1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56
57 #ifndef __lint
58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
59 dmu_buf_evict_func_t *evict_func_sync,
60 dmu_buf_evict_func_t *evict_func_async,
61 dmu_buf_t **clear_on_evict_dbufp);
62 #endif /* ! __lint */
63
64 /*
65 * Global data structures and functions for the dbuf cache.
66 */
67 static kmem_cache_t *dbuf_kmem_cache;
68 static taskq_t *dbu_evict_taskq;
69
70 static kthread_t *dbuf_cache_evict_thread;
71 static kmutex_t dbuf_evict_lock;
72 static kcondvar_t dbuf_evict_cv;
73 static boolean_t dbuf_evict_thread_exit;
74
75 /*
76 * There are two dbuf caches; each dbuf can only be in one of them at a time.
77 *
78 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
79 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
80 * that represent the metadata that describes filesystems/snapshots/
81 * bookmarks/properties/etc. We only evict from this cache when we export a
82 * pool, to short-circuit as much I/O as possible for all administrative
83 * commands that need the metadata. There is no eviction policy for this
84 * cache, because we try to only include types in it which would occupy a
85 * very small amount of space per object but create a large impact on the
86 * performance of these commands. Instead, after it reaches a maximum size
87 * (which should only happen on very small memory systems with a very large
88 * number of filesystem objects), we stop taking new dbufs into the
89 * metadata cache, instead putting them in the normal dbuf cache.
90 *
91 * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that
92 * are not currently held but have been recently released. These dbufs
93 * are not eligible for arc eviction until they are aged out of the cache.
94 * Dbufs that are aged out of the cache will be immediately destroyed and
95 * become eligible for arc eviction.
96 *
97 * Dbufs are added to these caches once the last hold is released. If a dbuf is
98 * later accessed and still exists in the dbuf cache, then it will be removed
99 * from the cache and later re-added to the head of the cache.
100 *
101 * If a given dbuf meets the requirements for the metadata cache, it will go
102 * there, otherwise it will be considered for the generic LRU dbuf cache. The
103 * caches and the refcounts tracking their sizes are stored in an array indexed
104 * by those caches' matching enum values (from dbuf_cached_state_t).
105 */
106 typedef struct dbuf_cache {
107 multilist_t *cache;
108 zfs_refcount_t size;
109 } dbuf_cache_t;
110 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
111
112 /* Size limits for the caches */
113 uint64_t dbuf_cache_max_bytes = 0;
114 uint64_t dbuf_metadata_cache_max_bytes = 0;
115 /* Set the default sizes of the caches to log2 fraction of arc size */
116 int dbuf_cache_shift = 5;
117 int dbuf_metadata_cache_shift = 6;
118
119 /*
120 * For diagnostic purposes, this is incremented whenever we can't add
121 * something to the metadata cache because it's full, and instead put
122 * the data in the regular dbuf cache.
123 */
124 uint64_t dbuf_metadata_cache_overflow;
125
126 /*
127 * The LRU dbuf cache uses a three-stage eviction policy:
128 * - A low water marker designates when the dbuf eviction thread
129 * should stop evicting from the dbuf cache.
130 * - When we reach the maximum size (aka mid water mark), we
131 * signal the eviction thread to run.
132 * - The high water mark indicates when the eviction thread
133 * is unable to keep up with the incoming load and eviction must
134 * happen in the context of the calling thread.
135 *
136 * The dbuf cache:
137 * (max size)
138 * low water mid water hi water
139 * +----------------------------------------+----------+----------+
140 * | | | |
141 * | | | |
142 * | | | |
143 * | | | |
144 * +----------------------------------------+----------+----------+
145 * stop signal evict
146 * evicting eviction directly
147 * thread
148 *
149 * The high and low water marks indicate the operating range for the eviction
150 * thread. The low water mark is, by default, 90% of the total size of the
151 * cache and the high water mark is at 110% (both of these percentages can be
152 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
153 * respectively). The eviction thread will try to ensure that the cache remains
154 * within this range by waking up every second and checking if the cache is
155 * above the low water mark. The thread can also be woken up by callers adding
156 * elements into the cache if the cache is larger than the mid water (i.e max
157 * cache size). Once the eviction thread is woken up and eviction is required,
158 * it will continue evicting buffers until it's able to reduce the cache size
159 * to the low water mark. If the cache size continues to grow and hits the high
160 * water mark, then callers adding elements to the cache will begin to evict
161 * directly from the cache until the cache is no longer above the high water
162 * mark.
163 */
164
165 /*
166 * The percentage above and below the maximum cache size.
167 */
168 uint_t dbuf_cache_hiwater_pct = 10;
169 uint_t dbuf_cache_lowater_pct = 10;
170
171 /* ARGSUSED */
172 static int
dbuf_cons(void * vdb,void * unused,int kmflag)173 dbuf_cons(void *vdb, void *unused, int kmflag)
174 {
175 dmu_buf_impl_t *db = vdb;
176 bzero(db, sizeof (dmu_buf_impl_t));
177
178 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
179 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
180 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
181 multilist_link_init(&db->db_cache_link);
182 zfs_refcount_create(&db->db_holds);
183
184 return (0);
185 }
186
187 /* ARGSUSED */
188 static void
dbuf_dest(void * vdb,void * unused)189 dbuf_dest(void *vdb, void *unused)
190 {
191 dmu_buf_impl_t *db = vdb;
192 mutex_destroy(&db->db_mtx);
193 rw_destroy(&db->db_rwlock);
194 cv_destroy(&db->db_changed);
195 ASSERT(!multilist_link_active(&db->db_cache_link));
196 zfs_refcount_destroy(&db->db_holds);
197 }
198
199 /*
200 * dbuf hash table routines
201 */
202 static dbuf_hash_table_t dbuf_hash_table;
203
204 static uint64_t dbuf_hash_count;
205
206 /*
207 * We use Cityhash for this. It's fast, and has good hash properties without
208 * requiring any large static buffers.
209 */
210 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)211 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
212 {
213 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
214 }
215
216 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
217 ((dbuf)->db.db_object == (obj) && \
218 (dbuf)->db_objset == (os) && \
219 (dbuf)->db_level == (level) && \
220 (dbuf)->db_blkid == (blkid))
221
222 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid)223 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
224 {
225 dbuf_hash_table_t *h = &dbuf_hash_table;
226 uint64_t hv = dbuf_hash(os, obj, level, blkid);
227 uint64_t idx = hv & h->hash_table_mask;
228 dmu_buf_impl_t *db;
229
230 mutex_enter(DBUF_HASH_MUTEX(h, idx));
231 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
232 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
233 mutex_enter(&db->db_mtx);
234 if (db->db_state != DB_EVICTING) {
235 mutex_exit(DBUF_HASH_MUTEX(h, idx));
236 return (db);
237 }
238 mutex_exit(&db->db_mtx);
239 }
240 }
241 mutex_exit(DBUF_HASH_MUTEX(h, idx));
242 return (NULL);
243 }
244
245 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)246 dbuf_find_bonus(objset_t *os, uint64_t object)
247 {
248 dnode_t *dn;
249 dmu_buf_impl_t *db = NULL;
250
251 if (dnode_hold(os, object, FTAG, &dn) == 0) {
252 rw_enter(&dn->dn_struct_rwlock, RW_READER);
253 if (dn->dn_bonus != NULL) {
254 db = dn->dn_bonus;
255 mutex_enter(&db->db_mtx);
256 }
257 rw_exit(&dn->dn_struct_rwlock);
258 dnode_rele(dn, FTAG);
259 }
260 return (db);
261 }
262
263 /*
264 * Insert an entry into the hash table. If there is already an element
265 * equal to elem in the hash table, then the already existing element
266 * will be returned and the new element will not be inserted.
267 * Otherwise returns NULL.
268 */
269 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)270 dbuf_hash_insert(dmu_buf_impl_t *db)
271 {
272 dbuf_hash_table_t *h = &dbuf_hash_table;
273 objset_t *os = db->db_objset;
274 uint64_t obj = db->db.db_object;
275 int level = db->db_level;
276 uint64_t blkid = db->db_blkid;
277 uint64_t hv = dbuf_hash(os, obj, level, blkid);
278 uint64_t idx = hv & h->hash_table_mask;
279 dmu_buf_impl_t *dbf;
280
281 mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 mutex_enter(&dbf->db_mtx);
285 if (dbf->db_state != DB_EVICTING) {
286 mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 return (dbf);
288 }
289 mutex_exit(&dbf->db_mtx);
290 }
291 }
292
293 mutex_enter(&db->db_mtx);
294 db->db_hash_next = h->hash_table[idx];
295 h->hash_table[idx] = db;
296 mutex_exit(DBUF_HASH_MUTEX(h, idx));
297 atomic_inc_64(&dbuf_hash_count);
298
299 return (NULL);
300 }
301
302 /*
303 * Remove an entry from the hash table. It must be in the EVICTING state.
304 */
305 static void
dbuf_hash_remove(dmu_buf_impl_t * db)306 dbuf_hash_remove(dmu_buf_impl_t *db)
307 {
308 dbuf_hash_table_t *h = &dbuf_hash_table;
309 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
310 db->db_level, db->db_blkid);
311 uint64_t idx = hv & h->hash_table_mask;
312 dmu_buf_impl_t *dbf, **dbp;
313
314 /*
315 * We mustn't hold db_mtx to maintain lock ordering:
316 * DBUF_HASH_MUTEX > db_mtx.
317 */
318 ASSERT(zfs_refcount_is_zero(&db->db_holds));
319 ASSERT(db->db_state == DB_EVICTING);
320 ASSERT(!MUTEX_HELD(&db->db_mtx));
321
322 mutex_enter(DBUF_HASH_MUTEX(h, idx));
323 dbp = &h->hash_table[idx];
324 while ((dbf = *dbp) != db) {
325 dbp = &dbf->db_hash_next;
326 ASSERT(dbf != NULL);
327 }
328 *dbp = db->db_hash_next;
329 db->db_hash_next = NULL;
330 mutex_exit(DBUF_HASH_MUTEX(h, idx));
331 atomic_dec_64(&dbuf_hash_count);
332 }
333
334 typedef enum {
335 DBVU_EVICTING,
336 DBVU_NOT_EVICTING
337 } dbvu_verify_type_t;
338
339 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)340 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
341 {
342 #ifdef ZFS_DEBUG
343 int64_t holds;
344
345 if (db->db_user == NULL)
346 return;
347
348 /* Only data blocks support the attachment of user data. */
349 ASSERT(db->db_level == 0);
350
351 /* Clients must resolve a dbuf before attaching user data. */
352 ASSERT(db->db.db_data != NULL);
353 ASSERT3U(db->db_state, ==, DB_CACHED);
354
355 holds = zfs_refcount_count(&db->db_holds);
356 if (verify_type == DBVU_EVICTING) {
357 /*
358 * Immediate eviction occurs when holds == dirtycnt.
359 * For normal eviction buffers, holds is zero on
360 * eviction, except when dbuf_fix_old_data() calls
361 * dbuf_clear_data(). However, the hold count can grow
362 * during eviction even though db_mtx is held (see
363 * dmu_bonus_hold() for an example), so we can only
364 * test the generic invariant that holds >= dirtycnt.
365 */
366 ASSERT3U(holds, >=, db->db_dirtycnt);
367 } else {
368 if (db->db_user_immediate_evict == TRUE)
369 ASSERT3U(holds, >=, db->db_dirtycnt);
370 else
371 ASSERT3U(holds, >, 0);
372 }
373 #endif
374 }
375
376 static void
dbuf_evict_user(dmu_buf_impl_t * db)377 dbuf_evict_user(dmu_buf_impl_t *db)
378 {
379 dmu_buf_user_t *dbu = db->db_user;
380
381 ASSERT(MUTEX_HELD(&db->db_mtx));
382
383 if (dbu == NULL)
384 return;
385
386 dbuf_verify_user(db, DBVU_EVICTING);
387 db->db_user = NULL;
388
389 #ifdef ZFS_DEBUG
390 if (dbu->dbu_clear_on_evict_dbufp != NULL)
391 *dbu->dbu_clear_on_evict_dbufp = NULL;
392 #endif
393
394 /*
395 * There are two eviction callbacks - one that we call synchronously
396 * and one that we invoke via a taskq. The async one is useful for
397 * avoiding lock order reversals and limiting stack depth.
398 *
399 * Note that if we have a sync callback but no async callback,
400 * it's likely that the sync callback will free the structure
401 * containing the dbu. In that case we need to take care to not
402 * dereference dbu after calling the sync evict func.
403 */
404 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
405
406 if (dbu->dbu_evict_func_sync != NULL)
407 dbu->dbu_evict_func_sync(dbu);
408
409 if (has_async) {
410 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
411 dbu, 0, &dbu->dbu_tqent);
412 }
413 }
414
415 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)416 dbuf_is_metadata(dmu_buf_impl_t *db)
417 {
418 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
419 return (B_TRUE);
420 } else {
421 boolean_t is_metadata;
422
423 DB_DNODE_ENTER(db);
424 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
425 DB_DNODE_EXIT(db);
426
427 return (is_metadata);
428 }
429 }
430
431 /*
432 * This returns whether this dbuf should be stored in the metadata cache, which
433 * is based on whether it's from one of the dnode types that store data related
434 * to traversing dataset hierarchies.
435 */
436 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
438 {
439 DB_DNODE_ENTER(db);
440 dmu_object_type_t type = DB_DNODE(db)->dn_type;
441 DB_DNODE_EXIT(db);
442
443 /* Check if this dbuf is one of the types we care about */
444 if (DMU_OT_IS_METADATA_CACHED(type)) {
445 /* If we hit this, then we set something up wrong in dmu_ot */
446 ASSERT(DMU_OT_IS_METADATA(type));
447
448 /*
449 * Sanity check for small-memory systems: don't allocate too
450 * much memory for this purpose.
451 */
452 if (zfs_refcount_count(
453 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
454 dbuf_metadata_cache_max_bytes) {
455 dbuf_metadata_cache_overflow++;
456 DTRACE_PROBE1(dbuf__metadata__cache__overflow,
457 dmu_buf_impl_t *, db);
458 return (B_FALSE);
459 }
460
461 return (B_TRUE);
462 }
463
464 return (B_FALSE);
465 }
466
467 /*
468 * This function *must* return indices evenly distributed between all
469 * sublists of the multilist. This is needed due to how the dbuf eviction
470 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
471 * distributed between all sublists and uses this assumption when
472 * deciding which sublist to evict from and how much to evict from it.
473 */
474 unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)475 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
476 {
477 dmu_buf_impl_t *db = obj;
478
479 /*
480 * The assumption here, is the hash value for a given
481 * dmu_buf_impl_t will remain constant throughout it's lifetime
482 * (i.e. it's objset, object, level and blkid fields don't change).
483 * Thus, we don't need to store the dbuf's sublist index
484 * on insertion, as this index can be recalculated on removal.
485 *
486 * Also, the low order bits of the hash value are thought to be
487 * distributed evenly. Otherwise, in the case that the multilist
488 * has a power of two number of sublists, each sublists' usage
489 * would not be evenly distributed.
490 */
491 return (dbuf_hash(db->db_objset, db->db.db_object,
492 db->db_level, db->db_blkid) %
493 multilist_get_num_sublists(ml));
494 }
495
496 static inline boolean_t
dbuf_cache_above_hiwater(void)497 dbuf_cache_above_hiwater(void)
498 {
499 uint64_t dbuf_cache_hiwater_bytes =
500 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
501
502 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
503 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
504 }
505
506 static inline boolean_t
dbuf_cache_above_lowater(void)507 dbuf_cache_above_lowater(void)
508 {
509 uint64_t dbuf_cache_lowater_bytes =
510 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
511
512 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
513 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
514 }
515
516 /*
517 * Evict the oldest eligible dbuf from the dbuf cache.
518 */
519 static void
dbuf_evict_one(void)520 dbuf_evict_one(void)
521 {
522 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
523 multilist_sublist_t *mls = multilist_sublist_lock(
524 dbuf_caches[DB_DBUF_CACHE].cache, idx);
525
526 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
527
528 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
529 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
530 db = multilist_sublist_prev(mls, db);
531 }
532
533 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
534 multilist_sublist_t *, mls);
535
536 if (db != NULL) {
537 multilist_sublist_remove(mls, db);
538 multilist_sublist_unlock(mls);
539 (void) zfs_refcount_remove_many(
540 &dbuf_caches[DB_DBUF_CACHE].size,
541 db->db.db_size, db);
542 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
543 db->db_caching_status = DB_NO_CACHE;
544 dbuf_destroy(db);
545 } else {
546 multilist_sublist_unlock(mls);
547 }
548 }
549
550 /*
551 * The dbuf evict thread is responsible for aging out dbufs from the
552 * cache. Once the cache has reached it's maximum size, dbufs are removed
553 * and destroyed. The eviction thread will continue running until the size
554 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
555 * out of the cache it is destroyed and becomes eligible for arc eviction.
556 */
557 /* ARGSUSED */
558 static void
dbuf_evict_thread(void * unused)559 dbuf_evict_thread(void *unused)
560 {
561 callb_cpr_t cpr;
562
563 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
564
565 mutex_enter(&dbuf_evict_lock);
566 while (!dbuf_evict_thread_exit) {
567 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
568 CALLB_CPR_SAFE_BEGIN(&cpr);
569 (void) cv_timedwait_hires(&dbuf_evict_cv,
570 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
571 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
572 }
573 mutex_exit(&dbuf_evict_lock);
574
575 /*
576 * Keep evicting as long as we're above the low water mark
577 * for the cache. We do this without holding the locks to
578 * minimize lock contention.
579 */
580 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
581 dbuf_evict_one();
582 }
583
584 mutex_enter(&dbuf_evict_lock);
585 }
586
587 dbuf_evict_thread_exit = B_FALSE;
588 cv_broadcast(&dbuf_evict_cv);
589 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
590 thread_exit();
591 }
592
593 /*
594 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
595 * If the dbuf cache is at its high water mark, then evict a dbuf from the
596 * dbuf cache using the callers context.
597 */
598 static void
dbuf_evict_notify(void)599 dbuf_evict_notify(void)
600 {
601 /*
602 * We check if we should evict without holding the dbuf_evict_lock,
603 * because it's OK to occasionally make the wrong decision here,
604 * and grabbing the lock results in massive lock contention.
605 */
606 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
607 dbuf_cache_max_bytes) {
608 if (dbuf_cache_above_hiwater())
609 dbuf_evict_one();
610 cv_signal(&dbuf_evict_cv);
611 }
612 }
613
614 void
dbuf_init(void)615 dbuf_init(void)
616 {
617 uint64_t hsize = 1ULL << 16;
618 dbuf_hash_table_t *h = &dbuf_hash_table;
619 int i;
620
621 /*
622 * The hash table is big enough to fill all of physical memory
623 * with an average 4K block size. The table will take up
624 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
625 */
626 while (hsize * 4096 < physmem * PAGESIZE)
627 hsize <<= 1;
628
629 retry:
630 h->hash_table_mask = hsize - 1;
631 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
632 if (h->hash_table == NULL) {
633 /* XXX - we should really return an error instead of assert */
634 ASSERT(hsize > (1ULL << 10));
635 hsize >>= 1;
636 goto retry;
637 }
638
639 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
640 sizeof (dmu_buf_impl_t),
641 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
642
643 for (i = 0; i < DBUF_MUTEXES; i++)
644 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
645
646 /*
647 * Setup the parameters for the dbuf caches. We set the sizes of the
648 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
649 * of the size of the ARC, respectively. If the values are set in
650 * /etc/system and they're not greater than the size of the ARC, then
651 * we honor that value.
652 */
653 if (dbuf_cache_max_bytes == 0 ||
654 dbuf_cache_max_bytes >= arc_max_bytes()) {
655 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
656 }
657 if (dbuf_metadata_cache_max_bytes == 0 ||
658 dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
659 dbuf_metadata_cache_max_bytes =
660 arc_max_bytes() >> dbuf_metadata_cache_shift;
661 }
662
663 /*
664 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
665 * configuration is not required.
666 */
667 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
668
669 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
670 dbuf_caches[dcs].cache =
671 multilist_create(sizeof (dmu_buf_impl_t),
672 offsetof(dmu_buf_impl_t, db_cache_link),
673 dbuf_cache_multilist_index_func);
674 zfs_refcount_create(&dbuf_caches[dcs].size);
675 }
676
677 dbuf_evict_thread_exit = B_FALSE;
678 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
679 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
680 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
681 NULL, 0, &p0, TS_RUN, minclsyspri);
682 }
683
684 void
dbuf_fini(void)685 dbuf_fini(void)
686 {
687 dbuf_hash_table_t *h = &dbuf_hash_table;
688 int i;
689
690 for (i = 0; i < DBUF_MUTEXES; i++)
691 mutex_destroy(&h->hash_mutexes[i]);
692 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
693 kmem_cache_destroy(dbuf_kmem_cache);
694 taskq_destroy(dbu_evict_taskq);
695
696 mutex_enter(&dbuf_evict_lock);
697 dbuf_evict_thread_exit = B_TRUE;
698 while (dbuf_evict_thread_exit) {
699 cv_signal(&dbuf_evict_cv);
700 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
701 }
702 mutex_exit(&dbuf_evict_lock);
703
704 mutex_destroy(&dbuf_evict_lock);
705 cv_destroy(&dbuf_evict_cv);
706
707 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
708 zfs_refcount_destroy(&dbuf_caches[dcs].size);
709 multilist_destroy(dbuf_caches[dcs].cache);
710 }
711 }
712
713 /*
714 * Other stuff.
715 */
716
717 #ifdef ZFS_DEBUG
718 static void
dbuf_verify(dmu_buf_impl_t * db)719 dbuf_verify(dmu_buf_impl_t *db)
720 {
721 dnode_t *dn;
722 dbuf_dirty_record_t *dr;
723
724 ASSERT(MUTEX_HELD(&db->db_mtx));
725
726 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
727 return;
728
729 ASSERT(db->db_objset != NULL);
730 DB_DNODE_ENTER(db);
731 dn = DB_DNODE(db);
732 if (dn == NULL) {
733 ASSERT(db->db_parent == NULL);
734 ASSERT(db->db_blkptr == NULL);
735 } else {
736 ASSERT3U(db->db.db_object, ==, dn->dn_object);
737 ASSERT3P(db->db_objset, ==, dn->dn_objset);
738 ASSERT3U(db->db_level, <, dn->dn_nlevels);
739 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
740 db->db_blkid == DMU_SPILL_BLKID ||
741 !avl_is_empty(&dn->dn_dbufs));
742 }
743 if (db->db_blkid == DMU_BONUS_BLKID) {
744 ASSERT(dn != NULL);
745 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
746 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
747 } else if (db->db_blkid == DMU_SPILL_BLKID) {
748 ASSERT(dn != NULL);
749 ASSERT0(db->db.db_offset);
750 } else {
751 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
752 }
753
754 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
755 ASSERT(dr->dr_dbuf == db);
756
757 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
758 ASSERT(dr->dr_dbuf == db);
759
760 /*
761 * We can't assert that db_size matches dn_datablksz because it
762 * can be momentarily different when another thread is doing
763 * dnode_set_blksz().
764 */
765 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
766 dr = db->db_data_pending;
767 /*
768 * It should only be modified in syncing context, so
769 * make sure we only have one copy of the data.
770 */
771 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
772 }
773
774 /* verify db->db_blkptr */
775 if (db->db_blkptr) {
776 if (db->db_parent == dn->dn_dbuf) {
777 /* db is pointed to by the dnode */
778 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
779 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
780 ASSERT(db->db_parent == NULL);
781 else
782 ASSERT(db->db_parent != NULL);
783 if (db->db_blkid != DMU_SPILL_BLKID)
784 ASSERT3P(db->db_blkptr, ==,
785 &dn->dn_phys->dn_blkptr[db->db_blkid]);
786 } else {
787 /* db is pointed to by an indirect block */
788 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
789 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
790 ASSERT3U(db->db_parent->db.db_object, ==,
791 db->db.db_object);
792 /*
793 * dnode_grow_indblksz() can make this fail if we don't
794 * have the parent's rwlock. XXX indblksz no longer
795 * grows. safe to do this now?
796 */
797 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
798 ASSERT3P(db->db_blkptr, ==,
799 ((blkptr_t *)db->db_parent->db.db_data +
800 db->db_blkid % epb));
801 }
802 }
803 }
804 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
805 (db->db_buf == NULL || db->db_buf->b_data) &&
806 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
807 db->db_state != DB_FILL && !dn->dn_free_txg) {
808 /*
809 * If the blkptr isn't set but they have nonzero data,
810 * it had better be dirty, otherwise we'll lose that
811 * data when we evict this buffer.
812 *
813 * There is an exception to this rule for indirect blocks; in
814 * this case, if the indirect block is a hole, we fill in a few
815 * fields on each of the child blocks (importantly, birth time)
816 * to prevent hole birth times from being lost when you
817 * partially fill in a hole.
818 */
819 if (db->db_dirtycnt == 0) {
820 if (db->db_level == 0) {
821 uint64_t *buf = db->db.db_data;
822 int i;
823
824 for (i = 0; i < db->db.db_size >> 3; i++) {
825 ASSERT(buf[i] == 0);
826 }
827 } else {
828 blkptr_t *bps = db->db.db_data;
829 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
830 db->db.db_size);
831 /*
832 * We want to verify that all the blkptrs in the
833 * indirect block are holes, but we may have
834 * automatically set up a few fields for them.
835 * We iterate through each blkptr and verify
836 * they only have those fields set.
837 */
838 for (int i = 0;
839 i < db->db.db_size / sizeof (blkptr_t);
840 i++) {
841 blkptr_t *bp = &bps[i];
842 ASSERT(ZIO_CHECKSUM_IS_ZERO(
843 &bp->blk_cksum));
844 ASSERT(
845 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
846 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
847 DVA_IS_EMPTY(&bp->blk_dva[2]));
848 ASSERT0(bp->blk_fill);
849 ASSERT0(bp->blk_pad[0]);
850 ASSERT0(bp->blk_pad[1]);
851 ASSERT(!BP_IS_EMBEDDED(bp));
852 ASSERT(BP_IS_HOLE(bp));
853 ASSERT0(bp->blk_phys_birth);
854 }
855 }
856 }
857 }
858 DB_DNODE_EXIT(db);
859 }
860 #endif
861
862 static void
dbuf_clear_data(dmu_buf_impl_t * db)863 dbuf_clear_data(dmu_buf_impl_t *db)
864 {
865 ASSERT(MUTEX_HELD(&db->db_mtx));
866 dbuf_evict_user(db);
867 ASSERT3P(db->db_buf, ==, NULL);
868 db->db.db_data = NULL;
869 if (db->db_state != DB_NOFILL)
870 db->db_state = DB_UNCACHED;
871 }
872
873 /*
874 * This function is used to lock the parent of the provided dbuf. This should be
875 * used when modifying or reading db_blkptr.
876 */
877 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,void * tag)878 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
879 {
880 enum db_lock_type ret = DLT_NONE;
881 if (db->db_parent != NULL) {
882 rw_enter(&db->db_parent->db_rwlock, rw);
883 ret = DLT_PARENT;
884 } else if (dmu_objset_ds(db->db_objset) != NULL) {
885 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
886 tag);
887 ret = DLT_OBJSET;
888 }
889 /*
890 * We only return a DLT_NONE lock when it's the top-most indirect block
891 * of the meta-dnode of the MOS.
892 */
893 return (ret);
894 }
895
896 /*
897 * We need to pass the lock type in because it's possible that the block will
898 * move from being the topmost indirect block in a dnode (and thus, have no
899 * parent) to not the top-most via an indirection increase. This would cause a
900 * panic if we didn't pass the lock type in.
901 */
902 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,void * tag)903 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
904 {
905 if (type == DLT_PARENT)
906 rw_exit(&db->db_parent->db_rwlock);
907 else if (type == DLT_OBJSET)
908 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
909 }
910
911 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)912 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
913 {
914 ASSERT(MUTEX_HELD(&db->db_mtx));
915 ASSERT(buf != NULL);
916
917 db->db_buf = buf;
918 ASSERT(buf->b_data != NULL);
919 db->db.db_data = buf->b_data;
920 }
921
922 /*
923 * Loan out an arc_buf for read. Return the loaned arc_buf.
924 */
925 arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t * db)926 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
927 {
928 arc_buf_t *abuf;
929
930 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
931 mutex_enter(&db->db_mtx);
932 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
933 int blksz = db->db.db_size;
934 spa_t *spa = db->db_objset->os_spa;
935
936 mutex_exit(&db->db_mtx);
937 abuf = arc_loan_buf(spa, B_FALSE, blksz);
938 bcopy(db->db.db_data, abuf->b_data, blksz);
939 } else {
940 abuf = db->db_buf;
941 arc_loan_inuse_buf(abuf, db);
942 db->db_buf = NULL;
943 dbuf_clear_data(db);
944 mutex_exit(&db->db_mtx);
945 }
946 return (abuf);
947 }
948
949 /*
950 * Calculate which level n block references the data at the level 0 offset
951 * provided.
952 */
953 uint64_t
dbuf_whichblock(dnode_t * dn,int64_t level,uint64_t offset)954 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
955 {
956 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
957 /*
958 * The level n blkid is equal to the level 0 blkid divided by
959 * the number of level 0s in a level n block.
960 *
961 * The level 0 blkid is offset >> datablkshift =
962 * offset / 2^datablkshift.
963 *
964 * The number of level 0s in a level n is the number of block
965 * pointers in an indirect block, raised to the power of level.
966 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
967 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
968 *
969 * Thus, the level n blkid is: offset /
970 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
971 * = offset / 2^(datablkshift + level *
972 * (indblkshift - SPA_BLKPTRSHIFT))
973 * = offset >> (datablkshift + level *
974 * (indblkshift - SPA_BLKPTRSHIFT))
975 */
976 return (offset >> (dn->dn_datablkshift + level *
977 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
978 } else {
979 ASSERT3U(offset, <, dn->dn_datablksz);
980 return (0);
981 }
982 }
983
984 /* ARGSUSED */
985 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)986 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
987 arc_buf_t *buf, void *vdb)
988 {
989 dmu_buf_impl_t *db = vdb;
990
991 mutex_enter(&db->db_mtx);
992 ASSERT3U(db->db_state, ==, DB_READ);
993 /*
994 * All reads are synchronous, so we must have a hold on the dbuf
995 */
996 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
997 ASSERT(db->db_buf == NULL);
998 ASSERT(db->db.db_data == NULL);
999 if (buf == NULL) {
1000 /* i/o error */
1001 ASSERT(zio == NULL || zio->io_error != 0);
1002 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1003 ASSERT3P(db->db_buf, ==, NULL);
1004 db->db_state = DB_UNCACHED;
1005 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1006 /* we were freed in flight; disregard any error */
1007 ASSERT(zio == NULL || zio->io_error == 0);
1008 if (buf == NULL) {
1009 buf = arc_alloc_buf(db->db_objset->os_spa,
1010 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1011 }
1012 arc_release(buf, db);
1013 bzero(buf->b_data, db->db.db_size);
1014 arc_buf_freeze(buf);
1015 db->db_freed_in_flight = FALSE;
1016 dbuf_set_data(db, buf);
1017 db->db_state = DB_CACHED;
1018 } else if (buf != NULL) {
1019 /* success */
1020 ASSERT(zio == NULL || zio->io_error == 0);
1021 dbuf_set_data(db, buf);
1022 db->db_state = DB_CACHED;
1023 }
1024 cv_broadcast(&db->db_changed);
1025 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1026 }
1027
1028
1029 /*
1030 * This function ensures that, when doing a decrypting read of a block,
1031 * we make sure we have decrypted the dnode associated with it. We must do
1032 * this so that we ensure we are fully authenticating the checksum-of-MACs
1033 * tree from the root of the objset down to this block. Indirect blocks are
1034 * always verified against their secure checksum-of-MACs assuming that the
1035 * dnode containing them is correct. Now that we are doing a decrypting read,
1036 * we can be sure that the key is loaded and verify that assumption. This is
1037 * especially important considering that we always read encrypted dnode
1038 * blocks as raw data (without verifying their MACs) to start, and
1039 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1040 */
1041 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,uint32_t flags)1042 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1043 {
1044 int err = 0;
1045 objset_t *os = db->db_objset;
1046 arc_buf_t *dnode_abuf;
1047 dnode_t *dn;
1048 zbookmark_phys_t zb;
1049
1050 ASSERT(MUTEX_HELD(&db->db_mtx));
1051
1052 if (!os->os_encrypted || os->os_raw_receive ||
1053 (flags & DB_RF_NO_DECRYPT) != 0)
1054 return (0);
1055
1056 DB_DNODE_ENTER(db);
1057 dn = DB_DNODE(db);
1058 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1059
1060 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1061 DB_DNODE_EXIT(db);
1062 return (0);
1063 }
1064
1065 SET_BOOKMARK(&zb, dmu_objset_id(os),
1066 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1067 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1068
1069 /*
1070 * An error code of EACCES tells us that the key is still not
1071 * available. This is ok if we are only reading authenticated
1072 * (and therefore non-encrypted) blocks.
1073 */
1074 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1075 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1076 (db->db_blkid == DMU_BONUS_BLKID &&
1077 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1078 err = 0;
1079
1080 DB_DNODE_EXIT(db);
1081
1082 return (err);
1083 }
1084
1085 /*
1086 * Drops db_mtx and the parent lock specified by dblt and tag before
1087 * returning.
1088 */
1089 static int
dbuf_read_impl(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags,db_lock_type_t dblt,void * tag)1090 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1091 db_lock_type_t dblt, void *tag)
1092 {
1093 dnode_t *dn;
1094 zbookmark_phys_t zb;
1095 arc_flags_t aflags = ARC_FLAG_NOWAIT;
1096 int err, zio_flags = 0;
1097
1098 DB_DNODE_ENTER(db);
1099 dn = DB_DNODE(db);
1100 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1101 ASSERT(MUTEX_HELD(&db->db_mtx));
1102 ASSERT(db->db_state == DB_UNCACHED);
1103 ASSERT(db->db_buf == NULL);
1104 ASSERT(db->db_parent == NULL ||
1105 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1106
1107 if (db->db_blkid == DMU_BONUS_BLKID) {
1108 /*
1109 * The bonus length stored in the dnode may be less than
1110 * the maximum available space in the bonus buffer.
1111 */
1112 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1113 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1114
1115 /* if the underlying dnode block is encrypted, decrypt it */
1116 err = dbuf_read_verify_dnode_crypt(db, flags);
1117 if (err != 0) {
1118 DB_DNODE_EXIT(db);
1119 mutex_exit(&db->db_mtx);
1120 return (err);
1121 }
1122
1123 ASSERT3U(bonuslen, <=, db->db.db_size);
1124 db->db.db_data = zio_buf_alloc(max_bonuslen);
1125 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1126 if (bonuslen < max_bonuslen)
1127 bzero(db->db.db_data, max_bonuslen);
1128 if (bonuslen)
1129 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1130 DB_DNODE_EXIT(db);
1131 db->db_state = DB_CACHED;
1132 mutex_exit(&db->db_mtx);
1133 dmu_buf_unlock_parent(db, dblt, tag);
1134 return (0);
1135 }
1136
1137 /*
1138 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1139 * processes the delete record and clears the bp while we are waiting
1140 * for the dn_mtx (resulting in a "no" from block_freed).
1141 */
1142 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1143 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1144 BP_IS_HOLE(db->db_blkptr)))) {
1145 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1146
1147 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1148 db->db.db_size));
1149 bzero(db->db.db_data, db->db.db_size);
1150
1151 if (db->db_blkptr != NULL && db->db_level > 0 &&
1152 BP_IS_HOLE(db->db_blkptr) &&
1153 db->db_blkptr->blk_birth != 0) {
1154 blkptr_t *bps = db->db.db_data;
1155 for (int i = 0; i < ((1 <<
1156 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1157 i++) {
1158 blkptr_t *bp = &bps[i];
1159 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1160 1 << dn->dn_indblkshift);
1161 BP_SET_LSIZE(bp,
1162 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1163 dn->dn_datablksz :
1164 BP_GET_LSIZE(db->db_blkptr));
1165 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1166 BP_SET_LEVEL(bp,
1167 BP_GET_LEVEL(db->db_blkptr) - 1);
1168 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1169 }
1170 }
1171 DB_DNODE_EXIT(db);
1172 db->db_state = DB_CACHED;
1173 mutex_exit(&db->db_mtx);
1174 dmu_buf_unlock_parent(db, dblt, tag);
1175 return (0);
1176 }
1177
1178 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1179 db->db.db_object, db->db_level, db->db_blkid);
1180
1181 /*
1182 * All bps of an encrypted os should have the encryption bit set.
1183 * If this is not true it indicates tampering and we report an error.
1184 */
1185 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1186 spa_log_error(db->db_objset->os_spa, &zb);
1187 zfs_panic_recover("unencrypted block in encrypted "
1188 "object set %llu", dmu_objset_id(db->db_objset));
1189 DB_DNODE_EXIT(db);
1190 mutex_exit(&db->db_mtx);
1191 dmu_buf_unlock_parent(db, dblt, tag);
1192 return (SET_ERROR(EIO));
1193 }
1194
1195 err = dbuf_read_verify_dnode_crypt(db, flags);
1196 if (err != 0) {
1197 DB_DNODE_EXIT(db);
1198 dmu_buf_unlock_parent(db, dblt, tag);
1199 mutex_exit(&db->db_mtx);
1200 return (err);
1201 }
1202
1203 DB_DNODE_EXIT(db);
1204
1205 db->db_state = DB_READ;
1206 mutex_exit(&db->db_mtx);
1207
1208 if (DBUF_IS_L2CACHEABLE(db))
1209 aflags |= ARC_FLAG_L2CACHE;
1210
1211 dbuf_add_ref(db, NULL);
1212
1213 zio_flags = (flags & DB_RF_CANFAIL) ?
1214 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1215
1216 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1217 zio_flags |= ZIO_FLAG_RAW;
1218 /*
1219 * The zio layer will copy the provided blkptr later, but we need to
1220 * do this now so that we can release the parent's rwlock. We have to
1221 * do that now so that if dbuf_read_done is called synchronously (on
1222 * an l1 cache hit) we don't acquire the db_mtx while holding the
1223 * parent's rwlock, which would be a lock ordering violation.
1224 */
1225 blkptr_t bp = *db->db_blkptr;
1226 dmu_buf_unlock_parent(db, dblt, tag);
1227 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1228 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1229 &aflags, &zb);
1230 return (err);
1231 }
1232
1233 /*
1234 * This is our just-in-time copy function. It makes a copy of buffers that
1235 * have been modified in a previous transaction group before we access them in
1236 * the current active group.
1237 *
1238 * This function is used in three places: when we are dirtying a buffer for the
1239 * first time in a txg, when we are freeing a range in a dnode that includes
1240 * this buffer, and when we are accessing a buffer which was received compressed
1241 * and later referenced in a WRITE_BYREF record.
1242 *
1243 * Note that when we are called from dbuf_free_range() we do not put a hold on
1244 * the buffer, we just traverse the active dbuf list for the dnode.
1245 */
1246 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1247 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1248 {
1249 dbuf_dirty_record_t *dr = db->db_last_dirty;
1250
1251 ASSERT(MUTEX_HELD(&db->db_mtx));
1252 ASSERT(db->db.db_data != NULL);
1253 ASSERT(db->db_level == 0);
1254 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1255
1256 if (dr == NULL ||
1257 (dr->dt.dl.dr_data !=
1258 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1259 return;
1260
1261 /*
1262 * If the last dirty record for this dbuf has not yet synced
1263 * and its referencing the dbuf data, either:
1264 * reset the reference to point to a new copy,
1265 * or (if there a no active holders)
1266 * just null out the current db_data pointer.
1267 */
1268 ASSERT3U(dr->dr_txg, >=, txg - 2);
1269 if (db->db_blkid == DMU_BONUS_BLKID) {
1270 /* Note that the data bufs here are zio_bufs */
1271 dnode_t *dn = DB_DNODE(db);
1272 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1273 dr->dt.dl.dr_data = zio_buf_alloc(bonuslen);
1274 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1275 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1276 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1277 dnode_t *dn = DB_DNODE(db);
1278 int size = arc_buf_size(db->db_buf);
1279 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1280 spa_t *spa = db->db_objset->os_spa;
1281 enum zio_compress compress_type =
1282 arc_get_compression(db->db_buf);
1283
1284 if (arc_is_encrypted(db->db_buf)) {
1285 boolean_t byteorder;
1286 uint8_t salt[ZIO_DATA_SALT_LEN];
1287 uint8_t iv[ZIO_DATA_IV_LEN];
1288 uint8_t mac[ZIO_DATA_MAC_LEN];
1289
1290 arc_get_raw_params(db->db_buf, &byteorder, salt,
1291 iv, mac);
1292 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1293 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1294 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1295 compress_type);
1296 } else if (compress_type != ZIO_COMPRESS_OFF) {
1297 ASSERT3U(type, ==, ARC_BUFC_DATA);
1298 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1299 size, arc_buf_lsize(db->db_buf), compress_type);
1300 } else {
1301 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1302 }
1303 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1304 } else {
1305 db->db_buf = NULL;
1306 dbuf_clear_data(db);
1307 }
1308 }
1309
1310 int
dbuf_read(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags)1311 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1312 {
1313 int err = 0;
1314 boolean_t prefetch;
1315 dnode_t *dn;
1316
1317 /*
1318 * We don't have to hold the mutex to check db_state because it
1319 * can't be freed while we have a hold on the buffer.
1320 */
1321 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1322
1323 if (db->db_state == DB_NOFILL)
1324 return (SET_ERROR(EIO));
1325
1326 DB_DNODE_ENTER(db);
1327 dn = DB_DNODE(db);
1328
1329 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1330 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1331 DBUF_IS_CACHEABLE(db);
1332
1333 mutex_enter(&db->db_mtx);
1334 if (db->db_state == DB_CACHED) {
1335 spa_t *spa = dn->dn_objset->os_spa;
1336
1337 /*
1338 * Ensure that this block's dnode has been decrypted if
1339 * the caller has requested decrypted data.
1340 */
1341 err = dbuf_read_verify_dnode_crypt(db, flags);
1342
1343 /*
1344 * If the arc buf is compressed or encrypted and the caller
1345 * requested uncompressed data, we need to untransform it
1346 * before returning. We also call arc_untransform() on any
1347 * unauthenticated blocks, which will verify their MAC if
1348 * the key is now available.
1349 */
1350 if (err == 0 && db->db_buf != NULL &&
1351 (flags & DB_RF_NO_DECRYPT) == 0 &&
1352 (arc_is_encrypted(db->db_buf) ||
1353 arc_is_unauthenticated(db->db_buf) ||
1354 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1355 zbookmark_phys_t zb;
1356
1357 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1358 db->db.db_object, db->db_level, db->db_blkid);
1359 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1360 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1361 dbuf_set_data(db, db->db_buf);
1362 }
1363 mutex_exit(&db->db_mtx);
1364 if (err == 0 && prefetch) {
1365 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1366 flags & DB_RF_HAVESTRUCT);
1367 }
1368 DB_DNODE_EXIT(db);
1369 } else if (db->db_state == DB_UNCACHED) {
1370 spa_t *spa = dn->dn_objset->os_spa;
1371 boolean_t need_wait = B_FALSE;
1372
1373 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1374
1375 if (zio == NULL &&
1376 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1377 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1378 need_wait = B_TRUE;
1379 }
1380 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1381 /*
1382 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1383 * for us
1384 */
1385 if (!err && prefetch) {
1386 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1387 flags & DB_RF_HAVESTRUCT);
1388 }
1389
1390 DB_DNODE_EXIT(db);
1391
1392 /*
1393 * If we created a zio_root we must execute it to avoid
1394 * leaking it, even if it isn't attached to any work due
1395 * to an error in dbuf_read_impl().
1396 */
1397 if (need_wait) {
1398 if (err == 0)
1399 err = zio_wait(zio);
1400 else
1401 (void) zio_wait(zio);
1402 }
1403 } else {
1404 /*
1405 * Another reader came in while the dbuf was in flight
1406 * between UNCACHED and CACHED. Either a writer will finish
1407 * writing the buffer (sending the dbuf to CACHED) or the
1408 * first reader's request will reach the read_done callback
1409 * and send the dbuf to CACHED. Otherwise, a failure
1410 * occurred and the dbuf went to UNCACHED.
1411 */
1412 mutex_exit(&db->db_mtx);
1413 if (prefetch) {
1414 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1415 flags & DB_RF_HAVESTRUCT);
1416 }
1417 DB_DNODE_EXIT(db);
1418
1419 /* Skip the wait per the caller's request. */
1420 mutex_enter(&db->db_mtx);
1421 if ((flags & DB_RF_NEVERWAIT) == 0) {
1422 while (db->db_state == DB_READ ||
1423 db->db_state == DB_FILL) {
1424 ASSERT(db->db_state == DB_READ ||
1425 (flags & DB_RF_HAVESTRUCT) == 0);
1426 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1427 db, zio_t *, zio);
1428 cv_wait(&db->db_changed, &db->db_mtx);
1429 }
1430 if (db->db_state == DB_UNCACHED)
1431 err = SET_ERROR(EIO);
1432 }
1433 mutex_exit(&db->db_mtx);
1434 }
1435
1436 return (err);
1437 }
1438
1439 static void
dbuf_noread(dmu_buf_impl_t * db)1440 dbuf_noread(dmu_buf_impl_t *db)
1441 {
1442 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1443 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1444 mutex_enter(&db->db_mtx);
1445 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1446 cv_wait(&db->db_changed, &db->db_mtx);
1447 if (db->db_state == DB_UNCACHED) {
1448 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1449 spa_t *spa = db->db_objset->os_spa;
1450
1451 ASSERT(db->db_buf == NULL);
1452 ASSERT(db->db.db_data == NULL);
1453 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1454 db->db_state = DB_FILL;
1455 } else if (db->db_state == DB_NOFILL) {
1456 dbuf_clear_data(db);
1457 } else {
1458 ASSERT3U(db->db_state, ==, DB_CACHED);
1459 }
1460 mutex_exit(&db->db_mtx);
1461 }
1462
1463 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1464 dbuf_unoverride(dbuf_dirty_record_t *dr)
1465 {
1466 dmu_buf_impl_t *db = dr->dr_dbuf;
1467 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1468 uint64_t txg = dr->dr_txg;
1469
1470 ASSERT(MUTEX_HELD(&db->db_mtx));
1471 /*
1472 * This assert is valid because dmu_sync() expects to be called by
1473 * a zilog's get_data while holding a range lock. This call only
1474 * comes from dbuf_dirty() callers who must also hold a range lock.
1475 */
1476 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1477 ASSERT(db->db_level == 0);
1478
1479 if (db->db_blkid == DMU_BONUS_BLKID ||
1480 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1481 return;
1482
1483 ASSERT(db->db_data_pending != dr);
1484
1485 /* free this block */
1486 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1487 zio_free(db->db_objset->os_spa, txg, bp);
1488
1489 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1490 dr->dt.dl.dr_nopwrite = B_FALSE;
1491 dr->dt.dl.dr_has_raw_params = B_FALSE;
1492
1493 /*
1494 * Release the already-written buffer, so we leave it in
1495 * a consistent dirty state. Note that all callers are
1496 * modifying the buffer, so they will immediately do
1497 * another (redundant) arc_release(). Therefore, leave
1498 * the buf thawed to save the effort of freezing &
1499 * immediately re-thawing it.
1500 */
1501 arc_release(dr->dt.dl.dr_data, db);
1502 }
1503
1504 /*
1505 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1506 * data blocks in the free range, so that any future readers will find
1507 * empty blocks.
1508 */
1509 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1510 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1511 dmu_tx_t *tx)
1512 {
1513 dmu_buf_impl_t db_search;
1514 dmu_buf_impl_t *db, *db_next;
1515 uint64_t txg = tx->tx_txg;
1516 avl_index_t where;
1517
1518 if (end_blkid > dn->dn_maxblkid &&
1519 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1520 end_blkid = dn->dn_maxblkid;
1521 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1522
1523 db_search.db_level = 0;
1524 db_search.db_blkid = start_blkid;
1525 db_search.db_state = DB_SEARCH;
1526
1527 mutex_enter(&dn->dn_dbufs_mtx);
1528 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1529 ASSERT3P(db, ==, NULL);
1530
1531 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1532
1533 for (; db != NULL; db = db_next) {
1534 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1535 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1536
1537 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1538 break;
1539 }
1540 ASSERT3U(db->db_blkid, >=, start_blkid);
1541
1542 /* found a level 0 buffer in the range */
1543 mutex_enter(&db->db_mtx);
1544 if (dbuf_undirty(db, tx)) {
1545 /* mutex has been dropped and dbuf destroyed */
1546 continue;
1547 }
1548
1549 if (db->db_state == DB_UNCACHED ||
1550 db->db_state == DB_NOFILL ||
1551 db->db_state == DB_EVICTING) {
1552 ASSERT(db->db.db_data == NULL);
1553 mutex_exit(&db->db_mtx);
1554 continue;
1555 }
1556 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1557 /* will be handled in dbuf_read_done or dbuf_rele */
1558 db->db_freed_in_flight = TRUE;
1559 mutex_exit(&db->db_mtx);
1560 continue;
1561 }
1562 if (zfs_refcount_count(&db->db_holds) == 0) {
1563 ASSERT(db->db_buf);
1564 dbuf_destroy(db);
1565 continue;
1566 }
1567 /* The dbuf is referenced */
1568
1569 if (db->db_last_dirty != NULL) {
1570 dbuf_dirty_record_t *dr = db->db_last_dirty;
1571
1572 if (dr->dr_txg == txg) {
1573 /*
1574 * This buffer is "in-use", re-adjust the file
1575 * size to reflect that this buffer may
1576 * contain new data when we sync.
1577 */
1578 if (db->db_blkid != DMU_SPILL_BLKID &&
1579 db->db_blkid > dn->dn_maxblkid)
1580 dn->dn_maxblkid = db->db_blkid;
1581 dbuf_unoverride(dr);
1582 } else {
1583 /*
1584 * This dbuf is not dirty in the open context.
1585 * Either uncache it (if its not referenced in
1586 * the open context) or reset its contents to
1587 * empty.
1588 */
1589 dbuf_fix_old_data(db, txg);
1590 }
1591 }
1592 /* clear the contents if its cached */
1593 if (db->db_state == DB_CACHED) {
1594 ASSERT(db->db.db_data != NULL);
1595 arc_release(db->db_buf, db);
1596 rw_enter(&db->db_rwlock, RW_WRITER);
1597 bzero(db->db.db_data, db->db.db_size);
1598 rw_exit(&db->db_rwlock);
1599 arc_buf_freeze(db->db_buf);
1600 }
1601
1602 mutex_exit(&db->db_mtx);
1603 }
1604 mutex_exit(&dn->dn_dbufs_mtx);
1605 }
1606
1607 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)1608 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1609 {
1610 arc_buf_t *buf, *obuf;
1611 int osize = db->db.db_size;
1612 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1613 dnode_t *dn;
1614
1615 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1616
1617 DB_DNODE_ENTER(db);
1618 dn = DB_DNODE(db);
1619
1620 /*
1621 * XXX we should be doing a dbuf_read, checking the return
1622 * value and returning that up to our callers
1623 */
1624 dmu_buf_will_dirty(&db->db, tx);
1625
1626 /* create the data buffer for the new block */
1627 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1628
1629 /* copy old block data to the new block */
1630 obuf = db->db_buf;
1631 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1632 /* zero the remainder */
1633 if (size > osize)
1634 bzero((uint8_t *)buf->b_data + osize, size - osize);
1635
1636 mutex_enter(&db->db_mtx);
1637 dbuf_set_data(db, buf);
1638 arc_buf_destroy(obuf, db);
1639 db->db.db_size = size;
1640
1641 if (db->db_level == 0) {
1642 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1643 db->db_last_dirty->dt.dl.dr_data = buf;
1644 }
1645 mutex_exit(&db->db_mtx);
1646
1647 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1648 DB_DNODE_EXIT(db);
1649 }
1650
1651 void
dbuf_release_bp(dmu_buf_impl_t * db)1652 dbuf_release_bp(dmu_buf_impl_t *db)
1653 {
1654 objset_t *os = db->db_objset;
1655
1656 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1657 ASSERT(arc_released(os->os_phys_buf) ||
1658 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1659 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1660
1661 (void) arc_release(db->db_buf, db);
1662 }
1663
1664 /*
1665 * We already have a dirty record for this TXG, and we are being
1666 * dirtied again.
1667 */
1668 static void
dbuf_redirty(dbuf_dirty_record_t * dr)1669 dbuf_redirty(dbuf_dirty_record_t *dr)
1670 {
1671 dmu_buf_impl_t *db = dr->dr_dbuf;
1672
1673 ASSERT(MUTEX_HELD(&db->db_mtx));
1674
1675 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1676 /*
1677 * If this buffer has already been written out,
1678 * we now need to reset its state.
1679 */
1680 dbuf_unoverride(dr);
1681 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1682 db->db_state != DB_NOFILL) {
1683 /* Already released on initial dirty, so just thaw. */
1684 ASSERT(arc_released(db->db_buf));
1685 arc_buf_thaw(db->db_buf);
1686 }
1687 }
1688 }
1689
1690 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1691 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1692 {
1693 dnode_t *dn;
1694 objset_t *os;
1695 dbuf_dirty_record_t **drp, *dr;
1696 int txgoff = tx->tx_txg & TXG_MASK;
1697 boolean_t drop_struct_rwlock = B_FALSE;
1698
1699 ASSERT(tx->tx_txg != 0);
1700 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1701 DMU_TX_DIRTY_BUF(tx, db);
1702
1703 DB_DNODE_ENTER(db);
1704 dn = DB_DNODE(db);
1705 /*
1706 * Shouldn't dirty a regular buffer in syncing context. Private
1707 * objects may be dirtied in syncing context, but only if they
1708 * were already pre-dirtied in open context.
1709 */
1710 #ifdef DEBUG
1711 if (dn->dn_objset->os_dsl_dataset != NULL) {
1712 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1713 RW_READER, FTAG);
1714 }
1715 ASSERT(!dmu_tx_is_syncing(tx) ||
1716 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1717 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1718 dn->dn_objset->os_dsl_dataset == NULL);
1719 if (dn->dn_objset->os_dsl_dataset != NULL)
1720 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1721 #endif
1722 /*
1723 * We make this assert for private objects as well, but after we
1724 * check if we're already dirty. They are allowed to re-dirty
1725 * in syncing context.
1726 */
1727 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1728 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1729 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1730
1731 mutex_enter(&db->db_mtx);
1732 /*
1733 * XXX make this true for indirects too? The problem is that
1734 * transactions created with dmu_tx_create_assigned() from
1735 * syncing context don't bother holding ahead.
1736 */
1737 ASSERT(db->db_level != 0 ||
1738 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1739 db->db_state == DB_NOFILL);
1740
1741 mutex_enter(&dn->dn_mtx);
1742 /*
1743 * Don't set dirtyctx to SYNC if we're just modifying this as we
1744 * initialize the objset.
1745 */
1746 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1747 if (dn->dn_objset->os_dsl_dataset != NULL) {
1748 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1749 RW_READER, FTAG);
1750 }
1751 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1752 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1753 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1754 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1755 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1756 }
1757 if (dn->dn_objset->os_dsl_dataset != NULL) {
1758 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1759 FTAG);
1760 }
1761 }
1762
1763 if (tx->tx_txg > dn->dn_dirty_txg)
1764 dn->dn_dirty_txg = tx->tx_txg;
1765 mutex_exit(&dn->dn_mtx);
1766
1767 if (db->db_blkid == DMU_SPILL_BLKID)
1768 dn->dn_have_spill = B_TRUE;
1769
1770 /*
1771 * If this buffer is already dirty, we're done.
1772 */
1773 drp = &db->db_last_dirty;
1774 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1775 db->db.db_object == DMU_META_DNODE_OBJECT);
1776 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1777 drp = &dr->dr_next;
1778 if (dr && dr->dr_txg == tx->tx_txg) {
1779 DB_DNODE_EXIT(db);
1780
1781 dbuf_redirty(dr);
1782 mutex_exit(&db->db_mtx);
1783 return (dr);
1784 }
1785
1786 /*
1787 * Only valid if not already dirty.
1788 */
1789 ASSERT(dn->dn_object == 0 ||
1790 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1791 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1792
1793 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1794
1795 /*
1796 * We should only be dirtying in syncing context if it's the
1797 * mos or we're initializing the os or it's a special object.
1798 * However, we are allowed to dirty in syncing context provided
1799 * we already dirtied it in open context. Hence we must make
1800 * this assertion only if we're not already dirty.
1801 */
1802 os = dn->dn_objset;
1803 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1804 #ifdef DEBUG
1805 if (dn->dn_objset->os_dsl_dataset != NULL)
1806 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1807 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1808 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1809 if (dn->dn_objset->os_dsl_dataset != NULL)
1810 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1811 #endif
1812 ASSERT(db->db.db_size != 0);
1813
1814 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1815
1816 if (db->db_blkid != DMU_BONUS_BLKID) {
1817 dmu_objset_willuse_space(os, db->db.db_size, tx);
1818 }
1819
1820 /*
1821 * If this buffer is dirty in an old transaction group we need
1822 * to make a copy of it so that the changes we make in this
1823 * transaction group won't leak out when we sync the older txg.
1824 */
1825 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1826 if (db->db_level == 0) {
1827 void *data_old = db->db_buf;
1828
1829 if (db->db_state != DB_NOFILL) {
1830 if (db->db_blkid == DMU_BONUS_BLKID) {
1831 dbuf_fix_old_data(db, tx->tx_txg);
1832 data_old = db->db.db_data;
1833 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1834 /*
1835 * Release the data buffer from the cache so
1836 * that we can modify it without impacting
1837 * possible other users of this cached data
1838 * block. Note that indirect blocks and
1839 * private objects are not released until the
1840 * syncing state (since they are only modified
1841 * then).
1842 */
1843 arc_release(db->db_buf, db);
1844 dbuf_fix_old_data(db, tx->tx_txg);
1845 data_old = db->db_buf;
1846 }
1847 ASSERT(data_old != NULL);
1848 }
1849 dr->dt.dl.dr_data = data_old;
1850 } else {
1851 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1852 list_create(&dr->dt.di.dr_children,
1853 sizeof (dbuf_dirty_record_t),
1854 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1855 }
1856 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1857 dr->dr_accounted = db->db.db_size;
1858 dr->dr_dbuf = db;
1859 dr->dr_txg = tx->tx_txg;
1860 dr->dr_next = *drp;
1861 *drp = dr;
1862
1863 /*
1864 * We could have been freed_in_flight between the dbuf_noread
1865 * and dbuf_dirty. We win, as though the dbuf_noread() had
1866 * happened after the free.
1867 */
1868 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1869 db->db_blkid != DMU_SPILL_BLKID) {
1870 mutex_enter(&dn->dn_mtx);
1871 if (dn->dn_free_ranges[txgoff] != NULL) {
1872 range_tree_clear(dn->dn_free_ranges[txgoff],
1873 db->db_blkid, 1);
1874 }
1875 mutex_exit(&dn->dn_mtx);
1876 db->db_freed_in_flight = FALSE;
1877 }
1878
1879 /*
1880 * This buffer is now part of this txg
1881 */
1882 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1883 db->db_dirtycnt += 1;
1884 ASSERT3U(db->db_dirtycnt, <=, 3);
1885
1886 mutex_exit(&db->db_mtx);
1887
1888 if (db->db_blkid == DMU_BONUS_BLKID ||
1889 db->db_blkid == DMU_SPILL_BLKID) {
1890 mutex_enter(&dn->dn_mtx);
1891 ASSERT(!list_link_active(&dr->dr_dirty_node));
1892 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1893 mutex_exit(&dn->dn_mtx);
1894 dnode_setdirty(dn, tx);
1895 DB_DNODE_EXIT(db);
1896 return (dr);
1897 }
1898
1899 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1900 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1901 drop_struct_rwlock = B_TRUE;
1902 }
1903
1904 /*
1905 * If we are overwriting a dedup BP, then unless it is snapshotted,
1906 * when we get to syncing context we will need to decrement its
1907 * refcount in the DDT. Prefetch the relevant DDT block so that
1908 * syncing context won't have to wait for the i/o.
1909 */
1910 if (db->db_blkptr != NULL) {
1911 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1912 ddt_prefetch(os->os_spa, db->db_blkptr);
1913 dmu_buf_unlock_parent(db, dblt, FTAG);
1914 }
1915
1916 /*
1917 * We need to hold the dn_struct_rwlock to make this assertion,
1918 * because it protects dn_phys / dn_next_nlevels from changing.
1919 */
1920 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1921 dn->dn_phys->dn_nlevels > db->db_level ||
1922 dn->dn_next_nlevels[txgoff] > db->db_level ||
1923 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1924 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1925
1926
1927 if (db->db_level == 0) {
1928 ASSERT(!db->db_objset->os_raw_receive ||
1929 dn->dn_maxblkid >= db->db_blkid);
1930 dnode_new_blkid(dn, db->db_blkid, tx,
1931 drop_struct_rwlock, B_FALSE);
1932 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1933 }
1934
1935 if (db->db_level+1 < dn->dn_nlevels) {
1936 dmu_buf_impl_t *parent = db->db_parent;
1937 dbuf_dirty_record_t *di;
1938 int parent_held = FALSE;
1939
1940 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1941 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1942 parent = dbuf_hold_level(dn, db->db_level + 1,
1943 db->db_blkid >> epbs, FTAG);
1944 ASSERT(parent != NULL);
1945 parent_held = TRUE;
1946 }
1947 if (drop_struct_rwlock)
1948 rw_exit(&dn->dn_struct_rwlock);
1949 ASSERT3U(db->db_level + 1, ==, parent->db_level);
1950 di = dbuf_dirty(parent, tx);
1951 if (parent_held)
1952 dbuf_rele(parent, FTAG);
1953
1954 mutex_enter(&db->db_mtx);
1955 /*
1956 * Since we've dropped the mutex, it's possible that
1957 * dbuf_undirty() might have changed this out from under us.
1958 */
1959 if (db->db_last_dirty == dr ||
1960 dn->dn_object == DMU_META_DNODE_OBJECT) {
1961 mutex_enter(&di->dt.di.dr_mtx);
1962 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1963 ASSERT(!list_link_active(&dr->dr_dirty_node));
1964 list_insert_tail(&di->dt.di.dr_children, dr);
1965 mutex_exit(&di->dt.di.dr_mtx);
1966 dr->dr_parent = di;
1967 }
1968 mutex_exit(&db->db_mtx);
1969 } else {
1970 ASSERT(db->db_level + 1 == dn->dn_nlevels);
1971 ASSERT(db->db_blkid < dn->dn_nblkptr);
1972 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1973 mutex_enter(&dn->dn_mtx);
1974 ASSERT(!list_link_active(&dr->dr_dirty_node));
1975 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1976 mutex_exit(&dn->dn_mtx);
1977 if (drop_struct_rwlock)
1978 rw_exit(&dn->dn_struct_rwlock);
1979 }
1980
1981 dnode_setdirty(dn, tx);
1982 DB_DNODE_EXIT(db);
1983 return (dr);
1984 }
1985
1986 /*
1987 * Undirty a buffer in the transaction group referenced by the given
1988 * transaction. Return whether this evicted the dbuf.
1989 */
1990 static boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1991 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1992 {
1993 dnode_t *dn;
1994 uint64_t txg = tx->tx_txg;
1995 dbuf_dirty_record_t *dr, **drp;
1996
1997 ASSERT(txg != 0);
1998
1999 /*
2000 * Due to our use of dn_nlevels below, this can only be called
2001 * in open context, unless we are operating on the MOS.
2002 * From syncing context, dn_nlevels may be different from the
2003 * dn_nlevels used when dbuf was dirtied.
2004 */
2005 ASSERT(db->db_objset ==
2006 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2007 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2008 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2009 ASSERT0(db->db_level);
2010 ASSERT(MUTEX_HELD(&db->db_mtx));
2011
2012 /*
2013 * If this buffer is not dirty, we're done.
2014 */
2015 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2016 if (dr->dr_txg <= txg)
2017 break;
2018 if (dr == NULL || dr->dr_txg < txg)
2019 return (B_FALSE);
2020 ASSERT(dr->dr_txg == txg);
2021 ASSERT(dr->dr_dbuf == db);
2022
2023 DB_DNODE_ENTER(db);
2024 dn = DB_DNODE(db);
2025
2026 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2027
2028 ASSERT(db->db.db_size != 0);
2029
2030 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2031 dr->dr_accounted, txg);
2032
2033 *drp = dr->dr_next;
2034
2035 /*
2036 * Note that there are three places in dbuf_dirty()
2037 * where this dirty record may be put on a list.
2038 * Make sure to do a list_remove corresponding to
2039 * every one of those list_insert calls.
2040 */
2041 if (dr->dr_parent) {
2042 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2043 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2044 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2045 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2046 db->db_level + 1 == dn->dn_nlevels) {
2047 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2048 mutex_enter(&dn->dn_mtx);
2049 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2050 mutex_exit(&dn->dn_mtx);
2051 }
2052 DB_DNODE_EXIT(db);
2053
2054 if (db->db_state != DB_NOFILL) {
2055 dbuf_unoverride(dr);
2056
2057 ASSERT(db->db_buf != NULL);
2058 ASSERT(dr->dt.dl.dr_data != NULL);
2059 if (dr->dt.dl.dr_data != db->db_buf)
2060 arc_buf_destroy(dr->dt.dl.dr_data, db);
2061 }
2062
2063 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2064
2065 ASSERT(db->db_dirtycnt > 0);
2066 db->db_dirtycnt -= 1;
2067
2068 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2069 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2070 dbuf_destroy(db);
2071 return (B_TRUE);
2072 }
2073
2074 return (B_FALSE);
2075 }
2076
2077 static void
dmu_buf_will_dirty_impl(dmu_buf_t * db_fake,int flags,dmu_tx_t * tx)2078 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2079 {
2080 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2081
2082 ASSERT(tx->tx_txg != 0);
2083 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2084
2085 /*
2086 * Quick check for dirtyness. For already dirty blocks, this
2087 * reduces runtime of this function by >90%, and overall performance
2088 * by 50% for some workloads (e.g. file deletion with indirect blocks
2089 * cached).
2090 */
2091 mutex_enter(&db->db_mtx);
2092 dbuf_dirty_record_t *dr;
2093 for (dr = db->db_last_dirty;
2094 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2095 /*
2096 * It's possible that it is already dirty but not cached,
2097 * because there are some calls to dbuf_dirty() that don't
2098 * go through dmu_buf_will_dirty().
2099 */
2100 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2101 /* This dbuf is already dirty and cached. */
2102 dbuf_redirty(dr);
2103 mutex_exit(&db->db_mtx);
2104 return;
2105 }
2106 }
2107 mutex_exit(&db->db_mtx);
2108
2109 DB_DNODE_ENTER(db);
2110 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2111 flags |= DB_RF_HAVESTRUCT;
2112 DB_DNODE_EXIT(db);
2113 (void) dbuf_read(db, NULL, flags);
2114 (void) dbuf_dirty(db, tx);
2115 }
2116
2117 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2118 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2119 {
2120 dmu_buf_will_dirty_impl(db_fake,
2121 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2122 }
2123
2124 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2125 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2126 {
2127 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2128
2129 db->db_state = DB_NOFILL;
2130
2131 dmu_buf_will_fill(db_fake, tx);
2132 }
2133
2134 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2135 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2136 {
2137 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2138
2139 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2140 ASSERT(tx->tx_txg != 0);
2141 ASSERT(db->db_level == 0);
2142 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2143
2144 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2145 dmu_tx_private_ok(tx));
2146
2147 dbuf_noread(db);
2148 (void) dbuf_dirty(db, tx);
2149 }
2150
2151 /*
2152 * This function is effectively the same as dmu_buf_will_dirty(), but
2153 * indicates the caller expects raw encrypted data in the db, and provides
2154 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2155 * blkptr_t when this dbuf is written. This is only used for blocks of
2156 * dnodes during a raw receive.
2157 */
2158 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2159 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2160 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2161 {
2162 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2163 dbuf_dirty_record_t *dr;
2164
2165 /*
2166 * dr_has_raw_params is only processed for blocks of dnodes
2167 * (see dbuf_sync_dnode_leaf_crypt()).
2168 */
2169 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2170 ASSERT3U(db->db_level, ==, 0);
2171
2172 dmu_buf_will_dirty_impl(db_fake,
2173 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2174
2175 dr = db->db_last_dirty;
2176 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2177 dr = dr->dr_next;
2178
2179 ASSERT3P(dr, !=, NULL);
2180 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2181
2182 dr->dt.dl.dr_has_raw_params = B_TRUE;
2183 dr->dt.dl.dr_byteorder = byteorder;
2184 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2185 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2186 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2187 }
2188
2189 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2190 /* ARGSUSED */
2191 void
dbuf_fill_done(dmu_buf_impl_t * db,dmu_tx_t * tx)2192 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2193 {
2194 mutex_enter(&db->db_mtx);
2195 DBUF_VERIFY(db);
2196
2197 if (db->db_state == DB_FILL) {
2198 if (db->db_level == 0 && db->db_freed_in_flight) {
2199 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2200 /* we were freed while filling */
2201 /* XXX dbuf_undirty? */
2202 bzero(db->db.db_data, db->db.db_size);
2203 db->db_freed_in_flight = FALSE;
2204 }
2205 db->db_state = DB_CACHED;
2206 cv_broadcast(&db->db_changed);
2207 }
2208 mutex_exit(&db->db_mtx);
2209 }
2210
2211 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)2212 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2213 bp_embedded_type_t etype, enum zio_compress comp,
2214 int uncompressed_size, int compressed_size, int byteorder,
2215 dmu_tx_t *tx)
2216 {
2217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2218 struct dirty_leaf *dl;
2219 dmu_object_type_t type;
2220
2221 if (etype == BP_EMBEDDED_TYPE_DATA) {
2222 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2223 SPA_FEATURE_EMBEDDED_DATA));
2224 }
2225
2226 DB_DNODE_ENTER(db);
2227 type = DB_DNODE(db)->dn_type;
2228 DB_DNODE_EXIT(db);
2229
2230 ASSERT0(db->db_level);
2231 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2232
2233 dmu_buf_will_not_fill(dbuf, tx);
2234
2235 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2236 dl = &db->db_last_dirty->dt.dl;
2237 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2238 data, comp, uncompressed_size, compressed_size);
2239 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2240 BP_SET_TYPE(&dl->dr_overridden_by, type);
2241 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2242 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2243
2244 dl->dr_override_state = DR_OVERRIDDEN;
2245 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2246 }
2247
2248 /*
2249 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2250 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2251 */
2252 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx)2253 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2254 {
2255 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2256 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2257 ASSERT(db->db_level == 0);
2258 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2259 ASSERT(buf != NULL);
2260 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2261 ASSERT(tx->tx_txg != 0);
2262
2263 arc_return_buf(buf, db);
2264 ASSERT(arc_released(buf));
2265
2266 mutex_enter(&db->db_mtx);
2267
2268 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2269 cv_wait(&db->db_changed, &db->db_mtx);
2270
2271 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2272
2273 if (db->db_state == DB_CACHED &&
2274 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2275 /*
2276 * In practice, we will never have a case where we have an
2277 * encrypted arc buffer while additional holds exist on the
2278 * dbuf. We don't handle this here so we simply assert that
2279 * fact instead.
2280 */
2281 ASSERT(!arc_is_encrypted(buf));
2282 mutex_exit(&db->db_mtx);
2283 (void) dbuf_dirty(db, tx);
2284 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2285 arc_buf_destroy(buf, db);
2286 xuio_stat_wbuf_copied();
2287 return;
2288 }
2289
2290 xuio_stat_wbuf_nocopy();
2291 if (db->db_state == DB_CACHED) {
2292 dbuf_dirty_record_t *dr = db->db_last_dirty;
2293
2294 ASSERT(db->db_buf != NULL);
2295 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2296 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2297
2298 if (!arc_released(db->db_buf)) {
2299 ASSERT(dr->dt.dl.dr_override_state ==
2300 DR_OVERRIDDEN);
2301 arc_release(db->db_buf, db);
2302 }
2303 dr->dt.dl.dr_data = buf;
2304 arc_buf_destroy(db->db_buf, db);
2305 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2306 arc_release(db->db_buf, db);
2307 arc_buf_destroy(db->db_buf, db);
2308 }
2309 db->db_buf = NULL;
2310 }
2311 ASSERT(db->db_buf == NULL);
2312 dbuf_set_data(db, buf);
2313 db->db_state = DB_FILL;
2314 mutex_exit(&db->db_mtx);
2315 (void) dbuf_dirty(db, tx);
2316 dmu_buf_fill_done(&db->db, tx);
2317 }
2318
2319 void
dbuf_destroy(dmu_buf_impl_t * db)2320 dbuf_destroy(dmu_buf_impl_t *db)
2321 {
2322 dnode_t *dn;
2323 dmu_buf_impl_t *parent = db->db_parent;
2324 dmu_buf_impl_t *dndb;
2325
2326 ASSERT(MUTEX_HELD(&db->db_mtx));
2327 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2328
2329 if (db->db_buf != NULL) {
2330 arc_buf_destroy(db->db_buf, db);
2331 db->db_buf = NULL;
2332 }
2333
2334 if (db->db_blkid == DMU_BONUS_BLKID) {
2335 int slots = DB_DNODE(db)->dn_num_slots;
2336 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2337 if (db->db.db_data != NULL) {
2338 zio_buf_free(db->db.db_data, bonuslen);
2339 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2340 db->db_state = DB_UNCACHED;
2341 }
2342 }
2343
2344 dbuf_clear_data(db);
2345
2346 if (multilist_link_active(&db->db_cache_link)) {
2347 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2348 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2349
2350 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2351 (void) zfs_refcount_remove_many(
2352 &dbuf_caches[db->db_caching_status].size,
2353 db->db.db_size, db);
2354
2355 db->db_caching_status = DB_NO_CACHE;
2356 }
2357
2358 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2359 ASSERT(db->db_data_pending == NULL);
2360
2361 db->db_state = DB_EVICTING;
2362 db->db_blkptr = NULL;
2363
2364 /*
2365 * Now that db_state is DB_EVICTING, nobody else can find this via
2366 * the hash table. We can now drop db_mtx, which allows us to
2367 * acquire the dn_dbufs_mtx.
2368 */
2369 mutex_exit(&db->db_mtx);
2370
2371 DB_DNODE_ENTER(db);
2372 dn = DB_DNODE(db);
2373 dndb = dn->dn_dbuf;
2374 if (db->db_blkid != DMU_BONUS_BLKID) {
2375 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2376 if (needlock)
2377 mutex_enter(&dn->dn_dbufs_mtx);
2378 avl_remove(&dn->dn_dbufs, db);
2379 atomic_dec_32(&dn->dn_dbufs_count);
2380 membar_producer();
2381 DB_DNODE_EXIT(db);
2382 if (needlock)
2383 mutex_exit(&dn->dn_dbufs_mtx);
2384 /*
2385 * Decrementing the dbuf count means that the hold corresponding
2386 * to the removed dbuf is no longer discounted in dnode_move(),
2387 * so the dnode cannot be moved until after we release the hold.
2388 * The membar_producer() ensures visibility of the decremented
2389 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2390 * release any lock.
2391 */
2392 mutex_enter(&dn->dn_mtx);
2393 dnode_rele_and_unlock(dn, db, B_TRUE);
2394 db->db_dnode_handle = NULL;
2395
2396 dbuf_hash_remove(db);
2397 } else {
2398 DB_DNODE_EXIT(db);
2399 }
2400
2401 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2402
2403 db->db_parent = NULL;
2404
2405 ASSERT(db->db_buf == NULL);
2406 ASSERT(db->db.db_data == NULL);
2407 ASSERT(db->db_hash_next == NULL);
2408 ASSERT(db->db_blkptr == NULL);
2409 ASSERT(db->db_data_pending == NULL);
2410 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2411 ASSERT(!multilist_link_active(&db->db_cache_link));
2412
2413 kmem_cache_free(dbuf_kmem_cache, db);
2414 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2415
2416 /*
2417 * If this dbuf is referenced from an indirect dbuf,
2418 * decrement the ref count on the indirect dbuf.
2419 */
2420 if (parent && parent != dndb) {
2421 mutex_enter(&parent->db_mtx);
2422 dbuf_rele_and_unlock(parent, db, B_TRUE);
2423 }
2424 }
2425
2426 /*
2427 * Note: While bpp will always be updated if the function returns success,
2428 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2429 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2430 * object.
2431 */
2432 static int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)2433 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2434 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2435 {
2436 *parentp = NULL;
2437 *bpp = NULL;
2438
2439 ASSERT(blkid != DMU_BONUS_BLKID);
2440
2441 if (blkid == DMU_SPILL_BLKID) {
2442 mutex_enter(&dn->dn_mtx);
2443 if (dn->dn_have_spill &&
2444 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2445 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2446 else
2447 *bpp = NULL;
2448 dbuf_add_ref(dn->dn_dbuf, NULL);
2449 *parentp = dn->dn_dbuf;
2450 mutex_exit(&dn->dn_mtx);
2451 return (0);
2452 }
2453
2454 int nlevels =
2455 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2456 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2457
2458 ASSERT3U(level * epbs, <, 64);
2459 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2460 /*
2461 * This assertion shouldn't trip as long as the max indirect block size
2462 * is less than 1M. The reason for this is that up to that point,
2463 * the number of levels required to address an entire object with blocks
2464 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2465 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2466 * (i.e. we can address the entire object), objects will all use at most
2467 * N-1 levels and the assertion won't overflow. However, once epbs is
2468 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2469 * enough to address an entire object, so objects will have 5 levels,
2470 * but then this assertion will overflow.
2471 *
2472 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2473 * need to redo this logic to handle overflows.
2474 */
2475 ASSERT(level >= nlevels ||
2476 ((nlevels - level - 1) * epbs) +
2477 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2478 if (level >= nlevels ||
2479 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2480 ((nlevels - level - 1) * epbs)) ||
2481 (fail_sparse &&
2482 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2483 /* the buffer has no parent yet */
2484 return (SET_ERROR(ENOENT));
2485 } else if (level < nlevels-1) {
2486 /* this block is referenced from an indirect block */
2487 int err = dbuf_hold_impl(dn, level+1,
2488 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2489 if (err)
2490 return (err);
2491 err = dbuf_read(*parentp, NULL,
2492 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2493 if (err) {
2494 dbuf_rele(*parentp, NULL);
2495 *parentp = NULL;
2496 return (err);
2497 }
2498 rw_enter(&(*parentp)->db_rwlock, RW_READER);
2499 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2500 (blkid & ((1ULL << epbs) - 1));
2501 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2502 ASSERT(BP_IS_HOLE(*bpp));
2503 rw_exit(&(*parentp)->db_rwlock);
2504 return (0);
2505 } else {
2506 /* the block is referenced from the dnode */
2507 ASSERT3U(level, ==, nlevels-1);
2508 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2509 blkid < dn->dn_phys->dn_nblkptr);
2510 if (dn->dn_dbuf) {
2511 dbuf_add_ref(dn->dn_dbuf, NULL);
2512 *parentp = dn->dn_dbuf;
2513 }
2514 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2515 return (0);
2516 }
2517 }
2518
2519 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr)2520 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2521 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2522 {
2523 objset_t *os = dn->dn_objset;
2524 dmu_buf_impl_t *db, *odb;
2525
2526 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2527 ASSERT(dn->dn_type != DMU_OT_NONE);
2528
2529 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2530
2531 db->db_objset = os;
2532 db->db.db_object = dn->dn_object;
2533 db->db_level = level;
2534 db->db_blkid = blkid;
2535 db->db_last_dirty = NULL;
2536 db->db_dirtycnt = 0;
2537 db->db_dnode_handle = dn->dn_handle;
2538 db->db_parent = parent;
2539 db->db_blkptr = blkptr;
2540
2541 db->db_user = NULL;
2542 db->db_user_immediate_evict = FALSE;
2543 db->db_freed_in_flight = FALSE;
2544 db->db_pending_evict = FALSE;
2545
2546 if (blkid == DMU_BONUS_BLKID) {
2547 ASSERT3P(parent, ==, dn->dn_dbuf);
2548 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2549 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2550 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2551 db->db.db_offset = DMU_BONUS_BLKID;
2552 db->db_state = DB_UNCACHED;
2553 db->db_caching_status = DB_NO_CACHE;
2554 /* the bonus dbuf is not placed in the hash table */
2555 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2556 return (db);
2557 } else if (blkid == DMU_SPILL_BLKID) {
2558 db->db.db_size = (blkptr != NULL) ?
2559 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2560 db->db.db_offset = 0;
2561 } else {
2562 int blocksize =
2563 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2564 db->db.db_size = blocksize;
2565 db->db.db_offset = db->db_blkid * blocksize;
2566 }
2567
2568 /*
2569 * Hold the dn_dbufs_mtx while we get the new dbuf
2570 * in the hash table *and* added to the dbufs list.
2571 * This prevents a possible deadlock with someone
2572 * trying to look up this dbuf before its added to the
2573 * dn_dbufs list.
2574 */
2575 mutex_enter(&dn->dn_dbufs_mtx);
2576 db->db_state = DB_EVICTING;
2577 if ((odb = dbuf_hash_insert(db)) != NULL) {
2578 /* someone else inserted it first */
2579 kmem_cache_free(dbuf_kmem_cache, db);
2580 mutex_exit(&dn->dn_dbufs_mtx);
2581 return (odb);
2582 }
2583 avl_add(&dn->dn_dbufs, db);
2584
2585 db->db_state = DB_UNCACHED;
2586 db->db_caching_status = DB_NO_CACHE;
2587 mutex_exit(&dn->dn_dbufs_mtx);
2588 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2589
2590 if (parent && parent != dn->dn_dbuf)
2591 dbuf_add_ref(parent, db);
2592
2593 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2594 zfs_refcount_count(&dn->dn_holds) > 0);
2595 (void) zfs_refcount_add(&dn->dn_holds, db);
2596 atomic_inc_32(&dn->dn_dbufs_count);
2597
2598 dprintf_dbuf(db, "db=%p\n", db);
2599
2600 return (db);
2601 }
2602
2603 typedef struct dbuf_prefetch_arg {
2604 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2605 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2606 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2607 int dpa_curlevel; /* The current level that we're reading */
2608 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2609 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2610 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2611 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2612 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
2613 void *dpa_arg; /* prefetch completion arg */
2614 } dbuf_prefetch_arg_t;
2615
2616 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)2617 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
2618 {
2619 if (dpa->dpa_cb != NULL)
2620 dpa->dpa_cb(dpa->dpa_arg, io_done);
2621 kmem_free(dpa, sizeof (*dpa));
2622 }
2623
2624 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)2625 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
2626 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2627 {
2628 dbuf_prefetch_arg_t *dpa = private;
2629
2630 dbuf_prefetch_fini(dpa, B_TRUE);
2631 if (abuf != NULL)
2632 arc_buf_destroy(abuf, private);
2633 }
2634
2635 /*
2636 * Actually issue the prefetch read for the block given.
2637 */
2638 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)2639 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2640 {
2641 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2642 return (dbuf_prefetch_fini(dpa, B_FALSE));
2643
2644 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2645 arc_flags_t aflags =
2646 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2647
2648 /* dnodes are always read as raw and then converted later */
2649 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2650 dpa->dpa_curlevel == 0)
2651 zio_flags |= ZIO_FLAG_RAW;
2652
2653 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2654 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2655 ASSERT(dpa->dpa_zio != NULL);
2656 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
2657 dbuf_issue_final_prefetch_done, dpa,
2658 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2659 }
2660
2661 /*
2662 * Called when an indirect block above our prefetch target is read in. This
2663 * will either read in the next indirect block down the tree or issue the actual
2664 * prefetch if the next block down is our target.
2665 */
2666 /* ARGSUSED */
2667 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)2668 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2669 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2670 {
2671 dbuf_prefetch_arg_t *dpa = private;
2672
2673 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2674 ASSERT3S(dpa->dpa_curlevel, >, 0);
2675
2676 if (abuf == NULL) {
2677 ASSERT(zio == NULL || zio->io_error != 0);
2678 return (dbuf_prefetch_fini(dpa, B_TRUE));
2679 }
2680 ASSERT(zio == NULL || zio->io_error == 0);
2681
2682 /*
2683 * The dpa_dnode is only valid if we are called with a NULL
2684 * zio. This indicates that the arc_read() returned without
2685 * first calling zio_read() to issue a physical read. Once
2686 * a physical read is made the dpa_dnode must be invalidated
2687 * as the locks guarding it may have been dropped. If the
2688 * dpa_dnode is still valid, then we want to add it to the dbuf
2689 * cache. To do so, we must hold the dbuf associated with the block
2690 * we just prefetched, read its contents so that we associate it
2691 * with an arc_buf_t, and then release it.
2692 */
2693 if (zio != NULL) {
2694 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2695 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2696 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2697 } else {
2698 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2699 }
2700 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2701
2702 dpa->dpa_dnode = NULL;
2703 } else if (dpa->dpa_dnode != NULL) {
2704 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2705 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2706 dpa->dpa_zb.zb_level));
2707 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2708 dpa->dpa_curlevel, curblkid, FTAG);
2709 if (db == NULL) {
2710 arc_buf_destroy(abuf, private);
2711 return (dbuf_prefetch_fini(dpa, B_TRUE));
2712 }
2713 (void) dbuf_read(db, NULL,
2714 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2715 dbuf_rele(db, FTAG);
2716 }
2717
2718 dpa->dpa_curlevel--;
2719 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2720 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2721 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2722 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2723
2724 if (BP_IS_HOLE(bp)) {
2725 dbuf_prefetch_fini(dpa, B_TRUE);
2726 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2727 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2728 dbuf_issue_final_prefetch(dpa, bp);
2729 } else {
2730 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2731 zbookmark_phys_t zb;
2732
2733 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2734 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2735 iter_aflags |= ARC_FLAG_L2CACHE;
2736
2737 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2738
2739 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2740 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2741
2742 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2743 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2744 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2745 &iter_aflags, &zb);
2746 }
2747
2748 arc_buf_destroy(abuf, private);
2749 }
2750
2751 /*
2752 * Issue prefetch reads for the given block on the given level. If the indirect
2753 * blocks above that block are not in memory, we will read them in
2754 * asynchronously. As a result, this call never blocks waiting for a read to
2755 * complete. Note that the prefetch might fail if the dataset is encrypted and
2756 * the encryption key is unmapped before the IO completes.
2757 */
2758 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)2759 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
2760 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
2761 void *arg)
2762 {
2763 blkptr_t bp;
2764 int epbs, nlevels, curlevel;
2765 uint64_t curblkid;
2766
2767 ASSERT(blkid != DMU_BONUS_BLKID);
2768 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2769
2770 if (blkid > dn->dn_maxblkid)
2771 goto no_issue;
2772
2773 if (level == 0 && dnode_block_freed(dn, blkid))
2774 goto no_issue;
2775
2776 /*
2777 * This dnode hasn't been written to disk yet, so there's nothing to
2778 * prefetch.
2779 */
2780 nlevels = dn->dn_phys->dn_nlevels;
2781 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2782 goto no_issue;
2783
2784 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2785 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2786 goto no_issue;
2787
2788 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2789 level, blkid);
2790 if (db != NULL) {
2791 mutex_exit(&db->db_mtx);
2792 /*
2793 * This dbuf already exists. It is either CACHED, or
2794 * (we assume) about to be read or filled.
2795 */
2796 goto no_issue;
2797 }
2798
2799 /*
2800 * Find the closest ancestor (indirect block) of the target block
2801 * that is present in the cache. In this indirect block, we will
2802 * find the bp that is at curlevel, curblkid.
2803 */
2804 curlevel = level;
2805 curblkid = blkid;
2806 while (curlevel < nlevels - 1) {
2807 int parent_level = curlevel + 1;
2808 uint64_t parent_blkid = curblkid >> epbs;
2809 dmu_buf_impl_t *db;
2810
2811 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2812 FALSE, TRUE, FTAG, &db) == 0) {
2813 blkptr_t *bpp = db->db_buf->b_data;
2814 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2815 dbuf_rele(db, FTAG);
2816 break;
2817 }
2818
2819 curlevel = parent_level;
2820 curblkid = parent_blkid;
2821 }
2822
2823 if (curlevel == nlevels - 1) {
2824 /* No cached indirect blocks found. */
2825 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2826 bp = dn->dn_phys->dn_blkptr[curblkid];
2827 }
2828 if (BP_IS_HOLE(&bp))
2829 goto no_issue;
2830
2831 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2832
2833 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2834 ZIO_FLAG_CANFAIL);
2835
2836 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2837 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2838 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2839 dn->dn_object, level, blkid);
2840 dpa->dpa_curlevel = curlevel;
2841 dpa->dpa_prio = prio;
2842 dpa->dpa_aflags = aflags;
2843 dpa->dpa_spa = dn->dn_objset->os_spa;
2844 dpa->dpa_dnode = dn;
2845 dpa->dpa_epbs = epbs;
2846 dpa->dpa_zio = pio;
2847 dpa->dpa_cb = cb;
2848 dpa->dpa_arg = arg;
2849
2850 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2851 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2852 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2853
2854 /*
2855 * If we have the indirect just above us, no need to do the asynchronous
2856 * prefetch chain; we'll just run the last step ourselves. If we're at
2857 * a higher level, though, we want to issue the prefetches for all the
2858 * indirect blocks asynchronously, so we can go on with whatever we were
2859 * doing.
2860 */
2861 if (curlevel == level) {
2862 ASSERT3U(curblkid, ==, blkid);
2863 dbuf_issue_final_prefetch(dpa, &bp);
2864 } else {
2865 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2866 zbookmark_phys_t zb;
2867
2868 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2869 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2870 iter_aflags |= ARC_FLAG_L2CACHE;
2871
2872 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2873 dn->dn_object, curlevel, curblkid);
2874 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2875 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2876 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2877 &iter_aflags, &zb);
2878 }
2879 /*
2880 * We use pio here instead of dpa_zio since it's possible that
2881 * dpa may have already been freed.
2882 */
2883 zio_nowait(pio);
2884 return (1);
2885 no_issue:
2886 if (cb != NULL)
2887 cb(arg, B_FALSE);
2888 return (0);
2889 }
2890
2891 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)2892 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2893 arc_flags_t aflags)
2894 {
2895
2896 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
2897 }
2898
2899 /*
2900 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2901 * the case of encrypted, compressed and uncompressed buffers by
2902 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2903 * arc_alloc_compressed_buf() or arc_alloc_buf().*
2904 *
2905 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2906 */
2907 static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db,dbuf_dirty_record_t * dr)2908 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db, dbuf_dirty_record_t *dr)
2909 {
2910 arc_buf_t *data = dr->dt.dl.dr_data;
2911 enum zio_compress compress_type = arc_get_compression(data);
2912
2913 if (arc_is_encrypted(data)) {
2914 boolean_t byteorder;
2915 uint8_t salt[ZIO_DATA_SALT_LEN];
2916 uint8_t iv[ZIO_DATA_IV_LEN];
2917 uint8_t mac[ZIO_DATA_MAC_LEN];
2918
2919 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2920 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2921 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2922 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2923 compress_type));
2924 } else if (compress_type != ZIO_COMPRESS_OFF) {
2925 dbuf_set_data(db, arc_alloc_compressed_buf(
2926 dn->dn_objset->os_spa, db, arc_buf_size(data),
2927 arc_buf_lsize(data), compress_type));
2928 } else {
2929 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2930 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2931 }
2932
2933 rw_enter(&db->db_rwlock, RW_WRITER);
2934 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2935 rw_exit(&db->db_rwlock);
2936 }
2937
2938 /*
2939 * Returns with db_holds incremented, and db_mtx not held.
2940 * Note: dn_struct_rwlock must be held.
2941 */
2942 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,void * tag,dmu_buf_impl_t ** dbp)2943 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2944 boolean_t fail_sparse, boolean_t fail_uncached,
2945 void *tag, dmu_buf_impl_t **dbp)
2946 {
2947 dmu_buf_impl_t *db, *parent = NULL;
2948
2949 ASSERT(blkid != DMU_BONUS_BLKID);
2950 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2951 ASSERT3U(dn->dn_nlevels, >, level);
2952
2953 *dbp = NULL;
2954 top:
2955 /* dbuf_find() returns with db_mtx held */
2956 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2957
2958 if (db == NULL) {
2959 blkptr_t *bp = NULL;
2960 int err;
2961
2962 if (fail_uncached)
2963 return (SET_ERROR(ENOENT));
2964
2965 ASSERT3P(parent, ==, NULL);
2966 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2967 if (fail_sparse) {
2968 if (err == 0 && bp && BP_IS_HOLE(bp))
2969 err = SET_ERROR(ENOENT);
2970 if (err) {
2971 if (parent)
2972 dbuf_rele(parent, NULL);
2973 return (err);
2974 }
2975 }
2976 if (err && err != ENOENT)
2977 return (err);
2978 db = dbuf_create(dn, level, blkid, parent, bp);
2979 }
2980
2981 if (fail_uncached && db->db_state != DB_CACHED) {
2982 mutex_exit(&db->db_mtx);
2983 return (SET_ERROR(ENOENT));
2984 }
2985
2986 if (db->db_buf != NULL) {
2987 arc_buf_access(db->db_buf);
2988 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2989 }
2990
2991 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2992
2993 /*
2994 * If this buffer is currently syncing out, and we are are
2995 * still referencing it from db_data, we need to make a copy
2996 * of it in case we decide we want to dirty it again in this txg.
2997 */
2998 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2999 dn->dn_object != DMU_META_DNODE_OBJECT &&
3000 db->db_state == DB_CACHED && db->db_data_pending) {
3001 dbuf_dirty_record_t *dr = db->db_data_pending;
3002 if (dr->dt.dl.dr_data == db->db_buf)
3003 dbuf_hold_copy(dn, db, dr);
3004 }
3005
3006 if (multilist_link_active(&db->db_cache_link)) {
3007 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3008 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3009 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3010
3011 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
3012 (void) zfs_refcount_remove_many(
3013 &dbuf_caches[db->db_caching_status].size,
3014 db->db.db_size, db);
3015
3016 db->db_caching_status = DB_NO_CACHE;
3017 }
3018 (void) zfs_refcount_add(&db->db_holds, tag);
3019 DBUF_VERIFY(db);
3020 mutex_exit(&db->db_mtx);
3021
3022 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3023 if (parent)
3024 dbuf_rele(parent, NULL);
3025
3026 ASSERT3P(DB_DNODE(db), ==, dn);
3027 ASSERT3U(db->db_blkid, ==, blkid);
3028 ASSERT3U(db->db_level, ==, level);
3029 *dbp = db;
3030
3031 return (0);
3032 }
3033
3034 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,void * tag)3035 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3036 {
3037 return (dbuf_hold_level(dn, 0, blkid, tag));
3038 }
3039
3040 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,void * tag)3041 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3042 {
3043 dmu_buf_impl_t *db;
3044 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3045 return (err ? NULL : db);
3046 }
3047
3048 void
dbuf_create_bonus(dnode_t * dn)3049 dbuf_create_bonus(dnode_t *dn)
3050 {
3051 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3052
3053 ASSERT(dn->dn_bonus == NULL);
3054 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3055 }
3056
3057 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)3058 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3059 {
3060 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3061
3062 if (db->db_blkid != DMU_SPILL_BLKID)
3063 return (SET_ERROR(ENOTSUP));
3064 if (blksz == 0)
3065 blksz = SPA_MINBLOCKSIZE;
3066 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3067 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3068
3069 dbuf_new_size(db, blksz, tx);
3070
3071 return (0);
3072 }
3073
3074 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)3075 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3076 {
3077 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3078 }
3079
3080 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3081 void
dbuf_add_ref(dmu_buf_impl_t * db,void * tag)3082 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3083 {
3084 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3085 ASSERT3S(holds, >, 1);
3086 }
3087
3088 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3089 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,void * tag)3090 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3091 void *tag)
3092 {
3093 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3094 dmu_buf_impl_t *found_db;
3095 boolean_t result = B_FALSE;
3096
3097 if (blkid == DMU_BONUS_BLKID)
3098 found_db = dbuf_find_bonus(os, obj);
3099 else
3100 found_db = dbuf_find(os, obj, 0, blkid);
3101
3102 if (found_db != NULL) {
3103 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3104 (void) zfs_refcount_add(&db->db_holds, tag);
3105 result = B_TRUE;
3106 }
3107 mutex_exit(&found_db->db_mtx);
3108 }
3109 return (result);
3110 }
3111
3112 /*
3113 * If you call dbuf_rele() you had better not be referencing the dnode handle
3114 * unless you have some other direct or indirect hold on the dnode. (An indirect
3115 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3116 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3117 * dnode's parent dbuf evicting its dnode handles.
3118 */
3119 void
dbuf_rele(dmu_buf_impl_t * db,void * tag)3120 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3121 {
3122 mutex_enter(&db->db_mtx);
3123 dbuf_rele_and_unlock(db, tag, B_FALSE);
3124 }
3125
3126 void
dmu_buf_rele(dmu_buf_t * db,void * tag)3127 dmu_buf_rele(dmu_buf_t *db, void *tag)
3128 {
3129 dbuf_rele((dmu_buf_impl_t *)db, tag);
3130 }
3131
3132 /*
3133 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3134 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3135 * argument should be set if we are already in the dbuf-evicting code
3136 * path, in which case we don't want to recursively evict. This allows us to
3137 * avoid deeply nested stacks that would have a call flow similar to this:
3138 *
3139 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3140 * ^ |
3141 * | |
3142 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3143 *
3144 */
3145 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,void * tag,boolean_t evicting)3146 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3147 {
3148 int64_t holds;
3149
3150 ASSERT(MUTEX_HELD(&db->db_mtx));
3151 DBUF_VERIFY(db);
3152
3153 /*
3154 * Remove the reference to the dbuf before removing its hold on the
3155 * dnode so we can guarantee in dnode_move() that a referenced bonus
3156 * buffer has a corresponding dnode hold.
3157 */
3158 holds = zfs_refcount_remove(&db->db_holds, tag);
3159 ASSERT(holds >= 0);
3160
3161 /*
3162 * We can't freeze indirects if there is a possibility that they
3163 * may be modified in the current syncing context.
3164 */
3165 if (db->db_buf != NULL &&
3166 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3167 arc_buf_freeze(db->db_buf);
3168 }
3169
3170 if (holds == db->db_dirtycnt &&
3171 db->db_level == 0 && db->db_user_immediate_evict)
3172 dbuf_evict_user(db);
3173
3174 if (holds == 0) {
3175 if (db->db_blkid == DMU_BONUS_BLKID) {
3176 dnode_t *dn;
3177 boolean_t evict_dbuf = db->db_pending_evict;
3178
3179 /*
3180 * If the dnode moves here, we cannot cross this
3181 * barrier until the move completes.
3182 */
3183 DB_DNODE_ENTER(db);
3184
3185 dn = DB_DNODE(db);
3186 atomic_dec_32(&dn->dn_dbufs_count);
3187
3188 /*
3189 * Decrementing the dbuf count means that the bonus
3190 * buffer's dnode hold is no longer discounted in
3191 * dnode_move(). The dnode cannot move until after
3192 * the dnode_rele() below.
3193 */
3194 DB_DNODE_EXIT(db);
3195
3196 /*
3197 * Do not reference db after its lock is dropped.
3198 * Another thread may evict it.
3199 */
3200 mutex_exit(&db->db_mtx);
3201
3202 if (evict_dbuf)
3203 dnode_evict_bonus(dn);
3204
3205 dnode_rele(dn, db);
3206 } else if (db->db_buf == NULL) {
3207 /*
3208 * This is a special case: we never associated this
3209 * dbuf with any data allocated from the ARC.
3210 */
3211 ASSERT(db->db_state == DB_UNCACHED ||
3212 db->db_state == DB_NOFILL);
3213 dbuf_destroy(db);
3214 } else if (arc_released(db->db_buf)) {
3215 /*
3216 * This dbuf has anonymous data associated with it.
3217 */
3218 dbuf_destroy(db);
3219 } else {
3220 boolean_t do_arc_evict = B_FALSE;
3221 blkptr_t bp;
3222 spa_t *spa = dmu_objset_spa(db->db_objset);
3223
3224 if (!DBUF_IS_CACHEABLE(db) &&
3225 db->db_blkptr != NULL &&
3226 !BP_IS_HOLE(db->db_blkptr) &&
3227 !BP_IS_EMBEDDED(db->db_blkptr)) {
3228 do_arc_evict = B_TRUE;
3229 bp = *db->db_blkptr;
3230 }
3231
3232 if (!DBUF_IS_CACHEABLE(db) ||
3233 db->db_pending_evict) {
3234 dbuf_destroy(db);
3235 } else if (!multilist_link_active(&db->db_cache_link)) {
3236 ASSERT3U(db->db_caching_status, ==,
3237 DB_NO_CACHE);
3238
3239 dbuf_cached_state_t dcs =
3240 dbuf_include_in_metadata_cache(db) ?
3241 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3242 db->db_caching_status = dcs;
3243
3244 multilist_insert(dbuf_caches[dcs].cache, db);
3245 (void) zfs_refcount_add_many(
3246 &dbuf_caches[dcs].size, db->db.db_size, db);
3247 mutex_exit(&db->db_mtx);
3248
3249 if (db->db_caching_status == DB_DBUF_CACHE &&
3250 !evicting) {
3251 dbuf_evict_notify();
3252 }
3253 }
3254
3255 if (do_arc_evict)
3256 arc_freed(spa, &bp);
3257 }
3258 } else {
3259 mutex_exit(&db->db_mtx);
3260 }
3261
3262 }
3263
3264 #pragma weak dmu_buf_refcount = dbuf_refcount
3265 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)3266 dbuf_refcount(dmu_buf_impl_t *db)
3267 {
3268 return (zfs_refcount_count(&db->db_holds));
3269 }
3270
3271 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)3272 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3273 {
3274 uint64_t holds;
3275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3276
3277 mutex_enter(&db->db_mtx);
3278 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3279 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3280 mutex_exit(&db->db_mtx);
3281
3282 return (holds);
3283 }
3284
3285 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)3286 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3287 dmu_buf_user_t *new_user)
3288 {
3289 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3290
3291 mutex_enter(&db->db_mtx);
3292 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3293 if (db->db_user == old_user)
3294 db->db_user = new_user;
3295 else
3296 old_user = db->db_user;
3297 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3298 mutex_exit(&db->db_mtx);
3299
3300 return (old_user);
3301 }
3302
3303 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)3304 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3305 {
3306 return (dmu_buf_replace_user(db_fake, NULL, user));
3307 }
3308
3309 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)3310 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3311 {
3312 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3313
3314 db->db_user_immediate_evict = TRUE;
3315 return (dmu_buf_set_user(db_fake, user));
3316 }
3317
3318 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)3319 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3320 {
3321 return (dmu_buf_replace_user(db_fake, user, NULL));
3322 }
3323
3324 void *
dmu_buf_get_user(dmu_buf_t * db_fake)3325 dmu_buf_get_user(dmu_buf_t *db_fake)
3326 {
3327 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3328
3329 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3330 return (db->db_user);
3331 }
3332
3333 void
dmu_buf_user_evict_wait()3334 dmu_buf_user_evict_wait()
3335 {
3336 taskq_wait(dbu_evict_taskq);
3337 }
3338
3339 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)3340 dmu_buf_get_blkptr(dmu_buf_t *db)
3341 {
3342 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3343 return (dbi->db_blkptr);
3344 }
3345
3346 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)3347 dmu_buf_get_objset(dmu_buf_t *db)
3348 {
3349 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3350 return (dbi->db_objset);
3351 }
3352
3353 dnode_t *
dmu_buf_dnode_enter(dmu_buf_t * db)3354 dmu_buf_dnode_enter(dmu_buf_t *db)
3355 {
3356 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3357 DB_DNODE_ENTER(dbi);
3358 return (DB_DNODE(dbi));
3359 }
3360
3361 void
dmu_buf_dnode_exit(dmu_buf_t * db)3362 dmu_buf_dnode_exit(dmu_buf_t *db)
3363 {
3364 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3365 DB_DNODE_EXIT(dbi);
3366 }
3367
3368 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)3369 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3370 {
3371 /* ASSERT(dmu_tx_is_syncing(tx) */
3372 ASSERT(MUTEX_HELD(&db->db_mtx));
3373
3374 if (db->db_blkptr != NULL)
3375 return;
3376
3377 if (db->db_blkid == DMU_SPILL_BLKID) {
3378 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3379 BP_ZERO(db->db_blkptr);
3380 return;
3381 }
3382 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3383 /*
3384 * This buffer was allocated at a time when there was
3385 * no available blkptrs from the dnode, or it was
3386 * inappropriate to hook it in (i.e., nlevels mis-match).
3387 */
3388 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3389 ASSERT(db->db_parent == NULL);
3390 db->db_parent = dn->dn_dbuf;
3391 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3392 DBUF_VERIFY(db);
3393 } else {
3394 dmu_buf_impl_t *parent = db->db_parent;
3395 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3396
3397 ASSERT(dn->dn_phys->dn_nlevels > 1);
3398 if (parent == NULL) {
3399 mutex_exit(&db->db_mtx);
3400 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3401 parent = dbuf_hold_level(dn, db->db_level + 1,
3402 db->db_blkid >> epbs, db);
3403 rw_exit(&dn->dn_struct_rwlock);
3404 mutex_enter(&db->db_mtx);
3405 db->db_parent = parent;
3406 }
3407 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3408 (db->db_blkid & ((1ULL << epbs) - 1));
3409 DBUF_VERIFY(db);
3410 }
3411 }
3412
3413 /*
3414 * When syncing out blocks of dnodes, adjust the block to deal with
3415 * encryption. Normally, we make sure the block is decrypted before writing
3416 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3417 * from a raw receive. In this case, set the ARC buf's crypt params so
3418 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3419 *
3420 * XXX we should handle decrypting the dnode block in dbuf_dirty().
3421 */
3422 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)3423 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3424 {
3425 int err;
3426 dmu_buf_impl_t *db = dr->dr_dbuf;
3427
3428 ASSERT(MUTEX_HELD(&db->db_mtx));
3429 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3430 ASSERT3U(db->db_level, ==, 0);
3431
3432 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3433 zbookmark_phys_t zb;
3434
3435 /*
3436 * Unfortunately, there is currently no mechanism for
3437 * syncing context to handle decryption errors. An error
3438 * here is only possible if an attacker maliciously
3439 * changed a dnode block and updated the associated
3440 * checksums going up the block tree.
3441 */
3442 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3443 db->db.db_object, db->db_level, db->db_blkid);
3444 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3445 &zb, B_TRUE);
3446 if (err)
3447 panic("Invalid dnode block MAC");
3448 } else if (dr->dt.dl.dr_has_raw_params) {
3449 (void) arc_release(dr->dt.dl.dr_data, db);
3450 arc_convert_to_raw(dr->dt.dl.dr_data,
3451 dmu_objset_id(db->db_objset),
3452 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3453 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3454 }
3455 }
3456
3457 static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)3458 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3459 {
3460 dmu_buf_impl_t *db = dr->dr_dbuf;
3461 dnode_t *dn;
3462 zio_t *zio;
3463
3464 ASSERT(dmu_tx_is_syncing(tx));
3465
3466 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3467
3468 mutex_enter(&db->db_mtx);
3469
3470 ASSERT(db->db_level > 0);
3471 DBUF_VERIFY(db);
3472
3473 /* Read the block if it hasn't been read yet. */
3474 if (db->db_buf == NULL) {
3475 mutex_exit(&db->db_mtx);
3476 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3477 mutex_enter(&db->db_mtx);
3478 }
3479 ASSERT3U(db->db_state, ==, DB_CACHED);
3480 ASSERT(db->db_buf != NULL);
3481
3482 DB_DNODE_ENTER(db);
3483 dn = DB_DNODE(db);
3484 /* Indirect block size must match what the dnode thinks it is. */
3485 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3486 dbuf_check_blkptr(dn, db);
3487 DB_DNODE_EXIT(db);
3488
3489 /* Provide the pending dirty record to child dbufs */
3490 db->db_data_pending = dr;
3491
3492 mutex_exit(&db->db_mtx);
3493
3494 dbuf_write(dr, db->db_buf, tx);
3495
3496 zio = dr->dr_zio;
3497 mutex_enter(&dr->dt.di.dr_mtx);
3498 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3499 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3500 mutex_exit(&dr->dt.di.dr_mtx);
3501 zio_nowait(zio);
3502 }
3503
3504 static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)3505 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3506 {
3507 arc_buf_t **datap = &dr->dt.dl.dr_data;
3508 dmu_buf_impl_t *db = dr->dr_dbuf;
3509 dnode_t *dn;
3510 objset_t *os;
3511 uint64_t txg = tx->tx_txg;
3512
3513 ASSERT(dmu_tx_is_syncing(tx));
3514
3515 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3516
3517 mutex_enter(&db->db_mtx);
3518 /*
3519 * To be synced, we must be dirtied. But we
3520 * might have been freed after the dirty.
3521 */
3522 if (db->db_state == DB_UNCACHED) {
3523 /* This buffer has been freed since it was dirtied */
3524 ASSERT(db->db.db_data == NULL);
3525 } else if (db->db_state == DB_FILL) {
3526 /* This buffer was freed and is now being re-filled */
3527 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3528 } else {
3529 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3530 }
3531 DBUF_VERIFY(db);
3532
3533 DB_DNODE_ENTER(db);
3534 dn = DB_DNODE(db);
3535
3536 if (db->db_blkid == DMU_SPILL_BLKID) {
3537 mutex_enter(&dn->dn_mtx);
3538 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3539 mutex_exit(&dn->dn_mtx);
3540 }
3541
3542 /*
3543 * If this is a bonus buffer, simply copy the bonus data into the
3544 * dnode. It will be written out when the dnode is synced (and it
3545 * will be synced, since it must have been dirty for dbuf_sync to
3546 * be called).
3547 */
3548 if (db->db_blkid == DMU_BONUS_BLKID) {
3549 dbuf_dirty_record_t **drp;
3550
3551 ASSERT(*datap != NULL);
3552 ASSERT0(db->db_level);
3553 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3554 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3555 bcopy(*datap, DN_BONUS(dn->dn_phys),
3556 DN_MAX_BONUS_LEN(dn->dn_phys));
3557 DB_DNODE_EXIT(db);
3558
3559 if (*datap != db->db.db_data) {
3560 int slots = DB_DNODE(db)->dn_num_slots;
3561 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3562 zio_buf_free(*datap, bonuslen);
3563 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3564 }
3565 db->db_data_pending = NULL;
3566 drp = &db->db_last_dirty;
3567 while (*drp != dr)
3568 drp = &(*drp)->dr_next;
3569 ASSERT(dr->dr_next == NULL);
3570 ASSERT(dr->dr_dbuf == db);
3571 *drp = dr->dr_next;
3572 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3573 ASSERT(db->db_dirtycnt > 0);
3574 db->db_dirtycnt -= 1;
3575 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3576 return;
3577 }
3578
3579 os = dn->dn_objset;
3580
3581 /*
3582 * This function may have dropped the db_mtx lock allowing a dmu_sync
3583 * operation to sneak in. As a result, we need to ensure that we
3584 * don't check the dr_override_state until we have returned from
3585 * dbuf_check_blkptr.
3586 */
3587 dbuf_check_blkptr(dn, db);
3588
3589 /*
3590 * If this buffer is in the middle of an immediate write,
3591 * wait for the synchronous IO to complete.
3592 */
3593 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3594 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3595 cv_wait(&db->db_changed, &db->db_mtx);
3596 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3597 }
3598
3599 /*
3600 * If this is a dnode block, ensure it is appropriately encrypted
3601 * or decrypted, depending on what we are writing to it this txg.
3602 */
3603 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3604 dbuf_prepare_encrypted_dnode_leaf(dr);
3605
3606 if (db->db_state != DB_NOFILL &&
3607 dn->dn_object != DMU_META_DNODE_OBJECT &&
3608 zfs_refcount_count(&db->db_holds) > 1 &&
3609 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3610 *datap == db->db_buf) {
3611 /*
3612 * If this buffer is currently "in use" (i.e., there
3613 * are active holds and db_data still references it),
3614 * then make a copy before we start the write so that
3615 * any modifications from the open txg will not leak
3616 * into this write.
3617 *
3618 * NOTE: this copy does not need to be made for
3619 * objects only modified in the syncing context (e.g.
3620 * DNONE_DNODE blocks).
3621 */
3622 int psize = arc_buf_size(*datap);
3623 int lsize = arc_buf_lsize(*datap);
3624 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3625 enum zio_compress compress_type = arc_get_compression(*datap);
3626
3627 if (arc_is_encrypted(*datap)) {
3628 boolean_t byteorder;
3629 uint8_t salt[ZIO_DATA_SALT_LEN];
3630 uint8_t iv[ZIO_DATA_IV_LEN];
3631 uint8_t mac[ZIO_DATA_MAC_LEN];
3632
3633 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3634 *datap = arc_alloc_raw_buf(os->os_spa, db,
3635 dmu_objset_id(os), byteorder, salt, iv, mac,
3636 dn->dn_type, psize, lsize, compress_type);
3637 } else if (compress_type != ZIO_COMPRESS_OFF) {
3638 ASSERT3U(type, ==, ARC_BUFC_DATA);
3639 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3640 psize, lsize, compress_type);
3641 } else {
3642 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3643 }
3644 bcopy(db->db.db_data, (*datap)->b_data, psize);
3645 }
3646 db->db_data_pending = dr;
3647
3648 mutex_exit(&db->db_mtx);
3649
3650 dbuf_write(dr, *datap, tx);
3651
3652 ASSERT(!list_link_active(&dr->dr_dirty_node));
3653 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3654 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3655 DB_DNODE_EXIT(db);
3656 } else {
3657 /*
3658 * Although zio_nowait() does not "wait for an IO", it does
3659 * initiate the IO. If this is an empty write it seems plausible
3660 * that the IO could actually be completed before the nowait
3661 * returns. We need to DB_DNODE_EXIT() first in case
3662 * zio_nowait() invalidates the dbuf.
3663 */
3664 DB_DNODE_EXIT(db);
3665 zio_nowait(dr->dr_zio);
3666 }
3667 }
3668
3669 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)3670 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3671 {
3672 dbuf_dirty_record_t *dr;
3673
3674 while (dr = list_head(list)) {
3675 if (dr->dr_zio != NULL) {
3676 /*
3677 * If we find an already initialized zio then we
3678 * are processing the meta-dnode, and we have finished.
3679 * The dbufs for all dnodes are put back on the list
3680 * during processing, so that we can zio_wait()
3681 * these IOs after initiating all child IOs.
3682 */
3683 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3684 DMU_META_DNODE_OBJECT);
3685 break;
3686 }
3687 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3688 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3689 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3690 }
3691 list_remove(list, dr);
3692 if (dr->dr_dbuf->db_level > 0)
3693 dbuf_sync_indirect(dr, tx);
3694 else
3695 dbuf_sync_leaf(dr, tx);
3696 }
3697 }
3698
3699 /* ARGSUSED */
3700 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)3701 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3702 {
3703 dmu_buf_impl_t *db = vdb;
3704 dnode_t *dn;
3705 blkptr_t *bp = zio->io_bp;
3706 blkptr_t *bp_orig = &zio->io_bp_orig;
3707 spa_t *spa = zio->io_spa;
3708 int64_t delta;
3709 uint64_t fill = 0;
3710 int i;
3711
3712 ASSERT3P(db->db_blkptr, !=, NULL);
3713 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3714
3715 DB_DNODE_ENTER(db);
3716 dn = DB_DNODE(db);
3717 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3718 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3719 zio->io_prev_space_delta = delta;
3720
3721 if (bp->blk_birth != 0) {
3722 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3723 BP_GET_TYPE(bp) == dn->dn_type) ||
3724 (db->db_blkid == DMU_SPILL_BLKID &&
3725 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3726 BP_IS_EMBEDDED(bp));
3727 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3728 }
3729
3730 mutex_enter(&db->db_mtx);
3731
3732 #ifdef ZFS_DEBUG
3733 if (db->db_blkid == DMU_SPILL_BLKID) {
3734 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3735 ASSERT(!(BP_IS_HOLE(bp)) &&
3736 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3737 }
3738 #endif
3739
3740 if (db->db_level == 0) {
3741 mutex_enter(&dn->dn_mtx);
3742 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3743 db->db_blkid != DMU_SPILL_BLKID) {
3744 ASSERT0(db->db_objset->os_raw_receive);
3745 dn->dn_phys->dn_maxblkid = db->db_blkid;
3746 }
3747 mutex_exit(&dn->dn_mtx);
3748
3749 if (dn->dn_type == DMU_OT_DNODE) {
3750 i = 0;
3751 while (i < db->db.db_size) {
3752 dnode_phys_t *dnp =
3753 (void *)(((char *)db->db.db_data) + i);
3754
3755 i += DNODE_MIN_SIZE;
3756 if (dnp->dn_type != DMU_OT_NONE) {
3757 fill++;
3758 i += dnp->dn_extra_slots *
3759 DNODE_MIN_SIZE;
3760 }
3761 }
3762 } else {
3763 if (BP_IS_HOLE(bp)) {
3764 fill = 0;
3765 } else {
3766 fill = 1;
3767 }
3768 }
3769 } else {
3770 blkptr_t *ibp = db->db.db_data;
3771 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3772 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3773 if (BP_IS_HOLE(ibp))
3774 continue;
3775 fill += BP_GET_FILL(ibp);
3776 }
3777 }
3778 DB_DNODE_EXIT(db);
3779
3780 if (!BP_IS_EMBEDDED(bp))
3781 BP_SET_FILL(bp, fill);
3782
3783 mutex_exit(&db->db_mtx);
3784
3785 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
3786 *db->db_blkptr = *bp;
3787 dmu_buf_unlock_parent(db, dblt, FTAG);
3788 }
3789
3790 /* ARGSUSED */
3791 /*
3792 * This function gets called just prior to running through the compression
3793 * stage of the zio pipeline. If we're an indirect block comprised of only
3794 * holes, then we want this indirect to be compressed away to a hole. In
3795 * order to do that we must zero out any information about the holes that
3796 * this indirect points to prior to before we try to compress it.
3797 */
3798 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)3799 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3800 {
3801 dmu_buf_impl_t *db = vdb;
3802 dnode_t *dn;
3803 blkptr_t *bp;
3804 unsigned int epbs, i;
3805
3806 ASSERT3U(db->db_level, >, 0);
3807 DB_DNODE_ENTER(db);
3808 dn = DB_DNODE(db);
3809 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3810 ASSERT3U(epbs, <, 31);
3811
3812 /* Determine if all our children are holes */
3813 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3814 if (!BP_IS_HOLE(bp))
3815 break;
3816 }
3817
3818 /*
3819 * If all the children are holes, then zero them all out so that
3820 * we may get compressed away.
3821 */
3822 if (i == 1 << epbs) {
3823 /*
3824 * We only found holes. Grab the rwlock to prevent
3825 * anybody from reading the blocks we're about to
3826 * zero out.
3827 */
3828 rw_enter(&db->db_rwlock, RW_WRITER);
3829 bzero(db->db.db_data, db->db.db_size);
3830 rw_exit(&db->db_rwlock);
3831 }
3832 DB_DNODE_EXIT(db);
3833 }
3834
3835 /*
3836 * The SPA will call this callback several times for each zio - once
3837 * for every physical child i/o (zio->io_phys_children times). This
3838 * allows the DMU to monitor the progress of each logical i/o. For example,
3839 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3840 * block. There may be a long delay before all copies/fragments are completed,
3841 * so this callback allows us to retire dirty space gradually, as the physical
3842 * i/os complete.
3843 */
3844 /* ARGSUSED */
3845 static void
dbuf_write_physdone(zio_t * zio,arc_buf_t * buf,void * arg)3846 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3847 {
3848 dmu_buf_impl_t *db = arg;
3849 objset_t *os = db->db_objset;
3850 dsl_pool_t *dp = dmu_objset_pool(os);
3851 dbuf_dirty_record_t *dr;
3852 int delta = 0;
3853
3854 dr = db->db_data_pending;
3855 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3856
3857 /*
3858 * The callback will be called io_phys_children times. Retire one
3859 * portion of our dirty space each time we are called. Any rounding
3860 * error will be cleaned up by dsl_pool_sync()'s call to
3861 * dsl_pool_undirty_space().
3862 */
3863 delta = dr->dr_accounted / zio->io_phys_children;
3864 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3865 }
3866
3867 /* ARGSUSED */
3868 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)3869 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3870 {
3871 dmu_buf_impl_t *db = vdb;
3872 blkptr_t *bp_orig = &zio->io_bp_orig;
3873 blkptr_t *bp = db->db_blkptr;
3874 objset_t *os = db->db_objset;
3875 dmu_tx_t *tx = os->os_synctx;
3876 dbuf_dirty_record_t **drp, *dr;
3877
3878 ASSERT0(zio->io_error);
3879 ASSERT(db->db_blkptr == bp);
3880
3881 /*
3882 * For nopwrites and rewrites we ensure that the bp matches our
3883 * original and bypass all the accounting.
3884 */
3885 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3886 ASSERT(BP_EQUAL(bp, bp_orig));
3887 } else {
3888 dsl_dataset_t *ds = os->os_dsl_dataset;
3889 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3890 dsl_dataset_block_born(ds, bp, tx);
3891 }
3892
3893 mutex_enter(&db->db_mtx);
3894
3895 DBUF_VERIFY(db);
3896
3897 drp = &db->db_last_dirty;
3898 while ((dr = *drp) != db->db_data_pending)
3899 drp = &dr->dr_next;
3900 ASSERT(!list_link_active(&dr->dr_dirty_node));
3901 ASSERT(dr->dr_dbuf == db);
3902 ASSERT(dr->dr_next == NULL);
3903 *drp = dr->dr_next;
3904
3905 #ifdef ZFS_DEBUG
3906 if (db->db_blkid == DMU_SPILL_BLKID) {
3907 dnode_t *dn;
3908
3909 DB_DNODE_ENTER(db);
3910 dn = DB_DNODE(db);
3911 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3912 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3913 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3914 DB_DNODE_EXIT(db);
3915 }
3916 #endif
3917
3918 if (db->db_level == 0) {
3919 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3920 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3921 if (db->db_state != DB_NOFILL) {
3922 if (dr->dt.dl.dr_data != db->db_buf)
3923 arc_buf_destroy(dr->dt.dl.dr_data, db);
3924 }
3925 } else {
3926 dnode_t *dn;
3927
3928 DB_DNODE_ENTER(db);
3929 dn = DB_DNODE(db);
3930 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3931 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3932 if (!BP_IS_HOLE(db->db_blkptr)) {
3933 int epbs =
3934 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3935 ASSERT3U(db->db_blkid, <=,
3936 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3937 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3938 db->db.db_size);
3939 }
3940 DB_DNODE_EXIT(db);
3941 mutex_destroy(&dr->dt.di.dr_mtx);
3942 list_destroy(&dr->dt.di.dr_children);
3943 }
3944 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3945
3946 cv_broadcast(&db->db_changed);
3947 ASSERT(db->db_dirtycnt > 0);
3948 db->db_dirtycnt -= 1;
3949 db->db_data_pending = NULL;
3950 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
3951 }
3952
3953 static void
dbuf_write_nofill_ready(zio_t * zio)3954 dbuf_write_nofill_ready(zio_t *zio)
3955 {
3956 dbuf_write_ready(zio, NULL, zio->io_private);
3957 }
3958
3959 static void
dbuf_write_nofill_done(zio_t * zio)3960 dbuf_write_nofill_done(zio_t *zio)
3961 {
3962 dbuf_write_done(zio, NULL, zio->io_private);
3963 }
3964
3965 static void
dbuf_write_override_ready(zio_t * zio)3966 dbuf_write_override_ready(zio_t *zio)
3967 {
3968 dbuf_dirty_record_t *dr = zio->io_private;
3969 dmu_buf_impl_t *db = dr->dr_dbuf;
3970
3971 dbuf_write_ready(zio, NULL, db);
3972 }
3973
3974 static void
dbuf_write_override_done(zio_t * zio)3975 dbuf_write_override_done(zio_t *zio)
3976 {
3977 dbuf_dirty_record_t *dr = zio->io_private;
3978 dmu_buf_impl_t *db = dr->dr_dbuf;
3979 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3980
3981 mutex_enter(&db->db_mtx);
3982 if (!BP_EQUAL(zio->io_bp, obp)) {
3983 if (!BP_IS_HOLE(obp))
3984 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3985 arc_release(dr->dt.dl.dr_data, db);
3986 }
3987 mutex_exit(&db->db_mtx);
3988 dbuf_write_done(zio, NULL, db);
3989
3990 if (zio->io_abd != NULL)
3991 abd_put(zio->io_abd);
3992 }
3993
3994 typedef struct dbuf_remap_impl_callback_arg {
3995 objset_t *drica_os;
3996 uint64_t drica_blk_birth;
3997 dmu_tx_t *drica_tx;
3998 } dbuf_remap_impl_callback_arg_t;
3999
4000 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)4001 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4002 void *arg)
4003 {
4004 dbuf_remap_impl_callback_arg_t *drica = arg;
4005 objset_t *os = drica->drica_os;
4006 spa_t *spa = dmu_objset_spa(os);
4007 dmu_tx_t *tx = drica->drica_tx;
4008
4009 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4010
4011 if (os == spa_meta_objset(spa)) {
4012 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4013 } else {
4014 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4015 size, drica->drica_blk_birth, tx);
4016 }
4017 }
4018
4019 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)4020 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4021 {
4022 blkptr_t bp_copy = *bp;
4023 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4024 dbuf_remap_impl_callback_arg_t drica;
4025
4026 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4027
4028 drica.drica_os = dn->dn_objset;
4029 drica.drica_blk_birth = bp->blk_birth;
4030 drica.drica_tx = tx;
4031 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4032 &drica)) {
4033 /*
4034 * The db_rwlock prevents dbuf_read_impl() from
4035 * dereferencing the BP while we are changing it. To
4036 * avoid lock contention, only grab it when we are actually
4037 * changing the BP.
4038 */
4039 if (rw != NULL)
4040 rw_enter(rw, RW_WRITER);
4041 *bp = bp_copy;
4042 if (rw != NULL)
4043 rw_exit(rw);
4044 }
4045 }
4046
4047 /*
4048 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4049 * to remap a copy of every bp in the dbuf.
4050 */
4051 boolean_t
dbuf_can_remap(const dmu_buf_impl_t * db)4052 dbuf_can_remap(const dmu_buf_impl_t *db)
4053 {
4054 spa_t *spa = dmu_objset_spa(db->db_objset);
4055 blkptr_t *bp = db->db.db_data;
4056 boolean_t ret = B_FALSE;
4057
4058 ASSERT3U(db->db_level, >, 0);
4059 ASSERT3S(db->db_state, ==, DB_CACHED);
4060
4061 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4062
4063 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4064 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4065 blkptr_t bp_copy = bp[i];
4066 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4067 ret = B_TRUE;
4068 break;
4069 }
4070 }
4071 spa_config_exit(spa, SCL_VDEV, FTAG);
4072
4073 return (ret);
4074 }
4075
4076 boolean_t
dnode_needs_remap(const dnode_t * dn)4077 dnode_needs_remap(const dnode_t *dn)
4078 {
4079 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4080 boolean_t ret = B_FALSE;
4081
4082 if (dn->dn_phys->dn_nlevels == 0) {
4083 return (B_FALSE);
4084 }
4085
4086 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4087
4088 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4089 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4090 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4091 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4092 ret = B_TRUE;
4093 break;
4094 }
4095 }
4096 spa_config_exit(spa, SCL_VDEV, FTAG);
4097
4098 return (ret);
4099 }
4100
4101 /*
4102 * Remap any existing BP's to concrete vdevs, if possible.
4103 */
4104 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)4105 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4106 {
4107 spa_t *spa = dmu_objset_spa(db->db_objset);
4108 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4109
4110 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4111 return;
4112
4113 if (db->db_level > 0) {
4114 blkptr_t *bp = db->db.db_data;
4115 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4116 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4117 }
4118 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4119 dnode_phys_t *dnp = db->db.db_data;
4120 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4121 DMU_OT_DNODE);
4122 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) {
4123 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4124 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4125 &dn->dn_dbuf->db_rwlock);
4126 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4127 tx);
4128 }
4129 }
4130 }
4131 }
4132
4133
4134 /* Issue I/O to commit a dirty buffer to disk. */
4135 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)4136 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4137 {
4138 dmu_buf_impl_t *db = dr->dr_dbuf;
4139 dnode_t *dn;
4140 objset_t *os;
4141 dmu_buf_impl_t *parent = db->db_parent;
4142 uint64_t txg = tx->tx_txg;
4143 zbookmark_phys_t zb;
4144 zio_prop_t zp;
4145 zio_t *zio;
4146 int wp_flag = 0;
4147
4148 ASSERT(dmu_tx_is_syncing(tx));
4149
4150 DB_DNODE_ENTER(db);
4151 dn = DB_DNODE(db);
4152 os = dn->dn_objset;
4153
4154 if (db->db_state != DB_NOFILL) {
4155 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4156 /*
4157 * Private object buffers are released here rather
4158 * than in dbuf_dirty() since they are only modified
4159 * in the syncing context and we don't want the
4160 * overhead of making multiple copies of the data.
4161 */
4162 if (BP_IS_HOLE(db->db_blkptr)) {
4163 arc_buf_thaw(data);
4164 } else {
4165 dbuf_release_bp(db);
4166 }
4167 dbuf_remap(dn, db, tx);
4168 }
4169 }
4170
4171 if (parent != dn->dn_dbuf) {
4172 /* Our parent is an indirect block. */
4173 /* We have a dirty parent that has been scheduled for write. */
4174 ASSERT(parent && parent->db_data_pending);
4175 /* Our parent's buffer is one level closer to the dnode. */
4176 ASSERT(db->db_level == parent->db_level-1);
4177 /*
4178 * We're about to modify our parent's db_data by modifying
4179 * our block pointer, so the parent must be released.
4180 */
4181 ASSERT(arc_released(parent->db_buf));
4182 zio = parent->db_data_pending->dr_zio;
4183 } else {
4184 /* Our parent is the dnode itself. */
4185 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4186 db->db_blkid != DMU_SPILL_BLKID) ||
4187 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4188 if (db->db_blkid != DMU_SPILL_BLKID)
4189 ASSERT3P(db->db_blkptr, ==,
4190 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4191 zio = dn->dn_zio;
4192 }
4193
4194 ASSERT(db->db_level == 0 || data == db->db_buf);
4195 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4196 ASSERT(zio);
4197
4198 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4199 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4200 db->db.db_object, db->db_level, db->db_blkid);
4201
4202 if (db->db_blkid == DMU_SPILL_BLKID)
4203 wp_flag = WP_SPILL;
4204 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4205
4206 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4207
4208 DB_DNODE_EXIT(db);
4209
4210 /*
4211 * We copy the blkptr now (rather than when we instantiate the dirty
4212 * record), because its value can change between open context and
4213 * syncing context. We do not need to hold dn_struct_rwlock to read
4214 * db_blkptr because we are in syncing context.
4215 */
4216 dr->dr_bp_copy = *db->db_blkptr;
4217
4218 if (db->db_level == 0 &&
4219 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4220 /*
4221 * The BP for this block has been provided by open context
4222 * (by dmu_sync() or dmu_buf_write_embedded()).
4223 */
4224 abd_t *contents = (data != NULL) ?
4225 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4226
4227 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
4228 contents, db->db.db_size, db->db.db_size, &zp,
4229 dbuf_write_override_ready, NULL, NULL,
4230 dbuf_write_override_done,
4231 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4232 mutex_enter(&db->db_mtx);
4233 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4234 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4235 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4236 mutex_exit(&db->db_mtx);
4237 } else if (db->db_state == DB_NOFILL) {
4238 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4239 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4240 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4241 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4242 dbuf_write_nofill_ready, NULL, NULL,
4243 dbuf_write_nofill_done, db,
4244 ZIO_PRIORITY_ASYNC_WRITE,
4245 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4246 } else {
4247 ASSERT(arc_released(data));
4248
4249 /*
4250 * For indirect blocks, we want to setup the children
4251 * ready callback so that we can properly handle an indirect
4252 * block that only contains holes.
4253 */
4254 arc_write_done_func_t *children_ready_cb = NULL;
4255 if (db->db_level != 0)
4256 children_ready_cb = dbuf_write_children_ready;
4257
4258 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4259 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4260 &zp, dbuf_write_ready, children_ready_cb,
4261 dbuf_write_physdone, dbuf_write_done, db,
4262 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4263 }
4264 }
4265