1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48
49 /*
50 * Number of times that zfs_free_range() took the slow path while doing
51 * a zfs receive. A nonzero value indicates a potential performance problem.
52 */
53 uint64_t zfs_free_range_recv_miss;
54
55 static void dbuf_destroy(dmu_buf_impl_t *db);
56 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
57 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
58
59 #ifndef __lint
60 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
61 dmu_buf_evict_func_t *evict_func_sync,
62 dmu_buf_evict_func_t *evict_func_async,
63 dmu_buf_t **clear_on_evict_dbufp);
64 #endif /* ! __lint */
65
66 /*
67 * Global data structures and functions for the dbuf cache.
68 */
69 static kmem_cache_t *dbuf_cache;
70 static taskq_t *dbu_evict_taskq;
71
72 /* ARGSUSED */
73 static int
dbuf_cons(void * vdb,void * unused,int kmflag)74 dbuf_cons(void *vdb, void *unused, int kmflag)
75 {
76 dmu_buf_impl_t *db = vdb;
77 bzero(db, sizeof (dmu_buf_impl_t));
78
79 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
80 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
81 refcount_create(&db->db_holds);
82
83 return (0);
84 }
85
86 /* ARGSUSED */
87 static void
dbuf_dest(void * vdb,void * unused)88 dbuf_dest(void *vdb, void *unused)
89 {
90 dmu_buf_impl_t *db = vdb;
91 mutex_destroy(&db->db_mtx);
92 cv_destroy(&db->db_changed);
93 refcount_destroy(&db->db_holds);
94 }
95
96 /*
97 * dbuf hash table routines
98 */
99 static dbuf_hash_table_t dbuf_hash_table;
100
101 static uint64_t dbuf_hash_count;
102
103 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)104 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
105 {
106 uintptr_t osv = (uintptr_t)os;
107 uint64_t crc = -1ULL;
108
109 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
110 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
111 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
112 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
113 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
114 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
115 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
116
117 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
118
119 return (crc);
120 }
121
122 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
123
124 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
125 ((dbuf)->db.db_object == (obj) && \
126 (dbuf)->db_objset == (os) && \
127 (dbuf)->db_level == (level) && \
128 (dbuf)->db_blkid == (blkid))
129
130 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid)131 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
132 {
133 dbuf_hash_table_t *h = &dbuf_hash_table;
134 uint64_t hv = DBUF_HASH(os, obj, level, blkid);
135 uint64_t idx = hv & h->hash_table_mask;
136 dmu_buf_impl_t *db;
137
138 mutex_enter(DBUF_HASH_MUTEX(h, idx));
139 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
140 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
141 mutex_enter(&db->db_mtx);
142 if (db->db_state != DB_EVICTING) {
143 mutex_exit(DBUF_HASH_MUTEX(h, idx));
144 return (db);
145 }
146 mutex_exit(&db->db_mtx);
147 }
148 }
149 mutex_exit(DBUF_HASH_MUTEX(h, idx));
150 return (NULL);
151 }
152
153 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)154 dbuf_find_bonus(objset_t *os, uint64_t object)
155 {
156 dnode_t *dn;
157 dmu_buf_impl_t *db = NULL;
158
159 if (dnode_hold(os, object, FTAG, &dn) == 0) {
160 rw_enter(&dn->dn_struct_rwlock, RW_READER);
161 if (dn->dn_bonus != NULL) {
162 db = dn->dn_bonus;
163 mutex_enter(&db->db_mtx);
164 }
165 rw_exit(&dn->dn_struct_rwlock);
166 dnode_rele(dn, FTAG);
167 }
168 return (db);
169 }
170
171 /*
172 * Insert an entry into the hash table. If there is already an element
173 * equal to elem in the hash table, then the already existing element
174 * will be returned and the new element will not be inserted.
175 * Otherwise returns NULL.
176 */
177 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)178 dbuf_hash_insert(dmu_buf_impl_t *db)
179 {
180 dbuf_hash_table_t *h = &dbuf_hash_table;
181 objset_t *os = db->db_objset;
182 uint64_t obj = db->db.db_object;
183 int level = db->db_level;
184 uint64_t blkid = db->db_blkid;
185 uint64_t hv = DBUF_HASH(os, obj, level, blkid);
186 uint64_t idx = hv & h->hash_table_mask;
187 dmu_buf_impl_t *dbf;
188
189 mutex_enter(DBUF_HASH_MUTEX(h, idx));
190 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
191 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
192 mutex_enter(&dbf->db_mtx);
193 if (dbf->db_state != DB_EVICTING) {
194 mutex_exit(DBUF_HASH_MUTEX(h, idx));
195 return (dbf);
196 }
197 mutex_exit(&dbf->db_mtx);
198 }
199 }
200
201 mutex_enter(&db->db_mtx);
202 db->db_hash_next = h->hash_table[idx];
203 h->hash_table[idx] = db;
204 mutex_exit(DBUF_HASH_MUTEX(h, idx));
205 atomic_inc_64(&dbuf_hash_count);
206
207 return (NULL);
208 }
209
210 /*
211 * Remove an entry from the hash table. It must be in the EVICTING state.
212 */
213 static void
dbuf_hash_remove(dmu_buf_impl_t * db)214 dbuf_hash_remove(dmu_buf_impl_t *db)
215 {
216 dbuf_hash_table_t *h = &dbuf_hash_table;
217 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
218 db->db_level, db->db_blkid);
219 uint64_t idx = hv & h->hash_table_mask;
220 dmu_buf_impl_t *dbf, **dbp;
221
222 /*
223 * We musn't hold db_mtx to maintain lock ordering:
224 * DBUF_HASH_MUTEX > db_mtx.
225 */
226 ASSERT(refcount_is_zero(&db->db_holds));
227 ASSERT(db->db_state == DB_EVICTING);
228 ASSERT(!MUTEX_HELD(&db->db_mtx));
229
230 mutex_enter(DBUF_HASH_MUTEX(h, idx));
231 dbp = &h->hash_table[idx];
232 while ((dbf = *dbp) != db) {
233 dbp = &dbf->db_hash_next;
234 ASSERT(dbf != NULL);
235 }
236 *dbp = db->db_hash_next;
237 db->db_hash_next = NULL;
238 mutex_exit(DBUF_HASH_MUTEX(h, idx));
239 atomic_dec_64(&dbuf_hash_count);
240 }
241
242 static arc_evict_func_t dbuf_do_evict;
243
244 typedef enum {
245 DBVU_EVICTING,
246 DBVU_NOT_EVICTING
247 } dbvu_verify_type_t;
248
249 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)250 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
251 {
252 #ifdef ZFS_DEBUG
253 int64_t holds;
254
255 if (db->db_user == NULL)
256 return;
257
258 /* Only data blocks support the attachment of user data. */
259 ASSERT(db->db_level == 0);
260
261 /* Clients must resolve a dbuf before attaching user data. */
262 ASSERT(db->db.db_data != NULL);
263 ASSERT3U(db->db_state, ==, DB_CACHED);
264
265 holds = refcount_count(&db->db_holds);
266 if (verify_type == DBVU_EVICTING) {
267 /*
268 * Immediate eviction occurs when holds == dirtycnt.
269 * For normal eviction buffers, holds is zero on
270 * eviction, except when dbuf_fix_old_data() calls
271 * dbuf_clear_data(). However, the hold count can grow
272 * during eviction even though db_mtx is held (see
273 * dmu_bonus_hold() for an example), so we can only
274 * test the generic invariant that holds >= dirtycnt.
275 */
276 ASSERT3U(holds, >=, db->db_dirtycnt);
277 } else {
278 if (db->db_user_immediate_evict == TRUE)
279 ASSERT3U(holds, >=, db->db_dirtycnt);
280 else
281 ASSERT3U(holds, >, 0);
282 }
283 #endif
284 }
285
286 static void
dbuf_evict_user(dmu_buf_impl_t * db)287 dbuf_evict_user(dmu_buf_impl_t *db)
288 {
289 dmu_buf_user_t *dbu = db->db_user;
290
291 ASSERT(MUTEX_HELD(&db->db_mtx));
292
293 if (dbu == NULL)
294 return;
295
296 dbuf_verify_user(db, DBVU_EVICTING);
297 db->db_user = NULL;
298
299 #ifdef ZFS_DEBUG
300 if (dbu->dbu_clear_on_evict_dbufp != NULL)
301 *dbu->dbu_clear_on_evict_dbufp = NULL;
302 #endif
303
304 /*
305 * There are two eviction callbacks - one that we call synchronously
306 * and one that we invoke via a taskq. The async one is useful for
307 * avoiding lock order reversals and limiting stack depth.
308 *
309 * Note that if we have a sync callback but no async callback,
310 * it's likely that the sync callback will free the structure
311 * containing the dbu. In that case we need to take care to not
312 * dereference dbu after calling the sync evict func.
313 */
314 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
315
316 if (dbu->dbu_evict_func_sync != NULL)
317 dbu->dbu_evict_func_sync(dbu);
318
319 if (has_async) {
320 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
321 dbu, 0, &dbu->dbu_tqent);
322 }
323 }
324
325 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)326 dbuf_is_metadata(dmu_buf_impl_t *db)
327 {
328 if (db->db_level > 0) {
329 return (B_TRUE);
330 } else {
331 boolean_t is_metadata;
332
333 DB_DNODE_ENTER(db);
334 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
335 DB_DNODE_EXIT(db);
336
337 return (is_metadata);
338 }
339 }
340
341 void
dbuf_evict(dmu_buf_impl_t * db)342 dbuf_evict(dmu_buf_impl_t *db)
343 {
344 ASSERT(MUTEX_HELD(&db->db_mtx));
345 ASSERT(db->db_buf == NULL);
346 ASSERT(db->db_data_pending == NULL);
347
348 dbuf_clear(db);
349 dbuf_destroy(db);
350 }
351
352 void
dbuf_init(void)353 dbuf_init(void)
354 {
355 uint64_t hsize = 1ULL << 16;
356 dbuf_hash_table_t *h = &dbuf_hash_table;
357 int i;
358
359 /*
360 * The hash table is big enough to fill all of physical memory
361 * with an average 4K block size. The table will take up
362 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
363 */
364 while (hsize * 4096 < physmem * PAGESIZE)
365 hsize <<= 1;
366
367 retry:
368 h->hash_table_mask = hsize - 1;
369 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
370 if (h->hash_table == NULL) {
371 /* XXX - we should really return an error instead of assert */
372 ASSERT(hsize > (1ULL << 10));
373 hsize >>= 1;
374 goto retry;
375 }
376
377 dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
378 sizeof (dmu_buf_impl_t),
379 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
380
381 for (i = 0; i < DBUF_MUTEXES; i++)
382 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
383
384 /*
385 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
386 * configuration is not required.
387 */
388 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
389 }
390
391 void
dbuf_fini(void)392 dbuf_fini(void)
393 {
394 dbuf_hash_table_t *h = &dbuf_hash_table;
395 int i;
396
397 for (i = 0; i < DBUF_MUTEXES; i++)
398 mutex_destroy(&h->hash_mutexes[i]);
399 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
400 kmem_cache_destroy(dbuf_cache);
401 taskq_destroy(dbu_evict_taskq);
402 }
403
404 /*
405 * Other stuff.
406 */
407
408 #ifdef ZFS_DEBUG
409 static void
dbuf_verify(dmu_buf_impl_t * db)410 dbuf_verify(dmu_buf_impl_t *db)
411 {
412 dnode_t *dn;
413 dbuf_dirty_record_t *dr;
414
415 ASSERT(MUTEX_HELD(&db->db_mtx));
416
417 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
418 return;
419
420 ASSERT(db->db_objset != NULL);
421 DB_DNODE_ENTER(db);
422 dn = DB_DNODE(db);
423 if (dn == NULL) {
424 ASSERT(db->db_parent == NULL);
425 ASSERT(db->db_blkptr == NULL);
426 } else {
427 ASSERT3U(db->db.db_object, ==, dn->dn_object);
428 ASSERT3P(db->db_objset, ==, dn->dn_objset);
429 ASSERT3U(db->db_level, <, dn->dn_nlevels);
430 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
431 db->db_blkid == DMU_SPILL_BLKID ||
432 !avl_is_empty(&dn->dn_dbufs));
433 }
434 if (db->db_blkid == DMU_BONUS_BLKID) {
435 ASSERT(dn != NULL);
436 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
437 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
438 } else if (db->db_blkid == DMU_SPILL_BLKID) {
439 ASSERT(dn != NULL);
440 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
441 ASSERT0(db->db.db_offset);
442 } else {
443 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
444 }
445
446 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
447 ASSERT(dr->dr_dbuf == db);
448
449 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
450 ASSERT(dr->dr_dbuf == db);
451
452 /*
453 * We can't assert that db_size matches dn_datablksz because it
454 * can be momentarily different when another thread is doing
455 * dnode_set_blksz().
456 */
457 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
458 dr = db->db_data_pending;
459 /*
460 * It should only be modified in syncing context, so
461 * make sure we only have one copy of the data.
462 */
463 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
464 }
465
466 /* verify db->db_blkptr */
467 if (db->db_blkptr) {
468 if (db->db_parent == dn->dn_dbuf) {
469 /* db is pointed to by the dnode */
470 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
471 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
472 ASSERT(db->db_parent == NULL);
473 else
474 ASSERT(db->db_parent != NULL);
475 if (db->db_blkid != DMU_SPILL_BLKID)
476 ASSERT3P(db->db_blkptr, ==,
477 &dn->dn_phys->dn_blkptr[db->db_blkid]);
478 } else {
479 /* db is pointed to by an indirect block */
480 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
481 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
482 ASSERT3U(db->db_parent->db.db_object, ==,
483 db->db.db_object);
484 /*
485 * dnode_grow_indblksz() can make this fail if we don't
486 * have the struct_rwlock. XXX indblksz no longer
487 * grows. safe to do this now?
488 */
489 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
490 ASSERT3P(db->db_blkptr, ==,
491 ((blkptr_t *)db->db_parent->db.db_data +
492 db->db_blkid % epb));
493 }
494 }
495 }
496 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
497 (db->db_buf == NULL || db->db_buf->b_data) &&
498 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
499 db->db_state != DB_FILL && !dn->dn_free_txg) {
500 /*
501 * If the blkptr isn't set but they have nonzero data,
502 * it had better be dirty, otherwise we'll lose that
503 * data when we evict this buffer.
504 */
505 if (db->db_dirtycnt == 0) {
506 uint64_t *buf = db->db.db_data;
507 int i;
508
509 for (i = 0; i < db->db.db_size >> 3; i++) {
510 ASSERT(buf[i] == 0);
511 }
512 }
513 }
514 DB_DNODE_EXIT(db);
515 }
516 #endif
517
518 static void
dbuf_clear_data(dmu_buf_impl_t * db)519 dbuf_clear_data(dmu_buf_impl_t *db)
520 {
521 ASSERT(MUTEX_HELD(&db->db_mtx));
522 dbuf_evict_user(db);
523 db->db_buf = NULL;
524 db->db.db_data = NULL;
525 if (db->db_state != DB_NOFILL)
526 db->db_state = DB_UNCACHED;
527 }
528
529 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)530 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
531 {
532 ASSERT(MUTEX_HELD(&db->db_mtx));
533 ASSERT(buf != NULL);
534
535 db->db_buf = buf;
536 ASSERT(buf->b_data != NULL);
537 db->db.db_data = buf->b_data;
538 if (!arc_released(buf))
539 arc_set_callback(buf, dbuf_do_evict, db);
540 }
541
542 /*
543 * Loan out an arc_buf for read. Return the loaned arc_buf.
544 */
545 arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t * db)546 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
547 {
548 arc_buf_t *abuf;
549
550 mutex_enter(&db->db_mtx);
551 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
552 int blksz = db->db.db_size;
553 spa_t *spa = db->db_objset->os_spa;
554
555 mutex_exit(&db->db_mtx);
556 abuf = arc_loan_buf(spa, blksz);
557 bcopy(db->db.db_data, abuf->b_data, blksz);
558 } else {
559 abuf = db->db_buf;
560 arc_loan_inuse_buf(abuf, db);
561 dbuf_clear_data(db);
562 mutex_exit(&db->db_mtx);
563 }
564 return (abuf);
565 }
566
567 /*
568 * Calculate which level n block references the data at the level 0 offset
569 * provided.
570 */
571 uint64_t
dbuf_whichblock(dnode_t * dn,int64_t level,uint64_t offset)572 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
573 {
574 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
575 /*
576 * The level n blkid is equal to the level 0 blkid divided by
577 * the number of level 0s in a level n block.
578 *
579 * The level 0 blkid is offset >> datablkshift =
580 * offset / 2^datablkshift.
581 *
582 * The number of level 0s in a level n is the number of block
583 * pointers in an indirect block, raised to the power of level.
584 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
585 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
586 *
587 * Thus, the level n blkid is: offset /
588 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
589 * = offset / 2^(datablkshift + level *
590 * (indblkshift - SPA_BLKPTRSHIFT))
591 * = offset >> (datablkshift + level *
592 * (indblkshift - SPA_BLKPTRSHIFT))
593 */
594 return (offset >> (dn->dn_datablkshift + level *
595 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
596 } else {
597 ASSERT3U(offset, <, dn->dn_datablksz);
598 return (0);
599 }
600 }
601
602 static void
dbuf_read_done(zio_t * zio,arc_buf_t * buf,void * vdb)603 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
604 {
605 dmu_buf_impl_t *db = vdb;
606
607 mutex_enter(&db->db_mtx);
608 ASSERT3U(db->db_state, ==, DB_READ);
609 /*
610 * All reads are synchronous, so we must have a hold on the dbuf
611 */
612 ASSERT(refcount_count(&db->db_holds) > 0);
613 ASSERT(db->db_buf == NULL);
614 ASSERT(db->db.db_data == NULL);
615 if (db->db_level == 0 && db->db_freed_in_flight) {
616 /* we were freed in flight; disregard any error */
617 arc_release(buf, db);
618 bzero(buf->b_data, db->db.db_size);
619 arc_buf_freeze(buf);
620 db->db_freed_in_flight = FALSE;
621 dbuf_set_data(db, buf);
622 db->db_state = DB_CACHED;
623 } else if (zio == NULL || zio->io_error == 0) {
624 dbuf_set_data(db, buf);
625 db->db_state = DB_CACHED;
626 } else {
627 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
628 ASSERT3P(db->db_buf, ==, NULL);
629 VERIFY(arc_buf_remove_ref(buf, db));
630 db->db_state = DB_UNCACHED;
631 }
632 cv_broadcast(&db->db_changed);
633 dbuf_rele_and_unlock(db, NULL);
634 }
635
636 static void
dbuf_read_impl(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags)637 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
638 {
639 dnode_t *dn;
640 zbookmark_phys_t zb;
641 arc_flags_t aflags = ARC_FLAG_NOWAIT;
642
643 DB_DNODE_ENTER(db);
644 dn = DB_DNODE(db);
645 ASSERT(!refcount_is_zero(&db->db_holds));
646 /* We need the struct_rwlock to prevent db_blkptr from changing. */
647 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
648 ASSERT(MUTEX_HELD(&db->db_mtx));
649 ASSERT(db->db_state == DB_UNCACHED);
650 ASSERT(db->db_buf == NULL);
651
652 if (db->db_blkid == DMU_BONUS_BLKID) {
653 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
654
655 ASSERT3U(bonuslen, <=, db->db.db_size);
656 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
657 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
658 if (bonuslen < DN_MAX_BONUSLEN)
659 bzero(db->db.db_data, DN_MAX_BONUSLEN);
660 if (bonuslen)
661 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
662 DB_DNODE_EXIT(db);
663 db->db_state = DB_CACHED;
664 mutex_exit(&db->db_mtx);
665 return;
666 }
667
668 /*
669 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
670 * processes the delete record and clears the bp while we are waiting
671 * for the dn_mtx (resulting in a "no" from block_freed).
672 */
673 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
674 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
675 BP_IS_HOLE(db->db_blkptr)))) {
676 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
677
678 DB_DNODE_EXIT(db);
679 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
680 db->db.db_size, db, type));
681 bzero(db->db.db_data, db->db.db_size);
682 db->db_state = DB_CACHED;
683 mutex_exit(&db->db_mtx);
684 return;
685 }
686
687 DB_DNODE_EXIT(db);
688
689 db->db_state = DB_READ;
690 mutex_exit(&db->db_mtx);
691
692 if (DBUF_IS_L2CACHEABLE(db))
693 aflags |= ARC_FLAG_L2CACHE;
694 if (DBUF_IS_L2COMPRESSIBLE(db))
695 aflags |= ARC_FLAG_L2COMPRESS;
696
697 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
698 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
699 db->db.db_object, db->db_level, db->db_blkid);
700
701 dbuf_add_ref(db, NULL);
702
703 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
704 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
705 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
706 &aflags, &zb);
707 }
708
709 int
dbuf_read(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags)710 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
711 {
712 int err = 0;
713 boolean_t havepzio = (zio != NULL);
714 boolean_t prefetch;
715 dnode_t *dn;
716
717 /*
718 * We don't have to hold the mutex to check db_state because it
719 * can't be freed while we have a hold on the buffer.
720 */
721 ASSERT(!refcount_is_zero(&db->db_holds));
722
723 if (db->db_state == DB_NOFILL)
724 return (SET_ERROR(EIO));
725
726 DB_DNODE_ENTER(db);
727 dn = DB_DNODE(db);
728 if ((flags & DB_RF_HAVESTRUCT) == 0)
729 rw_enter(&dn->dn_struct_rwlock, RW_READER);
730
731 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
732 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
733 DBUF_IS_CACHEABLE(db);
734
735 mutex_enter(&db->db_mtx);
736 if (db->db_state == DB_CACHED) {
737 mutex_exit(&db->db_mtx);
738 if (prefetch)
739 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
740 if ((flags & DB_RF_HAVESTRUCT) == 0)
741 rw_exit(&dn->dn_struct_rwlock);
742 DB_DNODE_EXIT(db);
743 } else if (db->db_state == DB_UNCACHED) {
744 spa_t *spa = dn->dn_objset->os_spa;
745
746 if (zio == NULL)
747 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
748 dbuf_read_impl(db, zio, flags);
749
750 /* dbuf_read_impl has dropped db_mtx for us */
751
752 if (prefetch)
753 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
754
755 if ((flags & DB_RF_HAVESTRUCT) == 0)
756 rw_exit(&dn->dn_struct_rwlock);
757 DB_DNODE_EXIT(db);
758
759 if (!havepzio)
760 err = zio_wait(zio);
761 } else {
762 /*
763 * Another reader came in while the dbuf was in flight
764 * between UNCACHED and CACHED. Either a writer will finish
765 * writing the buffer (sending the dbuf to CACHED) or the
766 * first reader's request will reach the read_done callback
767 * and send the dbuf to CACHED. Otherwise, a failure
768 * occurred and the dbuf went to UNCACHED.
769 */
770 mutex_exit(&db->db_mtx);
771 if (prefetch)
772 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
773 if ((flags & DB_RF_HAVESTRUCT) == 0)
774 rw_exit(&dn->dn_struct_rwlock);
775 DB_DNODE_EXIT(db);
776
777 /* Skip the wait per the caller's request. */
778 mutex_enter(&db->db_mtx);
779 if ((flags & DB_RF_NEVERWAIT) == 0) {
780 while (db->db_state == DB_READ ||
781 db->db_state == DB_FILL) {
782 ASSERT(db->db_state == DB_READ ||
783 (flags & DB_RF_HAVESTRUCT) == 0);
784 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
785 db, zio_t *, zio);
786 cv_wait(&db->db_changed, &db->db_mtx);
787 }
788 if (db->db_state == DB_UNCACHED)
789 err = SET_ERROR(EIO);
790 }
791 mutex_exit(&db->db_mtx);
792 }
793
794 ASSERT(err || havepzio || db->db_state == DB_CACHED);
795 return (err);
796 }
797
798 static void
dbuf_noread(dmu_buf_impl_t * db)799 dbuf_noread(dmu_buf_impl_t *db)
800 {
801 ASSERT(!refcount_is_zero(&db->db_holds));
802 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
803 mutex_enter(&db->db_mtx);
804 while (db->db_state == DB_READ || db->db_state == DB_FILL)
805 cv_wait(&db->db_changed, &db->db_mtx);
806 if (db->db_state == DB_UNCACHED) {
807 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
808 spa_t *spa = db->db_objset->os_spa;
809
810 ASSERT(db->db_buf == NULL);
811 ASSERT(db->db.db_data == NULL);
812 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
813 db->db_state = DB_FILL;
814 } else if (db->db_state == DB_NOFILL) {
815 dbuf_clear_data(db);
816 } else {
817 ASSERT3U(db->db_state, ==, DB_CACHED);
818 }
819 mutex_exit(&db->db_mtx);
820 }
821
822 /*
823 * This is our just-in-time copy function. It makes a copy of
824 * buffers, that have been modified in a previous transaction
825 * group, before we modify them in the current active group.
826 *
827 * This function is used in two places: when we are dirtying a
828 * buffer for the first time in a txg, and when we are freeing
829 * a range in a dnode that includes this buffer.
830 *
831 * Note that when we are called from dbuf_free_range() we do
832 * not put a hold on the buffer, we just traverse the active
833 * dbuf list for the dnode.
834 */
835 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)836 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
837 {
838 dbuf_dirty_record_t *dr = db->db_last_dirty;
839
840 ASSERT(MUTEX_HELD(&db->db_mtx));
841 ASSERT(db->db.db_data != NULL);
842 ASSERT(db->db_level == 0);
843 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
844
845 if (dr == NULL ||
846 (dr->dt.dl.dr_data !=
847 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
848 return;
849
850 /*
851 * If the last dirty record for this dbuf has not yet synced
852 * and its referencing the dbuf data, either:
853 * reset the reference to point to a new copy,
854 * or (if there a no active holders)
855 * just null out the current db_data pointer.
856 */
857 ASSERT(dr->dr_txg >= txg - 2);
858 if (db->db_blkid == DMU_BONUS_BLKID) {
859 /* Note that the data bufs here are zio_bufs */
860 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
861 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
862 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
863 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
864 int size = db->db.db_size;
865 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
866 spa_t *spa = db->db_objset->os_spa;
867
868 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
869 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
870 } else {
871 dbuf_clear_data(db);
872 }
873 }
874
875 void
dbuf_unoverride(dbuf_dirty_record_t * dr)876 dbuf_unoverride(dbuf_dirty_record_t *dr)
877 {
878 dmu_buf_impl_t *db = dr->dr_dbuf;
879 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
880 uint64_t txg = dr->dr_txg;
881
882 ASSERT(MUTEX_HELD(&db->db_mtx));
883 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
884 ASSERT(db->db_level == 0);
885
886 if (db->db_blkid == DMU_BONUS_BLKID ||
887 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
888 return;
889
890 ASSERT(db->db_data_pending != dr);
891
892 /* free this block */
893 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
894 zio_free(db->db_objset->os_spa, txg, bp);
895
896 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
897 dr->dt.dl.dr_nopwrite = B_FALSE;
898
899 /*
900 * Release the already-written buffer, so we leave it in
901 * a consistent dirty state. Note that all callers are
902 * modifying the buffer, so they will immediately do
903 * another (redundant) arc_release(). Therefore, leave
904 * the buf thawed to save the effort of freezing &
905 * immediately re-thawing it.
906 */
907 arc_release(dr->dt.dl.dr_data, db);
908 }
909
910 /*
911 * Evict (if its unreferenced) or clear (if its referenced) any level-0
912 * data blocks in the free range, so that any future readers will find
913 * empty blocks.
914 *
915 * This is a no-op if the dataset is in the middle of an incremental
916 * receive; see comment below for details.
917 */
918 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)919 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
920 dmu_tx_t *tx)
921 {
922 dmu_buf_impl_t db_search;
923 dmu_buf_impl_t *db, *db_next;
924 uint64_t txg = tx->tx_txg;
925 avl_index_t where;
926
927 if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
928 end_blkid = dn->dn_maxblkid;
929 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
930
931 db_search.db_level = 0;
932 db_search.db_blkid = start_blkid;
933 db_search.db_state = DB_SEARCH;
934
935 mutex_enter(&dn->dn_dbufs_mtx);
936 if (start_blkid >= dn->dn_unlisted_l0_blkid) {
937 /* There can't be any dbufs in this range; no need to search. */
938 #ifdef DEBUG
939 db = avl_find(&dn->dn_dbufs, &db_search, &where);
940 ASSERT3P(db, ==, NULL);
941 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
942 ASSERT(db == NULL || db->db_level > 0);
943 #endif
944 mutex_exit(&dn->dn_dbufs_mtx);
945 return;
946 } else if (dmu_objset_is_receiving(dn->dn_objset)) {
947 /*
948 * If we are receiving, we expect there to be no dbufs in
949 * the range to be freed, because receive modifies each
950 * block at most once, and in offset order. If this is
951 * not the case, it can lead to performance problems,
952 * so note that we unexpectedly took the slow path.
953 */
954 atomic_inc_64(&zfs_free_range_recv_miss);
955 }
956
957 db = avl_find(&dn->dn_dbufs, &db_search, &where);
958 ASSERT3P(db, ==, NULL);
959 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
960
961 for (; db != NULL; db = db_next) {
962 db_next = AVL_NEXT(&dn->dn_dbufs, db);
963 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
964
965 if (db->db_level != 0 || db->db_blkid > end_blkid) {
966 break;
967 }
968 ASSERT3U(db->db_blkid, >=, start_blkid);
969
970 /* found a level 0 buffer in the range */
971 mutex_enter(&db->db_mtx);
972 if (dbuf_undirty(db, tx)) {
973 /* mutex has been dropped and dbuf destroyed */
974 continue;
975 }
976
977 if (db->db_state == DB_UNCACHED ||
978 db->db_state == DB_NOFILL ||
979 db->db_state == DB_EVICTING) {
980 ASSERT(db->db.db_data == NULL);
981 mutex_exit(&db->db_mtx);
982 continue;
983 }
984 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
985 /* will be handled in dbuf_read_done or dbuf_rele */
986 db->db_freed_in_flight = TRUE;
987 mutex_exit(&db->db_mtx);
988 continue;
989 }
990 if (refcount_count(&db->db_holds) == 0) {
991 ASSERT(db->db_buf);
992 dbuf_clear(db);
993 continue;
994 }
995 /* The dbuf is referenced */
996
997 if (db->db_last_dirty != NULL) {
998 dbuf_dirty_record_t *dr = db->db_last_dirty;
999
1000 if (dr->dr_txg == txg) {
1001 /*
1002 * This buffer is "in-use", re-adjust the file
1003 * size to reflect that this buffer may
1004 * contain new data when we sync.
1005 */
1006 if (db->db_blkid != DMU_SPILL_BLKID &&
1007 db->db_blkid > dn->dn_maxblkid)
1008 dn->dn_maxblkid = db->db_blkid;
1009 dbuf_unoverride(dr);
1010 } else {
1011 /*
1012 * This dbuf is not dirty in the open context.
1013 * Either uncache it (if its not referenced in
1014 * the open context) or reset its contents to
1015 * empty.
1016 */
1017 dbuf_fix_old_data(db, txg);
1018 }
1019 }
1020 /* clear the contents if its cached */
1021 if (db->db_state == DB_CACHED) {
1022 ASSERT(db->db.db_data != NULL);
1023 arc_release(db->db_buf, db);
1024 bzero(db->db.db_data, db->db.db_size);
1025 arc_buf_freeze(db->db_buf);
1026 }
1027
1028 mutex_exit(&db->db_mtx);
1029 }
1030 mutex_exit(&dn->dn_dbufs_mtx);
1031 }
1032
1033 static int
dbuf_block_freeable(dmu_buf_impl_t * db)1034 dbuf_block_freeable(dmu_buf_impl_t *db)
1035 {
1036 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1037 uint64_t birth_txg = 0;
1038
1039 /*
1040 * We don't need any locking to protect db_blkptr:
1041 * If it's syncing, then db_last_dirty will be set
1042 * so we'll ignore db_blkptr.
1043 *
1044 * This logic ensures that only block births for
1045 * filled blocks are considered.
1046 */
1047 ASSERT(MUTEX_HELD(&db->db_mtx));
1048 if (db->db_last_dirty && (db->db_blkptr == NULL ||
1049 !BP_IS_HOLE(db->db_blkptr))) {
1050 birth_txg = db->db_last_dirty->dr_txg;
1051 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1052 birth_txg = db->db_blkptr->blk_birth;
1053 }
1054
1055 /*
1056 * If this block don't exist or is in a snapshot, it can't be freed.
1057 * Don't pass the bp to dsl_dataset_block_freeable() since we
1058 * are holding the db_mtx lock and might deadlock if we are
1059 * prefetching a dedup-ed block.
1060 */
1061 if (birth_txg != 0)
1062 return (ds == NULL ||
1063 dsl_dataset_block_freeable(ds, NULL, birth_txg));
1064 else
1065 return (B_FALSE);
1066 }
1067
1068 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)1069 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1070 {
1071 arc_buf_t *buf, *obuf;
1072 int osize = db->db.db_size;
1073 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1074 dnode_t *dn;
1075
1076 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1077
1078 DB_DNODE_ENTER(db);
1079 dn = DB_DNODE(db);
1080
1081 /* XXX does *this* func really need the lock? */
1082 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1083
1084 /*
1085 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1086 * is OK, because there can be no other references to the db
1087 * when we are changing its size, so no concurrent DB_FILL can
1088 * be happening.
1089 */
1090 /*
1091 * XXX we should be doing a dbuf_read, checking the return
1092 * value and returning that up to our callers
1093 */
1094 dmu_buf_will_dirty(&db->db, tx);
1095
1096 /* create the data buffer for the new block */
1097 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1098
1099 /* copy old block data to the new block */
1100 obuf = db->db_buf;
1101 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1102 /* zero the remainder */
1103 if (size > osize)
1104 bzero((uint8_t *)buf->b_data + osize, size - osize);
1105
1106 mutex_enter(&db->db_mtx);
1107 dbuf_set_data(db, buf);
1108 VERIFY(arc_buf_remove_ref(obuf, db));
1109 db->db.db_size = size;
1110
1111 if (db->db_level == 0) {
1112 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1113 db->db_last_dirty->dt.dl.dr_data = buf;
1114 }
1115 mutex_exit(&db->db_mtx);
1116
1117 dnode_willuse_space(dn, size-osize, tx);
1118 DB_DNODE_EXIT(db);
1119 }
1120
1121 void
dbuf_release_bp(dmu_buf_impl_t * db)1122 dbuf_release_bp(dmu_buf_impl_t *db)
1123 {
1124 objset_t *os = db->db_objset;
1125
1126 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1127 ASSERT(arc_released(os->os_phys_buf) ||
1128 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1129 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1130
1131 (void) arc_release(db->db_buf, db);
1132 }
1133
1134 /*
1135 * We already have a dirty record for this TXG, and we are being
1136 * dirtied again.
1137 */
1138 static void
dbuf_redirty(dbuf_dirty_record_t * dr)1139 dbuf_redirty(dbuf_dirty_record_t *dr)
1140 {
1141 dmu_buf_impl_t *db = dr->dr_dbuf;
1142
1143 ASSERT(MUTEX_HELD(&db->db_mtx));
1144
1145 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1146 /*
1147 * If this buffer has already been written out,
1148 * we now need to reset its state.
1149 */
1150 dbuf_unoverride(dr);
1151 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1152 db->db_state != DB_NOFILL) {
1153 /* Already released on initial dirty, so just thaw. */
1154 ASSERT(arc_released(db->db_buf));
1155 arc_buf_thaw(db->db_buf);
1156 }
1157 }
1158 }
1159
1160 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1161 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1162 {
1163 dnode_t *dn;
1164 objset_t *os;
1165 dbuf_dirty_record_t **drp, *dr;
1166 int drop_struct_lock = FALSE;
1167 boolean_t do_free_accounting = B_FALSE;
1168 int txgoff = tx->tx_txg & TXG_MASK;
1169
1170 ASSERT(tx->tx_txg != 0);
1171 ASSERT(!refcount_is_zero(&db->db_holds));
1172 DMU_TX_DIRTY_BUF(tx, db);
1173
1174 DB_DNODE_ENTER(db);
1175 dn = DB_DNODE(db);
1176 /*
1177 * Shouldn't dirty a regular buffer in syncing context. Private
1178 * objects may be dirtied in syncing context, but only if they
1179 * were already pre-dirtied in open context.
1180 */
1181 ASSERT(!dmu_tx_is_syncing(tx) ||
1182 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1183 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1184 dn->dn_objset->os_dsl_dataset == NULL);
1185 /*
1186 * We make this assert for private objects as well, but after we
1187 * check if we're already dirty. They are allowed to re-dirty
1188 * in syncing context.
1189 */
1190 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1191 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1192 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1193
1194 mutex_enter(&db->db_mtx);
1195 /*
1196 * XXX make this true for indirects too? The problem is that
1197 * transactions created with dmu_tx_create_assigned() from
1198 * syncing context don't bother holding ahead.
1199 */
1200 ASSERT(db->db_level != 0 ||
1201 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1202 db->db_state == DB_NOFILL);
1203
1204 mutex_enter(&dn->dn_mtx);
1205 /*
1206 * Don't set dirtyctx to SYNC if we're just modifying this as we
1207 * initialize the objset.
1208 */
1209 if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1210 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1211 dn->dn_dirtyctx =
1212 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1213 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1214 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1215 }
1216 mutex_exit(&dn->dn_mtx);
1217
1218 if (db->db_blkid == DMU_SPILL_BLKID)
1219 dn->dn_have_spill = B_TRUE;
1220
1221 /*
1222 * If this buffer is already dirty, we're done.
1223 */
1224 drp = &db->db_last_dirty;
1225 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1226 db->db.db_object == DMU_META_DNODE_OBJECT);
1227 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1228 drp = &dr->dr_next;
1229 if (dr && dr->dr_txg == tx->tx_txg) {
1230 DB_DNODE_EXIT(db);
1231
1232 dbuf_redirty(dr);
1233 mutex_exit(&db->db_mtx);
1234 return (dr);
1235 }
1236
1237 /*
1238 * Only valid if not already dirty.
1239 */
1240 ASSERT(dn->dn_object == 0 ||
1241 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1242 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1243
1244 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1245 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1246 dn->dn_phys->dn_nlevels > db->db_level ||
1247 dn->dn_next_nlevels[txgoff] > db->db_level ||
1248 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1249 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1250
1251 /*
1252 * We should only be dirtying in syncing context if it's the
1253 * mos or we're initializing the os or it's a special object.
1254 * However, we are allowed to dirty in syncing context provided
1255 * we already dirtied it in open context. Hence we must make
1256 * this assertion only if we're not already dirty.
1257 */
1258 os = dn->dn_objset;
1259 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1260 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1261 ASSERT(db->db.db_size != 0);
1262
1263 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1264
1265 if (db->db_blkid != DMU_BONUS_BLKID) {
1266 /*
1267 * Update the accounting.
1268 * Note: we delay "free accounting" until after we drop
1269 * the db_mtx. This keeps us from grabbing other locks
1270 * (and possibly deadlocking) in bp_get_dsize() while
1271 * also holding the db_mtx.
1272 */
1273 dnode_willuse_space(dn, db->db.db_size, tx);
1274 do_free_accounting = dbuf_block_freeable(db);
1275 }
1276
1277 /*
1278 * If this buffer is dirty in an old transaction group we need
1279 * to make a copy of it so that the changes we make in this
1280 * transaction group won't leak out when we sync the older txg.
1281 */
1282 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1283 if (db->db_level == 0) {
1284 void *data_old = db->db_buf;
1285
1286 if (db->db_state != DB_NOFILL) {
1287 if (db->db_blkid == DMU_BONUS_BLKID) {
1288 dbuf_fix_old_data(db, tx->tx_txg);
1289 data_old = db->db.db_data;
1290 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1291 /*
1292 * Release the data buffer from the cache so
1293 * that we can modify it without impacting
1294 * possible other users of this cached data
1295 * block. Note that indirect blocks and
1296 * private objects are not released until the
1297 * syncing state (since they are only modified
1298 * then).
1299 */
1300 arc_release(db->db_buf, db);
1301 dbuf_fix_old_data(db, tx->tx_txg);
1302 data_old = db->db_buf;
1303 }
1304 ASSERT(data_old != NULL);
1305 }
1306 dr->dt.dl.dr_data = data_old;
1307 } else {
1308 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1309 list_create(&dr->dt.di.dr_children,
1310 sizeof (dbuf_dirty_record_t),
1311 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1312 }
1313 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1314 dr->dr_accounted = db->db.db_size;
1315 dr->dr_dbuf = db;
1316 dr->dr_txg = tx->tx_txg;
1317 dr->dr_next = *drp;
1318 *drp = dr;
1319
1320 /*
1321 * We could have been freed_in_flight between the dbuf_noread
1322 * and dbuf_dirty. We win, as though the dbuf_noread() had
1323 * happened after the free.
1324 */
1325 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1326 db->db_blkid != DMU_SPILL_BLKID) {
1327 mutex_enter(&dn->dn_mtx);
1328 if (dn->dn_free_ranges[txgoff] != NULL) {
1329 range_tree_clear(dn->dn_free_ranges[txgoff],
1330 db->db_blkid, 1);
1331 }
1332 mutex_exit(&dn->dn_mtx);
1333 db->db_freed_in_flight = FALSE;
1334 }
1335
1336 /*
1337 * This buffer is now part of this txg
1338 */
1339 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1340 db->db_dirtycnt += 1;
1341 ASSERT3U(db->db_dirtycnt, <=, 3);
1342
1343 mutex_exit(&db->db_mtx);
1344
1345 if (db->db_blkid == DMU_BONUS_BLKID ||
1346 db->db_blkid == DMU_SPILL_BLKID) {
1347 mutex_enter(&dn->dn_mtx);
1348 ASSERT(!list_link_active(&dr->dr_dirty_node));
1349 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1350 mutex_exit(&dn->dn_mtx);
1351 dnode_setdirty(dn, tx);
1352 DB_DNODE_EXIT(db);
1353 return (dr);
1354 } else if (do_free_accounting) {
1355 blkptr_t *bp = db->db_blkptr;
1356 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1357 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1358 /*
1359 * This is only a guess -- if the dbuf is dirty
1360 * in a previous txg, we don't know how much
1361 * space it will use on disk yet. We should
1362 * really have the struct_rwlock to access
1363 * db_blkptr, but since this is just a guess,
1364 * it's OK if we get an odd answer.
1365 */
1366 ddt_prefetch(os->os_spa, bp);
1367 dnode_willuse_space(dn, -willfree, tx);
1368 }
1369
1370 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1371 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1372 drop_struct_lock = TRUE;
1373 }
1374
1375 if (db->db_level == 0) {
1376 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1377 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1378 }
1379
1380 if (db->db_level+1 < dn->dn_nlevels) {
1381 dmu_buf_impl_t *parent = db->db_parent;
1382 dbuf_dirty_record_t *di;
1383 int parent_held = FALSE;
1384
1385 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1386 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1387
1388 parent = dbuf_hold_level(dn, db->db_level+1,
1389 db->db_blkid >> epbs, FTAG);
1390 ASSERT(parent != NULL);
1391 parent_held = TRUE;
1392 }
1393 if (drop_struct_lock)
1394 rw_exit(&dn->dn_struct_rwlock);
1395 ASSERT3U(db->db_level+1, ==, parent->db_level);
1396 di = dbuf_dirty(parent, tx);
1397 if (parent_held)
1398 dbuf_rele(parent, FTAG);
1399
1400 mutex_enter(&db->db_mtx);
1401 /*
1402 * Since we've dropped the mutex, it's possible that
1403 * dbuf_undirty() might have changed this out from under us.
1404 */
1405 if (db->db_last_dirty == dr ||
1406 dn->dn_object == DMU_META_DNODE_OBJECT) {
1407 mutex_enter(&di->dt.di.dr_mtx);
1408 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1409 ASSERT(!list_link_active(&dr->dr_dirty_node));
1410 list_insert_tail(&di->dt.di.dr_children, dr);
1411 mutex_exit(&di->dt.di.dr_mtx);
1412 dr->dr_parent = di;
1413 }
1414 mutex_exit(&db->db_mtx);
1415 } else {
1416 ASSERT(db->db_level+1 == dn->dn_nlevels);
1417 ASSERT(db->db_blkid < dn->dn_nblkptr);
1418 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1419 mutex_enter(&dn->dn_mtx);
1420 ASSERT(!list_link_active(&dr->dr_dirty_node));
1421 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1422 mutex_exit(&dn->dn_mtx);
1423 if (drop_struct_lock)
1424 rw_exit(&dn->dn_struct_rwlock);
1425 }
1426
1427 dnode_setdirty(dn, tx);
1428 DB_DNODE_EXIT(db);
1429 return (dr);
1430 }
1431
1432 /*
1433 * Undirty a buffer in the transaction group referenced by the given
1434 * transaction. Return whether this evicted the dbuf.
1435 */
1436 static boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1437 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1438 {
1439 dnode_t *dn;
1440 uint64_t txg = tx->tx_txg;
1441 dbuf_dirty_record_t *dr, **drp;
1442
1443 ASSERT(txg != 0);
1444
1445 /*
1446 * Due to our use of dn_nlevels below, this can only be called
1447 * in open context, unless we are operating on the MOS.
1448 * From syncing context, dn_nlevels may be different from the
1449 * dn_nlevels used when dbuf was dirtied.
1450 */
1451 ASSERT(db->db_objset ==
1452 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1453 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1454 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1455 ASSERT0(db->db_level);
1456 ASSERT(MUTEX_HELD(&db->db_mtx));
1457
1458 /*
1459 * If this buffer is not dirty, we're done.
1460 */
1461 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1462 if (dr->dr_txg <= txg)
1463 break;
1464 if (dr == NULL || dr->dr_txg < txg)
1465 return (B_FALSE);
1466 ASSERT(dr->dr_txg == txg);
1467 ASSERT(dr->dr_dbuf == db);
1468
1469 DB_DNODE_ENTER(db);
1470 dn = DB_DNODE(db);
1471
1472 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1473
1474 ASSERT(db->db.db_size != 0);
1475
1476 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1477 dr->dr_accounted, txg);
1478
1479 *drp = dr->dr_next;
1480
1481 /*
1482 * Note that there are three places in dbuf_dirty()
1483 * where this dirty record may be put on a list.
1484 * Make sure to do a list_remove corresponding to
1485 * every one of those list_insert calls.
1486 */
1487 if (dr->dr_parent) {
1488 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1489 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1490 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1491 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1492 db->db_level + 1 == dn->dn_nlevels) {
1493 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1494 mutex_enter(&dn->dn_mtx);
1495 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1496 mutex_exit(&dn->dn_mtx);
1497 }
1498 DB_DNODE_EXIT(db);
1499
1500 if (db->db_state != DB_NOFILL) {
1501 dbuf_unoverride(dr);
1502
1503 ASSERT(db->db_buf != NULL);
1504 ASSERT(dr->dt.dl.dr_data != NULL);
1505 if (dr->dt.dl.dr_data != db->db_buf)
1506 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1507 }
1508
1509 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1510
1511 ASSERT(db->db_dirtycnt > 0);
1512 db->db_dirtycnt -= 1;
1513
1514 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1515 arc_buf_t *buf = db->db_buf;
1516
1517 ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1518 dbuf_clear_data(db);
1519 VERIFY(arc_buf_remove_ref(buf, db));
1520 dbuf_evict(db);
1521 return (B_TRUE);
1522 }
1523
1524 return (B_FALSE);
1525 }
1526
1527 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)1528 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1529 {
1530 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1531 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1532
1533 ASSERT(tx->tx_txg != 0);
1534 ASSERT(!refcount_is_zero(&db->db_holds));
1535
1536 /*
1537 * Quick check for dirtyness. For already dirty blocks, this
1538 * reduces runtime of this function by >90%, and overall performance
1539 * by 50% for some workloads (e.g. file deletion with indirect blocks
1540 * cached).
1541 */
1542 mutex_enter(&db->db_mtx);
1543 dbuf_dirty_record_t *dr;
1544 for (dr = db->db_last_dirty;
1545 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1546 /*
1547 * It's possible that it is already dirty but not cached,
1548 * because there are some calls to dbuf_dirty() that don't
1549 * go through dmu_buf_will_dirty().
1550 */
1551 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1552 /* This dbuf is already dirty and cached. */
1553 dbuf_redirty(dr);
1554 mutex_exit(&db->db_mtx);
1555 return;
1556 }
1557 }
1558 mutex_exit(&db->db_mtx);
1559
1560 DB_DNODE_ENTER(db);
1561 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1562 rf |= DB_RF_HAVESTRUCT;
1563 DB_DNODE_EXIT(db);
1564 (void) dbuf_read(db, NULL, rf);
1565 (void) dbuf_dirty(db, tx);
1566 }
1567
1568 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)1569 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1570 {
1571 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1572
1573 db->db_state = DB_NOFILL;
1574
1575 dmu_buf_will_fill(db_fake, tx);
1576 }
1577
1578 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)1579 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1580 {
1581 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1582
1583 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1584 ASSERT(tx->tx_txg != 0);
1585 ASSERT(db->db_level == 0);
1586 ASSERT(!refcount_is_zero(&db->db_holds));
1587
1588 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1589 dmu_tx_private_ok(tx));
1590
1591 dbuf_noread(db);
1592 (void) dbuf_dirty(db, tx);
1593 }
1594
1595 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1596 /* ARGSUSED */
1597 void
dbuf_fill_done(dmu_buf_impl_t * db,dmu_tx_t * tx)1598 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1599 {
1600 mutex_enter(&db->db_mtx);
1601 DBUF_VERIFY(db);
1602
1603 if (db->db_state == DB_FILL) {
1604 if (db->db_level == 0 && db->db_freed_in_flight) {
1605 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1606 /* we were freed while filling */
1607 /* XXX dbuf_undirty? */
1608 bzero(db->db.db_data, db->db.db_size);
1609 db->db_freed_in_flight = FALSE;
1610 }
1611 db->db_state = DB_CACHED;
1612 cv_broadcast(&db->db_changed);
1613 }
1614 mutex_exit(&db->db_mtx);
1615 }
1616
1617 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1618 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1619 bp_embedded_type_t etype, enum zio_compress comp,
1620 int uncompressed_size, int compressed_size, int byteorder,
1621 dmu_tx_t *tx)
1622 {
1623 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1624 struct dirty_leaf *dl;
1625 dmu_object_type_t type;
1626
1627 if (etype == BP_EMBEDDED_TYPE_DATA) {
1628 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1629 SPA_FEATURE_EMBEDDED_DATA));
1630 }
1631
1632 DB_DNODE_ENTER(db);
1633 type = DB_DNODE(db)->dn_type;
1634 DB_DNODE_EXIT(db);
1635
1636 ASSERT0(db->db_level);
1637 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1638
1639 dmu_buf_will_not_fill(dbuf, tx);
1640
1641 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1642 dl = &db->db_last_dirty->dt.dl;
1643 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1644 data, comp, uncompressed_size, compressed_size);
1645 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1646 BP_SET_TYPE(&dl->dr_overridden_by, type);
1647 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1648 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1649
1650 dl->dr_override_state = DR_OVERRIDDEN;
1651 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1652 }
1653
1654 /*
1655 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1656 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1657 */
1658 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx)1659 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1660 {
1661 ASSERT(!refcount_is_zero(&db->db_holds));
1662 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1663 ASSERT(db->db_level == 0);
1664 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1665 ASSERT(buf != NULL);
1666 ASSERT(arc_buf_size(buf) == db->db.db_size);
1667 ASSERT(tx->tx_txg != 0);
1668
1669 arc_return_buf(buf, db);
1670 ASSERT(arc_released(buf));
1671
1672 mutex_enter(&db->db_mtx);
1673
1674 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1675 cv_wait(&db->db_changed, &db->db_mtx);
1676
1677 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1678
1679 if (db->db_state == DB_CACHED &&
1680 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1681 mutex_exit(&db->db_mtx);
1682 (void) dbuf_dirty(db, tx);
1683 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1684 VERIFY(arc_buf_remove_ref(buf, db));
1685 xuio_stat_wbuf_copied();
1686 return;
1687 }
1688
1689 xuio_stat_wbuf_nocopy();
1690 if (db->db_state == DB_CACHED) {
1691 dbuf_dirty_record_t *dr = db->db_last_dirty;
1692
1693 ASSERT(db->db_buf != NULL);
1694 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1695 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1696 if (!arc_released(db->db_buf)) {
1697 ASSERT(dr->dt.dl.dr_override_state ==
1698 DR_OVERRIDDEN);
1699 arc_release(db->db_buf, db);
1700 }
1701 dr->dt.dl.dr_data = buf;
1702 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1703 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1704 arc_release(db->db_buf, db);
1705 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1706 }
1707 db->db_buf = NULL;
1708 }
1709 ASSERT(db->db_buf == NULL);
1710 dbuf_set_data(db, buf);
1711 db->db_state = DB_FILL;
1712 mutex_exit(&db->db_mtx);
1713 (void) dbuf_dirty(db, tx);
1714 dmu_buf_fill_done(&db->db, tx);
1715 }
1716
1717 /*
1718 * "Clear" the contents of this dbuf. This will mark the dbuf
1719 * EVICTING and clear *most* of its references. Unfortunately,
1720 * when we are not holding the dn_dbufs_mtx, we can't clear the
1721 * entry in the dn_dbufs list. We have to wait until dbuf_destroy()
1722 * in this case. For callers from the DMU we will usually see:
1723 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1724 * For the arc callback, we will usually see:
1725 * dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1726 * Sometimes, though, we will get a mix of these two:
1727 * DMU: dbuf_clear()->arc_clear_callback()
1728 * ARC: dbuf_do_evict()->dbuf_destroy()
1729 *
1730 * This routine will dissociate the dbuf from the arc, by calling
1731 * arc_clear_callback(), but will not evict the data from the ARC.
1732 */
1733 void
dbuf_clear(dmu_buf_impl_t * db)1734 dbuf_clear(dmu_buf_impl_t *db)
1735 {
1736 dnode_t *dn;
1737 dmu_buf_impl_t *parent = db->db_parent;
1738 dmu_buf_impl_t *dndb;
1739 boolean_t dbuf_gone = B_FALSE;
1740
1741 ASSERT(MUTEX_HELD(&db->db_mtx));
1742 ASSERT(refcount_is_zero(&db->db_holds));
1743
1744 dbuf_evict_user(db);
1745
1746 if (db->db_state == DB_CACHED) {
1747 ASSERT(db->db.db_data != NULL);
1748 if (db->db_blkid == DMU_BONUS_BLKID) {
1749 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1750 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1751 }
1752 db->db.db_data = NULL;
1753 db->db_state = DB_UNCACHED;
1754 }
1755
1756 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1757 ASSERT(db->db_data_pending == NULL);
1758
1759 db->db_state = DB_EVICTING;
1760 db->db_blkptr = NULL;
1761
1762 DB_DNODE_ENTER(db);
1763 dn = DB_DNODE(db);
1764 dndb = dn->dn_dbuf;
1765 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1766 avl_remove(&dn->dn_dbufs, db);
1767 atomic_dec_32(&dn->dn_dbufs_count);
1768 membar_producer();
1769 DB_DNODE_EXIT(db);
1770 /*
1771 * Decrementing the dbuf count means that the hold corresponding
1772 * to the removed dbuf is no longer discounted in dnode_move(),
1773 * so the dnode cannot be moved until after we release the hold.
1774 * The membar_producer() ensures visibility of the decremented
1775 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1776 * release any lock.
1777 */
1778 dnode_rele(dn, db);
1779 db->db_dnode_handle = NULL;
1780 } else {
1781 DB_DNODE_EXIT(db);
1782 }
1783
1784 if (db->db_buf)
1785 dbuf_gone = arc_clear_callback(db->db_buf);
1786
1787 if (!dbuf_gone)
1788 mutex_exit(&db->db_mtx);
1789
1790 /*
1791 * If this dbuf is referenced from an indirect dbuf,
1792 * decrement the ref count on the indirect dbuf.
1793 */
1794 if (parent && parent != dndb)
1795 dbuf_rele(parent, db);
1796 }
1797
1798 /*
1799 * Note: While bpp will always be updated if the function returns success,
1800 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1801 * this happens when the dnode is the meta-dnode, or a userused or groupused
1802 * object.
1803 */
1804 static int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)1805 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1806 dmu_buf_impl_t **parentp, blkptr_t **bpp)
1807 {
1808 int nlevels, epbs;
1809
1810 *parentp = NULL;
1811 *bpp = NULL;
1812
1813 ASSERT(blkid != DMU_BONUS_BLKID);
1814
1815 if (blkid == DMU_SPILL_BLKID) {
1816 mutex_enter(&dn->dn_mtx);
1817 if (dn->dn_have_spill &&
1818 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1819 *bpp = &dn->dn_phys->dn_spill;
1820 else
1821 *bpp = NULL;
1822 dbuf_add_ref(dn->dn_dbuf, NULL);
1823 *parentp = dn->dn_dbuf;
1824 mutex_exit(&dn->dn_mtx);
1825 return (0);
1826 }
1827
1828 if (dn->dn_phys->dn_nlevels == 0)
1829 nlevels = 1;
1830 else
1831 nlevels = dn->dn_phys->dn_nlevels;
1832
1833 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1834
1835 ASSERT3U(level * epbs, <, 64);
1836 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1837 if (level >= nlevels ||
1838 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1839 /* the buffer has no parent yet */
1840 return (SET_ERROR(ENOENT));
1841 } else if (level < nlevels-1) {
1842 /* this block is referenced from an indirect block */
1843 int err = dbuf_hold_impl(dn, level+1,
1844 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1845 if (err)
1846 return (err);
1847 err = dbuf_read(*parentp, NULL,
1848 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1849 if (err) {
1850 dbuf_rele(*parentp, NULL);
1851 *parentp = NULL;
1852 return (err);
1853 }
1854 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1855 (blkid & ((1ULL << epbs) - 1));
1856 return (0);
1857 } else {
1858 /* the block is referenced from the dnode */
1859 ASSERT3U(level, ==, nlevels-1);
1860 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1861 blkid < dn->dn_phys->dn_nblkptr);
1862 if (dn->dn_dbuf) {
1863 dbuf_add_ref(dn->dn_dbuf, NULL);
1864 *parentp = dn->dn_dbuf;
1865 }
1866 *bpp = &dn->dn_phys->dn_blkptr[blkid];
1867 return (0);
1868 }
1869 }
1870
1871 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr)1872 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1873 dmu_buf_impl_t *parent, blkptr_t *blkptr)
1874 {
1875 objset_t *os = dn->dn_objset;
1876 dmu_buf_impl_t *db, *odb;
1877
1878 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1879 ASSERT(dn->dn_type != DMU_OT_NONE);
1880
1881 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1882
1883 db->db_objset = os;
1884 db->db.db_object = dn->dn_object;
1885 db->db_level = level;
1886 db->db_blkid = blkid;
1887 db->db_last_dirty = NULL;
1888 db->db_dirtycnt = 0;
1889 db->db_dnode_handle = dn->dn_handle;
1890 db->db_parent = parent;
1891 db->db_blkptr = blkptr;
1892
1893 db->db_user = NULL;
1894 db->db_user_immediate_evict = FALSE;
1895 db->db_freed_in_flight = FALSE;
1896 db->db_pending_evict = FALSE;
1897
1898 if (blkid == DMU_BONUS_BLKID) {
1899 ASSERT3P(parent, ==, dn->dn_dbuf);
1900 db->db.db_size = DN_MAX_BONUSLEN -
1901 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1902 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1903 db->db.db_offset = DMU_BONUS_BLKID;
1904 db->db_state = DB_UNCACHED;
1905 /* the bonus dbuf is not placed in the hash table */
1906 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1907 return (db);
1908 } else if (blkid == DMU_SPILL_BLKID) {
1909 db->db.db_size = (blkptr != NULL) ?
1910 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1911 db->db.db_offset = 0;
1912 } else {
1913 int blocksize =
1914 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1915 db->db.db_size = blocksize;
1916 db->db.db_offset = db->db_blkid * blocksize;
1917 }
1918
1919 /*
1920 * Hold the dn_dbufs_mtx while we get the new dbuf
1921 * in the hash table *and* added to the dbufs list.
1922 * This prevents a possible deadlock with someone
1923 * trying to look up this dbuf before its added to the
1924 * dn_dbufs list.
1925 */
1926 mutex_enter(&dn->dn_dbufs_mtx);
1927 db->db_state = DB_EVICTING;
1928 if ((odb = dbuf_hash_insert(db)) != NULL) {
1929 /* someone else inserted it first */
1930 kmem_cache_free(dbuf_cache, db);
1931 mutex_exit(&dn->dn_dbufs_mtx);
1932 return (odb);
1933 }
1934 avl_add(&dn->dn_dbufs, db);
1935 if (db->db_level == 0 && db->db_blkid >=
1936 dn->dn_unlisted_l0_blkid)
1937 dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1938 db->db_state = DB_UNCACHED;
1939 mutex_exit(&dn->dn_dbufs_mtx);
1940 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1941
1942 if (parent && parent != dn->dn_dbuf)
1943 dbuf_add_ref(parent, db);
1944
1945 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1946 refcount_count(&dn->dn_holds) > 0);
1947 (void) refcount_add(&dn->dn_holds, db);
1948 atomic_inc_32(&dn->dn_dbufs_count);
1949
1950 dprintf_dbuf(db, "db=%p\n", db);
1951
1952 return (db);
1953 }
1954
1955 static int
dbuf_do_evict(void * private)1956 dbuf_do_evict(void *private)
1957 {
1958 dmu_buf_impl_t *db = private;
1959
1960 if (!MUTEX_HELD(&db->db_mtx))
1961 mutex_enter(&db->db_mtx);
1962
1963 ASSERT(refcount_is_zero(&db->db_holds));
1964
1965 if (db->db_state != DB_EVICTING) {
1966 ASSERT(db->db_state == DB_CACHED);
1967 DBUF_VERIFY(db);
1968 db->db_buf = NULL;
1969 dbuf_evict(db);
1970 } else {
1971 mutex_exit(&db->db_mtx);
1972 dbuf_destroy(db);
1973 }
1974 return (0);
1975 }
1976
1977 static void
dbuf_destroy(dmu_buf_impl_t * db)1978 dbuf_destroy(dmu_buf_impl_t *db)
1979 {
1980 ASSERT(refcount_is_zero(&db->db_holds));
1981
1982 if (db->db_blkid != DMU_BONUS_BLKID) {
1983 /*
1984 * If this dbuf is still on the dn_dbufs list,
1985 * remove it from that list.
1986 */
1987 if (db->db_dnode_handle != NULL) {
1988 dnode_t *dn;
1989
1990 DB_DNODE_ENTER(db);
1991 dn = DB_DNODE(db);
1992 mutex_enter(&dn->dn_dbufs_mtx);
1993 avl_remove(&dn->dn_dbufs, db);
1994 atomic_dec_32(&dn->dn_dbufs_count);
1995 mutex_exit(&dn->dn_dbufs_mtx);
1996 DB_DNODE_EXIT(db);
1997 /*
1998 * Decrementing the dbuf count means that the hold
1999 * corresponding to the removed dbuf is no longer
2000 * discounted in dnode_move(), so the dnode cannot be
2001 * moved until after we release the hold.
2002 */
2003 dnode_rele(dn, db);
2004 db->db_dnode_handle = NULL;
2005 }
2006 dbuf_hash_remove(db);
2007 }
2008 db->db_parent = NULL;
2009 db->db_buf = NULL;
2010
2011 ASSERT(db->db.db_data == NULL);
2012 ASSERT(db->db_hash_next == NULL);
2013 ASSERT(db->db_blkptr == NULL);
2014 ASSERT(db->db_data_pending == NULL);
2015
2016 kmem_cache_free(dbuf_cache, db);
2017 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2018 }
2019
2020 typedef struct dbuf_prefetch_arg {
2021 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2022 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2023 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2024 int dpa_curlevel; /* The current level that we're reading */
2025 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2026 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2027 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2028 } dbuf_prefetch_arg_t;
2029
2030 /*
2031 * Actually issue the prefetch read for the block given.
2032 */
2033 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)2034 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2035 {
2036 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2037 return;
2038
2039 arc_flags_t aflags =
2040 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2041
2042 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2043 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2044 ASSERT(dpa->dpa_zio != NULL);
2045 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2046 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2047 &aflags, &dpa->dpa_zb);
2048 }
2049
2050 /*
2051 * Called when an indirect block above our prefetch target is read in. This
2052 * will either read in the next indirect block down the tree or issue the actual
2053 * prefetch if the next block down is our target.
2054 */
2055 static void
dbuf_prefetch_indirect_done(zio_t * zio,arc_buf_t * abuf,void * private)2056 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2057 {
2058 dbuf_prefetch_arg_t *dpa = private;
2059
2060 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2061 ASSERT3S(dpa->dpa_curlevel, >, 0);
2062 if (zio != NULL) {
2063 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2064 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2065 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2066 }
2067
2068 dpa->dpa_curlevel--;
2069
2070 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2071 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2072 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2073 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2074 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2075 kmem_free(dpa, sizeof (*dpa));
2076 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2077 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2078 dbuf_issue_final_prefetch(dpa, bp);
2079 kmem_free(dpa, sizeof (*dpa));
2080 } else {
2081 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2082 zbookmark_phys_t zb;
2083
2084 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2085
2086 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2087 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2088
2089 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2090 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2091 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2092 &iter_aflags, &zb);
2093 }
2094 (void) arc_buf_remove_ref(abuf, private);
2095 }
2096
2097 /*
2098 * Issue prefetch reads for the given block on the given level. If the indirect
2099 * blocks above that block are not in memory, we will read them in
2100 * asynchronously. As a result, this call never blocks waiting for a read to
2101 * complete.
2102 */
2103 void
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)2104 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2105 arc_flags_t aflags)
2106 {
2107 blkptr_t bp;
2108 int epbs, nlevels, curlevel;
2109 uint64_t curblkid;
2110
2111 ASSERT(blkid != DMU_BONUS_BLKID);
2112 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2113
2114 if (blkid > dn->dn_maxblkid)
2115 return;
2116
2117 if (dnode_block_freed(dn, blkid))
2118 return;
2119
2120 /*
2121 * This dnode hasn't been written to disk yet, so there's nothing to
2122 * prefetch.
2123 */
2124 nlevels = dn->dn_phys->dn_nlevels;
2125 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2126 return;
2127
2128 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2129 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2130 return;
2131
2132 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2133 level, blkid);
2134 if (db != NULL) {
2135 mutex_exit(&db->db_mtx);
2136 /*
2137 * This dbuf already exists. It is either CACHED, or
2138 * (we assume) about to be read or filled.
2139 */
2140 return;
2141 }
2142
2143 /*
2144 * Find the closest ancestor (indirect block) of the target block
2145 * that is present in the cache. In this indirect block, we will
2146 * find the bp that is at curlevel, curblkid.
2147 */
2148 curlevel = level;
2149 curblkid = blkid;
2150 while (curlevel < nlevels - 1) {
2151 int parent_level = curlevel + 1;
2152 uint64_t parent_blkid = curblkid >> epbs;
2153 dmu_buf_impl_t *db;
2154
2155 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2156 FALSE, TRUE, FTAG, &db) == 0) {
2157 blkptr_t *bpp = db->db_buf->b_data;
2158 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2159 dbuf_rele(db, FTAG);
2160 break;
2161 }
2162
2163 curlevel = parent_level;
2164 curblkid = parent_blkid;
2165 }
2166
2167 if (curlevel == nlevels - 1) {
2168 /* No cached indirect blocks found. */
2169 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2170 bp = dn->dn_phys->dn_blkptr[curblkid];
2171 }
2172 if (BP_IS_HOLE(&bp))
2173 return;
2174
2175 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2176
2177 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2178 ZIO_FLAG_CANFAIL);
2179
2180 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2181 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2182 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2183 dn->dn_object, level, blkid);
2184 dpa->dpa_curlevel = curlevel;
2185 dpa->dpa_prio = prio;
2186 dpa->dpa_aflags = aflags;
2187 dpa->dpa_spa = dn->dn_objset->os_spa;
2188 dpa->dpa_epbs = epbs;
2189 dpa->dpa_zio = pio;
2190
2191 /*
2192 * If we have the indirect just above us, no need to do the asynchronous
2193 * prefetch chain; we'll just run the last step ourselves. If we're at
2194 * a higher level, though, we want to issue the prefetches for all the
2195 * indirect blocks asynchronously, so we can go on with whatever we were
2196 * doing.
2197 */
2198 if (curlevel == level) {
2199 ASSERT3U(curblkid, ==, blkid);
2200 dbuf_issue_final_prefetch(dpa, &bp);
2201 kmem_free(dpa, sizeof (*dpa));
2202 } else {
2203 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2204 zbookmark_phys_t zb;
2205
2206 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2207 dn->dn_object, curlevel, curblkid);
2208 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2209 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2210 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2211 &iter_aflags, &zb);
2212 }
2213 /*
2214 * We use pio here instead of dpa_zio since it's possible that
2215 * dpa may have already been freed.
2216 */
2217 zio_nowait(pio);
2218 }
2219
2220 /*
2221 * Returns with db_holds incremented, and db_mtx not held.
2222 * Note: dn_struct_rwlock must be held.
2223 */
2224 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,void * tag,dmu_buf_impl_t ** dbp)2225 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2226 boolean_t fail_sparse, boolean_t fail_uncached,
2227 void *tag, dmu_buf_impl_t **dbp)
2228 {
2229 dmu_buf_impl_t *db, *parent = NULL;
2230
2231 ASSERT(blkid != DMU_BONUS_BLKID);
2232 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2233 ASSERT3U(dn->dn_nlevels, >, level);
2234
2235 *dbp = NULL;
2236 top:
2237 /* dbuf_find() returns with db_mtx held */
2238 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2239
2240 if (db == NULL) {
2241 blkptr_t *bp = NULL;
2242 int err;
2243
2244 if (fail_uncached)
2245 return (SET_ERROR(ENOENT));
2246
2247 ASSERT3P(parent, ==, NULL);
2248 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2249 if (fail_sparse) {
2250 if (err == 0 && bp && BP_IS_HOLE(bp))
2251 err = SET_ERROR(ENOENT);
2252 if (err) {
2253 if (parent)
2254 dbuf_rele(parent, NULL);
2255 return (err);
2256 }
2257 }
2258 if (err && err != ENOENT)
2259 return (err);
2260 db = dbuf_create(dn, level, blkid, parent, bp);
2261 }
2262
2263 if (fail_uncached && db->db_state != DB_CACHED) {
2264 mutex_exit(&db->db_mtx);
2265 return (SET_ERROR(ENOENT));
2266 }
2267
2268 if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2269 arc_buf_add_ref(db->db_buf, db);
2270 if (db->db_buf->b_data == NULL) {
2271 dbuf_clear(db);
2272 if (parent) {
2273 dbuf_rele(parent, NULL);
2274 parent = NULL;
2275 }
2276 goto top;
2277 }
2278 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2279 }
2280
2281 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2282
2283 /*
2284 * If this buffer is currently syncing out, and we are are
2285 * still referencing it from db_data, we need to make a copy
2286 * of it in case we decide we want to dirty it again in this txg.
2287 */
2288 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2289 dn->dn_object != DMU_META_DNODE_OBJECT &&
2290 db->db_state == DB_CACHED && db->db_data_pending) {
2291 dbuf_dirty_record_t *dr = db->db_data_pending;
2292
2293 if (dr->dt.dl.dr_data == db->db_buf) {
2294 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2295
2296 dbuf_set_data(db,
2297 arc_buf_alloc(dn->dn_objset->os_spa,
2298 db->db.db_size, db, type));
2299 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2300 db->db.db_size);
2301 }
2302 }
2303
2304 (void) refcount_add(&db->db_holds, tag);
2305 DBUF_VERIFY(db);
2306 mutex_exit(&db->db_mtx);
2307
2308 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2309 if (parent)
2310 dbuf_rele(parent, NULL);
2311
2312 ASSERT3P(DB_DNODE(db), ==, dn);
2313 ASSERT3U(db->db_blkid, ==, blkid);
2314 ASSERT3U(db->db_level, ==, level);
2315 *dbp = db;
2316
2317 return (0);
2318 }
2319
2320 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,void * tag)2321 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2322 {
2323 return (dbuf_hold_level(dn, 0, blkid, tag));
2324 }
2325
2326 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,void * tag)2327 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2328 {
2329 dmu_buf_impl_t *db;
2330 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2331 return (err ? NULL : db);
2332 }
2333
2334 void
dbuf_create_bonus(dnode_t * dn)2335 dbuf_create_bonus(dnode_t *dn)
2336 {
2337 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2338
2339 ASSERT(dn->dn_bonus == NULL);
2340 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2341 }
2342
2343 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)2344 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2345 {
2346 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2347 dnode_t *dn;
2348
2349 if (db->db_blkid != DMU_SPILL_BLKID)
2350 return (SET_ERROR(ENOTSUP));
2351 if (blksz == 0)
2352 blksz = SPA_MINBLOCKSIZE;
2353 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2354 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2355
2356 DB_DNODE_ENTER(db);
2357 dn = DB_DNODE(db);
2358 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2359 dbuf_new_size(db, blksz, tx);
2360 rw_exit(&dn->dn_struct_rwlock);
2361 DB_DNODE_EXIT(db);
2362
2363 return (0);
2364 }
2365
2366 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)2367 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2368 {
2369 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2370 }
2371
2372 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2373 void
dbuf_add_ref(dmu_buf_impl_t * db,void * tag)2374 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2375 {
2376 int64_t holds = refcount_add(&db->db_holds, tag);
2377 ASSERT(holds > 1);
2378 }
2379
2380 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2381 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,void * tag)2382 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2383 void *tag)
2384 {
2385 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2386 dmu_buf_impl_t *found_db;
2387 boolean_t result = B_FALSE;
2388
2389 if (db->db_blkid == DMU_BONUS_BLKID)
2390 found_db = dbuf_find_bonus(os, obj);
2391 else
2392 found_db = dbuf_find(os, obj, 0, blkid);
2393
2394 if (found_db != NULL) {
2395 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2396 (void) refcount_add(&db->db_holds, tag);
2397 result = B_TRUE;
2398 }
2399 mutex_exit(&db->db_mtx);
2400 }
2401 return (result);
2402 }
2403
2404 /*
2405 * If you call dbuf_rele() you had better not be referencing the dnode handle
2406 * unless you have some other direct or indirect hold on the dnode. (An indirect
2407 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2408 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2409 * dnode's parent dbuf evicting its dnode handles.
2410 */
2411 void
dbuf_rele(dmu_buf_impl_t * db,void * tag)2412 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2413 {
2414 mutex_enter(&db->db_mtx);
2415 dbuf_rele_and_unlock(db, tag);
2416 }
2417
2418 void
dmu_buf_rele(dmu_buf_t * db,void * tag)2419 dmu_buf_rele(dmu_buf_t *db, void *tag)
2420 {
2421 dbuf_rele((dmu_buf_impl_t *)db, tag);
2422 }
2423
2424 /*
2425 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2426 * db_dirtycnt and db_holds to be updated atomically.
2427 */
2428 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,void * tag)2429 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2430 {
2431 int64_t holds;
2432
2433 ASSERT(MUTEX_HELD(&db->db_mtx));
2434 DBUF_VERIFY(db);
2435
2436 /*
2437 * Remove the reference to the dbuf before removing its hold on the
2438 * dnode so we can guarantee in dnode_move() that a referenced bonus
2439 * buffer has a corresponding dnode hold.
2440 */
2441 holds = refcount_remove(&db->db_holds, tag);
2442 ASSERT(holds >= 0);
2443
2444 /*
2445 * We can't freeze indirects if there is a possibility that they
2446 * may be modified in the current syncing context.
2447 */
2448 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2449 arc_buf_freeze(db->db_buf);
2450
2451 if (holds == db->db_dirtycnt &&
2452 db->db_level == 0 && db->db_user_immediate_evict)
2453 dbuf_evict_user(db);
2454
2455 if (holds == 0) {
2456 if (db->db_blkid == DMU_BONUS_BLKID) {
2457 dnode_t *dn;
2458 boolean_t evict_dbuf = db->db_pending_evict;
2459
2460 /*
2461 * If the dnode moves here, we cannot cross this
2462 * barrier until the move completes.
2463 */
2464 DB_DNODE_ENTER(db);
2465
2466 dn = DB_DNODE(db);
2467 atomic_dec_32(&dn->dn_dbufs_count);
2468
2469 /*
2470 * Decrementing the dbuf count means that the bonus
2471 * buffer's dnode hold is no longer discounted in
2472 * dnode_move(). The dnode cannot move until after
2473 * the dnode_rele() below.
2474 */
2475 DB_DNODE_EXIT(db);
2476
2477 /*
2478 * Do not reference db after its lock is dropped.
2479 * Another thread may evict it.
2480 */
2481 mutex_exit(&db->db_mtx);
2482
2483 if (evict_dbuf)
2484 dnode_evict_bonus(dn);
2485
2486 dnode_rele(dn, db);
2487 } else if (db->db_buf == NULL) {
2488 /*
2489 * This is a special case: we never associated this
2490 * dbuf with any data allocated from the ARC.
2491 */
2492 ASSERT(db->db_state == DB_UNCACHED ||
2493 db->db_state == DB_NOFILL);
2494 dbuf_evict(db);
2495 } else if (arc_released(db->db_buf)) {
2496 arc_buf_t *buf = db->db_buf;
2497 /*
2498 * This dbuf has anonymous data associated with it.
2499 */
2500 dbuf_clear_data(db);
2501 VERIFY(arc_buf_remove_ref(buf, db));
2502 dbuf_evict(db);
2503 } else {
2504 VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2505
2506 /*
2507 * A dbuf will be eligible for eviction if either the
2508 * 'primarycache' property is set or a duplicate
2509 * copy of this buffer is already cached in the arc.
2510 *
2511 * In the case of the 'primarycache' a buffer
2512 * is considered for eviction if it matches the
2513 * criteria set in the property.
2514 *
2515 * To decide if our buffer is considered a
2516 * duplicate, we must call into the arc to determine
2517 * if multiple buffers are referencing the same
2518 * block on-disk. If so, then we simply evict
2519 * ourselves.
2520 */
2521 if (!DBUF_IS_CACHEABLE(db)) {
2522 if (db->db_blkptr != NULL &&
2523 !BP_IS_HOLE(db->db_blkptr) &&
2524 !BP_IS_EMBEDDED(db->db_blkptr)) {
2525 spa_t *spa =
2526 dmu_objset_spa(db->db_objset);
2527 blkptr_t bp = *db->db_blkptr;
2528 dbuf_clear(db);
2529 arc_freed(spa, &bp);
2530 } else {
2531 dbuf_clear(db);
2532 }
2533 } else if (db->db_pending_evict ||
2534 arc_buf_eviction_needed(db->db_buf)) {
2535 dbuf_clear(db);
2536 } else {
2537 mutex_exit(&db->db_mtx);
2538 }
2539 }
2540 } else {
2541 mutex_exit(&db->db_mtx);
2542 }
2543 }
2544
2545 #pragma weak dmu_buf_refcount = dbuf_refcount
2546 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)2547 dbuf_refcount(dmu_buf_impl_t *db)
2548 {
2549 return (refcount_count(&db->db_holds));
2550 }
2551
2552 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)2553 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2554 dmu_buf_user_t *new_user)
2555 {
2556 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2557
2558 mutex_enter(&db->db_mtx);
2559 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2560 if (db->db_user == old_user)
2561 db->db_user = new_user;
2562 else
2563 old_user = db->db_user;
2564 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2565 mutex_exit(&db->db_mtx);
2566
2567 return (old_user);
2568 }
2569
2570 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)2571 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2572 {
2573 return (dmu_buf_replace_user(db_fake, NULL, user));
2574 }
2575
2576 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)2577 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2578 {
2579 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2580
2581 db->db_user_immediate_evict = TRUE;
2582 return (dmu_buf_set_user(db_fake, user));
2583 }
2584
2585 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)2586 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2587 {
2588 return (dmu_buf_replace_user(db_fake, user, NULL));
2589 }
2590
2591 void *
dmu_buf_get_user(dmu_buf_t * db_fake)2592 dmu_buf_get_user(dmu_buf_t *db_fake)
2593 {
2594 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2595
2596 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2597 return (db->db_user);
2598 }
2599
2600 void
dmu_buf_user_evict_wait()2601 dmu_buf_user_evict_wait()
2602 {
2603 taskq_wait(dbu_evict_taskq);
2604 }
2605
2606 boolean_t
dmu_buf_freeable(dmu_buf_t * dbuf)2607 dmu_buf_freeable(dmu_buf_t *dbuf)
2608 {
2609 boolean_t res = B_FALSE;
2610 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2611
2612 if (db->db_blkptr)
2613 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2614 db->db_blkptr, db->db_blkptr->blk_birth);
2615
2616 return (res);
2617 }
2618
2619 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)2620 dmu_buf_get_blkptr(dmu_buf_t *db)
2621 {
2622 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2623 return (dbi->db_blkptr);
2624 }
2625
2626 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)2627 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2628 {
2629 /* ASSERT(dmu_tx_is_syncing(tx) */
2630 ASSERT(MUTEX_HELD(&db->db_mtx));
2631
2632 if (db->db_blkptr != NULL)
2633 return;
2634
2635 if (db->db_blkid == DMU_SPILL_BLKID) {
2636 db->db_blkptr = &dn->dn_phys->dn_spill;
2637 BP_ZERO(db->db_blkptr);
2638 return;
2639 }
2640 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2641 /*
2642 * This buffer was allocated at a time when there was
2643 * no available blkptrs from the dnode, or it was
2644 * inappropriate to hook it in (i.e., nlevels mis-match).
2645 */
2646 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2647 ASSERT(db->db_parent == NULL);
2648 db->db_parent = dn->dn_dbuf;
2649 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2650 DBUF_VERIFY(db);
2651 } else {
2652 dmu_buf_impl_t *parent = db->db_parent;
2653 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2654
2655 ASSERT(dn->dn_phys->dn_nlevels > 1);
2656 if (parent == NULL) {
2657 mutex_exit(&db->db_mtx);
2658 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2659 parent = dbuf_hold_level(dn, db->db_level + 1,
2660 db->db_blkid >> epbs, db);
2661 rw_exit(&dn->dn_struct_rwlock);
2662 mutex_enter(&db->db_mtx);
2663 db->db_parent = parent;
2664 }
2665 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2666 (db->db_blkid & ((1ULL << epbs) - 1));
2667 DBUF_VERIFY(db);
2668 }
2669 }
2670
2671 static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)2672 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2673 {
2674 dmu_buf_impl_t *db = dr->dr_dbuf;
2675 dnode_t *dn;
2676 zio_t *zio;
2677
2678 ASSERT(dmu_tx_is_syncing(tx));
2679
2680 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2681
2682 mutex_enter(&db->db_mtx);
2683
2684 ASSERT(db->db_level > 0);
2685 DBUF_VERIFY(db);
2686
2687 /* Read the block if it hasn't been read yet. */
2688 if (db->db_buf == NULL) {
2689 mutex_exit(&db->db_mtx);
2690 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2691 mutex_enter(&db->db_mtx);
2692 }
2693 ASSERT3U(db->db_state, ==, DB_CACHED);
2694 ASSERT(db->db_buf != NULL);
2695
2696 DB_DNODE_ENTER(db);
2697 dn = DB_DNODE(db);
2698 /* Indirect block size must match what the dnode thinks it is. */
2699 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2700 dbuf_check_blkptr(dn, db);
2701 DB_DNODE_EXIT(db);
2702
2703 /* Provide the pending dirty record to child dbufs */
2704 db->db_data_pending = dr;
2705
2706 mutex_exit(&db->db_mtx);
2707 dbuf_write(dr, db->db_buf, tx);
2708
2709 zio = dr->dr_zio;
2710 mutex_enter(&dr->dt.di.dr_mtx);
2711 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2712 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2713 mutex_exit(&dr->dt.di.dr_mtx);
2714 zio_nowait(zio);
2715 }
2716
2717 static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)2718 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2719 {
2720 arc_buf_t **datap = &dr->dt.dl.dr_data;
2721 dmu_buf_impl_t *db = dr->dr_dbuf;
2722 dnode_t *dn;
2723 objset_t *os;
2724 uint64_t txg = tx->tx_txg;
2725
2726 ASSERT(dmu_tx_is_syncing(tx));
2727
2728 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2729
2730 mutex_enter(&db->db_mtx);
2731 /*
2732 * To be synced, we must be dirtied. But we
2733 * might have been freed after the dirty.
2734 */
2735 if (db->db_state == DB_UNCACHED) {
2736 /* This buffer has been freed since it was dirtied */
2737 ASSERT(db->db.db_data == NULL);
2738 } else if (db->db_state == DB_FILL) {
2739 /* This buffer was freed and is now being re-filled */
2740 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2741 } else {
2742 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2743 }
2744 DBUF_VERIFY(db);
2745
2746 DB_DNODE_ENTER(db);
2747 dn = DB_DNODE(db);
2748
2749 if (db->db_blkid == DMU_SPILL_BLKID) {
2750 mutex_enter(&dn->dn_mtx);
2751 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2752 mutex_exit(&dn->dn_mtx);
2753 }
2754
2755 /*
2756 * If this is a bonus buffer, simply copy the bonus data into the
2757 * dnode. It will be written out when the dnode is synced (and it
2758 * will be synced, since it must have been dirty for dbuf_sync to
2759 * be called).
2760 */
2761 if (db->db_blkid == DMU_BONUS_BLKID) {
2762 dbuf_dirty_record_t **drp;
2763
2764 ASSERT(*datap != NULL);
2765 ASSERT0(db->db_level);
2766 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2767 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2768 DB_DNODE_EXIT(db);
2769
2770 if (*datap != db->db.db_data) {
2771 zio_buf_free(*datap, DN_MAX_BONUSLEN);
2772 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2773 }
2774 db->db_data_pending = NULL;
2775 drp = &db->db_last_dirty;
2776 while (*drp != dr)
2777 drp = &(*drp)->dr_next;
2778 ASSERT(dr->dr_next == NULL);
2779 ASSERT(dr->dr_dbuf == db);
2780 *drp = dr->dr_next;
2781 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2782 ASSERT(db->db_dirtycnt > 0);
2783 db->db_dirtycnt -= 1;
2784 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2785 return;
2786 }
2787
2788 os = dn->dn_objset;
2789
2790 /*
2791 * This function may have dropped the db_mtx lock allowing a dmu_sync
2792 * operation to sneak in. As a result, we need to ensure that we
2793 * don't check the dr_override_state until we have returned from
2794 * dbuf_check_blkptr.
2795 */
2796 dbuf_check_blkptr(dn, db);
2797
2798 /*
2799 * If this buffer is in the middle of an immediate write,
2800 * wait for the synchronous IO to complete.
2801 */
2802 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2803 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2804 cv_wait(&db->db_changed, &db->db_mtx);
2805 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2806 }
2807
2808 if (db->db_state != DB_NOFILL &&
2809 dn->dn_object != DMU_META_DNODE_OBJECT &&
2810 refcount_count(&db->db_holds) > 1 &&
2811 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2812 *datap == db->db_buf) {
2813 /*
2814 * If this buffer is currently "in use" (i.e., there
2815 * are active holds and db_data still references it),
2816 * then make a copy before we start the write so that
2817 * any modifications from the open txg will not leak
2818 * into this write.
2819 *
2820 * NOTE: this copy does not need to be made for
2821 * objects only modified in the syncing context (e.g.
2822 * DNONE_DNODE blocks).
2823 */
2824 int blksz = arc_buf_size(*datap);
2825 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2826 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2827 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2828 }
2829 db->db_data_pending = dr;
2830
2831 mutex_exit(&db->db_mtx);
2832
2833 dbuf_write(dr, *datap, tx);
2834
2835 ASSERT(!list_link_active(&dr->dr_dirty_node));
2836 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2837 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2838 DB_DNODE_EXIT(db);
2839 } else {
2840 /*
2841 * Although zio_nowait() does not "wait for an IO", it does
2842 * initiate the IO. If this is an empty write it seems plausible
2843 * that the IO could actually be completed before the nowait
2844 * returns. We need to DB_DNODE_EXIT() first in case
2845 * zio_nowait() invalidates the dbuf.
2846 */
2847 DB_DNODE_EXIT(db);
2848 zio_nowait(dr->dr_zio);
2849 }
2850 }
2851
2852 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)2853 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2854 {
2855 dbuf_dirty_record_t *dr;
2856
2857 while (dr = list_head(list)) {
2858 if (dr->dr_zio != NULL) {
2859 /*
2860 * If we find an already initialized zio then we
2861 * are processing the meta-dnode, and we have finished.
2862 * The dbufs for all dnodes are put back on the list
2863 * during processing, so that we can zio_wait()
2864 * these IOs after initiating all child IOs.
2865 */
2866 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2867 DMU_META_DNODE_OBJECT);
2868 break;
2869 }
2870 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2871 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2872 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2873 }
2874 list_remove(list, dr);
2875 if (dr->dr_dbuf->db_level > 0)
2876 dbuf_sync_indirect(dr, tx);
2877 else
2878 dbuf_sync_leaf(dr, tx);
2879 }
2880 }
2881
2882 /* ARGSUSED */
2883 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)2884 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2885 {
2886 dmu_buf_impl_t *db = vdb;
2887 dnode_t *dn;
2888 blkptr_t *bp = zio->io_bp;
2889 blkptr_t *bp_orig = &zio->io_bp_orig;
2890 spa_t *spa = zio->io_spa;
2891 int64_t delta;
2892 uint64_t fill = 0;
2893 int i;
2894
2895 ASSERT3P(db->db_blkptr, ==, bp);
2896
2897 DB_DNODE_ENTER(db);
2898 dn = DB_DNODE(db);
2899 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2900 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2901 zio->io_prev_space_delta = delta;
2902
2903 if (bp->blk_birth != 0) {
2904 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2905 BP_GET_TYPE(bp) == dn->dn_type) ||
2906 (db->db_blkid == DMU_SPILL_BLKID &&
2907 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2908 BP_IS_EMBEDDED(bp));
2909 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2910 }
2911
2912 mutex_enter(&db->db_mtx);
2913
2914 #ifdef ZFS_DEBUG
2915 if (db->db_blkid == DMU_SPILL_BLKID) {
2916 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2917 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2918 db->db_blkptr == &dn->dn_phys->dn_spill);
2919 }
2920 #endif
2921
2922 if (db->db_level == 0) {
2923 mutex_enter(&dn->dn_mtx);
2924 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2925 db->db_blkid != DMU_SPILL_BLKID)
2926 dn->dn_phys->dn_maxblkid = db->db_blkid;
2927 mutex_exit(&dn->dn_mtx);
2928
2929 if (dn->dn_type == DMU_OT_DNODE) {
2930 dnode_phys_t *dnp = db->db.db_data;
2931 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2932 i--, dnp++) {
2933 if (dnp->dn_type != DMU_OT_NONE)
2934 fill++;
2935 }
2936 } else {
2937 if (BP_IS_HOLE(bp)) {
2938 fill = 0;
2939 } else {
2940 fill = 1;
2941 }
2942 }
2943 } else {
2944 blkptr_t *ibp = db->db.db_data;
2945 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2946 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2947 if (BP_IS_HOLE(ibp))
2948 continue;
2949 fill += BP_GET_FILL(ibp);
2950 }
2951 }
2952 DB_DNODE_EXIT(db);
2953
2954 if (!BP_IS_EMBEDDED(bp))
2955 bp->blk_fill = fill;
2956
2957 mutex_exit(&db->db_mtx);
2958 }
2959
2960 /*
2961 * The SPA will call this callback several times for each zio - once
2962 * for every physical child i/o (zio->io_phys_children times). This
2963 * allows the DMU to monitor the progress of each logical i/o. For example,
2964 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2965 * block. There may be a long delay before all copies/fragments are completed,
2966 * so this callback allows us to retire dirty space gradually, as the physical
2967 * i/os complete.
2968 */
2969 /* ARGSUSED */
2970 static void
dbuf_write_physdone(zio_t * zio,arc_buf_t * buf,void * arg)2971 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2972 {
2973 dmu_buf_impl_t *db = arg;
2974 objset_t *os = db->db_objset;
2975 dsl_pool_t *dp = dmu_objset_pool(os);
2976 dbuf_dirty_record_t *dr;
2977 int delta = 0;
2978
2979 dr = db->db_data_pending;
2980 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2981
2982 /*
2983 * The callback will be called io_phys_children times. Retire one
2984 * portion of our dirty space each time we are called. Any rounding
2985 * error will be cleaned up by dsl_pool_sync()'s call to
2986 * dsl_pool_undirty_space().
2987 */
2988 delta = dr->dr_accounted / zio->io_phys_children;
2989 dsl_pool_undirty_space(dp, delta, zio->io_txg);
2990 }
2991
2992 /* ARGSUSED */
2993 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)2994 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2995 {
2996 dmu_buf_impl_t *db = vdb;
2997 blkptr_t *bp_orig = &zio->io_bp_orig;
2998 blkptr_t *bp = db->db_blkptr;
2999 objset_t *os = db->db_objset;
3000 dmu_tx_t *tx = os->os_synctx;
3001 dbuf_dirty_record_t **drp, *dr;
3002
3003 ASSERT0(zio->io_error);
3004 ASSERT(db->db_blkptr == bp);
3005
3006 /*
3007 * For nopwrites and rewrites we ensure that the bp matches our
3008 * original and bypass all the accounting.
3009 */
3010 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3011 ASSERT(BP_EQUAL(bp, bp_orig));
3012 } else {
3013 dsl_dataset_t *ds = os->os_dsl_dataset;
3014 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3015 dsl_dataset_block_born(ds, bp, tx);
3016 }
3017
3018 mutex_enter(&db->db_mtx);
3019
3020 DBUF_VERIFY(db);
3021
3022 drp = &db->db_last_dirty;
3023 while ((dr = *drp) != db->db_data_pending)
3024 drp = &dr->dr_next;
3025 ASSERT(!list_link_active(&dr->dr_dirty_node));
3026 ASSERT(dr->dr_dbuf == db);
3027 ASSERT(dr->dr_next == NULL);
3028 *drp = dr->dr_next;
3029
3030 #ifdef ZFS_DEBUG
3031 if (db->db_blkid == DMU_SPILL_BLKID) {
3032 dnode_t *dn;
3033
3034 DB_DNODE_ENTER(db);
3035 dn = DB_DNODE(db);
3036 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3037 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3038 db->db_blkptr == &dn->dn_phys->dn_spill);
3039 DB_DNODE_EXIT(db);
3040 }
3041 #endif
3042
3043 if (db->db_level == 0) {
3044 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3045 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3046 if (db->db_state != DB_NOFILL) {
3047 if (dr->dt.dl.dr_data != db->db_buf)
3048 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3049 db));
3050 else if (!arc_released(db->db_buf))
3051 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3052 }
3053 } else {
3054 dnode_t *dn;
3055
3056 DB_DNODE_ENTER(db);
3057 dn = DB_DNODE(db);
3058 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3059 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3060 if (!BP_IS_HOLE(db->db_blkptr)) {
3061 int epbs =
3062 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3063 ASSERT3U(db->db_blkid, <=,
3064 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3065 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3066 db->db.db_size);
3067 if (!arc_released(db->db_buf))
3068 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3069 }
3070 DB_DNODE_EXIT(db);
3071 mutex_destroy(&dr->dt.di.dr_mtx);
3072 list_destroy(&dr->dt.di.dr_children);
3073 }
3074 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3075
3076 cv_broadcast(&db->db_changed);
3077 ASSERT(db->db_dirtycnt > 0);
3078 db->db_dirtycnt -= 1;
3079 db->db_data_pending = NULL;
3080 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3081 }
3082
3083 static void
dbuf_write_nofill_ready(zio_t * zio)3084 dbuf_write_nofill_ready(zio_t *zio)
3085 {
3086 dbuf_write_ready(zio, NULL, zio->io_private);
3087 }
3088
3089 static void
dbuf_write_nofill_done(zio_t * zio)3090 dbuf_write_nofill_done(zio_t *zio)
3091 {
3092 dbuf_write_done(zio, NULL, zio->io_private);
3093 }
3094
3095 static void
dbuf_write_override_ready(zio_t * zio)3096 dbuf_write_override_ready(zio_t *zio)
3097 {
3098 dbuf_dirty_record_t *dr = zio->io_private;
3099 dmu_buf_impl_t *db = dr->dr_dbuf;
3100
3101 dbuf_write_ready(zio, NULL, db);
3102 }
3103
3104 static void
dbuf_write_override_done(zio_t * zio)3105 dbuf_write_override_done(zio_t *zio)
3106 {
3107 dbuf_dirty_record_t *dr = zio->io_private;
3108 dmu_buf_impl_t *db = dr->dr_dbuf;
3109 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3110
3111 mutex_enter(&db->db_mtx);
3112 if (!BP_EQUAL(zio->io_bp, obp)) {
3113 if (!BP_IS_HOLE(obp))
3114 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3115 arc_release(dr->dt.dl.dr_data, db);
3116 }
3117 mutex_exit(&db->db_mtx);
3118
3119 dbuf_write_done(zio, NULL, db);
3120 }
3121
3122 /* Issue I/O to commit a dirty buffer to disk. */
3123 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)3124 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3125 {
3126 dmu_buf_impl_t *db = dr->dr_dbuf;
3127 dnode_t *dn;
3128 objset_t *os;
3129 dmu_buf_impl_t *parent = db->db_parent;
3130 uint64_t txg = tx->tx_txg;
3131 zbookmark_phys_t zb;
3132 zio_prop_t zp;
3133 zio_t *zio;
3134 int wp_flag = 0;
3135
3136 DB_DNODE_ENTER(db);
3137 dn = DB_DNODE(db);
3138 os = dn->dn_objset;
3139
3140 if (db->db_state != DB_NOFILL) {
3141 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3142 /*
3143 * Private object buffers are released here rather
3144 * than in dbuf_dirty() since they are only modified
3145 * in the syncing context and we don't want the
3146 * overhead of making multiple copies of the data.
3147 */
3148 if (BP_IS_HOLE(db->db_blkptr)) {
3149 arc_buf_thaw(data);
3150 } else {
3151 dbuf_release_bp(db);
3152 }
3153 }
3154 }
3155
3156 if (parent != dn->dn_dbuf) {
3157 /* Our parent is an indirect block. */
3158 /* We have a dirty parent that has been scheduled for write. */
3159 ASSERT(parent && parent->db_data_pending);
3160 /* Our parent's buffer is one level closer to the dnode. */
3161 ASSERT(db->db_level == parent->db_level-1);
3162 /*
3163 * We're about to modify our parent's db_data by modifying
3164 * our block pointer, so the parent must be released.
3165 */
3166 ASSERT(arc_released(parent->db_buf));
3167 zio = parent->db_data_pending->dr_zio;
3168 } else {
3169 /* Our parent is the dnode itself. */
3170 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3171 db->db_blkid != DMU_SPILL_BLKID) ||
3172 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3173 if (db->db_blkid != DMU_SPILL_BLKID)
3174 ASSERT3P(db->db_blkptr, ==,
3175 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3176 zio = dn->dn_zio;
3177 }
3178
3179 ASSERT(db->db_level == 0 || data == db->db_buf);
3180 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3181 ASSERT(zio);
3182
3183 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3184 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3185 db->db.db_object, db->db_level, db->db_blkid);
3186
3187 if (db->db_blkid == DMU_SPILL_BLKID)
3188 wp_flag = WP_SPILL;
3189 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3190
3191 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3192 DB_DNODE_EXIT(db);
3193
3194 if (db->db_level == 0 &&
3195 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3196 /*
3197 * The BP for this block has been provided by open context
3198 * (by dmu_sync() or dmu_buf_write_embedded()).
3199 */
3200 void *contents = (data != NULL) ? data->b_data : NULL;
3201
3202 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3203 db->db_blkptr, contents, db->db.db_size, &zp,
3204 dbuf_write_override_ready, NULL, dbuf_write_override_done,
3205 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3206 mutex_enter(&db->db_mtx);
3207 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3208 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3209 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3210 mutex_exit(&db->db_mtx);
3211 } else if (db->db_state == DB_NOFILL) {
3212 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3213 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3214 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3215 db->db_blkptr, NULL, db->db.db_size, &zp,
3216 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3217 ZIO_PRIORITY_ASYNC_WRITE,
3218 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3219 } else {
3220 ASSERT(arc_released(data));
3221 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3222 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3223 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3224 dbuf_write_physdone, dbuf_write_done, db,
3225 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3226 }
3227 }
3228