1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #define MAX(x, y) ((x > y) ? x : y)
41 #endif
42
43 /*******************************************************************************
44 * Private functions
45 ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)46 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
47 {
48 if (sink->sink_signal == SIGNAL_TYPE_NONE)
49 stream->signal = stream->link->connector_signal;
50 else
51 stream->signal = sink->sink_signal;
52
53 if (dc_is_dvi_signal(stream->signal)) {
54 if (stream->ctx->dc->caps.dual_link_dvi &&
55 (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
56 sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
57 stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
58 else
59 stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
60 }
61 }
62
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)63 bool dc_stream_construct(struct dc_stream_state *stream,
64 struct dc_sink *dc_sink_data)
65 {
66 uint32_t i = 0;
67
68 stream->sink = dc_sink_data;
69 dc_sink_retain(dc_sink_data);
70
71 stream->ctx = dc_sink_data->ctx;
72 stream->link = dc_sink_data->link;
73 stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
74 stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
75 stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
76 stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
77
78 /* Copy audio modes */
79 /* TODO - Remove this translation */
80 for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
81 stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
82 stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
83 stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
84 stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
85 }
86 stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
87 stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
88 stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
89 memmove(
90 stream->audio_info.display_name,
91 dc_sink_data->edid_caps.display_name,
92 AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
93 stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
94 stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
95 stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
96
97 if (dc_sink_data->dc_container_id != NULL) {
98 struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
99
100 stream->audio_info.port_id[0] = dc_container_id->portId[0];
101 stream->audio_info.port_id[1] = dc_container_id->portId[1];
102 } else {
103 /* TODO - WindowDM has implemented,
104 other DMs need Unhardcode port_id */
105 stream->audio_info.port_id[0] = 0x5558859e;
106 stream->audio_info.port_id[1] = 0xd989449;
107 }
108
109 /* EDID CAP translation for HDMI 2.0 */
110 stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
111
112 memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
113 stream->timing.dsc_cfg.num_slices_h = 0;
114 stream->timing.dsc_cfg.num_slices_v = 0;
115 stream->timing.dsc_cfg.bits_per_pixel = 128;
116 stream->timing.dsc_cfg.block_pred_enable = 1;
117 stream->timing.dsc_cfg.linebuf_depth = 9;
118 stream->timing.dsc_cfg.version_minor = 2;
119 stream->timing.dsc_cfg.ycbcr422_simple = 0;
120
121 update_stream_signal(stream, dc_sink_data);
122
123 stream->out_transfer_func.type = TF_TYPE_BYPASS;
124
125 dc_stream_assign_stream_id(stream);
126
127 return true;
128 }
129
dc_stream_destruct(struct dc_stream_state * stream)130 void dc_stream_destruct(struct dc_stream_state *stream)
131 {
132 dc_sink_release(stream->sink);
133 }
134
dc_stream_assign_stream_id(struct dc_stream_state * stream)135 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
136 {
137 /* MSB is reserved to indicate phantoms */
138 stream->stream_id = stream->ctx->dc_stream_id_count;
139 stream->ctx->dc_stream_id_count++;
140 }
141
dc_stream_retain(struct dc_stream_state * stream)142 void dc_stream_retain(struct dc_stream_state *stream)
143 {
144 kref_get(&stream->refcount);
145 }
146
dc_stream_free(struct kref * kref)147 static void dc_stream_free(struct kref *kref)
148 {
149 struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
150
151 dc_stream_destruct(stream);
152 kfree(stream);
153 }
154
dc_stream_release(struct dc_stream_state * stream)155 void dc_stream_release(struct dc_stream_state *stream)
156 {
157 if (stream != NULL) {
158 kref_put(&stream->refcount, dc_stream_free);
159 }
160 }
161
dc_create_stream_for_sink(struct dc_sink * sink)162 struct dc_stream_state *dc_create_stream_for_sink(
163 struct dc_sink *sink)
164 {
165 struct dc_stream_state *stream;
166
167 if (sink == NULL)
168 return NULL;
169
170 stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
171 if (stream == NULL)
172 goto alloc_fail;
173
174 if (dc_stream_construct(stream, sink) == false)
175 goto construct_fail;
176
177 kref_init(&stream->refcount);
178
179 return stream;
180
181 construct_fail:
182 kfree(stream);
183
184 alloc_fail:
185 return NULL;
186 }
187
dc_copy_stream(const struct dc_stream_state * stream)188 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
189 {
190 struct dc_stream_state *new_stream;
191
192 new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
193 if (!new_stream)
194 return NULL;
195
196 if (new_stream->sink)
197 dc_sink_retain(new_stream->sink);
198
199 dc_stream_assign_stream_id(new_stream);
200
201 /* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
202 if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign)
203 new_stream->link_enc = NULL;
204
205 kref_init(&new_stream->refcount);
206
207 return new_stream;
208 }
209
210 /**
211 * dc_stream_get_status() - Get current stream status of the given stream state
212 * @stream: The stream to get the stream status for.
213 *
214 * The given stream is expected to exist in dc->current_state. Otherwise, NULL
215 * will be returned.
216 */
dc_stream_get_status(struct dc_stream_state * stream)217 struct dc_stream_status *dc_stream_get_status(
218 struct dc_stream_state *stream)
219 {
220 struct dc *dc = stream->ctx->dc;
221 return dc_state_get_stream_status(dc->current_state, stream);
222 }
223
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)224 void program_cursor_attributes(
225 struct dc *dc,
226 struct dc_stream_state *stream)
227 {
228 int i;
229 struct resource_context *res_ctx;
230 struct pipe_ctx *pipe_to_program = NULL;
231
232 if (!stream)
233 return;
234
235 res_ctx = &dc->current_state->res_ctx;
236
237 for (i = 0; i < MAX_PIPES; i++) {
238 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
239
240 if (pipe_ctx->stream != stream)
241 continue;
242
243 if (!pipe_to_program) {
244 pipe_to_program = pipe_ctx;
245 dc->hwss.cursor_lock(dc, pipe_to_program, true);
246 if (pipe_to_program->next_odm_pipe)
247 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
248 }
249
250 dc->hwss.set_cursor_attribute(pipe_ctx);
251 if (dc->ctx->dmub_srv)
252 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
253 if (dc->hwss.set_cursor_sdr_white_level)
254 dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
255 }
256
257 if (pipe_to_program) {
258 dc->hwss.cursor_lock(dc, pipe_to_program, false);
259 if (pipe_to_program->next_odm_pipe)
260 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
261 }
262 }
263
264 /*
265 * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
266 */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)267 bool dc_stream_set_cursor_attributes(
268 struct dc_stream_state *stream,
269 const struct dc_cursor_attributes *attributes)
270 {
271 struct dc *dc;
272
273 if (NULL == stream) {
274 dm_error("DC: dc_stream is NULL!\n");
275 return false;
276 }
277 if (NULL == attributes) {
278 dm_error("DC: attributes is NULL!\n");
279 return false;
280 }
281
282 if (attributes->address.quad_part == 0) {
283 dm_output_to_console("DC: Cursor address is 0!\n");
284 return false;
285 }
286
287 dc = stream->ctx->dc;
288
289 /* SubVP is not compatible with HW cursor larger than 64 x 64 x 4.
290 * Therefore, if cursor is greater than 64 x 64 x 4, fallback to SW cursor in the following case:
291 * 1. If the config is a candidate for SubVP high refresh (both single an dual display configs)
292 * 2. If not subvp high refresh, for single display cases, if resolution is >= 5K and refresh rate < 120hz
293 * 3. If not subvp high refresh, for multi display cases, if resolution is >= 4K and refresh rate < 120hz
294 */
295 if (dc->debug.allow_sw_cursor_fallback &&
296 attributes->height * attributes->width * 4 > 16384 &&
297 !stream->hw_cursor_req) {
298 if (check_subvp_sw_cursor_fallback_req(dc, stream))
299 return false;
300 }
301
302 stream->cursor_attributes = *attributes;
303
304 return true;
305 }
306
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)307 bool dc_stream_program_cursor_attributes(
308 struct dc_stream_state *stream,
309 const struct dc_cursor_attributes *attributes)
310 {
311 struct dc *dc;
312 bool reset_idle_optimizations = false;
313
314 dc = stream ? stream->ctx->dc : NULL;
315
316 if (dc_stream_set_cursor_attributes(stream, attributes)) {
317 dc_z10_restore(dc);
318 /* disable idle optimizations while updating cursor */
319 if (dc->idle_optimizations_allowed) {
320 dc_allow_idle_optimizations(dc, false);
321 reset_idle_optimizations = true;
322 }
323
324 program_cursor_attributes(dc, stream);
325
326 /* re-enable idle optimizations if necessary */
327 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
328 dc_allow_idle_optimizations(dc, true);
329
330 return true;
331 }
332
333 return false;
334 }
335
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)336 void program_cursor_position(
337 struct dc *dc,
338 struct dc_stream_state *stream)
339 {
340 int i;
341 struct resource_context *res_ctx;
342 struct pipe_ctx *pipe_to_program = NULL;
343
344 if (!stream)
345 return;
346
347 res_ctx = &dc->current_state->res_ctx;
348
349 for (i = 0; i < MAX_PIPES; i++) {
350 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
351
352 if (pipe_ctx->stream != stream ||
353 (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
354 !pipe_ctx->plane_state ||
355 (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
356 (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
357 continue;
358
359 if (!pipe_to_program) {
360 pipe_to_program = pipe_ctx;
361 dc->hwss.cursor_lock(dc, pipe_to_program, true);
362 }
363
364 dc->hwss.set_cursor_position(pipe_ctx);
365 if (dc->ctx->dmub_srv)
366 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
367 }
368
369 if (pipe_to_program)
370 dc->hwss.cursor_lock(dc, pipe_to_program, false);
371 }
372
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)373 bool dc_stream_set_cursor_position(
374 struct dc_stream_state *stream,
375 const struct dc_cursor_position *position)
376 {
377 if (NULL == stream) {
378 dm_error("DC: dc_stream is NULL!\n");
379 return false;
380 }
381
382 if (NULL == position) {
383 dm_error("DC: cursor position is NULL!\n");
384 return false;
385 }
386
387 stream->cursor_position = *position;
388
389
390 return true;
391 }
392
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)393 bool dc_stream_program_cursor_position(
394 struct dc_stream_state *stream,
395 const struct dc_cursor_position *position)
396 {
397 struct dc *dc;
398 bool reset_idle_optimizations = false;
399 const struct dc_cursor_position *old_position;
400
401 if (!stream)
402 return false;
403
404 old_position = &stream->cursor_position;
405 dc = stream->ctx->dc;
406
407 if (dc_stream_set_cursor_position(stream, position)) {
408 dc_z10_restore(dc);
409
410 /* disable idle optimizations if enabling cursor */
411 if (dc->idle_optimizations_allowed &&
412 (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
413 position->enable) {
414 dc_allow_idle_optimizations(dc, false);
415 reset_idle_optimizations = true;
416 }
417
418 program_cursor_position(dc, stream);
419 /* re-enable idle optimizations if necessary */
420 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
421 dc_allow_idle_optimizations(dc, true);
422
423 /* apply/update visual confirm */
424 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
425 /* update software state */
426 int i;
427
428 for (i = 0; i < dc->res_pool->pipe_count; i++) {
429 struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
430
431 /* adjust visual confirm color for all pipes with current stream */
432 if (stream == pipe_ctx->stream) {
433 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
434
435 /* programming hardware */
436 if (pipe_ctx->plane_state)
437 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
438 pipe_ctx->plane_res.hubp->mpcc_id);
439 }
440 }
441 }
442
443 return true;
444 }
445
446 return false;
447 }
448
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)449 bool dc_stream_add_writeback(struct dc *dc,
450 struct dc_stream_state *stream,
451 struct dc_writeback_info *wb_info)
452 {
453 bool isDrc = false;
454 int i = 0;
455 struct dwbc *dwb;
456
457 if (stream == NULL) {
458 dm_error("DC: dc_stream is NULL!\n");
459 return false;
460 }
461
462 if (wb_info == NULL) {
463 dm_error("DC: dc_writeback_info is NULL!\n");
464 return false;
465 }
466
467 if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
468 dm_error("DC: writeback pipe is invalid!\n");
469 return false;
470 }
471
472 dc_exit_ips_for_hw_access(dc);
473
474 wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
475
476 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
477 dwb->dwb_is_drc = false;
478
479 /* recalculate and apply DML parameters */
480
481 for (i = 0; i < stream->num_wb_info; i++) {
482 /*dynamic update*/
483 if (stream->writeback_info[i].wb_enabled &&
484 stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
485 stream->writeback_info[i] = *wb_info;
486 isDrc = true;
487 }
488 }
489
490 if (!isDrc) {
491 ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
492 stream->writeback_info[stream->num_wb_info++] = *wb_info;
493 }
494
495 if (dc->hwss.enable_writeback) {
496 struct dc_stream_status *stream_status = dc_stream_get_status(stream);
497 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
498 if (stream_status)
499 dwb->otg_inst = stream_status->primary_otg_inst;
500 }
501
502 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
503 dm_error("DC: update_bandwidth failed!\n");
504 return false;
505 }
506
507 /* enable writeback */
508 if (dc->hwss.enable_writeback) {
509 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
510
511 if (dwb->funcs->is_enabled(dwb)) {
512 /* writeback pipe already enabled, only need to update */
513 dc->hwss.update_writeback(dc, wb_info, dc->current_state);
514 } else {
515 /* Enable writeback pipe from scratch*/
516 dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
517 }
518 }
519
520 return true;
521 }
522
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)523 bool dc_stream_fc_disable_writeback(struct dc *dc,
524 struct dc_stream_state *stream,
525 uint32_t dwb_pipe_inst)
526 {
527 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
528
529 if (stream == NULL) {
530 dm_error("DC: dc_stream is NULL!\n");
531 return false;
532 }
533
534 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
535 dm_error("DC: writeback pipe is invalid!\n");
536 return false;
537 }
538
539 if (stream->num_wb_info > MAX_DWB_PIPES) {
540 dm_error("DC: num_wb_info is invalid!\n");
541 return false;
542 }
543
544 dc_exit_ips_for_hw_access(dc);
545
546 if (dwb->funcs->set_fc_enable)
547 dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
548
549 return true;
550 }
551
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)552 bool dc_stream_remove_writeback(struct dc *dc,
553 struct dc_stream_state *stream,
554 uint32_t dwb_pipe_inst)
555 {
556 unsigned int i, j;
557 if (stream == NULL) {
558 dm_error("DC: dc_stream is NULL!\n");
559 return false;
560 }
561
562 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
563 dm_error("DC: writeback pipe is invalid!\n");
564 return false;
565 }
566
567 if (stream->num_wb_info > MAX_DWB_PIPES) {
568 dm_error("DC: num_wb_info is invalid!\n");
569 return false;
570 }
571
572 /* remove writeback info for disabled writeback pipes from stream */
573 for (i = 0, j = 0; i < stream->num_wb_info; i++) {
574 if (stream->writeback_info[i].wb_enabled) {
575
576 if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
577 stream->writeback_info[i].wb_enabled = false;
578
579 /* trim the array */
580 if (j < i) {
581 memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
582 sizeof(struct dc_writeback_info));
583 j++;
584 }
585 }
586 }
587 stream->num_wb_info = j;
588
589 /* recalculate and apply DML parameters */
590 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
591 dm_error("DC: update_bandwidth failed!\n");
592 return false;
593 }
594
595 dc_exit_ips_for_hw_access(dc);
596
597 /* disable writeback */
598 if (dc->hwss.disable_writeback) {
599 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
600
601 if (dwb->funcs->is_enabled(dwb))
602 dc->hwss.disable_writeback(dc, dwb_pipe_inst);
603 }
604
605 return true;
606 }
607
dc_stream_warmup_writeback(struct dc * dc,int num_dwb,struct dc_writeback_info * wb_info)608 bool dc_stream_warmup_writeback(struct dc *dc,
609 int num_dwb,
610 struct dc_writeback_info *wb_info)
611 {
612 dc_exit_ips_for_hw_access(dc);
613
614 if (dc->hwss.mmhubbub_warmup)
615 return dc->hwss.mmhubbub_warmup(dc, num_dwb, wb_info);
616 else
617 return false;
618 }
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)619 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
620 {
621 uint8_t i;
622 struct dc *dc = stream->ctx->dc;
623 struct resource_context *res_ctx =
624 &dc->current_state->res_ctx;
625
626 dc_exit_ips_for_hw_access(dc);
627
628 for (i = 0; i < MAX_PIPES; i++) {
629 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
630
631 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
632 continue;
633
634 return tg->funcs->get_frame_count(tg);
635 }
636
637 return 0;
638 }
639
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)640 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
641 const uint8_t *custom_sdp_message,
642 unsigned int sdp_message_size)
643 {
644 int i;
645 struct dc *dc;
646 struct resource_context *res_ctx;
647
648 if (stream == NULL) {
649 dm_error("DC: dc_stream is NULL!\n");
650 return false;
651 }
652
653 dc = stream->ctx->dc;
654 res_ctx = &dc->current_state->res_ctx;
655
656 dc_exit_ips_for_hw_access(dc);
657
658 for (i = 0; i < MAX_PIPES; i++) {
659 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
660
661 if (pipe_ctx->stream != stream)
662 continue;
663
664 if (dc->hwss.send_immediate_sdp_message != NULL)
665 dc->hwss.send_immediate_sdp_message(pipe_ctx,
666 custom_sdp_message,
667 sdp_message_size);
668 else
669 DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
670 __func__);
671
672 }
673
674 return true;
675 }
676
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)677 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
678 uint32_t *v_blank_start,
679 uint32_t *v_blank_end,
680 uint32_t *h_position,
681 uint32_t *v_position)
682 {
683 uint8_t i;
684 bool ret = false;
685 struct dc *dc = stream->ctx->dc;
686 struct resource_context *res_ctx =
687 &dc->current_state->res_ctx;
688
689 dc_exit_ips_for_hw_access(dc);
690
691 for (i = 0; i < MAX_PIPES; i++) {
692 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
693
694 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
695 continue;
696
697 tg->funcs->get_scanoutpos(tg,
698 v_blank_start,
699 v_blank_end,
700 h_position,
701 v_position);
702
703 ret = true;
704 break;
705 }
706
707 return ret;
708 }
709
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)710 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
711 {
712 struct pipe_ctx *pipe = NULL;
713 int i;
714
715 if (!dc->hwss.dmdata_status_done)
716 return false;
717
718 for (i = 0; i < MAX_PIPES; i++) {
719 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
720 if (pipe->stream == stream)
721 break;
722 }
723 /* Stream not found, by default we'll assume HUBP fetched dm data */
724 if (i == MAX_PIPES)
725 return true;
726
727 dc_exit_ips_for_hw_access(dc);
728
729 return dc->hwss.dmdata_status_done(pipe);
730 }
731
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)732 bool dc_stream_set_dynamic_metadata(struct dc *dc,
733 struct dc_stream_state *stream,
734 struct dc_dmdata_attributes *attr)
735 {
736 struct pipe_ctx *pipe_ctx = NULL;
737 struct hubp *hubp;
738 int i;
739
740 /* Dynamic metadata is only supported on HDMI or DP */
741 if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
742 return false;
743
744 /* Check hardware support */
745 if (!dc->hwss.program_dmdata_engine)
746 return false;
747
748 for (i = 0; i < MAX_PIPES; i++) {
749 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
750 if (pipe_ctx->stream == stream)
751 break;
752 }
753
754 if (i == MAX_PIPES)
755 return false;
756
757 hubp = pipe_ctx->plane_res.hubp;
758 if (hubp == NULL)
759 return false;
760
761 pipe_ctx->stream->dmdata_address = attr->address;
762
763 dc_exit_ips_for_hw_access(dc);
764
765 dc->hwss.program_dmdata_engine(pipe_ctx);
766
767 if (hubp->funcs->dmdata_set_attributes != NULL &&
768 pipe_ctx->stream->dmdata_address.quad_part != 0) {
769 hubp->funcs->dmdata_set_attributes(hubp, attr);
770 }
771
772 return true;
773 }
774
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)775 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
776 struct dc_state *state,
777 struct dc_stream_state *stream)
778 {
779 if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
780 return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
781 } else {
782 return DC_NO_DSC_RESOURCE;
783 }
784 }
785
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)786 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
787 {
788 int i = 0;
789
790 for (i = 0; i < MAX_PIPES; i++) {
791 struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
792
793 if (pipe->stream == stream)
794 return pipe;
795 }
796
797 return NULL;
798 }
799
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)800 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
801 {
802 DC_LOG_DC(
803 "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
804 stream,
805 stream->src.x,
806 stream->src.y,
807 stream->src.width,
808 stream->src.height,
809 stream->dst.x,
810 stream->dst.y,
811 stream->dst.width,
812 stream->dst.height,
813 stream->output_color_space);
814 DC_LOG_DC(
815 "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixel_encoding:%s, color_depth:%s\n",
816 stream->timing.pix_clk_100hz / 10,
817 stream->timing.h_total,
818 stream->timing.v_total,
819 dc_pixel_encoding_to_str(stream->timing.pixel_encoding),
820 dc_color_depth_to_str(stream->timing.display_color_depth));
821 DC_LOG_DC(
822 "\tlink: %d\n",
823 stream->link->link_index);
824
825 DC_LOG_DC(
826 "\tdsc: %d, mst_pbn: %d\n",
827 stream->timing.flags.DSC,
828 stream->timing.dsc_cfg.mst_pbn);
829
830 if (stream->sink) {
831 if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
832 stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
833
834 DC_LOG_DC(
835 "\tdispname: %s signal: %x\n",
836 stream->sink->edid_caps.display_name,
837 stream->signal);
838 }
839 }
840 }
841
842 /*
843 * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
844 */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)845 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
846 {
847 for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
848 if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
849 return i;
850 }
851 }
852 return 9;
853 }
854
855 /*
856 * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
857 */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)858 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
859 int index1,
860 int index2,
861 int refresh_hz)
862 {
863 long long slope = 0;
864 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
865 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
866 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
867 }
868
869 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
870
871 return (y_intercept + refresh_hz * slope);
872 }
873
874 /*
875 * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
876 */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)877 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
878 int index1,
879 int index2,
880 int brightness_millinits)
881 {
882 long long slope = 1;
883 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
884 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
885 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
886 }
887
888 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
889
890 return ((int)div64_s64((brightness_millinits - y_intercept), slope));
891 }
892
893 /*
894 * Finds the current brightness in millinits given a refresh rate
895 */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)896 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
897 {
898 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
899 int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
900
901 if (nearest_smallest_value == refresh_hz)
902 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
903
904 if (nearest_smallest_index >= 9)
905 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
906
907 if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
908 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
909
910 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
911 }
912
913 /*
914 * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
915 * that can be achieved from starting_refresh_hz while staying
916 * within flicker criteria
917 */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)918 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
919 int current_brightness,
920 int starting_refresh_hz,
921 bool is_gaming,
922 bool search_for_max_increase)
923 {
924 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
925
926 int flicker_criteria_millinits = is_gaming ?
927 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
928 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
929
930 int safe_upper_bound = current_brightness + flicker_criteria_millinits;
931 int safe_lower_bound = current_brightness - flicker_criteria_millinits;
932 int lumin_millinits_temp = 0;
933
934 int offset = -1;
935 if (search_for_max_increase) {
936 offset = 1;
937 }
938
939 /*
940 * Increments up or down by 1 depending on search_for_max_increase
941 */
942 for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
943
944 lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
945
946 if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
947
948 if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
949 return stream->lumin_data.refresh_rate_hz[i];
950
951 int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
952 current_brightness + flicker_criteria_millinits :
953 current_brightness - flicker_criteria_millinits;
954
955 int refresh = 0;
956
957 /*
958 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
959 */
960 if (search_for_max_increase)
961 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
962 else
963 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
964
965 if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
966 return stream->lumin_data.refresh_rate_hz[i + offset];
967
968 return refresh;
969 }
970 }
971
972 if (search_for_max_increase)
973 return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
974 else
975 return stream->lumin_data.refresh_rate_hz[0];
976 }
977
978 /*
979 * Gets the max delta luminance within a specified refresh range
980 */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)981 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
982 {
983 int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
984 int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
985
986 int min = lower_refresh_brightness;
987 int max = higher_refresh_brightness;
988
989 /*
990 * Static screen, therefore no need to scan through array
991 */
992 if (!isGaming) {
993 if (lower_refresh_brightness >= higher_refresh_brightness) {
994 return lower_refresh_brightness - higher_refresh_brightness;
995 }
996 return higher_refresh_brightness - lower_refresh_brightness;
997 }
998
999 min = MIN(lower_refresh_brightness, higher_refresh_brightness);
1000 max = MAX(lower_refresh_brightness, higher_refresh_brightness);
1001
1002 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
1003
1004 for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
1005 stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
1006 min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1007 max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1008 }
1009
1010 return (max - min);
1011 }
1012
1013 /*
1014 * Determines the max flickerless instant vtotal delta for a stream.
1015 * Determines vtotal increase/decrease based on the bool "increase"
1016 */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1017 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1018 {
1019 if (stream->timing.v_total * stream->timing.h_total == 0)
1020 return 0;
1021
1022 int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1023
1024 int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1025 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1026 current_refresh_hz,
1027 is_gaming,
1028 increase);
1029
1030 int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1031
1032 if (increase)
1033 return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1034
1035 return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1036 }
1037
1038 /*
1039 * Finds the highest refresh rate that can be achieved
1040 * from starting_refresh_hz while staying within flicker criteria
1041 */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1042 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1043 {
1044 if (!stream->lumin_data.is_valid)
1045 return 0;
1046
1047 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1048
1049 return dc_stream_calculate_flickerless_refresh_rate(stream,
1050 current_brightness,
1051 starting_refresh_hz,
1052 is_gaming,
1053 true);
1054 }
1055
1056 /*
1057 * Finds the lowest refresh rate that can be achieved
1058 * from starting_refresh_hz while staying within flicker criteria
1059 */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1060 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1061 {
1062 if (!stream->lumin_data.is_valid)
1063 return 0;
1064
1065 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1066
1067 return dc_stream_calculate_flickerless_refresh_rate(stream,
1068 current_brightness,
1069 starting_refresh_hz,
1070 is_gaming,
1071 false);
1072 }
1073
1074 /*
1075 * Determines if there will be a flicker when moving between 2 refresh rates
1076 */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1077 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1078 {
1079
1080 /*
1081 * Assume that we wont flicker if there is invalid data
1082 */
1083 if (!stream->lumin_data.is_valid)
1084 return false;
1085
1086 int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1087
1088 int flicker_criteria_millinits = (is_gaming) ?
1089 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1090 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1091
1092 return (dl <= flicker_criteria_millinits);
1093 }
1094
1095 /*
1096 * Determines the max instant vtotal delta increase that can be applied without
1097 * flickering for a given stream
1098 */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1099 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1100 bool is_gaming)
1101 {
1102 if (!stream->lumin_data.is_valid)
1103 return 0;
1104
1105 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1106 }
1107
1108 /*
1109 * Determines the max instant vtotal delta decrease that can be applied without
1110 * flickering for a given stream
1111 */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1112 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1113 bool is_gaming)
1114 {
1115 if (!stream->lumin_data.is_valid)
1116 return 0;
1117
1118 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1119 }
1120