xref: /titanic_41/usr/src/uts/common/fs/zfs/dbuf.c (revision c4cb95767ae6931f185dc5c02edb165c2ff75b10)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 
48 /*
49  * Number of times that zfs_free_range() took the slow path while doing
50  * a zfs receive.  A nonzero value indicates a potential performance problem.
51  */
52 uint64_t zfs_free_range_recv_miss;
53 
54 static void dbuf_destroy(dmu_buf_impl_t *db);
55 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
56 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
57 
58 #ifndef __lint
59 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
60     dmu_buf_evict_func_t *evict_func_sync,
61     dmu_buf_evict_func_t *evict_func_async,
62     dmu_buf_t **clear_on_evict_dbufp);
63 #endif /* ! __lint */
64 
65 /*
66  * Global data structures and functions for the dbuf cache.
67  */
68 static kmem_cache_t *dbuf_cache;
69 static taskq_t *dbu_evict_taskq;
70 
71 /* ARGSUSED */
72 static int
dbuf_cons(void * vdb,void * unused,int kmflag)73 dbuf_cons(void *vdb, void *unused, int kmflag)
74 {
75 	dmu_buf_impl_t *db = vdb;
76 	bzero(db, sizeof (dmu_buf_impl_t));
77 
78 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
79 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
80 	refcount_create(&db->db_holds);
81 
82 	return (0);
83 }
84 
85 /* ARGSUSED */
86 static void
dbuf_dest(void * vdb,void * unused)87 dbuf_dest(void *vdb, void *unused)
88 {
89 	dmu_buf_impl_t *db = vdb;
90 	mutex_destroy(&db->db_mtx);
91 	cv_destroy(&db->db_changed);
92 	refcount_destroy(&db->db_holds);
93 }
94 
95 /*
96  * dbuf hash table routines
97  */
98 static dbuf_hash_table_t dbuf_hash_table;
99 
100 static uint64_t dbuf_hash_count;
101 
102 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)103 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
104 {
105 	uintptr_t osv = (uintptr_t)os;
106 	uint64_t crc = -1ULL;
107 
108 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
109 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
110 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
111 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
112 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
113 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
114 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
115 
116 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
117 
118 	return (crc);
119 }
120 
121 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
122 
123 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
124 	((dbuf)->db.db_object == (obj) &&		\
125 	(dbuf)->db_objset == (os) &&			\
126 	(dbuf)->db_level == (level) &&			\
127 	(dbuf)->db_blkid == (blkid))
128 
129 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid)130 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
131 {
132 	dbuf_hash_table_t *h = &dbuf_hash_table;
133 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
134 	uint64_t idx = hv & h->hash_table_mask;
135 	dmu_buf_impl_t *db;
136 
137 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
138 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
139 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
140 			mutex_enter(&db->db_mtx);
141 			if (db->db_state != DB_EVICTING) {
142 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
143 				return (db);
144 			}
145 			mutex_exit(&db->db_mtx);
146 		}
147 	}
148 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
149 	return (NULL);
150 }
151 
152 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)153 dbuf_find_bonus(objset_t *os, uint64_t object)
154 {
155 	dnode_t *dn;
156 	dmu_buf_impl_t *db = NULL;
157 
158 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
159 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
160 		if (dn->dn_bonus != NULL) {
161 			db = dn->dn_bonus;
162 			mutex_enter(&db->db_mtx);
163 		}
164 		rw_exit(&dn->dn_struct_rwlock);
165 		dnode_rele(dn, FTAG);
166 	}
167 	return (db);
168 }
169 
170 /*
171  * Insert an entry into the hash table.  If there is already an element
172  * equal to elem in the hash table, then the already existing element
173  * will be returned and the new element will not be inserted.
174  * Otherwise returns NULL.
175  */
176 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)177 dbuf_hash_insert(dmu_buf_impl_t *db)
178 {
179 	dbuf_hash_table_t *h = &dbuf_hash_table;
180 	objset_t *os = db->db_objset;
181 	uint64_t obj = db->db.db_object;
182 	int level = db->db_level;
183 	uint64_t blkid = db->db_blkid;
184 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
185 	uint64_t idx = hv & h->hash_table_mask;
186 	dmu_buf_impl_t *dbf;
187 
188 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
189 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
190 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
191 			mutex_enter(&dbf->db_mtx);
192 			if (dbf->db_state != DB_EVICTING) {
193 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
194 				return (dbf);
195 			}
196 			mutex_exit(&dbf->db_mtx);
197 		}
198 	}
199 
200 	mutex_enter(&db->db_mtx);
201 	db->db_hash_next = h->hash_table[idx];
202 	h->hash_table[idx] = db;
203 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
204 	atomic_inc_64(&dbuf_hash_count);
205 
206 	return (NULL);
207 }
208 
209 /*
210  * Remove an entry from the hash table.  It must be in the EVICTING state.
211  */
212 static void
dbuf_hash_remove(dmu_buf_impl_t * db)213 dbuf_hash_remove(dmu_buf_impl_t *db)
214 {
215 	dbuf_hash_table_t *h = &dbuf_hash_table;
216 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
217 	    db->db_level, db->db_blkid);
218 	uint64_t idx = hv & h->hash_table_mask;
219 	dmu_buf_impl_t *dbf, **dbp;
220 
221 	/*
222 	 * We musn't hold db_mtx to maintain lock ordering:
223 	 * DBUF_HASH_MUTEX > db_mtx.
224 	 */
225 	ASSERT(refcount_is_zero(&db->db_holds));
226 	ASSERT(db->db_state == DB_EVICTING);
227 	ASSERT(!MUTEX_HELD(&db->db_mtx));
228 
229 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
230 	dbp = &h->hash_table[idx];
231 	while ((dbf = *dbp) != db) {
232 		dbp = &dbf->db_hash_next;
233 		ASSERT(dbf != NULL);
234 	}
235 	*dbp = db->db_hash_next;
236 	db->db_hash_next = NULL;
237 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
238 	atomic_dec_64(&dbuf_hash_count);
239 }
240 
241 static arc_evict_func_t dbuf_do_evict;
242 
243 typedef enum {
244 	DBVU_EVICTING,
245 	DBVU_NOT_EVICTING
246 } dbvu_verify_type_t;
247 
248 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)249 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
250 {
251 #ifdef ZFS_DEBUG
252 	int64_t holds;
253 
254 	if (db->db_user == NULL)
255 		return;
256 
257 	/* Only data blocks support the attachment of user data. */
258 	ASSERT(db->db_level == 0);
259 
260 	/* Clients must resolve a dbuf before attaching user data. */
261 	ASSERT(db->db.db_data != NULL);
262 	ASSERT3U(db->db_state, ==, DB_CACHED);
263 
264 	holds = refcount_count(&db->db_holds);
265 	if (verify_type == DBVU_EVICTING) {
266 		/*
267 		 * Immediate eviction occurs when holds == dirtycnt.
268 		 * For normal eviction buffers, holds is zero on
269 		 * eviction, except when dbuf_fix_old_data() calls
270 		 * dbuf_clear_data().  However, the hold count can grow
271 		 * during eviction even though db_mtx is held (see
272 		 * dmu_bonus_hold() for an example), so we can only
273 		 * test the generic invariant that holds >= dirtycnt.
274 		 */
275 		ASSERT3U(holds, >=, db->db_dirtycnt);
276 	} else {
277 		if (db->db_user_immediate_evict == TRUE)
278 			ASSERT3U(holds, >=, db->db_dirtycnt);
279 		else
280 			ASSERT3U(holds, >, 0);
281 	}
282 #endif
283 }
284 
285 static void
dbuf_evict_user(dmu_buf_impl_t * db)286 dbuf_evict_user(dmu_buf_impl_t *db)
287 {
288 	dmu_buf_user_t *dbu = db->db_user;
289 
290 	ASSERT(MUTEX_HELD(&db->db_mtx));
291 
292 	if (dbu == NULL)
293 		return;
294 
295 	dbuf_verify_user(db, DBVU_EVICTING);
296 	db->db_user = NULL;
297 
298 #ifdef ZFS_DEBUG
299 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
300 		*dbu->dbu_clear_on_evict_dbufp = NULL;
301 #endif
302 
303 	/*
304 	 * There are two eviction callbacks - one that we call synchronously
305 	 * and one that we invoke via a taskq.  The async one is useful for
306 	 * avoiding lock order reversals and limiting stack depth.
307 	 *
308 	 * Note that if we have a sync callback but no async callback,
309 	 * it's likely that the sync callback will free the structure
310 	 * containing the dbu.  In that case we need to take care to not
311 	 * dereference dbu after calling the sync evict func.
312 	 */
313 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
314 
315 	if (dbu->dbu_evict_func_sync != NULL)
316 		dbu->dbu_evict_func_sync(dbu);
317 
318 	if (has_async) {
319 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
320 		    dbu, 0, &dbu->dbu_tqent);
321 	}
322 }
323 
324 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)325 dbuf_is_metadata(dmu_buf_impl_t *db)
326 {
327 	if (db->db_level > 0) {
328 		return (B_TRUE);
329 	} else {
330 		boolean_t is_metadata;
331 
332 		DB_DNODE_ENTER(db);
333 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
334 		DB_DNODE_EXIT(db);
335 
336 		return (is_metadata);
337 	}
338 }
339 
340 void
dbuf_evict(dmu_buf_impl_t * db)341 dbuf_evict(dmu_buf_impl_t *db)
342 {
343 	ASSERT(MUTEX_HELD(&db->db_mtx));
344 	ASSERT(db->db_buf == NULL);
345 	ASSERT(db->db_data_pending == NULL);
346 
347 	dbuf_clear(db);
348 	dbuf_destroy(db);
349 }
350 
351 void
dbuf_init(void)352 dbuf_init(void)
353 {
354 	uint64_t hsize = 1ULL << 16;
355 	dbuf_hash_table_t *h = &dbuf_hash_table;
356 	int i;
357 
358 	/*
359 	 * The hash table is big enough to fill all of physical memory
360 	 * with an average 4K block size.  The table will take up
361 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
362 	 */
363 	while (hsize * 4096 < physmem * PAGESIZE)
364 		hsize <<= 1;
365 
366 retry:
367 	h->hash_table_mask = hsize - 1;
368 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
369 	if (h->hash_table == NULL) {
370 		/* XXX - we should really return an error instead of assert */
371 		ASSERT(hsize > (1ULL << 10));
372 		hsize >>= 1;
373 		goto retry;
374 	}
375 
376 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
377 	    sizeof (dmu_buf_impl_t),
378 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
379 
380 	for (i = 0; i < DBUF_MUTEXES; i++)
381 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
382 
383 	/*
384 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
385 	 * configuration is not required.
386 	 */
387 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
388 }
389 
390 void
dbuf_fini(void)391 dbuf_fini(void)
392 {
393 	dbuf_hash_table_t *h = &dbuf_hash_table;
394 	int i;
395 
396 	for (i = 0; i < DBUF_MUTEXES; i++)
397 		mutex_destroy(&h->hash_mutexes[i]);
398 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
399 	kmem_cache_destroy(dbuf_cache);
400 	taskq_destroy(dbu_evict_taskq);
401 }
402 
403 /*
404  * Other stuff.
405  */
406 
407 #ifdef ZFS_DEBUG
408 static void
dbuf_verify(dmu_buf_impl_t * db)409 dbuf_verify(dmu_buf_impl_t *db)
410 {
411 	dnode_t *dn;
412 	dbuf_dirty_record_t *dr;
413 
414 	ASSERT(MUTEX_HELD(&db->db_mtx));
415 
416 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
417 		return;
418 
419 	ASSERT(db->db_objset != NULL);
420 	DB_DNODE_ENTER(db);
421 	dn = DB_DNODE(db);
422 	if (dn == NULL) {
423 		ASSERT(db->db_parent == NULL);
424 		ASSERT(db->db_blkptr == NULL);
425 	} else {
426 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
427 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
428 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
429 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
430 		    db->db_blkid == DMU_SPILL_BLKID ||
431 		    !avl_is_empty(&dn->dn_dbufs));
432 	}
433 	if (db->db_blkid == DMU_BONUS_BLKID) {
434 		ASSERT(dn != NULL);
435 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
436 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
437 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
438 		ASSERT(dn != NULL);
439 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
440 		ASSERT0(db->db.db_offset);
441 	} else {
442 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
443 	}
444 
445 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
446 		ASSERT(dr->dr_dbuf == db);
447 
448 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
449 		ASSERT(dr->dr_dbuf == db);
450 
451 	/*
452 	 * We can't assert that db_size matches dn_datablksz because it
453 	 * can be momentarily different when another thread is doing
454 	 * dnode_set_blksz().
455 	 */
456 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
457 		dr = db->db_data_pending;
458 		/*
459 		 * It should only be modified in syncing context, so
460 		 * make sure we only have one copy of the data.
461 		 */
462 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
463 	}
464 
465 	/* verify db->db_blkptr */
466 	if (db->db_blkptr) {
467 		if (db->db_parent == dn->dn_dbuf) {
468 			/* db is pointed to by the dnode */
469 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
470 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
471 				ASSERT(db->db_parent == NULL);
472 			else
473 				ASSERT(db->db_parent != NULL);
474 			if (db->db_blkid != DMU_SPILL_BLKID)
475 				ASSERT3P(db->db_blkptr, ==,
476 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
477 		} else {
478 			/* db is pointed to by an indirect block */
479 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
480 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
481 			ASSERT3U(db->db_parent->db.db_object, ==,
482 			    db->db.db_object);
483 			/*
484 			 * dnode_grow_indblksz() can make this fail if we don't
485 			 * have the struct_rwlock.  XXX indblksz no longer
486 			 * grows.  safe to do this now?
487 			 */
488 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
489 				ASSERT3P(db->db_blkptr, ==,
490 				    ((blkptr_t *)db->db_parent->db.db_data +
491 				    db->db_blkid % epb));
492 			}
493 		}
494 	}
495 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
496 	    (db->db_buf == NULL || db->db_buf->b_data) &&
497 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
498 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
499 		/*
500 		 * If the blkptr isn't set but they have nonzero data,
501 		 * it had better be dirty, otherwise we'll lose that
502 		 * data when we evict this buffer.
503 		 */
504 		if (db->db_dirtycnt == 0) {
505 			uint64_t *buf = db->db.db_data;
506 			int i;
507 
508 			for (i = 0; i < db->db.db_size >> 3; i++) {
509 				ASSERT(buf[i] == 0);
510 			}
511 		}
512 	}
513 	DB_DNODE_EXIT(db);
514 }
515 #endif
516 
517 static void
dbuf_clear_data(dmu_buf_impl_t * db)518 dbuf_clear_data(dmu_buf_impl_t *db)
519 {
520 	ASSERT(MUTEX_HELD(&db->db_mtx));
521 	dbuf_evict_user(db);
522 	db->db_buf = NULL;
523 	db->db.db_data = NULL;
524 	if (db->db_state != DB_NOFILL)
525 		db->db_state = DB_UNCACHED;
526 }
527 
528 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)529 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
530 {
531 	ASSERT(MUTEX_HELD(&db->db_mtx));
532 	ASSERT(buf != NULL);
533 
534 	db->db_buf = buf;
535 	ASSERT(buf->b_data != NULL);
536 	db->db.db_data = buf->b_data;
537 	if (!arc_released(buf))
538 		arc_set_callback(buf, dbuf_do_evict, db);
539 }
540 
541 /*
542  * Loan out an arc_buf for read.  Return the loaned arc_buf.
543  */
544 arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t * db)545 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
546 {
547 	arc_buf_t *abuf;
548 
549 	mutex_enter(&db->db_mtx);
550 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
551 		int blksz = db->db.db_size;
552 		spa_t *spa = db->db_objset->os_spa;
553 
554 		mutex_exit(&db->db_mtx);
555 		abuf = arc_loan_buf(spa, blksz);
556 		bcopy(db->db.db_data, abuf->b_data, blksz);
557 	} else {
558 		abuf = db->db_buf;
559 		arc_loan_inuse_buf(abuf, db);
560 		dbuf_clear_data(db);
561 		mutex_exit(&db->db_mtx);
562 	}
563 	return (abuf);
564 }
565 
566 /*
567  * Calculate which level n block references the data at the level 0 offset
568  * provided.
569  */
570 uint64_t
dbuf_whichblock(dnode_t * dn,int64_t level,uint64_t offset)571 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
572 {
573 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
574 		/*
575 		 * The level n blkid is equal to the level 0 blkid divided by
576 		 * the number of level 0s in a level n block.
577 		 *
578 		 * The level 0 blkid is offset >> datablkshift =
579 		 * offset / 2^datablkshift.
580 		 *
581 		 * The number of level 0s in a level n is the number of block
582 		 * pointers in an indirect block, raised to the power of level.
583 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
584 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
585 		 *
586 		 * Thus, the level n blkid is: offset /
587 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
588 		 * = offset / 2^(datablkshift + level *
589 		 *   (indblkshift - SPA_BLKPTRSHIFT))
590 		 * = offset >> (datablkshift + level *
591 		 *   (indblkshift - SPA_BLKPTRSHIFT))
592 		 */
593 		return (offset >> (dn->dn_datablkshift + level *
594 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
595 	} else {
596 		ASSERT3U(offset, <, dn->dn_datablksz);
597 		return (0);
598 	}
599 }
600 
601 static void
dbuf_read_done(zio_t * zio,arc_buf_t * buf,void * vdb)602 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
603 {
604 	dmu_buf_impl_t *db = vdb;
605 
606 	mutex_enter(&db->db_mtx);
607 	ASSERT3U(db->db_state, ==, DB_READ);
608 	/*
609 	 * All reads are synchronous, so we must have a hold on the dbuf
610 	 */
611 	ASSERT(refcount_count(&db->db_holds) > 0);
612 	ASSERT(db->db_buf == NULL);
613 	ASSERT(db->db.db_data == NULL);
614 	if (db->db_level == 0 && db->db_freed_in_flight) {
615 		/* we were freed in flight; disregard any error */
616 		arc_release(buf, db);
617 		bzero(buf->b_data, db->db.db_size);
618 		arc_buf_freeze(buf);
619 		db->db_freed_in_flight = FALSE;
620 		dbuf_set_data(db, buf);
621 		db->db_state = DB_CACHED;
622 	} else if (zio == NULL || zio->io_error == 0) {
623 		dbuf_set_data(db, buf);
624 		db->db_state = DB_CACHED;
625 	} else {
626 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
627 		ASSERT3P(db->db_buf, ==, NULL);
628 		VERIFY(arc_buf_remove_ref(buf, db));
629 		db->db_state = DB_UNCACHED;
630 	}
631 	cv_broadcast(&db->db_changed);
632 	dbuf_rele_and_unlock(db, NULL);
633 }
634 
635 static void
dbuf_read_impl(dmu_buf_impl_t * db,zio_t * zio,uint32_t * flags)636 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
637 {
638 	dnode_t *dn;
639 	zbookmark_phys_t zb;
640 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
641 
642 	DB_DNODE_ENTER(db);
643 	dn = DB_DNODE(db);
644 	ASSERT(!refcount_is_zero(&db->db_holds));
645 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
646 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
647 	ASSERT(MUTEX_HELD(&db->db_mtx));
648 	ASSERT(db->db_state == DB_UNCACHED);
649 	ASSERT(db->db_buf == NULL);
650 
651 	if (db->db_blkid == DMU_BONUS_BLKID) {
652 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
653 
654 		ASSERT3U(bonuslen, <=, db->db.db_size);
655 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
656 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
657 		if (bonuslen < DN_MAX_BONUSLEN)
658 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
659 		if (bonuslen)
660 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
661 		DB_DNODE_EXIT(db);
662 		db->db_state = DB_CACHED;
663 		mutex_exit(&db->db_mtx);
664 		return;
665 	}
666 
667 	/*
668 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
669 	 * processes the delete record and clears the bp while we are waiting
670 	 * for the dn_mtx (resulting in a "no" from block_freed).
671 	 */
672 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
673 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
674 	    BP_IS_HOLE(db->db_blkptr)))) {
675 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
676 
677 		DB_DNODE_EXIT(db);
678 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
679 		    db->db.db_size, db, type));
680 		bzero(db->db.db_data, db->db.db_size);
681 		db->db_state = DB_CACHED;
682 		*flags |= DB_RF_CACHED;
683 		mutex_exit(&db->db_mtx);
684 		return;
685 	}
686 
687 	DB_DNODE_EXIT(db);
688 
689 	db->db_state = DB_READ;
690 	mutex_exit(&db->db_mtx);
691 
692 	if (DBUF_IS_L2CACHEABLE(db))
693 		aflags |= ARC_FLAG_L2CACHE;
694 	if (DBUF_IS_L2COMPRESSIBLE(db))
695 		aflags |= ARC_FLAG_L2COMPRESS;
696 
697 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
698 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
699 	    db->db.db_object, db->db_level, db->db_blkid);
700 
701 	dbuf_add_ref(db, NULL);
702 
703 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
704 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
705 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
706 	    &aflags, &zb);
707 	if (aflags & ARC_FLAG_CACHED)
708 		*flags |= DB_RF_CACHED;
709 }
710 
711 int
dbuf_read(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags)712 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
713 {
714 	int err = 0;
715 	boolean_t havepzio = (zio != NULL);
716 	boolean_t prefetch;
717 	dnode_t *dn;
718 
719 	/*
720 	 * We don't have to hold the mutex to check db_state because it
721 	 * can't be freed while we have a hold on the buffer.
722 	 */
723 	ASSERT(!refcount_is_zero(&db->db_holds));
724 
725 	if (db->db_state == DB_NOFILL)
726 		return (SET_ERROR(EIO));
727 
728 	DB_DNODE_ENTER(db);
729 	dn = DB_DNODE(db);
730 	if ((flags & DB_RF_HAVESTRUCT) == 0)
731 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
732 
733 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
734 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
735 	    DBUF_IS_CACHEABLE(db);
736 
737 	mutex_enter(&db->db_mtx);
738 	if (db->db_state == DB_CACHED) {
739 		mutex_exit(&db->db_mtx);
740 		if (prefetch)
741 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
742 			    db->db.db_size, TRUE);
743 		if ((flags & DB_RF_HAVESTRUCT) == 0)
744 			rw_exit(&dn->dn_struct_rwlock);
745 		DB_DNODE_EXIT(db);
746 	} else if (db->db_state == DB_UNCACHED) {
747 		spa_t *spa = dn->dn_objset->os_spa;
748 
749 		if (zio == NULL)
750 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
751 		dbuf_read_impl(db, zio, &flags);
752 
753 		/* dbuf_read_impl has dropped db_mtx for us */
754 
755 		if (prefetch)
756 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
757 			    db->db.db_size, flags & DB_RF_CACHED);
758 
759 		if ((flags & DB_RF_HAVESTRUCT) == 0)
760 			rw_exit(&dn->dn_struct_rwlock);
761 		DB_DNODE_EXIT(db);
762 
763 		if (!havepzio)
764 			err = zio_wait(zio);
765 	} else {
766 		/*
767 		 * Another reader came in while the dbuf was in flight
768 		 * between UNCACHED and CACHED.  Either a writer will finish
769 		 * writing the buffer (sending the dbuf to CACHED) or the
770 		 * first reader's request will reach the read_done callback
771 		 * and send the dbuf to CACHED.  Otherwise, a failure
772 		 * occurred and the dbuf went to UNCACHED.
773 		 */
774 		mutex_exit(&db->db_mtx);
775 		if (prefetch)
776 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
777 			    db->db.db_size, TRUE);
778 		if ((flags & DB_RF_HAVESTRUCT) == 0)
779 			rw_exit(&dn->dn_struct_rwlock);
780 		DB_DNODE_EXIT(db);
781 
782 		/* Skip the wait per the caller's request. */
783 		mutex_enter(&db->db_mtx);
784 		if ((flags & DB_RF_NEVERWAIT) == 0) {
785 			while (db->db_state == DB_READ ||
786 			    db->db_state == DB_FILL) {
787 				ASSERT(db->db_state == DB_READ ||
788 				    (flags & DB_RF_HAVESTRUCT) == 0);
789 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
790 				    db, zio_t *, zio);
791 				cv_wait(&db->db_changed, &db->db_mtx);
792 			}
793 			if (db->db_state == DB_UNCACHED)
794 				err = SET_ERROR(EIO);
795 		}
796 		mutex_exit(&db->db_mtx);
797 	}
798 
799 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
800 	return (err);
801 }
802 
803 static void
dbuf_noread(dmu_buf_impl_t * db)804 dbuf_noread(dmu_buf_impl_t *db)
805 {
806 	ASSERT(!refcount_is_zero(&db->db_holds));
807 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
808 	mutex_enter(&db->db_mtx);
809 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
810 		cv_wait(&db->db_changed, &db->db_mtx);
811 	if (db->db_state == DB_UNCACHED) {
812 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
813 		spa_t *spa = db->db_objset->os_spa;
814 
815 		ASSERT(db->db_buf == NULL);
816 		ASSERT(db->db.db_data == NULL);
817 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
818 		db->db_state = DB_FILL;
819 	} else if (db->db_state == DB_NOFILL) {
820 		dbuf_clear_data(db);
821 	} else {
822 		ASSERT3U(db->db_state, ==, DB_CACHED);
823 	}
824 	mutex_exit(&db->db_mtx);
825 }
826 
827 /*
828  * This is our just-in-time copy function.  It makes a copy of
829  * buffers, that have been modified in a previous transaction
830  * group, before we modify them in the current active group.
831  *
832  * This function is used in two places: when we are dirtying a
833  * buffer for the first time in a txg, and when we are freeing
834  * a range in a dnode that includes this buffer.
835  *
836  * Note that when we are called from dbuf_free_range() we do
837  * not put a hold on the buffer, we just traverse the active
838  * dbuf list for the dnode.
839  */
840 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)841 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
842 {
843 	dbuf_dirty_record_t *dr = db->db_last_dirty;
844 
845 	ASSERT(MUTEX_HELD(&db->db_mtx));
846 	ASSERT(db->db.db_data != NULL);
847 	ASSERT(db->db_level == 0);
848 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
849 
850 	if (dr == NULL ||
851 	    (dr->dt.dl.dr_data !=
852 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
853 		return;
854 
855 	/*
856 	 * If the last dirty record for this dbuf has not yet synced
857 	 * and its referencing the dbuf data, either:
858 	 *	reset the reference to point to a new copy,
859 	 * or (if there a no active holders)
860 	 *	just null out the current db_data pointer.
861 	 */
862 	ASSERT(dr->dr_txg >= txg - 2);
863 	if (db->db_blkid == DMU_BONUS_BLKID) {
864 		/* Note that the data bufs here are zio_bufs */
865 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
866 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
867 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
868 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
869 		int size = db->db.db_size;
870 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
871 		spa_t *spa = db->db_objset->os_spa;
872 
873 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
874 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
875 	} else {
876 		dbuf_clear_data(db);
877 	}
878 }
879 
880 void
dbuf_unoverride(dbuf_dirty_record_t * dr)881 dbuf_unoverride(dbuf_dirty_record_t *dr)
882 {
883 	dmu_buf_impl_t *db = dr->dr_dbuf;
884 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
885 	uint64_t txg = dr->dr_txg;
886 
887 	ASSERT(MUTEX_HELD(&db->db_mtx));
888 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
889 	ASSERT(db->db_level == 0);
890 
891 	if (db->db_blkid == DMU_BONUS_BLKID ||
892 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
893 		return;
894 
895 	ASSERT(db->db_data_pending != dr);
896 
897 	/* free this block */
898 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
899 		zio_free(db->db_objset->os_spa, txg, bp);
900 
901 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
902 	dr->dt.dl.dr_nopwrite = B_FALSE;
903 
904 	/*
905 	 * Release the already-written buffer, so we leave it in
906 	 * a consistent dirty state.  Note that all callers are
907 	 * modifying the buffer, so they will immediately do
908 	 * another (redundant) arc_release().  Therefore, leave
909 	 * the buf thawed to save the effort of freezing &
910 	 * immediately re-thawing it.
911 	 */
912 	arc_release(dr->dt.dl.dr_data, db);
913 }
914 
915 /*
916  * Evict (if its unreferenced) or clear (if its referenced) any level-0
917  * data blocks in the free range, so that any future readers will find
918  * empty blocks.
919  *
920  * This is a no-op if the dataset is in the middle of an incremental
921  * receive; see comment below for details.
922  */
923 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)924 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
925     dmu_tx_t *tx)
926 {
927 	dmu_buf_impl_t db_search;
928 	dmu_buf_impl_t *db, *db_next;
929 	uint64_t txg = tx->tx_txg;
930 	avl_index_t where;
931 
932 	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
933 		end_blkid = dn->dn_maxblkid;
934 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
935 
936 	db_search.db_level = 0;
937 	db_search.db_blkid = start_blkid;
938 	db_search.db_state = DB_SEARCH;
939 
940 	mutex_enter(&dn->dn_dbufs_mtx);
941 	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
942 		/* There can't be any dbufs in this range; no need to search. */
943 #ifdef DEBUG
944 		db = avl_find(&dn->dn_dbufs, &db_search, &where);
945 		ASSERT3P(db, ==, NULL);
946 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
947 		ASSERT(db == NULL || db->db_level > 0);
948 #endif
949 		mutex_exit(&dn->dn_dbufs_mtx);
950 		return;
951 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
952 		/*
953 		 * If we are receiving, we expect there to be no dbufs in
954 		 * the range to be freed, because receive modifies each
955 		 * block at most once, and in offset order.  If this is
956 		 * not the case, it can lead to performance problems,
957 		 * so note that we unexpectedly took the slow path.
958 		 */
959 		atomic_inc_64(&zfs_free_range_recv_miss);
960 	}
961 
962 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
963 	ASSERT3P(db, ==, NULL);
964 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
965 
966 	for (; db != NULL; db = db_next) {
967 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
968 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
969 
970 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
971 			break;
972 		}
973 		ASSERT3U(db->db_blkid, >=, start_blkid);
974 
975 		/* found a level 0 buffer in the range */
976 		mutex_enter(&db->db_mtx);
977 		if (dbuf_undirty(db, tx)) {
978 			/* mutex has been dropped and dbuf destroyed */
979 			continue;
980 		}
981 
982 		if (db->db_state == DB_UNCACHED ||
983 		    db->db_state == DB_NOFILL ||
984 		    db->db_state == DB_EVICTING) {
985 			ASSERT(db->db.db_data == NULL);
986 			mutex_exit(&db->db_mtx);
987 			continue;
988 		}
989 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
990 			/* will be handled in dbuf_read_done or dbuf_rele */
991 			db->db_freed_in_flight = TRUE;
992 			mutex_exit(&db->db_mtx);
993 			continue;
994 		}
995 		if (refcount_count(&db->db_holds) == 0) {
996 			ASSERT(db->db_buf);
997 			dbuf_clear(db);
998 			continue;
999 		}
1000 		/* The dbuf is referenced */
1001 
1002 		if (db->db_last_dirty != NULL) {
1003 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1004 
1005 			if (dr->dr_txg == txg) {
1006 				/*
1007 				 * This buffer is "in-use", re-adjust the file
1008 				 * size to reflect that this buffer may
1009 				 * contain new data when we sync.
1010 				 */
1011 				if (db->db_blkid != DMU_SPILL_BLKID &&
1012 				    db->db_blkid > dn->dn_maxblkid)
1013 					dn->dn_maxblkid = db->db_blkid;
1014 				dbuf_unoverride(dr);
1015 			} else {
1016 				/*
1017 				 * This dbuf is not dirty in the open context.
1018 				 * Either uncache it (if its not referenced in
1019 				 * the open context) or reset its contents to
1020 				 * empty.
1021 				 */
1022 				dbuf_fix_old_data(db, txg);
1023 			}
1024 		}
1025 		/* clear the contents if its cached */
1026 		if (db->db_state == DB_CACHED) {
1027 			ASSERT(db->db.db_data != NULL);
1028 			arc_release(db->db_buf, db);
1029 			bzero(db->db.db_data, db->db.db_size);
1030 			arc_buf_freeze(db->db_buf);
1031 		}
1032 
1033 		mutex_exit(&db->db_mtx);
1034 	}
1035 	mutex_exit(&dn->dn_dbufs_mtx);
1036 }
1037 
1038 static int
dbuf_block_freeable(dmu_buf_impl_t * db)1039 dbuf_block_freeable(dmu_buf_impl_t *db)
1040 {
1041 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1042 	uint64_t birth_txg = 0;
1043 
1044 	/*
1045 	 * We don't need any locking to protect db_blkptr:
1046 	 * If it's syncing, then db_last_dirty will be set
1047 	 * so we'll ignore db_blkptr.
1048 	 *
1049 	 * This logic ensures that only block births for
1050 	 * filled blocks are considered.
1051 	 */
1052 	ASSERT(MUTEX_HELD(&db->db_mtx));
1053 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1054 	    !BP_IS_HOLE(db->db_blkptr))) {
1055 		birth_txg = db->db_last_dirty->dr_txg;
1056 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1057 		birth_txg = db->db_blkptr->blk_birth;
1058 	}
1059 
1060 	/*
1061 	 * If this block don't exist or is in a snapshot, it can't be freed.
1062 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1063 	 * are holding the db_mtx lock and might deadlock if we are
1064 	 * prefetching a dedup-ed block.
1065 	 */
1066 	if (birth_txg != 0)
1067 		return (ds == NULL ||
1068 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1069 	else
1070 		return (B_FALSE);
1071 }
1072 
1073 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)1074 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1075 {
1076 	arc_buf_t *buf, *obuf;
1077 	int osize = db->db.db_size;
1078 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1079 	dnode_t *dn;
1080 
1081 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1082 
1083 	DB_DNODE_ENTER(db);
1084 	dn = DB_DNODE(db);
1085 
1086 	/* XXX does *this* func really need the lock? */
1087 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1088 
1089 	/*
1090 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1091 	 * is OK, because there can be no other references to the db
1092 	 * when we are changing its size, so no concurrent DB_FILL can
1093 	 * be happening.
1094 	 */
1095 	/*
1096 	 * XXX we should be doing a dbuf_read, checking the return
1097 	 * value and returning that up to our callers
1098 	 */
1099 	dmu_buf_will_dirty(&db->db, tx);
1100 
1101 	/* create the data buffer for the new block */
1102 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1103 
1104 	/* copy old block data to the new block */
1105 	obuf = db->db_buf;
1106 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1107 	/* zero the remainder */
1108 	if (size > osize)
1109 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1110 
1111 	mutex_enter(&db->db_mtx);
1112 	dbuf_set_data(db, buf);
1113 	VERIFY(arc_buf_remove_ref(obuf, db));
1114 	db->db.db_size = size;
1115 
1116 	if (db->db_level == 0) {
1117 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1118 		db->db_last_dirty->dt.dl.dr_data = buf;
1119 	}
1120 	mutex_exit(&db->db_mtx);
1121 
1122 	dnode_willuse_space(dn, size-osize, tx);
1123 	DB_DNODE_EXIT(db);
1124 }
1125 
1126 void
dbuf_release_bp(dmu_buf_impl_t * db)1127 dbuf_release_bp(dmu_buf_impl_t *db)
1128 {
1129 	objset_t *os = db->db_objset;
1130 
1131 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1132 	ASSERT(arc_released(os->os_phys_buf) ||
1133 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1134 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1135 
1136 	(void) arc_release(db->db_buf, db);
1137 }
1138 
1139 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1140 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1141 {
1142 	dnode_t *dn;
1143 	objset_t *os;
1144 	dbuf_dirty_record_t **drp, *dr;
1145 	int drop_struct_lock = FALSE;
1146 	boolean_t do_free_accounting = B_FALSE;
1147 	int txgoff = tx->tx_txg & TXG_MASK;
1148 
1149 	ASSERT(tx->tx_txg != 0);
1150 	ASSERT(!refcount_is_zero(&db->db_holds));
1151 	DMU_TX_DIRTY_BUF(tx, db);
1152 
1153 	DB_DNODE_ENTER(db);
1154 	dn = DB_DNODE(db);
1155 	/*
1156 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1157 	 * objects may be dirtied in syncing context, but only if they
1158 	 * were already pre-dirtied in open context.
1159 	 */
1160 	ASSERT(!dmu_tx_is_syncing(tx) ||
1161 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1162 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1163 	    dn->dn_objset->os_dsl_dataset == NULL);
1164 	/*
1165 	 * We make this assert for private objects as well, but after we
1166 	 * check if we're already dirty.  They are allowed to re-dirty
1167 	 * in syncing context.
1168 	 */
1169 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1170 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1171 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1172 
1173 	mutex_enter(&db->db_mtx);
1174 	/*
1175 	 * XXX make this true for indirects too?  The problem is that
1176 	 * transactions created with dmu_tx_create_assigned() from
1177 	 * syncing context don't bother holding ahead.
1178 	 */
1179 	ASSERT(db->db_level != 0 ||
1180 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1181 	    db->db_state == DB_NOFILL);
1182 
1183 	mutex_enter(&dn->dn_mtx);
1184 	/*
1185 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1186 	 * initialize the objset.
1187 	 */
1188 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1189 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1190 		dn->dn_dirtyctx =
1191 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1192 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1193 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1194 	}
1195 	mutex_exit(&dn->dn_mtx);
1196 
1197 	if (db->db_blkid == DMU_SPILL_BLKID)
1198 		dn->dn_have_spill = B_TRUE;
1199 
1200 	/*
1201 	 * If this buffer is already dirty, we're done.
1202 	 */
1203 	drp = &db->db_last_dirty;
1204 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1205 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1206 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1207 		drp = &dr->dr_next;
1208 	if (dr && dr->dr_txg == tx->tx_txg) {
1209 		DB_DNODE_EXIT(db);
1210 
1211 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1212 			/*
1213 			 * If this buffer has already been written out,
1214 			 * we now need to reset its state.
1215 			 */
1216 			dbuf_unoverride(dr);
1217 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1218 			    db->db_state != DB_NOFILL)
1219 				arc_buf_thaw(db->db_buf);
1220 		}
1221 		mutex_exit(&db->db_mtx);
1222 		return (dr);
1223 	}
1224 
1225 	/*
1226 	 * Only valid if not already dirty.
1227 	 */
1228 	ASSERT(dn->dn_object == 0 ||
1229 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1230 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1231 
1232 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1233 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1234 	    dn->dn_phys->dn_nlevels > db->db_level ||
1235 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1236 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1237 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1238 
1239 	/*
1240 	 * We should only be dirtying in syncing context if it's the
1241 	 * mos or we're initializing the os or it's a special object.
1242 	 * However, we are allowed to dirty in syncing context provided
1243 	 * we already dirtied it in open context.  Hence we must make
1244 	 * this assertion only if we're not already dirty.
1245 	 */
1246 	os = dn->dn_objset;
1247 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1248 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1249 	ASSERT(db->db.db_size != 0);
1250 
1251 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1252 
1253 	if (db->db_blkid != DMU_BONUS_BLKID) {
1254 		/*
1255 		 * Update the accounting.
1256 		 * Note: we delay "free accounting" until after we drop
1257 		 * the db_mtx.  This keeps us from grabbing other locks
1258 		 * (and possibly deadlocking) in bp_get_dsize() while
1259 		 * also holding the db_mtx.
1260 		 */
1261 		dnode_willuse_space(dn, db->db.db_size, tx);
1262 		do_free_accounting = dbuf_block_freeable(db);
1263 	}
1264 
1265 	/*
1266 	 * If this buffer is dirty in an old transaction group we need
1267 	 * to make a copy of it so that the changes we make in this
1268 	 * transaction group won't leak out when we sync the older txg.
1269 	 */
1270 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1271 	if (db->db_level == 0) {
1272 		void *data_old = db->db_buf;
1273 
1274 		if (db->db_state != DB_NOFILL) {
1275 			if (db->db_blkid == DMU_BONUS_BLKID) {
1276 				dbuf_fix_old_data(db, tx->tx_txg);
1277 				data_old = db->db.db_data;
1278 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1279 				/*
1280 				 * Release the data buffer from the cache so
1281 				 * that we can modify it without impacting
1282 				 * possible other users of this cached data
1283 				 * block.  Note that indirect blocks and
1284 				 * private objects are not released until the
1285 				 * syncing state (since they are only modified
1286 				 * then).
1287 				 */
1288 				arc_release(db->db_buf, db);
1289 				dbuf_fix_old_data(db, tx->tx_txg);
1290 				data_old = db->db_buf;
1291 			}
1292 			ASSERT(data_old != NULL);
1293 		}
1294 		dr->dt.dl.dr_data = data_old;
1295 	} else {
1296 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1297 		list_create(&dr->dt.di.dr_children,
1298 		    sizeof (dbuf_dirty_record_t),
1299 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1300 	}
1301 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1302 		dr->dr_accounted = db->db.db_size;
1303 	dr->dr_dbuf = db;
1304 	dr->dr_txg = tx->tx_txg;
1305 	dr->dr_next = *drp;
1306 	*drp = dr;
1307 
1308 	/*
1309 	 * We could have been freed_in_flight between the dbuf_noread
1310 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1311 	 * happened after the free.
1312 	 */
1313 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1314 	    db->db_blkid != DMU_SPILL_BLKID) {
1315 		mutex_enter(&dn->dn_mtx);
1316 		if (dn->dn_free_ranges[txgoff] != NULL) {
1317 			range_tree_clear(dn->dn_free_ranges[txgoff],
1318 			    db->db_blkid, 1);
1319 		}
1320 		mutex_exit(&dn->dn_mtx);
1321 		db->db_freed_in_flight = FALSE;
1322 	}
1323 
1324 	/*
1325 	 * This buffer is now part of this txg
1326 	 */
1327 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1328 	db->db_dirtycnt += 1;
1329 	ASSERT3U(db->db_dirtycnt, <=, 3);
1330 
1331 	mutex_exit(&db->db_mtx);
1332 
1333 	if (db->db_blkid == DMU_BONUS_BLKID ||
1334 	    db->db_blkid == DMU_SPILL_BLKID) {
1335 		mutex_enter(&dn->dn_mtx);
1336 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1337 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1338 		mutex_exit(&dn->dn_mtx);
1339 		dnode_setdirty(dn, tx);
1340 		DB_DNODE_EXIT(db);
1341 		return (dr);
1342 	} else if (do_free_accounting) {
1343 		blkptr_t *bp = db->db_blkptr;
1344 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1345 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1346 		/*
1347 		 * This is only a guess -- if the dbuf is dirty
1348 		 * in a previous txg, we don't know how much
1349 		 * space it will use on disk yet.  We should
1350 		 * really have the struct_rwlock to access
1351 		 * db_blkptr, but since this is just a guess,
1352 		 * it's OK if we get an odd answer.
1353 		 */
1354 		ddt_prefetch(os->os_spa, bp);
1355 		dnode_willuse_space(dn, -willfree, tx);
1356 	}
1357 
1358 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1359 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1360 		drop_struct_lock = TRUE;
1361 	}
1362 
1363 	if (db->db_level == 0) {
1364 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1365 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1366 	}
1367 
1368 	if (db->db_level+1 < dn->dn_nlevels) {
1369 		dmu_buf_impl_t *parent = db->db_parent;
1370 		dbuf_dirty_record_t *di;
1371 		int parent_held = FALSE;
1372 
1373 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1374 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1375 
1376 			parent = dbuf_hold_level(dn, db->db_level+1,
1377 			    db->db_blkid >> epbs, FTAG);
1378 			ASSERT(parent != NULL);
1379 			parent_held = TRUE;
1380 		}
1381 		if (drop_struct_lock)
1382 			rw_exit(&dn->dn_struct_rwlock);
1383 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1384 		di = dbuf_dirty(parent, tx);
1385 		if (parent_held)
1386 			dbuf_rele(parent, FTAG);
1387 
1388 		mutex_enter(&db->db_mtx);
1389 		/*
1390 		 * Since we've dropped the mutex, it's possible that
1391 		 * dbuf_undirty() might have changed this out from under us.
1392 		 */
1393 		if (db->db_last_dirty == dr ||
1394 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1395 			mutex_enter(&di->dt.di.dr_mtx);
1396 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1397 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1398 			list_insert_tail(&di->dt.di.dr_children, dr);
1399 			mutex_exit(&di->dt.di.dr_mtx);
1400 			dr->dr_parent = di;
1401 		}
1402 		mutex_exit(&db->db_mtx);
1403 	} else {
1404 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1405 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1406 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1407 		mutex_enter(&dn->dn_mtx);
1408 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1409 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1410 		mutex_exit(&dn->dn_mtx);
1411 		if (drop_struct_lock)
1412 			rw_exit(&dn->dn_struct_rwlock);
1413 	}
1414 
1415 	dnode_setdirty(dn, tx);
1416 	DB_DNODE_EXIT(db);
1417 	return (dr);
1418 }
1419 
1420 /*
1421  * Undirty a buffer in the transaction group referenced by the given
1422  * transaction.  Return whether this evicted the dbuf.
1423  */
1424 static boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1425 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1426 {
1427 	dnode_t *dn;
1428 	uint64_t txg = tx->tx_txg;
1429 	dbuf_dirty_record_t *dr, **drp;
1430 
1431 	ASSERT(txg != 0);
1432 
1433 	/*
1434 	 * Due to our use of dn_nlevels below, this can only be called
1435 	 * in open context, unless we are operating on the MOS.
1436 	 * From syncing context, dn_nlevels may be different from the
1437 	 * dn_nlevels used when dbuf was dirtied.
1438 	 */
1439 	ASSERT(db->db_objset ==
1440 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1441 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1442 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1443 	ASSERT0(db->db_level);
1444 	ASSERT(MUTEX_HELD(&db->db_mtx));
1445 
1446 	/*
1447 	 * If this buffer is not dirty, we're done.
1448 	 */
1449 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1450 		if (dr->dr_txg <= txg)
1451 			break;
1452 	if (dr == NULL || dr->dr_txg < txg)
1453 		return (B_FALSE);
1454 	ASSERT(dr->dr_txg == txg);
1455 	ASSERT(dr->dr_dbuf == db);
1456 
1457 	DB_DNODE_ENTER(db);
1458 	dn = DB_DNODE(db);
1459 
1460 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1461 
1462 	ASSERT(db->db.db_size != 0);
1463 
1464 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1465 	    dr->dr_accounted, txg);
1466 
1467 	*drp = dr->dr_next;
1468 
1469 	/*
1470 	 * Note that there are three places in dbuf_dirty()
1471 	 * where this dirty record may be put on a list.
1472 	 * Make sure to do a list_remove corresponding to
1473 	 * every one of those list_insert calls.
1474 	 */
1475 	if (dr->dr_parent) {
1476 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1477 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1478 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1479 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1480 	    db->db_level + 1 == dn->dn_nlevels) {
1481 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1482 		mutex_enter(&dn->dn_mtx);
1483 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1484 		mutex_exit(&dn->dn_mtx);
1485 	}
1486 	DB_DNODE_EXIT(db);
1487 
1488 	if (db->db_state != DB_NOFILL) {
1489 		dbuf_unoverride(dr);
1490 
1491 		ASSERT(db->db_buf != NULL);
1492 		ASSERT(dr->dt.dl.dr_data != NULL);
1493 		if (dr->dt.dl.dr_data != db->db_buf)
1494 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1495 	}
1496 
1497 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1498 
1499 	ASSERT(db->db_dirtycnt > 0);
1500 	db->db_dirtycnt -= 1;
1501 
1502 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1503 		arc_buf_t *buf = db->db_buf;
1504 
1505 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1506 		dbuf_clear_data(db);
1507 		VERIFY(arc_buf_remove_ref(buf, db));
1508 		dbuf_evict(db);
1509 		return (B_TRUE);
1510 	}
1511 
1512 	return (B_FALSE);
1513 }
1514 
1515 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)1516 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1517 {
1518 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1519 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1520 
1521 	ASSERT(tx->tx_txg != 0);
1522 	ASSERT(!refcount_is_zero(&db->db_holds));
1523 
1524 	DB_DNODE_ENTER(db);
1525 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1526 		rf |= DB_RF_HAVESTRUCT;
1527 	DB_DNODE_EXIT(db);
1528 	(void) dbuf_read(db, NULL, rf);
1529 	(void) dbuf_dirty(db, tx);
1530 }
1531 
1532 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)1533 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1534 {
1535 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1536 
1537 	db->db_state = DB_NOFILL;
1538 
1539 	dmu_buf_will_fill(db_fake, tx);
1540 }
1541 
1542 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)1543 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1544 {
1545 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1546 
1547 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1548 	ASSERT(tx->tx_txg != 0);
1549 	ASSERT(db->db_level == 0);
1550 	ASSERT(!refcount_is_zero(&db->db_holds));
1551 
1552 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1553 	    dmu_tx_private_ok(tx));
1554 
1555 	dbuf_noread(db);
1556 	(void) dbuf_dirty(db, tx);
1557 }
1558 
1559 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1560 /* ARGSUSED */
1561 void
dbuf_fill_done(dmu_buf_impl_t * db,dmu_tx_t * tx)1562 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1563 {
1564 	mutex_enter(&db->db_mtx);
1565 	DBUF_VERIFY(db);
1566 
1567 	if (db->db_state == DB_FILL) {
1568 		if (db->db_level == 0 && db->db_freed_in_flight) {
1569 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1570 			/* we were freed while filling */
1571 			/* XXX dbuf_undirty? */
1572 			bzero(db->db.db_data, db->db.db_size);
1573 			db->db_freed_in_flight = FALSE;
1574 		}
1575 		db->db_state = DB_CACHED;
1576 		cv_broadcast(&db->db_changed);
1577 	}
1578 	mutex_exit(&db->db_mtx);
1579 }
1580 
1581 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1582 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1583     bp_embedded_type_t etype, enum zio_compress comp,
1584     int uncompressed_size, int compressed_size, int byteorder,
1585     dmu_tx_t *tx)
1586 {
1587 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1588 	struct dirty_leaf *dl;
1589 	dmu_object_type_t type;
1590 
1591 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1592 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1593 		    SPA_FEATURE_EMBEDDED_DATA));
1594 	}
1595 
1596 	DB_DNODE_ENTER(db);
1597 	type = DB_DNODE(db)->dn_type;
1598 	DB_DNODE_EXIT(db);
1599 
1600 	ASSERT0(db->db_level);
1601 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1602 
1603 	dmu_buf_will_not_fill(dbuf, tx);
1604 
1605 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1606 	dl = &db->db_last_dirty->dt.dl;
1607 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1608 	    data, comp, uncompressed_size, compressed_size);
1609 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1610 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1611 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1612 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1613 
1614 	dl->dr_override_state = DR_OVERRIDDEN;
1615 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1616 }
1617 
1618 /*
1619  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1620  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1621  */
1622 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx)1623 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1624 {
1625 	ASSERT(!refcount_is_zero(&db->db_holds));
1626 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1627 	ASSERT(db->db_level == 0);
1628 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1629 	ASSERT(buf != NULL);
1630 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1631 	ASSERT(tx->tx_txg != 0);
1632 
1633 	arc_return_buf(buf, db);
1634 	ASSERT(arc_released(buf));
1635 
1636 	mutex_enter(&db->db_mtx);
1637 
1638 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1639 		cv_wait(&db->db_changed, &db->db_mtx);
1640 
1641 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1642 
1643 	if (db->db_state == DB_CACHED &&
1644 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1645 		mutex_exit(&db->db_mtx);
1646 		(void) dbuf_dirty(db, tx);
1647 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1648 		VERIFY(arc_buf_remove_ref(buf, db));
1649 		xuio_stat_wbuf_copied();
1650 		return;
1651 	}
1652 
1653 	xuio_stat_wbuf_nocopy();
1654 	if (db->db_state == DB_CACHED) {
1655 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1656 
1657 		ASSERT(db->db_buf != NULL);
1658 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1659 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1660 			if (!arc_released(db->db_buf)) {
1661 				ASSERT(dr->dt.dl.dr_override_state ==
1662 				    DR_OVERRIDDEN);
1663 				arc_release(db->db_buf, db);
1664 			}
1665 			dr->dt.dl.dr_data = buf;
1666 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1667 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1668 			arc_release(db->db_buf, db);
1669 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1670 		}
1671 		db->db_buf = NULL;
1672 	}
1673 	ASSERT(db->db_buf == NULL);
1674 	dbuf_set_data(db, buf);
1675 	db->db_state = DB_FILL;
1676 	mutex_exit(&db->db_mtx);
1677 	(void) dbuf_dirty(db, tx);
1678 	dmu_buf_fill_done(&db->db, tx);
1679 }
1680 
1681 /*
1682  * "Clear" the contents of this dbuf.  This will mark the dbuf
1683  * EVICTING and clear *most* of its references.  Unfortunately,
1684  * when we are not holding the dn_dbufs_mtx, we can't clear the
1685  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1686  * in this case.  For callers from the DMU we will usually see:
1687  *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1688  * For the arc callback, we will usually see:
1689  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1690  * Sometimes, though, we will get a mix of these two:
1691  *	DMU: dbuf_clear()->arc_clear_callback()
1692  *	ARC: dbuf_do_evict()->dbuf_destroy()
1693  *
1694  * This routine will dissociate the dbuf from the arc, by calling
1695  * arc_clear_callback(), but will not evict the data from the ARC.
1696  */
1697 void
dbuf_clear(dmu_buf_impl_t * db)1698 dbuf_clear(dmu_buf_impl_t *db)
1699 {
1700 	dnode_t *dn;
1701 	dmu_buf_impl_t *parent = db->db_parent;
1702 	dmu_buf_impl_t *dndb;
1703 	boolean_t dbuf_gone = B_FALSE;
1704 
1705 	ASSERT(MUTEX_HELD(&db->db_mtx));
1706 	ASSERT(refcount_is_zero(&db->db_holds));
1707 
1708 	dbuf_evict_user(db);
1709 
1710 	if (db->db_state == DB_CACHED) {
1711 		ASSERT(db->db.db_data != NULL);
1712 		if (db->db_blkid == DMU_BONUS_BLKID) {
1713 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1714 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1715 		}
1716 		db->db.db_data = NULL;
1717 		db->db_state = DB_UNCACHED;
1718 	}
1719 
1720 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1721 	ASSERT(db->db_data_pending == NULL);
1722 
1723 	db->db_state = DB_EVICTING;
1724 	db->db_blkptr = NULL;
1725 
1726 	DB_DNODE_ENTER(db);
1727 	dn = DB_DNODE(db);
1728 	dndb = dn->dn_dbuf;
1729 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1730 		avl_remove(&dn->dn_dbufs, db);
1731 		atomic_dec_32(&dn->dn_dbufs_count);
1732 		membar_producer();
1733 		DB_DNODE_EXIT(db);
1734 		/*
1735 		 * Decrementing the dbuf count means that the hold corresponding
1736 		 * to the removed dbuf is no longer discounted in dnode_move(),
1737 		 * so the dnode cannot be moved until after we release the hold.
1738 		 * The membar_producer() ensures visibility of the decremented
1739 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1740 		 * release any lock.
1741 		 */
1742 		dnode_rele(dn, db);
1743 		db->db_dnode_handle = NULL;
1744 	} else {
1745 		DB_DNODE_EXIT(db);
1746 	}
1747 
1748 	if (db->db_buf)
1749 		dbuf_gone = arc_clear_callback(db->db_buf);
1750 
1751 	if (!dbuf_gone)
1752 		mutex_exit(&db->db_mtx);
1753 
1754 	/*
1755 	 * If this dbuf is referenced from an indirect dbuf,
1756 	 * decrement the ref count on the indirect dbuf.
1757 	 */
1758 	if (parent && parent != dndb)
1759 		dbuf_rele(parent, db);
1760 }
1761 
1762 /*
1763  * Note: While bpp will always be updated if the function returns success,
1764  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1765  * this happens when the dnode is the meta-dnode, or a userused or groupused
1766  * object.
1767  */
1768 static int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)1769 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1770     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1771 {
1772 	int nlevels, epbs;
1773 
1774 	*parentp = NULL;
1775 	*bpp = NULL;
1776 
1777 	ASSERT(blkid != DMU_BONUS_BLKID);
1778 
1779 	if (blkid == DMU_SPILL_BLKID) {
1780 		mutex_enter(&dn->dn_mtx);
1781 		if (dn->dn_have_spill &&
1782 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1783 			*bpp = &dn->dn_phys->dn_spill;
1784 		else
1785 			*bpp = NULL;
1786 		dbuf_add_ref(dn->dn_dbuf, NULL);
1787 		*parentp = dn->dn_dbuf;
1788 		mutex_exit(&dn->dn_mtx);
1789 		return (0);
1790 	}
1791 
1792 	if (dn->dn_phys->dn_nlevels == 0)
1793 		nlevels = 1;
1794 	else
1795 		nlevels = dn->dn_phys->dn_nlevels;
1796 
1797 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1798 
1799 	ASSERT3U(level * epbs, <, 64);
1800 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1801 	if (level >= nlevels ||
1802 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1803 		/* the buffer has no parent yet */
1804 		return (SET_ERROR(ENOENT));
1805 	} else if (level < nlevels-1) {
1806 		/* this block is referenced from an indirect block */
1807 		int err = dbuf_hold_impl(dn, level+1,
1808 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1809 		if (err)
1810 			return (err);
1811 		err = dbuf_read(*parentp, NULL,
1812 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1813 		if (err) {
1814 			dbuf_rele(*parentp, NULL);
1815 			*parentp = NULL;
1816 			return (err);
1817 		}
1818 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1819 		    (blkid & ((1ULL << epbs) - 1));
1820 		return (0);
1821 	} else {
1822 		/* the block is referenced from the dnode */
1823 		ASSERT3U(level, ==, nlevels-1);
1824 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1825 		    blkid < dn->dn_phys->dn_nblkptr);
1826 		if (dn->dn_dbuf) {
1827 			dbuf_add_ref(dn->dn_dbuf, NULL);
1828 			*parentp = dn->dn_dbuf;
1829 		}
1830 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1831 		return (0);
1832 	}
1833 }
1834 
1835 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr)1836 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1837     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1838 {
1839 	objset_t *os = dn->dn_objset;
1840 	dmu_buf_impl_t *db, *odb;
1841 
1842 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1843 	ASSERT(dn->dn_type != DMU_OT_NONE);
1844 
1845 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1846 
1847 	db->db_objset = os;
1848 	db->db.db_object = dn->dn_object;
1849 	db->db_level = level;
1850 	db->db_blkid = blkid;
1851 	db->db_last_dirty = NULL;
1852 	db->db_dirtycnt = 0;
1853 	db->db_dnode_handle = dn->dn_handle;
1854 	db->db_parent = parent;
1855 	db->db_blkptr = blkptr;
1856 
1857 	db->db_user = NULL;
1858 	db->db_user_immediate_evict = FALSE;
1859 	db->db_freed_in_flight = FALSE;
1860 	db->db_pending_evict = FALSE;
1861 
1862 	if (blkid == DMU_BONUS_BLKID) {
1863 		ASSERT3P(parent, ==, dn->dn_dbuf);
1864 		db->db.db_size = DN_MAX_BONUSLEN -
1865 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1866 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1867 		db->db.db_offset = DMU_BONUS_BLKID;
1868 		db->db_state = DB_UNCACHED;
1869 		/* the bonus dbuf is not placed in the hash table */
1870 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1871 		return (db);
1872 	} else if (blkid == DMU_SPILL_BLKID) {
1873 		db->db.db_size = (blkptr != NULL) ?
1874 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1875 		db->db.db_offset = 0;
1876 	} else {
1877 		int blocksize =
1878 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1879 		db->db.db_size = blocksize;
1880 		db->db.db_offset = db->db_blkid * blocksize;
1881 	}
1882 
1883 	/*
1884 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1885 	 * in the hash table *and* added to the dbufs list.
1886 	 * This prevents a possible deadlock with someone
1887 	 * trying to look up this dbuf before its added to the
1888 	 * dn_dbufs list.
1889 	 */
1890 	mutex_enter(&dn->dn_dbufs_mtx);
1891 	db->db_state = DB_EVICTING;
1892 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1893 		/* someone else inserted it first */
1894 		kmem_cache_free(dbuf_cache, db);
1895 		mutex_exit(&dn->dn_dbufs_mtx);
1896 		return (odb);
1897 	}
1898 	avl_add(&dn->dn_dbufs, db);
1899 	if (db->db_level == 0 && db->db_blkid >=
1900 	    dn->dn_unlisted_l0_blkid)
1901 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1902 	db->db_state = DB_UNCACHED;
1903 	mutex_exit(&dn->dn_dbufs_mtx);
1904 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1905 
1906 	if (parent && parent != dn->dn_dbuf)
1907 		dbuf_add_ref(parent, db);
1908 
1909 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1910 	    refcount_count(&dn->dn_holds) > 0);
1911 	(void) refcount_add(&dn->dn_holds, db);
1912 	atomic_inc_32(&dn->dn_dbufs_count);
1913 
1914 	dprintf_dbuf(db, "db=%p\n", db);
1915 
1916 	return (db);
1917 }
1918 
1919 static int
dbuf_do_evict(void * private)1920 dbuf_do_evict(void *private)
1921 {
1922 	dmu_buf_impl_t *db = private;
1923 
1924 	if (!MUTEX_HELD(&db->db_mtx))
1925 		mutex_enter(&db->db_mtx);
1926 
1927 	ASSERT(refcount_is_zero(&db->db_holds));
1928 
1929 	if (db->db_state != DB_EVICTING) {
1930 		ASSERT(db->db_state == DB_CACHED);
1931 		DBUF_VERIFY(db);
1932 		db->db_buf = NULL;
1933 		dbuf_evict(db);
1934 	} else {
1935 		mutex_exit(&db->db_mtx);
1936 		dbuf_destroy(db);
1937 	}
1938 	return (0);
1939 }
1940 
1941 static void
dbuf_destroy(dmu_buf_impl_t * db)1942 dbuf_destroy(dmu_buf_impl_t *db)
1943 {
1944 	ASSERT(refcount_is_zero(&db->db_holds));
1945 
1946 	if (db->db_blkid != DMU_BONUS_BLKID) {
1947 		/*
1948 		 * If this dbuf is still on the dn_dbufs list,
1949 		 * remove it from that list.
1950 		 */
1951 		if (db->db_dnode_handle != NULL) {
1952 			dnode_t *dn;
1953 
1954 			DB_DNODE_ENTER(db);
1955 			dn = DB_DNODE(db);
1956 			mutex_enter(&dn->dn_dbufs_mtx);
1957 			avl_remove(&dn->dn_dbufs, db);
1958 			atomic_dec_32(&dn->dn_dbufs_count);
1959 			mutex_exit(&dn->dn_dbufs_mtx);
1960 			DB_DNODE_EXIT(db);
1961 			/*
1962 			 * Decrementing the dbuf count means that the hold
1963 			 * corresponding to the removed dbuf is no longer
1964 			 * discounted in dnode_move(), so the dnode cannot be
1965 			 * moved until after we release the hold.
1966 			 */
1967 			dnode_rele(dn, db);
1968 			db->db_dnode_handle = NULL;
1969 		}
1970 		dbuf_hash_remove(db);
1971 	}
1972 	db->db_parent = NULL;
1973 	db->db_buf = NULL;
1974 
1975 	ASSERT(db->db.db_data == NULL);
1976 	ASSERT(db->db_hash_next == NULL);
1977 	ASSERT(db->db_blkptr == NULL);
1978 	ASSERT(db->db_data_pending == NULL);
1979 
1980 	kmem_cache_free(dbuf_cache, db);
1981 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1982 }
1983 
1984 typedef struct dbuf_prefetch_arg {
1985 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
1986 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
1987 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
1988 	int dpa_curlevel; /* The current level that we're reading */
1989 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
1990 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
1991 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
1992 } dbuf_prefetch_arg_t;
1993 
1994 /*
1995  * Actually issue the prefetch read for the block given.
1996  */
1997 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)1998 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
1999 {
2000 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2001 		return;
2002 
2003 	arc_flags_t aflags =
2004 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2005 
2006 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2007 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2008 	ASSERT(dpa->dpa_zio != NULL);
2009 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2010 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2011 	    &aflags, &dpa->dpa_zb);
2012 }
2013 
2014 /*
2015  * Called when an indirect block above our prefetch target is read in.  This
2016  * will either read in the next indirect block down the tree or issue the actual
2017  * prefetch if the next block down is our target.
2018  */
2019 static void
dbuf_prefetch_indirect_done(zio_t * zio,arc_buf_t * abuf,void * private)2020 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2021 {
2022 	dbuf_prefetch_arg_t *dpa = private;
2023 
2024 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2025 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2026 	if (zio != NULL) {
2027 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2028 		ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2029 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2030 	}
2031 
2032 	dpa->dpa_curlevel--;
2033 
2034 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2035 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2036 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2037 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2038 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2039 		kmem_free(dpa, sizeof (*dpa));
2040 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2041 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2042 		dbuf_issue_final_prefetch(dpa, bp);
2043 		kmem_free(dpa, sizeof (*dpa));
2044 	} else {
2045 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2046 		zbookmark_phys_t zb;
2047 
2048 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2049 
2050 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2051 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2052 
2053 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2054 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2055 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2056 		    &iter_aflags, &zb);
2057 	}
2058 	(void) arc_buf_remove_ref(abuf, private);
2059 }
2060 
2061 /*
2062  * Issue prefetch reads for the given block on the given level.  If the indirect
2063  * blocks above that block are not in memory, we will read them in
2064  * asynchronously.  As a result, this call never blocks waiting for a read to
2065  * complete.
2066  */
2067 void
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)2068 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2069     arc_flags_t aflags)
2070 {
2071 	blkptr_t bp;
2072 	int epbs, nlevels, curlevel;
2073 	uint64_t curblkid;
2074 
2075 	ASSERT(blkid != DMU_BONUS_BLKID);
2076 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2077 
2078 	if (dnode_block_freed(dn, blkid))
2079 		return;
2080 
2081 	/*
2082 	 * This dnode hasn't been written to disk yet, so there's nothing to
2083 	 * prefetch.
2084 	 */
2085 	nlevels = dn->dn_phys->dn_nlevels;
2086 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2087 		return;
2088 
2089 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2090 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2091 		return;
2092 
2093 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2094 	    level, blkid);
2095 	if (db != NULL) {
2096 		mutex_exit(&db->db_mtx);
2097 		/*
2098 		 * This dbuf already exists.  It is either CACHED, or
2099 		 * (we assume) about to be read or filled.
2100 		 */
2101 		return;
2102 	}
2103 
2104 	/*
2105 	 * Find the closest ancestor (indirect block) of the target block
2106 	 * that is present in the cache.  In this indirect block, we will
2107 	 * find the bp that is at curlevel, curblkid.
2108 	 */
2109 	curlevel = level;
2110 	curblkid = blkid;
2111 	while (curlevel < nlevels - 1) {
2112 		int parent_level = curlevel + 1;
2113 		uint64_t parent_blkid = curblkid >> epbs;
2114 		dmu_buf_impl_t *db;
2115 
2116 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2117 		    FALSE, TRUE, FTAG, &db) == 0) {
2118 			blkptr_t *bpp = db->db_buf->b_data;
2119 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2120 			dbuf_rele(db, FTAG);
2121 			break;
2122 		}
2123 
2124 		curlevel = parent_level;
2125 		curblkid = parent_blkid;
2126 	}
2127 
2128 	if (curlevel == nlevels - 1) {
2129 		/* No cached indirect blocks found. */
2130 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2131 		bp = dn->dn_phys->dn_blkptr[curblkid];
2132 	}
2133 	if (BP_IS_HOLE(&bp))
2134 		return;
2135 
2136 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2137 
2138 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2139 	    ZIO_FLAG_CANFAIL);
2140 
2141 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2142 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2143 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2144 	    dn->dn_object, level, blkid);
2145 	dpa->dpa_curlevel = curlevel;
2146 	dpa->dpa_prio = prio;
2147 	dpa->dpa_aflags = aflags;
2148 	dpa->dpa_spa = dn->dn_objset->os_spa;
2149 	dpa->dpa_epbs = epbs;
2150 	dpa->dpa_zio = pio;
2151 
2152 	/*
2153 	 * If we have the indirect just above us, no need to do the asynchronous
2154 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2155 	 * a higher level, though, we want to issue the prefetches for all the
2156 	 * indirect blocks asynchronously, so we can go on with whatever we were
2157 	 * doing.
2158 	 */
2159 	if (curlevel == level) {
2160 		ASSERT3U(curblkid, ==, blkid);
2161 		dbuf_issue_final_prefetch(dpa, &bp);
2162 		kmem_free(dpa, sizeof (*dpa));
2163 	} else {
2164 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2165 		zbookmark_phys_t zb;
2166 
2167 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2168 		    dn->dn_object, curlevel, curblkid);
2169 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2170 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2171 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2172 		    &iter_aflags, &zb);
2173 	}
2174 	/*
2175 	 * We use pio here instead of dpa_zio since it's possible that
2176 	 * dpa may have already been freed.
2177 	 */
2178 	zio_nowait(pio);
2179 }
2180 
2181 /*
2182  * Returns with db_holds incremented, and db_mtx not held.
2183  * Note: dn_struct_rwlock must be held.
2184  */
2185 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,void * tag,dmu_buf_impl_t ** dbp)2186 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2187     boolean_t fail_sparse, boolean_t fail_uncached,
2188     void *tag, dmu_buf_impl_t **dbp)
2189 {
2190 	dmu_buf_impl_t *db, *parent = NULL;
2191 
2192 	ASSERT(blkid != DMU_BONUS_BLKID);
2193 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2194 	ASSERT3U(dn->dn_nlevels, >, level);
2195 
2196 	*dbp = NULL;
2197 top:
2198 	/* dbuf_find() returns with db_mtx held */
2199 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2200 
2201 	if (db == NULL) {
2202 		blkptr_t *bp = NULL;
2203 		int err;
2204 
2205 		if (fail_uncached)
2206 			return (SET_ERROR(ENOENT));
2207 
2208 		ASSERT3P(parent, ==, NULL);
2209 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2210 		if (fail_sparse) {
2211 			if (err == 0 && bp && BP_IS_HOLE(bp))
2212 				err = SET_ERROR(ENOENT);
2213 			if (err) {
2214 				if (parent)
2215 					dbuf_rele(parent, NULL);
2216 				return (err);
2217 			}
2218 		}
2219 		if (err && err != ENOENT)
2220 			return (err);
2221 		db = dbuf_create(dn, level, blkid, parent, bp);
2222 	}
2223 
2224 	if (fail_uncached && db->db_state != DB_CACHED) {
2225 		mutex_exit(&db->db_mtx);
2226 		return (SET_ERROR(ENOENT));
2227 	}
2228 
2229 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2230 		arc_buf_add_ref(db->db_buf, db);
2231 		if (db->db_buf->b_data == NULL) {
2232 			dbuf_clear(db);
2233 			if (parent) {
2234 				dbuf_rele(parent, NULL);
2235 				parent = NULL;
2236 			}
2237 			goto top;
2238 		}
2239 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2240 	}
2241 
2242 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2243 
2244 	/*
2245 	 * If this buffer is currently syncing out, and we are are
2246 	 * still referencing it from db_data, we need to make a copy
2247 	 * of it in case we decide we want to dirty it again in this txg.
2248 	 */
2249 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2250 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2251 	    db->db_state == DB_CACHED && db->db_data_pending) {
2252 		dbuf_dirty_record_t *dr = db->db_data_pending;
2253 
2254 		if (dr->dt.dl.dr_data == db->db_buf) {
2255 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2256 
2257 			dbuf_set_data(db,
2258 			    arc_buf_alloc(dn->dn_objset->os_spa,
2259 			    db->db.db_size, db, type));
2260 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2261 			    db->db.db_size);
2262 		}
2263 	}
2264 
2265 	(void) refcount_add(&db->db_holds, tag);
2266 	DBUF_VERIFY(db);
2267 	mutex_exit(&db->db_mtx);
2268 
2269 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2270 	if (parent)
2271 		dbuf_rele(parent, NULL);
2272 
2273 	ASSERT3P(DB_DNODE(db), ==, dn);
2274 	ASSERT3U(db->db_blkid, ==, blkid);
2275 	ASSERT3U(db->db_level, ==, level);
2276 	*dbp = db;
2277 
2278 	return (0);
2279 }
2280 
2281 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,void * tag)2282 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2283 {
2284 	return (dbuf_hold_level(dn, 0, blkid, tag));
2285 }
2286 
2287 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,void * tag)2288 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2289 {
2290 	dmu_buf_impl_t *db;
2291 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2292 	return (err ? NULL : db);
2293 }
2294 
2295 void
dbuf_create_bonus(dnode_t * dn)2296 dbuf_create_bonus(dnode_t *dn)
2297 {
2298 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2299 
2300 	ASSERT(dn->dn_bonus == NULL);
2301 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2302 }
2303 
2304 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)2305 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2306 {
2307 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2308 	dnode_t *dn;
2309 
2310 	if (db->db_blkid != DMU_SPILL_BLKID)
2311 		return (SET_ERROR(ENOTSUP));
2312 	if (blksz == 0)
2313 		blksz = SPA_MINBLOCKSIZE;
2314 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2315 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2316 
2317 	DB_DNODE_ENTER(db);
2318 	dn = DB_DNODE(db);
2319 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2320 	dbuf_new_size(db, blksz, tx);
2321 	rw_exit(&dn->dn_struct_rwlock);
2322 	DB_DNODE_EXIT(db);
2323 
2324 	return (0);
2325 }
2326 
2327 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)2328 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2329 {
2330 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2331 }
2332 
2333 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2334 void
dbuf_add_ref(dmu_buf_impl_t * db,void * tag)2335 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2336 {
2337 	int64_t holds = refcount_add(&db->db_holds, tag);
2338 	ASSERT(holds > 1);
2339 }
2340 
2341 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2342 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,void * tag)2343 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2344     void *tag)
2345 {
2346 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2347 	dmu_buf_impl_t *found_db;
2348 	boolean_t result = B_FALSE;
2349 
2350 	if (db->db_blkid == DMU_BONUS_BLKID)
2351 		found_db = dbuf_find_bonus(os, obj);
2352 	else
2353 		found_db = dbuf_find(os, obj, 0, blkid);
2354 
2355 	if (found_db != NULL) {
2356 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2357 			(void) refcount_add(&db->db_holds, tag);
2358 			result = B_TRUE;
2359 		}
2360 		mutex_exit(&db->db_mtx);
2361 	}
2362 	return (result);
2363 }
2364 
2365 /*
2366  * If you call dbuf_rele() you had better not be referencing the dnode handle
2367  * unless you have some other direct or indirect hold on the dnode. (An indirect
2368  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2369  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2370  * dnode's parent dbuf evicting its dnode handles.
2371  */
2372 void
dbuf_rele(dmu_buf_impl_t * db,void * tag)2373 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2374 {
2375 	mutex_enter(&db->db_mtx);
2376 	dbuf_rele_and_unlock(db, tag);
2377 }
2378 
2379 void
dmu_buf_rele(dmu_buf_t * db,void * tag)2380 dmu_buf_rele(dmu_buf_t *db, void *tag)
2381 {
2382 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2383 }
2384 
2385 /*
2386  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2387  * db_dirtycnt and db_holds to be updated atomically.
2388  */
2389 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,void * tag)2390 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2391 {
2392 	int64_t holds;
2393 
2394 	ASSERT(MUTEX_HELD(&db->db_mtx));
2395 	DBUF_VERIFY(db);
2396 
2397 	/*
2398 	 * Remove the reference to the dbuf before removing its hold on the
2399 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2400 	 * buffer has a corresponding dnode hold.
2401 	 */
2402 	holds = refcount_remove(&db->db_holds, tag);
2403 	ASSERT(holds >= 0);
2404 
2405 	/*
2406 	 * We can't freeze indirects if there is a possibility that they
2407 	 * may be modified in the current syncing context.
2408 	 */
2409 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2410 		arc_buf_freeze(db->db_buf);
2411 
2412 	if (holds == db->db_dirtycnt &&
2413 	    db->db_level == 0 && db->db_user_immediate_evict)
2414 		dbuf_evict_user(db);
2415 
2416 	if (holds == 0) {
2417 		if (db->db_blkid == DMU_BONUS_BLKID) {
2418 			dnode_t *dn;
2419 			boolean_t evict_dbuf = db->db_pending_evict;
2420 
2421 			/*
2422 			 * If the dnode moves here, we cannot cross this
2423 			 * barrier until the move completes.
2424 			 */
2425 			DB_DNODE_ENTER(db);
2426 
2427 			dn = DB_DNODE(db);
2428 			atomic_dec_32(&dn->dn_dbufs_count);
2429 
2430 			/*
2431 			 * Decrementing the dbuf count means that the bonus
2432 			 * buffer's dnode hold is no longer discounted in
2433 			 * dnode_move(). The dnode cannot move until after
2434 			 * the dnode_rele() below.
2435 			 */
2436 			DB_DNODE_EXIT(db);
2437 
2438 			/*
2439 			 * Do not reference db after its lock is dropped.
2440 			 * Another thread may evict it.
2441 			 */
2442 			mutex_exit(&db->db_mtx);
2443 
2444 			if (evict_dbuf)
2445 				dnode_evict_bonus(dn);
2446 
2447 			dnode_rele(dn, db);
2448 		} else if (db->db_buf == NULL) {
2449 			/*
2450 			 * This is a special case: we never associated this
2451 			 * dbuf with any data allocated from the ARC.
2452 			 */
2453 			ASSERT(db->db_state == DB_UNCACHED ||
2454 			    db->db_state == DB_NOFILL);
2455 			dbuf_evict(db);
2456 		} else if (arc_released(db->db_buf)) {
2457 			arc_buf_t *buf = db->db_buf;
2458 			/*
2459 			 * This dbuf has anonymous data associated with it.
2460 			 */
2461 			dbuf_clear_data(db);
2462 			VERIFY(arc_buf_remove_ref(buf, db));
2463 			dbuf_evict(db);
2464 		} else {
2465 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2466 
2467 			/*
2468 			 * A dbuf will be eligible for eviction if either the
2469 			 * 'primarycache' property is set or a duplicate
2470 			 * copy of this buffer is already cached in the arc.
2471 			 *
2472 			 * In the case of the 'primarycache' a buffer
2473 			 * is considered for eviction if it matches the
2474 			 * criteria set in the property.
2475 			 *
2476 			 * To decide if our buffer is considered a
2477 			 * duplicate, we must call into the arc to determine
2478 			 * if multiple buffers are referencing the same
2479 			 * block on-disk. If so, then we simply evict
2480 			 * ourselves.
2481 			 */
2482 			if (!DBUF_IS_CACHEABLE(db)) {
2483 				if (db->db_blkptr != NULL &&
2484 				    !BP_IS_HOLE(db->db_blkptr) &&
2485 				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2486 					spa_t *spa =
2487 					    dmu_objset_spa(db->db_objset);
2488 					blkptr_t bp = *db->db_blkptr;
2489 					dbuf_clear(db);
2490 					arc_freed(spa, &bp);
2491 				} else {
2492 					dbuf_clear(db);
2493 				}
2494 			} else if (db->db_pending_evict ||
2495 			    arc_buf_eviction_needed(db->db_buf)) {
2496 				dbuf_clear(db);
2497 			} else {
2498 				mutex_exit(&db->db_mtx);
2499 			}
2500 		}
2501 	} else {
2502 		mutex_exit(&db->db_mtx);
2503 	}
2504 }
2505 
2506 #pragma weak dmu_buf_refcount = dbuf_refcount
2507 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)2508 dbuf_refcount(dmu_buf_impl_t *db)
2509 {
2510 	return (refcount_count(&db->db_holds));
2511 }
2512 
2513 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)2514 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2515     dmu_buf_user_t *new_user)
2516 {
2517 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2518 
2519 	mutex_enter(&db->db_mtx);
2520 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2521 	if (db->db_user == old_user)
2522 		db->db_user = new_user;
2523 	else
2524 		old_user = db->db_user;
2525 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2526 	mutex_exit(&db->db_mtx);
2527 
2528 	return (old_user);
2529 }
2530 
2531 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)2532 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2533 {
2534 	return (dmu_buf_replace_user(db_fake, NULL, user));
2535 }
2536 
2537 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)2538 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2539 {
2540 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2541 
2542 	db->db_user_immediate_evict = TRUE;
2543 	return (dmu_buf_set_user(db_fake, user));
2544 }
2545 
2546 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)2547 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2548 {
2549 	return (dmu_buf_replace_user(db_fake, user, NULL));
2550 }
2551 
2552 void *
dmu_buf_get_user(dmu_buf_t * db_fake)2553 dmu_buf_get_user(dmu_buf_t *db_fake)
2554 {
2555 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2556 
2557 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2558 	return (db->db_user);
2559 }
2560 
2561 void
dmu_buf_user_evict_wait()2562 dmu_buf_user_evict_wait()
2563 {
2564 	taskq_wait(dbu_evict_taskq);
2565 }
2566 
2567 boolean_t
dmu_buf_freeable(dmu_buf_t * dbuf)2568 dmu_buf_freeable(dmu_buf_t *dbuf)
2569 {
2570 	boolean_t res = B_FALSE;
2571 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2572 
2573 	if (db->db_blkptr)
2574 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2575 		    db->db_blkptr, db->db_blkptr->blk_birth);
2576 
2577 	return (res);
2578 }
2579 
2580 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)2581 dmu_buf_get_blkptr(dmu_buf_t *db)
2582 {
2583 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2584 	return (dbi->db_blkptr);
2585 }
2586 
2587 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)2588 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2589 {
2590 	/* ASSERT(dmu_tx_is_syncing(tx) */
2591 	ASSERT(MUTEX_HELD(&db->db_mtx));
2592 
2593 	if (db->db_blkptr != NULL)
2594 		return;
2595 
2596 	if (db->db_blkid == DMU_SPILL_BLKID) {
2597 		db->db_blkptr = &dn->dn_phys->dn_spill;
2598 		BP_ZERO(db->db_blkptr);
2599 		return;
2600 	}
2601 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2602 		/*
2603 		 * This buffer was allocated at a time when there was
2604 		 * no available blkptrs from the dnode, or it was
2605 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2606 		 */
2607 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2608 		ASSERT(db->db_parent == NULL);
2609 		db->db_parent = dn->dn_dbuf;
2610 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2611 		DBUF_VERIFY(db);
2612 	} else {
2613 		dmu_buf_impl_t *parent = db->db_parent;
2614 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2615 
2616 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2617 		if (parent == NULL) {
2618 			mutex_exit(&db->db_mtx);
2619 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2620 			parent = dbuf_hold_level(dn, db->db_level + 1,
2621 			    db->db_blkid >> epbs, db);
2622 			rw_exit(&dn->dn_struct_rwlock);
2623 			mutex_enter(&db->db_mtx);
2624 			db->db_parent = parent;
2625 		}
2626 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2627 		    (db->db_blkid & ((1ULL << epbs) - 1));
2628 		DBUF_VERIFY(db);
2629 	}
2630 }
2631 
2632 static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)2633 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2634 {
2635 	dmu_buf_impl_t *db = dr->dr_dbuf;
2636 	dnode_t *dn;
2637 	zio_t *zio;
2638 
2639 	ASSERT(dmu_tx_is_syncing(tx));
2640 
2641 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2642 
2643 	mutex_enter(&db->db_mtx);
2644 
2645 	ASSERT(db->db_level > 0);
2646 	DBUF_VERIFY(db);
2647 
2648 	/* Read the block if it hasn't been read yet. */
2649 	if (db->db_buf == NULL) {
2650 		mutex_exit(&db->db_mtx);
2651 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2652 		mutex_enter(&db->db_mtx);
2653 	}
2654 	ASSERT3U(db->db_state, ==, DB_CACHED);
2655 	ASSERT(db->db_buf != NULL);
2656 
2657 	DB_DNODE_ENTER(db);
2658 	dn = DB_DNODE(db);
2659 	/* Indirect block size must match what the dnode thinks it is. */
2660 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2661 	dbuf_check_blkptr(dn, db);
2662 	DB_DNODE_EXIT(db);
2663 
2664 	/* Provide the pending dirty record to child dbufs */
2665 	db->db_data_pending = dr;
2666 
2667 	mutex_exit(&db->db_mtx);
2668 	dbuf_write(dr, db->db_buf, tx);
2669 
2670 	zio = dr->dr_zio;
2671 	mutex_enter(&dr->dt.di.dr_mtx);
2672 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2673 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2674 	mutex_exit(&dr->dt.di.dr_mtx);
2675 	zio_nowait(zio);
2676 }
2677 
2678 static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)2679 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2680 {
2681 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2682 	dmu_buf_impl_t *db = dr->dr_dbuf;
2683 	dnode_t *dn;
2684 	objset_t *os;
2685 	uint64_t txg = tx->tx_txg;
2686 
2687 	ASSERT(dmu_tx_is_syncing(tx));
2688 
2689 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2690 
2691 	mutex_enter(&db->db_mtx);
2692 	/*
2693 	 * To be synced, we must be dirtied.  But we
2694 	 * might have been freed after the dirty.
2695 	 */
2696 	if (db->db_state == DB_UNCACHED) {
2697 		/* This buffer has been freed since it was dirtied */
2698 		ASSERT(db->db.db_data == NULL);
2699 	} else if (db->db_state == DB_FILL) {
2700 		/* This buffer was freed and is now being re-filled */
2701 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2702 	} else {
2703 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2704 	}
2705 	DBUF_VERIFY(db);
2706 
2707 	DB_DNODE_ENTER(db);
2708 	dn = DB_DNODE(db);
2709 
2710 	if (db->db_blkid == DMU_SPILL_BLKID) {
2711 		mutex_enter(&dn->dn_mtx);
2712 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2713 		mutex_exit(&dn->dn_mtx);
2714 	}
2715 
2716 	/*
2717 	 * If this is a bonus buffer, simply copy the bonus data into the
2718 	 * dnode.  It will be written out when the dnode is synced (and it
2719 	 * will be synced, since it must have been dirty for dbuf_sync to
2720 	 * be called).
2721 	 */
2722 	if (db->db_blkid == DMU_BONUS_BLKID) {
2723 		dbuf_dirty_record_t **drp;
2724 
2725 		ASSERT(*datap != NULL);
2726 		ASSERT0(db->db_level);
2727 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2728 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2729 		DB_DNODE_EXIT(db);
2730 
2731 		if (*datap != db->db.db_data) {
2732 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2733 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2734 		}
2735 		db->db_data_pending = NULL;
2736 		drp = &db->db_last_dirty;
2737 		while (*drp != dr)
2738 			drp = &(*drp)->dr_next;
2739 		ASSERT(dr->dr_next == NULL);
2740 		ASSERT(dr->dr_dbuf == db);
2741 		*drp = dr->dr_next;
2742 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2743 		ASSERT(db->db_dirtycnt > 0);
2744 		db->db_dirtycnt -= 1;
2745 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2746 		return;
2747 	}
2748 
2749 	os = dn->dn_objset;
2750 
2751 	/*
2752 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2753 	 * operation to sneak in. As a result, we need to ensure that we
2754 	 * don't check the dr_override_state until we have returned from
2755 	 * dbuf_check_blkptr.
2756 	 */
2757 	dbuf_check_blkptr(dn, db);
2758 
2759 	/*
2760 	 * If this buffer is in the middle of an immediate write,
2761 	 * wait for the synchronous IO to complete.
2762 	 */
2763 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2764 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2765 		cv_wait(&db->db_changed, &db->db_mtx);
2766 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2767 	}
2768 
2769 	if (db->db_state != DB_NOFILL &&
2770 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2771 	    refcount_count(&db->db_holds) > 1 &&
2772 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2773 	    *datap == db->db_buf) {
2774 		/*
2775 		 * If this buffer is currently "in use" (i.e., there
2776 		 * are active holds and db_data still references it),
2777 		 * then make a copy before we start the write so that
2778 		 * any modifications from the open txg will not leak
2779 		 * into this write.
2780 		 *
2781 		 * NOTE: this copy does not need to be made for
2782 		 * objects only modified in the syncing context (e.g.
2783 		 * DNONE_DNODE blocks).
2784 		 */
2785 		int blksz = arc_buf_size(*datap);
2786 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2787 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2788 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2789 	}
2790 	db->db_data_pending = dr;
2791 
2792 	mutex_exit(&db->db_mtx);
2793 
2794 	dbuf_write(dr, *datap, tx);
2795 
2796 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2797 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2798 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2799 		DB_DNODE_EXIT(db);
2800 	} else {
2801 		/*
2802 		 * Although zio_nowait() does not "wait for an IO", it does
2803 		 * initiate the IO. If this is an empty write it seems plausible
2804 		 * that the IO could actually be completed before the nowait
2805 		 * returns. We need to DB_DNODE_EXIT() first in case
2806 		 * zio_nowait() invalidates the dbuf.
2807 		 */
2808 		DB_DNODE_EXIT(db);
2809 		zio_nowait(dr->dr_zio);
2810 	}
2811 }
2812 
2813 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)2814 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2815 {
2816 	dbuf_dirty_record_t *dr;
2817 
2818 	while (dr = list_head(list)) {
2819 		if (dr->dr_zio != NULL) {
2820 			/*
2821 			 * If we find an already initialized zio then we
2822 			 * are processing the meta-dnode, and we have finished.
2823 			 * The dbufs for all dnodes are put back on the list
2824 			 * during processing, so that we can zio_wait()
2825 			 * these IOs after initiating all child IOs.
2826 			 */
2827 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2828 			    DMU_META_DNODE_OBJECT);
2829 			break;
2830 		}
2831 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2832 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2833 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2834 		}
2835 		list_remove(list, dr);
2836 		if (dr->dr_dbuf->db_level > 0)
2837 			dbuf_sync_indirect(dr, tx);
2838 		else
2839 			dbuf_sync_leaf(dr, tx);
2840 	}
2841 }
2842 
2843 /* ARGSUSED */
2844 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)2845 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2846 {
2847 	dmu_buf_impl_t *db = vdb;
2848 	dnode_t *dn;
2849 	blkptr_t *bp = zio->io_bp;
2850 	blkptr_t *bp_orig = &zio->io_bp_orig;
2851 	spa_t *spa = zio->io_spa;
2852 	int64_t delta;
2853 	uint64_t fill = 0;
2854 	int i;
2855 
2856 	ASSERT3P(db->db_blkptr, ==, bp);
2857 
2858 	DB_DNODE_ENTER(db);
2859 	dn = DB_DNODE(db);
2860 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2861 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2862 	zio->io_prev_space_delta = delta;
2863 
2864 	if (bp->blk_birth != 0) {
2865 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2866 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2867 		    (db->db_blkid == DMU_SPILL_BLKID &&
2868 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2869 		    BP_IS_EMBEDDED(bp));
2870 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2871 	}
2872 
2873 	mutex_enter(&db->db_mtx);
2874 
2875 #ifdef ZFS_DEBUG
2876 	if (db->db_blkid == DMU_SPILL_BLKID) {
2877 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2878 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2879 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2880 	}
2881 #endif
2882 
2883 	if (db->db_level == 0) {
2884 		mutex_enter(&dn->dn_mtx);
2885 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2886 		    db->db_blkid != DMU_SPILL_BLKID)
2887 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2888 		mutex_exit(&dn->dn_mtx);
2889 
2890 		if (dn->dn_type == DMU_OT_DNODE) {
2891 			dnode_phys_t *dnp = db->db.db_data;
2892 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2893 			    i--, dnp++) {
2894 				if (dnp->dn_type != DMU_OT_NONE)
2895 					fill++;
2896 			}
2897 		} else {
2898 			if (BP_IS_HOLE(bp)) {
2899 				fill = 0;
2900 			} else {
2901 				fill = 1;
2902 			}
2903 		}
2904 	} else {
2905 		blkptr_t *ibp = db->db.db_data;
2906 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2907 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2908 			if (BP_IS_HOLE(ibp))
2909 				continue;
2910 			fill += BP_GET_FILL(ibp);
2911 		}
2912 	}
2913 	DB_DNODE_EXIT(db);
2914 
2915 	if (!BP_IS_EMBEDDED(bp))
2916 		bp->blk_fill = fill;
2917 
2918 	mutex_exit(&db->db_mtx);
2919 }
2920 
2921 /*
2922  * The SPA will call this callback several times for each zio - once
2923  * for every physical child i/o (zio->io_phys_children times).  This
2924  * allows the DMU to monitor the progress of each logical i/o.  For example,
2925  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2926  * block.  There may be a long delay before all copies/fragments are completed,
2927  * so this callback allows us to retire dirty space gradually, as the physical
2928  * i/os complete.
2929  */
2930 /* ARGSUSED */
2931 static void
dbuf_write_physdone(zio_t * zio,arc_buf_t * buf,void * arg)2932 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2933 {
2934 	dmu_buf_impl_t *db = arg;
2935 	objset_t *os = db->db_objset;
2936 	dsl_pool_t *dp = dmu_objset_pool(os);
2937 	dbuf_dirty_record_t *dr;
2938 	int delta = 0;
2939 
2940 	dr = db->db_data_pending;
2941 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2942 
2943 	/*
2944 	 * The callback will be called io_phys_children times.  Retire one
2945 	 * portion of our dirty space each time we are called.  Any rounding
2946 	 * error will be cleaned up by dsl_pool_sync()'s call to
2947 	 * dsl_pool_undirty_space().
2948 	 */
2949 	delta = dr->dr_accounted / zio->io_phys_children;
2950 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2951 }
2952 
2953 /* ARGSUSED */
2954 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)2955 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2956 {
2957 	dmu_buf_impl_t *db = vdb;
2958 	blkptr_t *bp_orig = &zio->io_bp_orig;
2959 	blkptr_t *bp = db->db_blkptr;
2960 	objset_t *os = db->db_objset;
2961 	dmu_tx_t *tx = os->os_synctx;
2962 	dbuf_dirty_record_t **drp, *dr;
2963 
2964 	ASSERT0(zio->io_error);
2965 	ASSERT(db->db_blkptr == bp);
2966 
2967 	/*
2968 	 * For nopwrites and rewrites we ensure that the bp matches our
2969 	 * original and bypass all the accounting.
2970 	 */
2971 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2972 		ASSERT(BP_EQUAL(bp, bp_orig));
2973 	} else {
2974 		dsl_dataset_t *ds = os->os_dsl_dataset;
2975 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2976 		dsl_dataset_block_born(ds, bp, tx);
2977 	}
2978 
2979 	mutex_enter(&db->db_mtx);
2980 
2981 	DBUF_VERIFY(db);
2982 
2983 	drp = &db->db_last_dirty;
2984 	while ((dr = *drp) != db->db_data_pending)
2985 		drp = &dr->dr_next;
2986 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2987 	ASSERT(dr->dr_dbuf == db);
2988 	ASSERT(dr->dr_next == NULL);
2989 	*drp = dr->dr_next;
2990 
2991 #ifdef ZFS_DEBUG
2992 	if (db->db_blkid == DMU_SPILL_BLKID) {
2993 		dnode_t *dn;
2994 
2995 		DB_DNODE_ENTER(db);
2996 		dn = DB_DNODE(db);
2997 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2998 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2999 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3000 		DB_DNODE_EXIT(db);
3001 	}
3002 #endif
3003 
3004 	if (db->db_level == 0) {
3005 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3006 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3007 		if (db->db_state != DB_NOFILL) {
3008 			if (dr->dt.dl.dr_data != db->db_buf)
3009 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3010 				    db));
3011 			else if (!arc_released(db->db_buf))
3012 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3013 		}
3014 	} else {
3015 		dnode_t *dn;
3016 
3017 		DB_DNODE_ENTER(db);
3018 		dn = DB_DNODE(db);
3019 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3020 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3021 		if (!BP_IS_HOLE(db->db_blkptr)) {
3022 			int epbs =
3023 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3024 			ASSERT3U(db->db_blkid, <=,
3025 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3026 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3027 			    db->db.db_size);
3028 			if (!arc_released(db->db_buf))
3029 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3030 		}
3031 		DB_DNODE_EXIT(db);
3032 		mutex_destroy(&dr->dt.di.dr_mtx);
3033 		list_destroy(&dr->dt.di.dr_children);
3034 	}
3035 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3036 
3037 	cv_broadcast(&db->db_changed);
3038 	ASSERT(db->db_dirtycnt > 0);
3039 	db->db_dirtycnt -= 1;
3040 	db->db_data_pending = NULL;
3041 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3042 }
3043 
3044 static void
dbuf_write_nofill_ready(zio_t * zio)3045 dbuf_write_nofill_ready(zio_t *zio)
3046 {
3047 	dbuf_write_ready(zio, NULL, zio->io_private);
3048 }
3049 
3050 static void
dbuf_write_nofill_done(zio_t * zio)3051 dbuf_write_nofill_done(zio_t *zio)
3052 {
3053 	dbuf_write_done(zio, NULL, zio->io_private);
3054 }
3055 
3056 static void
dbuf_write_override_ready(zio_t * zio)3057 dbuf_write_override_ready(zio_t *zio)
3058 {
3059 	dbuf_dirty_record_t *dr = zio->io_private;
3060 	dmu_buf_impl_t *db = dr->dr_dbuf;
3061 
3062 	dbuf_write_ready(zio, NULL, db);
3063 }
3064 
3065 static void
dbuf_write_override_done(zio_t * zio)3066 dbuf_write_override_done(zio_t *zio)
3067 {
3068 	dbuf_dirty_record_t *dr = zio->io_private;
3069 	dmu_buf_impl_t *db = dr->dr_dbuf;
3070 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3071 
3072 	mutex_enter(&db->db_mtx);
3073 	if (!BP_EQUAL(zio->io_bp, obp)) {
3074 		if (!BP_IS_HOLE(obp))
3075 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3076 		arc_release(dr->dt.dl.dr_data, db);
3077 	}
3078 	mutex_exit(&db->db_mtx);
3079 
3080 	dbuf_write_done(zio, NULL, db);
3081 }
3082 
3083 /* Issue I/O to commit a dirty buffer to disk. */
3084 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)3085 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3086 {
3087 	dmu_buf_impl_t *db = dr->dr_dbuf;
3088 	dnode_t *dn;
3089 	objset_t *os;
3090 	dmu_buf_impl_t *parent = db->db_parent;
3091 	uint64_t txg = tx->tx_txg;
3092 	zbookmark_phys_t zb;
3093 	zio_prop_t zp;
3094 	zio_t *zio;
3095 	int wp_flag = 0;
3096 
3097 	DB_DNODE_ENTER(db);
3098 	dn = DB_DNODE(db);
3099 	os = dn->dn_objset;
3100 
3101 	if (db->db_state != DB_NOFILL) {
3102 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3103 			/*
3104 			 * Private object buffers are released here rather
3105 			 * than in dbuf_dirty() since they are only modified
3106 			 * in the syncing context and we don't want the
3107 			 * overhead of making multiple copies of the data.
3108 			 */
3109 			if (BP_IS_HOLE(db->db_blkptr)) {
3110 				arc_buf_thaw(data);
3111 			} else {
3112 				dbuf_release_bp(db);
3113 			}
3114 		}
3115 	}
3116 
3117 	if (parent != dn->dn_dbuf) {
3118 		/* Our parent is an indirect block. */
3119 		/* We have a dirty parent that has been scheduled for write. */
3120 		ASSERT(parent && parent->db_data_pending);
3121 		/* Our parent's buffer is one level closer to the dnode. */
3122 		ASSERT(db->db_level == parent->db_level-1);
3123 		/*
3124 		 * We're about to modify our parent's db_data by modifying
3125 		 * our block pointer, so the parent must be released.
3126 		 */
3127 		ASSERT(arc_released(parent->db_buf));
3128 		zio = parent->db_data_pending->dr_zio;
3129 	} else {
3130 		/* Our parent is the dnode itself. */
3131 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3132 		    db->db_blkid != DMU_SPILL_BLKID) ||
3133 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3134 		if (db->db_blkid != DMU_SPILL_BLKID)
3135 			ASSERT3P(db->db_blkptr, ==,
3136 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3137 		zio = dn->dn_zio;
3138 	}
3139 
3140 	ASSERT(db->db_level == 0 || data == db->db_buf);
3141 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3142 	ASSERT(zio);
3143 
3144 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3145 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3146 	    db->db.db_object, db->db_level, db->db_blkid);
3147 
3148 	if (db->db_blkid == DMU_SPILL_BLKID)
3149 		wp_flag = WP_SPILL;
3150 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3151 
3152 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3153 	DB_DNODE_EXIT(db);
3154 
3155 	if (db->db_level == 0 &&
3156 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3157 		/*
3158 		 * The BP for this block has been provided by open context
3159 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3160 		 */
3161 		void *contents = (data != NULL) ? data->b_data : NULL;
3162 
3163 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3164 		    db->db_blkptr, contents, db->db.db_size, &zp,
3165 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
3166 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3167 		mutex_enter(&db->db_mtx);
3168 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3169 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3170 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3171 		mutex_exit(&db->db_mtx);
3172 	} else if (db->db_state == DB_NOFILL) {
3173 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3174 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3175 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3176 		    db->db_blkptr, NULL, db->db.db_size, &zp,
3177 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3178 		    ZIO_PRIORITY_ASYNC_WRITE,
3179 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3180 	} else {
3181 		ASSERT(arc_released(data));
3182 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3183 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3184 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3185 		    dbuf_write_physdone, dbuf_write_done, db,
3186 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3187 	}
3188 }
3189