xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision 8ac904ce090b1c2e355da8aa122ca2252183f4e1)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/arc.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_send.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dbuf.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/spa.h>
44 #include <sys/zio.h>
45 #include <sys/dmu_zfetch.h>
46 #include <sys/sa.h>
47 #include <sys/sa_impl.h>
48 #include <sys/zfeature.h>
49 #include <sys/blkptr.h>
50 #include <sys/range_tree.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/callb.h>
53 #include <sys/abd.h>
54 #include <sys/brt.h>
55 #include <sys/vdev.h>
56 #include <cityhash.h>
57 #include <sys/spa_impl.h>
58 #include <sys/wmsum.h>
59 #include <sys/vdev_impl.h>
60 
61 static kstat_t *dbuf_ksp;
62 
63 typedef struct dbuf_stats {
64 	/*
65 	 * Various statistics about the size of the dbuf cache.
66 	 */
67 	kstat_named_t cache_count;
68 	kstat_named_t cache_size_bytes;
69 	kstat_named_t cache_size_bytes_max;
70 	/*
71 	 * Statistics regarding the bounds on the dbuf cache size.
72 	 */
73 	kstat_named_t cache_target_bytes;
74 	kstat_named_t cache_lowater_bytes;
75 	kstat_named_t cache_hiwater_bytes;
76 	/*
77 	 * Total number of dbuf cache evictions that have occurred.
78 	 */
79 	kstat_named_t cache_total_evicts;
80 	/*
81 	 * The distribution of dbuf levels in the dbuf cache and
82 	 * the total size of all dbufs at each level.
83 	 */
84 	kstat_named_t cache_levels[DN_MAX_LEVELS];
85 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86 	/*
87 	 * Statistics about the dbuf hash table.
88 	 */
89 	kstat_named_t hash_hits;
90 	kstat_named_t hash_misses;
91 	kstat_named_t hash_collisions;
92 	kstat_named_t hash_elements;
93 	/*
94 	 * Number of sublists containing more than one dbuf in the dbuf
95 	 * hash table. Keep track of the longest hash chain.
96 	 */
97 	kstat_named_t hash_chains;
98 	kstat_named_t hash_chain_max;
99 	/*
100 	 * Number of times a dbuf_create() discovers that a dbuf was
101 	 * already created and in the dbuf hash table.
102 	 */
103 	kstat_named_t hash_insert_race;
104 	/*
105 	 * Number of entries in the hash table dbuf and mutex arrays.
106 	 */
107 	kstat_named_t hash_table_count;
108 	kstat_named_t hash_mutex_count;
109 	/*
110 	 * Statistics about the size of the metadata dbuf cache.
111 	 */
112 	kstat_named_t metadata_cache_count;
113 	kstat_named_t metadata_cache_size_bytes;
114 	kstat_named_t metadata_cache_size_bytes_max;
115 	/*
116 	 * For diagnostic purposes, this is incremented whenever we can't add
117 	 * something to the metadata cache because it's full, and instead put
118 	 * the data in the regular dbuf cache.
119 	 */
120 	kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122 
123 dbuf_stats_t dbuf_stats = {
124 	{ "cache_count",			KSTAT_DATA_UINT64 },
125 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
126 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
127 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
128 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
129 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
130 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
131 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
132 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
133 	{ "hash_hits",				KSTAT_DATA_UINT64 },
134 	{ "hash_misses",			KSTAT_DATA_UINT64 },
135 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
136 	{ "hash_elements",			KSTAT_DATA_UINT64 },
137 	{ "hash_chains",			KSTAT_DATA_UINT64 },
138 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
139 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
140 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
141 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
142 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
145 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
146 };
147 
148 struct {
149 	wmsum_t cache_count;
150 	wmsum_t cache_total_evicts;
151 	wmsum_t cache_levels[DN_MAX_LEVELS];
152 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
153 	wmsum_t hash_hits;
154 	wmsum_t hash_misses;
155 	wmsum_t hash_collisions;
156 	wmsum_t hash_elements;
157 	wmsum_t hash_chains;
158 	wmsum_t hash_insert_race;
159 	wmsum_t metadata_cache_count;
160 	wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162 
163 #define	DBUF_STAT_INCR(stat, val)	\
164 	wmsum_add(&dbuf_sums.stat, val)
165 #define	DBUF_STAT_DECR(stat, val)	\
166 	DBUF_STAT_INCR(stat, -(val))
167 #define	DBUF_STAT_BUMP(stat)		\
168 	DBUF_STAT_INCR(stat, 1)
169 #define	DBUF_STAT_BUMPDOWN(stat)	\
170 	DBUF_STAT_INCR(stat, -1)
171 #define	DBUF_STAT_MAX(stat, v) {					\
172 	uint64_t _m;							\
173 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
174 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 		continue;						\
176 }
177 
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 
181 /*
182  * Global data structures and functions for the dbuf cache.
183  */
184 static kmem_cache_t *dbuf_kmem_cache;
185 kmem_cache_t *dbuf_dirty_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187 
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192 
193 /*
194  * There are two dbuf caches; each dbuf can only be in one of them at a time.
195  *
196  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198  *    that represent the metadata that describes filesystems/snapshots/
199  *    bookmarks/properties/etc. We only evict from this cache when we export a
200  *    pool, to short-circuit as much I/O as possible for all administrative
201  *    commands that need the metadata. There is no eviction policy for this
202  *    cache, because we try to only include types in it which would occupy a
203  *    very small amount of space per object but create a large impact on the
204  *    performance of these commands. Instead, after it reaches a maximum size
205  *    (which should only happen on very small memory systems with a very large
206  *    number of filesystem objects), we stop taking new dbufs into the
207  *    metadata cache, instead putting them in the normal dbuf cache.
208  *
209  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210  *    are not currently held but have been recently released. These dbufs
211  *    are not eligible for arc eviction until they are aged out of the cache.
212  *    Dbufs that are aged out of the cache will be immediately destroyed and
213  *    become eligible for arc eviction.
214  *
215  * Dbufs are added to these caches once the last hold is released. If a dbuf is
216  * later accessed and still exists in the dbuf cache, then it will be removed
217  * from the cache and later re-added to the head of the cache.
218  *
219  * If a given dbuf meets the requirements for the metadata cache, it will go
220  * there, otherwise it will be considered for the generic LRU dbuf cache. The
221  * caches and the refcounts tracking their sizes are stored in an array indexed
222  * by those caches' matching enum values (from dbuf_cached_state_t).
223  */
224 typedef struct dbuf_cache {
225 	multilist_t cache;
226 	zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229 
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233 
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237 
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240 
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243 
244 /*
245  * The LRU dbuf cache uses a three-stage eviction policy:
246  *	- A low water marker designates when the dbuf eviction thread
247  *	should stop evicting from the dbuf cache.
248  *	- When we reach the maximum size (aka mid water mark), we
249  *	signal the eviction thread to run.
250  *	- The high water mark indicates when the eviction thread
251  *	is unable to keep up with the incoming load and eviction must
252  *	happen in the context of the calling thread.
253  *
254  * The dbuf cache:
255  *                                                 (max size)
256  *                                      low water   mid water   hi water
257  * +----------------------------------------+----------+----------+
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * |                                        |          |          |
262  * +----------------------------------------+----------+----------+
263  *                                        stop        signal     evict
264  *                                      evicting     eviction   directly
265  *                                                    thread
266  *
267  * The high and low water marks indicate the operating range for the eviction
268  * thread. The low water mark is, by default, 90% of the total size of the
269  * cache and the high water mark is at 110% (both of these percentages can be
270  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271  * respectively). The eviction thread will try to ensure that the cache remains
272  * within this range by waking up every second and checking if the cache is
273  * above the low water mark. The thread can also be woken up by callers adding
274  * elements into the cache if the cache is larger than the mid water (i.e max
275  * cache size). Once the eviction thread is woken up and eviction is required,
276  * it will continue evicting buffers until it's able to reduce the cache size
277  * to the low water mark. If the cache size continues to grow and hits the high
278  * water mark, then callers adding elements to the cache will begin to evict
279  * directly from the cache until the cache is no longer above the high water
280  * mark.
281  */
282 
283 /*
284  * The percentage above and below the maximum cache size.
285  */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288 
289 static int
dbuf_cons(void * vdb,void * unused,int kmflag)290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 	(void) unused, (void) kmflag;
293 	dmu_buf_impl_t *db = vdb;
294 	memset(db, 0, sizeof (dmu_buf_impl_t));
295 
296 	mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
297 	rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
298 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 	multilist_link_init(&db->db_cache_link);
300 	zfs_refcount_create(&db->db_holds);
301 
302 	return (0);
303 }
304 
305 static void
dbuf_dest(void * vdb,void * unused)306 dbuf_dest(void *vdb, void *unused)
307 {
308 	(void) unused;
309 	dmu_buf_impl_t *db = vdb;
310 	mutex_destroy(&db->db_mtx);
311 	rw_destroy(&db->db_rwlock);
312 	cv_destroy(&db->db_changed);
313 	ASSERT(!multilist_link_active(&db->db_cache_link));
314 	zfs_refcount_destroy(&db->db_holds);
315 }
316 
317 /*
318  * dbuf hash table routines
319  */
320 static dbuf_hash_table_t dbuf_hash_table;
321 
322 /*
323  * We use Cityhash for this. It's fast, and has good hash properties without
324  * requiring any large static buffers.
325  */
326 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331 
332 #define	DTRACE_SET_STATE(db, why) \
333 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
334 	    const char *, why)
335 
336 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
337 	((dbuf)->db.db_object == (obj) &&		\
338 	(dbuf)->db_objset == (os) &&			\
339 	(dbuf)->db_level == (level) &&			\
340 	(dbuf)->db_blkid == (blkid))
341 
342 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid,uint64_t * hash_out)343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344     uint64_t *hash_out)
345 {
346 	dbuf_hash_table_t *h = &dbuf_hash_table;
347 	uint64_t hv;
348 	uint64_t idx;
349 	dmu_buf_impl_t *db;
350 
351 	hv = dbuf_hash(os, obj, level, blkid);
352 	idx = hv & h->hash_table_mask;
353 
354 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 			mutex_enter(&db->db_mtx);
358 			if (db->db_state != DB_EVICTING) {
359 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 				return (db);
361 			}
362 			mutex_exit(&db->db_mtx);
363 		}
364 	}
365 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 	if (hash_out != NULL)
367 		*hash_out = hv;
368 	return (NULL);
369 }
370 
371 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 	dnode_t *dn;
375 	dmu_buf_impl_t *db = NULL;
376 
377 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 		if (dn->dn_bonus != NULL) {
380 			db = dn->dn_bonus;
381 			mutex_enter(&db->db_mtx);
382 		}
383 		rw_exit(&dn->dn_struct_rwlock);
384 		dnode_rele(dn, FTAG);
385 	}
386 	return (db);
387 }
388 
389 /*
390  * Insert an entry into the hash table.  If there is already an element
391  * equal to elem in the hash table, then the already existing element
392  * will be returned and the new element will not be inserted.
393  * Otherwise returns NULL.
394  */
395 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 	dbuf_hash_table_t *h = &dbuf_hash_table;
399 	objset_t *os = db->db_objset;
400 	uint64_t obj = db->db.db_object;
401 	int level = db->db_level;
402 	uint64_t blkid, idx;
403 	dmu_buf_impl_t *dbf;
404 	uint32_t i;
405 
406 	blkid = db->db_blkid;
407 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 	idx = db->db_hash & h->hash_table_mask;
409 
410 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 	    dbf = dbf->db_hash_next, i++) {
413 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 			mutex_enter(&dbf->db_mtx);
415 			if (dbf->db_state != DB_EVICTING) {
416 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 				return (dbf);
418 			}
419 			mutex_exit(&dbf->db_mtx);
420 		}
421 	}
422 
423 	if (i > 0) {
424 		DBUF_STAT_BUMP(hash_collisions);
425 		if (i == 1)
426 			DBUF_STAT_BUMP(hash_chains);
427 
428 		DBUF_STAT_MAX(hash_chain_max, i);
429 	}
430 
431 	mutex_enter(&db->db_mtx);
432 	db->db_hash_next = h->hash_table[idx];
433 	h->hash_table[idx] = db;
434 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 	DBUF_STAT_BUMP(hash_elements);
436 
437 	return (NULL);
438 }
439 
440 /*
441  * This returns whether this dbuf should be stored in the metadata cache, which
442  * is based on whether it's from one of the dnode types that store data related
443  * to traversing dataset hierarchies.
444  */
445 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 	DB_DNODE_ENTER(db);
449 	dnode_t *dn = DB_DNODE(db);
450 	dmu_object_type_t type = dn->dn_storage_type;
451 	if (type == DMU_OT_NONE)
452 		type = dn->dn_type;
453 	DB_DNODE_EXIT(db);
454 
455 	/* Check if this dbuf is one of the types we care about */
456 	if (DMU_OT_IS_METADATA_CACHED(type)) {
457 		/* If we hit this, then we set something up wrong in dmu_ot */
458 		ASSERT(DMU_OT_IS_METADATA(type));
459 
460 		/*
461 		 * Sanity check for small-memory systems: don't allocate too
462 		 * much memory for this purpose.
463 		 */
464 		if (zfs_refcount_count(
465 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
466 		    dbuf_metadata_cache_target_bytes()) {
467 			DBUF_STAT_BUMP(metadata_cache_overflow);
468 			return (B_FALSE);
469 		}
470 
471 		return (B_TRUE);
472 	}
473 
474 	return (B_FALSE);
475 }
476 
477 /*
478  * Remove an entry from the hash table.  It must be in the EVICTING state.
479  */
480 static void
dbuf_hash_remove(dmu_buf_impl_t * db)481 dbuf_hash_remove(dmu_buf_impl_t *db)
482 {
483 	dbuf_hash_table_t *h = &dbuf_hash_table;
484 	uint64_t idx;
485 	dmu_buf_impl_t *dbf, **dbp;
486 
487 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
488 	    db->db_blkid), ==, db->db_hash);
489 	idx = db->db_hash & h->hash_table_mask;
490 
491 	/*
492 	 * We mustn't hold db_mtx to maintain lock ordering:
493 	 * DBUF_HASH_MUTEX > db_mtx.
494 	 */
495 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
496 	ASSERT(db->db_state == DB_EVICTING);
497 	ASSERT(!MUTEX_HELD(&db->db_mtx));
498 
499 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
500 	dbp = &h->hash_table[idx];
501 	while ((dbf = *dbp) != db) {
502 		dbp = &dbf->db_hash_next;
503 		ASSERT(dbf != NULL);
504 	}
505 	*dbp = db->db_hash_next;
506 	db->db_hash_next = NULL;
507 	if (h->hash_table[idx] &&
508 	    h->hash_table[idx]->db_hash_next == NULL)
509 		DBUF_STAT_BUMPDOWN(hash_chains);
510 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
511 	DBUF_STAT_BUMPDOWN(hash_elements);
512 }
513 
514 typedef enum {
515 	DBVU_EVICTING,
516 	DBVU_NOT_EVICTING
517 } dbvu_verify_type_t;
518 
519 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)520 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
521 {
522 #ifdef ZFS_DEBUG
523 	int64_t holds;
524 
525 	if (db->db_user == NULL)
526 		return;
527 
528 	/* Only data blocks support the attachment of user data. */
529 	ASSERT0(db->db_level);
530 
531 	/* Clients must resolve a dbuf before attaching user data. */
532 	ASSERT(db->db.db_data != NULL);
533 	ASSERT3U(db->db_state, ==, DB_CACHED);
534 
535 	holds = zfs_refcount_count(&db->db_holds);
536 	if (verify_type == DBVU_EVICTING) {
537 		/*
538 		 * Immediate eviction occurs when holds == dirtycnt.
539 		 * For normal eviction buffers, holds is zero on
540 		 * eviction, except when dbuf_fix_old_data() calls
541 		 * dbuf_clear_data().  However, the hold count can grow
542 		 * during eviction even though db_mtx is held (see
543 		 * dmu_bonus_hold() for an example), so we can only
544 		 * test the generic invariant that holds >= dirtycnt.
545 		 */
546 		ASSERT3U(holds, >=, db->db_dirtycnt);
547 	} else {
548 		if (db->db_user_immediate_evict == TRUE)
549 			ASSERT3U(holds, >=, db->db_dirtycnt);
550 		else
551 			ASSERT3U(holds, >, 0);
552 	}
553 #endif
554 }
555 
556 static void
dbuf_evict_user(dmu_buf_impl_t * db)557 dbuf_evict_user(dmu_buf_impl_t *db)
558 {
559 	dmu_buf_user_t *dbu = db->db_user;
560 
561 	ASSERT(MUTEX_HELD(&db->db_mtx));
562 
563 	if (dbu == NULL)
564 		return;
565 
566 	dbuf_verify_user(db, DBVU_EVICTING);
567 	db->db_user = NULL;
568 
569 #ifdef ZFS_DEBUG
570 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
571 		*dbu->dbu_clear_on_evict_dbufp = NULL;
572 #endif
573 
574 	if (db->db_caching_status != DB_NO_CACHE) {
575 		/*
576 		 * This is a cached dbuf, so the size of the user data is
577 		 * included in its cached amount. We adjust it here because the
578 		 * user data has already been detached from the dbuf, and the
579 		 * sync functions are not supposed to touch it (the dbuf might
580 		 * not exist anymore by the time the sync functions run.
581 		 */
582 		uint64_t size = dbu->dbu_size;
583 		(void) zfs_refcount_remove_many(
584 		    &dbuf_caches[db->db_caching_status].size, size, dbu);
585 		if (db->db_caching_status == DB_DBUF_CACHE)
586 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
587 	}
588 
589 	/*
590 	 * There are two eviction callbacks - one that we call synchronously
591 	 * and one that we invoke via a taskq.  The async one is useful for
592 	 * avoiding lock order reversals and limiting stack depth.
593 	 *
594 	 * Note that if we have a sync callback but no async callback,
595 	 * it's likely that the sync callback will free the structure
596 	 * containing the dbu.  In that case we need to take care to not
597 	 * dereference dbu after calling the sync evict func.
598 	 */
599 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
600 
601 	if (dbu->dbu_evict_func_sync != NULL)
602 		dbu->dbu_evict_func_sync(dbu);
603 
604 	if (has_async) {
605 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
606 		    dbu, 0, &dbu->dbu_tqent);
607 	}
608 }
609 
610 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)611 dbuf_is_metadata(dmu_buf_impl_t *db)
612 {
613 	/*
614 	 * Consider indirect blocks and spill blocks to be meta data.
615 	 */
616 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
617 		return (B_TRUE);
618 	} else {
619 		boolean_t is_metadata;
620 
621 		DB_DNODE_ENTER(db);
622 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
623 		DB_DNODE_EXIT(db);
624 
625 		return (is_metadata);
626 	}
627 }
628 
629 /*
630  * We want to exclude buffers that are on a special allocation class from
631  * L2ARC.
632  */
633 boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t * db,blkptr_t * bp)634 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
635 {
636 	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
637 	    (db->db_objset->os_secondary_cache ==
638 	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
639 		if (l2arc_exclude_special == 0)
640 			return (B_TRUE);
641 
642 		/*
643 		 * bp must be checked in the event it was passed from
644 		 * dbuf_read_impl() as the result of a the BP being set from
645 		 * a Direct I/O write in dbuf_read(). See comments in
646 		 * dbuf_read().
647 		 */
648 		blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
649 
650 		if (db_bp == NULL || BP_IS_HOLE(db_bp))
651 			return (B_FALSE);
652 		uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
653 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
654 		vdev_t *vd = NULL;
655 
656 		if (vdev < rvd->vdev_children)
657 			vd = rvd->vdev_child[vdev];
658 
659 		if (vd == NULL)
660 			return (B_TRUE);
661 
662 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
663 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
664 			return (B_TRUE);
665 	}
666 	return (B_FALSE);
667 }
668 
669 static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t * bp,dnode_t * dn,int64_t level)670 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
671 {
672 	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
673 	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
674 	    (level > 0 ||
675 	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
676 		if (l2arc_exclude_special == 0)
677 			return (B_TRUE);
678 
679 		if (bp == NULL || BP_IS_HOLE(bp))
680 			return (B_FALSE);
681 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
682 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
683 		vdev_t *vd = NULL;
684 
685 		if (vdev < rvd->vdev_children)
686 			vd = rvd->vdev_child[vdev];
687 
688 		if (vd == NULL)
689 			return (B_TRUE);
690 
691 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
692 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
693 			return (B_TRUE);
694 	}
695 	return (B_FALSE);
696 }
697 
698 
699 /*
700  * This function *must* return indices evenly distributed between all
701  * sublists of the multilist. This is needed due to how the dbuf eviction
702  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
703  * distributed between all sublists and uses this assumption when
704  * deciding which sublist to evict from and how much to evict from it.
705  */
706 static unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)707 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
708 {
709 	dmu_buf_impl_t *db = obj;
710 
711 	/*
712 	 * The assumption here, is the hash value for a given
713 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
714 	 * (i.e. it's objset, object, level and blkid fields don't change).
715 	 * Thus, we don't need to store the dbuf's sublist index
716 	 * on insertion, as this index can be recalculated on removal.
717 	 *
718 	 * Also, the low order bits of the hash value are thought to be
719 	 * distributed evenly. Otherwise, in the case that the multilist
720 	 * has a power of two number of sublists, each sublists' usage
721 	 * would not be evenly distributed. In this context full 64bit
722 	 * division would be a waste of time, so limit it to 32 bits.
723 	 */
724 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
725 	    db->db_level, db->db_blkid) %
726 	    multilist_get_num_sublists(ml));
727 }
728 
729 /*
730  * The target size of the dbuf cache can grow with the ARC target,
731  * unless limited by the tunable dbuf_cache_max_bytes.
732  */
733 static inline unsigned long
dbuf_cache_target_bytes(void)734 dbuf_cache_target_bytes(void)
735 {
736 	return (MIN(dbuf_cache_max_bytes,
737 	    arc_target_bytes() >> dbuf_cache_shift));
738 }
739 
740 /*
741  * The target size of the dbuf metadata cache can grow with the ARC target,
742  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
743  */
744 static inline unsigned long
dbuf_metadata_cache_target_bytes(void)745 dbuf_metadata_cache_target_bytes(void)
746 {
747 	return (MIN(dbuf_metadata_cache_max_bytes,
748 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
749 }
750 
751 static inline uint64_t
dbuf_cache_hiwater_bytes(void)752 dbuf_cache_hiwater_bytes(void)
753 {
754 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
755 	return (dbuf_cache_target +
756 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
757 }
758 
759 static inline uint64_t
dbuf_cache_lowater_bytes(void)760 dbuf_cache_lowater_bytes(void)
761 {
762 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
763 	return (dbuf_cache_target -
764 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
765 }
766 
767 static inline boolean_t
dbuf_cache_above_lowater(void)768 dbuf_cache_above_lowater(void)
769 {
770 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
771 	    dbuf_cache_lowater_bytes());
772 }
773 
774 /*
775  * Evict the oldest eligible dbuf from the dbuf cache.
776  */
777 static void
dbuf_evict_one(void)778 dbuf_evict_one(void)
779 {
780 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
781 	multilist_sublist_t *mls = multilist_sublist_lock_idx(
782 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
783 
784 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
785 
786 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
787 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
788 		db = multilist_sublist_prev(mls, db);
789 	}
790 
791 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
792 	    multilist_sublist_t *, mls);
793 
794 	if (db != NULL) {
795 		multilist_sublist_remove(mls, db);
796 		multilist_sublist_unlock(mls);
797 		uint64_t size = db->db.db_size;
798 		uint64_t usize = dmu_buf_user_size(&db->db);
799 		(void) zfs_refcount_remove_many(
800 		    &dbuf_caches[DB_DBUF_CACHE].size, size, db);
801 		(void) zfs_refcount_remove_many(
802 		    &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
803 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
804 		DBUF_STAT_BUMPDOWN(cache_count);
805 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
806 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
807 		db->db_caching_status = DB_NO_CACHE;
808 		dbuf_destroy(db);
809 		DBUF_STAT_BUMP(cache_total_evicts);
810 	} else {
811 		multilist_sublist_unlock(mls);
812 	}
813 }
814 
815 /*
816  * The dbuf evict thread is responsible for aging out dbufs from the
817  * cache. Once the cache has reached it's maximum size, dbufs are removed
818  * and destroyed. The eviction thread will continue running until the size
819  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
820  * out of the cache it is destroyed and becomes eligible for arc eviction.
821  */
822 static __attribute__((noreturn)) void
dbuf_evict_thread(void * unused)823 dbuf_evict_thread(void *unused)
824 {
825 	(void) unused;
826 	callb_cpr_t cpr;
827 
828 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
829 
830 	mutex_enter(&dbuf_evict_lock);
831 	while (!dbuf_evict_thread_exit) {
832 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
833 			CALLB_CPR_SAFE_BEGIN(&cpr);
834 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
835 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
836 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
837 		}
838 		mutex_exit(&dbuf_evict_lock);
839 
840 		/*
841 		 * Keep evicting as long as we're above the low water mark
842 		 * for the cache. We do this without holding the locks to
843 		 * minimize lock contention.
844 		 */
845 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
846 			dbuf_evict_one();
847 		}
848 
849 		mutex_enter(&dbuf_evict_lock);
850 	}
851 
852 	dbuf_evict_thread_exit = B_FALSE;
853 	cv_broadcast(&dbuf_evict_cv);
854 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
855 	thread_exit();
856 }
857 
858 /*
859  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
860  * If the dbuf cache is at its high water mark, then evict a dbuf from the
861  * dbuf cache using the caller's context.
862  */
863 static void
dbuf_evict_notify(uint64_t size)864 dbuf_evict_notify(uint64_t size)
865 {
866 	/*
867 	 * We check if we should evict without holding the dbuf_evict_lock,
868 	 * because it's OK to occasionally make the wrong decision here,
869 	 * and grabbing the lock results in massive lock contention.
870 	 */
871 	if (size > dbuf_cache_target_bytes()) {
872 		/*
873 		 * Avoid calling dbuf_evict_one() from memory reclaim context
874 		 * (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks.
875 		 * Memory reclaim threads can get stuck waiting for the dbuf
876 		 * hash lock.
877 		 */
878 		if (size > dbuf_cache_hiwater_bytes() &&
879 		    !current_is_reclaim_thread()) {
880 			dbuf_evict_one();
881 		}
882 		cv_signal(&dbuf_evict_cv);
883 	}
884 }
885 
886 /*
887  * Since dbuf cache size is a fraction of target ARC size, ARC calls this when
888  * its target size is reduced due to memory pressure.
889  */
890 void
dbuf_cache_reduce_target_size(void)891 dbuf_cache_reduce_target_size(void)
892 {
893 	uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
894 
895 	if (size > dbuf_cache_target_bytes())
896 		cv_signal(&dbuf_evict_cv);
897 }
898 
899 static int
dbuf_kstat_update(kstat_t * ksp,int rw)900 dbuf_kstat_update(kstat_t *ksp, int rw)
901 {
902 	dbuf_stats_t *ds = ksp->ks_data;
903 	dbuf_hash_table_t *h = &dbuf_hash_table;
904 
905 	if (rw == KSTAT_WRITE)
906 		return (SET_ERROR(EACCES));
907 
908 	ds->cache_count.value.ui64 =
909 	    wmsum_value(&dbuf_sums.cache_count);
910 	ds->cache_size_bytes.value.ui64 =
911 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
912 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
913 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
914 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
915 	ds->cache_total_evicts.value.ui64 =
916 	    wmsum_value(&dbuf_sums.cache_total_evicts);
917 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
918 		ds->cache_levels[i].value.ui64 =
919 		    wmsum_value(&dbuf_sums.cache_levels[i]);
920 		ds->cache_levels_bytes[i].value.ui64 =
921 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
922 	}
923 	ds->hash_hits.value.ui64 =
924 	    wmsum_value(&dbuf_sums.hash_hits);
925 	ds->hash_misses.value.ui64 =
926 	    wmsum_value(&dbuf_sums.hash_misses);
927 	ds->hash_collisions.value.ui64 =
928 	    wmsum_value(&dbuf_sums.hash_collisions);
929 	ds->hash_elements.value.ui64 =
930 	    wmsum_value(&dbuf_sums.hash_elements);
931 	ds->hash_chains.value.ui64 =
932 	    wmsum_value(&dbuf_sums.hash_chains);
933 	ds->hash_insert_race.value.ui64 =
934 	    wmsum_value(&dbuf_sums.hash_insert_race);
935 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
936 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
937 	ds->metadata_cache_count.value.ui64 =
938 	    wmsum_value(&dbuf_sums.metadata_cache_count);
939 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
940 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
941 	ds->metadata_cache_overflow.value.ui64 =
942 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
943 	return (0);
944 }
945 
946 void
dbuf_init(void)947 dbuf_init(void)
948 {
949 	uint64_t hmsize, hsize = 1ULL << 16;
950 	dbuf_hash_table_t *h = &dbuf_hash_table;
951 
952 	/*
953 	 * The hash table is big enough to fill one eighth of physical memory
954 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
955 	 * By default, the table will take up
956 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
957 	 */
958 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
959 		hsize <<= 1;
960 
961 	h->hash_table = NULL;
962 	while (h->hash_table == NULL) {
963 		h->hash_table_mask = hsize - 1;
964 
965 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
966 		if (h->hash_table == NULL)
967 			hsize >>= 1;
968 
969 		ASSERT3U(hsize, >=, 1ULL << 10);
970 	}
971 
972 	/*
973 	 * The hash table buckets are protected by an array of mutexes where
974 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
975 	 * array size of 8192 is targeted to avoid contention.
976 	 */
977 	if (dbuf_mutex_cache_shift == 0)
978 		hmsize = MAX(hsize >> 7, 1ULL << 13);
979 	else
980 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
981 
982 	h->hash_mutexes = NULL;
983 	while (h->hash_mutexes == NULL) {
984 		h->hash_mutex_mask = hmsize - 1;
985 
986 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
987 		    KM_SLEEP);
988 		if (h->hash_mutexes == NULL)
989 			hmsize >>= 1;
990 	}
991 
992 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
993 	    sizeof (dmu_buf_impl_t),
994 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
995 	dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
996 	    sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
997 
998 	for (int i = 0; i < hmsize; i++)
999 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
1000 
1001 	dbuf_stats_init(h);
1002 
1003 	/*
1004 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
1005 	 * configuration is not required.
1006 	 */
1007 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
1008 
1009 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1010 		multilist_create(&dbuf_caches[dcs].cache,
1011 		    sizeof (dmu_buf_impl_t),
1012 		    offsetof(dmu_buf_impl_t, db_cache_link),
1013 		    dbuf_cache_multilist_index_func);
1014 		zfs_refcount_create(&dbuf_caches[dcs].size);
1015 	}
1016 
1017 	dbuf_evict_thread_exit = B_FALSE;
1018 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1019 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
1020 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
1021 	    NULL, 0, &p0, TS_RUN, minclsyspri);
1022 
1023 	wmsum_init(&dbuf_sums.cache_count, 0);
1024 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1025 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1026 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
1027 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1028 	}
1029 	wmsum_init(&dbuf_sums.hash_hits, 0);
1030 	wmsum_init(&dbuf_sums.hash_misses, 0);
1031 	wmsum_init(&dbuf_sums.hash_collisions, 0);
1032 	wmsum_init(&dbuf_sums.hash_elements, 0);
1033 	wmsum_init(&dbuf_sums.hash_chains, 0);
1034 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
1035 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1036 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1037 
1038 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1039 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1040 	    KSTAT_FLAG_VIRTUAL);
1041 	if (dbuf_ksp != NULL) {
1042 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
1043 			snprintf(dbuf_stats.cache_levels[i].name,
1044 			    KSTAT_STRLEN, "cache_level_%d", i);
1045 			dbuf_stats.cache_levels[i].data_type =
1046 			    KSTAT_DATA_UINT64;
1047 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
1048 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
1049 			dbuf_stats.cache_levels_bytes[i].data_type =
1050 			    KSTAT_DATA_UINT64;
1051 		}
1052 		dbuf_ksp->ks_data = &dbuf_stats;
1053 		dbuf_ksp->ks_update = dbuf_kstat_update;
1054 		kstat_install(dbuf_ksp);
1055 	}
1056 }
1057 
1058 void
dbuf_fini(void)1059 dbuf_fini(void)
1060 {
1061 	dbuf_hash_table_t *h = &dbuf_hash_table;
1062 
1063 	dbuf_stats_destroy();
1064 
1065 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1066 		mutex_destroy(&h->hash_mutexes[i]);
1067 
1068 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1069 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1070 	    sizeof (kmutex_t));
1071 
1072 	kmem_cache_destroy(dbuf_kmem_cache);
1073 	kmem_cache_destroy(dbuf_dirty_kmem_cache);
1074 	taskq_destroy(dbu_evict_taskq);
1075 
1076 	mutex_enter(&dbuf_evict_lock);
1077 	dbuf_evict_thread_exit = B_TRUE;
1078 	while (dbuf_evict_thread_exit) {
1079 		cv_signal(&dbuf_evict_cv);
1080 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1081 	}
1082 	mutex_exit(&dbuf_evict_lock);
1083 
1084 	mutex_destroy(&dbuf_evict_lock);
1085 	cv_destroy(&dbuf_evict_cv);
1086 
1087 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1088 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1089 		multilist_destroy(&dbuf_caches[dcs].cache);
1090 	}
1091 
1092 	if (dbuf_ksp != NULL) {
1093 		kstat_delete(dbuf_ksp);
1094 		dbuf_ksp = NULL;
1095 	}
1096 
1097 	wmsum_fini(&dbuf_sums.cache_count);
1098 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1099 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1100 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1101 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1102 	}
1103 	wmsum_fini(&dbuf_sums.hash_hits);
1104 	wmsum_fini(&dbuf_sums.hash_misses);
1105 	wmsum_fini(&dbuf_sums.hash_collisions);
1106 	wmsum_fini(&dbuf_sums.hash_elements);
1107 	wmsum_fini(&dbuf_sums.hash_chains);
1108 	wmsum_fini(&dbuf_sums.hash_insert_race);
1109 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1110 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1111 }
1112 
1113 /*
1114  * Other stuff.
1115  */
1116 
1117 #ifdef ZFS_DEBUG
1118 static void
dbuf_verify(dmu_buf_impl_t * db)1119 dbuf_verify(dmu_buf_impl_t *db)
1120 {
1121 	dnode_t *dn;
1122 	dbuf_dirty_record_t *dr;
1123 	uint32_t txg_prev;
1124 
1125 	ASSERT(MUTEX_HELD(&db->db_mtx));
1126 
1127 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1128 		return;
1129 
1130 	ASSERT(db->db_objset != NULL);
1131 	DB_DNODE_ENTER(db);
1132 	dn = DB_DNODE(db);
1133 	if (dn == NULL) {
1134 		ASSERT0P(db->db_parent);
1135 		ASSERT0P(db->db_blkptr);
1136 	} else {
1137 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1138 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1139 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1140 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1141 		    db->db_blkid == DMU_SPILL_BLKID ||
1142 		    !avl_is_empty(&dn->dn_dbufs));
1143 	}
1144 	if (db->db_blkid == DMU_BONUS_BLKID) {
1145 		ASSERT(dn != NULL);
1146 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1147 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1148 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1149 		ASSERT(dn != NULL);
1150 		ASSERT0(db->db.db_offset);
1151 	} else {
1152 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1153 	}
1154 
1155 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1156 		ASSERT(dr->dr_dbuf == db);
1157 		txg_prev = dr->dr_txg;
1158 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1159 		    dr = list_next(&db->db_dirty_records, dr)) {
1160 			ASSERT(dr->dr_dbuf == db);
1161 			ASSERT(txg_prev > dr->dr_txg);
1162 			txg_prev = dr->dr_txg;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * We can't assert that db_size matches dn_datablksz because it
1168 	 * can be momentarily different when another thread is doing
1169 	 * dnode_set_blksz().
1170 	 */
1171 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1172 		dr = db->db_data_pending;
1173 		/*
1174 		 * It should only be modified in syncing context, so
1175 		 * make sure we only have one copy of the data.
1176 		 */
1177 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1178 	}
1179 
1180 	/* verify db->db_blkptr */
1181 	if (db->db_blkptr) {
1182 		if (db->db_parent == dn->dn_dbuf) {
1183 			/* db is pointed to by the dnode */
1184 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1185 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1186 				ASSERT0P(db->db_parent);
1187 			else
1188 				ASSERT(db->db_parent != NULL);
1189 			if (db->db_blkid != DMU_SPILL_BLKID)
1190 				ASSERT3P(db->db_blkptr, ==,
1191 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1192 		} else {
1193 			/* db is pointed to by an indirect block */
1194 			int epb __maybe_unused = db->db_parent->db.db_size >>
1195 			    SPA_BLKPTRSHIFT;
1196 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1197 			ASSERT3U(db->db_parent->db.db_object, ==,
1198 			    db->db.db_object);
1199 			ASSERT3P(db->db_blkptr, ==,
1200 			    ((blkptr_t *)db->db_parent->db.db_data +
1201 			    db->db_blkid % epb));
1202 		}
1203 	}
1204 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1205 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1206 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1207 	    db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1208 		/*
1209 		 * If the blkptr isn't set but they have nonzero data,
1210 		 * it had better be dirty, otherwise we'll lose that
1211 		 * data when we evict this buffer.
1212 		 *
1213 		 * There is an exception to this rule for indirect blocks; in
1214 		 * this case, if the indirect block is a hole, we fill in a few
1215 		 * fields on each of the child blocks (importantly, birth time)
1216 		 * to prevent hole birth times from being lost when you
1217 		 * partially fill in a hole.
1218 		 */
1219 		if (db->db_dirtycnt == 0) {
1220 			if (db->db_level == 0) {
1221 				uint64_t *buf = db->db.db_data;
1222 				int i;
1223 
1224 				for (i = 0; i < db->db.db_size >> 3; i++) {
1225 					ASSERT0(buf[i]);
1226 				}
1227 			} else {
1228 				blkptr_t *bps = db->db.db_data;
1229 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1230 				    db->db.db_size);
1231 				/*
1232 				 * We want to verify that all the blkptrs in the
1233 				 * indirect block are holes, but we may have
1234 				 * automatically set up a few fields for them.
1235 				 * We iterate through each blkptr and verify
1236 				 * they only have those fields set.
1237 				 */
1238 				for (int i = 0;
1239 				    i < db->db.db_size / sizeof (blkptr_t);
1240 				    i++) {
1241 					blkptr_t *bp = &bps[i];
1242 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1243 					    &bp->blk_cksum));
1244 					ASSERT(
1245 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1246 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1247 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1248 					ASSERT0(bp->blk_fill);
1249 					ASSERT(!BP_IS_EMBEDDED(bp));
1250 					ASSERT(BP_IS_HOLE(bp));
1251 					ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp));
1252 				}
1253 			}
1254 		}
1255 	}
1256 	DB_DNODE_EXIT(db);
1257 }
1258 #endif
1259 
1260 static void
dbuf_clear_data(dmu_buf_impl_t * db)1261 dbuf_clear_data(dmu_buf_impl_t *db)
1262 {
1263 	ASSERT(MUTEX_HELD(&db->db_mtx));
1264 	dbuf_evict_user(db);
1265 	ASSERT0P(db->db_buf);
1266 	db->db.db_data = NULL;
1267 	if (db->db_state != DB_NOFILL) {
1268 		db->db_state = DB_UNCACHED;
1269 		DTRACE_SET_STATE(db, "clear data");
1270 	}
1271 }
1272 
1273 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)1274 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1275 {
1276 	ASSERT(MUTEX_HELD(&db->db_mtx));
1277 	ASSERT(buf != NULL);
1278 
1279 	db->db_buf = buf;
1280 	ASSERT(buf->b_data != NULL);
1281 	db->db.db_data = buf->b_data;
1282 }
1283 
1284 static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t * db)1285 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1286 {
1287 	spa_t *spa = db->db_objset->os_spa;
1288 
1289 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1290 }
1291 
1292 /*
1293  * Calculate which level n block references the data at the level 0 offset
1294  * provided.
1295  */
1296 uint64_t
dbuf_whichblock(const dnode_t * dn,const int64_t level,const uint64_t offset)1297 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1298 {
1299 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1300 		/*
1301 		 * The level n blkid is equal to the level 0 blkid divided by
1302 		 * the number of level 0s in a level n block.
1303 		 *
1304 		 * The level 0 blkid is offset >> datablkshift =
1305 		 * offset / 2^datablkshift.
1306 		 *
1307 		 * The number of level 0s in a level n is the number of block
1308 		 * pointers in an indirect block, raised to the power of level.
1309 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1310 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1311 		 *
1312 		 * Thus, the level n blkid is: offset /
1313 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1314 		 * = offset / 2^(datablkshift + level *
1315 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1316 		 * = offset >> (datablkshift + level *
1317 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1318 		 */
1319 
1320 		const unsigned exp = dn->dn_datablkshift +
1321 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1322 
1323 		if (exp >= 8 * sizeof (offset)) {
1324 			/* This only happens on the highest indirection level */
1325 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1326 			return (0);
1327 		}
1328 
1329 		ASSERT3U(exp, <, 8 * sizeof (offset));
1330 
1331 		return (offset >> exp);
1332 	} else {
1333 		ASSERT3U(offset, <, dn->dn_datablksz);
1334 		return (0);
1335 	}
1336 }
1337 
1338 /*
1339  * This function is used to lock the parent of the provided dbuf. This should be
1340  * used when modifying or reading db_blkptr.
1341  */
1342 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,const void * tag)1343 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1344 {
1345 	enum db_lock_type ret = DLT_NONE;
1346 	if (db->db_parent != NULL) {
1347 		rw_enter(&db->db_parent->db_rwlock, rw);
1348 		ret = DLT_PARENT;
1349 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1350 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1351 		    tag);
1352 		ret = DLT_OBJSET;
1353 	}
1354 	/*
1355 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1356 	 * of the meta-dnode of the MOS.
1357 	 */
1358 	return (ret);
1359 }
1360 
1361 /*
1362  * We need to pass the lock type in because it's possible that the block will
1363  * move from being the topmost indirect block in a dnode (and thus, have no
1364  * parent) to not the top-most via an indirection increase. This would cause a
1365  * panic if we didn't pass the lock type in.
1366  */
1367 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,const void * tag)1368 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1369 {
1370 	if (type == DLT_PARENT)
1371 		rw_exit(&db->db_parent->db_rwlock);
1372 	else if (type == DLT_OBJSET)
1373 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1374 }
1375 
1376 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)1377 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1378     arc_buf_t *buf, void *vdb)
1379 {
1380 	(void) zb, (void) bp;
1381 	dmu_buf_impl_t *db = vdb;
1382 
1383 	mutex_enter(&db->db_mtx);
1384 	ASSERT3U(db->db_state, ==, DB_READ);
1385 
1386 	/*
1387 	 * All reads are synchronous, so we must have a hold on the dbuf
1388 	 */
1389 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1390 	ASSERT0P(db->db_buf);
1391 	ASSERT0P(db->db.db_data);
1392 	if (buf == NULL) {
1393 		/* i/o error */
1394 		ASSERT(zio == NULL || zio->io_error != 0);
1395 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1396 		ASSERT0P(db->db_buf);
1397 		db->db_state = DB_UNCACHED;
1398 		DTRACE_SET_STATE(db, "i/o error");
1399 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1400 		/* freed in flight */
1401 		ASSERT(zio == NULL || zio->io_error == 0);
1402 		arc_release(buf, db);
1403 		memset(buf->b_data, 0, db->db.db_size);
1404 		arc_buf_freeze(buf);
1405 		db->db_freed_in_flight = FALSE;
1406 		dbuf_set_data(db, buf);
1407 		db->db_state = DB_CACHED;
1408 		DTRACE_SET_STATE(db, "freed in flight");
1409 	} else {
1410 		/* success */
1411 		ASSERT(zio == NULL || zio->io_error == 0);
1412 		dbuf_set_data(db, buf);
1413 		db->db_state = DB_CACHED;
1414 		DTRACE_SET_STATE(db, "successful read");
1415 	}
1416 	cv_broadcast(&db->db_changed);
1417 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1418 }
1419 
1420 /*
1421  * Shortcut for performing reads on bonus dbufs.  Returns
1422  * an error if we fail to verify the dnode associated with
1423  * a decrypted block. Otherwise success.
1424  */
1425 static int
dbuf_read_bonus(dmu_buf_impl_t * db,dnode_t * dn)1426 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1427 {
1428 	void* db_data;
1429 	int bonuslen, max_bonuslen;
1430 
1431 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1432 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1433 	ASSERT(MUTEX_HELD(&db->db_mtx));
1434 	ASSERT(DB_DNODE_HELD(db));
1435 	ASSERT3U(bonuslen, <=, db->db.db_size);
1436 	db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1437 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1438 	if (bonuslen < max_bonuslen)
1439 		memset(db_data, 0, max_bonuslen);
1440 	if (bonuslen)
1441 		memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen);
1442 	db->db.db_data = db_data;
1443 	db->db_state = DB_CACHED;
1444 	DTRACE_SET_STATE(db, "bonus buffer filled");
1445 	return (0);
1446 }
1447 
1448 static void
dbuf_handle_indirect_hole(void * data,dnode_t * dn,blkptr_t * dbbp)1449 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp)
1450 {
1451 	blkptr_t *bps = data;
1452 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1453 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1454 
1455 	for (int i = 0; i < n_bps; i++) {
1456 		blkptr_t *bp = &bps[i];
1457 
1458 		ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1459 		BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1460 		    dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1461 		BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1462 		BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1463 		BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1464 	}
1465 }
1466 
1467 /*
1468  * Handle reads on dbufs that are holes, if necessary.  This function
1469  * requires that the dbuf's mutex is held. Returns success (0) if action
1470  * was taken, ENOENT if no action was taken.
1471  */
1472 static int
dbuf_read_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * bp)1473 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1474 {
1475 	ASSERT(MUTEX_HELD(&db->db_mtx));
1476 	arc_buf_t *db_data;
1477 
1478 	int is_hole = bp == NULL || BP_IS_HOLE(bp);
1479 	/*
1480 	 * For level 0 blocks only, if the above check fails:
1481 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1482 	 * processes the delete record and clears the bp while we are waiting
1483 	 * for the dn_mtx (resulting in a "no" from block_freed).
1484 	 */
1485 	if (!is_hole && db->db_level == 0)
1486 		is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1487 
1488 	if (is_hole) {
1489 		db_data = dbuf_alloc_arcbuf(db);
1490 		memset(db_data->b_data, 0, db->db.db_size);
1491 
1492 		if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1493 		    BP_GET_LOGICAL_BIRTH(bp) != 0) {
1494 			dbuf_handle_indirect_hole(db_data->b_data, dn, bp);
1495 		}
1496 		dbuf_set_data(db, db_data);
1497 		db->db_state = DB_CACHED;
1498 		DTRACE_SET_STATE(db, "hole read satisfied");
1499 		return (0);
1500 	}
1501 	return (ENOENT);
1502 }
1503 
1504 /*
1505  * This function ensures that, when doing a decrypting read of a block,
1506  * we make sure we have decrypted the dnode associated with it. We must do
1507  * this so that we ensure we are fully authenticating the checksum-of-MACs
1508  * tree from the root of the objset down to this block. Indirect blocks are
1509  * always verified against their secure checksum-of-MACs assuming that the
1510  * dnode containing them is correct. Now that we are doing a decrypting read,
1511  * we can be sure that the key is loaded and verify that assumption. This is
1512  * especially important considering that we always read encrypted dnode
1513  * blocks as raw data (without verifying their MACs) to start, and
1514  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1515  */
1516 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,dnode_t * dn,dmu_flags_t flags)1517 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn,
1518     dmu_flags_t flags)
1519 {
1520 	objset_t *os = db->db_objset;
1521 	dmu_buf_impl_t *dndb;
1522 	arc_buf_t *dnbuf;
1523 	zbookmark_phys_t zb;
1524 	int err;
1525 
1526 	if ((flags & DMU_READ_NO_DECRYPT) != 0 ||
1527 	    !os->os_encrypted || os->os_raw_receive ||
1528 	    (dndb = dn->dn_dbuf) == NULL)
1529 		return (0);
1530 
1531 	dnbuf = dndb->db_buf;
1532 	if (!arc_is_encrypted(dnbuf))
1533 		return (0);
1534 
1535 	mutex_enter(&dndb->db_mtx);
1536 
1537 	/*
1538 	 * Since dnode buffer is modified by sync process, there can be only
1539 	 * one copy of it.  It means we can not modify (decrypt) it while it
1540 	 * is being written.  I don't see how this may happen now, since
1541 	 * encrypted dnode writes by receive should be completed before any
1542 	 * plain-text reads due to txg wait, but better be safe than sorry.
1543 	 */
1544 	while (1) {
1545 		if (!arc_is_encrypted(dnbuf)) {
1546 			mutex_exit(&dndb->db_mtx);
1547 			return (0);
1548 		}
1549 		dbuf_dirty_record_t *dr = dndb->db_data_pending;
1550 		if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1551 			break;
1552 		cv_wait(&dndb->db_changed, &dndb->db_mtx);
1553 	};
1554 
1555 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1556 	    DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1557 	err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1558 
1559 	/*
1560 	 * An error code of EACCES tells us that the key is still not
1561 	 * available. This is ok if we are only reading authenticated
1562 	 * (and therefore non-encrypted) blocks.
1563 	 */
1564 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1565 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1566 	    (db->db_blkid == DMU_BONUS_BLKID &&
1567 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1568 		err = 0;
1569 
1570 	mutex_exit(&dndb->db_mtx);
1571 
1572 	return (err);
1573 }
1574 
1575 /*
1576  * Drops db_mtx and the parent lock specified by dblt and tag before
1577  * returning.
1578  */
1579 static int
dbuf_read_impl(dmu_buf_impl_t * db,dnode_t * dn,zio_t * zio,dmu_flags_t flags,db_lock_type_t dblt,blkptr_t * bp,const void * tag)1580 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags,
1581     db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1582 {
1583 	zbookmark_phys_t zb;
1584 	uint32_t aflags = ARC_FLAG_NOWAIT;
1585 	int err, zio_flags;
1586 
1587 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1588 	ASSERT(MUTEX_HELD(&db->db_mtx));
1589 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1590 	ASSERT0P(db->db_buf);
1591 	ASSERT(db->db_parent == NULL ||
1592 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1593 
1594 	if (db->db_blkid == DMU_BONUS_BLKID) {
1595 		err = dbuf_read_bonus(db, dn);
1596 		goto early_unlock;
1597 	}
1598 
1599 	err = dbuf_read_hole(db, dn, bp);
1600 	if (err == 0)
1601 		goto early_unlock;
1602 
1603 	ASSERT(bp != NULL);
1604 
1605 	/*
1606 	 * Any attempt to read a redacted block should result in an error. This
1607 	 * will never happen under normal conditions, but can be useful for
1608 	 * debugging purposes.
1609 	 */
1610 	if (BP_IS_REDACTED(bp)) {
1611 		ASSERT(dsl_dataset_feature_is_active(
1612 		    db->db_objset->os_dsl_dataset,
1613 		    SPA_FEATURE_REDACTED_DATASETS));
1614 		err = SET_ERROR(EIO);
1615 		goto early_unlock;
1616 	}
1617 
1618 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1619 	    db->db.db_object, db->db_level, db->db_blkid);
1620 
1621 	/*
1622 	 * All bps of an encrypted os should have the encryption bit set.
1623 	 * If this is not true it indicates tampering and we report an error.
1624 	 */
1625 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1626 		spa_log_error(db->db_objset->os_spa, &zb,
1627 		    BP_GET_PHYSICAL_BIRTH(bp));
1628 		err = SET_ERROR(EIO);
1629 		goto early_unlock;
1630 	}
1631 
1632 	db->db_state = DB_READ;
1633 	DTRACE_SET_STATE(db, "read issued");
1634 	mutex_exit(&db->db_mtx);
1635 
1636 	if (!DBUF_IS_CACHEABLE(db))
1637 		aflags |= ARC_FLAG_UNCACHED;
1638 	else if (dbuf_is_l2cacheable(db, bp))
1639 		aflags |= ARC_FLAG_L2CACHE;
1640 
1641 	dbuf_add_ref(db, NULL);
1642 
1643 	zio_flags = (flags & DB_RF_CANFAIL) ?
1644 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1645 
1646 	if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1647 		zio_flags |= ZIO_FLAG_RAW;
1648 
1649 	/*
1650 	 * The zio layer will copy the provided blkptr later, but we need to
1651 	 * do this now so that we can release the parent's rwlock. We have to
1652 	 * do that now so that if dbuf_read_done is called synchronously (on
1653 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1654 	 * parent's rwlock, which would be a lock ordering violation.
1655 	 */
1656 	blkptr_t copy = *bp;
1657 	dmu_buf_unlock_parent(db, dblt, tag);
1658 	return (arc_read(zio, db->db_objset->os_spa, &copy,
1659 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1660 	    &aflags, &zb));
1661 
1662 early_unlock:
1663 	mutex_exit(&db->db_mtx);
1664 	dmu_buf_unlock_parent(db, dblt, tag);
1665 	return (err);
1666 }
1667 
1668 /*
1669  * This is our just-in-time copy function.  It makes a copy of buffers that
1670  * have been modified in a previous transaction group before we access them in
1671  * the current active group.
1672  *
1673  * This function is used in three places: when we are dirtying a buffer for the
1674  * first time in a txg, when we are freeing a range in a dnode that includes
1675  * this buffer, and when we are accessing a buffer which was received compressed
1676  * and later referenced in a WRITE_BYREF record.
1677  *
1678  * Note that when we are called from dbuf_free_range() we do not put a hold on
1679  * the buffer, we just traverse the active dbuf list for the dnode.
1680  */
1681 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1682 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1683 {
1684 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1685 
1686 	ASSERT(MUTEX_HELD(&db->db_mtx));
1687 	ASSERT(db->db.db_data != NULL);
1688 	ASSERT0(db->db_level);
1689 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1690 
1691 	if (dr == NULL ||
1692 	    (dr->dt.dl.dr_data !=
1693 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1694 		return;
1695 
1696 	/*
1697 	 * If the last dirty record for this dbuf has not yet synced
1698 	 * and its referencing the dbuf data, either:
1699 	 *	reset the reference to point to a new copy,
1700 	 * or (if there a no active holders)
1701 	 *	just null out the current db_data pointer.
1702 	 */
1703 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1704 	if (db->db_blkid == DMU_BONUS_BLKID) {
1705 		dnode_t *dn = DB_DNODE(db);
1706 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1707 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1708 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1709 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1710 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1711 		dnode_t *dn = DB_DNODE(db);
1712 		int size = arc_buf_size(db->db_buf);
1713 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1714 		spa_t *spa = db->db_objset->os_spa;
1715 		enum zio_compress compress_type =
1716 		    arc_get_compression(db->db_buf);
1717 		uint8_t complevel = arc_get_complevel(db->db_buf);
1718 
1719 		if (arc_is_encrypted(db->db_buf)) {
1720 			boolean_t byteorder;
1721 			uint8_t salt[ZIO_DATA_SALT_LEN];
1722 			uint8_t iv[ZIO_DATA_IV_LEN];
1723 			uint8_t mac[ZIO_DATA_MAC_LEN];
1724 
1725 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1726 			    iv, mac);
1727 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1728 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1729 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1730 			    compress_type, complevel);
1731 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1732 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1733 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1734 			    size, arc_buf_lsize(db->db_buf), compress_type,
1735 			    complevel);
1736 		} else {
1737 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1738 		}
1739 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1740 	} else {
1741 		db->db_buf = NULL;
1742 		dbuf_clear_data(db);
1743 	}
1744 }
1745 
1746 int
dbuf_read(dmu_buf_impl_t * db,zio_t * pio,dmu_flags_t flags)1747 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags)
1748 {
1749 	dnode_t *dn;
1750 	boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1751 	int err;
1752 
1753 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1754 
1755 	DB_DNODE_ENTER(db);
1756 	dn = DB_DNODE(db);
1757 
1758 	/*
1759 	 * Ensure that this block's dnode has been decrypted if the caller
1760 	 * has requested decrypted data.
1761 	 */
1762 	err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1763 	if (err != 0)
1764 		goto done;
1765 
1766 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1767 	    (flags & DMU_READ_NO_PREFETCH) == 0;
1768 
1769 	mutex_enter(&db->db_mtx);
1770 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1771 		db->db_pending_evict = B_FALSE;
1772 	if (flags & DMU_PARTIAL_FIRST)
1773 		db->db_partial_read = B_TRUE;
1774 	else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING)))
1775 		db->db_partial_read = B_FALSE;
1776 	miss = (db->db_state != DB_CACHED);
1777 
1778 	if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1779 		/*
1780 		 * Another reader came in while the dbuf was in flight between
1781 		 * UNCACHED and CACHED.  Either a writer will finish filling
1782 		 * the buffer, sending the dbuf to CACHED, or the first reader's
1783 		 * request will reach the read_done callback and send the dbuf
1784 		 * to CACHED.  Otherwise, a failure occurred and the dbuf will
1785 		 * be sent to UNCACHED.
1786 		 */
1787 		if (flags & DB_RF_NEVERWAIT) {
1788 			mutex_exit(&db->db_mtx);
1789 			DB_DNODE_EXIT(db);
1790 			goto done;
1791 		}
1792 		do {
1793 			ASSERT(db->db_state == DB_READ ||
1794 			    (flags & DB_RF_HAVESTRUCT) == 0);
1795 			DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1796 			    zio_t *, pio);
1797 			cv_wait(&db->db_changed, &db->db_mtx);
1798 		} while (db->db_state == DB_READ || db->db_state == DB_FILL);
1799 		if (db->db_state == DB_UNCACHED) {
1800 			err = SET_ERROR(EIO);
1801 			mutex_exit(&db->db_mtx);
1802 			DB_DNODE_EXIT(db);
1803 			goto done;
1804 		}
1805 	}
1806 
1807 	if (db->db_state == DB_CACHED) {
1808 		/*
1809 		 * If the arc buf is compressed or encrypted and the caller
1810 		 * requested uncompressed data, we need to untransform it
1811 		 * before returning. We also call arc_untransform() on any
1812 		 * unauthenticated blocks, which will verify their MAC if
1813 		 * the key is now available.
1814 		 */
1815 		if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1816 		    (arc_is_encrypted(db->db_buf) ||
1817 		    arc_is_unauthenticated(db->db_buf) ||
1818 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1819 			spa_t *spa = dn->dn_objset->os_spa;
1820 			zbookmark_phys_t zb;
1821 
1822 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1823 			    db->db.db_object, db->db_level, db->db_blkid);
1824 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1825 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1826 			dbuf_set_data(db, db->db_buf);
1827 		}
1828 		mutex_exit(&db->db_mtx);
1829 	} else {
1830 		ASSERT(db->db_state == DB_UNCACHED ||
1831 		    db->db_state == DB_NOFILL);
1832 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1833 		blkptr_t *bp;
1834 
1835 		/*
1836 		 * If a block clone or Direct I/O write has occurred we will
1837 		 * get the dirty records overridden BP so we get the most
1838 		 * recent data.
1839 		 */
1840 		err = dmu_buf_get_bp_from_dbuf(db, &bp);
1841 
1842 		if (!err) {
1843 			if (pio == NULL && (db->db_state == DB_NOFILL ||
1844 			    (bp != NULL && !BP_IS_HOLE(bp)))) {
1845 				spa_t *spa = dn->dn_objset->os_spa;
1846 				pio =
1847 				    zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1848 				need_wait = B_TRUE;
1849 			}
1850 
1851 			err =
1852 			    dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1853 		} else {
1854 			mutex_exit(&db->db_mtx);
1855 			dmu_buf_unlock_parent(db, dblt, FTAG);
1856 		}
1857 		/* dbuf_read_impl drops db_mtx and parent's rwlock. */
1858 		miss = (db->db_state != DB_CACHED);
1859 	}
1860 
1861 	if (err == 0 && prefetch) {
1862 		dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1863 		    flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) ||
1864 		    db->db_pending_evict);
1865 	}
1866 	DB_DNODE_EXIT(db);
1867 
1868 	/*
1869 	 * If we created a zio we must execute it to avoid leaking it, even if
1870 	 * it isn't attached to any work due to an error in dbuf_read_impl().
1871 	 */
1872 	if (need_wait) {
1873 		if (err == 0)
1874 			err = zio_wait(pio);
1875 		else
1876 			(void) zio_wait(pio);
1877 		pio = NULL;
1878 	}
1879 
1880 done:
1881 	if (miss)
1882 		DBUF_STAT_BUMP(hash_misses);
1883 	else
1884 		DBUF_STAT_BUMP(hash_hits);
1885 	if (pio && err != 0) {
1886 		zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1887 		    ZIO_FLAG_CANFAIL);
1888 		zio->io_error = err;
1889 		zio_nowait(zio);
1890 	}
1891 
1892 	return (err);
1893 }
1894 
1895 static void
dbuf_noread(dmu_buf_impl_t * db,dmu_flags_t flags)1896 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags)
1897 {
1898 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1899 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1900 	mutex_enter(&db->db_mtx);
1901 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1902 		db->db_pending_evict = B_FALSE;
1903 	db->db_partial_read = B_FALSE;
1904 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1905 		cv_wait(&db->db_changed, &db->db_mtx);
1906 	if (db->db_state == DB_UNCACHED) {
1907 		ASSERT0P(db->db_buf);
1908 		ASSERT0P(db->db.db_data);
1909 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1910 		db->db_state = DB_FILL;
1911 		DTRACE_SET_STATE(db, "assigning filled buffer");
1912 	} else if (db->db_state == DB_NOFILL) {
1913 		dbuf_clear_data(db);
1914 	} else {
1915 		ASSERT3U(db->db_state, ==, DB_CACHED);
1916 	}
1917 	mutex_exit(&db->db_mtx);
1918 }
1919 
1920 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1921 dbuf_unoverride(dbuf_dirty_record_t *dr)
1922 {
1923 	dmu_buf_impl_t *db = dr->dr_dbuf;
1924 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1925 	uint64_t txg = dr->dr_txg;
1926 
1927 	ASSERT(MUTEX_HELD(&db->db_mtx));
1928 
1929 	/*
1930 	 * This assert is valid because dmu_sync() expects to be called by
1931 	 * a zilog's get_data while holding a range lock.  This call only
1932 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1933 	 */
1934 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1935 	ASSERT0(db->db_level);
1936 
1937 	if (db->db_blkid == DMU_BONUS_BLKID ||
1938 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1939 		return;
1940 
1941 	ASSERT(db->db_data_pending != dr);
1942 
1943 	/* free this block */
1944 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1945 		zio_free(db->db_objset->os_spa, txg, bp);
1946 
1947 	if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1948 		ASSERT0P(dr->dt.dl.dr_data);
1949 		dr->dt.dl.dr_data = db->db_buf;
1950 	}
1951 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1952 	dr->dt.dl.dr_nopwrite = B_FALSE;
1953 	dr->dt.dl.dr_brtwrite = B_FALSE;
1954 	dr->dt.dl.dr_diowrite = B_FALSE;
1955 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1956 
1957 	/*
1958 	 * In the event that Direct I/O was used, we do not
1959 	 * need to release the buffer from the ARC.
1960 	 *
1961 	 * Release the already-written buffer, so we leave it in
1962 	 * a consistent dirty state.  Note that all callers are
1963 	 * modifying the buffer, so they will immediately do
1964 	 * another (redundant) arc_release().  Therefore, leave
1965 	 * the buf thawed to save the effort of freezing &
1966 	 * immediately re-thawing it.
1967 	 */
1968 	if (dr->dt.dl.dr_data)
1969 		arc_release(dr->dt.dl.dr_data, db);
1970 }
1971 
1972 /*
1973  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1974  * data blocks in the free range, so that any future readers will find
1975  * empty blocks.
1976  */
1977 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1978 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1979     dmu_tx_t *tx)
1980 {
1981 	dmu_buf_impl_t *db_search;
1982 	dmu_buf_impl_t *db, *db_next;
1983 	uint64_t txg = tx->tx_txg;
1984 	avl_index_t where;
1985 	dbuf_dirty_record_t *dr;
1986 
1987 	if (end_blkid > dn->dn_maxblkid &&
1988 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1989 		end_blkid = dn->dn_maxblkid;
1990 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1991 	    (u_longlong_t)end_blkid);
1992 
1993 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1994 	db_search->db_level = 0;
1995 	db_search->db_blkid = start_blkid;
1996 	db_search->db_state = DB_SEARCH;
1997 
1998 	mutex_enter(&dn->dn_dbufs_mtx);
1999 	db = avl_find(&dn->dn_dbufs, db_search, &where);
2000 	ASSERT0P(db);
2001 
2002 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2003 
2004 	for (; db != NULL; db = db_next) {
2005 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
2006 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2007 
2008 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
2009 			break;
2010 		}
2011 		ASSERT3U(db->db_blkid, >=, start_blkid);
2012 
2013 		/* found a level 0 buffer in the range */
2014 		mutex_enter(&db->db_mtx);
2015 		if (dbuf_undirty(db, tx)) {
2016 			/* mutex has been dropped and dbuf destroyed */
2017 			continue;
2018 		}
2019 
2020 		if (db->db_state == DB_UNCACHED ||
2021 		    db->db_state == DB_NOFILL ||
2022 		    db->db_state == DB_EVICTING) {
2023 			ASSERT0P(db->db.db_data);
2024 			mutex_exit(&db->db_mtx);
2025 			continue;
2026 		}
2027 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2028 			/* will be handled in dbuf_read_done or dbuf_rele */
2029 			db->db_freed_in_flight = TRUE;
2030 			mutex_exit(&db->db_mtx);
2031 			continue;
2032 		}
2033 		if (zfs_refcount_count(&db->db_holds) == 0) {
2034 			ASSERT(db->db_buf);
2035 			dbuf_destroy(db);
2036 			continue;
2037 		}
2038 		/* The dbuf is referenced */
2039 
2040 		dr = list_head(&db->db_dirty_records);
2041 		if (dr != NULL) {
2042 			if (dr->dr_txg == txg) {
2043 				/*
2044 				 * This buffer is "in-use", re-adjust the file
2045 				 * size to reflect that this buffer may
2046 				 * contain new data when we sync.
2047 				 */
2048 				if (db->db_blkid != DMU_SPILL_BLKID &&
2049 				    db->db_blkid > dn->dn_maxblkid)
2050 					dn->dn_maxblkid = db->db_blkid;
2051 				dbuf_unoverride(dr);
2052 			} else {
2053 				/*
2054 				 * This dbuf is not dirty in the open context.
2055 				 * Either uncache it (if its not referenced in
2056 				 * the open context) or reset its contents to
2057 				 * empty.
2058 				 */
2059 				dbuf_fix_old_data(db, txg);
2060 			}
2061 		}
2062 		/* clear the contents if its cached */
2063 		if (db->db_state == DB_CACHED) {
2064 			ASSERT(db->db.db_data != NULL);
2065 			arc_release(db->db_buf, db);
2066 			rw_enter(&db->db_rwlock, RW_WRITER);
2067 			memset(db->db.db_data, 0, db->db.db_size);
2068 			rw_exit(&db->db_rwlock);
2069 			arc_buf_freeze(db->db_buf);
2070 		}
2071 
2072 		mutex_exit(&db->db_mtx);
2073 	}
2074 
2075 	mutex_exit(&dn->dn_dbufs_mtx);
2076 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2077 }
2078 
2079 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)2080 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2081 {
2082 	arc_buf_t *buf, *old_buf;
2083 	dbuf_dirty_record_t *dr;
2084 	int osize = db->db.db_size;
2085 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2086 	dnode_t *dn;
2087 
2088 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2089 
2090 	DB_DNODE_ENTER(db);
2091 	dn = DB_DNODE(db);
2092 
2093 	/*
2094 	 * XXX we should be doing a dbuf_read, checking the return
2095 	 * value and returning that up to our callers
2096 	 */
2097 	dmu_buf_will_dirty(&db->db, tx);
2098 
2099 	VERIFY3P(db->db_buf, !=, NULL);
2100 
2101 	/* create the data buffer for the new block */
2102 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2103 
2104 	/* copy old block data to the new block */
2105 	old_buf = db->db_buf;
2106 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2107 	/* zero the remainder */
2108 	if (size > osize)
2109 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2110 
2111 	mutex_enter(&db->db_mtx);
2112 	dbuf_set_data(db, buf);
2113 	arc_buf_destroy(old_buf, db);
2114 	db->db.db_size = size;
2115 
2116 	dr = list_head(&db->db_dirty_records);
2117 	/* dirty record added by dmu_buf_will_dirty() */
2118 	VERIFY(dr != NULL);
2119 	if (db->db_level == 0)
2120 		dr->dt.dl.dr_data = buf;
2121 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2122 	ASSERT3U(dr->dr_accounted, ==, osize);
2123 	dr->dr_accounted = size;
2124 	mutex_exit(&db->db_mtx);
2125 
2126 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2127 	DB_DNODE_EXIT(db);
2128 }
2129 
2130 void
dbuf_release_bp(dmu_buf_impl_t * db)2131 dbuf_release_bp(dmu_buf_impl_t *db)
2132 {
2133 	objset_t *os __maybe_unused = db->db_objset;
2134 
2135 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2136 	ASSERT(arc_released(os->os_phys_buf) ||
2137 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2138 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2139 
2140 	(void) arc_release(db->db_buf, db);
2141 }
2142 
2143 /*
2144  * We already have a dirty record for this TXG, and we are being
2145  * dirtied again.
2146  */
2147 static void
dbuf_redirty(dbuf_dirty_record_t * dr)2148 dbuf_redirty(dbuf_dirty_record_t *dr)
2149 {
2150 	dmu_buf_impl_t *db = dr->dr_dbuf;
2151 
2152 	ASSERT(MUTEX_HELD(&db->db_mtx));
2153 
2154 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2155 		/*
2156 		 * If this buffer has already been written out,
2157 		 * we now need to reset its state.
2158 		 */
2159 		dbuf_unoverride(dr);
2160 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2161 		    db->db_state != DB_NOFILL) {
2162 			/* Already released on initial dirty, so just thaw. */
2163 			ASSERT(arc_released(db->db_buf));
2164 			arc_buf_thaw(db->db_buf);
2165 		}
2166 
2167 		/*
2168 		 * Clear the rewrite flag since this is now a logical
2169 		 * modification.
2170 		 */
2171 		dr->dt.dl.dr_rewrite = B_FALSE;
2172 	}
2173 }
2174 
2175 dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx)2176 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2177 {
2178 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2179 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2180 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2181 	ASSERT(dn->dn_maxblkid >= blkid);
2182 
2183 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2184 	list_link_init(&dr->dr_dirty_node);
2185 	list_link_init(&dr->dr_dbuf_node);
2186 	dr->dr_dnode = dn;
2187 	dr->dr_txg = tx->tx_txg;
2188 	dr->dt.dll.dr_blkid = blkid;
2189 	dr->dr_accounted = dn->dn_datablksz;
2190 
2191 	/*
2192 	 * There should not be any dbuf for the block that we're dirtying.
2193 	 * Otherwise the buffer contents could be inconsistent between the
2194 	 * dbuf and the lightweight dirty record.
2195 	 */
2196 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2197 	    NULL));
2198 
2199 	mutex_enter(&dn->dn_mtx);
2200 	int txgoff = tx->tx_txg & TXG_MASK;
2201 	if (dn->dn_free_ranges[txgoff] != NULL) {
2202 		zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2203 	}
2204 
2205 	if (dn->dn_nlevels == 1) {
2206 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2207 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2208 		mutex_exit(&dn->dn_mtx);
2209 		rw_exit(&dn->dn_struct_rwlock);
2210 		dnode_setdirty(dn, tx);
2211 	} else {
2212 		mutex_exit(&dn->dn_mtx);
2213 
2214 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2215 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2216 		    1, blkid >> epbs, FTAG);
2217 		rw_exit(&dn->dn_struct_rwlock);
2218 		if (parent_db == NULL) {
2219 			kmem_free(dr, sizeof (*dr));
2220 			return (NULL);
2221 		}
2222 		int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL |
2223 		    DMU_READ_NO_PREFETCH);
2224 		if (err != 0) {
2225 			dbuf_rele(parent_db, FTAG);
2226 			kmem_free(dr, sizeof (*dr));
2227 			return (NULL);
2228 		}
2229 
2230 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2231 		dbuf_rele(parent_db, FTAG);
2232 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2233 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2234 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2235 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2236 		dr->dr_parent = parent_dr;
2237 	}
2238 
2239 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2240 
2241 	return (dr);
2242 }
2243 
2244 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2245 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2246 {
2247 	dnode_t *dn;
2248 	objset_t *os;
2249 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2250 	int txgoff = tx->tx_txg & TXG_MASK;
2251 	boolean_t drop_struct_rwlock = B_FALSE;
2252 
2253 	ASSERT(tx->tx_txg != 0);
2254 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2255 	DMU_TX_DIRTY_BUF(tx, db);
2256 
2257 	DB_DNODE_ENTER(db);
2258 	dn = DB_DNODE(db);
2259 	/*
2260 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2261 	 * objects may be dirtied in syncing context, but only if they
2262 	 * were already pre-dirtied in open context.
2263 	 */
2264 #ifdef ZFS_DEBUG
2265 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2266 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2267 		    RW_READER, FTAG);
2268 	}
2269 	ASSERT(!dmu_tx_is_syncing(tx) ||
2270 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2271 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2272 	    dn->dn_objset->os_dsl_dataset == NULL);
2273 	if (dn->dn_objset->os_dsl_dataset != NULL)
2274 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2275 #endif
2276 
2277 	mutex_enter(&db->db_mtx);
2278 	/*
2279 	 * XXX make this true for indirects too?  The problem is that
2280 	 * transactions created with dmu_tx_create_assigned() from
2281 	 * syncing context don't bother holding ahead.
2282 	 */
2283 	ASSERT(db->db_level != 0 ||
2284 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2285 	    db->db_state == DB_NOFILL);
2286 
2287 	if (db->db_blkid == DMU_SPILL_BLKID)
2288 		dn->dn_have_spill = B_TRUE;
2289 
2290 	/*
2291 	 * If this buffer is already dirty, we're done.
2292 	 */
2293 	dr_head = list_head(&db->db_dirty_records);
2294 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2295 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2296 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2297 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2298 		DB_DNODE_EXIT(db);
2299 
2300 		dbuf_redirty(dr_next);
2301 		mutex_exit(&db->db_mtx);
2302 		return (dr_next);
2303 	}
2304 
2305 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2306 
2307 	/*
2308 	 * We should only be dirtying in syncing context if it's the
2309 	 * mos or we're initializing the os or it's a special object.
2310 	 * However, we are allowed to dirty in syncing context provided
2311 	 * we already dirtied it in open context.  Hence we must make
2312 	 * this assertion only if we're not already dirty.
2313 	 */
2314 	os = dn->dn_objset;
2315 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2316 #ifdef ZFS_DEBUG
2317 	if (dn->dn_objset->os_dsl_dataset != NULL)
2318 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2319 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2320 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2321 	if (dn->dn_objset->os_dsl_dataset != NULL)
2322 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2323 #endif
2324 	ASSERT(db->db.db_size != 0);
2325 
2326 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2327 
2328 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2329 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2330 	}
2331 
2332 	/*
2333 	 * If this buffer is dirty in an old transaction group we need
2334 	 * to make a copy of it so that the changes we make in this
2335 	 * transaction group won't leak out when we sync the older txg.
2336 	 */
2337 	dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2338 	memset(dr, 0, sizeof (*dr));
2339 	list_link_init(&dr->dr_dirty_node);
2340 	list_link_init(&dr->dr_dbuf_node);
2341 	dr->dr_dnode = dn;
2342 	if (db->db_level == 0) {
2343 		void *data_old = db->db_buf;
2344 
2345 		if (db->db_state != DB_NOFILL) {
2346 			if (db->db_blkid == DMU_BONUS_BLKID) {
2347 				dbuf_fix_old_data(db, tx->tx_txg);
2348 				data_old = db->db.db_data;
2349 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2350 				/*
2351 				 * Release the data buffer from the cache so
2352 				 * that we can modify it without impacting
2353 				 * possible other users of this cached data
2354 				 * block.  Note that indirect blocks and
2355 				 * private objects are not released until the
2356 				 * syncing state (since they are only modified
2357 				 * then).
2358 				 */
2359 				arc_release(db->db_buf, db);
2360 				dbuf_fix_old_data(db, tx->tx_txg);
2361 				data_old = db->db_buf;
2362 			}
2363 			ASSERT(data_old != NULL);
2364 		}
2365 		dr->dt.dl.dr_data = data_old;
2366 	} else {
2367 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2368 		list_create(&dr->dt.di.dr_children,
2369 		    sizeof (dbuf_dirty_record_t),
2370 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2371 	}
2372 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2373 		dr->dr_accounted = db->db.db_size;
2374 	}
2375 	dr->dr_dbuf = db;
2376 	dr->dr_txg = tx->tx_txg;
2377 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2378 
2379 	/*
2380 	 * We could have been freed_in_flight between the dbuf_noread
2381 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2382 	 * happened after the free.
2383 	 */
2384 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2385 	    db->db_blkid != DMU_SPILL_BLKID) {
2386 		mutex_enter(&dn->dn_mtx);
2387 		if (dn->dn_free_ranges[txgoff] != NULL) {
2388 			zfs_range_tree_clear(dn->dn_free_ranges[txgoff],
2389 			    db->db_blkid, 1);
2390 		}
2391 		mutex_exit(&dn->dn_mtx);
2392 		db->db_freed_in_flight = FALSE;
2393 	}
2394 
2395 	/*
2396 	 * This buffer is now part of this txg
2397 	 */
2398 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2399 	db->db_dirtycnt += 1;
2400 	ASSERT3U(db->db_dirtycnt, <=, 3);
2401 
2402 	mutex_exit(&db->db_mtx);
2403 
2404 	if (db->db_blkid == DMU_BONUS_BLKID ||
2405 	    db->db_blkid == DMU_SPILL_BLKID) {
2406 		mutex_enter(&dn->dn_mtx);
2407 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2408 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2409 		mutex_exit(&dn->dn_mtx);
2410 		dnode_setdirty(dn, tx);
2411 		DB_DNODE_EXIT(db);
2412 		return (dr);
2413 	}
2414 
2415 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2416 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2417 		drop_struct_rwlock = B_TRUE;
2418 	}
2419 
2420 	/*
2421 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2422 	 * when we get to syncing context we will need to decrement its
2423 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2424 	 * syncing context won't have to wait for the i/o.
2425 	 */
2426 	if (db->db_blkptr != NULL) {
2427 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2428 		ddt_prefetch(os->os_spa, db->db_blkptr);
2429 		dmu_buf_unlock_parent(db, dblt, FTAG);
2430 	}
2431 
2432 	/*
2433 	 * We need to hold the dn_struct_rwlock to make this assertion,
2434 	 * because it protects dn_phys / dn_next_nlevels from changing.
2435 	 */
2436 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2437 	    dn->dn_phys->dn_nlevels > db->db_level ||
2438 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2439 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2440 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2441 
2442 
2443 	if (db->db_level == 0) {
2444 		ASSERT(!db->db_objset->os_raw_receive ||
2445 		    dn->dn_maxblkid >= db->db_blkid);
2446 		dnode_new_blkid(dn, db->db_blkid, tx,
2447 		    drop_struct_rwlock, B_FALSE);
2448 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2449 	}
2450 
2451 	if (db->db_level+1 < dn->dn_nlevels) {
2452 		dmu_buf_impl_t *parent = db->db_parent;
2453 		dbuf_dirty_record_t *di;
2454 		int parent_held = FALSE;
2455 
2456 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2457 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2458 			parent = dbuf_hold_level(dn, db->db_level + 1,
2459 			    db->db_blkid >> epbs, FTAG);
2460 			ASSERT(parent != NULL);
2461 			parent_held = TRUE;
2462 		}
2463 		if (drop_struct_rwlock)
2464 			rw_exit(&dn->dn_struct_rwlock);
2465 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2466 		di = dbuf_dirty(parent, tx);
2467 		if (parent_held)
2468 			dbuf_rele(parent, FTAG);
2469 
2470 		mutex_enter(&db->db_mtx);
2471 		/*
2472 		 * Since we've dropped the mutex, it's possible that
2473 		 * dbuf_undirty() might have changed this out from under us.
2474 		 */
2475 		if (list_head(&db->db_dirty_records) == dr ||
2476 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2477 			mutex_enter(&di->dt.di.dr_mtx);
2478 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2479 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2480 			list_insert_tail(&di->dt.di.dr_children, dr);
2481 			mutex_exit(&di->dt.di.dr_mtx);
2482 			dr->dr_parent = di;
2483 		}
2484 		mutex_exit(&db->db_mtx);
2485 	} else {
2486 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2487 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2488 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2489 		mutex_enter(&dn->dn_mtx);
2490 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2491 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2492 		mutex_exit(&dn->dn_mtx);
2493 		if (drop_struct_rwlock)
2494 			rw_exit(&dn->dn_struct_rwlock);
2495 	}
2496 
2497 	dnode_setdirty(dn, tx);
2498 	DB_DNODE_EXIT(db);
2499 	return (dr);
2500 }
2501 
2502 static void
dbuf_undirty_bonus(dbuf_dirty_record_t * dr)2503 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2504 {
2505 	dmu_buf_impl_t *db = dr->dr_dbuf;
2506 
2507 	ASSERT(MUTEX_HELD(&db->db_mtx));
2508 	if (dr->dt.dl.dr_data != db->db.db_data) {
2509 		struct dnode *dn = dr->dr_dnode;
2510 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2511 
2512 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2513 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2514 	}
2515 	db->db_data_pending = NULL;
2516 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2517 	list_remove(&db->db_dirty_records, dr);
2518 	if (dr->dr_dbuf->db_level != 0) {
2519 		mutex_destroy(&dr->dt.di.dr_mtx);
2520 		list_destroy(&dr->dt.di.dr_children);
2521 	}
2522 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2523 	ASSERT3U(db->db_dirtycnt, >, 0);
2524 	db->db_dirtycnt -= 1;
2525 }
2526 
2527 /*
2528  * Undirty a buffer in the transaction group referenced by the given
2529  * transaction.  Return whether this evicted the dbuf.
2530  */
2531 boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2532 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2533 {
2534 	uint64_t txg = tx->tx_txg;
2535 	boolean_t brtwrite;
2536 	boolean_t diowrite;
2537 
2538 	ASSERT(txg != 0);
2539 
2540 	/*
2541 	 * Due to our use of dn_nlevels below, this can only be called
2542 	 * in open context, unless we are operating on the MOS or it's
2543 	 * a special object. From syncing context, dn_nlevels may be
2544 	 * different from the dn_nlevels used when dbuf was dirtied.
2545 	 */
2546 	ASSERT(db->db_objset ==
2547 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2548 	    DMU_OBJECT_IS_SPECIAL(db->db.db_object) ||
2549 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2550 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2551 	ASSERT0(db->db_level);
2552 	ASSERT(MUTEX_HELD(&db->db_mtx));
2553 
2554 	/*
2555 	 * If this buffer is not dirty, we're done.
2556 	 */
2557 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2558 	if (dr == NULL)
2559 		return (B_FALSE);
2560 	ASSERT(dr->dr_dbuf == db);
2561 
2562 	brtwrite = dr->dt.dl.dr_brtwrite;
2563 	diowrite = dr->dt.dl.dr_diowrite;
2564 	if (brtwrite) {
2565 		ASSERT3B(diowrite, ==, B_FALSE);
2566 		/*
2567 		 * We are freeing a block that we cloned in the same
2568 		 * transaction group.
2569 		 */
2570 		blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
2571 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2572 			brt_pending_remove(dmu_objset_spa(db->db_objset),
2573 			    bp, tx);
2574 		}
2575 	}
2576 
2577 	dnode_t *dn = dr->dr_dnode;
2578 
2579 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2580 
2581 	ASSERT(db->db.db_size != 0);
2582 
2583 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2584 	    dr->dr_accounted, txg);
2585 
2586 	list_remove(&db->db_dirty_records, dr);
2587 
2588 	/*
2589 	 * Note that there are three places in dbuf_dirty()
2590 	 * where this dirty record may be put on a list.
2591 	 * Make sure to do a list_remove corresponding to
2592 	 * every one of those list_insert calls.
2593 	 */
2594 	if (dr->dr_parent) {
2595 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2596 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2597 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2598 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2599 	    db->db_level + 1 == dn->dn_nlevels) {
2600 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2601 		mutex_enter(&dn->dn_mtx);
2602 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2603 		mutex_exit(&dn->dn_mtx);
2604 	}
2605 
2606 	if (db->db_state != DB_NOFILL && !brtwrite) {
2607 		dbuf_unoverride(dr);
2608 
2609 		if (dr->dt.dl.dr_data != db->db_buf) {
2610 			ASSERT(db->db_buf != NULL);
2611 			ASSERT(dr->dt.dl.dr_data != NULL);
2612 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2613 		}
2614 	}
2615 
2616 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2617 
2618 	ASSERT(db->db_dirtycnt > 0);
2619 	db->db_dirtycnt -= 1;
2620 
2621 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2622 		ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2623 		    arc_released(db->db_buf));
2624 		dbuf_destroy(db);
2625 		return (B_TRUE);
2626 	}
2627 
2628 	return (B_FALSE);
2629 }
2630 
2631 void
dmu_buf_will_dirty_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,dmu_flags_t flags)2632 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags)
2633 {
2634 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2635 	boolean_t undirty = B_FALSE;
2636 
2637 	ASSERT(tx->tx_txg != 0);
2638 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2639 
2640 	/*
2641 	 * Quick check for dirtiness to improve performance for some workloads
2642 	 * (e.g. file deletion with indirect blocks cached).
2643 	 */
2644 	mutex_enter(&db->db_mtx);
2645 	if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2646 		/*
2647 		 * It's possible that the dbuf is already dirty but not cached,
2648 		 * because there are some calls to dbuf_dirty() that don't
2649 		 * go through dmu_buf_will_dirty().
2650 		 */
2651 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2652 		if (dr != NULL) {
2653 			if (db->db_level == 0 &&
2654 			    dr->dt.dl.dr_brtwrite) {
2655 				/*
2656 				 * Block cloning: If we are dirtying a cloned
2657 				 * level 0 block, we cannot simply redirty it,
2658 				 * because this dr has no associated data.
2659 				 * We will go through a full undirtying below,
2660 				 * before dirtying it again.
2661 				 */
2662 				undirty = B_TRUE;
2663 			} else {
2664 				/* This dbuf is already dirty and cached. */
2665 				dbuf_redirty(dr);
2666 				mutex_exit(&db->db_mtx);
2667 				return;
2668 			}
2669 		}
2670 	}
2671 	mutex_exit(&db->db_mtx);
2672 
2673 	DB_DNODE_ENTER(db);
2674 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2675 		flags |= DB_RF_HAVESTRUCT;
2676 	DB_DNODE_EXIT(db);
2677 
2678 	/*
2679 	 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2680 	 * want to make sure dbuf_read() will read the pending cloned block and
2681 	 * not the uderlying block that is being replaced. dbuf_undirty() will
2682 	 * do brt_pending_remove() before removing the dirty record.
2683 	 */
2684 	(void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED);
2685 	if (undirty) {
2686 		mutex_enter(&db->db_mtx);
2687 		VERIFY(!dbuf_undirty(db, tx));
2688 		mutex_exit(&db->db_mtx);
2689 	}
2690 	(void) dbuf_dirty(db, tx);
2691 }
2692 
2693 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2694 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2695 {
2696 	dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2697 }
2698 
2699 void
dmu_buf_will_rewrite(dmu_buf_t * db_fake,dmu_tx_t * tx)2700 dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx)
2701 {
2702 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2703 
2704 	ASSERT(tx->tx_txg != 0);
2705 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2706 
2707 	/*
2708 	 * If the dbuf is already dirty in this txg, it will be written
2709 	 * anyway, so there's nothing to do.
2710 	 */
2711 	mutex_enter(&db->db_mtx);
2712 	if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2713 		mutex_exit(&db->db_mtx);
2714 		return;
2715 	}
2716 	mutex_exit(&db->db_mtx);
2717 
2718 	/*
2719 	 * The dbuf is not dirty, so we need to make it dirty and
2720 	 * mark it for rewrite (preserve logical birth time).
2721 	 */
2722 	dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2723 
2724 	mutex_enter(&db->db_mtx);
2725 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2726 	if (dr != NULL && db->db_level == 0)
2727 		dr->dt.dl.dr_rewrite = B_TRUE;
2728 	mutex_exit(&db->db_mtx);
2729 }
2730 
2731 boolean_t
dmu_buf_is_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2732 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2733 {
2734 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2735 	dbuf_dirty_record_t *dr;
2736 
2737 	mutex_enter(&db->db_mtx);
2738 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2739 	mutex_exit(&db->db_mtx);
2740 	return (dr != NULL);
2741 }
2742 
2743 /*
2744  * Normally the db_blkptr points to the most recent on-disk content for the
2745  * dbuf (and anything newer will be cached in the dbuf). However, a pending
2746  * block clone or not yet synced Direct I/O write will have a dirty record BP
2747  * pointing to the most recent data.
2748  */
2749 int
dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t * db,blkptr_t ** bp)2750 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2751 {
2752 	ASSERT(MUTEX_HELD(&db->db_mtx));
2753 	int error = 0;
2754 
2755 	if (db->db_level != 0) {
2756 		*bp = db->db_blkptr;
2757 		return (0);
2758 	}
2759 
2760 	*bp = db->db_blkptr;
2761 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2762 	if (dr && db->db_state == DB_NOFILL) {
2763 		/* Block clone */
2764 		if (!dr->dt.dl.dr_brtwrite)
2765 			error = EIO;
2766 		else
2767 			*bp = &dr->dt.dl.dr_overridden_by;
2768 	} else if (dr && db->db_state == DB_UNCACHED) {
2769 		/* Direct I/O write */
2770 		if (dr->dt.dl.dr_diowrite)
2771 			*bp = &dr->dt.dl.dr_overridden_by;
2772 	}
2773 
2774 	return (error);
2775 }
2776 
2777 /*
2778  * Direct I/O reads can read directly from the ARC, but the data has
2779  * to be untransformed in order to copy it over into user pages.
2780  */
2781 int
dmu_buf_untransform_direct(dmu_buf_impl_t * db,spa_t * spa)2782 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2783 {
2784 	int err = 0;
2785 	DB_DNODE_ENTER(db);
2786 	dnode_t *dn = DB_DNODE(db);
2787 
2788 	ASSERT3S(db->db_state, ==, DB_CACHED);
2789 	ASSERT(MUTEX_HELD(&db->db_mtx));
2790 
2791 	/*
2792 	 * Ensure that this block's dnode has been decrypted if
2793 	 * the caller has requested decrypted data.
2794 	 */
2795 	err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2796 
2797 	/*
2798 	 * If the arc buf is compressed or encrypted and the caller
2799 	 * requested uncompressed data, we need to untransform it
2800 	 * before returning. We also call arc_untransform() on any
2801 	 * unauthenticated blocks, which will verify their MAC if
2802 	 * the key is now available.
2803 	 */
2804 	if (err == 0 && db->db_buf != NULL &&
2805 	    (arc_is_encrypted(db->db_buf) ||
2806 	    arc_is_unauthenticated(db->db_buf) ||
2807 	    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2808 		zbookmark_phys_t zb;
2809 
2810 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2811 		    db->db.db_object, db->db_level, db->db_blkid);
2812 		dbuf_fix_old_data(db, spa_syncing_txg(spa));
2813 		err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2814 		dbuf_set_data(db, db->db_buf);
2815 	}
2816 	DB_DNODE_EXIT(db);
2817 	DBUF_STAT_BUMP(hash_hits);
2818 
2819 	return (err);
2820 }
2821 
2822 void
dmu_buf_will_clone_or_dio(dmu_buf_t * db_fake,dmu_tx_t * tx)2823 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2824 {
2825 	/*
2826 	 * Block clones and Direct I/O writes always happen in open-context.
2827 	 */
2828 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2829 	ASSERT0(db->db_level);
2830 	ASSERT(!dmu_tx_is_syncing(tx));
2831 	ASSERT0(db->db_level);
2832 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2833 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2834 
2835 	mutex_enter(&db->db_mtx);
2836 	DBUF_VERIFY(db);
2837 
2838 	/*
2839 	 * We are going to clone or issue a Direct I/O write on this block, so
2840 	 * undirty modifications done to this block so far in this txg. This
2841 	 * includes writes and clones into this block.
2842 	 *
2843 	 * If there dirty record associated with this txg from a previous Direct
2844 	 * I/O write then space accounting cleanup takes place. It is important
2845 	 * to go ahead free up the space accounting through dbuf_undirty() ->
2846 	 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2847 	 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2848 	 * This can cause an issue with Direct I/O writes in the case of
2849 	 * overwriting the same block, because all DVA allocations are being
2850 	 * done in open-context. Constantly allowing Direct I/O overwrites to
2851 	 * the same block can exhaust the pools available space leading to
2852 	 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2853 	 * will eventually suspend the pool. By cleaning up sapce acccounting
2854 	 * now, the ENOSPC error can be avoided.
2855 	 *
2856 	 * Since we are undirtying the record in open-context, we must have a
2857 	 * hold on the db, so it should never be evicted after calling
2858 	 * dbuf_undirty().
2859 	 */
2860 	VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2861 	ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2862 
2863 	if (db->db_buf != NULL) {
2864 		/*
2865 		 * If there is an associated ARC buffer with this dbuf we can
2866 		 * only destroy it if the previous dirty record does not
2867 		 * reference it.
2868 		 */
2869 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2870 		if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2871 			arc_buf_destroy(db->db_buf, db);
2872 
2873 		/*
2874 		 * Setting the dbuf's data pointers to NULL will force all
2875 		 * future reads down to the devices to get the most up to date
2876 		 * version of the data after a Direct I/O write has completed.
2877 		 */
2878 		db->db_buf = NULL;
2879 		dbuf_clear_data(db);
2880 	}
2881 
2882 	ASSERT0P(db->db_buf);
2883 	ASSERT0P(db->db.db_data);
2884 
2885 	db->db_state = DB_NOFILL;
2886 	DTRACE_SET_STATE(db,
2887 	    "allocating NOFILL buffer for clone or direct I/O write");
2888 
2889 	DBUF_VERIFY(db);
2890 	mutex_exit(&db->db_mtx);
2891 
2892 	dbuf_noread(db, DMU_KEEP_CACHING);
2893 	(void) dbuf_dirty(db, tx);
2894 }
2895 
2896 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2897 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2898 {
2899 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2900 
2901 	mutex_enter(&db->db_mtx);
2902 	db->db_state = DB_NOFILL;
2903 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2904 	mutex_exit(&db->db_mtx);
2905 
2906 	dbuf_noread(db, DMU_KEEP_CACHING);
2907 	(void) dbuf_dirty(db, tx);
2908 }
2909 
2910 void
dmu_buf_will_fill_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail,dmu_flags_t flags)2911 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail,
2912     dmu_flags_t flags)
2913 {
2914 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2915 
2916 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2917 	ASSERT(tx->tx_txg != 0);
2918 	ASSERT0(db->db_level);
2919 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2920 
2921 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2922 	    dmu_tx_private_ok(tx));
2923 
2924 	mutex_enter(&db->db_mtx);
2925 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2926 	if (db->db_state == DB_NOFILL ||
2927 	    (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2928 		/*
2929 		 * If the fill can fail we should have a way to return back to
2930 		 * the cloned or Direct I/O write data.
2931 		 */
2932 		if (canfail && dr) {
2933 			mutex_exit(&db->db_mtx);
2934 			dmu_buf_will_dirty_flags(db_fake, tx, flags);
2935 			return;
2936 		}
2937 		/*
2938 		 * Block cloning: We will be completely overwriting a block
2939 		 * cloned in this transaction group, so let's undirty the
2940 		 * pending clone and mark the block as uncached. This will be
2941 		 * as if the clone was never done.
2942 		 */
2943 		if (db->db_state == DB_NOFILL) {
2944 			VERIFY(!dbuf_undirty(db, tx));
2945 			db->db_state = DB_UNCACHED;
2946 		}
2947 	}
2948 	mutex_exit(&db->db_mtx);
2949 
2950 	dbuf_noread(db, flags);
2951 	(void) dbuf_dirty(db, tx);
2952 }
2953 
2954 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail)2955 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2956 {
2957 	dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH);
2958 }
2959 
2960 /*
2961  * This function is effectively the same as dmu_buf_will_dirty(), but
2962  * indicates the caller expects raw encrypted data in the db, and provides
2963  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2964  * blkptr_t when this dbuf is written.  This is only used for blocks of
2965  * dnodes, during raw receive.
2966  */
2967 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2968 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2969     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2970 {
2971 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2972 	dbuf_dirty_record_t *dr;
2973 
2974 	/*
2975 	 * dr_has_raw_params is only processed for blocks of dnodes
2976 	 * (see dbuf_sync_dnode_leaf_crypt()).
2977 	 */
2978 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2979 	ASSERT0(db->db_level);
2980 	ASSERT(db->db_objset->os_raw_receive);
2981 
2982 	dmu_buf_will_dirty_flags(db_fake, tx,
2983 	    DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT);
2984 
2985 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2986 
2987 	ASSERT3P(dr, !=, NULL);
2988 	ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2989 
2990 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2991 	dr->dt.dl.dr_byteorder = byteorder;
2992 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2993 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2994 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2995 }
2996 
2997 static void
dbuf_override_impl(dmu_buf_impl_t * db,const blkptr_t * bp,dmu_tx_t * tx)2998 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2999 {
3000 	struct dirty_leaf *dl;
3001 	dbuf_dirty_record_t *dr;
3002 
3003 	ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
3004 	ASSERT0(db->db_level);
3005 
3006 	dr = list_head(&db->db_dirty_records);
3007 	ASSERT3P(dr, !=, NULL);
3008 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3009 	dl = &dr->dt.dl;
3010 	ASSERT0(dl->dr_has_raw_params);
3011 	dl->dr_overridden_by = *bp;
3012 	dl->dr_override_state = DR_OVERRIDDEN;
3013 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3014 }
3015 
3016 boolean_t
dmu_buf_fill_done(dmu_buf_t * dbuf,dmu_tx_t * tx,boolean_t failed)3017 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
3018 {
3019 	(void) tx;
3020 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3021 	mutex_enter(&db->db_mtx);
3022 	DBUF_VERIFY(db);
3023 
3024 	if (db->db_state == DB_FILL) {
3025 		if (db->db_level == 0 && db->db_freed_in_flight) {
3026 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3027 			/* we were freed while filling */
3028 			/* XXX dbuf_undirty? */
3029 			memset(db->db.db_data, 0, db->db.db_size);
3030 			db->db_freed_in_flight = FALSE;
3031 			db->db_state = DB_CACHED;
3032 			DTRACE_SET_STATE(db,
3033 			    "fill done handling freed in flight");
3034 			failed = B_FALSE;
3035 		} else if (failed) {
3036 			VERIFY(!dbuf_undirty(db, tx));
3037 			arc_buf_destroy(db->db_buf, db);
3038 			db->db_buf = NULL;
3039 			dbuf_clear_data(db);
3040 			DTRACE_SET_STATE(db, "fill failed");
3041 		} else {
3042 			db->db_state = DB_CACHED;
3043 			DTRACE_SET_STATE(db, "fill done");
3044 		}
3045 		cv_broadcast(&db->db_changed);
3046 	} else {
3047 		db->db_state = DB_CACHED;
3048 		failed = B_FALSE;
3049 	}
3050 	mutex_exit(&db->db_mtx);
3051 	return (failed);
3052 }
3053 
3054 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)3055 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3056     bp_embedded_type_t etype, enum zio_compress comp,
3057     int uncompressed_size, int compressed_size, int byteorder,
3058     dmu_tx_t *tx)
3059 {
3060 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3061 	struct dirty_leaf *dl;
3062 	dmu_object_type_t type;
3063 	dbuf_dirty_record_t *dr;
3064 
3065 	if (etype == BP_EMBEDDED_TYPE_DATA) {
3066 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3067 		    SPA_FEATURE_EMBEDDED_DATA));
3068 	}
3069 
3070 	DB_DNODE_ENTER(db);
3071 	type = DB_DNODE(db)->dn_type;
3072 	DB_DNODE_EXIT(db);
3073 
3074 	ASSERT0(db->db_level);
3075 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3076 
3077 	dmu_buf_will_not_fill(dbuf, tx);
3078 
3079 	dr = list_head(&db->db_dirty_records);
3080 	ASSERT3P(dr, !=, NULL);
3081 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3082 	dl = &dr->dt.dl;
3083 	ASSERT0(dl->dr_has_raw_params);
3084 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
3085 	    data, comp, uncompressed_size, compressed_size);
3086 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3087 	BP_SET_TYPE(&dl->dr_overridden_by, type);
3088 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3089 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3090 
3091 	dl->dr_override_state = DR_OVERRIDDEN;
3092 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3093 }
3094 
3095 void
dmu_buf_redact(dmu_buf_t * dbuf,dmu_tx_t * tx)3096 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3097 {
3098 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3099 	dmu_object_type_t type;
3100 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3101 	    SPA_FEATURE_REDACTED_DATASETS));
3102 
3103 	DB_DNODE_ENTER(db);
3104 	type = DB_DNODE(db)->dn_type;
3105 	DB_DNODE_EXIT(db);
3106 
3107 	ASSERT0(db->db_level);
3108 	dmu_buf_will_not_fill(dbuf, tx);
3109 
3110 	blkptr_t bp = { { { {0} } } };
3111 	BP_SET_TYPE(&bp, type);
3112 	BP_SET_LEVEL(&bp, 0);
3113 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3114 	BP_SET_REDACTED(&bp);
3115 	BPE_SET_LSIZE(&bp, dbuf->db_size);
3116 
3117 	dbuf_override_impl(db, &bp, tx);
3118 }
3119 
3120 /*
3121  * Directly assign a provided arc buf to a given dbuf if it's not referenced
3122  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3123  */
3124 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)3125 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx,
3126     dmu_flags_t flags)
3127 {
3128 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3129 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3130 	ASSERT0(db->db_level);
3131 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3132 	ASSERT(buf != NULL);
3133 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3134 	ASSERT(tx->tx_txg != 0);
3135 
3136 	arc_return_buf(buf, db);
3137 	ASSERT(arc_released(buf));
3138 
3139 	mutex_enter(&db->db_mtx);
3140 	if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
3141 		db->db_pending_evict = B_FALSE;
3142 	db->db_partial_read = B_FALSE;
3143 
3144 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
3145 		cv_wait(&db->db_changed, &db->db_mtx);
3146 
3147 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3148 	    db->db_state == DB_NOFILL);
3149 
3150 	if (db->db_state == DB_CACHED &&
3151 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3152 		/*
3153 		 * In practice, we will never have a case where we have an
3154 		 * encrypted arc buffer while additional holds exist on the
3155 		 * dbuf. We don't handle this here so we simply assert that
3156 		 * fact instead.
3157 		 */
3158 		ASSERT(!arc_is_encrypted(buf));
3159 		mutex_exit(&db->db_mtx);
3160 		(void) dbuf_dirty(db, tx);
3161 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3162 		arc_buf_destroy(buf, db);
3163 		return;
3164 	}
3165 
3166 	if (db->db_state == DB_CACHED) {
3167 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3168 
3169 		ASSERT(db->db_buf != NULL);
3170 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3171 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
3172 
3173 			if (!arc_released(db->db_buf)) {
3174 				ASSERT(dr->dt.dl.dr_override_state ==
3175 				    DR_OVERRIDDEN);
3176 				arc_release(db->db_buf, db);
3177 			}
3178 			dr->dt.dl.dr_data = buf;
3179 			arc_buf_destroy(db->db_buf, db);
3180 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3181 			arc_release(db->db_buf, db);
3182 			arc_buf_destroy(db->db_buf, db);
3183 		}
3184 		db->db_buf = NULL;
3185 	} else if (db->db_state == DB_NOFILL) {
3186 		/*
3187 		 * We will be completely replacing the cloned block.  In case
3188 		 * it was cloned in this transaction group, let's undirty the
3189 		 * pending clone and mark the block as uncached. This will be
3190 		 * as if the clone was never done.
3191 		 */
3192 		VERIFY(!dbuf_undirty(db, tx));
3193 		db->db_state = DB_UNCACHED;
3194 	}
3195 	ASSERT0P(db->db_buf);
3196 	dbuf_set_data(db, buf);
3197 	db->db_state = DB_FILL;
3198 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
3199 	mutex_exit(&db->db_mtx);
3200 	(void) dbuf_dirty(db, tx);
3201 	dmu_buf_fill_done(&db->db, tx, B_FALSE);
3202 }
3203 
3204 void
dbuf_destroy(dmu_buf_impl_t * db)3205 dbuf_destroy(dmu_buf_impl_t *db)
3206 {
3207 	dnode_t *dn;
3208 	dmu_buf_impl_t *parent = db->db_parent;
3209 	dmu_buf_impl_t *dndb;
3210 
3211 	ASSERT(MUTEX_HELD(&db->db_mtx));
3212 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3213 
3214 	if (db->db_buf != NULL) {
3215 		arc_buf_destroy(db->db_buf, db);
3216 		db->db_buf = NULL;
3217 	}
3218 
3219 	if (db->db_blkid == DMU_BONUS_BLKID) {
3220 		int slots = DB_DNODE(db)->dn_num_slots;
3221 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3222 		if (db->db.db_data != NULL) {
3223 			kmem_free(db->db.db_data, bonuslen);
3224 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3225 			db->db_state = DB_UNCACHED;
3226 			DTRACE_SET_STATE(db, "buffer cleared");
3227 		}
3228 	}
3229 
3230 	dbuf_clear_data(db);
3231 
3232 	if (multilist_link_active(&db->db_cache_link)) {
3233 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3234 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3235 
3236 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3237 
3238 		ASSERT0(dmu_buf_user_size(&db->db));
3239 		(void) zfs_refcount_remove_many(
3240 		    &dbuf_caches[db->db_caching_status].size,
3241 		    db->db.db_size, db);
3242 
3243 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3244 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3245 		} else {
3246 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3247 			DBUF_STAT_BUMPDOWN(cache_count);
3248 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3249 			    db->db.db_size);
3250 		}
3251 		db->db_caching_status = DB_NO_CACHE;
3252 	}
3253 
3254 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3255 	ASSERT0P(db->db_data_pending);
3256 	ASSERT(list_is_empty(&db->db_dirty_records));
3257 
3258 	db->db_state = DB_EVICTING;
3259 	DTRACE_SET_STATE(db, "buffer eviction started");
3260 	db->db_blkptr = NULL;
3261 
3262 	/*
3263 	 * Now that db_state is DB_EVICTING, nobody else can find this via
3264 	 * the hash table.  We can now drop db_mtx, which allows us to
3265 	 * acquire the dn_dbufs_mtx.
3266 	 */
3267 	mutex_exit(&db->db_mtx);
3268 
3269 	DB_DNODE_ENTER(db);
3270 	dn = DB_DNODE(db);
3271 	dndb = dn->dn_dbuf;
3272 	if (db->db_blkid != DMU_BONUS_BLKID) {
3273 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3274 		if (needlock)
3275 			mutex_enter_nested(&dn->dn_dbufs_mtx,
3276 			    NESTED_SINGLE);
3277 		avl_remove(&dn->dn_dbufs, db);
3278 		membar_producer();
3279 		DB_DNODE_EXIT(db);
3280 		if (needlock)
3281 			mutex_exit(&dn->dn_dbufs_mtx);
3282 		/*
3283 		 * Decrementing the dbuf count means that the hold corresponding
3284 		 * to the removed dbuf is no longer discounted in dnode_move(),
3285 		 * so the dnode cannot be moved until after we release the hold.
3286 		 * The membar_producer() ensures visibility of the decremented
3287 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3288 		 * release any lock.
3289 		 */
3290 		mutex_enter(&dn->dn_mtx);
3291 		dnode_rele_and_unlock(dn, db, B_TRUE);
3292 #ifdef USE_DNODE_HANDLE
3293 		db->db_dnode_handle = NULL;
3294 #else
3295 		db->db_dnode = NULL;
3296 #endif
3297 
3298 		dbuf_hash_remove(db);
3299 	} else {
3300 		DB_DNODE_EXIT(db);
3301 	}
3302 
3303 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3304 
3305 	db->db_parent = NULL;
3306 
3307 	ASSERT0P(db->db_buf);
3308 	ASSERT0P(db->db.db_data);
3309 	ASSERT0P(db->db_hash_next);
3310 	ASSERT0P(db->db_blkptr);
3311 	ASSERT0P(db->db_data_pending);
3312 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3313 	ASSERT(!multilist_link_active(&db->db_cache_link));
3314 
3315 	/*
3316 	 * If this dbuf is referenced from an indirect dbuf,
3317 	 * decrement the ref count on the indirect dbuf.
3318 	 */
3319 	if (parent && parent != dndb) {
3320 		mutex_enter(&parent->db_mtx);
3321 		dbuf_rele_and_unlock(parent, db, B_TRUE);
3322 	}
3323 
3324 	kmem_cache_free(dbuf_kmem_cache, db);
3325 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3326 }
3327 
3328 /*
3329  * Note: While bpp will always be updated if the function returns success,
3330  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3331  * this happens when the dnode is the meta-dnode, or {user|group|project}used
3332  * object.
3333  */
3334 __attribute__((always_inline))
3335 static inline int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)3336 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3337     dmu_buf_impl_t **parentp, blkptr_t **bpp)
3338 {
3339 	*parentp = NULL;
3340 	*bpp = NULL;
3341 
3342 	ASSERT(blkid != DMU_BONUS_BLKID);
3343 
3344 	if (blkid == DMU_SPILL_BLKID) {
3345 		mutex_enter(&dn->dn_mtx);
3346 		if (dn->dn_have_spill &&
3347 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3348 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3349 		else
3350 			*bpp = NULL;
3351 		dbuf_add_ref(dn->dn_dbuf, NULL);
3352 		*parentp = dn->dn_dbuf;
3353 		mutex_exit(&dn->dn_mtx);
3354 		return (0);
3355 	}
3356 
3357 	int nlevels =
3358 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3359 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3360 
3361 	ASSERT3U(level * epbs, <, 64);
3362 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3363 	/*
3364 	 * This assertion shouldn't trip as long as the max indirect block size
3365 	 * is less than 1M.  The reason for this is that up to that point,
3366 	 * the number of levels required to address an entire object with blocks
3367 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3368 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3369 	 * (i.e. we can address the entire object), objects will all use at most
3370 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3371 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3372 	 * enough to address an entire object, so objects will have 5 levels,
3373 	 * but then this assertion will overflow.
3374 	 *
3375 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3376 	 * need to redo this logic to handle overflows.
3377 	 */
3378 	ASSERT(level >= nlevels ||
3379 	    ((nlevels - level - 1) * epbs) +
3380 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3381 	if (level >= nlevels ||
3382 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3383 	    ((nlevels - level - 1) * epbs)) ||
3384 	    (fail_sparse &&
3385 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3386 		/* the buffer has no parent yet */
3387 		return (SET_ERROR(ENOENT));
3388 	} else if (level < nlevels-1) {
3389 		/* this block is referenced from an indirect block */
3390 		int err;
3391 
3392 		err = dbuf_hold_impl(dn, level + 1,
3393 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3394 
3395 		if (err)
3396 			return (err);
3397 		err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL |
3398 		    DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH);
3399 		if (err) {
3400 			dbuf_rele(*parentp, NULL);
3401 			*parentp = NULL;
3402 			return (err);
3403 		}
3404 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3405 		    (blkid & ((1ULL << epbs) - 1));
3406 		return (0);
3407 	} else {
3408 		/* the block is referenced from the dnode */
3409 		ASSERT3U(level, ==, nlevels-1);
3410 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3411 		    blkid < dn->dn_phys->dn_nblkptr);
3412 		if (dn->dn_dbuf) {
3413 			dbuf_add_ref(dn->dn_dbuf, NULL);
3414 			*parentp = dn->dn_dbuf;
3415 		}
3416 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3417 		return (0);
3418 	}
3419 }
3420 
3421 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr,uint64_t hash)3422 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3423     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3424 {
3425 	objset_t *os = dn->dn_objset;
3426 	dmu_buf_impl_t *db, *odb;
3427 
3428 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3429 	ASSERT(dn->dn_type != DMU_OT_NONE);
3430 
3431 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3432 
3433 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3434 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3435 
3436 	db->db_objset = os;
3437 	db->db.db_object = dn->dn_object;
3438 	db->db_level = level;
3439 	db->db_blkid = blkid;
3440 	db->db_dirtycnt = 0;
3441 #ifdef USE_DNODE_HANDLE
3442 	db->db_dnode_handle = dn->dn_handle;
3443 #else
3444 	db->db_dnode = dn;
3445 #endif
3446 	db->db_parent = parent;
3447 	db->db_blkptr = blkptr;
3448 	db->db_hash = hash;
3449 
3450 	db->db_user = NULL;
3451 	db->db_user_immediate_evict = FALSE;
3452 	db->db_freed_in_flight = FALSE;
3453 	db->db_pending_evict = TRUE;
3454 	db->db_partial_read = FALSE;
3455 
3456 	if (blkid == DMU_BONUS_BLKID) {
3457 		ASSERT3P(parent, ==, dn->dn_dbuf);
3458 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3459 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3460 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3461 		db->db.db_offset = DMU_BONUS_BLKID;
3462 		db->db_state = DB_UNCACHED;
3463 		DTRACE_SET_STATE(db, "bonus buffer created");
3464 		db->db_caching_status = DB_NO_CACHE;
3465 		/* the bonus dbuf is not placed in the hash table */
3466 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3467 		return (db);
3468 	} else if (blkid == DMU_SPILL_BLKID) {
3469 		db->db.db_size = (blkptr != NULL) ?
3470 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3471 		db->db.db_offset = 0;
3472 	} else {
3473 		int blocksize =
3474 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3475 		db->db.db_size = blocksize;
3476 		db->db.db_offset = db->db_blkid * blocksize;
3477 	}
3478 
3479 	/*
3480 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3481 	 * in the hash table *and* added to the dbufs list.
3482 	 * This prevents a possible deadlock with someone
3483 	 * trying to look up this dbuf before it's added to the
3484 	 * dn_dbufs list.
3485 	 */
3486 	mutex_enter(&dn->dn_dbufs_mtx);
3487 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3488 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3489 		/* someone else inserted it first */
3490 		mutex_exit(&dn->dn_dbufs_mtx);
3491 		kmem_cache_free(dbuf_kmem_cache, db);
3492 		DBUF_STAT_BUMP(hash_insert_race);
3493 		return (odb);
3494 	}
3495 	avl_add(&dn->dn_dbufs, db);
3496 
3497 	db->db_state = DB_UNCACHED;
3498 	DTRACE_SET_STATE(db, "regular buffer created");
3499 	db->db_caching_status = DB_NO_CACHE;
3500 	mutex_exit(&dn->dn_dbufs_mtx);
3501 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3502 
3503 	if (parent && parent != dn->dn_dbuf)
3504 		dbuf_add_ref(parent, db);
3505 
3506 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3507 	    zfs_refcount_count(&dn->dn_holds) > 0);
3508 	(void) zfs_refcount_add(&dn->dn_holds, db);
3509 
3510 	dprintf_dbuf(db, "db=%p\n", db);
3511 
3512 	return (db);
3513 }
3514 
3515 /*
3516  * This function returns a block pointer and information about the object,
3517  * given a dnode and a block.  This is a publicly accessible version of
3518  * dbuf_findbp that only returns some information, rather than the
3519  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3520  * should be locked as (at least) a reader.
3521  */
3522 int
dbuf_dnode_findbp(dnode_t * dn,uint64_t level,uint64_t blkid,blkptr_t * bp,uint16_t * datablkszsec,uint8_t * indblkshift)3523 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3524     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3525 {
3526 	dmu_buf_impl_t *dbp = NULL;
3527 	blkptr_t *bp2;
3528 	int err = 0;
3529 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3530 
3531 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3532 	if (err == 0) {
3533 		ASSERT3P(bp2, !=, NULL);
3534 		*bp = *bp2;
3535 		if (dbp != NULL)
3536 			dbuf_rele(dbp, NULL);
3537 		if (datablkszsec != NULL)
3538 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3539 		if (indblkshift != NULL)
3540 			*indblkshift = dn->dn_phys->dn_indblkshift;
3541 	}
3542 
3543 	return (err);
3544 }
3545 
3546 typedef struct dbuf_prefetch_arg {
3547 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3548 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3549 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3550 	int dpa_curlevel; /* The current level that we're reading */
3551 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3552 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3553 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3554 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3555 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3556 	void *dpa_arg; /* prefetch completion arg */
3557 } dbuf_prefetch_arg_t;
3558 
3559 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)3560 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3561 {
3562 	if (dpa->dpa_cb != NULL) {
3563 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3564 		    dpa->dpa_zb.zb_blkid, io_done);
3565 	}
3566 	kmem_free(dpa, sizeof (*dpa));
3567 }
3568 
3569 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3570 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3571     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3572 {
3573 	(void) zio, (void) zb, (void) iobp;
3574 	dbuf_prefetch_arg_t *dpa = private;
3575 
3576 	if (abuf != NULL)
3577 		arc_buf_destroy(abuf, private);
3578 
3579 	dbuf_prefetch_fini(dpa, B_TRUE);
3580 }
3581 
3582 /*
3583  * Actually issue the prefetch read for the block given.
3584  */
3585 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)3586 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3587 {
3588 	ASSERT(!BP_IS_HOLE(bp));
3589 	ASSERT(!BP_IS_REDACTED(bp));
3590 	if (BP_IS_EMBEDDED(bp))
3591 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3592 
3593 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3594 	arc_flags_t aflags =
3595 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3596 	    ARC_FLAG_NO_BUF;
3597 
3598 	/* dnodes are always read as raw and then converted later */
3599 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3600 	    dpa->dpa_curlevel == 0)
3601 		zio_flags |= ZIO_FLAG_RAW;
3602 
3603 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3604 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3605 	ASSERT(dpa->dpa_zio != NULL);
3606 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3607 	    dbuf_issue_final_prefetch_done, dpa,
3608 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3609 }
3610 
3611 /*
3612  * Called when an indirect block above our prefetch target is read in.  This
3613  * will either read in the next indirect block down the tree or issue the actual
3614  * prefetch if the next block down is our target.
3615  */
3616 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3617 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3618     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3619 {
3620 	(void) zb, (void) iobp;
3621 	dbuf_prefetch_arg_t *dpa = private;
3622 
3623 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3624 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3625 
3626 	if (abuf == NULL) {
3627 		ASSERT(zio == NULL || zio->io_error != 0);
3628 		dbuf_prefetch_fini(dpa, B_TRUE);
3629 		return;
3630 	}
3631 	ASSERT(zio == NULL || zio->io_error == 0);
3632 
3633 	/*
3634 	 * The dpa_dnode is only valid if we are called with a NULL
3635 	 * zio. This indicates that the arc_read() returned without
3636 	 * first calling zio_read() to issue a physical read. Once
3637 	 * a physical read is made the dpa_dnode must be invalidated
3638 	 * as the locks guarding it may have been dropped. If the
3639 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3640 	 * cache. To do so, we must hold the dbuf associated with the block
3641 	 * we just prefetched, read its contents so that we associate it
3642 	 * with an arc_buf_t, and then release it.
3643 	 */
3644 	if (zio != NULL) {
3645 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3646 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3647 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3648 		} else {
3649 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3650 		}
3651 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3652 
3653 		dpa->dpa_dnode = NULL;
3654 	} else if (dpa->dpa_dnode != NULL) {
3655 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3656 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3657 		    dpa->dpa_zb.zb_level));
3658 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3659 		    dpa->dpa_curlevel, curblkid, FTAG);
3660 		if (db == NULL) {
3661 			arc_buf_destroy(abuf, private);
3662 			dbuf_prefetch_fini(dpa, B_TRUE);
3663 			return;
3664 		}
3665 		(void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
3666 		    DMU_READ_NO_PREFETCH);
3667 		dbuf_rele(db, FTAG);
3668 	}
3669 
3670 	dpa->dpa_curlevel--;
3671 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3672 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3673 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3674 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3675 
3676 	ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL ||
3677 	    dsl_dataset_feature_is_active(
3678 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3679 	    SPA_FEATURE_REDACTED_DATASETS));
3680 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3681 		arc_buf_destroy(abuf, private);
3682 		dbuf_prefetch_fini(dpa, B_TRUE);
3683 		return;
3684 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3685 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3686 		dbuf_issue_final_prefetch(dpa, bp);
3687 	} else {
3688 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3689 		zbookmark_phys_t zb;
3690 
3691 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3692 		if (dpa->dpa_dnode) {
3693 			if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode,
3694 			    dpa->dpa_curlevel))
3695 				iter_aflags |= ARC_FLAG_L2CACHE;
3696 		} else {
3697 			if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3698 				iter_aflags |= ARC_FLAG_L2CACHE;
3699 		}
3700 
3701 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3702 
3703 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3704 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3705 
3706 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3707 		    bp, dbuf_prefetch_indirect_done, dpa,
3708 		    ZIO_PRIORITY_SYNC_READ,
3709 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3710 		    &iter_aflags, &zb);
3711 	}
3712 
3713 	arc_buf_destroy(abuf, private);
3714 }
3715 
3716 /*
3717  * Issue prefetch reads for the given block on the given level.  If the indirect
3718  * blocks above that block are not in memory, we will read them in
3719  * asynchronously.  As a result, this call never blocks waiting for a read to
3720  * complete. Note that the prefetch might fail if the dataset is encrypted and
3721  * the encryption key is unmapped before the IO completes.
3722  */
3723 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)3724 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3725     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3726     void *arg)
3727 {
3728 	blkptr_t bp;
3729 	int epbs, nlevels, curlevel;
3730 	uint64_t curblkid;
3731 
3732 	ASSERT(blkid != DMU_BONUS_BLKID);
3733 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3734 
3735 	if (blkid > dn->dn_maxblkid)
3736 		goto no_issue;
3737 
3738 	if (level == 0 && dnode_block_freed(dn, blkid))
3739 		goto no_issue;
3740 
3741 	/*
3742 	 * This dnode hasn't been written to disk yet, so there's nothing to
3743 	 * prefetch.
3744 	 */
3745 	nlevels = dn->dn_phys->dn_nlevels;
3746 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3747 		goto no_issue;
3748 
3749 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3750 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3751 		goto no_issue;
3752 
3753 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3754 	    level, blkid, NULL);
3755 	if (db != NULL) {
3756 		mutex_exit(&db->db_mtx);
3757 		/*
3758 		 * This dbuf already exists.  It is either CACHED, or
3759 		 * (we assume) about to be read or filled.
3760 		 */
3761 		goto no_issue;
3762 	}
3763 
3764 	/*
3765 	 * Find the closest ancestor (indirect block) of the target block
3766 	 * that is present in the cache.  In this indirect block, we will
3767 	 * find the bp that is at curlevel, curblkid.
3768 	 */
3769 	curlevel = level;
3770 	curblkid = blkid;
3771 	while (curlevel < nlevels - 1) {
3772 		int parent_level = curlevel + 1;
3773 		uint64_t parent_blkid = curblkid >> epbs;
3774 		dmu_buf_impl_t *db;
3775 
3776 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3777 		    FALSE, TRUE, FTAG, &db) == 0) {
3778 			blkptr_t *bpp = db->db_buf->b_data;
3779 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3780 			dbuf_rele(db, FTAG);
3781 			break;
3782 		}
3783 
3784 		curlevel = parent_level;
3785 		curblkid = parent_blkid;
3786 	}
3787 
3788 	if (curlevel == nlevels - 1) {
3789 		/* No cached indirect blocks found. */
3790 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3791 		bp = dn->dn_phys->dn_blkptr[curblkid];
3792 	}
3793 	ASSERT(!BP_IS_REDACTED(&bp) ||
3794 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3795 	    SPA_FEATURE_REDACTED_DATASETS));
3796 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3797 		goto no_issue;
3798 
3799 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3800 
3801 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3802 	    ZIO_FLAG_CANFAIL);
3803 
3804 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3805 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3806 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3807 	    dn->dn_object, level, blkid);
3808 	dpa->dpa_curlevel = curlevel;
3809 	dpa->dpa_prio = prio;
3810 	dpa->dpa_aflags = aflags;
3811 	dpa->dpa_spa = dn->dn_objset->os_spa;
3812 	dpa->dpa_dnode = dn;
3813 	dpa->dpa_epbs = epbs;
3814 	dpa->dpa_zio = pio;
3815 	dpa->dpa_cb = cb;
3816 	dpa->dpa_arg = arg;
3817 
3818 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3819 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3820 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3821 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3822 
3823 	/*
3824 	 * If we have the indirect just above us, no need to do the asynchronous
3825 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3826 	 * a higher level, though, we want to issue the prefetches for all the
3827 	 * indirect blocks asynchronously, so we can go on with whatever we were
3828 	 * doing.
3829 	 */
3830 	if (curlevel == level) {
3831 		ASSERT3U(curblkid, ==, blkid);
3832 		dbuf_issue_final_prefetch(dpa, &bp);
3833 	} else {
3834 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3835 		zbookmark_phys_t zb;
3836 
3837 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3838 		if (dnode_level_is_l2cacheable(&bp, dn, curlevel))
3839 			iter_aflags |= ARC_FLAG_L2CACHE;
3840 
3841 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3842 		    dn->dn_object, curlevel, curblkid);
3843 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3844 		    &bp, dbuf_prefetch_indirect_done, dpa,
3845 		    ZIO_PRIORITY_SYNC_READ,
3846 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3847 		    &iter_aflags, &zb);
3848 	}
3849 	/*
3850 	 * We use pio here instead of dpa_zio since it's possible that
3851 	 * dpa may have already been freed.
3852 	 */
3853 	zio_nowait(pio);
3854 	return (1);
3855 no_issue:
3856 	if (cb != NULL)
3857 		cb(arg, level, blkid, B_FALSE);
3858 	return (0);
3859 }
3860 
3861 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)3862 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3863     arc_flags_t aflags)
3864 {
3865 
3866 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3867 }
3868 
3869 /*
3870  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3871  * the case of encrypted, compressed and uncompressed buffers by
3872  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3873  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3874  *
3875  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3876  */
3877 noinline static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db)3878 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3879 {
3880 	dbuf_dirty_record_t *dr = db->db_data_pending;
3881 	arc_buf_t *data = dr->dt.dl.dr_data;
3882 	arc_buf_t *db_data;
3883 	enum zio_compress compress_type = arc_get_compression(data);
3884 	uint8_t complevel = arc_get_complevel(data);
3885 
3886 	if (arc_is_encrypted(data)) {
3887 		boolean_t byteorder;
3888 		uint8_t salt[ZIO_DATA_SALT_LEN];
3889 		uint8_t iv[ZIO_DATA_IV_LEN];
3890 		uint8_t mac[ZIO_DATA_MAC_LEN];
3891 
3892 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3893 		db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3894 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3895 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3896 		    compress_type, complevel);
3897 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3898 		db_data = arc_alloc_compressed_buf(
3899 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3900 		    arc_buf_lsize(data), compress_type, complevel);
3901 	} else {
3902 		db_data = arc_alloc_buf(dn->dn_objset->os_spa, db,
3903 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size);
3904 	}
3905 	memcpy(db_data->b_data, data->b_data, arc_buf_size(data));
3906 
3907 	dbuf_set_data(db, db_data);
3908 }
3909 
3910 /*
3911  * Returns with db_holds incremented, and db_mtx not held.
3912  * Note: dn_struct_rwlock must be held.
3913  */
3914 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,const void * tag,dmu_buf_impl_t ** dbp)3915 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3916     boolean_t fail_sparse, boolean_t fail_uncached,
3917     const void *tag, dmu_buf_impl_t **dbp)
3918 {
3919 	dmu_buf_impl_t *db, *parent = NULL;
3920 	uint64_t hv;
3921 
3922 	/* If the pool has been created, verify the tx_sync_lock is not held */
3923 	spa_t *spa = dn->dn_objset->os_spa;
3924 	dsl_pool_t *dp = spa->spa_dsl_pool;
3925 	if (dp != NULL) {
3926 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3927 	}
3928 
3929 	ASSERT(blkid != DMU_BONUS_BLKID);
3930 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3931 	if (!fail_sparse)
3932 		ASSERT3U(dn->dn_nlevels, >, level);
3933 
3934 	*dbp = NULL;
3935 
3936 	/* dbuf_find() returns with db_mtx held */
3937 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3938 
3939 	if (db == NULL) {
3940 		blkptr_t *bp = NULL;
3941 		int err;
3942 
3943 		if (fail_uncached)
3944 			return (SET_ERROR(ENOENT));
3945 
3946 		ASSERT0P(parent);
3947 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3948 		if (fail_sparse) {
3949 			if (err == 0 && bp && BP_IS_HOLE(bp))
3950 				err = SET_ERROR(ENOENT);
3951 			if (err) {
3952 				if (parent)
3953 					dbuf_rele(parent, NULL);
3954 				return (err);
3955 			}
3956 		}
3957 		if (err && err != ENOENT)
3958 			return (err);
3959 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3960 	}
3961 
3962 	if (fail_uncached && db->db_state != DB_CACHED) {
3963 		mutex_exit(&db->db_mtx);
3964 		return (SET_ERROR(ENOENT));
3965 	}
3966 
3967 	if (db->db_buf != NULL) {
3968 		arc_buf_access(db->db_buf);
3969 		ASSERT(MUTEX_HELD(&db->db_mtx));
3970 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3971 	}
3972 
3973 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3974 
3975 	/*
3976 	 * If this buffer is currently syncing out, and we are
3977 	 * still referencing it from db_data, we need to make a copy
3978 	 * of it in case we decide we want to dirty it again in this txg.
3979 	 */
3980 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3981 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3982 	    db->db_state == DB_CACHED && db->db_data_pending) {
3983 		dbuf_dirty_record_t *dr = db->db_data_pending;
3984 		if (dr->dt.dl.dr_data == db->db_buf) {
3985 			ASSERT3P(db->db_buf, !=, NULL);
3986 			dbuf_hold_copy(dn, db);
3987 		}
3988 	}
3989 
3990 	if (multilist_link_active(&db->db_cache_link)) {
3991 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3992 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3993 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3994 
3995 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3996 
3997 		uint64_t size = db->db.db_size;
3998 		uint64_t usize = dmu_buf_user_size(&db->db);
3999 		(void) zfs_refcount_remove_many(
4000 		    &dbuf_caches[db->db_caching_status].size, size, db);
4001 		(void) zfs_refcount_remove_many(
4002 		    &dbuf_caches[db->db_caching_status].size, usize,
4003 		    db->db_user);
4004 
4005 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
4006 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
4007 		} else {
4008 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
4009 			DBUF_STAT_BUMPDOWN(cache_count);
4010 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
4011 			    size + usize);
4012 		}
4013 		db->db_caching_status = DB_NO_CACHE;
4014 	}
4015 	(void) zfs_refcount_add(&db->db_holds, tag);
4016 	DBUF_VERIFY(db);
4017 	mutex_exit(&db->db_mtx);
4018 
4019 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
4020 	if (parent)
4021 		dbuf_rele(parent, NULL);
4022 
4023 	ASSERT3P(DB_DNODE(db), ==, dn);
4024 	ASSERT3U(db->db_blkid, ==, blkid);
4025 	ASSERT3U(db->db_level, ==, level);
4026 	*dbp = db;
4027 
4028 	return (0);
4029 }
4030 
4031 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,const void * tag)4032 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
4033 {
4034 	return (dbuf_hold_level(dn, 0, blkid, tag));
4035 }
4036 
4037 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,const void * tag)4038 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4039 {
4040 	dmu_buf_impl_t *db;
4041 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4042 	return (err ? NULL : db);
4043 }
4044 
4045 void
dbuf_create_bonus(dnode_t * dn)4046 dbuf_create_bonus(dnode_t *dn)
4047 {
4048 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4049 
4050 	ASSERT0P(dn->dn_bonus);
4051 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4052 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4053 	dn->dn_bonus->db_pending_evict = FALSE;
4054 }
4055 
4056 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)4057 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4058 {
4059 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4060 
4061 	if (db->db_blkid != DMU_SPILL_BLKID)
4062 		return (SET_ERROR(ENOTSUP));
4063 	if (blksz == 0)
4064 		blksz = SPA_MINBLOCKSIZE;
4065 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4066 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4067 
4068 	dbuf_new_size(db, blksz, tx);
4069 
4070 	return (0);
4071 }
4072 
4073 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)4074 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4075 {
4076 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4077 }
4078 
4079 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4080 void
dbuf_add_ref(dmu_buf_impl_t * db,const void * tag)4081 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4082 {
4083 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4084 	VERIFY3S(holds, >, 1);
4085 }
4086 
4087 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4088 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,const void * tag)4089 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4090     const void *tag)
4091 {
4092 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4093 	dmu_buf_impl_t *found_db;
4094 	boolean_t result = B_FALSE;
4095 
4096 	if (blkid == DMU_BONUS_BLKID)
4097 		found_db = dbuf_find_bonus(os, obj);
4098 	else
4099 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
4100 
4101 	if (found_db != NULL) {
4102 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4103 			(void) zfs_refcount_add(&db->db_holds, tag);
4104 			result = B_TRUE;
4105 		}
4106 		mutex_exit(&found_db->db_mtx);
4107 	}
4108 	return (result);
4109 }
4110 
4111 /*
4112  * If you call dbuf_rele() you had better not be referencing the dnode handle
4113  * unless you have some other direct or indirect hold on the dnode. (An indirect
4114  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4115  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4116  * dnode's parent dbuf evicting its dnode handles.
4117  */
4118 void
dbuf_rele(dmu_buf_impl_t * db,const void * tag)4119 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4120 {
4121 	mutex_enter(&db->db_mtx);
4122 	dbuf_rele_and_unlock(db, tag, B_FALSE);
4123 }
4124 
4125 void
dmu_buf_rele(dmu_buf_t * db,const void * tag)4126 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4127 {
4128 	dbuf_rele((dmu_buf_impl_t *)db, tag);
4129 }
4130 
4131 /*
4132  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
4133  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
4134  * argument should be set if we are already in the dbuf-evicting code
4135  * path, in which case we don't want to recursively evict.  This allows us to
4136  * avoid deeply nested stacks that would have a call flow similar to this:
4137  *
4138  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4139  *	^						|
4140  *	|						|
4141  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
4142  *
4143  */
4144 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,const void * tag,boolean_t evicting)4145 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4146 {
4147 	int64_t holds;
4148 	uint64_t size;
4149 
4150 	ASSERT(MUTEX_HELD(&db->db_mtx));
4151 	DBUF_VERIFY(db);
4152 
4153 	/*
4154 	 * Remove the reference to the dbuf before removing its hold on the
4155 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
4156 	 * buffer has a corresponding dnode hold.
4157 	 */
4158 	holds = zfs_refcount_remove(&db->db_holds, tag);
4159 	ASSERT(holds >= 0);
4160 
4161 	/*
4162 	 * We can't freeze indirects if there is a possibility that they
4163 	 * may be modified in the current syncing context.
4164 	 */
4165 	if (db->db_buf != NULL &&
4166 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4167 		arc_buf_freeze(db->db_buf);
4168 	}
4169 
4170 	if (holds == db->db_dirtycnt &&
4171 	    db->db_level == 0 && db->db_user_immediate_evict)
4172 		dbuf_evict_user(db);
4173 
4174 	if (holds == 0) {
4175 		if (db->db_blkid == DMU_BONUS_BLKID) {
4176 			dnode_t *dn;
4177 			boolean_t evict_dbuf = db->db_pending_evict;
4178 
4179 			/*
4180 			 * If the dnode moves here, we cannot cross this
4181 			 * barrier until the move completes.
4182 			 */
4183 			DB_DNODE_ENTER(db);
4184 
4185 			dn = DB_DNODE(db);
4186 			atomic_dec_32(&dn->dn_dbufs_count);
4187 
4188 			/*
4189 			 * Decrementing the dbuf count means that the bonus
4190 			 * buffer's dnode hold is no longer discounted in
4191 			 * dnode_move(). The dnode cannot move until after
4192 			 * the dnode_rele() below.
4193 			 */
4194 			DB_DNODE_EXIT(db);
4195 
4196 			/*
4197 			 * Do not reference db after its lock is dropped.
4198 			 * Another thread may evict it.
4199 			 */
4200 			mutex_exit(&db->db_mtx);
4201 
4202 			if (evict_dbuf)
4203 				dnode_evict_bonus(dn);
4204 
4205 			dnode_rele(dn, db);
4206 		} else if (db->db_buf == NULL) {
4207 			/*
4208 			 * This is a special case: we never associated this
4209 			 * dbuf with any data allocated from the ARC.
4210 			 */
4211 			ASSERT(db->db_state == DB_UNCACHED ||
4212 			    db->db_state == DB_NOFILL);
4213 			dbuf_destroy(db);
4214 		} else if (arc_released(db->db_buf)) {
4215 			/*
4216 			 * This dbuf has anonymous data associated with it.
4217 			 */
4218 			dbuf_destroy(db);
4219 		} else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) {
4220 			/*
4221 			 * We don't expect more accesses to the dbuf, and it
4222 			 * is either not cacheable or was marked for eviction.
4223 			 */
4224 			dbuf_destroy(db);
4225 		} else if (!multilist_link_active(&db->db_cache_link)) {
4226 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4227 
4228 			dbuf_cached_state_t dcs =
4229 			    dbuf_include_in_metadata_cache(db) ?
4230 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4231 			db->db_caching_status = dcs;
4232 
4233 			multilist_insert(&dbuf_caches[dcs].cache, db);
4234 			uint64_t db_size = db->db.db_size;
4235 			uint64_t dbu_size = dmu_buf_user_size(&db->db);
4236 			(void) zfs_refcount_add_many(
4237 			    &dbuf_caches[dcs].size, db_size, db);
4238 			size = zfs_refcount_add_many(
4239 			    &dbuf_caches[dcs].size, dbu_size, db->db_user);
4240 			uint8_t db_level = db->db_level;
4241 			mutex_exit(&db->db_mtx);
4242 
4243 			if (dcs == DB_DBUF_METADATA_CACHE) {
4244 				DBUF_STAT_BUMP(metadata_cache_count);
4245 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4246 				    size);
4247 			} else {
4248 				DBUF_STAT_BUMP(cache_count);
4249 				DBUF_STAT_MAX(cache_size_bytes_max, size);
4250 				DBUF_STAT_BUMP(cache_levels[db_level]);
4251 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
4252 				    db_size + dbu_size);
4253 			}
4254 
4255 			if (dcs == DB_DBUF_CACHE && !evicting)
4256 				dbuf_evict_notify(size);
4257 		}
4258 	} else {
4259 		mutex_exit(&db->db_mtx);
4260 	}
4261 }
4262 
4263 #pragma weak dmu_buf_refcount = dbuf_refcount
4264 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)4265 dbuf_refcount(dmu_buf_impl_t *db)
4266 {
4267 	return (zfs_refcount_count(&db->db_holds));
4268 }
4269 
4270 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)4271 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4272 {
4273 	uint64_t holds;
4274 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4275 
4276 	mutex_enter(&db->db_mtx);
4277 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4278 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4279 	mutex_exit(&db->db_mtx);
4280 
4281 	return (holds);
4282 }
4283 
4284 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)4285 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4286     dmu_buf_user_t *new_user)
4287 {
4288 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4289 
4290 	mutex_enter(&db->db_mtx);
4291 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4292 	if (db->db_user == old_user)
4293 		db->db_user = new_user;
4294 	else
4295 		old_user = db->db_user;
4296 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4297 	mutex_exit(&db->db_mtx);
4298 
4299 	return (old_user);
4300 }
4301 
4302 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4303 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4304 {
4305 	return (dmu_buf_replace_user(db_fake, NULL, user));
4306 }
4307 
4308 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)4309 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4310 {
4311 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4312 
4313 	db->db_user_immediate_evict = TRUE;
4314 	return (dmu_buf_set_user(db_fake, user));
4315 }
4316 
4317 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4318 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4319 {
4320 	return (dmu_buf_replace_user(db_fake, user, NULL));
4321 }
4322 
4323 void *
dmu_buf_get_user(dmu_buf_t * db_fake)4324 dmu_buf_get_user(dmu_buf_t *db_fake)
4325 {
4326 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4327 
4328 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4329 	return (db->db_user);
4330 }
4331 
4332 uint64_t
dmu_buf_user_size(dmu_buf_t * db_fake)4333 dmu_buf_user_size(dmu_buf_t *db_fake)
4334 {
4335 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4336 	if (db->db_user == NULL)
4337 		return (0);
4338 	return (atomic_load_64(&db->db_user->dbu_size));
4339 }
4340 
4341 void
dmu_buf_add_user_size(dmu_buf_t * db_fake,uint64_t nadd)4342 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4343 {
4344 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4345 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4346 	ASSERT3P(db->db_user, !=, NULL);
4347 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4348 	atomic_add_64(&db->db_user->dbu_size, nadd);
4349 }
4350 
4351 void
dmu_buf_sub_user_size(dmu_buf_t * db_fake,uint64_t nsub)4352 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4353 {
4354 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4355 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4356 	ASSERT3P(db->db_user, !=, NULL);
4357 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4358 	atomic_sub_64(&db->db_user->dbu_size, nsub);
4359 }
4360 
4361 void
dmu_buf_user_evict_wait(void)4362 dmu_buf_user_evict_wait(void)
4363 {
4364 	taskq_wait(dbu_evict_taskq);
4365 }
4366 
4367 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)4368 dmu_buf_get_blkptr(dmu_buf_t *db)
4369 {
4370 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4371 	return (dbi->db_blkptr);
4372 }
4373 
4374 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)4375 dmu_buf_get_objset(dmu_buf_t *db)
4376 {
4377 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4378 	return (dbi->db_objset);
4379 }
4380 
4381 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)4382 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4383 {
4384 	/* ASSERT(dmu_tx_is_syncing(tx) */
4385 	ASSERT(MUTEX_HELD(&db->db_mtx));
4386 
4387 	if (db->db_blkptr != NULL)
4388 		return;
4389 
4390 	if (db->db_blkid == DMU_SPILL_BLKID) {
4391 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4392 		BP_ZERO(db->db_blkptr);
4393 		return;
4394 	}
4395 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4396 		/*
4397 		 * This buffer was allocated at a time when there was
4398 		 * no available blkptrs from the dnode, or it was
4399 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4400 		 */
4401 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4402 		ASSERT0P(db->db_parent);
4403 		db->db_parent = dn->dn_dbuf;
4404 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4405 		DBUF_VERIFY(db);
4406 	} else {
4407 		dmu_buf_impl_t *parent = db->db_parent;
4408 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4409 
4410 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4411 		if (parent == NULL) {
4412 			mutex_exit(&db->db_mtx);
4413 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4414 			parent = dbuf_hold_level(dn, db->db_level + 1,
4415 			    db->db_blkid >> epbs, db);
4416 			rw_exit(&dn->dn_struct_rwlock);
4417 			mutex_enter(&db->db_mtx);
4418 			db->db_parent = parent;
4419 		}
4420 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4421 		    (db->db_blkid & ((1ULL << epbs) - 1));
4422 		DBUF_VERIFY(db);
4423 	}
4424 }
4425 
4426 static void
dbuf_sync_bonus(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4427 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4428 {
4429 	dmu_buf_impl_t *db = dr->dr_dbuf;
4430 	void *data = dr->dt.dl.dr_data;
4431 
4432 	ASSERT0(db->db_level);
4433 	ASSERT(MUTEX_HELD(&db->db_mtx));
4434 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4435 	ASSERT(data != NULL);
4436 
4437 	dnode_t *dn = dr->dr_dnode;
4438 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4439 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4440 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4441 
4442 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4443 
4444 	dbuf_undirty_bonus(dr);
4445 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4446 }
4447 
4448 /*
4449  * When syncing out a blocks of dnodes, adjust the block to deal with
4450  * encryption.  Normally, we make sure the block is decrypted before writing
4451  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4452  * from a raw receive.  In this case, set the ARC buf's crypt params so
4453  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4454  */
4455 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)4456 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4457 {
4458 	int err;
4459 	dmu_buf_impl_t *db = dr->dr_dbuf;
4460 
4461 	ASSERT(MUTEX_HELD(&db->db_mtx));
4462 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4463 	ASSERT0(db->db_level);
4464 
4465 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4466 		zbookmark_phys_t zb;
4467 
4468 		/*
4469 		 * Unfortunately, there is currently no mechanism for
4470 		 * syncing context to handle decryption errors. An error
4471 		 * here is only possible if an attacker maliciously
4472 		 * changed a dnode block and updated the associated
4473 		 * checksums going up the block tree.
4474 		 */
4475 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4476 		    db->db.db_object, db->db_level, db->db_blkid);
4477 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4478 		    &zb, B_TRUE);
4479 		if (err)
4480 			panic("Invalid dnode block MAC");
4481 	} else if (dr->dt.dl.dr_has_raw_params) {
4482 		(void) arc_release(dr->dt.dl.dr_data, db);
4483 		arc_convert_to_raw(dr->dt.dl.dr_data,
4484 		    dmu_objset_id(db->db_objset),
4485 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4486 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4487 	}
4488 }
4489 
4490 /*
4491  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4492  * is critical the we not allow the compiler to inline this function in to
4493  * dbuf_sync_list() thereby drastically bloating the stack usage.
4494  */
4495 noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4496 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4497 {
4498 	dmu_buf_impl_t *db = dr->dr_dbuf;
4499 	dnode_t *dn = dr->dr_dnode;
4500 
4501 	ASSERT(dmu_tx_is_syncing(tx));
4502 
4503 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4504 
4505 	mutex_enter(&db->db_mtx);
4506 
4507 	ASSERT(db->db_level > 0);
4508 	DBUF_VERIFY(db);
4509 
4510 	/* Read the block if it hasn't been read yet. */
4511 	if (db->db_buf == NULL) {
4512 		mutex_exit(&db->db_mtx);
4513 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4514 		mutex_enter(&db->db_mtx);
4515 	}
4516 	ASSERT3U(db->db_state, ==, DB_CACHED);
4517 	ASSERT(db->db_buf != NULL);
4518 
4519 	/* Indirect block size must match what the dnode thinks it is. */
4520 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4521 	dbuf_check_blkptr(dn, db);
4522 
4523 	/* Provide the pending dirty record to child dbufs */
4524 	db->db_data_pending = dr;
4525 
4526 	mutex_exit(&db->db_mtx);
4527 
4528 	dbuf_write(dr, db->db_buf, tx);
4529 
4530 	zio_t *zio = dr->dr_zio;
4531 	mutex_enter(&dr->dt.di.dr_mtx);
4532 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4533 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4534 	mutex_exit(&dr->dt.di.dr_mtx);
4535 	zio_nowait(zio);
4536 }
4537 
4538 /*
4539  * Verify that the size of the data in our bonus buffer does not exceed
4540  * its recorded size.
4541  *
4542  * The purpose of this verification is to catch any cases in development
4543  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4544  * due to incorrect feature management, older pools expect to read more
4545  * data even though they didn't actually write it to begin with.
4546  *
4547  * For a example, this would catch an error in the feature logic where we
4548  * open an older pool and we expect to write the space map histogram of
4549  * a space map with size SPACE_MAP_SIZE_V0.
4550  */
4551 static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t * dr)4552 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4553 {
4554 #ifdef ZFS_DEBUG
4555 	dnode_t *dn = dr->dr_dnode;
4556 
4557 	/*
4558 	 * Encrypted bonus buffers can have data past their bonuslen.
4559 	 * Skip the verification of these blocks.
4560 	 */
4561 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4562 		return;
4563 
4564 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4565 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4566 	ASSERT3U(bonuslen, <=, maxbonuslen);
4567 
4568 	arc_buf_t *datap = dr->dt.dl.dr_data;
4569 	char *datap_end = ((char *)datap) + bonuslen;
4570 	char *datap_max = ((char *)datap) + maxbonuslen;
4571 
4572 	/* ensure that everything is zero after our data */
4573 	for (; datap_end < datap_max; datap_end++)
4574 		ASSERT0(*datap_end);
4575 #endif
4576 }
4577 
4578 static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t * dr)4579 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4580 {
4581 	/* This must be a lightweight dirty record. */
4582 	ASSERT0P(dr->dr_dbuf);
4583 	dnode_t *dn = dr->dr_dnode;
4584 
4585 	if (dn->dn_phys->dn_nlevels == 1) {
4586 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4587 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4588 	} else {
4589 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4590 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4591 		VERIFY3U(parent_db->db_level, ==, 1);
4592 		VERIFY3P(DB_DNODE(parent_db), ==, dn);
4593 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4594 		blkptr_t *bp = parent_db->db.db_data;
4595 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4596 	}
4597 }
4598 
4599 static void
dbuf_lightweight_ready(zio_t * zio)4600 dbuf_lightweight_ready(zio_t *zio)
4601 {
4602 	dbuf_dirty_record_t *dr = zio->io_private;
4603 	blkptr_t *bp = zio->io_bp;
4604 
4605 	if (zio->io_error != 0)
4606 		return;
4607 
4608 	dnode_t *dn = dr->dr_dnode;
4609 
4610 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4611 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4612 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4613 	    bp_get_dsize_sync(spa, bp_orig);
4614 	dnode_diduse_space(dn, delta);
4615 
4616 	uint64_t blkid = dr->dt.dll.dr_blkid;
4617 	mutex_enter(&dn->dn_mtx);
4618 	if (blkid > dn->dn_phys->dn_maxblkid) {
4619 		ASSERT0(dn->dn_objset->os_raw_receive);
4620 		dn->dn_phys->dn_maxblkid = blkid;
4621 	}
4622 	mutex_exit(&dn->dn_mtx);
4623 
4624 	if (!BP_IS_EMBEDDED(bp)) {
4625 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4626 		BP_SET_FILL(bp, fill);
4627 	}
4628 
4629 	dmu_buf_impl_t *parent_db;
4630 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4631 	if (dr->dr_parent == NULL) {
4632 		parent_db = dn->dn_dbuf;
4633 	} else {
4634 		parent_db = dr->dr_parent->dr_dbuf;
4635 	}
4636 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4637 	*bp_orig = *bp;
4638 	rw_exit(&parent_db->db_rwlock);
4639 }
4640 
4641 static void
dbuf_lightweight_done(zio_t * zio)4642 dbuf_lightweight_done(zio_t *zio)
4643 {
4644 	dbuf_dirty_record_t *dr = zio->io_private;
4645 
4646 	VERIFY0(zio->io_error);
4647 
4648 	objset_t *os = dr->dr_dnode->dn_objset;
4649 	dmu_tx_t *tx = os->os_synctx;
4650 
4651 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4652 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4653 	} else {
4654 		dsl_dataset_t *ds = os->os_dsl_dataset;
4655 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4656 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4657 	}
4658 
4659 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4660 	    zio->io_txg);
4661 
4662 	abd_free(dr->dt.dll.dr_abd);
4663 	kmem_free(dr, sizeof (*dr));
4664 }
4665 
4666 noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4667 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4668 {
4669 	dnode_t *dn = dr->dr_dnode;
4670 	zio_t *pio;
4671 	if (dn->dn_phys->dn_nlevels == 1) {
4672 		pio = dn->dn_zio;
4673 	} else {
4674 		pio = dr->dr_parent->dr_zio;
4675 	}
4676 
4677 	zbookmark_phys_t zb = {
4678 		.zb_objset = dmu_objset_id(dn->dn_objset),
4679 		.zb_object = dn->dn_object,
4680 		.zb_level = 0,
4681 		.zb_blkid = dr->dt.dll.dr_blkid,
4682 	};
4683 
4684 	/*
4685 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4686 	 * will have the old BP in dbuf_lightweight_done().
4687 	 */
4688 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4689 
4690 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4691 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4692 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4693 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4694 	    dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4695 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4696 
4697 	zio_nowait(dr->dr_zio);
4698 }
4699 
4700 /*
4701  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4702  * critical the we not allow the compiler to inline this function in to
4703  * dbuf_sync_list() thereby drastically bloating the stack usage.
4704  */
4705 noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4706 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4707 {
4708 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4709 	dmu_buf_impl_t *db = dr->dr_dbuf;
4710 	dnode_t *dn = dr->dr_dnode;
4711 	objset_t *os;
4712 	uint64_t txg = tx->tx_txg;
4713 
4714 	ASSERT(dmu_tx_is_syncing(tx));
4715 
4716 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4717 
4718 	mutex_enter(&db->db_mtx);
4719 	/*
4720 	 * To be synced, we must be dirtied.  But we might have been freed
4721 	 * after the dirty.
4722 	 */
4723 	if (db->db_state == DB_UNCACHED) {
4724 		/* This buffer has been freed since it was dirtied */
4725 		ASSERT0P(db->db.db_data);
4726 	} else if (db->db_state == DB_FILL) {
4727 		/* This buffer was freed and is now being re-filled */
4728 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4729 	} else if (db->db_state == DB_READ) {
4730 		/*
4731 		 * This buffer was either cloned or had a Direct I/O write
4732 		 * occur and has an in-flgiht read on the BP. It is safe to
4733 		 * issue the write here, because the read has already been
4734 		 * issued and the contents won't change.
4735 		 *
4736 		 * We can verify the case of both the clone and Direct I/O
4737 		 * write by making sure the first dirty record for the dbuf
4738 		 * has no ARC buffer associated with it.
4739 		 */
4740 		dbuf_dirty_record_t *dr_head =
4741 		    list_head(&db->db_dirty_records);
4742 		ASSERT0P(db->db_buf);
4743 		ASSERT0P(db->db.db_data);
4744 		ASSERT0P(dr_head->dt.dl.dr_data);
4745 		ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4746 	} else {
4747 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4748 	}
4749 	DBUF_VERIFY(db);
4750 
4751 	if (db->db_blkid == DMU_SPILL_BLKID) {
4752 		mutex_enter(&dn->dn_mtx);
4753 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4754 			/*
4755 			 * In the previous transaction group, the bonus buffer
4756 			 * was entirely used to store the attributes for the
4757 			 * dnode which overrode the dn_spill field.  However,
4758 			 * when adding more attributes to the file a spill
4759 			 * block was required to hold the extra attributes.
4760 			 *
4761 			 * Make sure to clear the garbage left in the dn_spill
4762 			 * field from the previous attributes in the bonus
4763 			 * buffer.  Otherwise, after writing out the spill
4764 			 * block to the new allocated dva, it will free
4765 			 * the old block pointed to by the invalid dn_spill.
4766 			 */
4767 			db->db_blkptr = NULL;
4768 		}
4769 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4770 		mutex_exit(&dn->dn_mtx);
4771 	}
4772 
4773 	/*
4774 	 * If this is a bonus buffer, simply copy the bonus data into the
4775 	 * dnode.  It will be written out when the dnode is synced (and it
4776 	 * will be synced, since it must have been dirty for dbuf_sync to
4777 	 * be called).
4778 	 */
4779 	if (db->db_blkid == DMU_BONUS_BLKID) {
4780 		ASSERT(dr->dr_dbuf == db);
4781 		dbuf_sync_bonus(dr, tx);
4782 		return;
4783 	}
4784 
4785 	os = dn->dn_objset;
4786 
4787 	/*
4788 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4789 	 * operation to sneak in. As a result, we need to ensure that we
4790 	 * don't check the dr_override_state until we have returned from
4791 	 * dbuf_check_blkptr.
4792 	 */
4793 	dbuf_check_blkptr(dn, db);
4794 
4795 	/*
4796 	 * If this buffer is in the middle of an immediate write, wait for the
4797 	 * synchronous IO to complete.
4798 	 *
4799 	 * This is also valid even with Direct I/O writes setting a dirty
4800 	 * records override state into DR_IN_DMU_SYNC, because all
4801 	 * Direct I/O writes happen in open-context.
4802 	 */
4803 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4804 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4805 		cv_wait(&db->db_changed, &db->db_mtx);
4806 	}
4807 
4808 	/*
4809 	 * If this is a dnode block, ensure it is appropriately encrypted
4810 	 * or decrypted, depending on what we are writing to it this txg.
4811 	 */
4812 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4813 		dbuf_prepare_encrypted_dnode_leaf(dr);
4814 
4815 	if (*datap != NULL && *datap == db->db_buf &&
4816 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4817 	    zfs_refcount_count(&db->db_holds) > 1) {
4818 		/*
4819 		 * If this buffer is currently "in use" (i.e., there
4820 		 * are active holds and db_data still references it),
4821 		 * then make a copy before we start the write so that
4822 		 * any modifications from the open txg will not leak
4823 		 * into this write.
4824 		 *
4825 		 * NOTE: this copy does not need to be made for
4826 		 * objects only modified in the syncing context (e.g.
4827 		 * DNONE_DNODE blocks).
4828 		 */
4829 		int psize = arc_buf_size(*datap);
4830 		int lsize = arc_buf_lsize(*datap);
4831 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4832 		enum zio_compress compress_type = arc_get_compression(*datap);
4833 		uint8_t complevel = arc_get_complevel(*datap);
4834 
4835 		if (arc_is_encrypted(*datap)) {
4836 			boolean_t byteorder;
4837 			uint8_t salt[ZIO_DATA_SALT_LEN];
4838 			uint8_t iv[ZIO_DATA_IV_LEN];
4839 			uint8_t mac[ZIO_DATA_MAC_LEN];
4840 
4841 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4842 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4843 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4844 			    dn->dn_type, psize, lsize, compress_type,
4845 			    complevel);
4846 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4847 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4848 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4849 			    psize, lsize, compress_type, complevel);
4850 		} else {
4851 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4852 		}
4853 		memcpy((*datap)->b_data, db->db.db_data, psize);
4854 	}
4855 	db->db_data_pending = dr;
4856 
4857 	mutex_exit(&db->db_mtx);
4858 
4859 	dbuf_write(dr, *datap, tx);
4860 
4861 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4862 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4863 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4864 	} else {
4865 		zio_nowait(dr->dr_zio);
4866 	}
4867 }
4868 
4869 /*
4870  * Syncs out a range of dirty records for indirect or leaf dbufs.  May be
4871  * called recursively from dbuf_sync_indirect().
4872  */
4873 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)4874 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4875 {
4876 	dbuf_dirty_record_t *dr;
4877 
4878 	while ((dr = list_head(list))) {
4879 		if (dr->dr_zio != NULL) {
4880 			/*
4881 			 * If we find an already initialized zio then we
4882 			 * are processing the meta-dnode, and we have finished.
4883 			 * The dbufs for all dnodes are put back on the list
4884 			 * during processing, so that we can zio_wait()
4885 			 * these IOs after initiating all child IOs.
4886 			 */
4887 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4888 			    DMU_META_DNODE_OBJECT);
4889 			break;
4890 		}
4891 		list_remove(list, dr);
4892 		if (dr->dr_dbuf == NULL) {
4893 			dbuf_sync_lightweight(dr, tx);
4894 		} else {
4895 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4896 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4897 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4898 			}
4899 			if (dr->dr_dbuf->db_level > 0)
4900 				dbuf_sync_indirect(dr, tx);
4901 			else
4902 				dbuf_sync_leaf(dr, tx);
4903 		}
4904 	}
4905 }
4906 
4907 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4908 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4909 {
4910 	(void) buf;
4911 	dmu_buf_impl_t *db = vdb;
4912 	dnode_t *dn;
4913 	blkptr_t *bp = zio->io_bp;
4914 	blkptr_t *bp_orig = &zio->io_bp_orig;
4915 	spa_t *spa = zio->io_spa;
4916 	int64_t delta;
4917 	uint64_t fill = 0;
4918 	int i;
4919 
4920 	ASSERT3P(db->db_blkptr, !=, NULL);
4921 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4922 
4923 	DB_DNODE_ENTER(db);
4924 	dn = DB_DNODE(db);
4925 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4926 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4927 	zio->io_prev_space_delta = delta;
4928 
4929 	if (BP_GET_BIRTH(bp) != 0) {
4930 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4931 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4932 		    (db->db_blkid == DMU_SPILL_BLKID &&
4933 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4934 		    BP_IS_EMBEDDED(bp));
4935 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4936 	}
4937 
4938 	mutex_enter(&db->db_mtx);
4939 
4940 #ifdef ZFS_DEBUG
4941 	if (db->db_blkid == DMU_SPILL_BLKID) {
4942 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4943 		ASSERT(!(BP_IS_HOLE(bp)) &&
4944 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4945 	}
4946 #endif
4947 
4948 	if (db->db_level == 0) {
4949 		mutex_enter(&dn->dn_mtx);
4950 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4951 		    db->db_blkid != DMU_SPILL_BLKID) {
4952 			ASSERT0(db->db_objset->os_raw_receive);
4953 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4954 		}
4955 		mutex_exit(&dn->dn_mtx);
4956 
4957 		if (dn->dn_type == DMU_OT_DNODE) {
4958 			i = 0;
4959 			while (i < db->db.db_size) {
4960 				dnode_phys_t *dnp =
4961 				    (void *)(((char *)db->db.db_data) + i);
4962 
4963 				i += DNODE_MIN_SIZE;
4964 				if (dnp->dn_type != DMU_OT_NONE) {
4965 					fill++;
4966 					for (int j = 0; j < dnp->dn_nblkptr;
4967 					    j++) {
4968 						(void) zfs_blkptr_verify(spa,
4969 						    &dnp->dn_blkptr[j],
4970 						    BLK_CONFIG_SKIP,
4971 						    BLK_VERIFY_HALT);
4972 					}
4973 					if (dnp->dn_flags &
4974 					    DNODE_FLAG_SPILL_BLKPTR) {
4975 						(void) zfs_blkptr_verify(spa,
4976 						    DN_SPILL_BLKPTR(dnp),
4977 						    BLK_CONFIG_SKIP,
4978 						    BLK_VERIFY_HALT);
4979 					}
4980 					i += dnp->dn_extra_slots *
4981 					    DNODE_MIN_SIZE;
4982 				}
4983 			}
4984 		} else {
4985 			if (BP_IS_HOLE(bp)) {
4986 				fill = 0;
4987 			} else {
4988 				fill = 1;
4989 			}
4990 		}
4991 	} else {
4992 		blkptr_t *ibp = db->db.db_data;
4993 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4994 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4995 			if (BP_IS_HOLE(ibp))
4996 				continue;
4997 			(void) zfs_blkptr_verify(spa, ibp,
4998 			    BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4999 			fill += BP_GET_FILL(ibp);
5000 		}
5001 	}
5002 	DB_DNODE_EXIT(db);
5003 
5004 	if (!BP_IS_EMBEDDED(bp))
5005 		BP_SET_FILL(bp, fill);
5006 
5007 	mutex_exit(&db->db_mtx);
5008 
5009 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
5010 	*db->db_blkptr = *bp;
5011 	dmu_buf_unlock_parent(db, dblt, FTAG);
5012 }
5013 
5014 /*
5015  * This function gets called just prior to running through the compression
5016  * stage of the zio pipeline. If we're an indirect block comprised of only
5017  * holes, then we want this indirect to be compressed away to a hole. In
5018  * order to do that we must zero out any information about the holes that
5019  * this indirect points to prior to before we try to compress it.
5020  */
5021 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)5022 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
5023 {
5024 	(void) zio, (void) buf;
5025 	dmu_buf_impl_t *db = vdb;
5026 	blkptr_t *bp;
5027 	unsigned int epbs, i;
5028 
5029 	ASSERT3U(db->db_level, >, 0);
5030 	DB_DNODE_ENTER(db);
5031 	epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
5032 	DB_DNODE_EXIT(db);
5033 	ASSERT3U(epbs, <, 31);
5034 
5035 	/* Determine if all our children are holes */
5036 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
5037 		if (!BP_IS_HOLE(bp))
5038 			break;
5039 	}
5040 
5041 	/*
5042 	 * If all the children are holes, then zero them all out so that
5043 	 * we may get compressed away.
5044 	 */
5045 	if (i == 1ULL << epbs) {
5046 		/*
5047 		 * We only found holes. Grab the rwlock to prevent
5048 		 * anybody from reading the blocks we're about to
5049 		 * zero out.
5050 		 */
5051 		rw_enter(&db->db_rwlock, RW_WRITER);
5052 		memset(db->db.db_data, 0, db->db.db_size);
5053 		rw_exit(&db->db_rwlock);
5054 	}
5055 }
5056 
5057 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)5058 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5059 {
5060 	(void) buf;
5061 	dmu_buf_impl_t *db = vdb;
5062 	blkptr_t *bp_orig = &zio->io_bp_orig;
5063 	blkptr_t *bp = db->db_blkptr;
5064 	objset_t *os = db->db_objset;
5065 	dmu_tx_t *tx = os->os_synctx;
5066 
5067 	ASSERT0(zio->io_error);
5068 	ASSERT(db->db_blkptr == bp);
5069 
5070 	/*
5071 	 * For nopwrites and rewrites we ensure that the bp matches our
5072 	 * original and bypass all the accounting.
5073 	 */
5074 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5075 		ASSERT(BP_EQUAL(bp, bp_orig));
5076 	} else {
5077 		dsl_dataset_t *ds = os->os_dsl_dataset;
5078 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5079 		dsl_dataset_block_born(ds, bp, tx);
5080 	}
5081 
5082 	mutex_enter(&db->db_mtx);
5083 
5084 	DBUF_VERIFY(db);
5085 
5086 	dbuf_dirty_record_t *dr = db->db_data_pending;
5087 	dnode_t *dn = dr->dr_dnode;
5088 	ASSERT(!list_link_active(&dr->dr_dirty_node));
5089 	ASSERT(dr->dr_dbuf == db);
5090 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5091 	list_remove(&db->db_dirty_records, dr);
5092 
5093 #ifdef ZFS_DEBUG
5094 	if (db->db_blkid == DMU_SPILL_BLKID) {
5095 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5096 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5097 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5098 	}
5099 #endif
5100 
5101 	if (db->db_level == 0) {
5102 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5103 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5104 
5105 		/* no dr_data if this is a NO_FILL or Direct I/O */
5106 		if (dr->dt.dl.dr_data != NULL &&
5107 		    dr->dt.dl.dr_data != db->db_buf) {
5108 			ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5109 			ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5110 			arc_buf_destroy(dr->dt.dl.dr_data, db);
5111 		}
5112 	} else {
5113 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5114 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5115 		if (!BP_IS_HOLE(db->db_blkptr)) {
5116 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5117 			    SPA_BLKPTRSHIFT;
5118 			ASSERT3U(db->db_blkid, <=,
5119 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5120 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5121 			    db->db.db_size);
5122 		}
5123 		mutex_destroy(&dr->dt.di.dr_mtx);
5124 		list_destroy(&dr->dt.di.dr_children);
5125 	}
5126 
5127 	cv_broadcast(&db->db_changed);
5128 	ASSERT(db->db_dirtycnt > 0);
5129 	db->db_dirtycnt -= 1;
5130 	db->db_data_pending = NULL;
5131 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5132 
5133 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5134 	    zio->io_txg);
5135 
5136 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5137 }
5138 
5139 static void
dbuf_write_nofill_ready(zio_t * zio)5140 dbuf_write_nofill_ready(zio_t *zio)
5141 {
5142 	dbuf_write_ready(zio, NULL, zio->io_private);
5143 }
5144 
5145 static void
dbuf_write_nofill_done(zio_t * zio)5146 dbuf_write_nofill_done(zio_t *zio)
5147 {
5148 	dbuf_write_done(zio, NULL, zio->io_private);
5149 }
5150 
5151 static void
dbuf_write_override_ready(zio_t * zio)5152 dbuf_write_override_ready(zio_t *zio)
5153 {
5154 	dbuf_dirty_record_t *dr = zio->io_private;
5155 	dmu_buf_impl_t *db = dr->dr_dbuf;
5156 
5157 	dbuf_write_ready(zio, NULL, db);
5158 }
5159 
5160 static void
dbuf_write_override_done(zio_t * zio)5161 dbuf_write_override_done(zio_t *zio)
5162 {
5163 	dbuf_dirty_record_t *dr = zio->io_private;
5164 	dmu_buf_impl_t *db = dr->dr_dbuf;
5165 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5166 
5167 	mutex_enter(&db->db_mtx);
5168 	if (!BP_EQUAL(zio->io_bp, obp)) {
5169 		if (!BP_IS_HOLE(obp))
5170 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5171 		arc_release(dr->dt.dl.dr_data, db);
5172 	}
5173 	mutex_exit(&db->db_mtx);
5174 
5175 	dbuf_write_done(zio, NULL, db);
5176 
5177 	if (zio->io_abd != NULL)
5178 		abd_free(zio->io_abd);
5179 }
5180 
5181 typedef struct dbuf_remap_impl_callback_arg {
5182 	objset_t	*drica_os;
5183 	uint64_t	drica_blk_birth;
5184 	dmu_tx_t	*drica_tx;
5185 } dbuf_remap_impl_callback_arg_t;
5186 
5187 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)5188 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5189     void *arg)
5190 {
5191 	dbuf_remap_impl_callback_arg_t *drica = arg;
5192 	objset_t *os = drica->drica_os;
5193 	spa_t *spa = dmu_objset_spa(os);
5194 	dmu_tx_t *tx = drica->drica_tx;
5195 
5196 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5197 
5198 	if (os == spa_meta_objset(spa)) {
5199 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5200 	} else {
5201 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5202 		    size, drica->drica_blk_birth, tx);
5203 	}
5204 }
5205 
5206 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)5207 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5208 {
5209 	blkptr_t bp_copy = *bp;
5210 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
5211 	dbuf_remap_impl_callback_arg_t drica;
5212 
5213 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5214 
5215 	drica.drica_os = dn->dn_objset;
5216 	drica.drica_blk_birth = BP_GET_BIRTH(bp);
5217 	drica.drica_tx = tx;
5218 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5219 	    &drica)) {
5220 		/*
5221 		 * If the blkptr being remapped is tracked by a livelist,
5222 		 * then we need to make sure the livelist reflects the update.
5223 		 * First, cancel out the old blkptr by appending a 'FREE'
5224 		 * entry. Next, add an 'ALLOC' to track the new version. This
5225 		 * way we avoid trying to free an inaccurate blkptr at delete.
5226 		 * Note that embedded blkptrs are not tracked in livelists.
5227 		 */
5228 		if (dn->dn_objset != spa_meta_objset(spa)) {
5229 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5230 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5231 			    BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) {
5232 				ASSERT(!BP_IS_EMBEDDED(bp));
5233 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
5234 				ASSERT(spa_feature_is_enabled(spa,
5235 				    SPA_FEATURE_LIVELIST));
5236 				bplist_append(&ds->ds_dir->dd_pending_frees,
5237 				    bp);
5238 				bplist_append(&ds->ds_dir->dd_pending_allocs,
5239 				    &bp_copy);
5240 			}
5241 		}
5242 
5243 		/*
5244 		 * The db_rwlock prevents dbuf_read_impl() from
5245 		 * dereferencing the BP while we are changing it.  To
5246 		 * avoid lock contention, only grab it when we are actually
5247 		 * changing the BP.
5248 		 */
5249 		if (rw != NULL)
5250 			rw_enter(rw, RW_WRITER);
5251 		*bp = bp_copy;
5252 		if (rw != NULL)
5253 			rw_exit(rw);
5254 	}
5255 }
5256 
5257 /*
5258  * Remap any existing BP's to concrete vdevs, if possible.
5259  */
5260 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)5261 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5262 {
5263 	spa_t *spa = dmu_objset_spa(db->db_objset);
5264 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5265 
5266 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5267 		return;
5268 
5269 	if (db->db_level > 0) {
5270 		blkptr_t *bp = db->db.db_data;
5271 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5272 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5273 		}
5274 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5275 		dnode_phys_t *dnp = db->db.db_data;
5276 		ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5277 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5278 		    i += dnp[i].dn_extra_slots + 1) {
5279 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5280 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5281 				    &dn->dn_dbuf->db_rwlock);
5282 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5283 				    tx);
5284 			}
5285 		}
5286 	}
5287 }
5288 
5289 
5290 /*
5291  * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5292  * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5293  */
5294 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)5295 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5296 {
5297 	dmu_buf_impl_t *db = dr->dr_dbuf;
5298 	dnode_t *dn = dr->dr_dnode;
5299 	objset_t *os;
5300 	dmu_buf_impl_t *parent = db->db_parent;
5301 	uint64_t txg = tx->tx_txg;
5302 	zbookmark_phys_t zb;
5303 	zio_prop_t zp;
5304 	zio_t *pio; /* parent I/O */
5305 	int wp_flag = 0;
5306 
5307 	ASSERT(dmu_tx_is_syncing(tx));
5308 
5309 	os = dn->dn_objset;
5310 
5311 	if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5312 		/*
5313 		 * Private object buffers are released here rather than in
5314 		 * dbuf_dirty() since they are only modified in the syncing
5315 		 * context and we don't want the overhead of making multiple
5316 		 * copies of the data.
5317 		 */
5318 		if (BP_IS_HOLE(db->db_blkptr))
5319 			arc_buf_thaw(data);
5320 		else
5321 			dbuf_release_bp(db);
5322 		dbuf_remap(dn, db, tx);
5323 	}
5324 
5325 	if (parent != dn->dn_dbuf) {
5326 		/* Our parent is an indirect block. */
5327 		/* We have a dirty parent that has been scheduled for write. */
5328 		ASSERT(parent && parent->db_data_pending);
5329 		/* Our parent's buffer is one level closer to the dnode. */
5330 		ASSERT(db->db_level == parent->db_level-1);
5331 		/*
5332 		 * We're about to modify our parent's db_data by modifying
5333 		 * our block pointer, so the parent must be released.
5334 		 */
5335 		ASSERT(arc_released(parent->db_buf));
5336 		pio = parent->db_data_pending->dr_zio;
5337 	} else {
5338 		/* Our parent is the dnode itself. */
5339 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5340 		    db->db_blkid != DMU_SPILL_BLKID) ||
5341 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5342 		if (db->db_blkid != DMU_SPILL_BLKID)
5343 			ASSERT3P(db->db_blkptr, ==,
5344 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5345 		pio = dn->dn_zio;
5346 	}
5347 
5348 	ASSERT(db->db_level == 0 || data == db->db_buf);
5349 	ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg);
5350 	ASSERT(pio);
5351 
5352 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5353 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5354 	    db->db.db_object, db->db_level, db->db_blkid);
5355 
5356 	if (db->db_blkid == DMU_SPILL_BLKID)
5357 		wp_flag = WP_SPILL;
5358 	wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5359 
5360 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5361 
5362 	/*
5363 	 * Set rewrite properties for zfs_rewrite() operations.
5364 	 */
5365 	if (db->db_level == 0 && dr->dt.dl.dr_rewrite) {
5366 		zp.zp_rewrite = B_TRUE;
5367 
5368 		/*
5369 		 * Mark physical rewrite feature for activation.
5370 		 * This will be activated automatically during dataset sync.
5371 		 */
5372 		dsl_dataset_t *ds = os->os_dsl_dataset;
5373 		if (!dsl_dataset_feature_is_active(ds,
5374 		    SPA_FEATURE_PHYSICAL_REWRITE)) {
5375 			ds->ds_feature_activation[
5376 			    SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE;
5377 		}
5378 	}
5379 
5380 	/*
5381 	 * We copy the blkptr now (rather than when we instantiate the dirty
5382 	 * record), because its value can change between open context and
5383 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5384 	 * db_blkptr because we are in syncing context.
5385 	 */
5386 	dr->dr_bp_copy = *db->db_blkptr;
5387 
5388 	if (db->db_level == 0 &&
5389 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5390 		/*
5391 		 * The BP for this block has been provided by open context
5392 		 * (by dmu_sync(), dmu_write_direct(),
5393 		 *  or dmu_buf_write_embedded()).
5394 		 */
5395 		abd_t *contents = (data != NULL) ?
5396 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5397 
5398 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5399 		    contents, db->db.db_size, db->db.db_size, &zp,
5400 		    dbuf_write_override_ready, NULL,
5401 		    dbuf_write_override_done,
5402 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5403 		mutex_enter(&db->db_mtx);
5404 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5405 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5406 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies,
5407 		    dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite);
5408 		mutex_exit(&db->db_mtx);
5409 	} else if (data == NULL) {
5410 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5411 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5412 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5413 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5414 		    dbuf_write_nofill_ready, NULL,
5415 		    dbuf_write_nofill_done, db,
5416 		    ZIO_PRIORITY_ASYNC_WRITE,
5417 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5418 	} else {
5419 		ASSERT(arc_released(data));
5420 
5421 		/*
5422 		 * For indirect blocks, we want to setup the children
5423 		 * ready callback so that we can properly handle an indirect
5424 		 * block that only contains holes.
5425 		 */
5426 		arc_write_done_func_t *children_ready_cb = NULL;
5427 		if (db->db_level != 0)
5428 			children_ready_cb = dbuf_write_children_ready;
5429 
5430 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5431 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5432 		    dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5433 		    children_ready_cb, dbuf_write_done, db,
5434 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5435 	}
5436 }
5437 
5438 EXPORT_SYMBOL(dbuf_find);
5439 EXPORT_SYMBOL(dbuf_is_metadata);
5440 EXPORT_SYMBOL(dbuf_destroy);
5441 EXPORT_SYMBOL(dbuf_whichblock);
5442 EXPORT_SYMBOL(dbuf_read);
5443 EXPORT_SYMBOL(dbuf_unoverride);
5444 EXPORT_SYMBOL(dbuf_free_range);
5445 EXPORT_SYMBOL(dbuf_new_size);
5446 EXPORT_SYMBOL(dbuf_release_bp);
5447 EXPORT_SYMBOL(dbuf_dirty);
5448 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5449 EXPORT_SYMBOL(dmu_buf_will_dirty);
5450 EXPORT_SYMBOL(dmu_buf_will_rewrite);
5451 EXPORT_SYMBOL(dmu_buf_is_dirty);
5452 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5453 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5454 EXPORT_SYMBOL(dmu_buf_will_fill);
5455 EXPORT_SYMBOL(dmu_buf_fill_done);
5456 EXPORT_SYMBOL(dmu_buf_rele);
5457 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5458 EXPORT_SYMBOL(dbuf_prefetch);
5459 EXPORT_SYMBOL(dbuf_hold_impl);
5460 EXPORT_SYMBOL(dbuf_hold);
5461 EXPORT_SYMBOL(dbuf_hold_level);
5462 EXPORT_SYMBOL(dbuf_create_bonus);
5463 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5464 EXPORT_SYMBOL(dbuf_rm_spill);
5465 EXPORT_SYMBOL(dbuf_add_ref);
5466 EXPORT_SYMBOL(dbuf_rele);
5467 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5468 EXPORT_SYMBOL(dbuf_refcount);
5469 EXPORT_SYMBOL(dbuf_sync_list);
5470 EXPORT_SYMBOL(dmu_buf_set_user);
5471 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5472 EXPORT_SYMBOL(dmu_buf_get_user);
5473 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5474 
5475 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5476 	"Maximum size in bytes of the dbuf cache.");
5477 
5478 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5479 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5480 
5481 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5482 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5483 
5484 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5485 	"Maximum size in bytes of dbuf metadata cache.");
5486 
5487 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5488 	"Set size of dbuf cache to log2 fraction of arc size.");
5489 
5490 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5491 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5492 
5493 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5494 	"Set size of dbuf cache mutex array as log2 shift.");
5495