xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision 3a8960711f4319f9b894ea2453c89065ee1b3a10)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/arc.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_send.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dbuf.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/spa.h>
44 #include <sys/zio.h>
45 #include <sys/dmu_zfetch.h>
46 #include <sys/sa.h>
47 #include <sys/sa_impl.h>
48 #include <sys/zfeature.h>
49 #include <sys/blkptr.h>
50 #include <sys/range_tree.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/callb.h>
53 #include <sys/abd.h>
54 #include <sys/brt.h>
55 #include <sys/vdev.h>
56 #include <cityhash.h>
57 #include <sys/spa_impl.h>
58 #include <sys/wmsum.h>
59 #include <sys/vdev_impl.h>
60 
61 static kstat_t *dbuf_ksp;
62 
63 typedef struct dbuf_stats {
64 	/*
65 	 * Various statistics about the size of the dbuf cache.
66 	 */
67 	kstat_named_t cache_count;
68 	kstat_named_t cache_size_bytes;
69 	kstat_named_t cache_size_bytes_max;
70 	/*
71 	 * Statistics regarding the bounds on the dbuf cache size.
72 	 */
73 	kstat_named_t cache_target_bytes;
74 	kstat_named_t cache_lowater_bytes;
75 	kstat_named_t cache_hiwater_bytes;
76 	/*
77 	 * Total number of dbuf cache evictions that have occurred.
78 	 */
79 	kstat_named_t cache_total_evicts;
80 	/*
81 	 * The distribution of dbuf levels in the dbuf cache and
82 	 * the total size of all dbufs at each level.
83 	 */
84 	kstat_named_t cache_levels[DN_MAX_LEVELS];
85 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86 	/*
87 	 * Statistics about the dbuf hash table.
88 	 */
89 	kstat_named_t hash_hits;
90 	kstat_named_t hash_misses;
91 	kstat_named_t hash_collisions;
92 	kstat_named_t hash_elements;
93 	/*
94 	 * Number of sublists containing more than one dbuf in the dbuf
95 	 * hash table. Keep track of the longest hash chain.
96 	 */
97 	kstat_named_t hash_chains;
98 	kstat_named_t hash_chain_max;
99 	/*
100 	 * Number of times a dbuf_create() discovers that a dbuf was
101 	 * already created and in the dbuf hash table.
102 	 */
103 	kstat_named_t hash_insert_race;
104 	/*
105 	 * Number of entries in the hash table dbuf and mutex arrays.
106 	 */
107 	kstat_named_t hash_table_count;
108 	kstat_named_t hash_mutex_count;
109 	/*
110 	 * Statistics about the size of the metadata dbuf cache.
111 	 */
112 	kstat_named_t metadata_cache_count;
113 	kstat_named_t metadata_cache_size_bytes;
114 	kstat_named_t metadata_cache_size_bytes_max;
115 	/*
116 	 * For diagnostic purposes, this is incremented whenever we can't add
117 	 * something to the metadata cache because it's full, and instead put
118 	 * the data in the regular dbuf cache.
119 	 */
120 	kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122 
123 dbuf_stats_t dbuf_stats = {
124 	{ "cache_count",			KSTAT_DATA_UINT64 },
125 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
126 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
127 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
128 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
129 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
130 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
131 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
132 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
133 	{ "hash_hits",				KSTAT_DATA_UINT64 },
134 	{ "hash_misses",			KSTAT_DATA_UINT64 },
135 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
136 	{ "hash_elements",			KSTAT_DATA_UINT64 },
137 	{ "hash_chains",			KSTAT_DATA_UINT64 },
138 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
139 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
140 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
141 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
142 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
145 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
146 };
147 
148 struct {
149 	wmsum_t cache_count;
150 	wmsum_t cache_total_evicts;
151 	wmsum_t cache_levels[DN_MAX_LEVELS];
152 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
153 	wmsum_t hash_hits;
154 	wmsum_t hash_misses;
155 	wmsum_t hash_collisions;
156 	wmsum_t hash_elements;
157 	wmsum_t hash_chains;
158 	wmsum_t hash_insert_race;
159 	wmsum_t metadata_cache_count;
160 	wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162 
163 #define	DBUF_STAT_INCR(stat, val)	\
164 	wmsum_add(&dbuf_sums.stat, val)
165 #define	DBUF_STAT_DECR(stat, val)	\
166 	DBUF_STAT_INCR(stat, -(val))
167 #define	DBUF_STAT_BUMP(stat)		\
168 	DBUF_STAT_INCR(stat, 1)
169 #define	DBUF_STAT_BUMPDOWN(stat)	\
170 	DBUF_STAT_INCR(stat, -1)
171 #define	DBUF_STAT_MAX(stat, v) {					\
172 	uint64_t _m;							\
173 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
174 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 		continue;						\
176 }
177 
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 
181 /*
182  * Global data structures and functions for the dbuf cache.
183  */
184 static kmem_cache_t *dbuf_kmem_cache;
185 kmem_cache_t *dbuf_dirty_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187 
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192 
193 /*
194  * There are two dbuf caches; each dbuf can only be in one of them at a time.
195  *
196  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198  *    that represent the metadata that describes filesystems/snapshots/
199  *    bookmarks/properties/etc. We only evict from this cache when we export a
200  *    pool, to short-circuit as much I/O as possible for all administrative
201  *    commands that need the metadata. There is no eviction policy for this
202  *    cache, because we try to only include types in it which would occupy a
203  *    very small amount of space per object but create a large impact on the
204  *    performance of these commands. Instead, after it reaches a maximum size
205  *    (which should only happen on very small memory systems with a very large
206  *    number of filesystem objects), we stop taking new dbufs into the
207  *    metadata cache, instead putting them in the normal dbuf cache.
208  *
209  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210  *    are not currently held but have been recently released. These dbufs
211  *    are not eligible for arc eviction until they are aged out of the cache.
212  *    Dbufs that are aged out of the cache will be immediately destroyed and
213  *    become eligible for arc eviction.
214  *
215  * Dbufs are added to these caches once the last hold is released. If a dbuf is
216  * later accessed and still exists in the dbuf cache, then it will be removed
217  * from the cache and later re-added to the head of the cache.
218  *
219  * If a given dbuf meets the requirements for the metadata cache, it will go
220  * there, otherwise it will be considered for the generic LRU dbuf cache. The
221  * caches and the refcounts tracking their sizes are stored in an array indexed
222  * by those caches' matching enum values (from dbuf_cached_state_t).
223  */
224 typedef struct dbuf_cache {
225 	multilist_t cache;
226 	zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229 
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233 
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237 
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240 
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243 
244 /*
245  * The LRU dbuf cache uses a three-stage eviction policy:
246  *	- A low water marker designates when the dbuf eviction thread
247  *	should stop evicting from the dbuf cache.
248  *	- When we reach the maximum size (aka mid water mark), we
249  *	signal the eviction thread to run.
250  *	- The high water mark indicates when the eviction thread
251  *	is unable to keep up with the incoming load and eviction must
252  *	happen in the context of the calling thread.
253  *
254  * The dbuf cache:
255  *                                                 (max size)
256  *                                      low water   mid water   hi water
257  * +----------------------------------------+----------+----------+
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * |                                        |          |          |
262  * +----------------------------------------+----------+----------+
263  *                                        stop        signal     evict
264  *                                      evicting     eviction   directly
265  *                                                    thread
266  *
267  * The high and low water marks indicate the operating range for the eviction
268  * thread. The low water mark is, by default, 90% of the total size of the
269  * cache and the high water mark is at 110% (both of these percentages can be
270  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271  * respectively). The eviction thread will try to ensure that the cache remains
272  * within this range by waking up every second and checking if the cache is
273  * above the low water mark. The thread can also be woken up by callers adding
274  * elements into the cache if the cache is larger than the mid water (i.e max
275  * cache size). Once the eviction thread is woken up and eviction is required,
276  * it will continue evicting buffers until it's able to reduce the cache size
277  * to the low water mark. If the cache size continues to grow and hits the high
278  * water mark, then callers adding elements to the cache will begin to evict
279  * directly from the cache until the cache is no longer above the high water
280  * mark.
281  */
282 
283 /*
284  * The percentage above and below the maximum cache size.
285  */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288 
289 static int
dbuf_cons(void * vdb,void * unused,int kmflag)290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 	(void) unused, (void) kmflag;
293 	dmu_buf_impl_t *db = vdb;
294 	memset(db, 0, sizeof (dmu_buf_impl_t));
295 
296 	mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
297 	rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
298 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 	multilist_link_init(&db->db_cache_link);
300 	zfs_refcount_create(&db->db_holds);
301 
302 	return (0);
303 }
304 
305 static void
dbuf_dest(void * vdb,void * unused)306 dbuf_dest(void *vdb, void *unused)
307 {
308 	(void) unused;
309 	dmu_buf_impl_t *db = vdb;
310 	mutex_destroy(&db->db_mtx);
311 	rw_destroy(&db->db_rwlock);
312 	cv_destroy(&db->db_changed);
313 	ASSERT(!multilist_link_active(&db->db_cache_link));
314 	zfs_refcount_destroy(&db->db_holds);
315 }
316 
317 /*
318  * dbuf hash table routines
319  */
320 static dbuf_hash_table_t dbuf_hash_table;
321 
322 /*
323  * We use Cityhash for this. It's fast, and has good hash properties without
324  * requiring any large static buffers.
325  */
326 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331 
332 #define	DTRACE_SET_STATE(db, why) \
333 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
334 	    const char *, why)
335 
336 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
337 	((dbuf)->db.db_object == (obj) &&		\
338 	(dbuf)->db_objset == (os) &&			\
339 	(dbuf)->db_level == (level) &&			\
340 	(dbuf)->db_blkid == (blkid))
341 
342 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid,uint64_t * hash_out)343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344     uint64_t *hash_out)
345 {
346 	dbuf_hash_table_t *h = &dbuf_hash_table;
347 	uint64_t hv;
348 	uint64_t idx;
349 	dmu_buf_impl_t *db;
350 
351 	hv = dbuf_hash(os, obj, level, blkid);
352 	idx = hv & h->hash_table_mask;
353 
354 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 			mutex_enter(&db->db_mtx);
358 			if (db->db_state != DB_EVICTING) {
359 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 				return (db);
361 			}
362 			mutex_exit(&db->db_mtx);
363 		}
364 	}
365 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 	if (hash_out != NULL)
367 		*hash_out = hv;
368 	return (NULL);
369 }
370 
371 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 	dnode_t *dn;
375 	dmu_buf_impl_t *db = NULL;
376 
377 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 		if (dn->dn_bonus != NULL) {
380 			db = dn->dn_bonus;
381 			mutex_enter(&db->db_mtx);
382 		}
383 		rw_exit(&dn->dn_struct_rwlock);
384 		dnode_rele(dn, FTAG);
385 	}
386 	return (db);
387 }
388 
389 /*
390  * Insert an entry into the hash table.  If there is already an element
391  * equal to elem in the hash table, then the already existing element
392  * will be returned and the new element will not be inserted.
393  * Otherwise returns NULL.
394  */
395 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 	dbuf_hash_table_t *h = &dbuf_hash_table;
399 	objset_t *os = db->db_objset;
400 	uint64_t obj = db->db.db_object;
401 	int level = db->db_level;
402 	uint64_t blkid, idx;
403 	dmu_buf_impl_t *dbf;
404 	uint32_t i;
405 
406 	blkid = db->db_blkid;
407 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 	idx = db->db_hash & h->hash_table_mask;
409 
410 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 	    dbf = dbf->db_hash_next, i++) {
413 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 			mutex_enter(&dbf->db_mtx);
415 			if (dbf->db_state != DB_EVICTING) {
416 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 				return (dbf);
418 			}
419 			mutex_exit(&dbf->db_mtx);
420 		}
421 	}
422 
423 	if (i > 0) {
424 		DBUF_STAT_BUMP(hash_collisions);
425 		if (i == 1)
426 			DBUF_STAT_BUMP(hash_chains);
427 
428 		DBUF_STAT_MAX(hash_chain_max, i);
429 	}
430 
431 	mutex_enter(&db->db_mtx);
432 	db->db_hash_next = h->hash_table[idx];
433 	h->hash_table[idx] = db;
434 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 	DBUF_STAT_BUMP(hash_elements);
436 
437 	return (NULL);
438 }
439 
440 /*
441  * This returns whether this dbuf should be stored in the metadata cache, which
442  * is based on whether it's from one of the dnode types that store data related
443  * to traversing dataset hierarchies.
444  */
445 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 	DB_DNODE_ENTER(db);
449 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 	DB_DNODE_EXIT(db);
451 
452 	/* Check if this dbuf is one of the types we care about */
453 	if (DMU_OT_IS_METADATA_CACHED(type)) {
454 		/* If we hit this, then we set something up wrong in dmu_ot */
455 		ASSERT(DMU_OT_IS_METADATA(type));
456 
457 		/*
458 		 * Sanity check for small-memory systems: don't allocate too
459 		 * much memory for this purpose.
460 		 */
461 		if (zfs_refcount_count(
462 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 		    dbuf_metadata_cache_target_bytes()) {
464 			DBUF_STAT_BUMP(metadata_cache_overflow);
465 			return (B_FALSE);
466 		}
467 
468 		return (B_TRUE);
469 	}
470 
471 	return (B_FALSE);
472 }
473 
474 /*
475  * Remove an entry from the hash table.  It must be in the EVICTING state.
476  */
477 static void
dbuf_hash_remove(dmu_buf_impl_t * db)478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 	dbuf_hash_table_t *h = &dbuf_hash_table;
481 	uint64_t idx;
482 	dmu_buf_impl_t *dbf, **dbp;
483 
484 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 	    db->db_blkid), ==, db->db_hash);
486 	idx = db->db_hash & h->hash_table_mask;
487 
488 	/*
489 	 * We mustn't hold db_mtx to maintain lock ordering:
490 	 * DBUF_HASH_MUTEX > db_mtx.
491 	 */
492 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 	ASSERT(db->db_state == DB_EVICTING);
494 	ASSERT(!MUTEX_HELD(&db->db_mtx));
495 
496 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 	dbp = &h->hash_table[idx];
498 	while ((dbf = *dbp) != db) {
499 		dbp = &dbf->db_hash_next;
500 		ASSERT(dbf != NULL);
501 	}
502 	*dbp = db->db_hash_next;
503 	db->db_hash_next = NULL;
504 	if (h->hash_table[idx] &&
505 	    h->hash_table[idx]->db_hash_next == NULL)
506 		DBUF_STAT_BUMPDOWN(hash_chains);
507 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 	DBUF_STAT_BUMPDOWN(hash_elements);
509 }
510 
511 typedef enum {
512 	DBVU_EVICTING,
513 	DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515 
516 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 	int64_t holds;
521 
522 	if (db->db_user == NULL)
523 		return;
524 
525 	/* Only data blocks support the attachment of user data. */
526 	ASSERT(db->db_level == 0);
527 
528 	/* Clients must resolve a dbuf before attaching user data. */
529 	ASSERT(db->db.db_data != NULL);
530 	ASSERT3U(db->db_state, ==, DB_CACHED);
531 
532 	holds = zfs_refcount_count(&db->db_holds);
533 	if (verify_type == DBVU_EVICTING) {
534 		/*
535 		 * Immediate eviction occurs when holds == dirtycnt.
536 		 * For normal eviction buffers, holds is zero on
537 		 * eviction, except when dbuf_fix_old_data() calls
538 		 * dbuf_clear_data().  However, the hold count can grow
539 		 * during eviction even though db_mtx is held (see
540 		 * dmu_bonus_hold() for an example), so we can only
541 		 * test the generic invariant that holds >= dirtycnt.
542 		 */
543 		ASSERT3U(holds, >=, db->db_dirtycnt);
544 	} else {
545 		if (db->db_user_immediate_evict == TRUE)
546 			ASSERT3U(holds, >=, db->db_dirtycnt);
547 		else
548 			ASSERT3U(holds, >, 0);
549 	}
550 #endif
551 }
552 
553 static void
dbuf_evict_user(dmu_buf_impl_t * db)554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 	dmu_buf_user_t *dbu = db->db_user;
557 
558 	ASSERT(MUTEX_HELD(&db->db_mtx));
559 
560 	if (dbu == NULL)
561 		return;
562 
563 	dbuf_verify_user(db, DBVU_EVICTING);
564 	db->db_user = NULL;
565 
566 #ifdef ZFS_DEBUG
567 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 		*dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570 
571 	if (db->db_caching_status != DB_NO_CACHE) {
572 		/*
573 		 * This is a cached dbuf, so the size of the user data is
574 		 * included in its cached amount. We adjust it here because the
575 		 * user data has already been detached from the dbuf, and the
576 		 * sync functions are not supposed to touch it (the dbuf might
577 		 * not exist anymore by the time the sync functions run.
578 		 */
579 		uint64_t size = dbu->dbu_size;
580 		(void) zfs_refcount_remove_many(
581 		    &dbuf_caches[db->db_caching_status].size, size, dbu);
582 		if (db->db_caching_status == DB_DBUF_CACHE)
583 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
584 	}
585 
586 	/*
587 	 * There are two eviction callbacks - one that we call synchronously
588 	 * and one that we invoke via a taskq.  The async one is useful for
589 	 * avoiding lock order reversals and limiting stack depth.
590 	 *
591 	 * Note that if we have a sync callback but no async callback,
592 	 * it's likely that the sync callback will free the structure
593 	 * containing the dbu.  In that case we need to take care to not
594 	 * dereference dbu after calling the sync evict func.
595 	 */
596 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
597 
598 	if (dbu->dbu_evict_func_sync != NULL)
599 		dbu->dbu_evict_func_sync(dbu);
600 
601 	if (has_async) {
602 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
603 		    dbu, 0, &dbu->dbu_tqent);
604 	}
605 }
606 
607 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)608 dbuf_is_metadata(dmu_buf_impl_t *db)
609 {
610 	/*
611 	 * Consider indirect blocks and spill blocks to be meta data.
612 	 */
613 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
614 		return (B_TRUE);
615 	} else {
616 		boolean_t is_metadata;
617 
618 		DB_DNODE_ENTER(db);
619 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
620 		DB_DNODE_EXIT(db);
621 
622 		return (is_metadata);
623 	}
624 }
625 
626 /*
627  * We want to exclude buffers that are on a special allocation class from
628  * L2ARC.
629  */
630 boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t * db,blkptr_t * bp)631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
632 {
633 	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
634 	    (db->db_objset->os_secondary_cache ==
635 	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
636 		if (l2arc_exclude_special == 0)
637 			return (B_TRUE);
638 
639 		/*
640 		 * bp must be checked in the event it was passed from
641 		 * dbuf_read_impl() as the result of a the BP being set from
642 		 * a Direct I/O write in dbuf_read(). See comments in
643 		 * dbuf_read().
644 		 */
645 		blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
646 
647 		if (db_bp == NULL || BP_IS_HOLE(db_bp))
648 			return (B_FALSE);
649 		uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
650 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
651 		vdev_t *vd = NULL;
652 
653 		if (vdev < rvd->vdev_children)
654 			vd = rvd->vdev_child[vdev];
655 
656 		if (vd == NULL)
657 			return (B_TRUE);
658 
659 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
660 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
661 			return (B_TRUE);
662 	}
663 	return (B_FALSE);
664 }
665 
666 static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t * bp,dnode_t * dn,int64_t level)667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
668 {
669 	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
670 	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
671 	    (level > 0 ||
672 	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
673 		if (l2arc_exclude_special == 0)
674 			return (B_TRUE);
675 
676 		if (bp == NULL || BP_IS_HOLE(bp))
677 			return (B_FALSE);
678 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
679 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
680 		vdev_t *vd = NULL;
681 
682 		if (vdev < rvd->vdev_children)
683 			vd = rvd->vdev_child[vdev];
684 
685 		if (vd == NULL)
686 			return (B_TRUE);
687 
688 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
689 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
690 			return (B_TRUE);
691 	}
692 	return (B_FALSE);
693 }
694 
695 
696 /*
697  * This function *must* return indices evenly distributed between all
698  * sublists of the multilist. This is needed due to how the dbuf eviction
699  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
700  * distributed between all sublists and uses this assumption when
701  * deciding which sublist to evict from and how much to evict from it.
702  */
703 static unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
705 {
706 	dmu_buf_impl_t *db = obj;
707 
708 	/*
709 	 * The assumption here, is the hash value for a given
710 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
711 	 * (i.e. it's objset, object, level and blkid fields don't change).
712 	 * Thus, we don't need to store the dbuf's sublist index
713 	 * on insertion, as this index can be recalculated on removal.
714 	 *
715 	 * Also, the low order bits of the hash value are thought to be
716 	 * distributed evenly. Otherwise, in the case that the multilist
717 	 * has a power of two number of sublists, each sublists' usage
718 	 * would not be evenly distributed. In this context full 64bit
719 	 * division would be a waste of time, so limit it to 32 bits.
720 	 */
721 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
722 	    db->db_level, db->db_blkid) %
723 	    multilist_get_num_sublists(ml));
724 }
725 
726 /*
727  * The target size of the dbuf cache can grow with the ARC target,
728  * unless limited by the tunable dbuf_cache_max_bytes.
729  */
730 static inline unsigned long
dbuf_cache_target_bytes(void)731 dbuf_cache_target_bytes(void)
732 {
733 	return (MIN(dbuf_cache_max_bytes,
734 	    arc_target_bytes() >> dbuf_cache_shift));
735 }
736 
737 /*
738  * The target size of the dbuf metadata cache can grow with the ARC target,
739  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
740  */
741 static inline unsigned long
dbuf_metadata_cache_target_bytes(void)742 dbuf_metadata_cache_target_bytes(void)
743 {
744 	return (MIN(dbuf_metadata_cache_max_bytes,
745 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
746 }
747 
748 static inline uint64_t
dbuf_cache_hiwater_bytes(void)749 dbuf_cache_hiwater_bytes(void)
750 {
751 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
752 	return (dbuf_cache_target +
753 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
754 }
755 
756 static inline uint64_t
dbuf_cache_lowater_bytes(void)757 dbuf_cache_lowater_bytes(void)
758 {
759 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
760 	return (dbuf_cache_target -
761 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
762 }
763 
764 static inline boolean_t
dbuf_cache_above_lowater(void)765 dbuf_cache_above_lowater(void)
766 {
767 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
768 	    dbuf_cache_lowater_bytes());
769 }
770 
771 /*
772  * Evict the oldest eligible dbuf from the dbuf cache.
773  */
774 static void
dbuf_evict_one(void)775 dbuf_evict_one(void)
776 {
777 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
778 	multilist_sublist_t *mls = multilist_sublist_lock_idx(
779 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
780 
781 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
782 
783 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
784 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
785 		db = multilist_sublist_prev(mls, db);
786 	}
787 
788 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
789 	    multilist_sublist_t *, mls);
790 
791 	if (db != NULL) {
792 		multilist_sublist_remove(mls, db);
793 		multilist_sublist_unlock(mls);
794 		uint64_t size = db->db.db_size;
795 		uint64_t usize = dmu_buf_user_size(&db->db);
796 		(void) zfs_refcount_remove_many(
797 		    &dbuf_caches[DB_DBUF_CACHE].size, size, db);
798 		(void) zfs_refcount_remove_many(
799 		    &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
800 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
801 		DBUF_STAT_BUMPDOWN(cache_count);
802 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
803 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
804 		db->db_caching_status = DB_NO_CACHE;
805 		dbuf_destroy(db);
806 		DBUF_STAT_BUMP(cache_total_evicts);
807 	} else {
808 		multilist_sublist_unlock(mls);
809 	}
810 }
811 
812 /*
813  * The dbuf evict thread is responsible for aging out dbufs from the
814  * cache. Once the cache has reached it's maximum size, dbufs are removed
815  * and destroyed. The eviction thread will continue running until the size
816  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
817  * out of the cache it is destroyed and becomes eligible for arc eviction.
818  */
819 static __attribute__((noreturn)) void
dbuf_evict_thread(void * unused)820 dbuf_evict_thread(void *unused)
821 {
822 	(void) unused;
823 	callb_cpr_t cpr;
824 
825 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
826 
827 	mutex_enter(&dbuf_evict_lock);
828 	while (!dbuf_evict_thread_exit) {
829 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
830 			CALLB_CPR_SAFE_BEGIN(&cpr);
831 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
832 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
833 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
834 		}
835 		mutex_exit(&dbuf_evict_lock);
836 
837 		/*
838 		 * Keep evicting as long as we're above the low water mark
839 		 * for the cache. We do this without holding the locks to
840 		 * minimize lock contention.
841 		 */
842 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
843 			dbuf_evict_one();
844 		}
845 
846 		mutex_enter(&dbuf_evict_lock);
847 	}
848 
849 	dbuf_evict_thread_exit = B_FALSE;
850 	cv_broadcast(&dbuf_evict_cv);
851 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
852 	thread_exit();
853 }
854 
855 /*
856  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
857  * If the dbuf cache is at its high water mark, then evict a dbuf from the
858  * dbuf cache using the caller's context.
859  */
860 static void
dbuf_evict_notify(uint64_t size)861 dbuf_evict_notify(uint64_t size)
862 {
863 	/*
864 	 * We check if we should evict without holding the dbuf_evict_lock,
865 	 * because it's OK to occasionally make the wrong decision here,
866 	 * and grabbing the lock results in massive lock contention.
867 	 */
868 	if (size > dbuf_cache_target_bytes()) {
869 		if (size > dbuf_cache_hiwater_bytes())
870 			dbuf_evict_one();
871 		cv_signal(&dbuf_evict_cv);
872 	}
873 }
874 
875 /*
876  * Since dbuf cache size is a fraction of target ARC size, ARC calls this when
877  * its target size is reduced due to memory pressure.
878  */
879 void
dbuf_cache_reduce_target_size(void)880 dbuf_cache_reduce_target_size(void)
881 {
882 	uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
883 
884 	if (size > dbuf_cache_target_bytes())
885 		cv_signal(&dbuf_evict_cv);
886 }
887 
888 static int
dbuf_kstat_update(kstat_t * ksp,int rw)889 dbuf_kstat_update(kstat_t *ksp, int rw)
890 {
891 	dbuf_stats_t *ds = ksp->ks_data;
892 	dbuf_hash_table_t *h = &dbuf_hash_table;
893 
894 	if (rw == KSTAT_WRITE)
895 		return (SET_ERROR(EACCES));
896 
897 	ds->cache_count.value.ui64 =
898 	    wmsum_value(&dbuf_sums.cache_count);
899 	ds->cache_size_bytes.value.ui64 =
900 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
901 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
902 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
903 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
904 	ds->cache_total_evicts.value.ui64 =
905 	    wmsum_value(&dbuf_sums.cache_total_evicts);
906 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
907 		ds->cache_levels[i].value.ui64 =
908 		    wmsum_value(&dbuf_sums.cache_levels[i]);
909 		ds->cache_levels_bytes[i].value.ui64 =
910 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
911 	}
912 	ds->hash_hits.value.ui64 =
913 	    wmsum_value(&dbuf_sums.hash_hits);
914 	ds->hash_misses.value.ui64 =
915 	    wmsum_value(&dbuf_sums.hash_misses);
916 	ds->hash_collisions.value.ui64 =
917 	    wmsum_value(&dbuf_sums.hash_collisions);
918 	ds->hash_elements.value.ui64 =
919 	    wmsum_value(&dbuf_sums.hash_elements);
920 	ds->hash_chains.value.ui64 =
921 	    wmsum_value(&dbuf_sums.hash_chains);
922 	ds->hash_insert_race.value.ui64 =
923 	    wmsum_value(&dbuf_sums.hash_insert_race);
924 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
925 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
926 	ds->metadata_cache_count.value.ui64 =
927 	    wmsum_value(&dbuf_sums.metadata_cache_count);
928 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
929 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
930 	ds->metadata_cache_overflow.value.ui64 =
931 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
932 	return (0);
933 }
934 
935 void
dbuf_init(void)936 dbuf_init(void)
937 {
938 	uint64_t hmsize, hsize = 1ULL << 16;
939 	dbuf_hash_table_t *h = &dbuf_hash_table;
940 
941 	/*
942 	 * The hash table is big enough to fill one eighth of physical memory
943 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
944 	 * By default, the table will take up
945 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
946 	 */
947 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
948 		hsize <<= 1;
949 
950 	h->hash_table = NULL;
951 	while (h->hash_table == NULL) {
952 		h->hash_table_mask = hsize - 1;
953 
954 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
955 		if (h->hash_table == NULL)
956 			hsize >>= 1;
957 
958 		ASSERT3U(hsize, >=, 1ULL << 10);
959 	}
960 
961 	/*
962 	 * The hash table buckets are protected by an array of mutexes where
963 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
964 	 * array size of 8192 is targeted to avoid contention.
965 	 */
966 	if (dbuf_mutex_cache_shift == 0)
967 		hmsize = MAX(hsize >> 7, 1ULL << 13);
968 	else
969 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
970 
971 	h->hash_mutexes = NULL;
972 	while (h->hash_mutexes == NULL) {
973 		h->hash_mutex_mask = hmsize - 1;
974 
975 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
976 		    KM_SLEEP);
977 		if (h->hash_mutexes == NULL)
978 			hmsize >>= 1;
979 	}
980 
981 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
982 	    sizeof (dmu_buf_impl_t),
983 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
984 	dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
985 	    sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
986 
987 	for (int i = 0; i < hmsize; i++)
988 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
989 
990 	dbuf_stats_init(h);
991 
992 	/*
993 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
994 	 * configuration is not required.
995 	 */
996 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
997 
998 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
999 		multilist_create(&dbuf_caches[dcs].cache,
1000 		    sizeof (dmu_buf_impl_t),
1001 		    offsetof(dmu_buf_impl_t, db_cache_link),
1002 		    dbuf_cache_multilist_index_func);
1003 		zfs_refcount_create(&dbuf_caches[dcs].size);
1004 	}
1005 
1006 	dbuf_evict_thread_exit = B_FALSE;
1007 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1008 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
1009 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
1010 	    NULL, 0, &p0, TS_RUN, minclsyspri);
1011 
1012 	wmsum_init(&dbuf_sums.cache_count, 0);
1013 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1014 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1015 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
1016 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1017 	}
1018 	wmsum_init(&dbuf_sums.hash_hits, 0);
1019 	wmsum_init(&dbuf_sums.hash_misses, 0);
1020 	wmsum_init(&dbuf_sums.hash_collisions, 0);
1021 	wmsum_init(&dbuf_sums.hash_elements, 0);
1022 	wmsum_init(&dbuf_sums.hash_chains, 0);
1023 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
1024 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1025 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1026 
1027 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1028 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1029 	    KSTAT_FLAG_VIRTUAL);
1030 	if (dbuf_ksp != NULL) {
1031 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
1032 			snprintf(dbuf_stats.cache_levels[i].name,
1033 			    KSTAT_STRLEN, "cache_level_%d", i);
1034 			dbuf_stats.cache_levels[i].data_type =
1035 			    KSTAT_DATA_UINT64;
1036 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
1037 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
1038 			dbuf_stats.cache_levels_bytes[i].data_type =
1039 			    KSTAT_DATA_UINT64;
1040 		}
1041 		dbuf_ksp->ks_data = &dbuf_stats;
1042 		dbuf_ksp->ks_update = dbuf_kstat_update;
1043 		kstat_install(dbuf_ksp);
1044 	}
1045 }
1046 
1047 void
dbuf_fini(void)1048 dbuf_fini(void)
1049 {
1050 	dbuf_hash_table_t *h = &dbuf_hash_table;
1051 
1052 	dbuf_stats_destroy();
1053 
1054 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1055 		mutex_destroy(&h->hash_mutexes[i]);
1056 
1057 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1058 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1059 	    sizeof (kmutex_t));
1060 
1061 	kmem_cache_destroy(dbuf_kmem_cache);
1062 	kmem_cache_destroy(dbuf_dirty_kmem_cache);
1063 	taskq_destroy(dbu_evict_taskq);
1064 
1065 	mutex_enter(&dbuf_evict_lock);
1066 	dbuf_evict_thread_exit = B_TRUE;
1067 	while (dbuf_evict_thread_exit) {
1068 		cv_signal(&dbuf_evict_cv);
1069 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1070 	}
1071 	mutex_exit(&dbuf_evict_lock);
1072 
1073 	mutex_destroy(&dbuf_evict_lock);
1074 	cv_destroy(&dbuf_evict_cv);
1075 
1076 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1077 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1078 		multilist_destroy(&dbuf_caches[dcs].cache);
1079 	}
1080 
1081 	if (dbuf_ksp != NULL) {
1082 		kstat_delete(dbuf_ksp);
1083 		dbuf_ksp = NULL;
1084 	}
1085 
1086 	wmsum_fini(&dbuf_sums.cache_count);
1087 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1088 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1089 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1090 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1091 	}
1092 	wmsum_fini(&dbuf_sums.hash_hits);
1093 	wmsum_fini(&dbuf_sums.hash_misses);
1094 	wmsum_fini(&dbuf_sums.hash_collisions);
1095 	wmsum_fini(&dbuf_sums.hash_elements);
1096 	wmsum_fini(&dbuf_sums.hash_chains);
1097 	wmsum_fini(&dbuf_sums.hash_insert_race);
1098 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1099 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1100 }
1101 
1102 /*
1103  * Other stuff.
1104  */
1105 
1106 #ifdef ZFS_DEBUG
1107 static void
dbuf_verify(dmu_buf_impl_t * db)1108 dbuf_verify(dmu_buf_impl_t *db)
1109 {
1110 	dnode_t *dn;
1111 	dbuf_dirty_record_t *dr;
1112 	uint32_t txg_prev;
1113 
1114 	ASSERT(MUTEX_HELD(&db->db_mtx));
1115 
1116 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1117 		return;
1118 
1119 	ASSERT(db->db_objset != NULL);
1120 	DB_DNODE_ENTER(db);
1121 	dn = DB_DNODE(db);
1122 	if (dn == NULL) {
1123 		ASSERT(db->db_parent == NULL);
1124 		ASSERT(db->db_blkptr == NULL);
1125 	} else {
1126 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1127 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1128 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1129 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1130 		    db->db_blkid == DMU_SPILL_BLKID ||
1131 		    !avl_is_empty(&dn->dn_dbufs));
1132 	}
1133 	if (db->db_blkid == DMU_BONUS_BLKID) {
1134 		ASSERT(dn != NULL);
1135 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1136 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1137 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1138 		ASSERT(dn != NULL);
1139 		ASSERT0(db->db.db_offset);
1140 	} else {
1141 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1142 	}
1143 
1144 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1145 		ASSERT(dr->dr_dbuf == db);
1146 		txg_prev = dr->dr_txg;
1147 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1148 		    dr = list_next(&db->db_dirty_records, dr)) {
1149 			ASSERT(dr->dr_dbuf == db);
1150 			ASSERT(txg_prev > dr->dr_txg);
1151 			txg_prev = dr->dr_txg;
1152 		}
1153 	}
1154 
1155 	/*
1156 	 * We can't assert that db_size matches dn_datablksz because it
1157 	 * can be momentarily different when another thread is doing
1158 	 * dnode_set_blksz().
1159 	 */
1160 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1161 		dr = db->db_data_pending;
1162 		/*
1163 		 * It should only be modified in syncing context, so
1164 		 * make sure we only have one copy of the data.
1165 		 */
1166 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1167 	}
1168 
1169 	/* verify db->db_blkptr */
1170 	if (db->db_blkptr) {
1171 		if (db->db_parent == dn->dn_dbuf) {
1172 			/* db is pointed to by the dnode */
1173 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1174 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1175 				ASSERT(db->db_parent == NULL);
1176 			else
1177 				ASSERT(db->db_parent != NULL);
1178 			if (db->db_blkid != DMU_SPILL_BLKID)
1179 				ASSERT3P(db->db_blkptr, ==,
1180 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1181 		} else {
1182 			/* db is pointed to by an indirect block */
1183 			int epb __maybe_unused = db->db_parent->db.db_size >>
1184 			    SPA_BLKPTRSHIFT;
1185 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1186 			ASSERT3U(db->db_parent->db.db_object, ==,
1187 			    db->db.db_object);
1188 			ASSERT3P(db->db_blkptr, ==,
1189 			    ((blkptr_t *)db->db_parent->db.db_data +
1190 			    db->db_blkid % epb));
1191 		}
1192 	}
1193 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1194 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1195 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1196 	    db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1197 		/*
1198 		 * If the blkptr isn't set but they have nonzero data,
1199 		 * it had better be dirty, otherwise we'll lose that
1200 		 * data when we evict this buffer.
1201 		 *
1202 		 * There is an exception to this rule for indirect blocks; in
1203 		 * this case, if the indirect block is a hole, we fill in a few
1204 		 * fields on each of the child blocks (importantly, birth time)
1205 		 * to prevent hole birth times from being lost when you
1206 		 * partially fill in a hole.
1207 		 */
1208 		if (db->db_dirtycnt == 0) {
1209 			if (db->db_level == 0) {
1210 				uint64_t *buf = db->db.db_data;
1211 				int i;
1212 
1213 				for (i = 0; i < db->db.db_size >> 3; i++) {
1214 					ASSERT(buf[i] == 0);
1215 				}
1216 			} else {
1217 				blkptr_t *bps = db->db.db_data;
1218 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1219 				    db->db.db_size);
1220 				/*
1221 				 * We want to verify that all the blkptrs in the
1222 				 * indirect block are holes, but we may have
1223 				 * automatically set up a few fields for them.
1224 				 * We iterate through each blkptr and verify
1225 				 * they only have those fields set.
1226 				 */
1227 				for (int i = 0;
1228 				    i < db->db.db_size / sizeof (blkptr_t);
1229 				    i++) {
1230 					blkptr_t *bp = &bps[i];
1231 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1232 					    &bp->blk_cksum));
1233 					ASSERT(
1234 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1235 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1236 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1237 					ASSERT0(bp->blk_fill);
1238 					ASSERT0(bp->blk_pad[0]);
1239 					ASSERT0(bp->blk_pad[1]);
1240 					ASSERT(!BP_IS_EMBEDDED(bp));
1241 					ASSERT(BP_IS_HOLE(bp));
1242 					ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1243 				}
1244 			}
1245 		}
1246 	}
1247 	DB_DNODE_EXIT(db);
1248 }
1249 #endif
1250 
1251 static void
dbuf_clear_data(dmu_buf_impl_t * db)1252 dbuf_clear_data(dmu_buf_impl_t *db)
1253 {
1254 	ASSERT(MUTEX_HELD(&db->db_mtx));
1255 	dbuf_evict_user(db);
1256 	ASSERT3P(db->db_buf, ==, NULL);
1257 	db->db.db_data = NULL;
1258 	if (db->db_state != DB_NOFILL) {
1259 		db->db_state = DB_UNCACHED;
1260 		DTRACE_SET_STATE(db, "clear data");
1261 	}
1262 }
1263 
1264 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)1265 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1266 {
1267 	ASSERT(MUTEX_HELD(&db->db_mtx));
1268 	ASSERT(buf != NULL);
1269 
1270 	db->db_buf = buf;
1271 	ASSERT(buf->b_data != NULL);
1272 	db->db.db_data = buf->b_data;
1273 }
1274 
1275 static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t * db)1276 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1277 {
1278 	spa_t *spa = db->db_objset->os_spa;
1279 
1280 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1281 }
1282 
1283 /*
1284  * Calculate which level n block references the data at the level 0 offset
1285  * provided.
1286  */
1287 uint64_t
dbuf_whichblock(const dnode_t * dn,const int64_t level,const uint64_t offset)1288 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1289 {
1290 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1291 		/*
1292 		 * The level n blkid is equal to the level 0 blkid divided by
1293 		 * the number of level 0s in a level n block.
1294 		 *
1295 		 * The level 0 blkid is offset >> datablkshift =
1296 		 * offset / 2^datablkshift.
1297 		 *
1298 		 * The number of level 0s in a level n is the number of block
1299 		 * pointers in an indirect block, raised to the power of level.
1300 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1301 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1302 		 *
1303 		 * Thus, the level n blkid is: offset /
1304 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1305 		 * = offset / 2^(datablkshift + level *
1306 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1307 		 * = offset >> (datablkshift + level *
1308 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1309 		 */
1310 
1311 		const unsigned exp = dn->dn_datablkshift +
1312 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1313 
1314 		if (exp >= 8 * sizeof (offset)) {
1315 			/* This only happens on the highest indirection level */
1316 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1317 			return (0);
1318 		}
1319 
1320 		ASSERT3U(exp, <, 8 * sizeof (offset));
1321 
1322 		return (offset >> exp);
1323 	} else {
1324 		ASSERT3U(offset, <, dn->dn_datablksz);
1325 		return (0);
1326 	}
1327 }
1328 
1329 /*
1330  * This function is used to lock the parent of the provided dbuf. This should be
1331  * used when modifying or reading db_blkptr.
1332  */
1333 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,const void * tag)1334 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1335 {
1336 	enum db_lock_type ret = DLT_NONE;
1337 	if (db->db_parent != NULL) {
1338 		rw_enter(&db->db_parent->db_rwlock, rw);
1339 		ret = DLT_PARENT;
1340 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1341 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1342 		    tag);
1343 		ret = DLT_OBJSET;
1344 	}
1345 	/*
1346 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1347 	 * of the meta-dnode of the MOS.
1348 	 */
1349 	return (ret);
1350 }
1351 
1352 /*
1353  * We need to pass the lock type in because it's possible that the block will
1354  * move from being the topmost indirect block in a dnode (and thus, have no
1355  * parent) to not the top-most via an indirection increase. This would cause a
1356  * panic if we didn't pass the lock type in.
1357  */
1358 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,const void * tag)1359 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1360 {
1361 	if (type == DLT_PARENT)
1362 		rw_exit(&db->db_parent->db_rwlock);
1363 	else if (type == DLT_OBJSET)
1364 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1365 }
1366 
1367 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)1368 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1369     arc_buf_t *buf, void *vdb)
1370 {
1371 	(void) zb, (void) bp;
1372 	dmu_buf_impl_t *db = vdb;
1373 
1374 	mutex_enter(&db->db_mtx);
1375 	ASSERT3U(db->db_state, ==, DB_READ);
1376 
1377 	/*
1378 	 * All reads are synchronous, so we must have a hold on the dbuf
1379 	 */
1380 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1381 	ASSERT(db->db_buf == NULL);
1382 	ASSERT(db->db.db_data == NULL);
1383 	if (buf == NULL) {
1384 		/* i/o error */
1385 		ASSERT(zio == NULL || zio->io_error != 0);
1386 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1387 		ASSERT3P(db->db_buf, ==, NULL);
1388 		db->db_state = DB_UNCACHED;
1389 		DTRACE_SET_STATE(db, "i/o error");
1390 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1391 		/* freed in flight */
1392 		ASSERT(zio == NULL || zio->io_error == 0);
1393 		arc_release(buf, db);
1394 		memset(buf->b_data, 0, db->db.db_size);
1395 		arc_buf_freeze(buf);
1396 		db->db_freed_in_flight = FALSE;
1397 		dbuf_set_data(db, buf);
1398 		db->db_state = DB_CACHED;
1399 		DTRACE_SET_STATE(db, "freed in flight");
1400 	} else {
1401 		/* success */
1402 		ASSERT(zio == NULL || zio->io_error == 0);
1403 		dbuf_set_data(db, buf);
1404 		db->db_state = DB_CACHED;
1405 		DTRACE_SET_STATE(db, "successful read");
1406 	}
1407 	cv_broadcast(&db->db_changed);
1408 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1409 }
1410 
1411 /*
1412  * Shortcut for performing reads on bonus dbufs.  Returns
1413  * an error if we fail to verify the dnode associated with
1414  * a decrypted block. Otherwise success.
1415  */
1416 static int
dbuf_read_bonus(dmu_buf_impl_t * db,dnode_t * dn)1417 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1418 {
1419 	void* db_data;
1420 	int bonuslen, max_bonuslen;
1421 
1422 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1423 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1424 	ASSERT(MUTEX_HELD(&db->db_mtx));
1425 	ASSERT(DB_DNODE_HELD(db));
1426 	ASSERT3U(bonuslen, <=, db->db.db_size);
1427 	db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1428 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1429 	if (bonuslen < max_bonuslen)
1430 		memset(db_data, 0, max_bonuslen);
1431 	if (bonuslen)
1432 		memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen);
1433 	db->db.db_data = db_data;
1434 	db->db_state = DB_CACHED;
1435 	DTRACE_SET_STATE(db, "bonus buffer filled");
1436 	return (0);
1437 }
1438 
1439 static void
dbuf_handle_indirect_hole(void * data,dnode_t * dn,blkptr_t * dbbp)1440 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp)
1441 {
1442 	blkptr_t *bps = data;
1443 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1444 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1445 
1446 	for (int i = 0; i < n_bps; i++) {
1447 		blkptr_t *bp = &bps[i];
1448 
1449 		ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1450 		BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1451 		    dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1452 		BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1453 		BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1454 		BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1455 	}
1456 }
1457 
1458 /*
1459  * Handle reads on dbufs that are holes, if necessary.  This function
1460  * requires that the dbuf's mutex is held. Returns success (0) if action
1461  * was taken, ENOENT if no action was taken.
1462  */
1463 static int
dbuf_read_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * bp)1464 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1465 {
1466 	ASSERT(MUTEX_HELD(&db->db_mtx));
1467 	arc_buf_t *db_data;
1468 
1469 	int is_hole = bp == NULL || BP_IS_HOLE(bp);
1470 	/*
1471 	 * For level 0 blocks only, if the above check fails:
1472 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1473 	 * processes the delete record and clears the bp while we are waiting
1474 	 * for the dn_mtx (resulting in a "no" from block_freed).
1475 	 */
1476 	if (!is_hole && db->db_level == 0)
1477 		is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1478 
1479 	if (is_hole) {
1480 		db_data = dbuf_alloc_arcbuf(db);
1481 		memset(db_data->b_data, 0, db->db.db_size);
1482 
1483 		if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1484 		    BP_GET_LOGICAL_BIRTH(bp) != 0) {
1485 			dbuf_handle_indirect_hole(db_data->b_data, dn, bp);
1486 		}
1487 		dbuf_set_data(db, db_data);
1488 		db->db_state = DB_CACHED;
1489 		DTRACE_SET_STATE(db, "hole read satisfied");
1490 		return (0);
1491 	}
1492 	return (ENOENT);
1493 }
1494 
1495 /*
1496  * This function ensures that, when doing a decrypting read of a block,
1497  * we make sure we have decrypted the dnode associated with it. We must do
1498  * this so that we ensure we are fully authenticating the checksum-of-MACs
1499  * tree from the root of the objset down to this block. Indirect blocks are
1500  * always verified against their secure checksum-of-MACs assuming that the
1501  * dnode containing them is correct. Now that we are doing a decrypting read,
1502  * we can be sure that the key is loaded and verify that assumption. This is
1503  * especially important considering that we always read encrypted dnode
1504  * blocks as raw data (without verifying their MACs) to start, and
1505  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1506  */
1507 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,dnode_t * dn,dmu_flags_t flags)1508 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn,
1509     dmu_flags_t flags)
1510 {
1511 	objset_t *os = db->db_objset;
1512 	dmu_buf_impl_t *dndb;
1513 	arc_buf_t *dnbuf;
1514 	zbookmark_phys_t zb;
1515 	int err;
1516 
1517 	if ((flags & DMU_READ_NO_DECRYPT) != 0 ||
1518 	    !os->os_encrypted || os->os_raw_receive ||
1519 	    (dndb = dn->dn_dbuf) == NULL)
1520 		return (0);
1521 
1522 	dnbuf = dndb->db_buf;
1523 	if (!arc_is_encrypted(dnbuf))
1524 		return (0);
1525 
1526 	mutex_enter(&dndb->db_mtx);
1527 
1528 	/*
1529 	 * Since dnode buffer is modified by sync process, there can be only
1530 	 * one copy of it.  It means we can not modify (decrypt) it while it
1531 	 * is being written.  I don't see how this may happen now, since
1532 	 * encrypted dnode writes by receive should be completed before any
1533 	 * plain-text reads due to txg wait, but better be safe than sorry.
1534 	 */
1535 	while (1) {
1536 		if (!arc_is_encrypted(dnbuf)) {
1537 			mutex_exit(&dndb->db_mtx);
1538 			return (0);
1539 		}
1540 		dbuf_dirty_record_t *dr = dndb->db_data_pending;
1541 		if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1542 			break;
1543 		cv_wait(&dndb->db_changed, &dndb->db_mtx);
1544 	};
1545 
1546 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1547 	    DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1548 	err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1549 
1550 	/*
1551 	 * An error code of EACCES tells us that the key is still not
1552 	 * available. This is ok if we are only reading authenticated
1553 	 * (and therefore non-encrypted) blocks.
1554 	 */
1555 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1556 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1557 	    (db->db_blkid == DMU_BONUS_BLKID &&
1558 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1559 		err = 0;
1560 
1561 	mutex_exit(&dndb->db_mtx);
1562 
1563 	return (err);
1564 }
1565 
1566 /*
1567  * Drops db_mtx and the parent lock specified by dblt and tag before
1568  * returning.
1569  */
1570 static int
dbuf_read_impl(dmu_buf_impl_t * db,dnode_t * dn,zio_t * zio,dmu_flags_t flags,db_lock_type_t dblt,blkptr_t * bp,const void * tag)1571 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags,
1572     db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1573 {
1574 	zbookmark_phys_t zb;
1575 	uint32_t aflags = ARC_FLAG_NOWAIT;
1576 	int err, zio_flags;
1577 
1578 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1579 	ASSERT(MUTEX_HELD(&db->db_mtx));
1580 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1581 	ASSERT(db->db_buf == NULL);
1582 	ASSERT(db->db_parent == NULL ||
1583 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1584 
1585 	if (db->db_blkid == DMU_BONUS_BLKID) {
1586 		err = dbuf_read_bonus(db, dn);
1587 		goto early_unlock;
1588 	}
1589 
1590 	err = dbuf_read_hole(db, dn, bp);
1591 	if (err == 0)
1592 		goto early_unlock;
1593 
1594 	ASSERT(bp != NULL);
1595 
1596 	/*
1597 	 * Any attempt to read a redacted block should result in an error. This
1598 	 * will never happen under normal conditions, but can be useful for
1599 	 * debugging purposes.
1600 	 */
1601 	if (BP_IS_REDACTED(bp)) {
1602 		ASSERT(dsl_dataset_feature_is_active(
1603 		    db->db_objset->os_dsl_dataset,
1604 		    SPA_FEATURE_REDACTED_DATASETS));
1605 		err = SET_ERROR(EIO);
1606 		goto early_unlock;
1607 	}
1608 
1609 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1610 	    db->db.db_object, db->db_level, db->db_blkid);
1611 
1612 	/*
1613 	 * All bps of an encrypted os should have the encryption bit set.
1614 	 * If this is not true it indicates tampering and we report an error.
1615 	 */
1616 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1617 		spa_log_error(db->db_objset->os_spa, &zb,
1618 		    BP_GET_LOGICAL_BIRTH(bp));
1619 		err = SET_ERROR(EIO);
1620 		goto early_unlock;
1621 	}
1622 
1623 	db->db_state = DB_READ;
1624 	DTRACE_SET_STATE(db, "read issued");
1625 	mutex_exit(&db->db_mtx);
1626 
1627 	if (!DBUF_IS_CACHEABLE(db))
1628 		aflags |= ARC_FLAG_UNCACHED;
1629 	else if (dbuf_is_l2cacheable(db, bp))
1630 		aflags |= ARC_FLAG_L2CACHE;
1631 
1632 	dbuf_add_ref(db, NULL);
1633 
1634 	zio_flags = (flags & DB_RF_CANFAIL) ?
1635 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1636 
1637 	if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1638 		zio_flags |= ZIO_FLAG_RAW;
1639 
1640 	/*
1641 	 * The zio layer will copy the provided blkptr later, but we need to
1642 	 * do this now so that we can release the parent's rwlock. We have to
1643 	 * do that now so that if dbuf_read_done is called synchronously (on
1644 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1645 	 * parent's rwlock, which would be a lock ordering violation.
1646 	 */
1647 	blkptr_t copy = *bp;
1648 	dmu_buf_unlock_parent(db, dblt, tag);
1649 	return (arc_read(zio, db->db_objset->os_spa, &copy,
1650 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1651 	    &aflags, &zb));
1652 
1653 early_unlock:
1654 	mutex_exit(&db->db_mtx);
1655 	dmu_buf_unlock_parent(db, dblt, tag);
1656 	return (err);
1657 }
1658 
1659 /*
1660  * This is our just-in-time copy function.  It makes a copy of buffers that
1661  * have been modified in a previous transaction group before we access them in
1662  * the current active group.
1663  *
1664  * This function is used in three places: when we are dirtying a buffer for the
1665  * first time in a txg, when we are freeing a range in a dnode that includes
1666  * this buffer, and when we are accessing a buffer which was received compressed
1667  * and later referenced in a WRITE_BYREF record.
1668  *
1669  * Note that when we are called from dbuf_free_range() we do not put a hold on
1670  * the buffer, we just traverse the active dbuf list for the dnode.
1671  */
1672 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1673 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1674 {
1675 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1676 
1677 	ASSERT(MUTEX_HELD(&db->db_mtx));
1678 	ASSERT(db->db.db_data != NULL);
1679 	ASSERT(db->db_level == 0);
1680 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1681 
1682 	if (dr == NULL ||
1683 	    (dr->dt.dl.dr_data !=
1684 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1685 		return;
1686 
1687 	/*
1688 	 * If the last dirty record for this dbuf has not yet synced
1689 	 * and its referencing the dbuf data, either:
1690 	 *	reset the reference to point to a new copy,
1691 	 * or (if there a no active holders)
1692 	 *	just null out the current db_data pointer.
1693 	 */
1694 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1695 	if (db->db_blkid == DMU_BONUS_BLKID) {
1696 		dnode_t *dn = DB_DNODE(db);
1697 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1698 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1699 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1700 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1701 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1702 		dnode_t *dn = DB_DNODE(db);
1703 		int size = arc_buf_size(db->db_buf);
1704 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1705 		spa_t *spa = db->db_objset->os_spa;
1706 		enum zio_compress compress_type =
1707 		    arc_get_compression(db->db_buf);
1708 		uint8_t complevel = arc_get_complevel(db->db_buf);
1709 
1710 		if (arc_is_encrypted(db->db_buf)) {
1711 			boolean_t byteorder;
1712 			uint8_t salt[ZIO_DATA_SALT_LEN];
1713 			uint8_t iv[ZIO_DATA_IV_LEN];
1714 			uint8_t mac[ZIO_DATA_MAC_LEN];
1715 
1716 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1717 			    iv, mac);
1718 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1719 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1720 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1721 			    compress_type, complevel);
1722 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1723 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1724 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1725 			    size, arc_buf_lsize(db->db_buf), compress_type,
1726 			    complevel);
1727 		} else {
1728 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1729 		}
1730 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1731 	} else {
1732 		db->db_buf = NULL;
1733 		dbuf_clear_data(db);
1734 	}
1735 }
1736 
1737 int
dbuf_read(dmu_buf_impl_t * db,zio_t * pio,dmu_flags_t flags)1738 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags)
1739 {
1740 	dnode_t *dn;
1741 	boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1742 	int err;
1743 
1744 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1745 
1746 	DB_DNODE_ENTER(db);
1747 	dn = DB_DNODE(db);
1748 
1749 	/*
1750 	 * Ensure that this block's dnode has been decrypted if the caller
1751 	 * has requested decrypted data.
1752 	 */
1753 	err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1754 	if (err != 0)
1755 		goto done;
1756 
1757 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1758 	    (flags & DMU_READ_NO_PREFETCH) == 0;
1759 
1760 	mutex_enter(&db->db_mtx);
1761 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1762 		db->db_pending_evict = B_FALSE;
1763 	if (flags & DMU_PARTIAL_FIRST)
1764 		db->db_partial_read = B_TRUE;
1765 	else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING)))
1766 		db->db_partial_read = B_FALSE;
1767 	miss = (db->db_state != DB_CACHED);
1768 
1769 	if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1770 		/*
1771 		 * Another reader came in while the dbuf was in flight between
1772 		 * UNCACHED and CACHED.  Either a writer will finish filling
1773 		 * the buffer, sending the dbuf to CACHED, or the first reader's
1774 		 * request will reach the read_done callback and send the dbuf
1775 		 * to CACHED.  Otherwise, a failure occurred and the dbuf will
1776 		 * be sent to UNCACHED.
1777 		 */
1778 		if (flags & DB_RF_NEVERWAIT) {
1779 			mutex_exit(&db->db_mtx);
1780 			DB_DNODE_EXIT(db);
1781 			goto done;
1782 		}
1783 		do {
1784 			ASSERT(db->db_state == DB_READ ||
1785 			    (flags & DB_RF_HAVESTRUCT) == 0);
1786 			DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1787 			    zio_t *, pio);
1788 			cv_wait(&db->db_changed, &db->db_mtx);
1789 		} while (db->db_state == DB_READ || db->db_state == DB_FILL);
1790 		if (db->db_state == DB_UNCACHED) {
1791 			err = SET_ERROR(EIO);
1792 			mutex_exit(&db->db_mtx);
1793 			DB_DNODE_EXIT(db);
1794 			goto done;
1795 		}
1796 	}
1797 
1798 	if (db->db_state == DB_CACHED) {
1799 		/*
1800 		 * If the arc buf is compressed or encrypted and the caller
1801 		 * requested uncompressed data, we need to untransform it
1802 		 * before returning. We also call arc_untransform() on any
1803 		 * unauthenticated blocks, which will verify their MAC if
1804 		 * the key is now available.
1805 		 */
1806 		if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1807 		    (arc_is_encrypted(db->db_buf) ||
1808 		    arc_is_unauthenticated(db->db_buf) ||
1809 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1810 			spa_t *spa = dn->dn_objset->os_spa;
1811 			zbookmark_phys_t zb;
1812 
1813 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1814 			    db->db.db_object, db->db_level, db->db_blkid);
1815 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1816 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1817 			dbuf_set_data(db, db->db_buf);
1818 		}
1819 		mutex_exit(&db->db_mtx);
1820 	} else {
1821 		ASSERT(db->db_state == DB_UNCACHED ||
1822 		    db->db_state == DB_NOFILL);
1823 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1824 		blkptr_t *bp;
1825 
1826 		/*
1827 		 * If a block clone or Direct I/O write has occurred we will
1828 		 * get the dirty records overridden BP so we get the most
1829 		 * recent data.
1830 		 */
1831 		err = dmu_buf_get_bp_from_dbuf(db, &bp);
1832 
1833 		if (!err) {
1834 			if (pio == NULL && (db->db_state == DB_NOFILL ||
1835 			    (bp != NULL && !BP_IS_HOLE(bp)))) {
1836 				spa_t *spa = dn->dn_objset->os_spa;
1837 				pio =
1838 				    zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1839 				need_wait = B_TRUE;
1840 			}
1841 
1842 			err =
1843 			    dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1844 		} else {
1845 			mutex_exit(&db->db_mtx);
1846 			dmu_buf_unlock_parent(db, dblt, FTAG);
1847 		}
1848 		/* dbuf_read_impl drops db_mtx and parent's rwlock. */
1849 		miss = (db->db_state != DB_CACHED);
1850 	}
1851 
1852 	if (err == 0 && prefetch) {
1853 		dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1854 		    flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) ||
1855 		    db->db_pending_evict);
1856 	}
1857 	DB_DNODE_EXIT(db);
1858 
1859 	/*
1860 	 * If we created a zio we must execute it to avoid leaking it, even if
1861 	 * it isn't attached to any work due to an error in dbuf_read_impl().
1862 	 */
1863 	if (need_wait) {
1864 		if (err == 0)
1865 			err = zio_wait(pio);
1866 		else
1867 			(void) zio_wait(pio);
1868 		pio = NULL;
1869 	}
1870 
1871 done:
1872 	if (miss)
1873 		DBUF_STAT_BUMP(hash_misses);
1874 	else
1875 		DBUF_STAT_BUMP(hash_hits);
1876 	if (pio && err != 0) {
1877 		zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1878 		    ZIO_FLAG_CANFAIL);
1879 		zio->io_error = err;
1880 		zio_nowait(zio);
1881 	}
1882 
1883 	return (err);
1884 }
1885 
1886 static void
dbuf_noread(dmu_buf_impl_t * db,dmu_flags_t flags)1887 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags)
1888 {
1889 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1890 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1891 	mutex_enter(&db->db_mtx);
1892 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1893 		db->db_pending_evict = B_FALSE;
1894 	db->db_partial_read = B_FALSE;
1895 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1896 		cv_wait(&db->db_changed, &db->db_mtx);
1897 	if (db->db_state == DB_UNCACHED) {
1898 		ASSERT(db->db_buf == NULL);
1899 		ASSERT(db->db.db_data == NULL);
1900 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1901 		db->db_state = DB_FILL;
1902 		DTRACE_SET_STATE(db, "assigning filled buffer");
1903 	} else if (db->db_state == DB_NOFILL) {
1904 		dbuf_clear_data(db);
1905 	} else {
1906 		ASSERT3U(db->db_state, ==, DB_CACHED);
1907 	}
1908 	mutex_exit(&db->db_mtx);
1909 }
1910 
1911 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1912 dbuf_unoverride(dbuf_dirty_record_t *dr)
1913 {
1914 	dmu_buf_impl_t *db = dr->dr_dbuf;
1915 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1916 	uint64_t txg = dr->dr_txg;
1917 
1918 	ASSERT(MUTEX_HELD(&db->db_mtx));
1919 
1920 	/*
1921 	 * This assert is valid because dmu_sync() expects to be called by
1922 	 * a zilog's get_data while holding a range lock.  This call only
1923 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1924 	 */
1925 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1926 	ASSERT(db->db_level == 0);
1927 
1928 	if (db->db_blkid == DMU_BONUS_BLKID ||
1929 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1930 		return;
1931 
1932 	ASSERT(db->db_data_pending != dr);
1933 
1934 	/* free this block */
1935 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1936 		zio_free(db->db_objset->os_spa, txg, bp);
1937 
1938 	if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1939 		ASSERT0P(dr->dt.dl.dr_data);
1940 		dr->dt.dl.dr_data = db->db_buf;
1941 	}
1942 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1943 	dr->dt.dl.dr_nopwrite = B_FALSE;
1944 	dr->dt.dl.dr_brtwrite = B_FALSE;
1945 	dr->dt.dl.dr_diowrite = B_FALSE;
1946 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1947 
1948 	/*
1949 	 * In the event that Direct I/O was used, we do not
1950 	 * need to release the buffer from the ARC.
1951 	 *
1952 	 * Release the already-written buffer, so we leave it in
1953 	 * a consistent dirty state.  Note that all callers are
1954 	 * modifying the buffer, so they will immediately do
1955 	 * another (redundant) arc_release().  Therefore, leave
1956 	 * the buf thawed to save the effort of freezing &
1957 	 * immediately re-thawing it.
1958 	 */
1959 	if (dr->dt.dl.dr_data)
1960 		arc_release(dr->dt.dl.dr_data, db);
1961 }
1962 
1963 /*
1964  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1965  * data blocks in the free range, so that any future readers will find
1966  * empty blocks.
1967  */
1968 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1969 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1970     dmu_tx_t *tx)
1971 {
1972 	dmu_buf_impl_t *db_search;
1973 	dmu_buf_impl_t *db, *db_next;
1974 	uint64_t txg = tx->tx_txg;
1975 	avl_index_t where;
1976 	dbuf_dirty_record_t *dr;
1977 
1978 	if (end_blkid > dn->dn_maxblkid &&
1979 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1980 		end_blkid = dn->dn_maxblkid;
1981 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1982 	    (u_longlong_t)end_blkid);
1983 
1984 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1985 	db_search->db_level = 0;
1986 	db_search->db_blkid = start_blkid;
1987 	db_search->db_state = DB_SEARCH;
1988 
1989 	mutex_enter(&dn->dn_dbufs_mtx);
1990 	db = avl_find(&dn->dn_dbufs, db_search, &where);
1991 	ASSERT3P(db, ==, NULL);
1992 
1993 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1994 
1995 	for (; db != NULL; db = db_next) {
1996 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1997 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1998 
1999 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
2000 			break;
2001 		}
2002 		ASSERT3U(db->db_blkid, >=, start_blkid);
2003 
2004 		/* found a level 0 buffer in the range */
2005 		mutex_enter(&db->db_mtx);
2006 		if (dbuf_undirty(db, tx)) {
2007 			/* mutex has been dropped and dbuf destroyed */
2008 			continue;
2009 		}
2010 
2011 		if (db->db_state == DB_UNCACHED ||
2012 		    db->db_state == DB_NOFILL ||
2013 		    db->db_state == DB_EVICTING) {
2014 			ASSERT(db->db.db_data == NULL);
2015 			mutex_exit(&db->db_mtx);
2016 			continue;
2017 		}
2018 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2019 			/* will be handled in dbuf_read_done or dbuf_rele */
2020 			db->db_freed_in_flight = TRUE;
2021 			mutex_exit(&db->db_mtx);
2022 			continue;
2023 		}
2024 		if (zfs_refcount_count(&db->db_holds) == 0) {
2025 			ASSERT(db->db_buf);
2026 			dbuf_destroy(db);
2027 			continue;
2028 		}
2029 		/* The dbuf is referenced */
2030 
2031 		dr = list_head(&db->db_dirty_records);
2032 		if (dr != NULL) {
2033 			if (dr->dr_txg == txg) {
2034 				/*
2035 				 * This buffer is "in-use", re-adjust the file
2036 				 * size to reflect that this buffer may
2037 				 * contain new data when we sync.
2038 				 */
2039 				if (db->db_blkid != DMU_SPILL_BLKID &&
2040 				    db->db_blkid > dn->dn_maxblkid)
2041 					dn->dn_maxblkid = db->db_blkid;
2042 				dbuf_unoverride(dr);
2043 			} else {
2044 				/*
2045 				 * This dbuf is not dirty in the open context.
2046 				 * Either uncache it (if its not referenced in
2047 				 * the open context) or reset its contents to
2048 				 * empty.
2049 				 */
2050 				dbuf_fix_old_data(db, txg);
2051 			}
2052 		}
2053 		/* clear the contents if its cached */
2054 		if (db->db_state == DB_CACHED) {
2055 			ASSERT(db->db.db_data != NULL);
2056 			arc_release(db->db_buf, db);
2057 			rw_enter(&db->db_rwlock, RW_WRITER);
2058 			memset(db->db.db_data, 0, db->db.db_size);
2059 			rw_exit(&db->db_rwlock);
2060 			arc_buf_freeze(db->db_buf);
2061 		}
2062 
2063 		mutex_exit(&db->db_mtx);
2064 	}
2065 
2066 	mutex_exit(&dn->dn_dbufs_mtx);
2067 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2068 }
2069 
2070 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)2071 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2072 {
2073 	arc_buf_t *buf, *old_buf;
2074 	dbuf_dirty_record_t *dr;
2075 	int osize = db->db.db_size;
2076 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2077 	dnode_t *dn;
2078 
2079 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2080 
2081 	DB_DNODE_ENTER(db);
2082 	dn = DB_DNODE(db);
2083 
2084 	/*
2085 	 * XXX we should be doing a dbuf_read, checking the return
2086 	 * value and returning that up to our callers
2087 	 */
2088 	dmu_buf_will_dirty(&db->db, tx);
2089 
2090 	VERIFY3P(db->db_buf, !=, NULL);
2091 
2092 	/* create the data buffer for the new block */
2093 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2094 
2095 	/* copy old block data to the new block */
2096 	old_buf = db->db_buf;
2097 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2098 	/* zero the remainder */
2099 	if (size > osize)
2100 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2101 
2102 	mutex_enter(&db->db_mtx);
2103 	dbuf_set_data(db, buf);
2104 	arc_buf_destroy(old_buf, db);
2105 	db->db.db_size = size;
2106 
2107 	dr = list_head(&db->db_dirty_records);
2108 	/* dirty record added by dmu_buf_will_dirty() */
2109 	VERIFY(dr != NULL);
2110 	if (db->db_level == 0)
2111 		dr->dt.dl.dr_data = buf;
2112 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2113 	ASSERT3U(dr->dr_accounted, ==, osize);
2114 	dr->dr_accounted = size;
2115 	mutex_exit(&db->db_mtx);
2116 
2117 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2118 	DB_DNODE_EXIT(db);
2119 }
2120 
2121 void
dbuf_release_bp(dmu_buf_impl_t * db)2122 dbuf_release_bp(dmu_buf_impl_t *db)
2123 {
2124 	objset_t *os __maybe_unused = db->db_objset;
2125 
2126 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2127 	ASSERT(arc_released(os->os_phys_buf) ||
2128 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2129 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2130 
2131 	(void) arc_release(db->db_buf, db);
2132 }
2133 
2134 /*
2135  * We already have a dirty record for this TXG, and we are being
2136  * dirtied again.
2137  */
2138 static void
dbuf_redirty(dbuf_dirty_record_t * dr)2139 dbuf_redirty(dbuf_dirty_record_t *dr)
2140 {
2141 	dmu_buf_impl_t *db = dr->dr_dbuf;
2142 
2143 	ASSERT(MUTEX_HELD(&db->db_mtx));
2144 
2145 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2146 		/*
2147 		 * If this buffer has already been written out,
2148 		 * we now need to reset its state.
2149 		 */
2150 		dbuf_unoverride(dr);
2151 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2152 		    db->db_state != DB_NOFILL) {
2153 			/* Already released on initial dirty, so just thaw. */
2154 			ASSERT(arc_released(db->db_buf));
2155 			arc_buf_thaw(db->db_buf);
2156 		}
2157 	}
2158 }
2159 
2160 dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx)2161 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2162 {
2163 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2164 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2165 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2166 	ASSERT(dn->dn_maxblkid >= blkid);
2167 
2168 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2169 	list_link_init(&dr->dr_dirty_node);
2170 	list_link_init(&dr->dr_dbuf_node);
2171 	dr->dr_dnode = dn;
2172 	dr->dr_txg = tx->tx_txg;
2173 	dr->dt.dll.dr_blkid = blkid;
2174 	dr->dr_accounted = dn->dn_datablksz;
2175 
2176 	/*
2177 	 * There should not be any dbuf for the block that we're dirtying.
2178 	 * Otherwise the buffer contents could be inconsistent between the
2179 	 * dbuf and the lightweight dirty record.
2180 	 */
2181 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2182 	    NULL));
2183 
2184 	mutex_enter(&dn->dn_mtx);
2185 	int txgoff = tx->tx_txg & TXG_MASK;
2186 	if (dn->dn_free_ranges[txgoff] != NULL) {
2187 		zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2188 	}
2189 
2190 	if (dn->dn_nlevels == 1) {
2191 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2192 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2193 		mutex_exit(&dn->dn_mtx);
2194 		rw_exit(&dn->dn_struct_rwlock);
2195 		dnode_setdirty(dn, tx);
2196 	} else {
2197 		mutex_exit(&dn->dn_mtx);
2198 
2199 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2200 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2201 		    1, blkid >> epbs, FTAG);
2202 		rw_exit(&dn->dn_struct_rwlock);
2203 		if (parent_db == NULL) {
2204 			kmem_free(dr, sizeof (*dr));
2205 			return (NULL);
2206 		}
2207 		int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL |
2208 		    DMU_READ_NO_PREFETCH);
2209 		if (err != 0) {
2210 			dbuf_rele(parent_db, FTAG);
2211 			kmem_free(dr, sizeof (*dr));
2212 			return (NULL);
2213 		}
2214 
2215 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2216 		dbuf_rele(parent_db, FTAG);
2217 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2218 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2219 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2220 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2221 		dr->dr_parent = parent_dr;
2222 	}
2223 
2224 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2225 
2226 	return (dr);
2227 }
2228 
2229 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2230 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2231 {
2232 	dnode_t *dn;
2233 	objset_t *os;
2234 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2235 	int txgoff = tx->tx_txg & TXG_MASK;
2236 	boolean_t drop_struct_rwlock = B_FALSE;
2237 
2238 	ASSERT(tx->tx_txg != 0);
2239 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2240 	DMU_TX_DIRTY_BUF(tx, db);
2241 
2242 	DB_DNODE_ENTER(db);
2243 	dn = DB_DNODE(db);
2244 	/*
2245 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2246 	 * objects may be dirtied in syncing context, but only if they
2247 	 * were already pre-dirtied in open context.
2248 	 */
2249 #ifdef ZFS_DEBUG
2250 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2251 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2252 		    RW_READER, FTAG);
2253 	}
2254 	ASSERT(!dmu_tx_is_syncing(tx) ||
2255 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2256 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2257 	    dn->dn_objset->os_dsl_dataset == NULL);
2258 	if (dn->dn_objset->os_dsl_dataset != NULL)
2259 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2260 #endif
2261 	/*
2262 	 * We make this assert for private objects as well, but after we
2263 	 * check if we're already dirty.  They are allowed to re-dirty
2264 	 * in syncing context.
2265 	 */
2266 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2267 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2268 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2269 
2270 	mutex_enter(&db->db_mtx);
2271 	/*
2272 	 * XXX make this true for indirects too?  The problem is that
2273 	 * transactions created with dmu_tx_create_assigned() from
2274 	 * syncing context don't bother holding ahead.
2275 	 */
2276 	ASSERT(db->db_level != 0 ||
2277 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2278 	    db->db_state == DB_NOFILL);
2279 
2280 	mutex_enter(&dn->dn_mtx);
2281 	dnode_set_dirtyctx(dn, tx, db);
2282 	if (tx->tx_txg > dn->dn_dirty_txg)
2283 		dn->dn_dirty_txg = tx->tx_txg;
2284 	mutex_exit(&dn->dn_mtx);
2285 
2286 	if (db->db_blkid == DMU_SPILL_BLKID)
2287 		dn->dn_have_spill = B_TRUE;
2288 
2289 	/*
2290 	 * If this buffer is already dirty, we're done.
2291 	 */
2292 	dr_head = list_head(&db->db_dirty_records);
2293 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2294 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2295 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2296 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2297 		DB_DNODE_EXIT(db);
2298 
2299 		dbuf_redirty(dr_next);
2300 		mutex_exit(&db->db_mtx);
2301 		return (dr_next);
2302 	}
2303 
2304 	/*
2305 	 * Only valid if not already dirty.
2306 	 */
2307 	ASSERT(dn->dn_object == 0 ||
2308 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2309 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2310 
2311 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2312 
2313 	/*
2314 	 * We should only be dirtying in syncing context if it's the
2315 	 * mos or we're initializing the os or it's a special object.
2316 	 * However, we are allowed to dirty in syncing context provided
2317 	 * we already dirtied it in open context.  Hence we must make
2318 	 * this assertion only if we're not already dirty.
2319 	 */
2320 	os = dn->dn_objset;
2321 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2322 #ifdef ZFS_DEBUG
2323 	if (dn->dn_objset->os_dsl_dataset != NULL)
2324 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2325 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2326 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2327 	if (dn->dn_objset->os_dsl_dataset != NULL)
2328 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2329 #endif
2330 	ASSERT(db->db.db_size != 0);
2331 
2332 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2333 
2334 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2335 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2336 	}
2337 
2338 	/*
2339 	 * If this buffer is dirty in an old transaction group we need
2340 	 * to make a copy of it so that the changes we make in this
2341 	 * transaction group won't leak out when we sync the older txg.
2342 	 */
2343 	dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2344 	memset(dr, 0, sizeof (*dr));
2345 	list_link_init(&dr->dr_dirty_node);
2346 	list_link_init(&dr->dr_dbuf_node);
2347 	dr->dr_dnode = dn;
2348 	if (db->db_level == 0) {
2349 		void *data_old = db->db_buf;
2350 
2351 		if (db->db_state != DB_NOFILL) {
2352 			if (db->db_blkid == DMU_BONUS_BLKID) {
2353 				dbuf_fix_old_data(db, tx->tx_txg);
2354 				data_old = db->db.db_data;
2355 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2356 				/*
2357 				 * Release the data buffer from the cache so
2358 				 * that we can modify it without impacting
2359 				 * possible other users of this cached data
2360 				 * block.  Note that indirect blocks and
2361 				 * private objects are not released until the
2362 				 * syncing state (since they are only modified
2363 				 * then).
2364 				 */
2365 				arc_release(db->db_buf, db);
2366 				dbuf_fix_old_data(db, tx->tx_txg);
2367 				data_old = db->db_buf;
2368 			}
2369 			ASSERT(data_old != NULL);
2370 		}
2371 		dr->dt.dl.dr_data = data_old;
2372 	} else {
2373 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2374 		list_create(&dr->dt.di.dr_children,
2375 		    sizeof (dbuf_dirty_record_t),
2376 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2377 	}
2378 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2379 		dr->dr_accounted = db->db.db_size;
2380 	}
2381 	dr->dr_dbuf = db;
2382 	dr->dr_txg = tx->tx_txg;
2383 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2384 
2385 	/*
2386 	 * We could have been freed_in_flight between the dbuf_noread
2387 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2388 	 * happened after the free.
2389 	 */
2390 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2391 	    db->db_blkid != DMU_SPILL_BLKID) {
2392 		mutex_enter(&dn->dn_mtx);
2393 		if (dn->dn_free_ranges[txgoff] != NULL) {
2394 			zfs_range_tree_clear(dn->dn_free_ranges[txgoff],
2395 			    db->db_blkid, 1);
2396 		}
2397 		mutex_exit(&dn->dn_mtx);
2398 		db->db_freed_in_flight = FALSE;
2399 	}
2400 
2401 	/*
2402 	 * This buffer is now part of this txg
2403 	 */
2404 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2405 	db->db_dirtycnt += 1;
2406 	ASSERT3U(db->db_dirtycnt, <=, 3);
2407 
2408 	mutex_exit(&db->db_mtx);
2409 
2410 	if (db->db_blkid == DMU_BONUS_BLKID ||
2411 	    db->db_blkid == DMU_SPILL_BLKID) {
2412 		mutex_enter(&dn->dn_mtx);
2413 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2414 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2415 		mutex_exit(&dn->dn_mtx);
2416 		dnode_setdirty(dn, tx);
2417 		DB_DNODE_EXIT(db);
2418 		return (dr);
2419 	}
2420 
2421 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2422 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2423 		drop_struct_rwlock = B_TRUE;
2424 	}
2425 
2426 	/*
2427 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2428 	 * when we get to syncing context we will need to decrement its
2429 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2430 	 * syncing context won't have to wait for the i/o.
2431 	 */
2432 	if (db->db_blkptr != NULL) {
2433 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2434 		ddt_prefetch(os->os_spa, db->db_blkptr);
2435 		dmu_buf_unlock_parent(db, dblt, FTAG);
2436 	}
2437 
2438 	/*
2439 	 * We need to hold the dn_struct_rwlock to make this assertion,
2440 	 * because it protects dn_phys / dn_next_nlevels from changing.
2441 	 */
2442 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2443 	    dn->dn_phys->dn_nlevels > db->db_level ||
2444 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2445 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2446 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2447 
2448 
2449 	if (db->db_level == 0) {
2450 		ASSERT(!db->db_objset->os_raw_receive ||
2451 		    dn->dn_maxblkid >= db->db_blkid);
2452 		dnode_new_blkid(dn, db->db_blkid, tx,
2453 		    drop_struct_rwlock, B_FALSE);
2454 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2455 	}
2456 
2457 	if (db->db_level+1 < dn->dn_nlevels) {
2458 		dmu_buf_impl_t *parent = db->db_parent;
2459 		dbuf_dirty_record_t *di;
2460 		int parent_held = FALSE;
2461 
2462 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2463 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2464 			parent = dbuf_hold_level(dn, db->db_level + 1,
2465 			    db->db_blkid >> epbs, FTAG);
2466 			ASSERT(parent != NULL);
2467 			parent_held = TRUE;
2468 		}
2469 		if (drop_struct_rwlock)
2470 			rw_exit(&dn->dn_struct_rwlock);
2471 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2472 		di = dbuf_dirty(parent, tx);
2473 		if (parent_held)
2474 			dbuf_rele(parent, FTAG);
2475 
2476 		mutex_enter(&db->db_mtx);
2477 		/*
2478 		 * Since we've dropped the mutex, it's possible that
2479 		 * dbuf_undirty() might have changed this out from under us.
2480 		 */
2481 		if (list_head(&db->db_dirty_records) == dr ||
2482 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2483 			mutex_enter(&di->dt.di.dr_mtx);
2484 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2485 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2486 			list_insert_tail(&di->dt.di.dr_children, dr);
2487 			mutex_exit(&di->dt.di.dr_mtx);
2488 			dr->dr_parent = di;
2489 		}
2490 		mutex_exit(&db->db_mtx);
2491 	} else {
2492 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2493 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2494 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2495 		mutex_enter(&dn->dn_mtx);
2496 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2497 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2498 		mutex_exit(&dn->dn_mtx);
2499 		if (drop_struct_rwlock)
2500 			rw_exit(&dn->dn_struct_rwlock);
2501 	}
2502 
2503 	dnode_setdirty(dn, tx);
2504 	DB_DNODE_EXIT(db);
2505 	return (dr);
2506 }
2507 
2508 static void
dbuf_undirty_bonus(dbuf_dirty_record_t * dr)2509 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2510 {
2511 	dmu_buf_impl_t *db = dr->dr_dbuf;
2512 
2513 	ASSERT(MUTEX_HELD(&db->db_mtx));
2514 	if (dr->dt.dl.dr_data != db->db.db_data) {
2515 		struct dnode *dn = dr->dr_dnode;
2516 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2517 
2518 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2519 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2520 	}
2521 	db->db_data_pending = NULL;
2522 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2523 	list_remove(&db->db_dirty_records, dr);
2524 	if (dr->dr_dbuf->db_level != 0) {
2525 		mutex_destroy(&dr->dt.di.dr_mtx);
2526 		list_destroy(&dr->dt.di.dr_children);
2527 	}
2528 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2529 	ASSERT3U(db->db_dirtycnt, >, 0);
2530 	db->db_dirtycnt -= 1;
2531 }
2532 
2533 /*
2534  * Undirty a buffer in the transaction group referenced by the given
2535  * transaction.  Return whether this evicted the dbuf.
2536  */
2537 boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2538 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2539 {
2540 	uint64_t txg = tx->tx_txg;
2541 	boolean_t brtwrite;
2542 	boolean_t diowrite;
2543 
2544 	ASSERT(txg != 0);
2545 
2546 	/*
2547 	 * Due to our use of dn_nlevels below, this can only be called
2548 	 * in open context, unless we are operating on the MOS.
2549 	 * From syncing context, dn_nlevels may be different from the
2550 	 * dn_nlevels used when dbuf was dirtied.
2551 	 */
2552 	ASSERT(db->db_objset ==
2553 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2554 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2555 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2556 	ASSERT0(db->db_level);
2557 	ASSERT(MUTEX_HELD(&db->db_mtx));
2558 
2559 	/*
2560 	 * If this buffer is not dirty, we're done.
2561 	 */
2562 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2563 	if (dr == NULL)
2564 		return (B_FALSE);
2565 	ASSERT(dr->dr_dbuf == db);
2566 
2567 	brtwrite = dr->dt.dl.dr_brtwrite;
2568 	diowrite = dr->dt.dl.dr_diowrite;
2569 	if (brtwrite) {
2570 		ASSERT3B(diowrite, ==, B_FALSE);
2571 		/*
2572 		 * We are freeing a block that we cloned in the same
2573 		 * transaction group.
2574 		 */
2575 		blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
2576 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2577 			brt_pending_remove(dmu_objset_spa(db->db_objset),
2578 			    bp, tx);
2579 		}
2580 	}
2581 
2582 	dnode_t *dn = dr->dr_dnode;
2583 
2584 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2585 
2586 	ASSERT(db->db.db_size != 0);
2587 
2588 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2589 	    dr->dr_accounted, txg);
2590 
2591 	list_remove(&db->db_dirty_records, dr);
2592 
2593 	/*
2594 	 * Note that there are three places in dbuf_dirty()
2595 	 * where this dirty record may be put on a list.
2596 	 * Make sure to do a list_remove corresponding to
2597 	 * every one of those list_insert calls.
2598 	 */
2599 	if (dr->dr_parent) {
2600 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2601 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2602 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2603 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2604 	    db->db_level + 1 == dn->dn_nlevels) {
2605 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2606 		mutex_enter(&dn->dn_mtx);
2607 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2608 		mutex_exit(&dn->dn_mtx);
2609 	}
2610 
2611 	if (db->db_state != DB_NOFILL && !brtwrite) {
2612 		dbuf_unoverride(dr);
2613 
2614 		if (dr->dt.dl.dr_data != db->db_buf) {
2615 			ASSERT(db->db_buf != NULL);
2616 			ASSERT(dr->dt.dl.dr_data != NULL);
2617 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2618 		}
2619 	}
2620 
2621 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2622 
2623 	ASSERT(db->db_dirtycnt > 0);
2624 	db->db_dirtycnt -= 1;
2625 
2626 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2627 		ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2628 		    arc_released(db->db_buf));
2629 		dbuf_destroy(db);
2630 		return (B_TRUE);
2631 	}
2632 
2633 	return (B_FALSE);
2634 }
2635 
2636 void
dmu_buf_will_dirty_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,dmu_flags_t flags)2637 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags)
2638 {
2639 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2640 	boolean_t undirty = B_FALSE;
2641 
2642 	ASSERT(tx->tx_txg != 0);
2643 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2644 
2645 	/*
2646 	 * Quick check for dirtiness to improve performance for some workloads
2647 	 * (e.g. file deletion with indirect blocks cached).
2648 	 */
2649 	mutex_enter(&db->db_mtx);
2650 	if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2651 		/*
2652 		 * It's possible that the dbuf is already dirty but not cached,
2653 		 * because there are some calls to dbuf_dirty() that don't
2654 		 * go through dmu_buf_will_dirty().
2655 		 */
2656 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2657 		if (dr != NULL) {
2658 			if (db->db_level == 0 &&
2659 			    dr->dt.dl.dr_brtwrite) {
2660 				/*
2661 				 * Block cloning: If we are dirtying a cloned
2662 				 * level 0 block, we cannot simply redirty it,
2663 				 * because this dr has no associated data.
2664 				 * We will go through a full undirtying below,
2665 				 * before dirtying it again.
2666 				 */
2667 				undirty = B_TRUE;
2668 			} else {
2669 				/* This dbuf is already dirty and cached. */
2670 				dbuf_redirty(dr);
2671 				mutex_exit(&db->db_mtx);
2672 				return;
2673 			}
2674 		}
2675 	}
2676 	mutex_exit(&db->db_mtx);
2677 
2678 	DB_DNODE_ENTER(db);
2679 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2680 		flags |= DB_RF_HAVESTRUCT;
2681 	DB_DNODE_EXIT(db);
2682 
2683 	/*
2684 	 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2685 	 * want to make sure dbuf_read() will read the pending cloned block and
2686 	 * not the uderlying block that is being replaced. dbuf_undirty() will
2687 	 * do brt_pending_remove() before removing the dirty record.
2688 	 */
2689 	(void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED);
2690 	if (undirty) {
2691 		mutex_enter(&db->db_mtx);
2692 		VERIFY(!dbuf_undirty(db, tx));
2693 		mutex_exit(&db->db_mtx);
2694 	}
2695 	(void) dbuf_dirty(db, tx);
2696 }
2697 
2698 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2699 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2700 {
2701 	dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2702 }
2703 
2704 boolean_t
dmu_buf_is_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2705 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2706 {
2707 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2708 	dbuf_dirty_record_t *dr;
2709 
2710 	mutex_enter(&db->db_mtx);
2711 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2712 	mutex_exit(&db->db_mtx);
2713 	return (dr != NULL);
2714 }
2715 
2716 /*
2717  * Normally the db_blkptr points to the most recent on-disk content for the
2718  * dbuf (and anything newer will be cached in the dbuf). However, a pending
2719  * block clone or not yet synced Direct I/O write will have a dirty record BP
2720  * pointing to the most recent data.
2721  */
2722 int
dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t * db,blkptr_t ** bp)2723 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2724 {
2725 	ASSERT(MUTEX_HELD(&db->db_mtx));
2726 	int error = 0;
2727 
2728 	if (db->db_level != 0) {
2729 		*bp = db->db_blkptr;
2730 		return (0);
2731 	}
2732 
2733 	*bp = db->db_blkptr;
2734 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2735 	if (dr && db->db_state == DB_NOFILL) {
2736 		/* Block clone */
2737 		if (!dr->dt.dl.dr_brtwrite)
2738 			error = EIO;
2739 		else
2740 			*bp = &dr->dt.dl.dr_overridden_by;
2741 	} else if (dr && db->db_state == DB_UNCACHED) {
2742 		/* Direct I/O write */
2743 		if (dr->dt.dl.dr_diowrite)
2744 			*bp = &dr->dt.dl.dr_overridden_by;
2745 	}
2746 
2747 	return (error);
2748 }
2749 
2750 /*
2751  * Direct I/O reads can read directly from the ARC, but the data has
2752  * to be untransformed in order to copy it over into user pages.
2753  */
2754 int
dmu_buf_untransform_direct(dmu_buf_impl_t * db,spa_t * spa)2755 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2756 {
2757 	int err = 0;
2758 	DB_DNODE_ENTER(db);
2759 	dnode_t *dn = DB_DNODE(db);
2760 
2761 	ASSERT3S(db->db_state, ==, DB_CACHED);
2762 	ASSERT(MUTEX_HELD(&db->db_mtx));
2763 
2764 	/*
2765 	 * Ensure that this block's dnode has been decrypted if
2766 	 * the caller has requested decrypted data.
2767 	 */
2768 	err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2769 
2770 	/*
2771 	 * If the arc buf is compressed or encrypted and the caller
2772 	 * requested uncompressed data, we need to untransform it
2773 	 * before returning. We also call arc_untransform() on any
2774 	 * unauthenticated blocks, which will verify their MAC if
2775 	 * the key is now available.
2776 	 */
2777 	if (err == 0 && db->db_buf != NULL &&
2778 	    (arc_is_encrypted(db->db_buf) ||
2779 	    arc_is_unauthenticated(db->db_buf) ||
2780 	    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2781 		zbookmark_phys_t zb;
2782 
2783 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2784 		    db->db.db_object, db->db_level, db->db_blkid);
2785 		dbuf_fix_old_data(db, spa_syncing_txg(spa));
2786 		err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2787 		dbuf_set_data(db, db->db_buf);
2788 	}
2789 	DB_DNODE_EXIT(db);
2790 	DBUF_STAT_BUMP(hash_hits);
2791 
2792 	return (err);
2793 }
2794 
2795 void
dmu_buf_will_clone_or_dio(dmu_buf_t * db_fake,dmu_tx_t * tx)2796 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2797 {
2798 	/*
2799 	 * Block clones and Direct I/O writes always happen in open-context.
2800 	 */
2801 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2802 	ASSERT0(db->db_level);
2803 	ASSERT(!dmu_tx_is_syncing(tx));
2804 	ASSERT0(db->db_level);
2805 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2806 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2807 
2808 	mutex_enter(&db->db_mtx);
2809 	DBUF_VERIFY(db);
2810 
2811 	/*
2812 	 * We are going to clone or issue a Direct I/O write on this block, so
2813 	 * undirty modifications done to this block so far in this txg. This
2814 	 * includes writes and clones into this block.
2815 	 *
2816 	 * If there dirty record associated with this txg from a previous Direct
2817 	 * I/O write then space accounting cleanup takes place. It is important
2818 	 * to go ahead free up the space accounting through dbuf_undirty() ->
2819 	 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2820 	 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2821 	 * This can cause an issue with Direct I/O writes in the case of
2822 	 * overwriting the same block, because all DVA allocations are being
2823 	 * done in open-context. Constantly allowing Direct I/O overwrites to
2824 	 * the same block can exhaust the pools available space leading to
2825 	 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2826 	 * will eventually suspend the pool. By cleaning up sapce acccounting
2827 	 * now, the ENOSPC error can be avoided.
2828 	 *
2829 	 * Since we are undirtying the record in open-context, we must have a
2830 	 * hold on the db, so it should never be evicted after calling
2831 	 * dbuf_undirty().
2832 	 */
2833 	VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2834 	ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2835 
2836 	if (db->db_buf != NULL) {
2837 		/*
2838 		 * If there is an associated ARC buffer with this dbuf we can
2839 		 * only destroy it if the previous dirty record does not
2840 		 * reference it.
2841 		 */
2842 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2843 		if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2844 			arc_buf_destroy(db->db_buf, db);
2845 
2846 		/*
2847 		 * Setting the dbuf's data pointers to NULL will force all
2848 		 * future reads down to the devices to get the most up to date
2849 		 * version of the data after a Direct I/O write has completed.
2850 		 */
2851 		db->db_buf = NULL;
2852 		dbuf_clear_data(db);
2853 	}
2854 
2855 	ASSERT3P(db->db_buf, ==, NULL);
2856 	ASSERT3P(db->db.db_data, ==, NULL);
2857 
2858 	db->db_state = DB_NOFILL;
2859 	DTRACE_SET_STATE(db,
2860 	    "allocating NOFILL buffer for clone or direct I/O write");
2861 
2862 	DBUF_VERIFY(db);
2863 	mutex_exit(&db->db_mtx);
2864 
2865 	dbuf_noread(db, DMU_KEEP_CACHING);
2866 	(void) dbuf_dirty(db, tx);
2867 }
2868 
2869 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2870 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2871 {
2872 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2873 
2874 	mutex_enter(&db->db_mtx);
2875 	db->db_state = DB_NOFILL;
2876 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2877 	mutex_exit(&db->db_mtx);
2878 
2879 	dbuf_noread(db, DMU_KEEP_CACHING);
2880 	(void) dbuf_dirty(db, tx);
2881 }
2882 
2883 void
dmu_buf_will_fill_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail,dmu_flags_t flags)2884 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail,
2885     dmu_flags_t flags)
2886 {
2887 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2888 
2889 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2890 	ASSERT(tx->tx_txg != 0);
2891 	ASSERT(db->db_level == 0);
2892 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2893 
2894 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2895 	    dmu_tx_private_ok(tx));
2896 
2897 	mutex_enter(&db->db_mtx);
2898 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2899 	if (db->db_state == DB_NOFILL ||
2900 	    (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2901 		/*
2902 		 * If the fill can fail we should have a way to return back to
2903 		 * the cloned or Direct I/O write data.
2904 		 */
2905 		if (canfail && dr) {
2906 			mutex_exit(&db->db_mtx);
2907 			dmu_buf_will_dirty_flags(db_fake, tx, flags);
2908 			return;
2909 		}
2910 		/*
2911 		 * Block cloning: We will be completely overwriting a block
2912 		 * cloned in this transaction group, so let's undirty the
2913 		 * pending clone and mark the block as uncached. This will be
2914 		 * as if the clone was never done.
2915 		 */
2916 		if (db->db_state == DB_NOFILL) {
2917 			VERIFY(!dbuf_undirty(db, tx));
2918 			db->db_state = DB_UNCACHED;
2919 		}
2920 	}
2921 	mutex_exit(&db->db_mtx);
2922 
2923 	dbuf_noread(db, flags);
2924 	(void) dbuf_dirty(db, tx);
2925 }
2926 
2927 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail)2928 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2929 {
2930 	dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH);
2931 }
2932 
2933 /*
2934  * This function is effectively the same as dmu_buf_will_dirty(), but
2935  * indicates the caller expects raw encrypted data in the db, and provides
2936  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2937  * blkptr_t when this dbuf is written.  This is only used for blocks of
2938  * dnodes, during raw receive.
2939  */
2940 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2941 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2942     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2943 {
2944 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2945 	dbuf_dirty_record_t *dr;
2946 
2947 	/*
2948 	 * dr_has_raw_params is only processed for blocks of dnodes
2949 	 * (see dbuf_sync_dnode_leaf_crypt()).
2950 	 */
2951 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2952 	ASSERT0(db->db_level);
2953 	ASSERT(db->db_objset->os_raw_receive);
2954 
2955 	dmu_buf_will_dirty_flags(db_fake, tx,
2956 	    DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT);
2957 
2958 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2959 
2960 	ASSERT3P(dr, !=, NULL);
2961 	ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2962 
2963 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2964 	dr->dt.dl.dr_byteorder = byteorder;
2965 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2966 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2967 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2968 }
2969 
2970 static void
dbuf_override_impl(dmu_buf_impl_t * db,const blkptr_t * bp,dmu_tx_t * tx)2971 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2972 {
2973 	struct dirty_leaf *dl;
2974 	dbuf_dirty_record_t *dr;
2975 
2976 	ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2977 	ASSERT0(db->db_level);
2978 
2979 	dr = list_head(&db->db_dirty_records);
2980 	ASSERT3P(dr, !=, NULL);
2981 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2982 	dl = &dr->dt.dl;
2983 	ASSERT0(dl->dr_has_raw_params);
2984 	dl->dr_overridden_by = *bp;
2985 	dl->dr_override_state = DR_OVERRIDDEN;
2986 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2987 }
2988 
2989 boolean_t
dmu_buf_fill_done(dmu_buf_t * dbuf,dmu_tx_t * tx,boolean_t failed)2990 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2991 {
2992 	(void) tx;
2993 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2994 	mutex_enter(&db->db_mtx);
2995 	DBUF_VERIFY(db);
2996 
2997 	if (db->db_state == DB_FILL) {
2998 		if (db->db_level == 0 && db->db_freed_in_flight) {
2999 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3000 			/* we were freed while filling */
3001 			/* XXX dbuf_undirty? */
3002 			memset(db->db.db_data, 0, db->db.db_size);
3003 			db->db_freed_in_flight = FALSE;
3004 			db->db_state = DB_CACHED;
3005 			DTRACE_SET_STATE(db,
3006 			    "fill done handling freed in flight");
3007 			failed = B_FALSE;
3008 		} else if (failed) {
3009 			VERIFY(!dbuf_undirty(db, tx));
3010 			arc_buf_destroy(db->db_buf, db);
3011 			db->db_buf = NULL;
3012 			dbuf_clear_data(db);
3013 			DTRACE_SET_STATE(db, "fill failed");
3014 		} else {
3015 			db->db_state = DB_CACHED;
3016 			DTRACE_SET_STATE(db, "fill done");
3017 		}
3018 		cv_broadcast(&db->db_changed);
3019 	} else {
3020 		db->db_state = DB_CACHED;
3021 		failed = B_FALSE;
3022 	}
3023 	mutex_exit(&db->db_mtx);
3024 	return (failed);
3025 }
3026 
3027 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)3028 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3029     bp_embedded_type_t etype, enum zio_compress comp,
3030     int uncompressed_size, int compressed_size, int byteorder,
3031     dmu_tx_t *tx)
3032 {
3033 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3034 	struct dirty_leaf *dl;
3035 	dmu_object_type_t type;
3036 	dbuf_dirty_record_t *dr;
3037 
3038 	if (etype == BP_EMBEDDED_TYPE_DATA) {
3039 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3040 		    SPA_FEATURE_EMBEDDED_DATA));
3041 	}
3042 
3043 	DB_DNODE_ENTER(db);
3044 	type = DB_DNODE(db)->dn_type;
3045 	DB_DNODE_EXIT(db);
3046 
3047 	ASSERT0(db->db_level);
3048 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3049 
3050 	dmu_buf_will_not_fill(dbuf, tx);
3051 
3052 	dr = list_head(&db->db_dirty_records);
3053 	ASSERT3P(dr, !=, NULL);
3054 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3055 	dl = &dr->dt.dl;
3056 	ASSERT0(dl->dr_has_raw_params);
3057 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
3058 	    data, comp, uncompressed_size, compressed_size);
3059 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3060 	BP_SET_TYPE(&dl->dr_overridden_by, type);
3061 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3062 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3063 
3064 	dl->dr_override_state = DR_OVERRIDDEN;
3065 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3066 }
3067 
3068 void
dmu_buf_redact(dmu_buf_t * dbuf,dmu_tx_t * tx)3069 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3070 {
3071 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3072 	dmu_object_type_t type;
3073 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3074 	    SPA_FEATURE_REDACTED_DATASETS));
3075 
3076 	DB_DNODE_ENTER(db);
3077 	type = DB_DNODE(db)->dn_type;
3078 	DB_DNODE_EXIT(db);
3079 
3080 	ASSERT0(db->db_level);
3081 	dmu_buf_will_not_fill(dbuf, tx);
3082 
3083 	blkptr_t bp = { { { {0} } } };
3084 	BP_SET_TYPE(&bp, type);
3085 	BP_SET_LEVEL(&bp, 0);
3086 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3087 	BP_SET_REDACTED(&bp);
3088 	BPE_SET_LSIZE(&bp, dbuf->db_size);
3089 
3090 	dbuf_override_impl(db, &bp, tx);
3091 }
3092 
3093 /*
3094  * Directly assign a provided arc buf to a given dbuf if it's not referenced
3095  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3096  */
3097 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)3098 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx,
3099     dmu_flags_t flags)
3100 {
3101 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3102 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3103 	ASSERT(db->db_level == 0);
3104 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3105 	ASSERT(buf != NULL);
3106 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3107 	ASSERT(tx->tx_txg != 0);
3108 
3109 	arc_return_buf(buf, db);
3110 	ASSERT(arc_released(buf));
3111 
3112 	mutex_enter(&db->db_mtx);
3113 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
3114 		db->db_pending_evict = B_FALSE;
3115 	db->db_partial_read = B_FALSE;
3116 
3117 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
3118 		cv_wait(&db->db_changed, &db->db_mtx);
3119 
3120 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3121 	    db->db_state == DB_NOFILL);
3122 
3123 	if (db->db_state == DB_CACHED &&
3124 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3125 		/*
3126 		 * In practice, we will never have a case where we have an
3127 		 * encrypted arc buffer while additional holds exist on the
3128 		 * dbuf. We don't handle this here so we simply assert that
3129 		 * fact instead.
3130 		 */
3131 		ASSERT(!arc_is_encrypted(buf));
3132 		mutex_exit(&db->db_mtx);
3133 		(void) dbuf_dirty(db, tx);
3134 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3135 		arc_buf_destroy(buf, db);
3136 		return;
3137 	}
3138 
3139 	if (db->db_state == DB_CACHED) {
3140 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3141 
3142 		ASSERT(db->db_buf != NULL);
3143 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3144 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
3145 
3146 			if (!arc_released(db->db_buf)) {
3147 				ASSERT(dr->dt.dl.dr_override_state ==
3148 				    DR_OVERRIDDEN);
3149 				arc_release(db->db_buf, db);
3150 			}
3151 			dr->dt.dl.dr_data = buf;
3152 			arc_buf_destroy(db->db_buf, db);
3153 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3154 			arc_release(db->db_buf, db);
3155 			arc_buf_destroy(db->db_buf, db);
3156 		}
3157 		db->db_buf = NULL;
3158 	} else if (db->db_state == DB_NOFILL) {
3159 		/*
3160 		 * We will be completely replacing the cloned block.  In case
3161 		 * it was cloned in this transaction group, let's undirty the
3162 		 * pending clone and mark the block as uncached. This will be
3163 		 * as if the clone was never done.
3164 		 */
3165 		VERIFY(!dbuf_undirty(db, tx));
3166 		db->db_state = DB_UNCACHED;
3167 	}
3168 	ASSERT(db->db_buf == NULL);
3169 	dbuf_set_data(db, buf);
3170 	db->db_state = DB_FILL;
3171 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
3172 	mutex_exit(&db->db_mtx);
3173 	(void) dbuf_dirty(db, tx);
3174 	dmu_buf_fill_done(&db->db, tx, B_FALSE);
3175 }
3176 
3177 void
dbuf_destroy(dmu_buf_impl_t * db)3178 dbuf_destroy(dmu_buf_impl_t *db)
3179 {
3180 	dnode_t *dn;
3181 	dmu_buf_impl_t *parent = db->db_parent;
3182 	dmu_buf_impl_t *dndb;
3183 
3184 	ASSERT(MUTEX_HELD(&db->db_mtx));
3185 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3186 
3187 	if (db->db_buf != NULL) {
3188 		arc_buf_destroy(db->db_buf, db);
3189 		db->db_buf = NULL;
3190 	}
3191 
3192 	if (db->db_blkid == DMU_BONUS_BLKID) {
3193 		int slots = DB_DNODE(db)->dn_num_slots;
3194 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3195 		if (db->db.db_data != NULL) {
3196 			kmem_free(db->db.db_data, bonuslen);
3197 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3198 			db->db_state = DB_UNCACHED;
3199 			DTRACE_SET_STATE(db, "buffer cleared");
3200 		}
3201 	}
3202 
3203 	dbuf_clear_data(db);
3204 
3205 	if (multilist_link_active(&db->db_cache_link)) {
3206 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3207 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3208 
3209 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3210 
3211 		ASSERT0(dmu_buf_user_size(&db->db));
3212 		(void) zfs_refcount_remove_many(
3213 		    &dbuf_caches[db->db_caching_status].size,
3214 		    db->db.db_size, db);
3215 
3216 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3217 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3218 		} else {
3219 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3220 			DBUF_STAT_BUMPDOWN(cache_count);
3221 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3222 			    db->db.db_size);
3223 		}
3224 		db->db_caching_status = DB_NO_CACHE;
3225 	}
3226 
3227 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3228 	ASSERT(db->db_data_pending == NULL);
3229 	ASSERT(list_is_empty(&db->db_dirty_records));
3230 
3231 	db->db_state = DB_EVICTING;
3232 	DTRACE_SET_STATE(db, "buffer eviction started");
3233 	db->db_blkptr = NULL;
3234 
3235 	/*
3236 	 * Now that db_state is DB_EVICTING, nobody else can find this via
3237 	 * the hash table.  We can now drop db_mtx, which allows us to
3238 	 * acquire the dn_dbufs_mtx.
3239 	 */
3240 	mutex_exit(&db->db_mtx);
3241 
3242 	DB_DNODE_ENTER(db);
3243 	dn = DB_DNODE(db);
3244 	dndb = dn->dn_dbuf;
3245 	if (db->db_blkid != DMU_BONUS_BLKID) {
3246 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3247 		if (needlock)
3248 			mutex_enter_nested(&dn->dn_dbufs_mtx,
3249 			    NESTED_SINGLE);
3250 		avl_remove(&dn->dn_dbufs, db);
3251 		membar_producer();
3252 		DB_DNODE_EXIT(db);
3253 		if (needlock)
3254 			mutex_exit(&dn->dn_dbufs_mtx);
3255 		/*
3256 		 * Decrementing the dbuf count means that the hold corresponding
3257 		 * to the removed dbuf is no longer discounted in dnode_move(),
3258 		 * so the dnode cannot be moved until after we release the hold.
3259 		 * The membar_producer() ensures visibility of the decremented
3260 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3261 		 * release any lock.
3262 		 */
3263 		mutex_enter(&dn->dn_mtx);
3264 		dnode_rele_and_unlock(dn, db, B_TRUE);
3265 #ifdef USE_DNODE_HANDLE
3266 		db->db_dnode_handle = NULL;
3267 #else
3268 		db->db_dnode = NULL;
3269 #endif
3270 
3271 		dbuf_hash_remove(db);
3272 	} else {
3273 		DB_DNODE_EXIT(db);
3274 	}
3275 
3276 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3277 
3278 	db->db_parent = NULL;
3279 
3280 	ASSERT(db->db_buf == NULL);
3281 	ASSERT(db->db.db_data == NULL);
3282 	ASSERT(db->db_hash_next == NULL);
3283 	ASSERT(db->db_blkptr == NULL);
3284 	ASSERT(db->db_data_pending == NULL);
3285 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3286 	ASSERT(!multilist_link_active(&db->db_cache_link));
3287 
3288 	/*
3289 	 * If this dbuf is referenced from an indirect dbuf,
3290 	 * decrement the ref count on the indirect dbuf.
3291 	 */
3292 	if (parent && parent != dndb) {
3293 		mutex_enter(&parent->db_mtx);
3294 		dbuf_rele_and_unlock(parent, db, B_TRUE);
3295 	}
3296 
3297 	kmem_cache_free(dbuf_kmem_cache, db);
3298 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3299 }
3300 
3301 /*
3302  * Note: While bpp will always be updated if the function returns success,
3303  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3304  * this happens when the dnode is the meta-dnode, or {user|group|project}used
3305  * object.
3306  */
3307 __attribute__((always_inline))
3308 static inline int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)3309 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3310     dmu_buf_impl_t **parentp, blkptr_t **bpp)
3311 {
3312 	*parentp = NULL;
3313 	*bpp = NULL;
3314 
3315 	ASSERT(blkid != DMU_BONUS_BLKID);
3316 
3317 	if (blkid == DMU_SPILL_BLKID) {
3318 		mutex_enter(&dn->dn_mtx);
3319 		if (dn->dn_have_spill &&
3320 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3321 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3322 		else
3323 			*bpp = NULL;
3324 		dbuf_add_ref(dn->dn_dbuf, NULL);
3325 		*parentp = dn->dn_dbuf;
3326 		mutex_exit(&dn->dn_mtx);
3327 		return (0);
3328 	}
3329 
3330 	int nlevels =
3331 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3332 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3333 
3334 	ASSERT3U(level * epbs, <, 64);
3335 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3336 	/*
3337 	 * This assertion shouldn't trip as long as the max indirect block size
3338 	 * is less than 1M.  The reason for this is that up to that point,
3339 	 * the number of levels required to address an entire object with blocks
3340 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3341 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3342 	 * (i.e. we can address the entire object), objects will all use at most
3343 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3344 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3345 	 * enough to address an entire object, so objects will have 5 levels,
3346 	 * but then this assertion will overflow.
3347 	 *
3348 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3349 	 * need to redo this logic to handle overflows.
3350 	 */
3351 	ASSERT(level >= nlevels ||
3352 	    ((nlevels - level - 1) * epbs) +
3353 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3354 	if (level >= nlevels ||
3355 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3356 	    ((nlevels - level - 1) * epbs)) ||
3357 	    (fail_sparse &&
3358 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3359 		/* the buffer has no parent yet */
3360 		return (SET_ERROR(ENOENT));
3361 	} else if (level < nlevels-1) {
3362 		/* this block is referenced from an indirect block */
3363 		int err;
3364 
3365 		err = dbuf_hold_impl(dn, level + 1,
3366 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3367 
3368 		if (err)
3369 			return (err);
3370 		err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL |
3371 		    DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH);
3372 		if (err) {
3373 			dbuf_rele(*parentp, NULL);
3374 			*parentp = NULL;
3375 			return (err);
3376 		}
3377 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3378 		    (blkid & ((1ULL << epbs) - 1));
3379 		return (0);
3380 	} else {
3381 		/* the block is referenced from the dnode */
3382 		ASSERT3U(level, ==, nlevels-1);
3383 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3384 		    blkid < dn->dn_phys->dn_nblkptr);
3385 		if (dn->dn_dbuf) {
3386 			dbuf_add_ref(dn->dn_dbuf, NULL);
3387 			*parentp = dn->dn_dbuf;
3388 		}
3389 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3390 		return (0);
3391 	}
3392 }
3393 
3394 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr,uint64_t hash)3395 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3396     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3397 {
3398 	objset_t *os = dn->dn_objset;
3399 	dmu_buf_impl_t *db, *odb;
3400 
3401 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3402 	ASSERT(dn->dn_type != DMU_OT_NONE);
3403 
3404 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3405 
3406 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3407 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3408 
3409 	db->db_objset = os;
3410 	db->db.db_object = dn->dn_object;
3411 	db->db_level = level;
3412 	db->db_blkid = blkid;
3413 	db->db_dirtycnt = 0;
3414 #ifdef USE_DNODE_HANDLE
3415 	db->db_dnode_handle = dn->dn_handle;
3416 #else
3417 	db->db_dnode = dn;
3418 #endif
3419 	db->db_parent = parent;
3420 	db->db_blkptr = blkptr;
3421 	db->db_hash = hash;
3422 
3423 	db->db_user = NULL;
3424 	db->db_user_immediate_evict = FALSE;
3425 	db->db_freed_in_flight = FALSE;
3426 	db->db_pending_evict = TRUE;
3427 	db->db_partial_read = FALSE;
3428 
3429 	if (blkid == DMU_BONUS_BLKID) {
3430 		ASSERT3P(parent, ==, dn->dn_dbuf);
3431 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3432 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3433 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3434 		db->db.db_offset = DMU_BONUS_BLKID;
3435 		db->db_state = DB_UNCACHED;
3436 		DTRACE_SET_STATE(db, "bonus buffer created");
3437 		db->db_caching_status = DB_NO_CACHE;
3438 		/* the bonus dbuf is not placed in the hash table */
3439 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3440 		return (db);
3441 	} else if (blkid == DMU_SPILL_BLKID) {
3442 		db->db.db_size = (blkptr != NULL) ?
3443 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3444 		db->db.db_offset = 0;
3445 	} else {
3446 		int blocksize =
3447 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3448 		db->db.db_size = blocksize;
3449 		db->db.db_offset = db->db_blkid * blocksize;
3450 	}
3451 
3452 	/*
3453 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3454 	 * in the hash table *and* added to the dbufs list.
3455 	 * This prevents a possible deadlock with someone
3456 	 * trying to look up this dbuf before it's added to the
3457 	 * dn_dbufs list.
3458 	 */
3459 	mutex_enter(&dn->dn_dbufs_mtx);
3460 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3461 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3462 		/* someone else inserted it first */
3463 		mutex_exit(&dn->dn_dbufs_mtx);
3464 		kmem_cache_free(dbuf_kmem_cache, db);
3465 		DBUF_STAT_BUMP(hash_insert_race);
3466 		return (odb);
3467 	}
3468 	avl_add(&dn->dn_dbufs, db);
3469 
3470 	db->db_state = DB_UNCACHED;
3471 	DTRACE_SET_STATE(db, "regular buffer created");
3472 	db->db_caching_status = DB_NO_CACHE;
3473 	mutex_exit(&dn->dn_dbufs_mtx);
3474 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3475 
3476 	if (parent && parent != dn->dn_dbuf)
3477 		dbuf_add_ref(parent, db);
3478 
3479 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3480 	    zfs_refcount_count(&dn->dn_holds) > 0);
3481 	(void) zfs_refcount_add(&dn->dn_holds, db);
3482 
3483 	dprintf_dbuf(db, "db=%p\n", db);
3484 
3485 	return (db);
3486 }
3487 
3488 /*
3489  * This function returns a block pointer and information about the object,
3490  * given a dnode and a block.  This is a publicly accessible version of
3491  * dbuf_findbp that only returns some information, rather than the
3492  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3493  * should be locked as (at least) a reader.
3494  */
3495 int
dbuf_dnode_findbp(dnode_t * dn,uint64_t level,uint64_t blkid,blkptr_t * bp,uint16_t * datablkszsec,uint8_t * indblkshift)3496 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3497     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3498 {
3499 	dmu_buf_impl_t *dbp = NULL;
3500 	blkptr_t *bp2;
3501 	int err = 0;
3502 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3503 
3504 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3505 	if (err == 0) {
3506 		ASSERT3P(bp2, !=, NULL);
3507 		*bp = *bp2;
3508 		if (dbp != NULL)
3509 			dbuf_rele(dbp, NULL);
3510 		if (datablkszsec != NULL)
3511 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3512 		if (indblkshift != NULL)
3513 			*indblkshift = dn->dn_phys->dn_indblkshift;
3514 	}
3515 
3516 	return (err);
3517 }
3518 
3519 typedef struct dbuf_prefetch_arg {
3520 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3521 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3522 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3523 	int dpa_curlevel; /* The current level that we're reading */
3524 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3525 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3526 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3527 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3528 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3529 	void *dpa_arg; /* prefetch completion arg */
3530 } dbuf_prefetch_arg_t;
3531 
3532 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)3533 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3534 {
3535 	if (dpa->dpa_cb != NULL) {
3536 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3537 		    dpa->dpa_zb.zb_blkid, io_done);
3538 	}
3539 	kmem_free(dpa, sizeof (*dpa));
3540 }
3541 
3542 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3543 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3544     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3545 {
3546 	(void) zio, (void) zb, (void) iobp;
3547 	dbuf_prefetch_arg_t *dpa = private;
3548 
3549 	if (abuf != NULL)
3550 		arc_buf_destroy(abuf, private);
3551 
3552 	dbuf_prefetch_fini(dpa, B_TRUE);
3553 }
3554 
3555 /*
3556  * Actually issue the prefetch read for the block given.
3557  */
3558 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)3559 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3560 {
3561 	ASSERT(!BP_IS_HOLE(bp));
3562 	ASSERT(!BP_IS_REDACTED(bp));
3563 	if (BP_IS_EMBEDDED(bp))
3564 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3565 
3566 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3567 	arc_flags_t aflags =
3568 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3569 	    ARC_FLAG_NO_BUF;
3570 
3571 	/* dnodes are always read as raw and then converted later */
3572 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3573 	    dpa->dpa_curlevel == 0)
3574 		zio_flags |= ZIO_FLAG_RAW;
3575 
3576 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3577 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3578 	ASSERT(dpa->dpa_zio != NULL);
3579 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3580 	    dbuf_issue_final_prefetch_done, dpa,
3581 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3582 }
3583 
3584 /*
3585  * Called when an indirect block above our prefetch target is read in.  This
3586  * will either read in the next indirect block down the tree or issue the actual
3587  * prefetch if the next block down is our target.
3588  */
3589 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3590 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3591     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3592 {
3593 	(void) zb, (void) iobp;
3594 	dbuf_prefetch_arg_t *dpa = private;
3595 
3596 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3597 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3598 
3599 	if (abuf == NULL) {
3600 		ASSERT(zio == NULL || zio->io_error != 0);
3601 		dbuf_prefetch_fini(dpa, B_TRUE);
3602 		return;
3603 	}
3604 	ASSERT(zio == NULL || zio->io_error == 0);
3605 
3606 	/*
3607 	 * The dpa_dnode is only valid if we are called with a NULL
3608 	 * zio. This indicates that the arc_read() returned without
3609 	 * first calling zio_read() to issue a physical read. Once
3610 	 * a physical read is made the dpa_dnode must be invalidated
3611 	 * as the locks guarding it may have been dropped. If the
3612 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3613 	 * cache. To do so, we must hold the dbuf associated with the block
3614 	 * we just prefetched, read its contents so that we associate it
3615 	 * with an arc_buf_t, and then release it.
3616 	 */
3617 	if (zio != NULL) {
3618 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3619 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3620 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3621 		} else {
3622 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3623 		}
3624 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3625 
3626 		dpa->dpa_dnode = NULL;
3627 	} else if (dpa->dpa_dnode != NULL) {
3628 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3629 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3630 		    dpa->dpa_zb.zb_level));
3631 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3632 		    dpa->dpa_curlevel, curblkid, FTAG);
3633 		if (db == NULL) {
3634 			arc_buf_destroy(abuf, private);
3635 			dbuf_prefetch_fini(dpa, B_TRUE);
3636 			return;
3637 		}
3638 		(void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
3639 		    DMU_READ_NO_PREFETCH);
3640 		dbuf_rele(db, FTAG);
3641 	}
3642 
3643 	dpa->dpa_curlevel--;
3644 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3645 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3646 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3647 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3648 
3649 	ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL ||
3650 	    dsl_dataset_feature_is_active(
3651 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3652 	    SPA_FEATURE_REDACTED_DATASETS));
3653 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3654 		arc_buf_destroy(abuf, private);
3655 		dbuf_prefetch_fini(dpa, B_TRUE);
3656 		return;
3657 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3658 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3659 		dbuf_issue_final_prefetch(dpa, bp);
3660 	} else {
3661 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3662 		zbookmark_phys_t zb;
3663 
3664 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3665 		if (dpa->dpa_dnode) {
3666 			if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode,
3667 			    dpa->dpa_curlevel))
3668 				iter_aflags |= ARC_FLAG_L2CACHE;
3669 		} else {
3670 			if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3671 				iter_aflags |= ARC_FLAG_L2CACHE;
3672 		}
3673 
3674 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3675 
3676 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3677 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3678 
3679 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3680 		    bp, dbuf_prefetch_indirect_done, dpa,
3681 		    ZIO_PRIORITY_SYNC_READ,
3682 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3683 		    &iter_aflags, &zb);
3684 	}
3685 
3686 	arc_buf_destroy(abuf, private);
3687 }
3688 
3689 /*
3690  * Issue prefetch reads for the given block on the given level.  If the indirect
3691  * blocks above that block are not in memory, we will read them in
3692  * asynchronously.  As a result, this call never blocks waiting for a read to
3693  * complete. Note that the prefetch might fail if the dataset is encrypted and
3694  * the encryption key is unmapped before the IO completes.
3695  */
3696 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)3697 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3698     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3699     void *arg)
3700 {
3701 	blkptr_t bp;
3702 	int epbs, nlevels, curlevel;
3703 	uint64_t curblkid;
3704 
3705 	ASSERT(blkid != DMU_BONUS_BLKID);
3706 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3707 
3708 	if (blkid > dn->dn_maxblkid)
3709 		goto no_issue;
3710 
3711 	if (level == 0 && dnode_block_freed(dn, blkid))
3712 		goto no_issue;
3713 
3714 	/*
3715 	 * This dnode hasn't been written to disk yet, so there's nothing to
3716 	 * prefetch.
3717 	 */
3718 	nlevels = dn->dn_phys->dn_nlevels;
3719 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3720 		goto no_issue;
3721 
3722 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3723 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3724 		goto no_issue;
3725 
3726 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3727 	    level, blkid, NULL);
3728 	if (db != NULL) {
3729 		mutex_exit(&db->db_mtx);
3730 		/*
3731 		 * This dbuf already exists.  It is either CACHED, or
3732 		 * (we assume) about to be read or filled.
3733 		 */
3734 		goto no_issue;
3735 	}
3736 
3737 	/*
3738 	 * Find the closest ancestor (indirect block) of the target block
3739 	 * that is present in the cache.  In this indirect block, we will
3740 	 * find the bp that is at curlevel, curblkid.
3741 	 */
3742 	curlevel = level;
3743 	curblkid = blkid;
3744 	while (curlevel < nlevels - 1) {
3745 		int parent_level = curlevel + 1;
3746 		uint64_t parent_blkid = curblkid >> epbs;
3747 		dmu_buf_impl_t *db;
3748 
3749 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3750 		    FALSE, TRUE, FTAG, &db) == 0) {
3751 			blkptr_t *bpp = db->db_buf->b_data;
3752 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3753 			dbuf_rele(db, FTAG);
3754 			break;
3755 		}
3756 
3757 		curlevel = parent_level;
3758 		curblkid = parent_blkid;
3759 	}
3760 
3761 	if (curlevel == nlevels - 1) {
3762 		/* No cached indirect blocks found. */
3763 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3764 		bp = dn->dn_phys->dn_blkptr[curblkid];
3765 	}
3766 	ASSERT(!BP_IS_REDACTED(&bp) ||
3767 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3768 	    SPA_FEATURE_REDACTED_DATASETS));
3769 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3770 		goto no_issue;
3771 
3772 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3773 
3774 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3775 	    ZIO_FLAG_CANFAIL);
3776 
3777 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3778 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3779 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3780 	    dn->dn_object, level, blkid);
3781 	dpa->dpa_curlevel = curlevel;
3782 	dpa->dpa_prio = prio;
3783 	dpa->dpa_aflags = aflags;
3784 	dpa->dpa_spa = dn->dn_objset->os_spa;
3785 	dpa->dpa_dnode = dn;
3786 	dpa->dpa_epbs = epbs;
3787 	dpa->dpa_zio = pio;
3788 	dpa->dpa_cb = cb;
3789 	dpa->dpa_arg = arg;
3790 
3791 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3792 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3793 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3794 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3795 
3796 	/*
3797 	 * If we have the indirect just above us, no need to do the asynchronous
3798 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3799 	 * a higher level, though, we want to issue the prefetches for all the
3800 	 * indirect blocks asynchronously, so we can go on with whatever we were
3801 	 * doing.
3802 	 */
3803 	if (curlevel == level) {
3804 		ASSERT3U(curblkid, ==, blkid);
3805 		dbuf_issue_final_prefetch(dpa, &bp);
3806 	} else {
3807 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3808 		zbookmark_phys_t zb;
3809 
3810 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3811 		if (dnode_level_is_l2cacheable(&bp, dn, curlevel))
3812 			iter_aflags |= ARC_FLAG_L2CACHE;
3813 
3814 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3815 		    dn->dn_object, curlevel, curblkid);
3816 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3817 		    &bp, dbuf_prefetch_indirect_done, dpa,
3818 		    ZIO_PRIORITY_SYNC_READ,
3819 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3820 		    &iter_aflags, &zb);
3821 	}
3822 	/*
3823 	 * We use pio here instead of dpa_zio since it's possible that
3824 	 * dpa may have already been freed.
3825 	 */
3826 	zio_nowait(pio);
3827 	return (1);
3828 no_issue:
3829 	if (cb != NULL)
3830 		cb(arg, level, blkid, B_FALSE);
3831 	return (0);
3832 }
3833 
3834 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)3835 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3836     arc_flags_t aflags)
3837 {
3838 
3839 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3840 }
3841 
3842 /*
3843  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3844  * the case of encrypted, compressed and uncompressed buffers by
3845  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3846  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3847  *
3848  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3849  */
3850 noinline static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db)3851 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3852 {
3853 	dbuf_dirty_record_t *dr = db->db_data_pending;
3854 	arc_buf_t *data = dr->dt.dl.dr_data;
3855 	arc_buf_t *db_data;
3856 	enum zio_compress compress_type = arc_get_compression(data);
3857 	uint8_t complevel = arc_get_complevel(data);
3858 
3859 	if (arc_is_encrypted(data)) {
3860 		boolean_t byteorder;
3861 		uint8_t salt[ZIO_DATA_SALT_LEN];
3862 		uint8_t iv[ZIO_DATA_IV_LEN];
3863 		uint8_t mac[ZIO_DATA_MAC_LEN];
3864 
3865 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3866 		db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3867 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3868 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3869 		    compress_type, complevel);
3870 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3871 		db_data = arc_alloc_compressed_buf(
3872 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3873 		    arc_buf_lsize(data), compress_type, complevel);
3874 	} else {
3875 		db_data = arc_alloc_buf(dn->dn_objset->os_spa, db,
3876 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size);
3877 	}
3878 	memcpy(db_data->b_data, data->b_data, arc_buf_size(data));
3879 
3880 	dbuf_set_data(db, db_data);
3881 }
3882 
3883 /*
3884  * Returns with db_holds incremented, and db_mtx not held.
3885  * Note: dn_struct_rwlock must be held.
3886  */
3887 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,const void * tag,dmu_buf_impl_t ** dbp)3888 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3889     boolean_t fail_sparse, boolean_t fail_uncached,
3890     const void *tag, dmu_buf_impl_t **dbp)
3891 {
3892 	dmu_buf_impl_t *db, *parent = NULL;
3893 	uint64_t hv;
3894 
3895 	/* If the pool has been created, verify the tx_sync_lock is not held */
3896 	spa_t *spa = dn->dn_objset->os_spa;
3897 	dsl_pool_t *dp = spa->spa_dsl_pool;
3898 	if (dp != NULL) {
3899 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3900 	}
3901 
3902 	ASSERT(blkid != DMU_BONUS_BLKID);
3903 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3904 	if (!fail_sparse)
3905 		ASSERT3U(dn->dn_nlevels, >, level);
3906 
3907 	*dbp = NULL;
3908 
3909 	/* dbuf_find() returns with db_mtx held */
3910 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3911 
3912 	if (db == NULL) {
3913 		blkptr_t *bp = NULL;
3914 		int err;
3915 
3916 		if (fail_uncached)
3917 			return (SET_ERROR(ENOENT));
3918 
3919 		ASSERT3P(parent, ==, NULL);
3920 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3921 		if (fail_sparse) {
3922 			if (err == 0 && bp && BP_IS_HOLE(bp))
3923 				err = SET_ERROR(ENOENT);
3924 			if (err) {
3925 				if (parent)
3926 					dbuf_rele(parent, NULL);
3927 				return (err);
3928 			}
3929 		}
3930 		if (err && err != ENOENT)
3931 			return (err);
3932 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3933 	}
3934 
3935 	if (fail_uncached && db->db_state != DB_CACHED) {
3936 		mutex_exit(&db->db_mtx);
3937 		return (SET_ERROR(ENOENT));
3938 	}
3939 
3940 	if (db->db_buf != NULL) {
3941 		arc_buf_access(db->db_buf);
3942 		ASSERT(MUTEX_HELD(&db->db_mtx));
3943 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3944 	}
3945 
3946 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3947 
3948 	/*
3949 	 * If this buffer is currently syncing out, and we are
3950 	 * still referencing it from db_data, we need to make a copy
3951 	 * of it in case we decide we want to dirty it again in this txg.
3952 	 */
3953 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3954 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3955 	    db->db_state == DB_CACHED && db->db_data_pending) {
3956 		dbuf_dirty_record_t *dr = db->db_data_pending;
3957 		if (dr->dt.dl.dr_data == db->db_buf) {
3958 			ASSERT3P(db->db_buf, !=, NULL);
3959 			dbuf_hold_copy(dn, db);
3960 		}
3961 	}
3962 
3963 	if (multilist_link_active(&db->db_cache_link)) {
3964 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3965 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3966 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3967 
3968 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3969 
3970 		uint64_t size = db->db.db_size;
3971 		uint64_t usize = dmu_buf_user_size(&db->db);
3972 		(void) zfs_refcount_remove_many(
3973 		    &dbuf_caches[db->db_caching_status].size, size, db);
3974 		(void) zfs_refcount_remove_many(
3975 		    &dbuf_caches[db->db_caching_status].size, usize,
3976 		    db->db_user);
3977 
3978 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3979 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3980 		} else {
3981 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3982 			DBUF_STAT_BUMPDOWN(cache_count);
3983 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3984 			    size + usize);
3985 		}
3986 		db->db_caching_status = DB_NO_CACHE;
3987 	}
3988 	(void) zfs_refcount_add(&db->db_holds, tag);
3989 	DBUF_VERIFY(db);
3990 	mutex_exit(&db->db_mtx);
3991 
3992 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3993 	if (parent)
3994 		dbuf_rele(parent, NULL);
3995 
3996 	ASSERT3P(DB_DNODE(db), ==, dn);
3997 	ASSERT3U(db->db_blkid, ==, blkid);
3998 	ASSERT3U(db->db_level, ==, level);
3999 	*dbp = db;
4000 
4001 	return (0);
4002 }
4003 
4004 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,const void * tag)4005 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
4006 {
4007 	return (dbuf_hold_level(dn, 0, blkid, tag));
4008 }
4009 
4010 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,const void * tag)4011 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4012 {
4013 	dmu_buf_impl_t *db;
4014 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4015 	return (err ? NULL : db);
4016 }
4017 
4018 void
dbuf_create_bonus(dnode_t * dn)4019 dbuf_create_bonus(dnode_t *dn)
4020 {
4021 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4022 
4023 	ASSERT(dn->dn_bonus == NULL);
4024 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4025 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4026 	dn->dn_bonus->db_pending_evict = FALSE;
4027 }
4028 
4029 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)4030 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4031 {
4032 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4033 
4034 	if (db->db_blkid != DMU_SPILL_BLKID)
4035 		return (SET_ERROR(ENOTSUP));
4036 	if (blksz == 0)
4037 		blksz = SPA_MINBLOCKSIZE;
4038 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4039 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4040 
4041 	dbuf_new_size(db, blksz, tx);
4042 
4043 	return (0);
4044 }
4045 
4046 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)4047 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4048 {
4049 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4050 }
4051 
4052 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4053 void
dbuf_add_ref(dmu_buf_impl_t * db,const void * tag)4054 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4055 {
4056 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4057 	VERIFY3S(holds, >, 1);
4058 }
4059 
4060 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4061 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,const void * tag)4062 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4063     const void *tag)
4064 {
4065 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4066 	dmu_buf_impl_t *found_db;
4067 	boolean_t result = B_FALSE;
4068 
4069 	if (blkid == DMU_BONUS_BLKID)
4070 		found_db = dbuf_find_bonus(os, obj);
4071 	else
4072 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
4073 
4074 	if (found_db != NULL) {
4075 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4076 			(void) zfs_refcount_add(&db->db_holds, tag);
4077 			result = B_TRUE;
4078 		}
4079 		mutex_exit(&found_db->db_mtx);
4080 	}
4081 	return (result);
4082 }
4083 
4084 /*
4085  * If you call dbuf_rele() you had better not be referencing the dnode handle
4086  * unless you have some other direct or indirect hold on the dnode. (An indirect
4087  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4088  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4089  * dnode's parent dbuf evicting its dnode handles.
4090  */
4091 void
dbuf_rele(dmu_buf_impl_t * db,const void * tag)4092 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4093 {
4094 	mutex_enter(&db->db_mtx);
4095 	dbuf_rele_and_unlock(db, tag, B_FALSE);
4096 }
4097 
4098 void
dmu_buf_rele(dmu_buf_t * db,const void * tag)4099 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4100 {
4101 	dbuf_rele((dmu_buf_impl_t *)db, tag);
4102 }
4103 
4104 /*
4105  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
4106  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
4107  * argument should be set if we are already in the dbuf-evicting code
4108  * path, in which case we don't want to recursively evict.  This allows us to
4109  * avoid deeply nested stacks that would have a call flow similar to this:
4110  *
4111  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4112  *	^						|
4113  *	|						|
4114  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
4115  *
4116  */
4117 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,const void * tag,boolean_t evicting)4118 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4119 {
4120 	int64_t holds;
4121 	uint64_t size;
4122 
4123 	ASSERT(MUTEX_HELD(&db->db_mtx));
4124 	DBUF_VERIFY(db);
4125 
4126 	/*
4127 	 * Remove the reference to the dbuf before removing its hold on the
4128 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
4129 	 * buffer has a corresponding dnode hold.
4130 	 */
4131 	holds = zfs_refcount_remove(&db->db_holds, tag);
4132 	ASSERT(holds >= 0);
4133 
4134 	/*
4135 	 * We can't freeze indirects if there is a possibility that they
4136 	 * may be modified in the current syncing context.
4137 	 */
4138 	if (db->db_buf != NULL &&
4139 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4140 		arc_buf_freeze(db->db_buf);
4141 	}
4142 
4143 	if (holds == db->db_dirtycnt &&
4144 	    db->db_level == 0 && db->db_user_immediate_evict)
4145 		dbuf_evict_user(db);
4146 
4147 	if (holds == 0) {
4148 		if (db->db_blkid == DMU_BONUS_BLKID) {
4149 			dnode_t *dn;
4150 			boolean_t evict_dbuf = db->db_pending_evict;
4151 
4152 			/*
4153 			 * If the dnode moves here, we cannot cross this
4154 			 * barrier until the move completes.
4155 			 */
4156 			DB_DNODE_ENTER(db);
4157 
4158 			dn = DB_DNODE(db);
4159 			atomic_dec_32(&dn->dn_dbufs_count);
4160 
4161 			/*
4162 			 * Decrementing the dbuf count means that the bonus
4163 			 * buffer's dnode hold is no longer discounted in
4164 			 * dnode_move(). The dnode cannot move until after
4165 			 * the dnode_rele() below.
4166 			 */
4167 			DB_DNODE_EXIT(db);
4168 
4169 			/*
4170 			 * Do not reference db after its lock is dropped.
4171 			 * Another thread may evict it.
4172 			 */
4173 			mutex_exit(&db->db_mtx);
4174 
4175 			if (evict_dbuf)
4176 				dnode_evict_bonus(dn);
4177 
4178 			dnode_rele(dn, db);
4179 		} else if (db->db_buf == NULL) {
4180 			/*
4181 			 * This is a special case: we never associated this
4182 			 * dbuf with any data allocated from the ARC.
4183 			 */
4184 			ASSERT(db->db_state == DB_UNCACHED ||
4185 			    db->db_state == DB_NOFILL);
4186 			dbuf_destroy(db);
4187 		} else if (arc_released(db->db_buf)) {
4188 			/*
4189 			 * This dbuf has anonymous data associated with it.
4190 			 */
4191 			dbuf_destroy(db);
4192 		} else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) {
4193 			/*
4194 			 * We don't expect more accesses to the dbuf, and it
4195 			 * is either not cacheable or was marked for eviction.
4196 			 */
4197 			dbuf_destroy(db);
4198 		} else if (!multilist_link_active(&db->db_cache_link)) {
4199 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4200 
4201 			dbuf_cached_state_t dcs =
4202 			    dbuf_include_in_metadata_cache(db) ?
4203 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4204 			db->db_caching_status = dcs;
4205 
4206 			multilist_insert(&dbuf_caches[dcs].cache, db);
4207 			uint64_t db_size = db->db.db_size;
4208 			uint64_t dbu_size = dmu_buf_user_size(&db->db);
4209 			(void) zfs_refcount_add_many(
4210 			    &dbuf_caches[dcs].size, db_size, db);
4211 			size = zfs_refcount_add_many(
4212 			    &dbuf_caches[dcs].size, dbu_size, db->db_user);
4213 			uint8_t db_level = db->db_level;
4214 			mutex_exit(&db->db_mtx);
4215 
4216 			if (dcs == DB_DBUF_METADATA_CACHE) {
4217 				DBUF_STAT_BUMP(metadata_cache_count);
4218 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4219 				    size);
4220 			} else {
4221 				DBUF_STAT_BUMP(cache_count);
4222 				DBUF_STAT_MAX(cache_size_bytes_max, size);
4223 				DBUF_STAT_BUMP(cache_levels[db_level]);
4224 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
4225 				    db_size + dbu_size);
4226 			}
4227 
4228 			if (dcs == DB_DBUF_CACHE && !evicting)
4229 				dbuf_evict_notify(size);
4230 		}
4231 	} else {
4232 		mutex_exit(&db->db_mtx);
4233 	}
4234 }
4235 
4236 #pragma weak dmu_buf_refcount = dbuf_refcount
4237 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)4238 dbuf_refcount(dmu_buf_impl_t *db)
4239 {
4240 	return (zfs_refcount_count(&db->db_holds));
4241 }
4242 
4243 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)4244 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4245 {
4246 	uint64_t holds;
4247 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4248 
4249 	mutex_enter(&db->db_mtx);
4250 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4251 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4252 	mutex_exit(&db->db_mtx);
4253 
4254 	return (holds);
4255 }
4256 
4257 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)4258 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4259     dmu_buf_user_t *new_user)
4260 {
4261 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4262 
4263 	mutex_enter(&db->db_mtx);
4264 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4265 	if (db->db_user == old_user)
4266 		db->db_user = new_user;
4267 	else
4268 		old_user = db->db_user;
4269 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4270 	mutex_exit(&db->db_mtx);
4271 
4272 	return (old_user);
4273 }
4274 
4275 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4276 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4277 {
4278 	return (dmu_buf_replace_user(db_fake, NULL, user));
4279 }
4280 
4281 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)4282 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4283 {
4284 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4285 
4286 	db->db_user_immediate_evict = TRUE;
4287 	return (dmu_buf_set_user(db_fake, user));
4288 }
4289 
4290 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4291 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4292 {
4293 	return (dmu_buf_replace_user(db_fake, user, NULL));
4294 }
4295 
4296 void *
dmu_buf_get_user(dmu_buf_t * db_fake)4297 dmu_buf_get_user(dmu_buf_t *db_fake)
4298 {
4299 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4300 
4301 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4302 	return (db->db_user);
4303 }
4304 
4305 uint64_t
dmu_buf_user_size(dmu_buf_t * db_fake)4306 dmu_buf_user_size(dmu_buf_t *db_fake)
4307 {
4308 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4309 	if (db->db_user == NULL)
4310 		return (0);
4311 	return (atomic_load_64(&db->db_user->dbu_size));
4312 }
4313 
4314 void
dmu_buf_add_user_size(dmu_buf_t * db_fake,uint64_t nadd)4315 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4316 {
4317 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4318 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4319 	ASSERT3P(db->db_user, !=, NULL);
4320 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4321 	atomic_add_64(&db->db_user->dbu_size, nadd);
4322 }
4323 
4324 void
dmu_buf_sub_user_size(dmu_buf_t * db_fake,uint64_t nsub)4325 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4326 {
4327 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4328 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4329 	ASSERT3P(db->db_user, !=, NULL);
4330 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4331 	atomic_sub_64(&db->db_user->dbu_size, nsub);
4332 }
4333 
4334 void
dmu_buf_user_evict_wait(void)4335 dmu_buf_user_evict_wait(void)
4336 {
4337 	taskq_wait(dbu_evict_taskq);
4338 }
4339 
4340 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)4341 dmu_buf_get_blkptr(dmu_buf_t *db)
4342 {
4343 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4344 	return (dbi->db_blkptr);
4345 }
4346 
4347 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)4348 dmu_buf_get_objset(dmu_buf_t *db)
4349 {
4350 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4351 	return (dbi->db_objset);
4352 }
4353 
4354 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)4355 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4356 {
4357 	/* ASSERT(dmu_tx_is_syncing(tx) */
4358 	ASSERT(MUTEX_HELD(&db->db_mtx));
4359 
4360 	if (db->db_blkptr != NULL)
4361 		return;
4362 
4363 	if (db->db_blkid == DMU_SPILL_BLKID) {
4364 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4365 		BP_ZERO(db->db_blkptr);
4366 		return;
4367 	}
4368 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4369 		/*
4370 		 * This buffer was allocated at a time when there was
4371 		 * no available blkptrs from the dnode, or it was
4372 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4373 		 */
4374 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4375 		ASSERT(db->db_parent == NULL);
4376 		db->db_parent = dn->dn_dbuf;
4377 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4378 		DBUF_VERIFY(db);
4379 	} else {
4380 		dmu_buf_impl_t *parent = db->db_parent;
4381 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4382 
4383 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4384 		if (parent == NULL) {
4385 			mutex_exit(&db->db_mtx);
4386 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4387 			parent = dbuf_hold_level(dn, db->db_level + 1,
4388 			    db->db_blkid >> epbs, db);
4389 			rw_exit(&dn->dn_struct_rwlock);
4390 			mutex_enter(&db->db_mtx);
4391 			db->db_parent = parent;
4392 		}
4393 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4394 		    (db->db_blkid & ((1ULL << epbs) - 1));
4395 		DBUF_VERIFY(db);
4396 	}
4397 }
4398 
4399 static void
dbuf_sync_bonus(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4400 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4401 {
4402 	dmu_buf_impl_t *db = dr->dr_dbuf;
4403 	void *data = dr->dt.dl.dr_data;
4404 
4405 	ASSERT0(db->db_level);
4406 	ASSERT(MUTEX_HELD(&db->db_mtx));
4407 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4408 	ASSERT(data != NULL);
4409 
4410 	dnode_t *dn = dr->dr_dnode;
4411 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4412 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4413 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4414 
4415 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4416 
4417 	dbuf_undirty_bonus(dr);
4418 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4419 }
4420 
4421 /*
4422  * When syncing out a blocks of dnodes, adjust the block to deal with
4423  * encryption.  Normally, we make sure the block is decrypted before writing
4424  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4425  * from a raw receive.  In this case, set the ARC buf's crypt params so
4426  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4427  */
4428 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)4429 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4430 {
4431 	int err;
4432 	dmu_buf_impl_t *db = dr->dr_dbuf;
4433 
4434 	ASSERT(MUTEX_HELD(&db->db_mtx));
4435 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4436 	ASSERT3U(db->db_level, ==, 0);
4437 
4438 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4439 		zbookmark_phys_t zb;
4440 
4441 		/*
4442 		 * Unfortunately, there is currently no mechanism for
4443 		 * syncing context to handle decryption errors. An error
4444 		 * here is only possible if an attacker maliciously
4445 		 * changed a dnode block and updated the associated
4446 		 * checksums going up the block tree.
4447 		 */
4448 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4449 		    db->db.db_object, db->db_level, db->db_blkid);
4450 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4451 		    &zb, B_TRUE);
4452 		if (err)
4453 			panic("Invalid dnode block MAC");
4454 	} else if (dr->dt.dl.dr_has_raw_params) {
4455 		(void) arc_release(dr->dt.dl.dr_data, db);
4456 		arc_convert_to_raw(dr->dt.dl.dr_data,
4457 		    dmu_objset_id(db->db_objset),
4458 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4459 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4460 	}
4461 }
4462 
4463 /*
4464  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4465  * is critical the we not allow the compiler to inline this function in to
4466  * dbuf_sync_list() thereby drastically bloating the stack usage.
4467  */
4468 noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4469 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4470 {
4471 	dmu_buf_impl_t *db = dr->dr_dbuf;
4472 	dnode_t *dn = dr->dr_dnode;
4473 
4474 	ASSERT(dmu_tx_is_syncing(tx));
4475 
4476 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4477 
4478 	mutex_enter(&db->db_mtx);
4479 
4480 	ASSERT(db->db_level > 0);
4481 	DBUF_VERIFY(db);
4482 
4483 	/* Read the block if it hasn't been read yet. */
4484 	if (db->db_buf == NULL) {
4485 		mutex_exit(&db->db_mtx);
4486 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4487 		mutex_enter(&db->db_mtx);
4488 	}
4489 	ASSERT3U(db->db_state, ==, DB_CACHED);
4490 	ASSERT(db->db_buf != NULL);
4491 
4492 	/* Indirect block size must match what the dnode thinks it is. */
4493 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4494 	dbuf_check_blkptr(dn, db);
4495 
4496 	/* Provide the pending dirty record to child dbufs */
4497 	db->db_data_pending = dr;
4498 
4499 	mutex_exit(&db->db_mtx);
4500 
4501 	dbuf_write(dr, db->db_buf, tx);
4502 
4503 	zio_t *zio = dr->dr_zio;
4504 	mutex_enter(&dr->dt.di.dr_mtx);
4505 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4506 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4507 	mutex_exit(&dr->dt.di.dr_mtx);
4508 	zio_nowait(zio);
4509 }
4510 
4511 /*
4512  * Verify that the size of the data in our bonus buffer does not exceed
4513  * its recorded size.
4514  *
4515  * The purpose of this verification is to catch any cases in development
4516  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4517  * due to incorrect feature management, older pools expect to read more
4518  * data even though they didn't actually write it to begin with.
4519  *
4520  * For a example, this would catch an error in the feature logic where we
4521  * open an older pool and we expect to write the space map histogram of
4522  * a space map with size SPACE_MAP_SIZE_V0.
4523  */
4524 static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t * dr)4525 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4526 {
4527 #ifdef ZFS_DEBUG
4528 	dnode_t *dn = dr->dr_dnode;
4529 
4530 	/*
4531 	 * Encrypted bonus buffers can have data past their bonuslen.
4532 	 * Skip the verification of these blocks.
4533 	 */
4534 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4535 		return;
4536 
4537 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4538 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4539 	ASSERT3U(bonuslen, <=, maxbonuslen);
4540 
4541 	arc_buf_t *datap = dr->dt.dl.dr_data;
4542 	char *datap_end = ((char *)datap) + bonuslen;
4543 	char *datap_max = ((char *)datap) + maxbonuslen;
4544 
4545 	/* ensure that everything is zero after our data */
4546 	for (; datap_end < datap_max; datap_end++)
4547 		ASSERT(*datap_end == 0);
4548 #endif
4549 }
4550 
4551 static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t * dr)4552 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4553 {
4554 	/* This must be a lightweight dirty record. */
4555 	ASSERT3P(dr->dr_dbuf, ==, NULL);
4556 	dnode_t *dn = dr->dr_dnode;
4557 
4558 	if (dn->dn_phys->dn_nlevels == 1) {
4559 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4560 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4561 	} else {
4562 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4563 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4564 		VERIFY3U(parent_db->db_level, ==, 1);
4565 		VERIFY3P(DB_DNODE(parent_db), ==, dn);
4566 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4567 		blkptr_t *bp = parent_db->db.db_data;
4568 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4569 	}
4570 }
4571 
4572 static void
dbuf_lightweight_ready(zio_t * zio)4573 dbuf_lightweight_ready(zio_t *zio)
4574 {
4575 	dbuf_dirty_record_t *dr = zio->io_private;
4576 	blkptr_t *bp = zio->io_bp;
4577 
4578 	if (zio->io_error != 0)
4579 		return;
4580 
4581 	dnode_t *dn = dr->dr_dnode;
4582 
4583 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4584 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4585 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4586 	    bp_get_dsize_sync(spa, bp_orig);
4587 	dnode_diduse_space(dn, delta);
4588 
4589 	uint64_t blkid = dr->dt.dll.dr_blkid;
4590 	mutex_enter(&dn->dn_mtx);
4591 	if (blkid > dn->dn_phys->dn_maxblkid) {
4592 		ASSERT0(dn->dn_objset->os_raw_receive);
4593 		dn->dn_phys->dn_maxblkid = blkid;
4594 	}
4595 	mutex_exit(&dn->dn_mtx);
4596 
4597 	if (!BP_IS_EMBEDDED(bp)) {
4598 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4599 		BP_SET_FILL(bp, fill);
4600 	}
4601 
4602 	dmu_buf_impl_t *parent_db;
4603 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4604 	if (dr->dr_parent == NULL) {
4605 		parent_db = dn->dn_dbuf;
4606 	} else {
4607 		parent_db = dr->dr_parent->dr_dbuf;
4608 	}
4609 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4610 	*bp_orig = *bp;
4611 	rw_exit(&parent_db->db_rwlock);
4612 }
4613 
4614 static void
dbuf_lightweight_done(zio_t * zio)4615 dbuf_lightweight_done(zio_t *zio)
4616 {
4617 	dbuf_dirty_record_t *dr = zio->io_private;
4618 
4619 	VERIFY0(zio->io_error);
4620 
4621 	objset_t *os = dr->dr_dnode->dn_objset;
4622 	dmu_tx_t *tx = os->os_synctx;
4623 
4624 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4625 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4626 	} else {
4627 		dsl_dataset_t *ds = os->os_dsl_dataset;
4628 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4629 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4630 	}
4631 
4632 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4633 	    zio->io_txg);
4634 
4635 	abd_free(dr->dt.dll.dr_abd);
4636 	kmem_free(dr, sizeof (*dr));
4637 }
4638 
4639 noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4640 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4641 {
4642 	dnode_t *dn = dr->dr_dnode;
4643 	zio_t *pio;
4644 	if (dn->dn_phys->dn_nlevels == 1) {
4645 		pio = dn->dn_zio;
4646 	} else {
4647 		pio = dr->dr_parent->dr_zio;
4648 	}
4649 
4650 	zbookmark_phys_t zb = {
4651 		.zb_objset = dmu_objset_id(dn->dn_objset),
4652 		.zb_object = dn->dn_object,
4653 		.zb_level = 0,
4654 		.zb_blkid = dr->dt.dll.dr_blkid,
4655 	};
4656 
4657 	/*
4658 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4659 	 * will have the old BP in dbuf_lightweight_done().
4660 	 */
4661 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4662 
4663 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4664 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4665 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4666 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4667 	    dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4668 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4669 
4670 	zio_nowait(dr->dr_zio);
4671 }
4672 
4673 /*
4674  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4675  * critical the we not allow the compiler to inline this function in to
4676  * dbuf_sync_list() thereby drastically bloating the stack usage.
4677  */
4678 noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4679 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4680 {
4681 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4682 	dmu_buf_impl_t *db = dr->dr_dbuf;
4683 	dnode_t *dn = dr->dr_dnode;
4684 	objset_t *os;
4685 	uint64_t txg = tx->tx_txg;
4686 
4687 	ASSERT(dmu_tx_is_syncing(tx));
4688 
4689 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4690 
4691 	mutex_enter(&db->db_mtx);
4692 	/*
4693 	 * To be synced, we must be dirtied.  But we might have been freed
4694 	 * after the dirty.
4695 	 */
4696 	if (db->db_state == DB_UNCACHED) {
4697 		/* This buffer has been freed since it was dirtied */
4698 		ASSERT3P(db->db.db_data, ==, NULL);
4699 	} else if (db->db_state == DB_FILL) {
4700 		/* This buffer was freed and is now being re-filled */
4701 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4702 	} else if (db->db_state == DB_READ) {
4703 		/*
4704 		 * This buffer was either cloned or had a Direct I/O write
4705 		 * occur and has an in-flgiht read on the BP. It is safe to
4706 		 * issue the write here, because the read has already been
4707 		 * issued and the contents won't change.
4708 		 *
4709 		 * We can verify the case of both the clone and Direct I/O
4710 		 * write by making sure the first dirty record for the dbuf
4711 		 * has no ARC buffer associated with it.
4712 		 */
4713 		dbuf_dirty_record_t *dr_head =
4714 		    list_head(&db->db_dirty_records);
4715 		ASSERT3P(db->db_buf, ==, NULL);
4716 		ASSERT3P(db->db.db_data, ==, NULL);
4717 		ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL);
4718 		ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4719 	} else {
4720 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4721 	}
4722 	DBUF_VERIFY(db);
4723 
4724 	if (db->db_blkid == DMU_SPILL_BLKID) {
4725 		mutex_enter(&dn->dn_mtx);
4726 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4727 			/*
4728 			 * In the previous transaction group, the bonus buffer
4729 			 * was entirely used to store the attributes for the
4730 			 * dnode which overrode the dn_spill field.  However,
4731 			 * when adding more attributes to the file a spill
4732 			 * block was required to hold the extra attributes.
4733 			 *
4734 			 * Make sure to clear the garbage left in the dn_spill
4735 			 * field from the previous attributes in the bonus
4736 			 * buffer.  Otherwise, after writing out the spill
4737 			 * block to the new allocated dva, it will free
4738 			 * the old block pointed to by the invalid dn_spill.
4739 			 */
4740 			db->db_blkptr = NULL;
4741 		}
4742 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4743 		mutex_exit(&dn->dn_mtx);
4744 	}
4745 
4746 	/*
4747 	 * If this is a bonus buffer, simply copy the bonus data into the
4748 	 * dnode.  It will be written out when the dnode is synced (and it
4749 	 * will be synced, since it must have been dirty for dbuf_sync to
4750 	 * be called).
4751 	 */
4752 	if (db->db_blkid == DMU_BONUS_BLKID) {
4753 		ASSERT(dr->dr_dbuf == db);
4754 		dbuf_sync_bonus(dr, tx);
4755 		return;
4756 	}
4757 
4758 	os = dn->dn_objset;
4759 
4760 	/*
4761 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4762 	 * operation to sneak in. As a result, we need to ensure that we
4763 	 * don't check the dr_override_state until we have returned from
4764 	 * dbuf_check_blkptr.
4765 	 */
4766 	dbuf_check_blkptr(dn, db);
4767 
4768 	/*
4769 	 * If this buffer is in the middle of an immediate write, wait for the
4770 	 * synchronous IO to complete.
4771 	 *
4772 	 * This is also valid even with Direct I/O writes setting a dirty
4773 	 * records override state into DR_IN_DMU_SYNC, because all
4774 	 * Direct I/O writes happen in open-context.
4775 	 */
4776 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4777 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4778 		cv_wait(&db->db_changed, &db->db_mtx);
4779 	}
4780 
4781 	/*
4782 	 * If this is a dnode block, ensure it is appropriately encrypted
4783 	 * or decrypted, depending on what we are writing to it this txg.
4784 	 */
4785 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4786 		dbuf_prepare_encrypted_dnode_leaf(dr);
4787 
4788 	if (*datap != NULL && *datap == db->db_buf &&
4789 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4790 	    zfs_refcount_count(&db->db_holds) > 1) {
4791 		/*
4792 		 * If this buffer is currently "in use" (i.e., there
4793 		 * are active holds and db_data still references it),
4794 		 * then make a copy before we start the write so that
4795 		 * any modifications from the open txg will not leak
4796 		 * into this write.
4797 		 *
4798 		 * NOTE: this copy does not need to be made for
4799 		 * objects only modified in the syncing context (e.g.
4800 		 * DNONE_DNODE blocks).
4801 		 */
4802 		int psize = arc_buf_size(*datap);
4803 		int lsize = arc_buf_lsize(*datap);
4804 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4805 		enum zio_compress compress_type = arc_get_compression(*datap);
4806 		uint8_t complevel = arc_get_complevel(*datap);
4807 
4808 		if (arc_is_encrypted(*datap)) {
4809 			boolean_t byteorder;
4810 			uint8_t salt[ZIO_DATA_SALT_LEN];
4811 			uint8_t iv[ZIO_DATA_IV_LEN];
4812 			uint8_t mac[ZIO_DATA_MAC_LEN];
4813 
4814 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4815 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4816 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4817 			    dn->dn_type, psize, lsize, compress_type,
4818 			    complevel);
4819 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4820 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4821 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4822 			    psize, lsize, compress_type, complevel);
4823 		} else {
4824 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4825 		}
4826 		memcpy((*datap)->b_data, db->db.db_data, psize);
4827 	}
4828 	db->db_data_pending = dr;
4829 
4830 	mutex_exit(&db->db_mtx);
4831 
4832 	dbuf_write(dr, *datap, tx);
4833 
4834 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4835 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4836 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4837 	} else {
4838 		zio_nowait(dr->dr_zio);
4839 	}
4840 }
4841 
4842 /*
4843  * Syncs out a range of dirty records for indirect or leaf dbufs.  May be
4844  * called recursively from dbuf_sync_indirect().
4845  */
4846 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)4847 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4848 {
4849 	dbuf_dirty_record_t *dr;
4850 
4851 	while ((dr = list_head(list))) {
4852 		if (dr->dr_zio != NULL) {
4853 			/*
4854 			 * If we find an already initialized zio then we
4855 			 * are processing the meta-dnode, and we have finished.
4856 			 * The dbufs for all dnodes are put back on the list
4857 			 * during processing, so that we can zio_wait()
4858 			 * these IOs after initiating all child IOs.
4859 			 */
4860 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4861 			    DMU_META_DNODE_OBJECT);
4862 			break;
4863 		}
4864 		list_remove(list, dr);
4865 		if (dr->dr_dbuf == NULL) {
4866 			dbuf_sync_lightweight(dr, tx);
4867 		} else {
4868 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4869 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4870 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4871 			}
4872 			if (dr->dr_dbuf->db_level > 0)
4873 				dbuf_sync_indirect(dr, tx);
4874 			else
4875 				dbuf_sync_leaf(dr, tx);
4876 		}
4877 	}
4878 }
4879 
4880 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4881 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4882 {
4883 	(void) buf;
4884 	dmu_buf_impl_t *db = vdb;
4885 	dnode_t *dn;
4886 	blkptr_t *bp = zio->io_bp;
4887 	blkptr_t *bp_orig = &zio->io_bp_orig;
4888 	spa_t *spa = zio->io_spa;
4889 	int64_t delta;
4890 	uint64_t fill = 0;
4891 	int i;
4892 
4893 	ASSERT3P(db->db_blkptr, !=, NULL);
4894 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4895 
4896 	DB_DNODE_ENTER(db);
4897 	dn = DB_DNODE(db);
4898 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4899 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4900 	zio->io_prev_space_delta = delta;
4901 
4902 	if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4903 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4904 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4905 		    (db->db_blkid == DMU_SPILL_BLKID &&
4906 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4907 		    BP_IS_EMBEDDED(bp));
4908 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4909 	}
4910 
4911 	mutex_enter(&db->db_mtx);
4912 
4913 #ifdef ZFS_DEBUG
4914 	if (db->db_blkid == DMU_SPILL_BLKID) {
4915 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4916 		ASSERT(!(BP_IS_HOLE(bp)) &&
4917 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4918 	}
4919 #endif
4920 
4921 	if (db->db_level == 0) {
4922 		mutex_enter(&dn->dn_mtx);
4923 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4924 		    db->db_blkid != DMU_SPILL_BLKID) {
4925 			ASSERT0(db->db_objset->os_raw_receive);
4926 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4927 		}
4928 		mutex_exit(&dn->dn_mtx);
4929 
4930 		if (dn->dn_type == DMU_OT_DNODE) {
4931 			i = 0;
4932 			while (i < db->db.db_size) {
4933 				dnode_phys_t *dnp =
4934 				    (void *)(((char *)db->db.db_data) + i);
4935 
4936 				i += DNODE_MIN_SIZE;
4937 				if (dnp->dn_type != DMU_OT_NONE) {
4938 					fill++;
4939 					for (int j = 0; j < dnp->dn_nblkptr;
4940 					    j++) {
4941 						(void) zfs_blkptr_verify(spa,
4942 						    &dnp->dn_blkptr[j],
4943 						    BLK_CONFIG_SKIP,
4944 						    BLK_VERIFY_HALT);
4945 					}
4946 					if (dnp->dn_flags &
4947 					    DNODE_FLAG_SPILL_BLKPTR) {
4948 						(void) zfs_blkptr_verify(spa,
4949 						    DN_SPILL_BLKPTR(dnp),
4950 						    BLK_CONFIG_SKIP,
4951 						    BLK_VERIFY_HALT);
4952 					}
4953 					i += dnp->dn_extra_slots *
4954 					    DNODE_MIN_SIZE;
4955 				}
4956 			}
4957 		} else {
4958 			if (BP_IS_HOLE(bp)) {
4959 				fill = 0;
4960 			} else {
4961 				fill = 1;
4962 			}
4963 		}
4964 	} else {
4965 		blkptr_t *ibp = db->db.db_data;
4966 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4967 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4968 			if (BP_IS_HOLE(ibp))
4969 				continue;
4970 			(void) zfs_blkptr_verify(spa, ibp,
4971 			    BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4972 			fill += BP_GET_FILL(ibp);
4973 		}
4974 	}
4975 	DB_DNODE_EXIT(db);
4976 
4977 	if (!BP_IS_EMBEDDED(bp))
4978 		BP_SET_FILL(bp, fill);
4979 
4980 	mutex_exit(&db->db_mtx);
4981 
4982 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4983 	*db->db_blkptr = *bp;
4984 	dmu_buf_unlock_parent(db, dblt, FTAG);
4985 }
4986 
4987 /*
4988  * This function gets called just prior to running through the compression
4989  * stage of the zio pipeline. If we're an indirect block comprised of only
4990  * holes, then we want this indirect to be compressed away to a hole. In
4991  * order to do that we must zero out any information about the holes that
4992  * this indirect points to prior to before we try to compress it.
4993  */
4994 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4995 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4996 {
4997 	(void) zio, (void) buf;
4998 	dmu_buf_impl_t *db = vdb;
4999 	blkptr_t *bp;
5000 	unsigned int epbs, i;
5001 
5002 	ASSERT3U(db->db_level, >, 0);
5003 	DB_DNODE_ENTER(db);
5004 	epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
5005 	DB_DNODE_EXIT(db);
5006 	ASSERT3U(epbs, <, 31);
5007 
5008 	/* Determine if all our children are holes */
5009 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
5010 		if (!BP_IS_HOLE(bp))
5011 			break;
5012 	}
5013 
5014 	/*
5015 	 * If all the children are holes, then zero them all out so that
5016 	 * we may get compressed away.
5017 	 */
5018 	if (i == 1ULL << epbs) {
5019 		/*
5020 		 * We only found holes. Grab the rwlock to prevent
5021 		 * anybody from reading the blocks we're about to
5022 		 * zero out.
5023 		 */
5024 		rw_enter(&db->db_rwlock, RW_WRITER);
5025 		memset(db->db.db_data, 0, db->db.db_size);
5026 		rw_exit(&db->db_rwlock);
5027 	}
5028 }
5029 
5030 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)5031 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5032 {
5033 	(void) buf;
5034 	dmu_buf_impl_t *db = vdb;
5035 	blkptr_t *bp_orig = &zio->io_bp_orig;
5036 	blkptr_t *bp = db->db_blkptr;
5037 	objset_t *os = db->db_objset;
5038 	dmu_tx_t *tx = os->os_synctx;
5039 
5040 	ASSERT0(zio->io_error);
5041 	ASSERT(db->db_blkptr == bp);
5042 
5043 	/*
5044 	 * For nopwrites and rewrites we ensure that the bp matches our
5045 	 * original and bypass all the accounting.
5046 	 */
5047 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5048 		ASSERT(BP_EQUAL(bp, bp_orig));
5049 	} else {
5050 		dsl_dataset_t *ds = os->os_dsl_dataset;
5051 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5052 		dsl_dataset_block_born(ds, bp, tx);
5053 	}
5054 
5055 	mutex_enter(&db->db_mtx);
5056 
5057 	DBUF_VERIFY(db);
5058 
5059 	dbuf_dirty_record_t *dr = db->db_data_pending;
5060 	dnode_t *dn = dr->dr_dnode;
5061 	ASSERT(!list_link_active(&dr->dr_dirty_node));
5062 	ASSERT(dr->dr_dbuf == db);
5063 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5064 	list_remove(&db->db_dirty_records, dr);
5065 
5066 #ifdef ZFS_DEBUG
5067 	if (db->db_blkid == DMU_SPILL_BLKID) {
5068 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5069 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5070 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5071 	}
5072 #endif
5073 
5074 	if (db->db_level == 0) {
5075 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5076 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5077 
5078 		/* no dr_data if this is a NO_FILL or Direct I/O */
5079 		if (dr->dt.dl.dr_data != NULL &&
5080 		    dr->dt.dl.dr_data != db->db_buf) {
5081 			ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5082 			ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5083 			arc_buf_destroy(dr->dt.dl.dr_data, db);
5084 		}
5085 	} else {
5086 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5087 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5088 		if (!BP_IS_HOLE(db->db_blkptr)) {
5089 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5090 			    SPA_BLKPTRSHIFT;
5091 			ASSERT3U(db->db_blkid, <=,
5092 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5093 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5094 			    db->db.db_size);
5095 		}
5096 		mutex_destroy(&dr->dt.di.dr_mtx);
5097 		list_destroy(&dr->dt.di.dr_children);
5098 	}
5099 
5100 	cv_broadcast(&db->db_changed);
5101 	ASSERT(db->db_dirtycnt > 0);
5102 	db->db_dirtycnt -= 1;
5103 	db->db_data_pending = NULL;
5104 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5105 
5106 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5107 	    zio->io_txg);
5108 
5109 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5110 }
5111 
5112 static void
dbuf_write_nofill_ready(zio_t * zio)5113 dbuf_write_nofill_ready(zio_t *zio)
5114 {
5115 	dbuf_write_ready(zio, NULL, zio->io_private);
5116 }
5117 
5118 static void
dbuf_write_nofill_done(zio_t * zio)5119 dbuf_write_nofill_done(zio_t *zio)
5120 {
5121 	dbuf_write_done(zio, NULL, zio->io_private);
5122 }
5123 
5124 static void
dbuf_write_override_ready(zio_t * zio)5125 dbuf_write_override_ready(zio_t *zio)
5126 {
5127 	dbuf_dirty_record_t *dr = zio->io_private;
5128 	dmu_buf_impl_t *db = dr->dr_dbuf;
5129 
5130 	dbuf_write_ready(zio, NULL, db);
5131 }
5132 
5133 static void
dbuf_write_override_done(zio_t * zio)5134 dbuf_write_override_done(zio_t *zio)
5135 {
5136 	dbuf_dirty_record_t *dr = zio->io_private;
5137 	dmu_buf_impl_t *db = dr->dr_dbuf;
5138 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5139 
5140 	mutex_enter(&db->db_mtx);
5141 	if (!BP_EQUAL(zio->io_bp, obp)) {
5142 		if (!BP_IS_HOLE(obp))
5143 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5144 		arc_release(dr->dt.dl.dr_data, db);
5145 	}
5146 	mutex_exit(&db->db_mtx);
5147 
5148 	dbuf_write_done(zio, NULL, db);
5149 
5150 	if (zio->io_abd != NULL)
5151 		abd_free(zio->io_abd);
5152 }
5153 
5154 typedef struct dbuf_remap_impl_callback_arg {
5155 	objset_t	*drica_os;
5156 	uint64_t	drica_blk_birth;
5157 	dmu_tx_t	*drica_tx;
5158 } dbuf_remap_impl_callback_arg_t;
5159 
5160 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)5161 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5162     void *arg)
5163 {
5164 	dbuf_remap_impl_callback_arg_t *drica = arg;
5165 	objset_t *os = drica->drica_os;
5166 	spa_t *spa = dmu_objset_spa(os);
5167 	dmu_tx_t *tx = drica->drica_tx;
5168 
5169 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5170 
5171 	if (os == spa_meta_objset(spa)) {
5172 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5173 	} else {
5174 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5175 		    size, drica->drica_blk_birth, tx);
5176 	}
5177 }
5178 
5179 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)5180 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5181 {
5182 	blkptr_t bp_copy = *bp;
5183 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
5184 	dbuf_remap_impl_callback_arg_t drica;
5185 
5186 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5187 
5188 	drica.drica_os = dn->dn_objset;
5189 	drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
5190 	drica.drica_tx = tx;
5191 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5192 	    &drica)) {
5193 		/*
5194 		 * If the blkptr being remapped is tracked by a livelist,
5195 		 * then we need to make sure the livelist reflects the update.
5196 		 * First, cancel out the old blkptr by appending a 'FREE'
5197 		 * entry. Next, add an 'ALLOC' to track the new version. This
5198 		 * way we avoid trying to free an inaccurate blkptr at delete.
5199 		 * Note that embedded blkptrs are not tracked in livelists.
5200 		 */
5201 		if (dn->dn_objset != spa_meta_objset(spa)) {
5202 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5203 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5204 			    BP_GET_LOGICAL_BIRTH(bp) >
5205 			    ds->ds_dir->dd_origin_txg) {
5206 				ASSERT(!BP_IS_EMBEDDED(bp));
5207 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
5208 				ASSERT(spa_feature_is_enabled(spa,
5209 				    SPA_FEATURE_LIVELIST));
5210 				bplist_append(&ds->ds_dir->dd_pending_frees,
5211 				    bp);
5212 				bplist_append(&ds->ds_dir->dd_pending_allocs,
5213 				    &bp_copy);
5214 			}
5215 		}
5216 
5217 		/*
5218 		 * The db_rwlock prevents dbuf_read_impl() from
5219 		 * dereferencing the BP while we are changing it.  To
5220 		 * avoid lock contention, only grab it when we are actually
5221 		 * changing the BP.
5222 		 */
5223 		if (rw != NULL)
5224 			rw_enter(rw, RW_WRITER);
5225 		*bp = bp_copy;
5226 		if (rw != NULL)
5227 			rw_exit(rw);
5228 	}
5229 }
5230 
5231 /*
5232  * Remap any existing BP's to concrete vdevs, if possible.
5233  */
5234 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)5235 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5236 {
5237 	spa_t *spa = dmu_objset_spa(db->db_objset);
5238 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5239 
5240 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5241 		return;
5242 
5243 	if (db->db_level > 0) {
5244 		blkptr_t *bp = db->db.db_data;
5245 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5246 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5247 		}
5248 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5249 		dnode_phys_t *dnp = db->db.db_data;
5250 		ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5251 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5252 		    i += dnp[i].dn_extra_slots + 1) {
5253 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5254 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5255 				    &dn->dn_dbuf->db_rwlock);
5256 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5257 				    tx);
5258 			}
5259 		}
5260 	}
5261 }
5262 
5263 
5264 /*
5265  * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5266  * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5267  */
5268 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)5269 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5270 {
5271 	dmu_buf_impl_t *db = dr->dr_dbuf;
5272 	dnode_t *dn = dr->dr_dnode;
5273 	objset_t *os;
5274 	dmu_buf_impl_t *parent = db->db_parent;
5275 	uint64_t txg = tx->tx_txg;
5276 	zbookmark_phys_t zb;
5277 	zio_prop_t zp;
5278 	zio_t *pio; /* parent I/O */
5279 	int wp_flag = 0;
5280 
5281 	ASSERT(dmu_tx_is_syncing(tx));
5282 
5283 	os = dn->dn_objset;
5284 
5285 	if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5286 		/*
5287 		 * Private object buffers are released here rather than in
5288 		 * dbuf_dirty() since they are only modified in the syncing
5289 		 * context and we don't want the overhead of making multiple
5290 		 * copies of the data.
5291 		 */
5292 		if (BP_IS_HOLE(db->db_blkptr))
5293 			arc_buf_thaw(data);
5294 		else
5295 			dbuf_release_bp(db);
5296 		dbuf_remap(dn, db, tx);
5297 	}
5298 
5299 	if (parent != dn->dn_dbuf) {
5300 		/* Our parent is an indirect block. */
5301 		/* We have a dirty parent that has been scheduled for write. */
5302 		ASSERT(parent && parent->db_data_pending);
5303 		/* Our parent's buffer is one level closer to the dnode. */
5304 		ASSERT(db->db_level == parent->db_level-1);
5305 		/*
5306 		 * We're about to modify our parent's db_data by modifying
5307 		 * our block pointer, so the parent must be released.
5308 		 */
5309 		ASSERT(arc_released(parent->db_buf));
5310 		pio = parent->db_data_pending->dr_zio;
5311 	} else {
5312 		/* Our parent is the dnode itself. */
5313 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5314 		    db->db_blkid != DMU_SPILL_BLKID) ||
5315 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5316 		if (db->db_blkid != DMU_SPILL_BLKID)
5317 			ASSERT3P(db->db_blkptr, ==,
5318 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5319 		pio = dn->dn_zio;
5320 	}
5321 
5322 	ASSERT(db->db_level == 0 || data == db->db_buf);
5323 	ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5324 	ASSERT(pio);
5325 
5326 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5327 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5328 	    db->db.db_object, db->db_level, db->db_blkid);
5329 
5330 	if (db->db_blkid == DMU_SPILL_BLKID)
5331 		wp_flag = WP_SPILL;
5332 	wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5333 
5334 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5335 
5336 	/*
5337 	 * We copy the blkptr now (rather than when we instantiate the dirty
5338 	 * record), because its value can change between open context and
5339 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5340 	 * db_blkptr because we are in syncing context.
5341 	 */
5342 	dr->dr_bp_copy = *db->db_blkptr;
5343 
5344 	if (db->db_level == 0 &&
5345 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5346 		/*
5347 		 * The BP for this block has been provided by open context
5348 		 * (by dmu_sync(), dmu_write_direct(),
5349 		 *  or dmu_buf_write_embedded()).
5350 		 */
5351 		abd_t *contents = (data != NULL) ?
5352 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5353 
5354 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5355 		    contents, db->db.db_size, db->db.db_size, &zp,
5356 		    dbuf_write_override_ready, NULL,
5357 		    dbuf_write_override_done,
5358 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5359 		mutex_enter(&db->db_mtx);
5360 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5361 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5362 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies,
5363 		    dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite);
5364 		mutex_exit(&db->db_mtx);
5365 	} else if (data == NULL) {
5366 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5367 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5368 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5369 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5370 		    dbuf_write_nofill_ready, NULL,
5371 		    dbuf_write_nofill_done, db,
5372 		    ZIO_PRIORITY_ASYNC_WRITE,
5373 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5374 	} else {
5375 		ASSERT(arc_released(data));
5376 
5377 		/*
5378 		 * For indirect blocks, we want to setup the children
5379 		 * ready callback so that we can properly handle an indirect
5380 		 * block that only contains holes.
5381 		 */
5382 		arc_write_done_func_t *children_ready_cb = NULL;
5383 		if (db->db_level != 0)
5384 			children_ready_cb = dbuf_write_children_ready;
5385 
5386 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5387 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5388 		    dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5389 		    children_ready_cb, dbuf_write_done, db,
5390 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5391 	}
5392 }
5393 
5394 EXPORT_SYMBOL(dbuf_find);
5395 EXPORT_SYMBOL(dbuf_is_metadata);
5396 EXPORT_SYMBOL(dbuf_destroy);
5397 EXPORT_SYMBOL(dbuf_whichblock);
5398 EXPORT_SYMBOL(dbuf_read);
5399 EXPORT_SYMBOL(dbuf_unoverride);
5400 EXPORT_SYMBOL(dbuf_free_range);
5401 EXPORT_SYMBOL(dbuf_new_size);
5402 EXPORT_SYMBOL(dbuf_release_bp);
5403 EXPORT_SYMBOL(dbuf_dirty);
5404 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5405 EXPORT_SYMBOL(dmu_buf_will_dirty);
5406 EXPORT_SYMBOL(dmu_buf_is_dirty);
5407 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5408 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5409 EXPORT_SYMBOL(dmu_buf_will_fill);
5410 EXPORT_SYMBOL(dmu_buf_fill_done);
5411 EXPORT_SYMBOL(dmu_buf_rele);
5412 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5413 EXPORT_SYMBOL(dbuf_prefetch);
5414 EXPORT_SYMBOL(dbuf_hold_impl);
5415 EXPORT_SYMBOL(dbuf_hold);
5416 EXPORT_SYMBOL(dbuf_hold_level);
5417 EXPORT_SYMBOL(dbuf_create_bonus);
5418 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5419 EXPORT_SYMBOL(dbuf_rm_spill);
5420 EXPORT_SYMBOL(dbuf_add_ref);
5421 EXPORT_SYMBOL(dbuf_rele);
5422 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5423 EXPORT_SYMBOL(dbuf_refcount);
5424 EXPORT_SYMBOL(dbuf_sync_list);
5425 EXPORT_SYMBOL(dmu_buf_set_user);
5426 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5427 EXPORT_SYMBOL(dmu_buf_get_user);
5428 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5429 
5430 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5431 	"Maximum size in bytes of the dbuf cache.");
5432 
5433 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5434 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5435 
5436 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5437 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5438 
5439 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5440 	"Maximum size in bytes of dbuf metadata cache.");
5441 
5442 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5443 	"Set size of dbuf cache to log2 fraction of arc size.");
5444 
5445 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5446 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5447 
5448 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5449 	"Set size of dbuf cache mutex array as log2 shift.");
5450