1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Berkeley Software Design Inc's name may not be used to endorse or
15 * promote products derived from this software without specific prior
16 * written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32 */
33
34 /*
35 * Implementation of turnstiles used to hold queue of threads blocked on
36 * non-sleepable locks. Sleepable locks use condition variables to
37 * implement their queues. Turnstiles differ from a sleep queue in that
38 * turnstile queue's are assigned to a lock held by an owning thread. Thus,
39 * when one thread is enqueued onto a turnstile, it can lend its priority
40 * to the owning thread.
41 *
42 * We wish to avoid bloating locks with an embedded turnstile and we do not
43 * want to use back-pointers in the locks for the same reason. Thus, we
44 * use a similar approach to that of Solaris 7 as described in Solaris
45 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up
46 * in a hash table based on the address of the lock. Each entry in the
47 * hash table is a linked-lists of turnstiles and is called a turnstile
48 * chain. Each chain contains a spin mutex that protects all of the
49 * turnstiles in the chain.
50 *
51 * Each time a thread is created, a turnstile is allocated from a UMA zone
52 * and attached to that thread. When a thread blocks on a lock, if it is the
53 * first thread to block, it lends its turnstile to the lock. If the lock
54 * already has a turnstile, then it gives its turnstile to the lock's
55 * turnstile's free list. When a thread is woken up, it takes a turnstile from
56 * the free list if there are any other waiters. If it is the only thread
57 * blocked on the lock, then it reclaims the turnstile associated with the lock
58 * and removes it from the hash table.
59 */
60
61 #include <sys/cdefs.h>
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 #include "opt_sched.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kdb.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/queue.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/sysctl.h>
78 #include <sys/turnstile.h>
79
80 #include <vm/uma.h>
81
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #include <sys/lockmgr.h>
85 #include <sys/sx.h>
86 #endif
87
88 /*
89 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic
90 * number chosen because the sleep queue's use the same value for the
91 * shift. Basically, we ignore the lower 8 bits of the address.
92 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
93 */
94 #define TC_TABLESIZE 128 /* Must be power of 2. */
95 #define TC_MASK (TC_TABLESIZE - 1)
96 #define TC_SHIFT 8
97 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
98 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)]
99
100 /*
101 * There are three different lists of turnstiles as follows. The list
102 * connected by ts_link entries is a per-thread list of all the turnstiles
103 * attached to locks that we own. This is used to fixup our priority when
104 * a lock is released. The other two lists use the ts_hash entries. The
105 * first of these two is the turnstile chain list that a turnstile is on
106 * when it is attached to a lock. The second list to use ts_hash is the
107 * free list hung off of a turnstile that is attached to a lock.
108 *
109 * Each turnstile contains three lists of threads. The two ts_blocked lists
110 * are linked list of threads blocked on the turnstile's lock. One list is
111 * for exclusive waiters, and the other is for shared waiters. The
112 * ts_pending list is a linked list of threads previously awakened by
113 * turnstile_signal() or turnstile_wait() that are waiting to be put on
114 * the run queue.
115 *
116 * Locking key:
117 * c - turnstile chain lock
118 * q - td_contested lock
119 */
120 struct turnstile {
121 struct mtx ts_lock; /* Spin lock for self. */
122 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */
123 struct threadqueue ts_pending; /* (c) Pending threads. */
124 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */
125 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */
126 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */
127 struct lock_object *ts_lockobj; /* (c) Lock we reference. */
128 struct thread *ts_owner; /* (c + q) Who owns the lock. */
129 };
130
131 struct turnstile_chain {
132 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */
133 struct mtx tc_lock; /* Spin lock for this chain. */
134 #ifdef TURNSTILE_PROFILING
135 u_int tc_depth; /* Length of tc_queues. */
136 u_int tc_max_depth; /* Max length of tc_queues. */
137 #endif
138 };
139
140 #ifdef TURNSTILE_PROFILING
141 u_int turnstile_max_depth;
142 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
143 "turnstile profiling");
144 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains,
145 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
146 "turnstile chain stats");
147 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
148 &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
149 #endif
150 static struct mtx td_contested_lock;
151 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
152 static uma_zone_t turnstile_zone;
153
154 /*
155 * Prototypes for non-exported routines.
156 */
157 static void init_turnstile0(void *dummy);
158 #ifdef TURNSTILE_PROFILING
159 static void init_turnstile_profiling(void *arg);
160 #endif
161 static void propagate_priority(struct thread *td);
162 static int turnstile_adjust_thread(struct turnstile *ts,
163 struct thread *td);
164 static struct thread *turnstile_first_waiter(struct turnstile *ts);
165 static void turnstile_setowner(struct turnstile *ts, struct thread *owner);
166 #ifdef INVARIANTS
167 static void turnstile_dtor(void *mem, int size, void *arg);
168 #endif
169 static int turnstile_init(void *mem, int size, int flags);
170 static void turnstile_fini(void *mem, int size);
171
172 SDT_PROVIDER_DECLARE(sched);
173 SDT_PROBE_DEFINE(sched, , , sleep);
174 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
175 "struct proc *");
176
177 static inline void
propagate_unlock_ts(struct turnstile * top,struct turnstile * ts)178 propagate_unlock_ts(struct turnstile *top, struct turnstile *ts)
179 {
180
181 if (ts != top)
182 mtx_unlock_spin(&ts->ts_lock);
183 }
184
185 static inline void
propagate_unlock_td(struct turnstile * top,struct thread * td)186 propagate_unlock_td(struct turnstile *top, struct thread *td)
187 {
188
189 if (td->td_lock != &top->ts_lock)
190 thread_unlock(td);
191 }
192
193 /*
194 * Walks the chain of turnstiles and their owners to propagate the priority
195 * of the thread being blocked to all the threads holding locks that have to
196 * release their locks before this thread can run again.
197 */
198 static void
propagate_priority(struct thread * td)199 propagate_priority(struct thread *td)
200 {
201 struct turnstile *ts, *top;
202 int pri;
203
204 THREAD_LOCK_ASSERT(td, MA_OWNED);
205 pri = td->td_priority;
206 top = ts = td->td_blocked;
207 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
208
209 /*
210 * The original turnstile lock is held across the entire
211 * operation. We only ever lock down the chain so the lock
212 * order is constant.
213 */
214 for (;;) {
215 td = ts->ts_owner;
216
217 if (td == NULL) {
218 /*
219 * This might be a read lock with no owner. There's
220 * not much we can do, so just bail.
221 */
222 propagate_unlock_ts(top, ts);
223 return;
224 }
225
226 /*
227 * Wait for the thread lock to be stable and then only
228 * acquire if it is not the turnstile lock.
229 */
230 thread_lock_block_wait(td);
231 if (td->td_lock != &ts->ts_lock) {
232 thread_lock_flags(td, MTX_DUPOK);
233 propagate_unlock_ts(top, ts);
234 }
235 MPASS(td->td_proc != NULL);
236 MPASS(td->td_proc->p_magic == P_MAGIC);
237
238 /*
239 * If the thread is asleep, then we are probably about
240 * to deadlock. To make debugging this easier, show
241 * backtrace of misbehaving thread and panic to not
242 * leave the kernel deadlocked.
243 */
244 if (TD_IS_SLEEPING(td)) {
245 printf(
246 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
247 td->td_tid, td->td_proc->p_pid);
248 kdb_backtrace_thread(td);
249 panic("sleeping thread holds %s",
250 ts->ts_lockobj->lo_name);
251 }
252
253 /*
254 * If this thread already has higher priority than the
255 * thread that is being blocked, we are finished.
256 */
257 if (td->td_priority <= pri) {
258 propagate_unlock_td(top, td);
259 return;
260 }
261
262 /*
263 * Bump this thread's priority.
264 */
265 sched_lend_prio(td, pri);
266
267 /*
268 * If lock holder is actually running or on the run queue
269 * then we are done.
270 */
271 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
272 MPASS(td->td_blocked == NULL);
273 propagate_unlock_td(top, td);
274 return;
275 }
276
277 #ifndef SMP
278 /*
279 * For UP, we check to see if td is curthread (this shouldn't
280 * ever happen however as it would mean we are in a deadlock.)
281 */
282 KASSERT(td != curthread, ("Deadlock detected"));
283 #endif
284
285 /*
286 * If we aren't blocked on a lock, we should be.
287 */
288 KASSERT(TD_ON_LOCK(td), (
289 "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
290 td->td_tid, td->td_name, TD_GET_STATE(td),
291 ts->ts_lockobj->lo_name));
292
293 /*
294 * Pick up the lock that td is blocked on.
295 */
296 ts = td->td_blocked;
297 MPASS(ts != NULL);
298 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
299 /* Resort td on the list if needed. */
300 if (!turnstile_adjust_thread(ts, td)) {
301 propagate_unlock_ts(top, ts);
302 return;
303 }
304 /* The thread lock is released as ts lock above. */
305 }
306 }
307
308 /*
309 * Adjust the thread's position on a turnstile after its priority has been
310 * changed.
311 */
312 static int
turnstile_adjust_thread(struct turnstile * ts,struct thread * td)313 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
314 {
315 struct thread *td1, *td2;
316 int queue;
317
318 THREAD_LOCK_ASSERT(td, MA_OWNED);
319 MPASS(TD_ON_LOCK(td));
320
321 /*
322 * This thread may not be blocked on this turnstile anymore
323 * but instead might already be woken up on another CPU
324 * that is waiting on the thread lock in turnstile_unpend() to
325 * finish waking this thread up. We can detect this case
326 * by checking to see if this thread has been given a
327 * turnstile by either turnstile_signal() or
328 * turnstile_broadcast(). In this case, treat the thread as
329 * if it was already running.
330 */
331 if (td->td_turnstile != NULL)
332 return (0);
333
334 /*
335 * Check if the thread needs to be moved on the blocked chain.
336 * It needs to be moved if either its priority is lower than
337 * the previous thread or higher than the next thread.
338 */
339 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
340 td1 = TAILQ_PREV(td, threadqueue, td_lockq);
341 td2 = TAILQ_NEXT(td, td_lockq);
342 if ((td1 != NULL && td->td_priority < td1->td_priority) ||
343 (td2 != NULL && td->td_priority > td2->td_priority)) {
344 /*
345 * Remove thread from blocked chain and determine where
346 * it should be moved to.
347 */
348 queue = td->td_tsqueue;
349 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
350 mtx_lock_spin(&td_contested_lock);
351 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
352 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
353 MPASS(td1->td_proc->p_magic == P_MAGIC);
354 if (td1->td_priority > td->td_priority)
355 break;
356 }
357
358 if (td1 == NULL)
359 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
360 else
361 TAILQ_INSERT_BEFORE(td1, td, td_lockq);
362 mtx_unlock_spin(&td_contested_lock);
363 if (td1 == NULL)
364 CTR3(KTR_LOCK,
365 "turnstile_adjust_thread: td %d put at tail on [%p] %s",
366 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
367 else
368 CTR4(KTR_LOCK,
369 "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
370 td->td_tid, td1->td_tid, ts->ts_lockobj,
371 ts->ts_lockobj->lo_name);
372 }
373 return (1);
374 }
375
376 /*
377 * Early initialization of turnstiles. This is not done via a SYSINIT()
378 * since this needs to be initialized very early when mutexes are first
379 * initialized.
380 */
381 void
init_turnstiles(void)382 init_turnstiles(void)
383 {
384 int i;
385
386 for (i = 0; i < TC_TABLESIZE; i++) {
387 LIST_INIT(&turnstile_chains[i].tc_turnstiles);
388 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
389 NULL, MTX_SPIN);
390 }
391 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
392 LIST_INIT(&thread0.td_contested);
393 thread0.td_turnstile = NULL;
394 }
395
396 #ifdef TURNSTILE_PROFILING
397 static void
init_turnstile_profiling(void * arg)398 init_turnstile_profiling(void *arg)
399 {
400 struct sysctl_oid *chain_oid;
401 char chain_name[10];
402 int i;
403
404 for (i = 0; i < TC_TABLESIZE; i++) {
405 snprintf(chain_name, sizeof(chain_name), "%d", i);
406 chain_oid = SYSCTL_ADD_NODE(NULL,
407 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
408 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
409 "turnstile chain stats");
410 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
411 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
412 NULL);
413 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
414 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
415 0, NULL);
416 }
417 }
418 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
419 init_turnstile_profiling, NULL);
420 #endif
421
422 static void
init_turnstile0(void * dummy)423 init_turnstile0(void *dummy)
424 {
425
426 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
427 NULL,
428 #ifdef INVARIANTS
429 turnstile_dtor,
430 #else
431 NULL,
432 #endif
433 turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
434 thread0.td_turnstile = turnstile_alloc();
435 }
436 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
437
438 /*
439 * Update a thread on the turnstile list after it's priority has been changed.
440 * The old priority is passed in as an argument.
441 */
442 void
turnstile_adjust(struct thread * td,u_char oldpri)443 turnstile_adjust(struct thread *td, u_char oldpri)
444 {
445 struct turnstile *ts;
446
447 MPASS(TD_ON_LOCK(td));
448
449 /*
450 * Pick up the lock that td is blocked on.
451 */
452 ts = td->td_blocked;
453 MPASS(ts != NULL);
454 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
455 mtx_assert(&ts->ts_lock, MA_OWNED);
456
457 /* Resort the turnstile on the list. */
458 if (!turnstile_adjust_thread(ts, td))
459 return;
460 /*
461 * If our priority was lowered and we are at the head of the
462 * turnstile, then propagate our new priority up the chain.
463 * Note that we currently don't try to revoke lent priorities
464 * when our priority goes up.
465 */
466 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
467 td->td_tsqueue == TS_SHARED_QUEUE);
468 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
469 td->td_priority < oldpri) {
470 propagate_priority(td);
471 }
472 }
473
474 /*
475 * Set the owner of the lock this turnstile is attached to.
476 */
477 static void
turnstile_setowner(struct turnstile * ts,struct thread * owner)478 turnstile_setowner(struct turnstile *ts, struct thread *owner)
479 {
480
481 mtx_assert(&td_contested_lock, MA_OWNED);
482 MPASS(ts->ts_owner == NULL);
483
484 /* A shared lock might not have an owner. */
485 if (owner == NULL)
486 return;
487
488 MPASS(owner->td_proc->p_magic == P_MAGIC);
489 ts->ts_owner = owner;
490 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
491 }
492
493 #ifdef INVARIANTS
494 /*
495 * UMA zone item deallocator.
496 */
497 static void
turnstile_dtor(void * mem,int size,void * arg)498 turnstile_dtor(void *mem, int size, void *arg)
499 {
500 struct turnstile *ts;
501
502 ts = mem;
503 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
504 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
505 MPASS(TAILQ_EMPTY(&ts->ts_pending));
506 }
507 #endif
508
509 /*
510 * UMA zone item initializer.
511 */
512 static int
turnstile_init(void * mem,int size,int flags)513 turnstile_init(void *mem, int size, int flags)
514 {
515 struct turnstile *ts;
516
517 bzero(mem, size);
518 ts = mem;
519 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
520 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
521 TAILQ_INIT(&ts->ts_pending);
522 LIST_INIT(&ts->ts_free);
523 mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN);
524 return (0);
525 }
526
527 static void
turnstile_fini(void * mem,int size)528 turnstile_fini(void *mem, int size)
529 {
530 struct turnstile *ts;
531
532 ts = mem;
533 mtx_destroy(&ts->ts_lock);
534 }
535
536 /*
537 * Get a turnstile for a new thread.
538 */
539 struct turnstile *
turnstile_alloc(void)540 turnstile_alloc(void)
541 {
542
543 return (uma_zalloc(turnstile_zone, M_WAITOK));
544 }
545
546 /*
547 * Free a turnstile when a thread is destroyed.
548 */
549 void
turnstile_free(struct turnstile * ts)550 turnstile_free(struct turnstile *ts)
551 {
552
553 uma_zfree(turnstile_zone, ts);
554 }
555
556 /*
557 * Lock the turnstile chain associated with the specified lock.
558 */
559 void
turnstile_chain_lock(struct lock_object * lock)560 turnstile_chain_lock(struct lock_object *lock)
561 {
562 struct turnstile_chain *tc;
563
564 tc = TC_LOOKUP(lock);
565 mtx_lock_spin(&tc->tc_lock);
566 }
567
568 struct turnstile *
turnstile_trywait(struct lock_object * lock)569 turnstile_trywait(struct lock_object *lock)
570 {
571 struct turnstile_chain *tc;
572 struct turnstile *ts;
573
574 tc = TC_LOOKUP(lock);
575 mtx_lock_spin(&tc->tc_lock);
576 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
577 if (ts->ts_lockobj == lock) {
578 mtx_lock_spin(&ts->ts_lock);
579 return (ts);
580 }
581
582 ts = curthread->td_turnstile;
583 MPASS(ts != NULL);
584 mtx_lock_spin(&ts->ts_lock);
585 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
586 ts->ts_lockobj = lock;
587
588 return (ts);
589 }
590
591 bool
turnstile_lock(struct turnstile * ts,struct lock_object ** lockp,struct thread ** tdp)592 turnstile_lock(struct turnstile *ts, struct lock_object **lockp,
593 struct thread **tdp)
594 {
595 struct turnstile_chain *tc;
596 struct lock_object *lock;
597
598 if ((lock = ts->ts_lockobj) == NULL)
599 return (false);
600 tc = TC_LOOKUP(lock);
601 mtx_lock_spin(&tc->tc_lock);
602 mtx_lock_spin(&ts->ts_lock);
603 if (__predict_false(lock != ts->ts_lockobj)) {
604 mtx_unlock_spin(&tc->tc_lock);
605 mtx_unlock_spin(&ts->ts_lock);
606 return (false);
607 }
608 *lockp = lock;
609 *tdp = ts->ts_owner;
610 return (true);
611 }
612
613 void
turnstile_unlock(struct turnstile * ts,struct lock_object * lock)614 turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
615 {
616 struct turnstile_chain *tc;
617
618 mtx_assert(&ts->ts_lock, MA_OWNED);
619 mtx_unlock_spin(&ts->ts_lock);
620 if (ts == curthread->td_turnstile)
621 ts->ts_lockobj = NULL;
622 tc = TC_LOOKUP(lock);
623 mtx_unlock_spin(&tc->tc_lock);
624 }
625
626 void
turnstile_assert(struct turnstile * ts)627 turnstile_assert(struct turnstile *ts)
628 {
629 MPASS(ts->ts_lockobj == NULL);
630 }
631
632 void
turnstile_cancel(struct turnstile * ts)633 turnstile_cancel(struct turnstile *ts)
634 {
635 struct turnstile_chain *tc;
636 struct lock_object *lock;
637
638 mtx_assert(&ts->ts_lock, MA_OWNED);
639
640 mtx_unlock_spin(&ts->ts_lock);
641 lock = ts->ts_lockobj;
642 if (ts == curthread->td_turnstile)
643 ts->ts_lockobj = NULL;
644 tc = TC_LOOKUP(lock);
645 mtx_unlock_spin(&tc->tc_lock);
646 }
647
648 /*
649 * Look up the turnstile for a lock in the hash table locking the associated
650 * turnstile chain along the way. If no turnstile is found in the hash
651 * table, NULL is returned.
652 */
653 struct turnstile *
turnstile_lookup(struct lock_object * lock)654 turnstile_lookup(struct lock_object *lock)
655 {
656 struct turnstile_chain *tc;
657 struct turnstile *ts;
658
659 tc = TC_LOOKUP(lock);
660 mtx_assert(&tc->tc_lock, MA_OWNED);
661 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
662 if (ts->ts_lockobj == lock) {
663 mtx_lock_spin(&ts->ts_lock);
664 return (ts);
665 }
666 return (NULL);
667 }
668
669 /*
670 * Unlock the turnstile chain associated with a given lock.
671 */
672 void
turnstile_chain_unlock(struct lock_object * lock)673 turnstile_chain_unlock(struct lock_object *lock)
674 {
675 struct turnstile_chain *tc;
676
677 tc = TC_LOOKUP(lock);
678 mtx_unlock_spin(&tc->tc_lock);
679 }
680
681 /*
682 * Return a pointer to the thread waiting on this turnstile with the
683 * most important priority or NULL if the turnstile has no waiters.
684 */
685 static struct thread *
turnstile_first_waiter(struct turnstile * ts)686 turnstile_first_waiter(struct turnstile *ts)
687 {
688 struct thread *std, *xtd;
689
690 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
691 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
692 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
693 return (std);
694 return (xtd);
695 }
696
697 /*
698 * Take ownership of a turnstile and adjust the priority of the new
699 * owner appropriately.
700 */
701 void
turnstile_claim(struct turnstile * ts)702 turnstile_claim(struct turnstile *ts)
703 {
704 struct thread *td, *owner;
705 struct turnstile_chain *tc;
706
707 mtx_assert(&ts->ts_lock, MA_OWNED);
708 MPASS(ts != curthread->td_turnstile);
709
710 owner = curthread;
711 mtx_lock_spin(&td_contested_lock);
712 turnstile_setowner(ts, owner);
713 mtx_unlock_spin(&td_contested_lock);
714
715 td = turnstile_first_waiter(ts);
716 MPASS(td != NULL);
717 MPASS(td->td_proc->p_magic == P_MAGIC);
718 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
719
720 /*
721 * Update the priority of the new owner if needed.
722 */
723 thread_lock(owner);
724 if (td->td_priority < owner->td_priority)
725 sched_lend_prio(owner, td->td_priority);
726 thread_unlock(owner);
727 tc = TC_LOOKUP(ts->ts_lockobj);
728 mtx_unlock_spin(&ts->ts_lock);
729 mtx_unlock_spin(&tc->tc_lock);
730 }
731
732 /*
733 * Block the current thread on the turnstile assicated with 'lock'. This
734 * function will context switch and not return until this thread has been
735 * woken back up. This function must be called with the appropriate
736 * turnstile chain locked and will return with it unlocked.
737 */
738 void
turnstile_wait(struct turnstile * ts,struct thread * owner,int queue)739 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
740 {
741 struct turnstile_chain *tc;
742 struct thread *td, *td1;
743 struct lock_object *lock;
744
745 td = curthread;
746 mtx_assert(&ts->ts_lock, MA_OWNED);
747 if (owner)
748 MPASS(owner->td_proc->p_magic == P_MAGIC);
749 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
750
751 /*
752 * If the lock does not already have a turnstile, use this thread's
753 * turnstile. Otherwise insert the current thread into the
754 * turnstile already in use by this lock.
755 */
756 tc = TC_LOOKUP(ts->ts_lockobj);
757 mtx_assert(&tc->tc_lock, MA_OWNED);
758 if (ts == td->td_turnstile) {
759 #ifdef TURNSTILE_PROFILING
760 tc->tc_depth++;
761 if (tc->tc_depth > tc->tc_max_depth) {
762 tc->tc_max_depth = tc->tc_depth;
763 if (tc->tc_max_depth > turnstile_max_depth)
764 turnstile_max_depth = tc->tc_max_depth;
765 }
766 #endif
767 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
768 KASSERT(TAILQ_EMPTY(&ts->ts_pending),
769 ("thread's turnstile has pending threads"));
770 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
771 ("thread's turnstile has exclusive waiters"));
772 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
773 ("thread's turnstile has shared waiters"));
774 KASSERT(LIST_EMPTY(&ts->ts_free),
775 ("thread's turnstile has a non-empty free list"));
776 MPASS(ts->ts_lockobj != NULL);
777 mtx_lock_spin(&td_contested_lock);
778 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
779 turnstile_setowner(ts, owner);
780 mtx_unlock_spin(&td_contested_lock);
781 } else {
782 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
783 if (td1->td_priority > td->td_priority)
784 break;
785 mtx_lock_spin(&td_contested_lock);
786 if (td1 != NULL)
787 TAILQ_INSERT_BEFORE(td1, td, td_lockq);
788 else
789 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
790 MPASS(owner == ts->ts_owner);
791 mtx_unlock_spin(&td_contested_lock);
792 MPASS(td->td_turnstile != NULL);
793 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
794 }
795 thread_lock(td);
796 thread_lock_set(td, &ts->ts_lock);
797 td->td_turnstile = NULL;
798
799 /* Save who we are blocked on and switch. */
800 lock = ts->ts_lockobj;
801 td->td_tsqueue = queue;
802 td->td_blocked = ts;
803 td->td_lockname = lock->lo_name;
804 td->td_blktick = ticks;
805 TD_SET_LOCK(td);
806 mtx_unlock_spin(&tc->tc_lock);
807 propagate_priority(td);
808
809 if (LOCK_LOG_TEST(lock, 0))
810 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
811 td->td_tid, lock, lock->lo_name);
812
813 SDT_PROBE0(sched, , , sleep);
814
815 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
816 mi_switch(SW_VOL | SWT_TURNSTILE);
817
818 if (LOCK_LOG_TEST(lock, 0))
819 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
820 __func__, td->td_tid, lock, lock->lo_name);
821 }
822
823 /*
824 * Pick the highest priority thread on this turnstile and put it on the
825 * pending list. This must be called with the turnstile chain locked.
826 */
827 int
turnstile_signal(struct turnstile * ts,int queue)828 turnstile_signal(struct turnstile *ts, int queue)
829 {
830 struct turnstile_chain *tc __unused;
831 struct thread *td;
832 int empty;
833
834 MPASS(ts != NULL);
835 mtx_assert(&ts->ts_lock, MA_OWNED);
836 MPASS(curthread->td_proc->p_magic == P_MAGIC);
837 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
838 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
839
840 /*
841 * Pick the highest priority thread blocked on this lock and
842 * move it to the pending list.
843 */
844 td = TAILQ_FIRST(&ts->ts_blocked[queue]);
845 MPASS(td->td_proc->p_magic == P_MAGIC);
846 mtx_lock_spin(&td_contested_lock);
847 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
848 mtx_unlock_spin(&td_contested_lock);
849 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
850
851 /*
852 * If the turnstile is now empty, remove it from its chain and
853 * give it to the about-to-be-woken thread. Otherwise take a
854 * turnstile from the free list and give it to the thread.
855 */
856 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
857 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
858 if (empty) {
859 tc = TC_LOOKUP(ts->ts_lockobj);
860 mtx_assert(&tc->tc_lock, MA_OWNED);
861 MPASS(LIST_EMPTY(&ts->ts_free));
862 #ifdef TURNSTILE_PROFILING
863 tc->tc_depth--;
864 #endif
865 } else
866 ts = LIST_FIRST(&ts->ts_free);
867 MPASS(ts != NULL);
868 LIST_REMOVE(ts, ts_hash);
869 td->td_turnstile = ts;
870
871 return (empty);
872 }
873
874 /*
875 * Put all blocked threads on the pending list. This must be called with
876 * the turnstile chain locked.
877 */
878 void
turnstile_broadcast(struct turnstile * ts,int queue)879 turnstile_broadcast(struct turnstile *ts, int queue)
880 {
881 struct turnstile_chain *tc __unused;
882 struct turnstile *ts1;
883 struct thread *td;
884
885 MPASS(ts != NULL);
886 mtx_assert(&ts->ts_lock, MA_OWNED);
887 MPASS(curthread->td_proc->p_magic == P_MAGIC);
888 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
889 /*
890 * We must have the chain locked so that we can remove the empty
891 * turnstile from the hash queue.
892 */
893 tc = TC_LOOKUP(ts->ts_lockobj);
894 mtx_assert(&tc->tc_lock, MA_OWNED);
895 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
896
897 /*
898 * Transfer the blocked list to the pending list.
899 */
900 mtx_lock_spin(&td_contested_lock);
901 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
902 mtx_unlock_spin(&td_contested_lock);
903
904 /*
905 * Give a turnstile to each thread. The last thread gets
906 * this turnstile if the turnstile is empty.
907 */
908 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
909 if (LIST_EMPTY(&ts->ts_free)) {
910 MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
911 ts1 = ts;
912 #ifdef TURNSTILE_PROFILING
913 tc->tc_depth--;
914 #endif
915 } else
916 ts1 = LIST_FIRST(&ts->ts_free);
917 MPASS(ts1 != NULL);
918 LIST_REMOVE(ts1, ts_hash);
919 td->td_turnstile = ts1;
920 }
921 }
922
923 static u_char
turnstile_calc_unlend_prio_locked(struct thread * td)924 turnstile_calc_unlend_prio_locked(struct thread *td)
925 {
926 struct turnstile *nts;
927 u_char cp, pri;
928
929 THREAD_LOCK_ASSERT(td, MA_OWNED);
930 mtx_assert(&td_contested_lock, MA_OWNED);
931
932 pri = PRI_MAX;
933 LIST_FOREACH(nts, &td->td_contested, ts_link) {
934 cp = turnstile_first_waiter(nts)->td_priority;
935 if (cp < pri)
936 pri = cp;
937 }
938 return (pri);
939 }
940
941 /*
942 * Wakeup all threads on the pending list and adjust the priority of the
943 * current thread appropriately. This must be called with the turnstile
944 * chain locked.
945 */
946 void
turnstile_unpend(struct turnstile * ts)947 turnstile_unpend(struct turnstile *ts)
948 {
949 TAILQ_HEAD( ,thread) pending_threads;
950 struct thread *td;
951 u_char pri;
952
953 MPASS(ts != NULL);
954 mtx_assert(&ts->ts_lock, MA_OWNED);
955 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
956 MPASS(!TAILQ_EMPTY(&ts->ts_pending));
957
958 /*
959 * Move the list of pending threads out of the turnstile and
960 * into a local variable.
961 */
962 TAILQ_INIT(&pending_threads);
963 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
964 #ifdef INVARIANTS
965 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
966 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
967 ts->ts_lockobj = NULL;
968 #endif
969 /*
970 * Adjust the priority of curthread based on other contested
971 * locks it owns. Don't lower the priority below the base
972 * priority however.
973 */
974 td = curthread;
975 thread_lock(td);
976 mtx_lock_spin(&td_contested_lock);
977 /*
978 * Remove the turnstile from this thread's list of contested locks
979 * since this thread doesn't own it anymore. New threads will
980 * not be blocking on the turnstile until it is claimed by a new
981 * owner. There might not be a current owner if this is a shared
982 * lock.
983 */
984 if (ts->ts_owner != NULL) {
985 ts->ts_owner = NULL;
986 LIST_REMOVE(ts, ts_link);
987 }
988 pri = turnstile_calc_unlend_prio_locked(td);
989 mtx_unlock_spin(&td_contested_lock);
990 sched_unlend_prio(td, pri);
991 thread_unlock(td);
992 /*
993 * Wake up all the pending threads. If a thread is not blocked
994 * on a lock, then it is currently executing on another CPU in
995 * turnstile_wait() or sitting on a run queue waiting to resume
996 * in turnstile_wait(). Set a flag to force it to try to acquire
997 * the lock again instead of blocking.
998 */
999 while (!TAILQ_EMPTY(&pending_threads)) {
1000 td = TAILQ_FIRST(&pending_threads);
1001 TAILQ_REMOVE(&pending_threads, td, td_lockq);
1002 SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
1003 thread_lock_block_wait(td);
1004 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
1005 MPASS(td->td_proc->p_magic == P_MAGIC);
1006 MPASS(TD_ON_LOCK(td));
1007 TD_CLR_LOCK(td);
1008 MPASS(TD_CAN_RUN(td));
1009 td->td_blocked = NULL;
1010 td->td_lockname = NULL;
1011 td->td_blktick = 0;
1012 #ifdef INVARIANTS
1013 td->td_tsqueue = 0xff;
1014 #endif
1015 sched_add(td, SRQ_HOLD | SRQ_BORING);
1016 }
1017 mtx_unlock_spin(&ts->ts_lock);
1018 }
1019
1020 /*
1021 * Give up ownership of a turnstile. This must be called with the
1022 * turnstile chain locked.
1023 */
1024 void
turnstile_disown(struct turnstile * ts)1025 turnstile_disown(struct turnstile *ts)
1026 {
1027 struct thread *td;
1028 u_char pri;
1029
1030 MPASS(ts != NULL);
1031 mtx_assert(&ts->ts_lock, MA_OWNED);
1032 MPASS(ts->ts_owner == curthread);
1033 MPASS(TAILQ_EMPTY(&ts->ts_pending));
1034 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
1035 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
1036
1037 /*
1038 * Remove the turnstile from this thread's list of contested locks
1039 * since this thread doesn't own it anymore. New threads will
1040 * not be blocking on the turnstile until it is claimed by a new
1041 * owner.
1042 */
1043 mtx_lock_spin(&td_contested_lock);
1044 ts->ts_owner = NULL;
1045 LIST_REMOVE(ts, ts_link);
1046 mtx_unlock_spin(&td_contested_lock);
1047
1048 /*
1049 * Adjust the priority of curthread based on other contested
1050 * locks it owns. Don't lower the priority below the base
1051 * priority however.
1052 */
1053 td = curthread;
1054 thread_lock(td);
1055 mtx_unlock_spin(&ts->ts_lock);
1056 mtx_lock_spin(&td_contested_lock);
1057 pri = turnstile_calc_unlend_prio_locked(td);
1058 mtx_unlock_spin(&td_contested_lock);
1059 sched_unlend_prio(td, pri);
1060 thread_unlock(td);
1061 }
1062
1063 /*
1064 * Return the first thread in a turnstile.
1065 */
1066 struct thread *
turnstile_head(struct turnstile * ts,int queue)1067 turnstile_head(struct turnstile *ts, int queue)
1068 {
1069 #ifdef INVARIANTS
1070
1071 MPASS(ts != NULL);
1072 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1073 mtx_assert(&ts->ts_lock, MA_OWNED);
1074 #endif
1075 return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1076 }
1077
1078 /*
1079 * Returns true if a sub-queue of a turnstile is empty.
1080 */
1081 int
turnstile_empty(struct turnstile * ts,int queue)1082 turnstile_empty(struct turnstile *ts, int queue)
1083 {
1084 #ifdef INVARIANTS
1085
1086 MPASS(ts != NULL);
1087 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1088 mtx_assert(&ts->ts_lock, MA_OWNED);
1089 #endif
1090 return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1091 }
1092
1093 #ifdef DDB
1094 static void
print_thread(struct thread * td,const char * prefix)1095 print_thread(struct thread *td, const char *prefix)
1096 {
1097
1098 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1099 td->td_proc->p_pid, td->td_name);
1100 }
1101
1102 static void
print_queue(struct threadqueue * queue,const char * header,const char * prefix)1103 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1104 {
1105 struct thread *td;
1106
1107 db_printf("%s:\n", header);
1108 if (TAILQ_EMPTY(queue)) {
1109 db_printf("%sempty\n", prefix);
1110 return;
1111 }
1112 TAILQ_FOREACH(td, queue, td_lockq) {
1113 print_thread(td, prefix);
1114 }
1115 }
1116
DB_SHOW_COMMAND(turnstile,db_show_turnstile)1117 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1118 {
1119 struct turnstile_chain *tc;
1120 struct turnstile *ts;
1121 struct lock_object *lock;
1122 int i;
1123
1124 if (!have_addr)
1125 return;
1126
1127 /*
1128 * First, see if there is an active turnstile for the lock indicated
1129 * by the address.
1130 */
1131 lock = (struct lock_object *)addr;
1132 tc = TC_LOOKUP(lock);
1133 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1134 if (ts->ts_lockobj == lock)
1135 goto found;
1136
1137 /*
1138 * Second, see if there is an active turnstile at the address
1139 * indicated.
1140 */
1141 for (i = 0; i < TC_TABLESIZE; i++)
1142 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1143 if (ts == (struct turnstile *)addr)
1144 goto found;
1145 }
1146
1147 db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1148 return;
1149 found:
1150 lock = ts->ts_lockobj;
1151 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1152 lock->lo_name);
1153 if (ts->ts_owner)
1154 print_thread(ts->ts_owner, "Lock Owner: ");
1155 else
1156 db_printf("Lock Owner: none\n");
1157 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1158 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1159 "\t");
1160 print_queue(&ts->ts_pending, "Pending Threads", "\t");
1161
1162 }
1163
1164 /*
1165 * Show all the threads a particular thread is waiting on based on
1166 * non-spin locks.
1167 */
1168 static void
print_lockchain(struct thread * td,const char * prefix)1169 print_lockchain(struct thread *td, const char *prefix)
1170 {
1171 struct lock_object *lock;
1172 struct lock_class *class;
1173 struct turnstile *ts;
1174 struct thread *owner;
1175
1176 /*
1177 * Follow the chain. We keep walking as long as the thread is
1178 * blocked on a lock that has an owner.
1179 */
1180 while (!db_pager_quit) {
1181 if (td == (void *)LK_KERNPROC) {
1182 db_printf("%sdisowned (LK_KERNPROC)\n", prefix);
1183 return;
1184 }
1185 db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid,
1186 td->td_proc->p_pid, td->td_name);
1187 switch (TD_GET_STATE(td)) {
1188 case TDS_INACTIVE:
1189 db_printf("inactive\n");
1190 return;
1191 case TDS_CAN_RUN:
1192 db_printf("runnable\n");
1193 return;
1194 case TDS_RUNQ:
1195 db_printf("on a run queue\n");
1196 return;
1197 case TDS_RUNNING:
1198 db_printf("running on CPU %d\n", td->td_oncpu);
1199 return;
1200 case TDS_INHIBITED:
1201 if (TD_ON_LOCK(td)) {
1202 ts = td->td_blocked;
1203 lock = ts->ts_lockobj;
1204 class = LOCK_CLASS(lock);
1205 db_printf("blocked on lock %p (%s) \"%s\"\n",
1206 lock, class->lc_name, lock->lo_name);
1207 if (ts->ts_owner == NULL)
1208 return;
1209 td = ts->ts_owner;
1210 break;
1211 } else if (TD_ON_SLEEPQ(td)) {
1212 if (!lockmgr_chain(td, &owner) &&
1213 !sx_chain(td, &owner)) {
1214 db_printf("sleeping on %p \"%s\"\n",
1215 td->td_wchan, td->td_wmesg);
1216 return;
1217 }
1218 if (owner == NULL)
1219 return;
1220 td = owner;
1221 break;
1222 }
1223 db_printf("inhibited: %s\n", KTDSTATE(td));
1224 return;
1225 default:
1226 db_printf("??? (%#x)\n", TD_GET_STATE(td));
1227 return;
1228 }
1229 }
1230 }
1231
DB_SHOW_COMMAND(lockchain,db_show_lockchain)1232 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1233 {
1234 struct thread *td;
1235
1236 /* Figure out which thread to start with. */
1237 if (have_addr)
1238 td = db_lookup_thread(addr, true);
1239 else
1240 td = kdb_thread;
1241
1242 print_lockchain(td, "");
1243 }
1244 DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1245
DB_SHOW_ALL_COMMAND(chains,db_show_allchains)1246 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1247 {
1248 struct thread *td;
1249 struct proc *p;
1250 int i;
1251
1252 i = 1;
1253 FOREACH_PROC_IN_SYSTEM(p) {
1254 FOREACH_THREAD_IN_PROC(p, td) {
1255 if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1256 || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1257 db_printf("chain %d:\n", i++);
1258 print_lockchain(td, " ");
1259 }
1260 if (db_pager_quit)
1261 return;
1262 }
1263 }
1264 }
1265 DB_SHOW_ALIAS_FLAGS(allchains, db_show_allchains, DB_CMD_MEMSAFE);
1266
1267 static void print_waiters(struct turnstile *ts, int indent);
1268
1269 static void
print_waiter(struct thread * td,int indent)1270 print_waiter(struct thread *td, int indent)
1271 {
1272 struct turnstile *ts;
1273 int i;
1274
1275 if (db_pager_quit)
1276 return;
1277 for (i = 0; i < indent; i++)
1278 db_printf(" ");
1279 print_thread(td, "thread ");
1280 LIST_FOREACH(ts, &td->td_contested, ts_link)
1281 print_waiters(ts, indent + 1);
1282 }
1283
1284 static void
print_waiters(struct turnstile * ts,int indent)1285 print_waiters(struct turnstile *ts, int indent)
1286 {
1287 struct lock_object *lock;
1288 struct lock_class *class;
1289 struct thread *td;
1290 int i;
1291
1292 if (db_pager_quit)
1293 return;
1294 lock = ts->ts_lockobj;
1295 class = LOCK_CLASS(lock);
1296 for (i = 0; i < indent; i++)
1297 db_printf(" ");
1298 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1299 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1300 print_waiter(td, indent + 1);
1301 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1302 print_waiter(td, indent + 1);
1303 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1304 print_waiter(td, indent + 1);
1305 }
1306
DB_SHOW_COMMAND(locktree,db_show_locktree)1307 DB_SHOW_COMMAND(locktree, db_show_locktree)
1308 {
1309 struct lock_object *lock;
1310 struct lock_class *class;
1311 struct turnstile_chain *tc;
1312 struct turnstile *ts;
1313
1314 if (!have_addr)
1315 return;
1316 lock = (struct lock_object *)addr;
1317 tc = TC_LOOKUP(lock);
1318 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1319 if (ts->ts_lockobj == lock)
1320 break;
1321 if (ts == NULL) {
1322 class = LOCK_CLASS(lock);
1323 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1324 lock->lo_name);
1325 } else
1326 print_waiters(ts, 0);
1327 }
1328 #endif
1329