
5820 *
5821 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5822 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5823 {
5824 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5825 bool p_state_change_support;
5826
5827 if (!dc->config.dc_mode_clk_limit_support)
5828 return;
5829
5830 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5831 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5832 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5833 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5834 }
5835 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5836 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5837
5838 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5839 if (p_state_change_support) {
5840 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5841 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5842 // else: No-Op
5843 } else {
5844 if (funcMin <= softMax)
5845 blank_and_force_memclk(dc, true, softMax);
5846 // else: No-Op
5847 }
5848 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5849 if (p_state_change_support) {
5850 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5851 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5852 // else: No-Op
5853 } else {
5854 if (funcMin <= softMax)
5855 blank_and_force_memclk(dc, true, maxDPM);
5856 // else: No-Op
5857 }
5858 }
5859 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5860 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5861 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5862 unsigned int pitch,
5863 unsigned int height,
5864 enum surface_pixel_format format,
5865 struct dc_cursor_attributes *cursor_attr)
5866 {
5867 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5868 return true;
5869 return false;
5870 }
5871
5872 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5873 void dc_hardware_release(struct dc *dc)
5874 {
5875 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5876
5877 if (dc->hwss.hardware_release)
5878 dc->hwss.hardware_release(dc);
5879 }
5880
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5881 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5882 {
5883 if (dc->current_state)
5884 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5885 }
5886
5887 /**
5888 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5889 *
5890 * @dc: [in] dc structure
5891 *
5892 * Checks whether DMUB FW supports outbox notifications, if supported DM
5893 * should register outbox interrupt prior to actually enabling interrupts
5894 * via dc_enable_dmub_outbox
5895 *
5896 * Return:
5897 * True if DMUB FW supports outbox notifications, False otherwise
5898 */
dc_is_dmub_outbox_supported(struct dc * dc)5899 bool dc_is_dmub_outbox_supported(struct dc *dc)
5900 {
5901 if (!dc->caps.dmcub_support)
5902 return false;
5903
5904 switch (dc->ctx->asic_id.chip_family) {
5905
5906 case FAMILY_YELLOW_CARP:
5907 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5908 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5909 !dc->debug.dpia_debug.bits.disable_dpia)
5910 return true;
5911 break;
5912
5913 case AMDGPU_FAMILY_GC_11_0_1:
5914 case AMDGPU_FAMILY_GC_11_5_0:
5915 if (!dc->debug.dpia_debug.bits.disable_dpia)
5916 return true;
5917 break;
5918
5919 default:
5920 break;
5921 }
5922
5923 /* dmub aux needs dmub notifications to be enabled */
5924 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5925
5926 }
5927
5928 /**
5929 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5930 *
5931 * @dc: [in] dc structure
5932 *
5933 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5934 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5935 * API shall be removed after switching.
5936 *
5937 * Return:
5938 * True if DMUB FW supports outbox notifications, False otherwise
5939 */
dc_enable_dmub_notifications(struct dc * dc)5940 bool dc_enable_dmub_notifications(struct dc *dc)
5941 {
5942 return dc_is_dmub_outbox_supported(dc);
5943 }
5944
5945 /**
5946 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5947 *
5948 * @dc: [in] dc structure
5949 *
5950 * Enables DMUB unsolicited notifications to x86 via outbox.
5951 */
dc_enable_dmub_outbox(struct dc * dc)5952 void dc_enable_dmub_outbox(struct dc *dc)
5953 {
5954 struct dc_context *dc_ctx = dc->ctx;
5955
5956 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5957 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5958 }
5959
5960 /**
5961 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5962 * Sets port index appropriately for legacy DDC
5963 * @dc: dc structure
5964 * @link_index: link index
5965 * @payload: aux payload
5966 *
5967 * Returns: True if successful, False if failure
5968 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5969 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5970 uint32_t link_index,
5971 struct aux_payload *payload)
5972 {
5973 uint8_t action;
5974 union dmub_rb_cmd cmd = {0};
5975
5976 ASSERT(payload->length <= 16);
5977
5978 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5979 cmd.dp_aux_access.header.payload_bytes = 0;
5980 /* For dpia, ddc_pin is set to NULL */
5981 if (!dc->links[link_index]->ddc->ddc_pin)
5982 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5983 else
5984 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5985
5986 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5987 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5988 cmd.dp_aux_access.aux_control.timeout = 0;
5989 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5990 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5991 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5992
5993 /* set aux action */
5994 if (payload->i2c_over_aux) {
5995 if (payload->write) {
5996 if (payload->mot)
5997 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5998 else
5999 action = DP_AUX_REQ_ACTION_I2C_WRITE;
6000 } else {
6001 if (payload->mot)
6002 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
6003 else
6004 action = DP_AUX_REQ_ACTION_I2C_READ;
6005 }
6006 } else {
6007 if (payload->write)
6008 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
6009 else
6010 action = DP_AUX_REQ_ACTION_DPCD_READ;
6011 }
6012
6013 cmd.dp_aux_access.aux_control.dpaux.action = action;
6014
6015 if (payload->length && payload->write) {
6016 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
6017 payload->data,
6018 payload->length
6019 );
6020 }
6021
6022 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6023
6024 return true;
6025 }
6026
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)6027 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
6028 uint8_t dpia_port_index)
6029 {
6030 uint8_t index, link_index = 0xFF;
6031
6032 for (index = 0; index < dc->link_count; index++) {
6033 /* ddc_hw_inst has dpia port index for dpia links
6034 * and ddc instance for legacy links
6035 */
6036 if (!dc->links[index]->ddc->ddc_pin) {
6037 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
6038 link_index = index;
6039 break;
6040 }
6041 }
6042 }
6043 ASSERT(link_index != 0xFF);
6044 return link_index;
6045 }
6046
6047 /**
6048 * dc_process_dmub_set_config_async - Submits set_config command
6049 *
6050 * @dc: [in] dc structure
6051 * @link_index: [in] link_index: link index
6052 * @payload: [in] aux payload
6053 * @notify: [out] set_config immediate reply
6054 *
6055 * Submits set_config command to dmub via inbox message.
6056 *
6057 * Return:
6058 * True if successful, False if failure
6059 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)6060 bool dc_process_dmub_set_config_async(struct dc *dc,
6061 uint32_t link_index,
6062 struct set_config_cmd_payload *payload,
6063 struct dmub_notification *notify)
6064 {
6065 union dmub_rb_cmd cmd = {0};
6066 bool is_cmd_complete = true;
6067
6068 /* prepare SET_CONFIG command */
6069 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
6070 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
6071
6072 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
6073 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
6074 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
6075
6076 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
6077 /* command is not processed by dmub */
6078 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
6079 return is_cmd_complete;
6080 }
6081
6082 /* command processed by dmub, if ret_status is 1, it is completed instantly */
6083 if (cmd.set_config_access.header.ret_status == 1)
6084 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
6085 else
6086 /* cmd pending, will receive notification via outbox */
6087 is_cmd_complete = false;
6088
6089 return is_cmd_complete;
6090 }
6091
6092 /**
6093 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
6094 *
6095 * @dc: [in] dc structure
6096 * @link_index: [in] link index
6097 * @mst_alloc_slots: [in] mst slots to be allotted
6098 * @mst_slots_in_use: [out] mst slots in use returned in failure case
6099 *
6100 * Submits mst slot allocation command to dmub via inbox message
6101 *
6102 * Return:
6103 * DC_OK if successful, DC_ERROR if failure
6104 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)6105 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
6106 uint32_t link_index,
6107 uint8_t mst_alloc_slots,
6108 uint8_t *mst_slots_in_use)
6109 {
6110 union dmub_rb_cmd cmd = {0};
6111
6112 /* prepare MST_ALLOC_SLOTS command */
6113 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
6114 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
6115
6116 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
6117 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
6118
6119 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
6120 /* command is not processed by dmub */
6121 return DC_ERROR_UNEXPECTED;
6122
6123 /* command processed by dmub, if ret_status is 1 */
6124 if (cmd.set_config_access.header.ret_status != 1)
6125 /* command processing error */
6126 return DC_ERROR_UNEXPECTED;
6127
6128 /* command processed and we have a status of 2, mst not enabled in dpia */
6129 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
6130 return DC_FAIL_UNSUPPORTED_1;
6131
6132 /* previously configured mst alloc and used slots did not match */
6133 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
6134 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
6135 return DC_NOT_SUPPORTED;
6136 }
6137
6138 return DC_OK;
6139 }
6140
6141 /**
6142 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
6143 *
6144 * @dc: [in] dc structure
6145 * @link_index: [in] link index
6146 * @tps: [in] request tps
6147 *
6148 * Submits set_tps_notification command to dmub via inbox message
6149 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)6150 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
6151 {
6152 union dmub_rb_cmd cmd = {0};
6153
6154 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
6155 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
6156 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
6157 cmd.set_tps_notification.tps_notification.tps = tps;
6158
6159 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6160 }
6161
6162 /**
6163 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6164 *
6165 * @dc: [in] dc structure
6166 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6167 *
6168 * Submits dpia hpd int enable command to dmub via inbox message
6169 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6170 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6171 uint32_t hpd_int_enable)
6172 {
6173 union dmub_rb_cmd cmd = {0};
6174
6175 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6176 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6177
6178 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6179
6180 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6181 }
6182
6183 /**
6184 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6185 *
6186 * @dc: [in] dc structure
6187 *
6188 *
6189 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6190 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6191 {
6192 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6193 }
6194
6195 /**
6196 * dc_disable_accelerated_mode - disable accelerated mode
6197 * @dc: dc structure
6198 */
dc_disable_accelerated_mode(struct dc * dc)6199 void dc_disable_accelerated_mode(struct dc *dc)
6200 {
6201 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6202 }
6203
6204
6205 /**
6206 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6207 * @dc: dc structure
6208 * @stream: stream where vsync int state changed
6209 * @enable: whether vsync is enabled or disabled
6210 *
6211 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6212 * interrupts after steady state is reached.
6213 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6214 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6215 {
6216 int i;
6217 int edp_num;
6218 struct pipe_ctx *pipe = NULL;
6219 struct dc_link *link = stream->sink->link;
6220 struct dc_link *edp_links[MAX_NUM_EDP];
6221
6222
6223 if (link->psr_settings.psr_feature_enabled)
6224 return;
6225
6226 if (link->replay_settings.replay_feature_enabled)
6227 return;
6228
6229 /*find primary pipe associated with stream*/
6230 for (i = 0; i < MAX_PIPES; i++) {
6231 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6232
6233 if (pipe->stream == stream && pipe->stream_res.tg)
6234 break;
6235 }
6236
6237 if (i == MAX_PIPES) {
6238 ASSERT(0);
6239 return;
6240 }
6241
6242 dc_get_edp_links(dc, edp_links, &edp_num);
6243
6244 /* Determine panel inst */
6245 for (i = 0; i < edp_num; i++) {
6246 if (edp_links[i] == link)
6247 break;
6248 }
6249
6250 if (i == edp_num) {
6251 return;
6252 }
6253
6254 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6255 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6256 }
6257
6258 /*****************************************************************************
6259 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6260 * ABM
6261 * @dc: dc structure
6262 * @stream: stream where vsync int state changed
6263 * @pData: abm hw states
6264 *
6265 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6266 bool dc_abm_save_restore(
6267 struct dc *dc,
6268 struct dc_stream_state *stream,
6269 struct abm_save_restore *pData)
6270 {
6271 int i;
6272 int edp_num;
6273 struct pipe_ctx *pipe = NULL;
6274 struct dc_link *link = stream->sink->link;
6275 struct dc_link *edp_links[MAX_NUM_EDP];
6276
6277 if (link->replay_settings.replay_feature_enabled)
6278 return false;
6279
6280 /*find primary pipe associated with stream*/
6281 for (i = 0; i < MAX_PIPES; i++) {
6282 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6283
6284 if (pipe->stream == stream && pipe->stream_res.tg)
6285 break;
6286 }
6287
6288 if (i == MAX_PIPES) {
6289 ASSERT(0);
6290 return false;
6291 }
6292
6293 dc_get_edp_links(dc, edp_links, &edp_num);
6294
6295 /* Determine panel inst */
6296 for (i = 0; i < edp_num; i++)
6297 if (edp_links[i] == link)
6298 break;
6299
6300 if (i == edp_num)
6301 return false;
6302
6303 if (pipe->stream_res.abm &&
6304 pipe->stream_res.abm->funcs->save_restore)
6305 return pipe->stream_res.abm->funcs->save_restore(
6306 pipe->stream_res.abm,
6307 i,
6308 pData);
6309 return false;
6310 }
6311
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6312 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6313 {
6314 unsigned int i;
6315 unsigned int max_cursor_size = dc->caps.max_cursor_size;
6316 unsigned int stream_cursor_size;
6317
6318 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
6319 for (i = 0; i < dc->current_state->stream_count; i++) {
6320 stream_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc,
6321 dc->current_state,
6322 dc->current_state->streams[i]);
6323
6324 if (stream_cursor_size < max_cursor_size) {
6325 max_cursor_size = stream_cursor_size;
6326 }
6327 }
6328 }
6329
6330 properties->cursor_size_limit = max_cursor_size;
6331 }
6332
6333 /**
6334 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6335 *
6336 * Called when DM wants to power on/off eDP.
6337 * Only work on links with flag skip_implict_edp_power_control is set.
6338 *
6339 * @dc: Current DC state
6340 * @edp_link: a link with eDP connector signal type
6341 * @powerOn: power on/off eDP
6342 *
6343 * Return: void
6344 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6345 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6346 bool powerOn)
6347 {
6348 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6349 return;
6350
6351 if (edp_link->skip_implict_edp_power_control == false)
6352 return;
6353
6354 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6355 }
6356
6357 /**
6358 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6359 *
6360 * Called when DM wants to make power policy decisions based on dc_state
6361 *
6362 * @context: Pointer to the dc_state from which the power profile is extracted.
6363 *
6364 * Return: The power profile structure containing the power level information.
6365 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6366 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6367 {
6368 struct dc_power_profile profile = { 0 };
6369
6370 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6371 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6372 return profile;
6373 struct dc *dc = context->clk_mgr->ctx->dc;
6374
6375 if (dc->res_pool->funcs->get_power_profile)
6376 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6377 return profile;
6378 }
6379
6380 /**
6381 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6382 *
6383 * This function is called to log the detile buffer size from the dc_state.
6384 *
6385 * @context: a pointer to the dc_state from which the detile buffer size is extracted.
6386 *
6387 * Return: the size of the detile buffer, or 0 if not available.
6388 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6389 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6390 {
6391 struct dc *dc = context->clk_mgr->ctx->dc;
6392
6393 if (dc->res_pool->funcs->get_det_buffer_size)
6394 return dc->res_pool->funcs->get_det_buffer_size(context);
6395 else
6396 return 0;
6397 }
6398
6399 /**
6400 * dc_get_host_router_index: Get index of host router from a dpia link
6401 *
6402 * This function return a host router index of the target link. If the target link is dpia link.
6403 *
6404 * @link: Pointer to the target link (input)
6405 * @host_router_index: Pointer to store the host router index of the target link (output).
6406 *
6407 * Return: true if the host router index is found and valid.
6408 *
6409 */
dc_get_host_router_index(const struct dc_link * link,unsigned int * host_router_index)6410 bool dc_get_host_router_index(const struct dc_link *link, unsigned int *host_router_index)
6411 {
6412 struct dc *dc;
6413
6414 if (!link || !host_router_index || link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
6415 return false;
6416
6417 dc = link->ctx->dc;
6418
6419 if (link->link_index < dc->lowest_dpia_link_index)
6420 return false;
6421
6422 *host_router_index = (link->link_index - dc->lowest_dpia_link_index) / dc->caps.num_of_dpias_per_host_router;
6423 if (*host_router_index < dc->caps.num_of_host_routers)
6424 return true;
6425 else
6426 return false;
6427 }
6428
dc_is_cursor_limit_pending(struct dc * dc)6429 bool dc_is_cursor_limit_pending(struct dc *dc)
6430 {
6431 uint32_t i;
6432
6433 for (i = 0; i < dc->current_state->stream_count; i++) {
6434 if (dc_stream_is_cursor_limit_pending(dc, dc->current_state->streams[i]))
6435 return true;
6436 }
6437
6438 return false;
6439 }
6440
dc_can_clear_cursor_limit(struct dc * dc)6441 bool dc_can_clear_cursor_limit(struct dc *dc)
6442 {
6443 uint32_t i;
6444
6445 for (i = 0; i < dc->current_state->stream_count; i++) {
6446 if (dc_state_can_clear_stream_cursor_subvp_limit(dc->current_state->streams[i], dc->current_state))
6447 return true;
6448 }
6449
6450 return false;
6451 }
6452