1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
26 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
30 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
31 */
32
33 #include <sys/zfs_context.h>
34 #include <sys/arc.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_send.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dbuf.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/spa.h>
44 #include <sys/zio.h>
45 #include <sys/dmu_zfetch.h>
46 #include <sys/sa.h>
47 #include <sys/sa_impl.h>
48 #include <sys/zfeature.h>
49 #include <sys/blkptr.h>
50 #include <sys/range_tree.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/callb.h>
53 #include <sys/abd.h>
54 #include <sys/brt.h>
55 #include <sys/vdev.h>
56 #include <cityhash.h>
57 #include <sys/spa_impl.h>
58 #include <sys/wmsum.h>
59 #include <sys/vdev_impl.h>
60
61 static kstat_t *dbuf_ksp;
62
63 typedef struct dbuf_stats {
64 /*
65 * Various statistics about the size of the dbuf cache.
66 */
67 kstat_named_t cache_count;
68 kstat_named_t cache_size_bytes;
69 kstat_named_t cache_size_bytes_max;
70 /*
71 * Statistics regarding the bounds on the dbuf cache size.
72 */
73 kstat_named_t cache_target_bytes;
74 kstat_named_t cache_lowater_bytes;
75 kstat_named_t cache_hiwater_bytes;
76 /*
77 * Total number of dbuf cache evictions that have occurred.
78 */
79 kstat_named_t cache_total_evicts;
80 /*
81 * The distribution of dbuf levels in the dbuf cache and
82 * the total size of all dbufs at each level.
83 */
84 kstat_named_t cache_levels[DN_MAX_LEVELS];
85 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86 /*
87 * Statistics about the dbuf hash table.
88 */
89 kstat_named_t hash_hits;
90 kstat_named_t hash_misses;
91 kstat_named_t hash_collisions;
92 kstat_named_t hash_elements;
93 /*
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
96 */
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
99 /*
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
102 */
103 kstat_named_t hash_insert_race;
104 /*
105 * Number of entries in the hash table dbuf and mutex arrays.
106 */
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
109 /*
110 * Statistics about the size of the metadata dbuf cache.
111 */
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
115 /*
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
119 */
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_chains", KSTAT_DATA_UINT64 },
138 { "hash_chain_max", KSTAT_DATA_UINT64 },
139 { "hash_insert_race", KSTAT_DATA_UINT64 },
140 { "hash_table_count", KSTAT_DATA_UINT64 },
141 { "hash_mutex_count", KSTAT_DATA_UINT64 },
142 { "metadata_cache_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
145 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
146 };
147
148 struct {
149 wmsum_t cache_count;
150 wmsum_t cache_total_evicts;
151 wmsum_t cache_levels[DN_MAX_LEVELS];
152 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
153 wmsum_t hash_hits;
154 wmsum_t hash_misses;
155 wmsum_t hash_collisions;
156 wmsum_t hash_elements;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val)
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val))
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1)
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1)
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
176 }
177
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180
181 /*
182 * Global data structures and functions for the dbuf cache.
183 */
184 static kmem_cache_t *dbuf_kmem_cache;
185 kmem_cache_t *dbuf_dirty_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t cache;
226 zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243
244 /*
245 * The LRU dbuf cache uses a three-stage eviction policy:
246 * - A low water marker designates when the dbuf eviction thread
247 * should stop evicting from the dbuf cache.
248 * - When we reach the maximum size (aka mid water mark), we
249 * signal the eviction thread to run.
250 * - The high water mark indicates when the eviction thread
251 * is unable to keep up with the incoming load and eviction must
252 * happen in the context of the calling thread.
253 *
254 * The dbuf cache:
255 * (max size)
256 * low water mid water hi water
257 * +----------------------------------------+----------+----------+
258 * | | | |
259 * | | | |
260 * | | | |
261 * | | | |
262 * +----------------------------------------+----------+----------+
263 * stop signal evict
264 * evicting eviction directly
265 * thread
266 *
267 * The high and low water marks indicate the operating range for the eviction
268 * thread. The low water mark is, by default, 90% of the total size of the
269 * cache and the high water mark is at 110% (both of these percentages can be
270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271 * respectively). The eviction thread will try to ensure that the cache remains
272 * within this range by waking up every second and checking if the cache is
273 * above the low water mark. The thread can also be woken up by callers adding
274 * elements into the cache if the cache is larger than the mid water (i.e max
275 * cache size). Once the eviction thread is woken up and eviction is required,
276 * it will continue evicting buffers until it's able to reduce the cache size
277 * to the low water mark. If the cache size continues to grow and hits the high
278 * water mark, then callers adding elements to the cache will begin to evict
279 * directly from the cache until the cache is no longer above the high water
280 * mark.
281 */
282
283 /*
284 * The percentage above and below the maximum cache size.
285 */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288
289 static int
dbuf_cons(void * vdb,void * unused,int kmflag)290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 (void) unused, (void) kmflag;
293 dmu_buf_impl_t *db = vdb;
294 memset(db, 0, sizeof (dmu_buf_impl_t));
295
296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 multilist_link_init(&db->db_cache_link);
300 zfs_refcount_create(&db->db_holds);
301
302 return (0);
303 }
304
305 static void
dbuf_dest(void * vdb,void * unused)306 dbuf_dest(void *vdb, void *unused)
307 {
308 (void) unused;
309 dmu_buf_impl_t *db = vdb;
310 mutex_destroy(&db->db_mtx);
311 rw_destroy(&db->db_rwlock);
312 cv_destroy(&db->db_changed);
313 ASSERT(!multilist_link_active(&db->db_cache_link));
314 zfs_refcount_destroy(&db->db_holds);
315 }
316
317 /*
318 * dbuf hash table routines
319 */
320 static dbuf_hash_table_t dbuf_hash_table;
321
322 /*
323 * We use Cityhash for this. It's fast, and has good hash properties without
324 * requiring any large static buffers.
325 */
326 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331
332 #define DTRACE_SET_STATE(db, why) \
333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
334 const char *, why)
335
336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337 ((dbuf)->db.db_object == (obj) && \
338 (dbuf)->db_objset == (os) && \
339 (dbuf)->db_level == (level) && \
340 (dbuf)->db_blkid == (blkid))
341
342 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid,uint64_t * hash_out)343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344 uint64_t *hash_out)
345 {
346 dbuf_hash_table_t *h = &dbuf_hash_table;
347 uint64_t hv;
348 uint64_t idx;
349 dmu_buf_impl_t *db;
350
351 hv = dbuf_hash(os, obj, level, blkid);
352 idx = hv & h->hash_table_mask;
353
354 mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 mutex_enter(&db->db_mtx);
358 if (db->db_state != DB_EVICTING) {
359 mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 return (db);
361 }
362 mutex_exit(&db->db_mtx);
363 }
364 }
365 mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 if (hash_out != NULL)
367 *hash_out = hv;
368 return (NULL);
369 }
370
371 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 dnode_t *dn;
375 dmu_buf_impl_t *db = NULL;
376
377 if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 if (dn->dn_bonus != NULL) {
380 db = dn->dn_bonus;
381 mutex_enter(&db->db_mtx);
382 }
383 rw_exit(&dn->dn_struct_rwlock);
384 dnode_rele(dn, FTAG);
385 }
386 return (db);
387 }
388
389 /*
390 * Insert an entry into the hash table. If there is already an element
391 * equal to elem in the hash table, then the already existing element
392 * will be returned and the new element will not be inserted.
393 * Otherwise returns NULL.
394 */
395 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 dbuf_hash_table_t *h = &dbuf_hash_table;
399 objset_t *os = db->db_objset;
400 uint64_t obj = db->db.db_object;
401 int level = db->db_level;
402 uint64_t blkid, idx;
403 dmu_buf_impl_t *dbf;
404 uint32_t i;
405
406 blkid = db->db_blkid;
407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 idx = db->db_hash & h->hash_table_mask;
409
410 mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 dbf = dbf->db_hash_next, i++) {
413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 mutex_enter(&dbf->db_mtx);
415 if (dbf->db_state != DB_EVICTING) {
416 mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 return (dbf);
418 }
419 mutex_exit(&dbf->db_mtx);
420 }
421 }
422
423 if (i > 0) {
424 DBUF_STAT_BUMP(hash_collisions);
425 if (i == 1)
426 DBUF_STAT_BUMP(hash_chains);
427
428 DBUF_STAT_MAX(hash_chain_max, i);
429 }
430
431 mutex_enter(&db->db_mtx);
432 db->db_hash_next = h->hash_table[idx];
433 h->hash_table[idx] = db;
434 mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 DBUF_STAT_BUMP(hash_elements);
436
437 return (NULL);
438 }
439
440 /*
441 * This returns whether this dbuf should be stored in the metadata cache, which
442 * is based on whether it's from one of the dnode types that store data related
443 * to traversing dataset hierarchies.
444 */
445 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 DB_DNODE_ENTER(db);
449 dnode_t *dn = DB_DNODE(db);
450 dmu_object_type_t type = dn->dn_storage_type;
451 if (type == DMU_OT_NONE)
452 type = dn->dn_type;
453 DB_DNODE_EXIT(db);
454
455 /* Check if this dbuf is one of the types we care about */
456 if (DMU_OT_IS_METADATA_CACHED(type)) {
457 /* If we hit this, then we set something up wrong in dmu_ot */
458 ASSERT(DMU_OT_IS_METADATA(type));
459
460 /*
461 * Sanity check for small-memory systems: don't allocate too
462 * much memory for this purpose.
463 */
464 if (zfs_refcount_count(
465 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
466 dbuf_metadata_cache_target_bytes()) {
467 DBUF_STAT_BUMP(metadata_cache_overflow);
468 return (B_FALSE);
469 }
470
471 return (B_TRUE);
472 }
473
474 return (B_FALSE);
475 }
476
477 /*
478 * Remove an entry from the hash table. It must be in the EVICTING state.
479 */
480 static void
dbuf_hash_remove(dmu_buf_impl_t * db)481 dbuf_hash_remove(dmu_buf_impl_t *db)
482 {
483 dbuf_hash_table_t *h = &dbuf_hash_table;
484 uint64_t idx;
485 dmu_buf_impl_t *dbf, **dbp;
486
487 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
488 db->db_blkid), ==, db->db_hash);
489 idx = db->db_hash & h->hash_table_mask;
490
491 /*
492 * We mustn't hold db_mtx to maintain lock ordering:
493 * DBUF_HASH_MUTEX > db_mtx.
494 */
495 ASSERT(zfs_refcount_is_zero(&db->db_holds));
496 ASSERT(db->db_state == DB_EVICTING);
497 ASSERT(!MUTEX_HELD(&db->db_mtx));
498
499 mutex_enter(DBUF_HASH_MUTEX(h, idx));
500 dbp = &h->hash_table[idx];
501 while ((dbf = *dbp) != db) {
502 dbp = &dbf->db_hash_next;
503 ASSERT(dbf != NULL);
504 }
505 *dbp = db->db_hash_next;
506 db->db_hash_next = NULL;
507 if (h->hash_table[idx] &&
508 h->hash_table[idx]->db_hash_next == NULL)
509 DBUF_STAT_BUMPDOWN(hash_chains);
510 mutex_exit(DBUF_HASH_MUTEX(h, idx));
511 DBUF_STAT_BUMPDOWN(hash_elements);
512 }
513
514 typedef enum {
515 DBVU_EVICTING,
516 DBVU_NOT_EVICTING
517 } dbvu_verify_type_t;
518
519 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)520 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
521 {
522 #ifdef ZFS_DEBUG
523 int64_t holds;
524
525 if (db->db_user == NULL)
526 return;
527
528 /* Only data blocks support the attachment of user data. */
529 ASSERT0(db->db_level);
530
531 /* Clients must resolve a dbuf before attaching user data. */
532 ASSERT(db->db.db_data != NULL);
533 ASSERT3U(db->db_state, ==, DB_CACHED);
534
535 holds = zfs_refcount_count(&db->db_holds);
536 if (verify_type == DBVU_EVICTING) {
537 /*
538 * Immediate eviction occurs when holds == dirtycnt.
539 * For normal eviction buffers, holds is zero on
540 * eviction, except when dbuf_fix_old_data() calls
541 * dbuf_clear_data(). However, the hold count can grow
542 * during eviction even though db_mtx is held (see
543 * dmu_bonus_hold() for an example), so we can only
544 * test the generic invariant that holds >= dirtycnt.
545 */
546 ASSERT3U(holds, >=, db->db_dirtycnt);
547 } else {
548 if (db->db_user_immediate_evict == TRUE)
549 ASSERT3U(holds, >=, db->db_dirtycnt);
550 else
551 ASSERT3U(holds, >, 0);
552 }
553 #endif
554 }
555
556 static void
dbuf_evict_user(dmu_buf_impl_t * db)557 dbuf_evict_user(dmu_buf_impl_t *db)
558 {
559 dmu_buf_user_t *dbu = db->db_user;
560
561 ASSERT(MUTEX_HELD(&db->db_mtx));
562
563 if (dbu == NULL)
564 return;
565
566 dbuf_verify_user(db, DBVU_EVICTING);
567 db->db_user = NULL;
568
569 #ifdef ZFS_DEBUG
570 if (dbu->dbu_clear_on_evict_dbufp != NULL)
571 *dbu->dbu_clear_on_evict_dbufp = NULL;
572 #endif
573
574 if (db->db_caching_status != DB_NO_CACHE) {
575 /*
576 * This is a cached dbuf, so the size of the user data is
577 * included in its cached amount. We adjust it here because the
578 * user data has already been detached from the dbuf, and the
579 * sync functions are not supposed to touch it (the dbuf might
580 * not exist anymore by the time the sync functions run.
581 */
582 uint64_t size = dbu->dbu_size;
583 (void) zfs_refcount_remove_many(
584 &dbuf_caches[db->db_caching_status].size, size, dbu);
585 if (db->db_caching_status == DB_DBUF_CACHE)
586 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
587 }
588
589 /*
590 * There are two eviction callbacks - one that we call synchronously
591 * and one that we invoke via a taskq. The async one is useful for
592 * avoiding lock order reversals and limiting stack depth.
593 *
594 * Note that if we have a sync callback but no async callback,
595 * it's likely that the sync callback will free the structure
596 * containing the dbu. In that case we need to take care to not
597 * dereference dbu after calling the sync evict func.
598 */
599 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
600
601 if (dbu->dbu_evict_func_sync != NULL)
602 dbu->dbu_evict_func_sync(dbu);
603
604 if (has_async) {
605 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
606 dbu, 0, &dbu->dbu_tqent);
607 }
608 }
609
610 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)611 dbuf_is_metadata(dmu_buf_impl_t *db)
612 {
613 /*
614 * Consider indirect blocks and spill blocks to be meta data.
615 */
616 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
617 return (B_TRUE);
618 } else {
619 boolean_t is_metadata;
620
621 DB_DNODE_ENTER(db);
622 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
623 DB_DNODE_EXIT(db);
624
625 return (is_metadata);
626 }
627 }
628
629 /*
630 * We want to exclude buffers that are on a special allocation class from
631 * L2ARC.
632 */
633 boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t * db,blkptr_t * bp)634 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
635 {
636 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
637 (db->db_objset->os_secondary_cache ==
638 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
639 if (l2arc_exclude_special == 0)
640 return (B_TRUE);
641
642 /*
643 * bp must be checked in the event it was passed from
644 * dbuf_read_impl() as the result of a the BP being set from
645 * a Direct I/O write in dbuf_read(). See comments in
646 * dbuf_read().
647 */
648 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
649
650 if (db_bp == NULL || BP_IS_HOLE(db_bp))
651 return (B_FALSE);
652 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
653 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
654 vdev_t *vd = NULL;
655
656 if (vdev < rvd->vdev_children)
657 vd = rvd->vdev_child[vdev];
658
659 if (vd == NULL)
660 return (B_TRUE);
661
662 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
663 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
664 return (B_TRUE);
665 }
666 return (B_FALSE);
667 }
668
669 static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t * bp,dnode_t * dn,int64_t level)670 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
671 {
672 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
673 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
674 (level > 0 ||
675 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
676 if (l2arc_exclude_special == 0)
677 return (B_TRUE);
678
679 if (bp == NULL || BP_IS_HOLE(bp))
680 return (B_FALSE);
681 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
682 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
683 vdev_t *vd = NULL;
684
685 if (vdev < rvd->vdev_children)
686 vd = rvd->vdev_child[vdev];
687
688 if (vd == NULL)
689 return (B_TRUE);
690
691 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
692 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
693 return (B_TRUE);
694 }
695 return (B_FALSE);
696 }
697
698
699 /*
700 * This function *must* return indices evenly distributed between all
701 * sublists of the multilist. This is needed due to how the dbuf eviction
702 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
703 * distributed between all sublists and uses this assumption when
704 * deciding which sublist to evict from and how much to evict from it.
705 */
706 static unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)707 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
708 {
709 dmu_buf_impl_t *db = obj;
710
711 /*
712 * The assumption here, is the hash value for a given
713 * dmu_buf_impl_t will remain constant throughout it's lifetime
714 * (i.e. it's objset, object, level and blkid fields don't change).
715 * Thus, we don't need to store the dbuf's sublist index
716 * on insertion, as this index can be recalculated on removal.
717 *
718 * Also, the low order bits of the hash value are thought to be
719 * distributed evenly. Otherwise, in the case that the multilist
720 * has a power of two number of sublists, each sublists' usage
721 * would not be evenly distributed. In this context full 64bit
722 * division would be a waste of time, so limit it to 32 bits.
723 */
724 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
725 db->db_level, db->db_blkid) %
726 multilist_get_num_sublists(ml));
727 }
728
729 /*
730 * The target size of the dbuf cache can grow with the ARC target,
731 * unless limited by the tunable dbuf_cache_max_bytes.
732 */
733 static inline unsigned long
dbuf_cache_target_bytes(void)734 dbuf_cache_target_bytes(void)
735 {
736 return (MIN(dbuf_cache_max_bytes,
737 arc_target_bytes() >> dbuf_cache_shift));
738 }
739
740 /*
741 * The target size of the dbuf metadata cache can grow with the ARC target,
742 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
743 */
744 static inline unsigned long
dbuf_metadata_cache_target_bytes(void)745 dbuf_metadata_cache_target_bytes(void)
746 {
747 return (MIN(dbuf_metadata_cache_max_bytes,
748 arc_target_bytes() >> dbuf_metadata_cache_shift));
749 }
750
751 static inline uint64_t
dbuf_cache_hiwater_bytes(void)752 dbuf_cache_hiwater_bytes(void)
753 {
754 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
755 return (dbuf_cache_target +
756 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
757 }
758
759 static inline uint64_t
dbuf_cache_lowater_bytes(void)760 dbuf_cache_lowater_bytes(void)
761 {
762 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
763 return (dbuf_cache_target -
764 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
765 }
766
767 static inline boolean_t
dbuf_cache_above_lowater(void)768 dbuf_cache_above_lowater(void)
769 {
770 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
771 dbuf_cache_lowater_bytes());
772 }
773
774 /*
775 * Evict the oldest eligible dbuf from the dbuf cache.
776 */
777 static void
dbuf_evict_one(void)778 dbuf_evict_one(void)
779 {
780 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
781 multilist_sublist_t *mls = multilist_sublist_lock_idx(
782 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
783
784 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
785
786 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
787 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
788 db = multilist_sublist_prev(mls, db);
789 }
790
791 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
792 multilist_sublist_t *, mls);
793
794 if (db != NULL) {
795 multilist_sublist_remove(mls, db);
796 multilist_sublist_unlock(mls);
797 uint64_t size = db->db.db_size;
798 uint64_t usize = dmu_buf_user_size(&db->db);
799 (void) zfs_refcount_remove_many(
800 &dbuf_caches[DB_DBUF_CACHE].size, size, db);
801 (void) zfs_refcount_remove_many(
802 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
803 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
804 DBUF_STAT_BUMPDOWN(cache_count);
805 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
806 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
807 db->db_caching_status = DB_NO_CACHE;
808 dbuf_destroy(db);
809 DBUF_STAT_BUMP(cache_total_evicts);
810 } else {
811 multilist_sublist_unlock(mls);
812 }
813 }
814
815 /*
816 * The dbuf evict thread is responsible for aging out dbufs from the
817 * cache. Once the cache has reached it's maximum size, dbufs are removed
818 * and destroyed. The eviction thread will continue running until the size
819 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
820 * out of the cache it is destroyed and becomes eligible for arc eviction.
821 */
822 static __attribute__((noreturn)) void
dbuf_evict_thread(void * unused)823 dbuf_evict_thread(void *unused)
824 {
825 (void) unused;
826 callb_cpr_t cpr;
827
828 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
829
830 mutex_enter(&dbuf_evict_lock);
831 while (!dbuf_evict_thread_exit) {
832 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
833 CALLB_CPR_SAFE_BEGIN(&cpr);
834 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
835 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
836 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
837 }
838 mutex_exit(&dbuf_evict_lock);
839
840 /*
841 * Keep evicting as long as we're above the low water mark
842 * for the cache. We do this without holding the locks to
843 * minimize lock contention.
844 */
845 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
846 dbuf_evict_one();
847 }
848
849 mutex_enter(&dbuf_evict_lock);
850 }
851
852 dbuf_evict_thread_exit = B_FALSE;
853 cv_broadcast(&dbuf_evict_cv);
854 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
855 thread_exit();
856 }
857
858 /*
859 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
860 * If the dbuf cache is at its high water mark, then evict a dbuf from the
861 * dbuf cache using the caller's context.
862 */
863 static void
dbuf_evict_notify(uint64_t size)864 dbuf_evict_notify(uint64_t size)
865 {
866 /*
867 * We check if we should evict without holding the dbuf_evict_lock,
868 * because it's OK to occasionally make the wrong decision here,
869 * and grabbing the lock results in massive lock contention.
870 */
871 if (size > dbuf_cache_target_bytes()) {
872 /*
873 * Avoid calling dbuf_evict_one() from memory reclaim context
874 * (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks.
875 * Memory reclaim threads can get stuck waiting for the dbuf
876 * hash lock.
877 */
878 if (size > dbuf_cache_hiwater_bytes() &&
879 !current_is_reclaim_thread()) {
880 dbuf_evict_one();
881 }
882 cv_signal(&dbuf_evict_cv);
883 }
884 }
885
886 /*
887 * Since dbuf cache size is a fraction of target ARC size, ARC calls this when
888 * its target size is reduced due to memory pressure.
889 */
890 void
dbuf_cache_reduce_target_size(void)891 dbuf_cache_reduce_target_size(void)
892 {
893 uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
894
895 if (size > dbuf_cache_target_bytes())
896 cv_signal(&dbuf_evict_cv);
897 }
898
899 static int
dbuf_kstat_update(kstat_t * ksp,int rw)900 dbuf_kstat_update(kstat_t *ksp, int rw)
901 {
902 dbuf_stats_t *ds = ksp->ks_data;
903 dbuf_hash_table_t *h = &dbuf_hash_table;
904
905 if (rw == KSTAT_WRITE)
906 return (SET_ERROR(EACCES));
907
908 ds->cache_count.value.ui64 =
909 wmsum_value(&dbuf_sums.cache_count);
910 ds->cache_size_bytes.value.ui64 =
911 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
912 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
913 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
914 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
915 ds->cache_total_evicts.value.ui64 =
916 wmsum_value(&dbuf_sums.cache_total_evicts);
917 for (int i = 0; i < DN_MAX_LEVELS; i++) {
918 ds->cache_levels[i].value.ui64 =
919 wmsum_value(&dbuf_sums.cache_levels[i]);
920 ds->cache_levels_bytes[i].value.ui64 =
921 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
922 }
923 ds->hash_hits.value.ui64 =
924 wmsum_value(&dbuf_sums.hash_hits);
925 ds->hash_misses.value.ui64 =
926 wmsum_value(&dbuf_sums.hash_misses);
927 ds->hash_collisions.value.ui64 =
928 wmsum_value(&dbuf_sums.hash_collisions);
929 ds->hash_elements.value.ui64 =
930 wmsum_value(&dbuf_sums.hash_elements);
931 ds->hash_chains.value.ui64 =
932 wmsum_value(&dbuf_sums.hash_chains);
933 ds->hash_insert_race.value.ui64 =
934 wmsum_value(&dbuf_sums.hash_insert_race);
935 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
936 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
937 ds->metadata_cache_count.value.ui64 =
938 wmsum_value(&dbuf_sums.metadata_cache_count);
939 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
940 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
941 ds->metadata_cache_overflow.value.ui64 =
942 wmsum_value(&dbuf_sums.metadata_cache_overflow);
943 return (0);
944 }
945
946 void
dbuf_init(void)947 dbuf_init(void)
948 {
949 uint64_t hmsize, hsize = 1ULL << 16;
950 dbuf_hash_table_t *h = &dbuf_hash_table;
951
952 /*
953 * The hash table is big enough to fill one eighth of physical memory
954 * with an average block size of zfs_arc_average_blocksize (default 8K).
955 * By default, the table will take up
956 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
957 */
958 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
959 hsize <<= 1;
960
961 h->hash_table = NULL;
962 while (h->hash_table == NULL) {
963 h->hash_table_mask = hsize - 1;
964
965 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
966 if (h->hash_table == NULL)
967 hsize >>= 1;
968
969 ASSERT3U(hsize, >=, 1ULL << 10);
970 }
971
972 /*
973 * The hash table buckets are protected by an array of mutexes where
974 * each mutex is reponsible for protecting 128 buckets. A minimum
975 * array size of 8192 is targeted to avoid contention.
976 */
977 if (dbuf_mutex_cache_shift == 0)
978 hmsize = MAX(hsize >> 7, 1ULL << 13);
979 else
980 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
981
982 h->hash_mutexes = NULL;
983 while (h->hash_mutexes == NULL) {
984 h->hash_mutex_mask = hmsize - 1;
985
986 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
987 KM_SLEEP);
988 if (h->hash_mutexes == NULL)
989 hmsize >>= 1;
990 }
991
992 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
993 sizeof (dmu_buf_impl_t),
994 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
995 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
996 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
997
998 for (int i = 0; i < hmsize; i++)
999 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
1000
1001 dbuf_stats_init(h);
1002
1003 /*
1004 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
1005 * configuration is not required.
1006 */
1007 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
1008
1009 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1010 multilist_create(&dbuf_caches[dcs].cache,
1011 sizeof (dmu_buf_impl_t),
1012 offsetof(dmu_buf_impl_t, db_cache_link),
1013 dbuf_cache_multilist_index_func);
1014 zfs_refcount_create(&dbuf_caches[dcs].size);
1015 }
1016
1017 dbuf_evict_thread_exit = B_FALSE;
1018 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1019 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
1020 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
1021 NULL, 0, &p0, TS_RUN, minclsyspri);
1022
1023 wmsum_init(&dbuf_sums.cache_count, 0);
1024 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1025 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1026 wmsum_init(&dbuf_sums.cache_levels[i], 0);
1027 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1028 }
1029 wmsum_init(&dbuf_sums.hash_hits, 0);
1030 wmsum_init(&dbuf_sums.hash_misses, 0);
1031 wmsum_init(&dbuf_sums.hash_collisions, 0);
1032 wmsum_init(&dbuf_sums.hash_elements, 0);
1033 wmsum_init(&dbuf_sums.hash_chains, 0);
1034 wmsum_init(&dbuf_sums.hash_insert_race, 0);
1035 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1036 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1037
1038 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1039 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1040 KSTAT_FLAG_VIRTUAL);
1041 if (dbuf_ksp != NULL) {
1042 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1043 snprintf(dbuf_stats.cache_levels[i].name,
1044 KSTAT_STRLEN, "cache_level_%d", i);
1045 dbuf_stats.cache_levels[i].data_type =
1046 KSTAT_DATA_UINT64;
1047 snprintf(dbuf_stats.cache_levels_bytes[i].name,
1048 KSTAT_STRLEN, "cache_level_%d_bytes", i);
1049 dbuf_stats.cache_levels_bytes[i].data_type =
1050 KSTAT_DATA_UINT64;
1051 }
1052 dbuf_ksp->ks_data = &dbuf_stats;
1053 dbuf_ksp->ks_update = dbuf_kstat_update;
1054 kstat_install(dbuf_ksp);
1055 }
1056 }
1057
1058 void
dbuf_fini(void)1059 dbuf_fini(void)
1060 {
1061 dbuf_hash_table_t *h = &dbuf_hash_table;
1062
1063 dbuf_stats_destroy();
1064
1065 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1066 mutex_destroy(&h->hash_mutexes[i]);
1067
1068 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1069 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1070 sizeof (kmutex_t));
1071
1072 kmem_cache_destroy(dbuf_kmem_cache);
1073 kmem_cache_destroy(dbuf_dirty_kmem_cache);
1074 taskq_destroy(dbu_evict_taskq);
1075
1076 mutex_enter(&dbuf_evict_lock);
1077 dbuf_evict_thread_exit = B_TRUE;
1078 while (dbuf_evict_thread_exit) {
1079 cv_signal(&dbuf_evict_cv);
1080 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1081 }
1082 mutex_exit(&dbuf_evict_lock);
1083
1084 mutex_destroy(&dbuf_evict_lock);
1085 cv_destroy(&dbuf_evict_cv);
1086
1087 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1088 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1089 multilist_destroy(&dbuf_caches[dcs].cache);
1090 }
1091
1092 if (dbuf_ksp != NULL) {
1093 kstat_delete(dbuf_ksp);
1094 dbuf_ksp = NULL;
1095 }
1096
1097 wmsum_fini(&dbuf_sums.cache_count);
1098 wmsum_fini(&dbuf_sums.cache_total_evicts);
1099 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1100 wmsum_fini(&dbuf_sums.cache_levels[i]);
1101 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1102 }
1103 wmsum_fini(&dbuf_sums.hash_hits);
1104 wmsum_fini(&dbuf_sums.hash_misses);
1105 wmsum_fini(&dbuf_sums.hash_collisions);
1106 wmsum_fini(&dbuf_sums.hash_elements);
1107 wmsum_fini(&dbuf_sums.hash_chains);
1108 wmsum_fini(&dbuf_sums.hash_insert_race);
1109 wmsum_fini(&dbuf_sums.metadata_cache_count);
1110 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1111 }
1112
1113 /*
1114 * Other stuff.
1115 */
1116
1117 #ifdef ZFS_DEBUG
1118 static void
dbuf_verify(dmu_buf_impl_t * db)1119 dbuf_verify(dmu_buf_impl_t *db)
1120 {
1121 dnode_t *dn;
1122 dbuf_dirty_record_t *dr;
1123 uint32_t txg_prev;
1124
1125 ASSERT(MUTEX_HELD(&db->db_mtx));
1126
1127 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1128 return;
1129
1130 ASSERT(db->db_objset != NULL);
1131 DB_DNODE_ENTER(db);
1132 dn = DB_DNODE(db);
1133 if (dn == NULL) {
1134 ASSERT0P(db->db_parent);
1135 ASSERT0P(db->db_blkptr);
1136 } else {
1137 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1138 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1139 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1140 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1141 db->db_blkid == DMU_SPILL_BLKID ||
1142 !avl_is_empty(&dn->dn_dbufs));
1143 }
1144 if (db->db_blkid == DMU_BONUS_BLKID) {
1145 ASSERT(dn != NULL);
1146 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1147 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1148 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1149 ASSERT(dn != NULL);
1150 ASSERT0(db->db.db_offset);
1151 } else {
1152 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1153 }
1154
1155 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1156 ASSERT(dr->dr_dbuf == db);
1157 txg_prev = dr->dr_txg;
1158 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1159 dr = list_next(&db->db_dirty_records, dr)) {
1160 ASSERT(dr->dr_dbuf == db);
1161 ASSERT(txg_prev > dr->dr_txg);
1162 txg_prev = dr->dr_txg;
1163 }
1164 }
1165
1166 /*
1167 * We can't assert that db_size matches dn_datablksz because it
1168 * can be momentarily different when another thread is doing
1169 * dnode_set_blksz().
1170 */
1171 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1172 dr = db->db_data_pending;
1173 /*
1174 * It should only be modified in syncing context, so
1175 * make sure we only have one copy of the data.
1176 */
1177 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1178 }
1179
1180 /* verify db->db_blkptr */
1181 if (db->db_blkptr) {
1182 if (db->db_parent == dn->dn_dbuf) {
1183 /* db is pointed to by the dnode */
1184 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1185 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1186 ASSERT0P(db->db_parent);
1187 else
1188 ASSERT(db->db_parent != NULL);
1189 if (db->db_blkid != DMU_SPILL_BLKID)
1190 ASSERT3P(db->db_blkptr, ==,
1191 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1192 } else {
1193 /* db is pointed to by an indirect block */
1194 int epb __maybe_unused = db->db_parent->db.db_size >>
1195 SPA_BLKPTRSHIFT;
1196 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1197 ASSERT3U(db->db_parent->db.db_object, ==,
1198 db->db.db_object);
1199 ASSERT3P(db->db_blkptr, ==,
1200 ((blkptr_t *)db->db_parent->db.db_data +
1201 db->db_blkid % epb));
1202 }
1203 }
1204 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1205 (db->db_buf == NULL || db->db_buf->b_data) &&
1206 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1207 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1208 /*
1209 * If the blkptr isn't set but they have nonzero data,
1210 * it had better be dirty, otherwise we'll lose that
1211 * data when we evict this buffer.
1212 *
1213 * There is an exception to this rule for indirect blocks; in
1214 * this case, if the indirect block is a hole, we fill in a few
1215 * fields on each of the child blocks (importantly, birth time)
1216 * to prevent hole birth times from being lost when you
1217 * partially fill in a hole.
1218 */
1219 if (db->db_dirtycnt == 0) {
1220 if (db->db_level == 0) {
1221 uint64_t *buf = db->db.db_data;
1222 int i;
1223
1224 for (i = 0; i < db->db.db_size >> 3; i++) {
1225 ASSERT0(buf[i]);
1226 }
1227 } else {
1228 blkptr_t *bps = db->db.db_data;
1229 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1230 db->db.db_size);
1231 /*
1232 * We want to verify that all the blkptrs in the
1233 * indirect block are holes, but we may have
1234 * automatically set up a few fields for them.
1235 * We iterate through each blkptr and verify
1236 * they only have those fields set.
1237 */
1238 for (int i = 0;
1239 i < db->db.db_size / sizeof (blkptr_t);
1240 i++) {
1241 blkptr_t *bp = &bps[i];
1242 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1243 &bp->blk_cksum));
1244 ASSERT(
1245 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1246 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1247 DVA_IS_EMPTY(&bp->blk_dva[2]));
1248 ASSERT0(bp->blk_fill);
1249 ASSERT(!BP_IS_EMBEDDED(bp));
1250 ASSERT(BP_IS_HOLE(bp));
1251 ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp));
1252 }
1253 }
1254 }
1255 }
1256 DB_DNODE_EXIT(db);
1257 }
1258 #endif
1259
1260 static void
dbuf_clear_data(dmu_buf_impl_t * db)1261 dbuf_clear_data(dmu_buf_impl_t *db)
1262 {
1263 ASSERT(MUTEX_HELD(&db->db_mtx));
1264 dbuf_evict_user(db);
1265 ASSERT0P(db->db_buf);
1266 db->db.db_data = NULL;
1267 if (db->db_state != DB_NOFILL) {
1268 db->db_state = DB_UNCACHED;
1269 DTRACE_SET_STATE(db, "clear data");
1270 }
1271 }
1272
1273 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)1274 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1275 {
1276 ASSERT(MUTEX_HELD(&db->db_mtx));
1277 ASSERT(buf != NULL);
1278
1279 db->db_buf = buf;
1280 ASSERT(buf->b_data != NULL);
1281 db->db.db_data = buf->b_data;
1282 }
1283
1284 static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t * db)1285 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1286 {
1287 spa_t *spa = db->db_objset->os_spa;
1288
1289 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1290 }
1291
1292 /*
1293 * Calculate which level n block references the data at the level 0 offset
1294 * provided.
1295 */
1296 uint64_t
dbuf_whichblock(const dnode_t * dn,const int64_t level,const uint64_t offset)1297 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1298 {
1299 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1300 /*
1301 * The level n blkid is equal to the level 0 blkid divided by
1302 * the number of level 0s in a level n block.
1303 *
1304 * The level 0 blkid is offset >> datablkshift =
1305 * offset / 2^datablkshift.
1306 *
1307 * The number of level 0s in a level n is the number of block
1308 * pointers in an indirect block, raised to the power of level.
1309 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1310 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1311 *
1312 * Thus, the level n blkid is: offset /
1313 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1314 * = offset / 2^(datablkshift + level *
1315 * (indblkshift - SPA_BLKPTRSHIFT))
1316 * = offset >> (datablkshift + level *
1317 * (indblkshift - SPA_BLKPTRSHIFT))
1318 */
1319
1320 const unsigned exp = dn->dn_datablkshift +
1321 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1322
1323 if (exp >= 8 * sizeof (offset)) {
1324 /* This only happens on the highest indirection level */
1325 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1326 return (0);
1327 }
1328
1329 ASSERT3U(exp, <, 8 * sizeof (offset));
1330
1331 return (offset >> exp);
1332 } else {
1333 ASSERT3U(offset, <, dn->dn_datablksz);
1334 return (0);
1335 }
1336 }
1337
1338 /*
1339 * This function is used to lock the parent of the provided dbuf. This should be
1340 * used when modifying or reading db_blkptr.
1341 */
1342 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,const void * tag)1343 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1344 {
1345 enum db_lock_type ret = DLT_NONE;
1346 if (db->db_parent != NULL) {
1347 rw_enter(&db->db_parent->db_rwlock, rw);
1348 ret = DLT_PARENT;
1349 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1350 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1351 tag);
1352 ret = DLT_OBJSET;
1353 }
1354 /*
1355 * We only return a DLT_NONE lock when it's the top-most indirect block
1356 * of the meta-dnode of the MOS.
1357 */
1358 return (ret);
1359 }
1360
1361 /*
1362 * We need to pass the lock type in because it's possible that the block will
1363 * move from being the topmost indirect block in a dnode (and thus, have no
1364 * parent) to not the top-most via an indirection increase. This would cause a
1365 * panic if we didn't pass the lock type in.
1366 */
1367 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,const void * tag)1368 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1369 {
1370 if (type == DLT_PARENT)
1371 rw_exit(&db->db_parent->db_rwlock);
1372 else if (type == DLT_OBJSET)
1373 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1374 }
1375
1376 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)1377 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1378 arc_buf_t *buf, void *vdb)
1379 {
1380 (void) zb, (void) bp;
1381 dmu_buf_impl_t *db = vdb;
1382
1383 mutex_enter(&db->db_mtx);
1384 ASSERT3U(db->db_state, ==, DB_READ);
1385
1386 /*
1387 * All reads are synchronous, so we must have a hold on the dbuf
1388 */
1389 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1390 ASSERT0P(db->db_buf);
1391 ASSERT0P(db->db.db_data);
1392 if (buf == NULL) {
1393 /* i/o error */
1394 ASSERT(zio == NULL || zio->io_error != 0);
1395 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1396 ASSERT0P(db->db_buf);
1397 db->db_state = DB_UNCACHED;
1398 DTRACE_SET_STATE(db, "i/o error");
1399 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1400 /* freed in flight */
1401 ASSERT(zio == NULL || zio->io_error == 0);
1402 arc_release(buf, db);
1403 memset(buf->b_data, 0, db->db.db_size);
1404 arc_buf_freeze(buf);
1405 db->db_freed_in_flight = FALSE;
1406 dbuf_set_data(db, buf);
1407 db->db_state = DB_CACHED;
1408 DTRACE_SET_STATE(db, "freed in flight");
1409 } else {
1410 /* success */
1411 ASSERT(zio == NULL || zio->io_error == 0);
1412 dbuf_set_data(db, buf);
1413 db->db_state = DB_CACHED;
1414 DTRACE_SET_STATE(db, "successful read");
1415 }
1416 cv_broadcast(&db->db_changed);
1417 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1418 }
1419
1420 /*
1421 * Shortcut for performing reads on bonus dbufs. Returns
1422 * an error if we fail to verify the dnode associated with
1423 * a decrypted block. Otherwise success.
1424 */
1425 static int
dbuf_read_bonus(dmu_buf_impl_t * db,dnode_t * dn)1426 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1427 {
1428 void* db_data;
1429 int bonuslen, max_bonuslen;
1430
1431 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1432 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1433 ASSERT(MUTEX_HELD(&db->db_mtx));
1434 ASSERT(DB_DNODE_HELD(db));
1435 ASSERT3U(bonuslen, <=, db->db.db_size);
1436 db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1437 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1438 if (bonuslen < max_bonuslen)
1439 memset(db_data, 0, max_bonuslen);
1440 if (bonuslen)
1441 memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen);
1442 db->db.db_data = db_data;
1443 db->db_state = DB_CACHED;
1444 DTRACE_SET_STATE(db, "bonus buffer filled");
1445 return (0);
1446 }
1447
1448 static void
dbuf_handle_indirect_hole(void * data,dnode_t * dn,blkptr_t * dbbp)1449 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp)
1450 {
1451 blkptr_t *bps = data;
1452 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1453 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1454
1455 for (int i = 0; i < n_bps; i++) {
1456 blkptr_t *bp = &bps[i];
1457
1458 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1459 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1460 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1461 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1462 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1463 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1464 }
1465 }
1466
1467 /*
1468 * Handle reads on dbufs that are holes, if necessary. This function
1469 * requires that the dbuf's mutex is held. Returns success (0) if action
1470 * was taken, ENOENT if no action was taken.
1471 */
1472 static int
dbuf_read_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * bp)1473 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1474 {
1475 ASSERT(MUTEX_HELD(&db->db_mtx));
1476 arc_buf_t *db_data;
1477
1478 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1479 /*
1480 * For level 0 blocks only, if the above check fails:
1481 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1482 * processes the delete record and clears the bp while we are waiting
1483 * for the dn_mtx (resulting in a "no" from block_freed).
1484 */
1485 if (!is_hole && db->db_level == 0)
1486 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1487
1488 if (is_hole) {
1489 db_data = dbuf_alloc_arcbuf(db);
1490 memset(db_data->b_data, 0, db->db.db_size);
1491
1492 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1493 BP_GET_LOGICAL_BIRTH(bp) != 0) {
1494 dbuf_handle_indirect_hole(db_data->b_data, dn, bp);
1495 }
1496 dbuf_set_data(db, db_data);
1497 db->db_state = DB_CACHED;
1498 DTRACE_SET_STATE(db, "hole read satisfied");
1499 return (0);
1500 }
1501 return (ENOENT);
1502 }
1503
1504 /*
1505 * This function ensures that, when doing a decrypting read of a block,
1506 * we make sure we have decrypted the dnode associated with it. We must do
1507 * this so that we ensure we are fully authenticating the checksum-of-MACs
1508 * tree from the root of the objset down to this block. Indirect blocks are
1509 * always verified against their secure checksum-of-MACs assuming that the
1510 * dnode containing them is correct. Now that we are doing a decrypting read,
1511 * we can be sure that the key is loaded and verify that assumption. This is
1512 * especially important considering that we always read encrypted dnode
1513 * blocks as raw data (without verifying their MACs) to start, and
1514 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1515 */
1516 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,dnode_t * dn,dmu_flags_t flags)1517 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn,
1518 dmu_flags_t flags)
1519 {
1520 objset_t *os = db->db_objset;
1521 dmu_buf_impl_t *dndb;
1522 arc_buf_t *dnbuf;
1523 zbookmark_phys_t zb;
1524 int err;
1525
1526 if ((flags & DMU_READ_NO_DECRYPT) != 0 ||
1527 !os->os_encrypted || os->os_raw_receive ||
1528 (dndb = dn->dn_dbuf) == NULL)
1529 return (0);
1530
1531 dnbuf = dndb->db_buf;
1532 if (!arc_is_encrypted(dnbuf))
1533 return (0);
1534
1535 mutex_enter(&dndb->db_mtx);
1536
1537 /*
1538 * Since dnode buffer is modified by sync process, there can be only
1539 * one copy of it. It means we can not modify (decrypt) it while it
1540 * is being written. I don't see how this may happen now, since
1541 * encrypted dnode writes by receive should be completed before any
1542 * plain-text reads due to txg wait, but better be safe than sorry.
1543 */
1544 while (1) {
1545 if (!arc_is_encrypted(dnbuf)) {
1546 mutex_exit(&dndb->db_mtx);
1547 return (0);
1548 }
1549 dbuf_dirty_record_t *dr = dndb->db_data_pending;
1550 if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1551 break;
1552 cv_wait(&dndb->db_changed, &dndb->db_mtx);
1553 };
1554
1555 SET_BOOKMARK(&zb, dmu_objset_id(os),
1556 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1557 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1558
1559 /*
1560 * An error code of EACCES tells us that the key is still not
1561 * available. This is ok if we are only reading authenticated
1562 * (and therefore non-encrypted) blocks.
1563 */
1564 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1565 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1566 (db->db_blkid == DMU_BONUS_BLKID &&
1567 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1568 err = 0;
1569
1570 mutex_exit(&dndb->db_mtx);
1571
1572 return (err);
1573 }
1574
1575 /*
1576 * Drops db_mtx and the parent lock specified by dblt and tag before
1577 * returning.
1578 */
1579 static int
dbuf_read_impl(dmu_buf_impl_t * db,dnode_t * dn,zio_t * zio,dmu_flags_t flags,db_lock_type_t dblt,blkptr_t * bp,const void * tag)1580 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags,
1581 db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1582 {
1583 zbookmark_phys_t zb;
1584 uint32_t aflags = ARC_FLAG_NOWAIT;
1585 int err, zio_flags;
1586
1587 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1588 ASSERT(MUTEX_HELD(&db->db_mtx));
1589 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1590 ASSERT0P(db->db_buf);
1591 ASSERT(db->db_parent == NULL ||
1592 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1593
1594 if (db->db_blkid == DMU_BONUS_BLKID) {
1595 err = dbuf_read_bonus(db, dn);
1596 goto early_unlock;
1597 }
1598
1599 err = dbuf_read_hole(db, dn, bp);
1600 if (err == 0)
1601 goto early_unlock;
1602
1603 ASSERT(bp != NULL);
1604
1605 /*
1606 * Any attempt to read a redacted block should result in an error. This
1607 * will never happen under normal conditions, but can be useful for
1608 * debugging purposes.
1609 */
1610 if (BP_IS_REDACTED(bp)) {
1611 ASSERT(dsl_dataset_feature_is_active(
1612 db->db_objset->os_dsl_dataset,
1613 SPA_FEATURE_REDACTED_DATASETS));
1614 err = SET_ERROR(EIO);
1615 goto early_unlock;
1616 }
1617
1618 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1619 db->db.db_object, db->db_level, db->db_blkid);
1620
1621 /*
1622 * All bps of an encrypted os should have the encryption bit set.
1623 * If this is not true it indicates tampering and we report an error.
1624 */
1625 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1626 spa_log_error(db->db_objset->os_spa, &zb,
1627 BP_GET_PHYSICAL_BIRTH(bp));
1628 err = SET_ERROR(EIO);
1629 goto early_unlock;
1630 }
1631
1632 db->db_state = DB_READ;
1633 DTRACE_SET_STATE(db, "read issued");
1634 mutex_exit(&db->db_mtx);
1635
1636 if (!DBUF_IS_CACHEABLE(db))
1637 aflags |= ARC_FLAG_UNCACHED;
1638 else if (dbuf_is_l2cacheable(db, bp))
1639 aflags |= ARC_FLAG_L2CACHE;
1640
1641 dbuf_add_ref(db, NULL);
1642
1643 zio_flags = (flags & DB_RF_CANFAIL) ?
1644 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1645
1646 if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1647 zio_flags |= ZIO_FLAG_RAW;
1648
1649 /*
1650 * The zio layer will copy the provided blkptr later, but we need to
1651 * do this now so that we can release the parent's rwlock. We have to
1652 * do that now so that if dbuf_read_done is called synchronously (on
1653 * an l1 cache hit) we don't acquire the db_mtx while holding the
1654 * parent's rwlock, which would be a lock ordering violation.
1655 */
1656 blkptr_t copy = *bp;
1657 dmu_buf_unlock_parent(db, dblt, tag);
1658 return (arc_read(zio, db->db_objset->os_spa, ©,
1659 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1660 &aflags, &zb));
1661
1662 early_unlock:
1663 mutex_exit(&db->db_mtx);
1664 dmu_buf_unlock_parent(db, dblt, tag);
1665 return (err);
1666 }
1667
1668 /*
1669 * This is our just-in-time copy function. It makes a copy of buffers that
1670 * have been modified in a previous transaction group before we access them in
1671 * the current active group.
1672 *
1673 * This function is used in three places: when we are dirtying a buffer for the
1674 * first time in a txg, when we are freeing a range in a dnode that includes
1675 * this buffer, and when we are accessing a buffer which was received compressed
1676 * and later referenced in a WRITE_BYREF record.
1677 *
1678 * Note that when we are called from dbuf_free_range() we do not put a hold on
1679 * the buffer, we just traverse the active dbuf list for the dnode.
1680 */
1681 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1682 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1683 {
1684 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1685
1686 ASSERT(MUTEX_HELD(&db->db_mtx));
1687 ASSERT(db->db.db_data != NULL);
1688 ASSERT0(db->db_level);
1689 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1690
1691 if (dr == NULL ||
1692 (dr->dt.dl.dr_data !=
1693 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1694 return;
1695
1696 /*
1697 * If the last dirty record for this dbuf has not yet synced
1698 * and its referencing the dbuf data, either:
1699 * reset the reference to point to a new copy,
1700 * or (if there a no active holders)
1701 * just null out the current db_data pointer.
1702 */
1703 ASSERT3U(dr->dr_txg, >=, txg - 2);
1704 if (db->db_blkid == DMU_BONUS_BLKID) {
1705 dnode_t *dn = DB_DNODE(db);
1706 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1707 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1708 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1709 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1710 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1711 dnode_t *dn = DB_DNODE(db);
1712 int size = arc_buf_size(db->db_buf);
1713 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1714 spa_t *spa = db->db_objset->os_spa;
1715 enum zio_compress compress_type =
1716 arc_get_compression(db->db_buf);
1717 uint8_t complevel = arc_get_complevel(db->db_buf);
1718
1719 if (arc_is_encrypted(db->db_buf)) {
1720 boolean_t byteorder;
1721 uint8_t salt[ZIO_DATA_SALT_LEN];
1722 uint8_t iv[ZIO_DATA_IV_LEN];
1723 uint8_t mac[ZIO_DATA_MAC_LEN];
1724
1725 arc_get_raw_params(db->db_buf, &byteorder, salt,
1726 iv, mac);
1727 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1728 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1729 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1730 compress_type, complevel);
1731 } else if (compress_type != ZIO_COMPRESS_OFF) {
1732 ASSERT3U(type, ==, ARC_BUFC_DATA);
1733 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1734 size, arc_buf_lsize(db->db_buf), compress_type,
1735 complevel);
1736 } else {
1737 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1738 }
1739 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1740 } else {
1741 db->db_buf = NULL;
1742 dbuf_clear_data(db);
1743 }
1744 }
1745
1746 int
dbuf_read(dmu_buf_impl_t * db,zio_t * pio,dmu_flags_t flags)1747 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags)
1748 {
1749 dnode_t *dn;
1750 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1751 int err;
1752
1753 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1754
1755 DB_DNODE_ENTER(db);
1756 dn = DB_DNODE(db);
1757
1758 /*
1759 * Ensure that this block's dnode has been decrypted if the caller
1760 * has requested decrypted data.
1761 */
1762 err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1763 if (err != 0)
1764 goto done;
1765
1766 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1767 (flags & DMU_READ_NO_PREFETCH) == 0;
1768
1769 mutex_enter(&db->db_mtx);
1770 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1771 db->db_pending_evict = B_FALSE;
1772 if (flags & DMU_PARTIAL_FIRST)
1773 db->db_partial_read = B_TRUE;
1774 else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING)))
1775 db->db_partial_read = B_FALSE;
1776 miss = (db->db_state != DB_CACHED);
1777
1778 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1779 /*
1780 * Another reader came in while the dbuf was in flight between
1781 * UNCACHED and CACHED. Either a writer will finish filling
1782 * the buffer, sending the dbuf to CACHED, or the first reader's
1783 * request will reach the read_done callback and send the dbuf
1784 * to CACHED. Otherwise, a failure occurred and the dbuf will
1785 * be sent to UNCACHED.
1786 */
1787 if (flags & DB_RF_NEVERWAIT) {
1788 mutex_exit(&db->db_mtx);
1789 DB_DNODE_EXIT(db);
1790 goto done;
1791 }
1792 do {
1793 ASSERT(db->db_state == DB_READ ||
1794 (flags & DB_RF_HAVESTRUCT) == 0);
1795 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1796 zio_t *, pio);
1797 cv_wait(&db->db_changed, &db->db_mtx);
1798 } while (db->db_state == DB_READ || db->db_state == DB_FILL);
1799 if (db->db_state == DB_UNCACHED) {
1800 err = SET_ERROR(EIO);
1801 mutex_exit(&db->db_mtx);
1802 DB_DNODE_EXIT(db);
1803 goto done;
1804 }
1805 }
1806
1807 if (db->db_state == DB_CACHED) {
1808 /*
1809 * If the arc buf is compressed or encrypted and the caller
1810 * requested uncompressed data, we need to untransform it
1811 * before returning. We also call arc_untransform() on any
1812 * unauthenticated blocks, which will verify their MAC if
1813 * the key is now available.
1814 */
1815 if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1816 (arc_is_encrypted(db->db_buf) ||
1817 arc_is_unauthenticated(db->db_buf) ||
1818 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1819 spa_t *spa = dn->dn_objset->os_spa;
1820 zbookmark_phys_t zb;
1821
1822 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1823 db->db.db_object, db->db_level, db->db_blkid);
1824 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1825 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1826 dbuf_set_data(db, db->db_buf);
1827 }
1828 mutex_exit(&db->db_mtx);
1829 } else {
1830 ASSERT(db->db_state == DB_UNCACHED ||
1831 db->db_state == DB_NOFILL);
1832 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1833 blkptr_t *bp;
1834
1835 /*
1836 * If a block clone or Direct I/O write has occurred we will
1837 * get the dirty records overridden BP so we get the most
1838 * recent data.
1839 */
1840 err = dmu_buf_get_bp_from_dbuf(db, &bp);
1841
1842 if (!err) {
1843 if (pio == NULL && (db->db_state == DB_NOFILL ||
1844 (bp != NULL && !BP_IS_HOLE(bp)))) {
1845 spa_t *spa = dn->dn_objset->os_spa;
1846 pio =
1847 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1848 need_wait = B_TRUE;
1849 }
1850
1851 err =
1852 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1853 } else {
1854 mutex_exit(&db->db_mtx);
1855 dmu_buf_unlock_parent(db, dblt, FTAG);
1856 }
1857 /* dbuf_read_impl drops db_mtx and parent's rwlock. */
1858 miss = (db->db_state != DB_CACHED);
1859 }
1860
1861 if (err == 0 && prefetch) {
1862 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1863 flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) ||
1864 db->db_pending_evict);
1865 }
1866 DB_DNODE_EXIT(db);
1867
1868 /*
1869 * If we created a zio we must execute it to avoid leaking it, even if
1870 * it isn't attached to any work due to an error in dbuf_read_impl().
1871 */
1872 if (need_wait) {
1873 if (err == 0)
1874 err = zio_wait(pio);
1875 else
1876 (void) zio_wait(pio);
1877 pio = NULL;
1878 }
1879
1880 done:
1881 if (miss)
1882 DBUF_STAT_BUMP(hash_misses);
1883 else
1884 DBUF_STAT_BUMP(hash_hits);
1885 if (pio && err != 0) {
1886 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1887 ZIO_FLAG_CANFAIL);
1888 zio->io_error = err;
1889 zio_nowait(zio);
1890 }
1891
1892 return (err);
1893 }
1894
1895 static void
dbuf_noread(dmu_buf_impl_t * db,dmu_flags_t flags)1896 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags)
1897 {
1898 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1899 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1900 mutex_enter(&db->db_mtx);
1901 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
1902 db->db_pending_evict = B_FALSE;
1903 db->db_partial_read = B_FALSE;
1904 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1905 cv_wait(&db->db_changed, &db->db_mtx);
1906 if (db->db_state == DB_UNCACHED) {
1907 ASSERT0P(db->db_buf);
1908 ASSERT0P(db->db.db_data);
1909 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1910 db->db_state = DB_FILL;
1911 DTRACE_SET_STATE(db, "assigning filled buffer");
1912 } else if (db->db_state == DB_NOFILL) {
1913 dbuf_clear_data(db);
1914 } else {
1915 ASSERT3U(db->db_state, ==, DB_CACHED);
1916 }
1917 mutex_exit(&db->db_mtx);
1918 }
1919
1920 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1921 dbuf_unoverride(dbuf_dirty_record_t *dr)
1922 {
1923 dmu_buf_impl_t *db = dr->dr_dbuf;
1924 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1925 uint64_t txg = dr->dr_txg;
1926
1927 ASSERT(MUTEX_HELD(&db->db_mtx));
1928
1929 /*
1930 * This assert is valid because dmu_sync() expects to be called by
1931 * a zilog's get_data while holding a range lock. This call only
1932 * comes from dbuf_dirty() callers who must also hold a range lock.
1933 */
1934 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1935 ASSERT0(db->db_level);
1936
1937 if (db->db_blkid == DMU_BONUS_BLKID ||
1938 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1939 return;
1940
1941 ASSERT(db->db_data_pending != dr);
1942
1943 /* free this block */
1944 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1945 zio_free(db->db_objset->os_spa, txg, bp);
1946
1947 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1948 ASSERT0P(dr->dt.dl.dr_data);
1949 dr->dt.dl.dr_data = db->db_buf;
1950 }
1951 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1952 dr->dt.dl.dr_nopwrite = B_FALSE;
1953 dr->dt.dl.dr_brtwrite = B_FALSE;
1954 dr->dt.dl.dr_diowrite = B_FALSE;
1955 dr->dt.dl.dr_has_raw_params = B_FALSE;
1956
1957 /*
1958 * In the event that Direct I/O was used, we do not
1959 * need to release the buffer from the ARC.
1960 *
1961 * Release the already-written buffer, so we leave it in
1962 * a consistent dirty state. Note that all callers are
1963 * modifying the buffer, so they will immediately do
1964 * another (redundant) arc_release(). Therefore, leave
1965 * the buf thawed to save the effort of freezing &
1966 * immediately re-thawing it.
1967 */
1968 if (dr->dt.dl.dr_data)
1969 arc_release(dr->dt.dl.dr_data, db);
1970 }
1971
1972 /*
1973 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1974 * data blocks in the free range, so that any future readers will find
1975 * empty blocks.
1976 */
1977 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1978 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1979 dmu_tx_t *tx)
1980 {
1981 dmu_buf_impl_t *db_search;
1982 dmu_buf_impl_t *db, *db_next;
1983 uint64_t txg = tx->tx_txg;
1984 avl_index_t where;
1985 dbuf_dirty_record_t *dr;
1986
1987 if (end_blkid > dn->dn_maxblkid &&
1988 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1989 end_blkid = dn->dn_maxblkid;
1990 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1991 (u_longlong_t)end_blkid);
1992
1993 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1994 db_search->db_level = 0;
1995 db_search->db_blkid = start_blkid;
1996 db_search->db_state = DB_SEARCH;
1997
1998 mutex_enter(&dn->dn_dbufs_mtx);
1999 db = avl_find(&dn->dn_dbufs, db_search, &where);
2000 ASSERT0P(db);
2001
2002 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2003
2004 for (; db != NULL; db = db_next) {
2005 db_next = AVL_NEXT(&dn->dn_dbufs, db);
2006 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2007
2008 if (db->db_level != 0 || db->db_blkid > end_blkid) {
2009 break;
2010 }
2011 ASSERT3U(db->db_blkid, >=, start_blkid);
2012
2013 /* found a level 0 buffer in the range */
2014 mutex_enter(&db->db_mtx);
2015 if (dbuf_undirty(db, tx)) {
2016 /* mutex has been dropped and dbuf destroyed */
2017 continue;
2018 }
2019
2020 if (db->db_state == DB_UNCACHED ||
2021 db->db_state == DB_NOFILL ||
2022 db->db_state == DB_EVICTING) {
2023 ASSERT0P(db->db.db_data);
2024 mutex_exit(&db->db_mtx);
2025 continue;
2026 }
2027 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2028 /* will be handled in dbuf_read_done or dbuf_rele */
2029 db->db_freed_in_flight = TRUE;
2030 mutex_exit(&db->db_mtx);
2031 continue;
2032 }
2033 if (zfs_refcount_count(&db->db_holds) == 0) {
2034 ASSERT(db->db_buf);
2035 dbuf_destroy(db);
2036 continue;
2037 }
2038 /* The dbuf is referenced */
2039
2040 dr = list_head(&db->db_dirty_records);
2041 if (dr != NULL) {
2042 if (dr->dr_txg == txg) {
2043 /*
2044 * This buffer is "in-use", re-adjust the file
2045 * size to reflect that this buffer may
2046 * contain new data when we sync.
2047 */
2048 if (db->db_blkid != DMU_SPILL_BLKID &&
2049 db->db_blkid > dn->dn_maxblkid)
2050 dn->dn_maxblkid = db->db_blkid;
2051 dbuf_unoverride(dr);
2052 } else {
2053 /*
2054 * This dbuf is not dirty in the open context.
2055 * Either uncache it (if its not referenced in
2056 * the open context) or reset its contents to
2057 * empty.
2058 */
2059 dbuf_fix_old_data(db, txg);
2060 }
2061 }
2062 /* clear the contents if its cached */
2063 if (db->db_state == DB_CACHED) {
2064 ASSERT(db->db.db_data != NULL);
2065 arc_release(db->db_buf, db);
2066 rw_enter(&db->db_rwlock, RW_WRITER);
2067 memset(db->db.db_data, 0, db->db.db_size);
2068 rw_exit(&db->db_rwlock);
2069 arc_buf_freeze(db->db_buf);
2070 }
2071
2072 mutex_exit(&db->db_mtx);
2073 }
2074
2075 mutex_exit(&dn->dn_dbufs_mtx);
2076 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2077 }
2078
2079 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)2080 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2081 {
2082 arc_buf_t *buf, *old_buf;
2083 dbuf_dirty_record_t *dr;
2084 int osize = db->db.db_size;
2085 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2086 dnode_t *dn;
2087
2088 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2089
2090 DB_DNODE_ENTER(db);
2091 dn = DB_DNODE(db);
2092
2093 /*
2094 * XXX we should be doing a dbuf_read, checking the return
2095 * value and returning that up to our callers
2096 */
2097 dmu_buf_will_dirty(&db->db, tx);
2098
2099 VERIFY3P(db->db_buf, !=, NULL);
2100
2101 /* create the data buffer for the new block */
2102 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2103
2104 /* copy old block data to the new block */
2105 old_buf = db->db_buf;
2106 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2107 /* zero the remainder */
2108 if (size > osize)
2109 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2110
2111 mutex_enter(&db->db_mtx);
2112 dbuf_set_data(db, buf);
2113 arc_buf_destroy(old_buf, db);
2114 db->db.db_size = size;
2115
2116 dr = list_head(&db->db_dirty_records);
2117 /* dirty record added by dmu_buf_will_dirty() */
2118 VERIFY(dr != NULL);
2119 if (db->db_level == 0)
2120 dr->dt.dl.dr_data = buf;
2121 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2122 ASSERT3U(dr->dr_accounted, ==, osize);
2123 dr->dr_accounted = size;
2124 mutex_exit(&db->db_mtx);
2125
2126 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2127 DB_DNODE_EXIT(db);
2128 }
2129
2130 void
dbuf_release_bp(dmu_buf_impl_t * db)2131 dbuf_release_bp(dmu_buf_impl_t *db)
2132 {
2133 objset_t *os __maybe_unused = db->db_objset;
2134
2135 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2136 ASSERT(arc_released(os->os_phys_buf) ||
2137 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2138 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2139
2140 (void) arc_release(db->db_buf, db);
2141 }
2142
2143 /*
2144 * We already have a dirty record for this TXG, and we are being
2145 * dirtied again.
2146 */
2147 static void
dbuf_redirty(dbuf_dirty_record_t * dr)2148 dbuf_redirty(dbuf_dirty_record_t *dr)
2149 {
2150 dmu_buf_impl_t *db = dr->dr_dbuf;
2151
2152 ASSERT(MUTEX_HELD(&db->db_mtx));
2153
2154 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2155 /*
2156 * If this buffer has already been written out,
2157 * we now need to reset its state.
2158 */
2159 dbuf_unoverride(dr);
2160 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2161 db->db_state != DB_NOFILL) {
2162 /* Already released on initial dirty, so just thaw. */
2163 ASSERT(arc_released(db->db_buf));
2164 arc_buf_thaw(db->db_buf);
2165 }
2166
2167 /*
2168 * Clear the rewrite flag since this is now a logical
2169 * modification.
2170 */
2171 dr->dt.dl.dr_rewrite = B_FALSE;
2172 }
2173 }
2174
2175 dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx)2176 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2177 {
2178 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2179 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2180 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2181 ASSERT(dn->dn_maxblkid >= blkid);
2182
2183 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2184 list_link_init(&dr->dr_dirty_node);
2185 list_link_init(&dr->dr_dbuf_node);
2186 dr->dr_dnode = dn;
2187 dr->dr_txg = tx->tx_txg;
2188 dr->dt.dll.dr_blkid = blkid;
2189 dr->dr_accounted = dn->dn_datablksz;
2190
2191 /*
2192 * There should not be any dbuf for the block that we're dirtying.
2193 * Otherwise the buffer contents could be inconsistent between the
2194 * dbuf and the lightweight dirty record.
2195 */
2196 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2197 NULL));
2198
2199 mutex_enter(&dn->dn_mtx);
2200 int txgoff = tx->tx_txg & TXG_MASK;
2201 if (dn->dn_free_ranges[txgoff] != NULL) {
2202 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2203 }
2204
2205 if (dn->dn_nlevels == 1) {
2206 ASSERT3U(blkid, <, dn->dn_nblkptr);
2207 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2208 mutex_exit(&dn->dn_mtx);
2209 rw_exit(&dn->dn_struct_rwlock);
2210 dnode_setdirty(dn, tx);
2211 } else {
2212 mutex_exit(&dn->dn_mtx);
2213
2214 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2215 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2216 1, blkid >> epbs, FTAG);
2217 rw_exit(&dn->dn_struct_rwlock);
2218 if (parent_db == NULL) {
2219 kmem_free(dr, sizeof (*dr));
2220 return (NULL);
2221 }
2222 int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL |
2223 DMU_READ_NO_PREFETCH);
2224 if (err != 0) {
2225 dbuf_rele(parent_db, FTAG);
2226 kmem_free(dr, sizeof (*dr));
2227 return (NULL);
2228 }
2229
2230 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2231 dbuf_rele(parent_db, FTAG);
2232 mutex_enter(&parent_dr->dt.di.dr_mtx);
2233 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2234 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2235 mutex_exit(&parent_dr->dt.di.dr_mtx);
2236 dr->dr_parent = parent_dr;
2237 }
2238
2239 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2240
2241 return (dr);
2242 }
2243
2244 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2245 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2246 {
2247 dnode_t *dn;
2248 objset_t *os;
2249 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2250 int txgoff = tx->tx_txg & TXG_MASK;
2251 boolean_t drop_struct_rwlock = B_FALSE;
2252
2253 ASSERT(tx->tx_txg != 0);
2254 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2255 DMU_TX_DIRTY_BUF(tx, db);
2256
2257 DB_DNODE_ENTER(db);
2258 dn = DB_DNODE(db);
2259 /*
2260 * Shouldn't dirty a regular buffer in syncing context. Private
2261 * objects may be dirtied in syncing context, but only if they
2262 * were already pre-dirtied in open context.
2263 */
2264 #ifdef ZFS_DEBUG
2265 if (dn->dn_objset->os_dsl_dataset != NULL) {
2266 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2267 RW_READER, FTAG);
2268 }
2269 ASSERT(!dmu_tx_is_syncing(tx) ||
2270 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2271 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2272 dn->dn_objset->os_dsl_dataset == NULL);
2273 if (dn->dn_objset->os_dsl_dataset != NULL)
2274 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2275 #endif
2276
2277 mutex_enter(&db->db_mtx);
2278 /*
2279 * XXX make this true for indirects too? The problem is that
2280 * transactions created with dmu_tx_create_assigned() from
2281 * syncing context don't bother holding ahead.
2282 */
2283 ASSERT(db->db_level != 0 ||
2284 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2285 db->db_state == DB_NOFILL);
2286
2287 if (db->db_blkid == DMU_SPILL_BLKID)
2288 dn->dn_have_spill = B_TRUE;
2289
2290 /*
2291 * If this buffer is already dirty, we're done.
2292 */
2293 dr_head = list_head(&db->db_dirty_records);
2294 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2295 db->db.db_object == DMU_META_DNODE_OBJECT);
2296 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2297 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2298 DB_DNODE_EXIT(db);
2299
2300 dbuf_redirty(dr_next);
2301 mutex_exit(&db->db_mtx);
2302 return (dr_next);
2303 }
2304
2305 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2306
2307 /*
2308 * We should only be dirtying in syncing context if it's the
2309 * mos or we're initializing the os or it's a special object.
2310 * However, we are allowed to dirty in syncing context provided
2311 * we already dirtied it in open context. Hence we must make
2312 * this assertion only if we're not already dirty.
2313 */
2314 os = dn->dn_objset;
2315 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2316 #ifdef ZFS_DEBUG
2317 if (dn->dn_objset->os_dsl_dataset != NULL)
2318 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2319 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2320 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2321 if (dn->dn_objset->os_dsl_dataset != NULL)
2322 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2323 #endif
2324 ASSERT(db->db.db_size != 0);
2325
2326 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2327
2328 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2329 dmu_objset_willuse_space(os, db->db.db_size, tx);
2330 }
2331
2332 /*
2333 * If this buffer is dirty in an old transaction group we need
2334 * to make a copy of it so that the changes we make in this
2335 * transaction group won't leak out when we sync the older txg.
2336 */
2337 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2338 memset(dr, 0, sizeof (*dr));
2339 list_link_init(&dr->dr_dirty_node);
2340 list_link_init(&dr->dr_dbuf_node);
2341 dr->dr_dnode = dn;
2342 if (db->db_level == 0) {
2343 void *data_old = db->db_buf;
2344
2345 if (db->db_state != DB_NOFILL) {
2346 if (db->db_blkid == DMU_BONUS_BLKID) {
2347 dbuf_fix_old_data(db, tx->tx_txg);
2348 data_old = db->db.db_data;
2349 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2350 /*
2351 * Release the data buffer from the cache so
2352 * that we can modify it without impacting
2353 * possible other users of this cached data
2354 * block. Note that indirect blocks and
2355 * private objects are not released until the
2356 * syncing state (since they are only modified
2357 * then).
2358 */
2359 arc_release(db->db_buf, db);
2360 dbuf_fix_old_data(db, tx->tx_txg);
2361 data_old = db->db_buf;
2362 }
2363 ASSERT(data_old != NULL);
2364 }
2365 dr->dt.dl.dr_data = data_old;
2366 } else {
2367 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2368 list_create(&dr->dt.di.dr_children,
2369 sizeof (dbuf_dirty_record_t),
2370 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2371 }
2372 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2373 dr->dr_accounted = db->db.db_size;
2374 }
2375 dr->dr_dbuf = db;
2376 dr->dr_txg = tx->tx_txg;
2377 list_insert_before(&db->db_dirty_records, dr_next, dr);
2378
2379 /*
2380 * We could have been freed_in_flight between the dbuf_noread
2381 * and dbuf_dirty. We win, as though the dbuf_noread() had
2382 * happened after the free.
2383 */
2384 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2385 db->db_blkid != DMU_SPILL_BLKID) {
2386 mutex_enter(&dn->dn_mtx);
2387 if (dn->dn_free_ranges[txgoff] != NULL) {
2388 zfs_range_tree_clear(dn->dn_free_ranges[txgoff],
2389 db->db_blkid, 1);
2390 }
2391 mutex_exit(&dn->dn_mtx);
2392 db->db_freed_in_flight = FALSE;
2393 }
2394
2395 /*
2396 * This buffer is now part of this txg
2397 */
2398 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2399 db->db_dirtycnt += 1;
2400 ASSERT3U(db->db_dirtycnt, <=, 3);
2401
2402 mutex_exit(&db->db_mtx);
2403
2404 if (db->db_blkid == DMU_BONUS_BLKID ||
2405 db->db_blkid == DMU_SPILL_BLKID) {
2406 mutex_enter(&dn->dn_mtx);
2407 ASSERT(!list_link_active(&dr->dr_dirty_node));
2408 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2409 mutex_exit(&dn->dn_mtx);
2410 dnode_setdirty(dn, tx);
2411 DB_DNODE_EXIT(db);
2412 return (dr);
2413 }
2414
2415 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2416 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2417 drop_struct_rwlock = B_TRUE;
2418 }
2419
2420 /*
2421 * If we are overwriting a dedup BP, then unless it is snapshotted,
2422 * when we get to syncing context we will need to decrement its
2423 * refcount in the DDT. Prefetch the relevant DDT block so that
2424 * syncing context won't have to wait for the i/o.
2425 */
2426 if (db->db_blkptr != NULL) {
2427 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2428 ddt_prefetch(os->os_spa, db->db_blkptr);
2429 dmu_buf_unlock_parent(db, dblt, FTAG);
2430 }
2431
2432 /*
2433 * We need to hold the dn_struct_rwlock to make this assertion,
2434 * because it protects dn_phys / dn_next_nlevels from changing.
2435 */
2436 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2437 dn->dn_phys->dn_nlevels > db->db_level ||
2438 dn->dn_next_nlevels[txgoff] > db->db_level ||
2439 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2440 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2441
2442
2443 if (db->db_level == 0) {
2444 ASSERT(!db->db_objset->os_raw_receive ||
2445 dn->dn_maxblkid >= db->db_blkid);
2446 dnode_new_blkid(dn, db->db_blkid, tx,
2447 drop_struct_rwlock, B_FALSE);
2448 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2449 }
2450
2451 if (db->db_level+1 < dn->dn_nlevels) {
2452 dmu_buf_impl_t *parent = db->db_parent;
2453 dbuf_dirty_record_t *di;
2454 int parent_held = FALSE;
2455
2456 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2457 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2458 parent = dbuf_hold_level(dn, db->db_level + 1,
2459 db->db_blkid >> epbs, FTAG);
2460 ASSERT(parent != NULL);
2461 parent_held = TRUE;
2462 }
2463 if (drop_struct_rwlock)
2464 rw_exit(&dn->dn_struct_rwlock);
2465 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2466 di = dbuf_dirty(parent, tx);
2467 if (parent_held)
2468 dbuf_rele(parent, FTAG);
2469
2470 mutex_enter(&db->db_mtx);
2471 /*
2472 * Since we've dropped the mutex, it's possible that
2473 * dbuf_undirty() might have changed this out from under us.
2474 */
2475 if (list_head(&db->db_dirty_records) == dr ||
2476 dn->dn_object == DMU_META_DNODE_OBJECT) {
2477 mutex_enter(&di->dt.di.dr_mtx);
2478 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2479 ASSERT(!list_link_active(&dr->dr_dirty_node));
2480 list_insert_tail(&di->dt.di.dr_children, dr);
2481 mutex_exit(&di->dt.di.dr_mtx);
2482 dr->dr_parent = di;
2483 }
2484 mutex_exit(&db->db_mtx);
2485 } else {
2486 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2487 ASSERT(db->db_blkid < dn->dn_nblkptr);
2488 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2489 mutex_enter(&dn->dn_mtx);
2490 ASSERT(!list_link_active(&dr->dr_dirty_node));
2491 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2492 mutex_exit(&dn->dn_mtx);
2493 if (drop_struct_rwlock)
2494 rw_exit(&dn->dn_struct_rwlock);
2495 }
2496
2497 dnode_setdirty(dn, tx);
2498 DB_DNODE_EXIT(db);
2499 return (dr);
2500 }
2501
2502 static void
dbuf_undirty_bonus(dbuf_dirty_record_t * dr)2503 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2504 {
2505 dmu_buf_impl_t *db = dr->dr_dbuf;
2506
2507 ASSERT(MUTEX_HELD(&db->db_mtx));
2508 if (dr->dt.dl.dr_data != db->db.db_data) {
2509 struct dnode *dn = dr->dr_dnode;
2510 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2511
2512 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2513 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2514 }
2515 db->db_data_pending = NULL;
2516 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2517 list_remove(&db->db_dirty_records, dr);
2518 if (dr->dr_dbuf->db_level != 0) {
2519 mutex_destroy(&dr->dt.di.dr_mtx);
2520 list_destroy(&dr->dt.di.dr_children);
2521 }
2522 kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2523 ASSERT3U(db->db_dirtycnt, >, 0);
2524 db->db_dirtycnt -= 1;
2525 }
2526
2527 /*
2528 * Undirty a buffer in the transaction group referenced by the given
2529 * transaction. Return whether this evicted the dbuf.
2530 */
2531 boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2532 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2533 {
2534 uint64_t txg = tx->tx_txg;
2535 boolean_t brtwrite;
2536 boolean_t diowrite;
2537
2538 ASSERT(txg != 0);
2539
2540 /*
2541 * Due to our use of dn_nlevels below, this can only be called
2542 * in open context, unless we are operating on the MOS or it's
2543 * a special object. From syncing context, dn_nlevels may be
2544 * different from the dn_nlevels used when dbuf was dirtied.
2545 */
2546 ASSERT(db->db_objset ==
2547 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2548 DMU_OBJECT_IS_SPECIAL(db->db.db_object) ||
2549 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2550 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2551 ASSERT0(db->db_level);
2552 ASSERT(MUTEX_HELD(&db->db_mtx));
2553
2554 /*
2555 * If this buffer is not dirty, we're done.
2556 */
2557 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2558 if (dr == NULL)
2559 return (B_FALSE);
2560 ASSERT(dr->dr_dbuf == db);
2561
2562 brtwrite = dr->dt.dl.dr_brtwrite;
2563 diowrite = dr->dt.dl.dr_diowrite;
2564 if (brtwrite) {
2565 ASSERT3B(diowrite, ==, B_FALSE);
2566 /*
2567 * We are freeing a block that we cloned in the same
2568 * transaction group.
2569 */
2570 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
2571 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2572 brt_pending_remove(dmu_objset_spa(db->db_objset),
2573 bp, tx);
2574 }
2575 }
2576
2577 dnode_t *dn = dr->dr_dnode;
2578
2579 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2580
2581 ASSERT(db->db.db_size != 0);
2582
2583 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2584 dr->dr_accounted, txg);
2585
2586 list_remove(&db->db_dirty_records, dr);
2587
2588 /*
2589 * Note that there are three places in dbuf_dirty()
2590 * where this dirty record may be put on a list.
2591 * Make sure to do a list_remove corresponding to
2592 * every one of those list_insert calls.
2593 */
2594 if (dr->dr_parent) {
2595 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2596 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2597 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2598 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2599 db->db_level + 1 == dn->dn_nlevels) {
2600 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2601 mutex_enter(&dn->dn_mtx);
2602 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2603 mutex_exit(&dn->dn_mtx);
2604 }
2605
2606 if (db->db_state != DB_NOFILL && !brtwrite) {
2607 dbuf_unoverride(dr);
2608
2609 if (dr->dt.dl.dr_data != db->db_buf) {
2610 ASSERT(db->db_buf != NULL);
2611 ASSERT(dr->dt.dl.dr_data != NULL);
2612 arc_buf_destroy(dr->dt.dl.dr_data, db);
2613 }
2614 }
2615
2616 kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2617
2618 ASSERT(db->db_dirtycnt > 0);
2619 db->db_dirtycnt -= 1;
2620
2621 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2622 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2623 arc_released(db->db_buf));
2624 dbuf_destroy(db);
2625 return (B_TRUE);
2626 }
2627
2628 return (B_FALSE);
2629 }
2630
2631 void
dmu_buf_will_dirty_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,dmu_flags_t flags)2632 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags)
2633 {
2634 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2635 boolean_t undirty = B_FALSE;
2636
2637 ASSERT(tx->tx_txg != 0);
2638 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2639
2640 /*
2641 * Quick check for dirtiness to improve performance for some workloads
2642 * (e.g. file deletion with indirect blocks cached).
2643 */
2644 mutex_enter(&db->db_mtx);
2645 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2646 /*
2647 * It's possible that the dbuf is already dirty but not cached,
2648 * because there are some calls to dbuf_dirty() that don't
2649 * go through dmu_buf_will_dirty().
2650 */
2651 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2652 if (dr != NULL) {
2653 if (db->db_level == 0 &&
2654 dr->dt.dl.dr_brtwrite) {
2655 /*
2656 * Block cloning: If we are dirtying a cloned
2657 * level 0 block, we cannot simply redirty it,
2658 * because this dr has no associated data.
2659 * We will go through a full undirtying below,
2660 * before dirtying it again.
2661 */
2662 undirty = B_TRUE;
2663 } else {
2664 /* This dbuf is already dirty and cached. */
2665 dbuf_redirty(dr);
2666 mutex_exit(&db->db_mtx);
2667 return;
2668 }
2669 }
2670 }
2671 mutex_exit(&db->db_mtx);
2672
2673 DB_DNODE_ENTER(db);
2674 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2675 flags |= DB_RF_HAVESTRUCT;
2676 DB_DNODE_EXIT(db);
2677
2678 /*
2679 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2680 * want to make sure dbuf_read() will read the pending cloned block and
2681 * not the uderlying block that is being replaced. dbuf_undirty() will
2682 * do brt_pending_remove() before removing the dirty record.
2683 */
2684 (void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED);
2685 if (undirty) {
2686 mutex_enter(&db->db_mtx);
2687 VERIFY(!dbuf_undirty(db, tx));
2688 mutex_exit(&db->db_mtx);
2689 }
2690 (void) dbuf_dirty(db, tx);
2691 }
2692
2693 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2694 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2695 {
2696 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2697 }
2698
2699 void
dmu_buf_will_rewrite(dmu_buf_t * db_fake,dmu_tx_t * tx)2700 dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx)
2701 {
2702 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2703
2704 ASSERT(tx->tx_txg != 0);
2705 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2706
2707 /*
2708 * If the dbuf is already dirty in this txg, it will be written
2709 * anyway, so there's nothing to do.
2710 */
2711 mutex_enter(&db->db_mtx);
2712 if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2713 mutex_exit(&db->db_mtx);
2714 return;
2715 }
2716 mutex_exit(&db->db_mtx);
2717
2718 /*
2719 * The dbuf is not dirty, so we need to make it dirty and
2720 * mark it for rewrite (preserve logical birth time).
2721 */
2722 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
2723
2724 mutex_enter(&db->db_mtx);
2725 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2726 if (dr != NULL && db->db_level == 0)
2727 dr->dt.dl.dr_rewrite = B_TRUE;
2728 mutex_exit(&db->db_mtx);
2729 }
2730
2731 boolean_t
dmu_buf_is_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2732 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2733 {
2734 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2735 dbuf_dirty_record_t *dr;
2736
2737 mutex_enter(&db->db_mtx);
2738 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2739 mutex_exit(&db->db_mtx);
2740 return (dr != NULL);
2741 }
2742
2743 /*
2744 * Normally the db_blkptr points to the most recent on-disk content for the
2745 * dbuf (and anything newer will be cached in the dbuf). However, a pending
2746 * block clone or not yet synced Direct I/O write will have a dirty record BP
2747 * pointing to the most recent data.
2748 */
2749 int
dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t * db,blkptr_t ** bp)2750 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2751 {
2752 ASSERT(MUTEX_HELD(&db->db_mtx));
2753 int error = 0;
2754
2755 if (db->db_level != 0) {
2756 *bp = db->db_blkptr;
2757 return (0);
2758 }
2759
2760 *bp = db->db_blkptr;
2761 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2762 if (dr && db->db_state == DB_NOFILL) {
2763 /* Block clone */
2764 if (!dr->dt.dl.dr_brtwrite)
2765 error = EIO;
2766 else
2767 *bp = &dr->dt.dl.dr_overridden_by;
2768 } else if (dr && db->db_state == DB_UNCACHED) {
2769 /* Direct I/O write */
2770 if (dr->dt.dl.dr_diowrite)
2771 *bp = &dr->dt.dl.dr_overridden_by;
2772 }
2773
2774 return (error);
2775 }
2776
2777 /*
2778 * Direct I/O reads can read directly from the ARC, but the data has
2779 * to be untransformed in order to copy it over into user pages.
2780 */
2781 int
dmu_buf_untransform_direct(dmu_buf_impl_t * db,spa_t * spa)2782 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2783 {
2784 int err = 0;
2785 DB_DNODE_ENTER(db);
2786 dnode_t *dn = DB_DNODE(db);
2787
2788 ASSERT3S(db->db_state, ==, DB_CACHED);
2789 ASSERT(MUTEX_HELD(&db->db_mtx));
2790
2791 /*
2792 * Ensure that this block's dnode has been decrypted if
2793 * the caller has requested decrypted data.
2794 */
2795 err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2796
2797 /*
2798 * If the arc buf is compressed or encrypted and the caller
2799 * requested uncompressed data, we need to untransform it
2800 * before returning. We also call arc_untransform() on any
2801 * unauthenticated blocks, which will verify their MAC if
2802 * the key is now available.
2803 */
2804 if (err == 0 && db->db_buf != NULL &&
2805 (arc_is_encrypted(db->db_buf) ||
2806 arc_is_unauthenticated(db->db_buf) ||
2807 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2808 zbookmark_phys_t zb;
2809
2810 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2811 db->db.db_object, db->db_level, db->db_blkid);
2812 dbuf_fix_old_data(db, spa_syncing_txg(spa));
2813 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2814 dbuf_set_data(db, db->db_buf);
2815 }
2816 DB_DNODE_EXIT(db);
2817 DBUF_STAT_BUMP(hash_hits);
2818
2819 return (err);
2820 }
2821
2822 void
dmu_buf_will_clone_or_dio(dmu_buf_t * db_fake,dmu_tx_t * tx)2823 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2824 {
2825 /*
2826 * Block clones and Direct I/O writes always happen in open-context.
2827 */
2828 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2829 ASSERT0(db->db_level);
2830 ASSERT(!dmu_tx_is_syncing(tx));
2831 ASSERT0(db->db_level);
2832 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2833 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2834
2835 mutex_enter(&db->db_mtx);
2836 DBUF_VERIFY(db);
2837
2838 /*
2839 * We are going to clone or issue a Direct I/O write on this block, so
2840 * undirty modifications done to this block so far in this txg. This
2841 * includes writes and clones into this block.
2842 *
2843 * If there dirty record associated with this txg from a previous Direct
2844 * I/O write then space accounting cleanup takes place. It is important
2845 * to go ahead free up the space accounting through dbuf_undirty() ->
2846 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2847 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2848 * This can cause an issue with Direct I/O writes in the case of
2849 * overwriting the same block, because all DVA allocations are being
2850 * done in open-context. Constantly allowing Direct I/O overwrites to
2851 * the same block can exhaust the pools available space leading to
2852 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2853 * will eventually suspend the pool. By cleaning up sapce acccounting
2854 * now, the ENOSPC error can be avoided.
2855 *
2856 * Since we are undirtying the record in open-context, we must have a
2857 * hold on the db, so it should never be evicted after calling
2858 * dbuf_undirty().
2859 */
2860 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2861 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2862
2863 if (db->db_buf != NULL) {
2864 /*
2865 * If there is an associated ARC buffer with this dbuf we can
2866 * only destroy it if the previous dirty record does not
2867 * reference it.
2868 */
2869 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2870 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2871 arc_buf_destroy(db->db_buf, db);
2872
2873 /*
2874 * Setting the dbuf's data pointers to NULL will force all
2875 * future reads down to the devices to get the most up to date
2876 * version of the data after a Direct I/O write has completed.
2877 */
2878 db->db_buf = NULL;
2879 dbuf_clear_data(db);
2880 }
2881
2882 ASSERT0P(db->db_buf);
2883 ASSERT0P(db->db.db_data);
2884
2885 db->db_state = DB_NOFILL;
2886 DTRACE_SET_STATE(db,
2887 "allocating NOFILL buffer for clone or direct I/O write");
2888
2889 DBUF_VERIFY(db);
2890 mutex_exit(&db->db_mtx);
2891
2892 dbuf_noread(db, DMU_KEEP_CACHING);
2893 (void) dbuf_dirty(db, tx);
2894 }
2895
2896 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2897 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2898 {
2899 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2900
2901 mutex_enter(&db->db_mtx);
2902 db->db_state = DB_NOFILL;
2903 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2904 mutex_exit(&db->db_mtx);
2905
2906 dbuf_noread(db, DMU_KEEP_CACHING);
2907 (void) dbuf_dirty(db, tx);
2908 }
2909
2910 void
dmu_buf_will_fill_flags(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail,dmu_flags_t flags)2911 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail,
2912 dmu_flags_t flags)
2913 {
2914 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2915
2916 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2917 ASSERT(tx->tx_txg != 0);
2918 ASSERT0(db->db_level);
2919 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2920
2921 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2922 dmu_tx_private_ok(tx));
2923
2924 mutex_enter(&db->db_mtx);
2925 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2926 if (db->db_state == DB_NOFILL ||
2927 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2928 /*
2929 * If the fill can fail we should have a way to return back to
2930 * the cloned or Direct I/O write data.
2931 */
2932 if (canfail && dr) {
2933 mutex_exit(&db->db_mtx);
2934 dmu_buf_will_dirty_flags(db_fake, tx, flags);
2935 return;
2936 }
2937 /*
2938 * Block cloning: We will be completely overwriting a block
2939 * cloned in this transaction group, so let's undirty the
2940 * pending clone and mark the block as uncached. This will be
2941 * as if the clone was never done.
2942 */
2943 if (db->db_state == DB_NOFILL) {
2944 VERIFY(!dbuf_undirty(db, tx));
2945 db->db_state = DB_UNCACHED;
2946 }
2947 }
2948 mutex_exit(&db->db_mtx);
2949
2950 dbuf_noread(db, flags);
2951 (void) dbuf_dirty(db, tx);
2952 }
2953
2954 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail)2955 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2956 {
2957 dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH);
2958 }
2959
2960 /*
2961 * This function is effectively the same as dmu_buf_will_dirty(), but
2962 * indicates the caller expects raw encrypted data in the db, and provides
2963 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2964 * blkptr_t when this dbuf is written. This is only used for blocks of
2965 * dnodes, during raw receive.
2966 */
2967 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2968 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2969 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2970 {
2971 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2972 dbuf_dirty_record_t *dr;
2973
2974 /*
2975 * dr_has_raw_params is only processed for blocks of dnodes
2976 * (see dbuf_sync_dnode_leaf_crypt()).
2977 */
2978 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2979 ASSERT0(db->db_level);
2980 ASSERT(db->db_objset->os_raw_receive);
2981
2982 dmu_buf_will_dirty_flags(db_fake, tx,
2983 DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT);
2984
2985 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2986
2987 ASSERT3P(dr, !=, NULL);
2988 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2989
2990 dr->dt.dl.dr_has_raw_params = B_TRUE;
2991 dr->dt.dl.dr_byteorder = byteorder;
2992 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2993 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2994 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2995 }
2996
2997 static void
dbuf_override_impl(dmu_buf_impl_t * db,const blkptr_t * bp,dmu_tx_t * tx)2998 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2999 {
3000 struct dirty_leaf *dl;
3001 dbuf_dirty_record_t *dr;
3002
3003 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
3004 ASSERT0(db->db_level);
3005
3006 dr = list_head(&db->db_dirty_records);
3007 ASSERT3P(dr, !=, NULL);
3008 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3009 dl = &dr->dt.dl;
3010 ASSERT0(dl->dr_has_raw_params);
3011 dl->dr_overridden_by = *bp;
3012 dl->dr_override_state = DR_OVERRIDDEN;
3013 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3014 }
3015
3016 boolean_t
dmu_buf_fill_done(dmu_buf_t * dbuf,dmu_tx_t * tx,boolean_t failed)3017 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
3018 {
3019 (void) tx;
3020 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3021 mutex_enter(&db->db_mtx);
3022 DBUF_VERIFY(db);
3023
3024 if (db->db_state == DB_FILL) {
3025 if (db->db_level == 0 && db->db_freed_in_flight) {
3026 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3027 /* we were freed while filling */
3028 /* XXX dbuf_undirty? */
3029 memset(db->db.db_data, 0, db->db.db_size);
3030 db->db_freed_in_flight = FALSE;
3031 db->db_state = DB_CACHED;
3032 DTRACE_SET_STATE(db,
3033 "fill done handling freed in flight");
3034 failed = B_FALSE;
3035 } else if (failed) {
3036 VERIFY(!dbuf_undirty(db, tx));
3037 arc_buf_destroy(db->db_buf, db);
3038 db->db_buf = NULL;
3039 dbuf_clear_data(db);
3040 DTRACE_SET_STATE(db, "fill failed");
3041 } else {
3042 db->db_state = DB_CACHED;
3043 DTRACE_SET_STATE(db, "fill done");
3044 }
3045 cv_broadcast(&db->db_changed);
3046 } else {
3047 db->db_state = DB_CACHED;
3048 failed = B_FALSE;
3049 }
3050 mutex_exit(&db->db_mtx);
3051 return (failed);
3052 }
3053
3054 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)3055 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3056 bp_embedded_type_t etype, enum zio_compress comp,
3057 int uncompressed_size, int compressed_size, int byteorder,
3058 dmu_tx_t *tx)
3059 {
3060 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3061 struct dirty_leaf *dl;
3062 dmu_object_type_t type;
3063 dbuf_dirty_record_t *dr;
3064
3065 if (etype == BP_EMBEDDED_TYPE_DATA) {
3066 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3067 SPA_FEATURE_EMBEDDED_DATA));
3068 }
3069
3070 DB_DNODE_ENTER(db);
3071 type = DB_DNODE(db)->dn_type;
3072 DB_DNODE_EXIT(db);
3073
3074 ASSERT0(db->db_level);
3075 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3076
3077 dmu_buf_will_not_fill(dbuf, tx);
3078
3079 dr = list_head(&db->db_dirty_records);
3080 ASSERT3P(dr, !=, NULL);
3081 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3082 dl = &dr->dt.dl;
3083 ASSERT0(dl->dr_has_raw_params);
3084 encode_embedded_bp_compressed(&dl->dr_overridden_by,
3085 data, comp, uncompressed_size, compressed_size);
3086 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3087 BP_SET_TYPE(&dl->dr_overridden_by, type);
3088 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3089 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3090
3091 dl->dr_override_state = DR_OVERRIDDEN;
3092 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3093 }
3094
3095 void
dmu_buf_redact(dmu_buf_t * dbuf,dmu_tx_t * tx)3096 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3097 {
3098 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3099 dmu_object_type_t type;
3100 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3101 SPA_FEATURE_REDACTED_DATASETS));
3102
3103 DB_DNODE_ENTER(db);
3104 type = DB_DNODE(db)->dn_type;
3105 DB_DNODE_EXIT(db);
3106
3107 ASSERT0(db->db_level);
3108 dmu_buf_will_not_fill(dbuf, tx);
3109
3110 blkptr_t bp = { { { {0} } } };
3111 BP_SET_TYPE(&bp, type);
3112 BP_SET_LEVEL(&bp, 0);
3113 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3114 BP_SET_REDACTED(&bp);
3115 BPE_SET_LSIZE(&bp, dbuf->db_size);
3116
3117 dbuf_override_impl(db, &bp, tx);
3118 }
3119
3120 /*
3121 * Directly assign a provided arc buf to a given dbuf if it's not referenced
3122 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3123 */
3124 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)3125 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx,
3126 dmu_flags_t flags)
3127 {
3128 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3129 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3130 ASSERT0(db->db_level);
3131 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3132 ASSERT(buf != NULL);
3133 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3134 ASSERT(tx->tx_txg != 0);
3135
3136 arc_return_buf(buf, db);
3137 ASSERT(arc_released(buf));
3138
3139 mutex_enter(&db->db_mtx);
3140 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
3141 db->db_pending_evict = B_FALSE;
3142 db->db_partial_read = B_FALSE;
3143
3144 while (db->db_state == DB_READ || db->db_state == DB_FILL)
3145 cv_wait(&db->db_changed, &db->db_mtx);
3146
3147 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3148 db->db_state == DB_NOFILL);
3149
3150 if (db->db_state == DB_CACHED &&
3151 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3152 /*
3153 * In practice, we will never have a case where we have an
3154 * encrypted arc buffer while additional holds exist on the
3155 * dbuf. We don't handle this here so we simply assert that
3156 * fact instead.
3157 */
3158 ASSERT(!arc_is_encrypted(buf));
3159 mutex_exit(&db->db_mtx);
3160 (void) dbuf_dirty(db, tx);
3161 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3162 arc_buf_destroy(buf, db);
3163 return;
3164 }
3165
3166 if (db->db_state == DB_CACHED) {
3167 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3168
3169 ASSERT(db->db_buf != NULL);
3170 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3171 ASSERT(dr->dt.dl.dr_data == db->db_buf);
3172
3173 if (!arc_released(db->db_buf)) {
3174 ASSERT(dr->dt.dl.dr_override_state ==
3175 DR_OVERRIDDEN);
3176 arc_release(db->db_buf, db);
3177 }
3178 dr->dt.dl.dr_data = buf;
3179 arc_buf_destroy(db->db_buf, db);
3180 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3181 arc_release(db->db_buf, db);
3182 arc_buf_destroy(db->db_buf, db);
3183 }
3184 db->db_buf = NULL;
3185 } else if (db->db_state == DB_NOFILL) {
3186 /*
3187 * We will be completely replacing the cloned block. In case
3188 * it was cloned in this transaction group, let's undirty the
3189 * pending clone and mark the block as uncached. This will be
3190 * as if the clone was never done.
3191 */
3192 VERIFY(!dbuf_undirty(db, tx));
3193 db->db_state = DB_UNCACHED;
3194 }
3195 ASSERT0P(db->db_buf);
3196 dbuf_set_data(db, buf);
3197 db->db_state = DB_FILL;
3198 DTRACE_SET_STATE(db, "filling assigned arcbuf");
3199 mutex_exit(&db->db_mtx);
3200 (void) dbuf_dirty(db, tx);
3201 dmu_buf_fill_done(&db->db, tx, B_FALSE);
3202 }
3203
3204 void
dbuf_destroy(dmu_buf_impl_t * db)3205 dbuf_destroy(dmu_buf_impl_t *db)
3206 {
3207 dnode_t *dn;
3208 dmu_buf_impl_t *parent = db->db_parent;
3209 dmu_buf_impl_t *dndb;
3210
3211 ASSERT(MUTEX_HELD(&db->db_mtx));
3212 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3213
3214 if (db->db_buf != NULL) {
3215 arc_buf_destroy(db->db_buf, db);
3216 db->db_buf = NULL;
3217 }
3218
3219 if (db->db_blkid == DMU_BONUS_BLKID) {
3220 int slots = DB_DNODE(db)->dn_num_slots;
3221 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3222 if (db->db.db_data != NULL) {
3223 kmem_free(db->db.db_data, bonuslen);
3224 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3225 db->db_state = DB_UNCACHED;
3226 DTRACE_SET_STATE(db, "buffer cleared");
3227 }
3228 }
3229
3230 dbuf_clear_data(db);
3231
3232 if (multilist_link_active(&db->db_cache_link)) {
3233 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3234 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3235
3236 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3237
3238 ASSERT0(dmu_buf_user_size(&db->db));
3239 (void) zfs_refcount_remove_many(
3240 &dbuf_caches[db->db_caching_status].size,
3241 db->db.db_size, db);
3242
3243 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3244 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3245 } else {
3246 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3247 DBUF_STAT_BUMPDOWN(cache_count);
3248 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3249 db->db.db_size);
3250 }
3251 db->db_caching_status = DB_NO_CACHE;
3252 }
3253
3254 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3255 ASSERT0P(db->db_data_pending);
3256 ASSERT(list_is_empty(&db->db_dirty_records));
3257
3258 db->db_state = DB_EVICTING;
3259 DTRACE_SET_STATE(db, "buffer eviction started");
3260 db->db_blkptr = NULL;
3261
3262 /*
3263 * Now that db_state is DB_EVICTING, nobody else can find this via
3264 * the hash table. We can now drop db_mtx, which allows us to
3265 * acquire the dn_dbufs_mtx.
3266 */
3267 mutex_exit(&db->db_mtx);
3268
3269 DB_DNODE_ENTER(db);
3270 dn = DB_DNODE(db);
3271 dndb = dn->dn_dbuf;
3272 if (db->db_blkid != DMU_BONUS_BLKID) {
3273 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3274 if (needlock)
3275 mutex_enter_nested(&dn->dn_dbufs_mtx,
3276 NESTED_SINGLE);
3277 avl_remove(&dn->dn_dbufs, db);
3278 membar_producer();
3279 DB_DNODE_EXIT(db);
3280 if (needlock)
3281 mutex_exit(&dn->dn_dbufs_mtx);
3282 /*
3283 * Decrementing the dbuf count means that the hold corresponding
3284 * to the removed dbuf is no longer discounted in dnode_move(),
3285 * so the dnode cannot be moved until after we release the hold.
3286 * The membar_producer() ensures visibility of the decremented
3287 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3288 * release any lock.
3289 */
3290 mutex_enter(&dn->dn_mtx);
3291 dnode_rele_and_unlock(dn, db, B_TRUE);
3292 #ifdef USE_DNODE_HANDLE
3293 db->db_dnode_handle = NULL;
3294 #else
3295 db->db_dnode = NULL;
3296 #endif
3297
3298 dbuf_hash_remove(db);
3299 } else {
3300 DB_DNODE_EXIT(db);
3301 }
3302
3303 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3304
3305 db->db_parent = NULL;
3306
3307 ASSERT0P(db->db_buf);
3308 ASSERT0P(db->db.db_data);
3309 ASSERT0P(db->db_hash_next);
3310 ASSERT0P(db->db_blkptr);
3311 ASSERT0P(db->db_data_pending);
3312 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3313 ASSERT(!multilist_link_active(&db->db_cache_link));
3314
3315 /*
3316 * If this dbuf is referenced from an indirect dbuf,
3317 * decrement the ref count on the indirect dbuf.
3318 */
3319 if (parent && parent != dndb) {
3320 mutex_enter(&parent->db_mtx);
3321 dbuf_rele_and_unlock(parent, db, B_TRUE);
3322 }
3323
3324 kmem_cache_free(dbuf_kmem_cache, db);
3325 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3326 }
3327
3328 /*
3329 * Note: While bpp will always be updated if the function returns success,
3330 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3331 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3332 * object.
3333 */
3334 __attribute__((always_inline))
3335 static inline int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)3336 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3337 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3338 {
3339 *parentp = NULL;
3340 *bpp = NULL;
3341
3342 ASSERT(blkid != DMU_BONUS_BLKID);
3343
3344 if (blkid == DMU_SPILL_BLKID) {
3345 mutex_enter(&dn->dn_mtx);
3346 if (dn->dn_have_spill &&
3347 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3348 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3349 else
3350 *bpp = NULL;
3351 dbuf_add_ref(dn->dn_dbuf, NULL);
3352 *parentp = dn->dn_dbuf;
3353 mutex_exit(&dn->dn_mtx);
3354 return (0);
3355 }
3356
3357 int nlevels =
3358 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3359 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3360
3361 ASSERT3U(level * epbs, <, 64);
3362 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3363 /*
3364 * This assertion shouldn't trip as long as the max indirect block size
3365 * is less than 1M. The reason for this is that up to that point,
3366 * the number of levels required to address an entire object with blocks
3367 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3368 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3369 * (i.e. we can address the entire object), objects will all use at most
3370 * N-1 levels and the assertion won't overflow. However, once epbs is
3371 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3372 * enough to address an entire object, so objects will have 5 levels,
3373 * but then this assertion will overflow.
3374 *
3375 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3376 * need to redo this logic to handle overflows.
3377 */
3378 ASSERT(level >= nlevels ||
3379 ((nlevels - level - 1) * epbs) +
3380 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3381 if (level >= nlevels ||
3382 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3383 ((nlevels - level - 1) * epbs)) ||
3384 (fail_sparse &&
3385 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3386 /* the buffer has no parent yet */
3387 return (SET_ERROR(ENOENT));
3388 } else if (level < nlevels-1) {
3389 /* this block is referenced from an indirect block */
3390 int err;
3391
3392 err = dbuf_hold_impl(dn, level + 1,
3393 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3394
3395 if (err)
3396 return (err);
3397 err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL |
3398 DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH);
3399 if (err) {
3400 dbuf_rele(*parentp, NULL);
3401 *parentp = NULL;
3402 return (err);
3403 }
3404 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3405 (blkid & ((1ULL << epbs) - 1));
3406 return (0);
3407 } else {
3408 /* the block is referenced from the dnode */
3409 ASSERT3U(level, ==, nlevels-1);
3410 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3411 blkid < dn->dn_phys->dn_nblkptr);
3412 if (dn->dn_dbuf) {
3413 dbuf_add_ref(dn->dn_dbuf, NULL);
3414 *parentp = dn->dn_dbuf;
3415 }
3416 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3417 return (0);
3418 }
3419 }
3420
3421 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr,uint64_t hash)3422 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3423 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3424 {
3425 objset_t *os = dn->dn_objset;
3426 dmu_buf_impl_t *db, *odb;
3427
3428 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3429 ASSERT(dn->dn_type != DMU_OT_NONE);
3430
3431 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3432
3433 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3434 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3435
3436 db->db_objset = os;
3437 db->db.db_object = dn->dn_object;
3438 db->db_level = level;
3439 db->db_blkid = blkid;
3440 db->db_dirtycnt = 0;
3441 #ifdef USE_DNODE_HANDLE
3442 db->db_dnode_handle = dn->dn_handle;
3443 #else
3444 db->db_dnode = dn;
3445 #endif
3446 db->db_parent = parent;
3447 db->db_blkptr = blkptr;
3448 db->db_hash = hash;
3449
3450 db->db_user = NULL;
3451 db->db_user_immediate_evict = FALSE;
3452 db->db_freed_in_flight = FALSE;
3453 db->db_pending_evict = TRUE;
3454 db->db_partial_read = FALSE;
3455
3456 if (blkid == DMU_BONUS_BLKID) {
3457 ASSERT3P(parent, ==, dn->dn_dbuf);
3458 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3459 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3460 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3461 db->db.db_offset = DMU_BONUS_BLKID;
3462 db->db_state = DB_UNCACHED;
3463 DTRACE_SET_STATE(db, "bonus buffer created");
3464 db->db_caching_status = DB_NO_CACHE;
3465 /* the bonus dbuf is not placed in the hash table */
3466 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3467 return (db);
3468 } else if (blkid == DMU_SPILL_BLKID) {
3469 db->db.db_size = (blkptr != NULL) ?
3470 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3471 db->db.db_offset = 0;
3472 } else {
3473 int blocksize =
3474 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3475 db->db.db_size = blocksize;
3476 db->db.db_offset = db->db_blkid * blocksize;
3477 }
3478
3479 /*
3480 * Hold the dn_dbufs_mtx while we get the new dbuf
3481 * in the hash table *and* added to the dbufs list.
3482 * This prevents a possible deadlock with someone
3483 * trying to look up this dbuf before it's added to the
3484 * dn_dbufs list.
3485 */
3486 mutex_enter(&dn->dn_dbufs_mtx);
3487 db->db_state = DB_EVICTING; /* not worth logging this state change */
3488 if ((odb = dbuf_hash_insert(db)) != NULL) {
3489 /* someone else inserted it first */
3490 mutex_exit(&dn->dn_dbufs_mtx);
3491 kmem_cache_free(dbuf_kmem_cache, db);
3492 DBUF_STAT_BUMP(hash_insert_race);
3493 return (odb);
3494 }
3495 avl_add(&dn->dn_dbufs, db);
3496
3497 db->db_state = DB_UNCACHED;
3498 DTRACE_SET_STATE(db, "regular buffer created");
3499 db->db_caching_status = DB_NO_CACHE;
3500 mutex_exit(&dn->dn_dbufs_mtx);
3501 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3502
3503 if (parent && parent != dn->dn_dbuf)
3504 dbuf_add_ref(parent, db);
3505
3506 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3507 zfs_refcount_count(&dn->dn_holds) > 0);
3508 (void) zfs_refcount_add(&dn->dn_holds, db);
3509
3510 dprintf_dbuf(db, "db=%p\n", db);
3511
3512 return (db);
3513 }
3514
3515 /*
3516 * This function returns a block pointer and information about the object,
3517 * given a dnode and a block. This is a publicly accessible version of
3518 * dbuf_findbp that only returns some information, rather than the
3519 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3520 * should be locked as (at least) a reader.
3521 */
3522 int
dbuf_dnode_findbp(dnode_t * dn,uint64_t level,uint64_t blkid,blkptr_t * bp,uint16_t * datablkszsec,uint8_t * indblkshift)3523 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3524 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3525 {
3526 dmu_buf_impl_t *dbp = NULL;
3527 blkptr_t *bp2;
3528 int err = 0;
3529 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3530
3531 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3532 if (err == 0) {
3533 ASSERT3P(bp2, !=, NULL);
3534 *bp = *bp2;
3535 if (dbp != NULL)
3536 dbuf_rele(dbp, NULL);
3537 if (datablkszsec != NULL)
3538 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3539 if (indblkshift != NULL)
3540 *indblkshift = dn->dn_phys->dn_indblkshift;
3541 }
3542
3543 return (err);
3544 }
3545
3546 typedef struct dbuf_prefetch_arg {
3547 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3548 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3549 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3550 int dpa_curlevel; /* The current level that we're reading */
3551 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3552 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3553 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3554 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3555 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3556 void *dpa_arg; /* prefetch completion arg */
3557 } dbuf_prefetch_arg_t;
3558
3559 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)3560 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3561 {
3562 if (dpa->dpa_cb != NULL) {
3563 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3564 dpa->dpa_zb.zb_blkid, io_done);
3565 }
3566 kmem_free(dpa, sizeof (*dpa));
3567 }
3568
3569 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3570 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3571 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3572 {
3573 (void) zio, (void) zb, (void) iobp;
3574 dbuf_prefetch_arg_t *dpa = private;
3575
3576 if (abuf != NULL)
3577 arc_buf_destroy(abuf, private);
3578
3579 dbuf_prefetch_fini(dpa, B_TRUE);
3580 }
3581
3582 /*
3583 * Actually issue the prefetch read for the block given.
3584 */
3585 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)3586 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3587 {
3588 ASSERT(!BP_IS_HOLE(bp));
3589 ASSERT(!BP_IS_REDACTED(bp));
3590 if (BP_IS_EMBEDDED(bp))
3591 return (dbuf_prefetch_fini(dpa, B_FALSE));
3592
3593 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3594 arc_flags_t aflags =
3595 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3596 ARC_FLAG_NO_BUF;
3597
3598 /* dnodes are always read as raw and then converted later */
3599 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3600 dpa->dpa_curlevel == 0)
3601 zio_flags |= ZIO_FLAG_RAW;
3602
3603 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3604 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3605 ASSERT(dpa->dpa_zio != NULL);
3606 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3607 dbuf_issue_final_prefetch_done, dpa,
3608 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3609 }
3610
3611 /*
3612 * Called when an indirect block above our prefetch target is read in. This
3613 * will either read in the next indirect block down the tree or issue the actual
3614 * prefetch if the next block down is our target.
3615 */
3616 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3617 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3618 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3619 {
3620 (void) zb, (void) iobp;
3621 dbuf_prefetch_arg_t *dpa = private;
3622
3623 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3624 ASSERT3S(dpa->dpa_curlevel, >, 0);
3625
3626 if (abuf == NULL) {
3627 ASSERT(zio == NULL || zio->io_error != 0);
3628 dbuf_prefetch_fini(dpa, B_TRUE);
3629 return;
3630 }
3631 ASSERT(zio == NULL || zio->io_error == 0);
3632
3633 /*
3634 * The dpa_dnode is only valid if we are called with a NULL
3635 * zio. This indicates that the arc_read() returned without
3636 * first calling zio_read() to issue a physical read. Once
3637 * a physical read is made the dpa_dnode must be invalidated
3638 * as the locks guarding it may have been dropped. If the
3639 * dpa_dnode is still valid, then we want to add it to the dbuf
3640 * cache. To do so, we must hold the dbuf associated with the block
3641 * we just prefetched, read its contents so that we associate it
3642 * with an arc_buf_t, and then release it.
3643 */
3644 if (zio != NULL) {
3645 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3646 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3647 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3648 } else {
3649 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3650 }
3651 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3652
3653 dpa->dpa_dnode = NULL;
3654 } else if (dpa->dpa_dnode != NULL) {
3655 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3656 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3657 dpa->dpa_zb.zb_level));
3658 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3659 dpa->dpa_curlevel, curblkid, FTAG);
3660 if (db == NULL) {
3661 arc_buf_destroy(abuf, private);
3662 dbuf_prefetch_fini(dpa, B_TRUE);
3663 return;
3664 }
3665 (void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
3666 DMU_READ_NO_PREFETCH);
3667 dbuf_rele(db, FTAG);
3668 }
3669
3670 dpa->dpa_curlevel--;
3671 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3672 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3673 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3674 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3675
3676 ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL ||
3677 dsl_dataset_feature_is_active(
3678 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3679 SPA_FEATURE_REDACTED_DATASETS));
3680 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3681 arc_buf_destroy(abuf, private);
3682 dbuf_prefetch_fini(dpa, B_TRUE);
3683 return;
3684 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3685 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3686 dbuf_issue_final_prefetch(dpa, bp);
3687 } else {
3688 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3689 zbookmark_phys_t zb;
3690
3691 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3692 if (dpa->dpa_dnode) {
3693 if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode,
3694 dpa->dpa_curlevel))
3695 iter_aflags |= ARC_FLAG_L2CACHE;
3696 } else {
3697 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3698 iter_aflags |= ARC_FLAG_L2CACHE;
3699 }
3700
3701 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3702
3703 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3704 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3705
3706 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3707 bp, dbuf_prefetch_indirect_done, dpa,
3708 ZIO_PRIORITY_SYNC_READ,
3709 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3710 &iter_aflags, &zb);
3711 }
3712
3713 arc_buf_destroy(abuf, private);
3714 }
3715
3716 /*
3717 * Issue prefetch reads for the given block on the given level. If the indirect
3718 * blocks above that block are not in memory, we will read them in
3719 * asynchronously. As a result, this call never blocks waiting for a read to
3720 * complete. Note that the prefetch might fail if the dataset is encrypted and
3721 * the encryption key is unmapped before the IO completes.
3722 */
3723 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)3724 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3725 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3726 void *arg)
3727 {
3728 blkptr_t bp;
3729 int epbs, nlevels, curlevel;
3730 uint64_t curblkid;
3731
3732 ASSERT(blkid != DMU_BONUS_BLKID);
3733 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3734
3735 if (blkid > dn->dn_maxblkid)
3736 goto no_issue;
3737
3738 if (level == 0 && dnode_block_freed(dn, blkid))
3739 goto no_issue;
3740
3741 /*
3742 * This dnode hasn't been written to disk yet, so there's nothing to
3743 * prefetch.
3744 */
3745 nlevels = dn->dn_phys->dn_nlevels;
3746 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3747 goto no_issue;
3748
3749 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3750 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3751 goto no_issue;
3752
3753 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3754 level, blkid, NULL);
3755 if (db != NULL) {
3756 mutex_exit(&db->db_mtx);
3757 /*
3758 * This dbuf already exists. It is either CACHED, or
3759 * (we assume) about to be read or filled.
3760 */
3761 goto no_issue;
3762 }
3763
3764 /*
3765 * Find the closest ancestor (indirect block) of the target block
3766 * that is present in the cache. In this indirect block, we will
3767 * find the bp that is at curlevel, curblkid.
3768 */
3769 curlevel = level;
3770 curblkid = blkid;
3771 while (curlevel < nlevels - 1) {
3772 int parent_level = curlevel + 1;
3773 uint64_t parent_blkid = curblkid >> epbs;
3774 dmu_buf_impl_t *db;
3775
3776 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3777 FALSE, TRUE, FTAG, &db) == 0) {
3778 blkptr_t *bpp = db->db_buf->b_data;
3779 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3780 dbuf_rele(db, FTAG);
3781 break;
3782 }
3783
3784 curlevel = parent_level;
3785 curblkid = parent_blkid;
3786 }
3787
3788 if (curlevel == nlevels - 1) {
3789 /* No cached indirect blocks found. */
3790 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3791 bp = dn->dn_phys->dn_blkptr[curblkid];
3792 }
3793 ASSERT(!BP_IS_REDACTED(&bp) ||
3794 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3795 SPA_FEATURE_REDACTED_DATASETS));
3796 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3797 goto no_issue;
3798
3799 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3800
3801 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3802 ZIO_FLAG_CANFAIL);
3803
3804 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3805 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3806 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3807 dn->dn_object, level, blkid);
3808 dpa->dpa_curlevel = curlevel;
3809 dpa->dpa_prio = prio;
3810 dpa->dpa_aflags = aflags;
3811 dpa->dpa_spa = dn->dn_objset->os_spa;
3812 dpa->dpa_dnode = dn;
3813 dpa->dpa_epbs = epbs;
3814 dpa->dpa_zio = pio;
3815 dpa->dpa_cb = cb;
3816 dpa->dpa_arg = arg;
3817
3818 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3819 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3820 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3821 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3822
3823 /*
3824 * If we have the indirect just above us, no need to do the asynchronous
3825 * prefetch chain; we'll just run the last step ourselves. If we're at
3826 * a higher level, though, we want to issue the prefetches for all the
3827 * indirect blocks asynchronously, so we can go on with whatever we were
3828 * doing.
3829 */
3830 if (curlevel == level) {
3831 ASSERT3U(curblkid, ==, blkid);
3832 dbuf_issue_final_prefetch(dpa, &bp);
3833 } else {
3834 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3835 zbookmark_phys_t zb;
3836
3837 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3838 if (dnode_level_is_l2cacheable(&bp, dn, curlevel))
3839 iter_aflags |= ARC_FLAG_L2CACHE;
3840
3841 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3842 dn->dn_object, curlevel, curblkid);
3843 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3844 &bp, dbuf_prefetch_indirect_done, dpa,
3845 ZIO_PRIORITY_SYNC_READ,
3846 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3847 &iter_aflags, &zb);
3848 }
3849 /*
3850 * We use pio here instead of dpa_zio since it's possible that
3851 * dpa may have already been freed.
3852 */
3853 zio_nowait(pio);
3854 return (1);
3855 no_issue:
3856 if (cb != NULL)
3857 cb(arg, level, blkid, B_FALSE);
3858 return (0);
3859 }
3860
3861 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)3862 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3863 arc_flags_t aflags)
3864 {
3865
3866 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3867 }
3868
3869 /*
3870 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3871 * the case of encrypted, compressed and uncompressed buffers by
3872 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3873 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3874 *
3875 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3876 */
3877 noinline static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db)3878 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3879 {
3880 dbuf_dirty_record_t *dr = db->db_data_pending;
3881 arc_buf_t *data = dr->dt.dl.dr_data;
3882 arc_buf_t *db_data;
3883 enum zio_compress compress_type = arc_get_compression(data);
3884 uint8_t complevel = arc_get_complevel(data);
3885
3886 if (arc_is_encrypted(data)) {
3887 boolean_t byteorder;
3888 uint8_t salt[ZIO_DATA_SALT_LEN];
3889 uint8_t iv[ZIO_DATA_IV_LEN];
3890 uint8_t mac[ZIO_DATA_MAC_LEN];
3891
3892 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3893 db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3894 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3895 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3896 compress_type, complevel);
3897 } else if (compress_type != ZIO_COMPRESS_OFF) {
3898 db_data = arc_alloc_compressed_buf(
3899 dn->dn_objset->os_spa, db, arc_buf_size(data),
3900 arc_buf_lsize(data), compress_type, complevel);
3901 } else {
3902 db_data = arc_alloc_buf(dn->dn_objset->os_spa, db,
3903 DBUF_GET_BUFC_TYPE(db), db->db.db_size);
3904 }
3905 memcpy(db_data->b_data, data->b_data, arc_buf_size(data));
3906
3907 dbuf_set_data(db, db_data);
3908 }
3909
3910 /*
3911 * Returns with db_holds incremented, and db_mtx not held.
3912 * Note: dn_struct_rwlock must be held.
3913 */
3914 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,const void * tag,dmu_buf_impl_t ** dbp)3915 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3916 boolean_t fail_sparse, boolean_t fail_uncached,
3917 const void *tag, dmu_buf_impl_t **dbp)
3918 {
3919 dmu_buf_impl_t *db, *parent = NULL;
3920 uint64_t hv;
3921
3922 /* If the pool has been created, verify the tx_sync_lock is not held */
3923 spa_t *spa = dn->dn_objset->os_spa;
3924 dsl_pool_t *dp = spa->spa_dsl_pool;
3925 if (dp != NULL) {
3926 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3927 }
3928
3929 ASSERT(blkid != DMU_BONUS_BLKID);
3930 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3931 if (!fail_sparse)
3932 ASSERT3U(dn->dn_nlevels, >, level);
3933
3934 *dbp = NULL;
3935
3936 /* dbuf_find() returns with db_mtx held */
3937 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3938
3939 if (db == NULL) {
3940 blkptr_t *bp = NULL;
3941 int err;
3942
3943 if (fail_uncached)
3944 return (SET_ERROR(ENOENT));
3945
3946 ASSERT0P(parent);
3947 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3948 if (fail_sparse) {
3949 if (err == 0 && bp && BP_IS_HOLE(bp))
3950 err = SET_ERROR(ENOENT);
3951 if (err) {
3952 if (parent)
3953 dbuf_rele(parent, NULL);
3954 return (err);
3955 }
3956 }
3957 if (err && err != ENOENT)
3958 return (err);
3959 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3960 }
3961
3962 if (fail_uncached && db->db_state != DB_CACHED) {
3963 mutex_exit(&db->db_mtx);
3964 return (SET_ERROR(ENOENT));
3965 }
3966
3967 if (db->db_buf != NULL) {
3968 arc_buf_access(db->db_buf);
3969 ASSERT(MUTEX_HELD(&db->db_mtx));
3970 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3971 }
3972
3973 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3974
3975 /*
3976 * If this buffer is currently syncing out, and we are
3977 * still referencing it from db_data, we need to make a copy
3978 * of it in case we decide we want to dirty it again in this txg.
3979 */
3980 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3981 dn->dn_object != DMU_META_DNODE_OBJECT &&
3982 db->db_state == DB_CACHED && db->db_data_pending) {
3983 dbuf_dirty_record_t *dr = db->db_data_pending;
3984 if (dr->dt.dl.dr_data == db->db_buf) {
3985 ASSERT3P(db->db_buf, !=, NULL);
3986 dbuf_hold_copy(dn, db);
3987 }
3988 }
3989
3990 if (multilist_link_active(&db->db_cache_link)) {
3991 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3992 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3993 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3994
3995 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3996
3997 uint64_t size = db->db.db_size;
3998 uint64_t usize = dmu_buf_user_size(&db->db);
3999 (void) zfs_refcount_remove_many(
4000 &dbuf_caches[db->db_caching_status].size, size, db);
4001 (void) zfs_refcount_remove_many(
4002 &dbuf_caches[db->db_caching_status].size, usize,
4003 db->db_user);
4004
4005 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
4006 DBUF_STAT_BUMPDOWN(metadata_cache_count);
4007 } else {
4008 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
4009 DBUF_STAT_BUMPDOWN(cache_count);
4010 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
4011 size + usize);
4012 }
4013 db->db_caching_status = DB_NO_CACHE;
4014 }
4015 (void) zfs_refcount_add(&db->db_holds, tag);
4016 DBUF_VERIFY(db);
4017 mutex_exit(&db->db_mtx);
4018
4019 /* NOTE: we can't rele the parent until after we drop the db_mtx */
4020 if (parent)
4021 dbuf_rele(parent, NULL);
4022
4023 ASSERT3P(DB_DNODE(db), ==, dn);
4024 ASSERT3U(db->db_blkid, ==, blkid);
4025 ASSERT3U(db->db_level, ==, level);
4026 *dbp = db;
4027
4028 return (0);
4029 }
4030
4031 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,const void * tag)4032 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
4033 {
4034 return (dbuf_hold_level(dn, 0, blkid, tag));
4035 }
4036
4037 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,const void * tag)4038 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4039 {
4040 dmu_buf_impl_t *db;
4041 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4042 return (err ? NULL : db);
4043 }
4044
4045 void
dbuf_create_bonus(dnode_t * dn)4046 dbuf_create_bonus(dnode_t *dn)
4047 {
4048 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4049
4050 ASSERT0P(dn->dn_bonus);
4051 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4052 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4053 dn->dn_bonus->db_pending_evict = FALSE;
4054 }
4055
4056 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)4057 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4058 {
4059 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4060
4061 if (db->db_blkid != DMU_SPILL_BLKID)
4062 return (SET_ERROR(ENOTSUP));
4063 if (blksz == 0)
4064 blksz = SPA_MINBLOCKSIZE;
4065 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4066 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4067
4068 dbuf_new_size(db, blksz, tx);
4069
4070 return (0);
4071 }
4072
4073 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)4074 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4075 {
4076 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4077 }
4078
4079 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4080 void
dbuf_add_ref(dmu_buf_impl_t * db,const void * tag)4081 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4082 {
4083 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4084 VERIFY3S(holds, >, 1);
4085 }
4086
4087 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4088 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,const void * tag)4089 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4090 const void *tag)
4091 {
4092 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4093 dmu_buf_impl_t *found_db;
4094 boolean_t result = B_FALSE;
4095
4096 if (blkid == DMU_BONUS_BLKID)
4097 found_db = dbuf_find_bonus(os, obj);
4098 else
4099 found_db = dbuf_find(os, obj, 0, blkid, NULL);
4100
4101 if (found_db != NULL) {
4102 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4103 (void) zfs_refcount_add(&db->db_holds, tag);
4104 result = B_TRUE;
4105 }
4106 mutex_exit(&found_db->db_mtx);
4107 }
4108 return (result);
4109 }
4110
4111 /*
4112 * If you call dbuf_rele() you had better not be referencing the dnode handle
4113 * unless you have some other direct or indirect hold on the dnode. (An indirect
4114 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4115 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4116 * dnode's parent dbuf evicting its dnode handles.
4117 */
4118 void
dbuf_rele(dmu_buf_impl_t * db,const void * tag)4119 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4120 {
4121 mutex_enter(&db->db_mtx);
4122 dbuf_rele_and_unlock(db, tag, B_FALSE);
4123 }
4124
4125 void
dmu_buf_rele(dmu_buf_t * db,const void * tag)4126 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4127 {
4128 dbuf_rele((dmu_buf_impl_t *)db, tag);
4129 }
4130
4131 /*
4132 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
4133 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
4134 * argument should be set if we are already in the dbuf-evicting code
4135 * path, in which case we don't want to recursively evict. This allows us to
4136 * avoid deeply nested stacks that would have a call flow similar to this:
4137 *
4138 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4139 * ^ |
4140 * | |
4141 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
4142 *
4143 */
4144 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,const void * tag,boolean_t evicting)4145 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4146 {
4147 int64_t holds;
4148 uint64_t size;
4149
4150 ASSERT(MUTEX_HELD(&db->db_mtx));
4151 DBUF_VERIFY(db);
4152
4153 /*
4154 * Remove the reference to the dbuf before removing its hold on the
4155 * dnode so we can guarantee in dnode_move() that a referenced bonus
4156 * buffer has a corresponding dnode hold.
4157 */
4158 holds = zfs_refcount_remove(&db->db_holds, tag);
4159 ASSERT(holds >= 0);
4160
4161 /*
4162 * We can't freeze indirects if there is a possibility that they
4163 * may be modified in the current syncing context.
4164 */
4165 if (db->db_buf != NULL &&
4166 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4167 arc_buf_freeze(db->db_buf);
4168 }
4169
4170 if (holds == db->db_dirtycnt &&
4171 db->db_level == 0 && db->db_user_immediate_evict)
4172 dbuf_evict_user(db);
4173
4174 if (holds == 0) {
4175 if (db->db_blkid == DMU_BONUS_BLKID) {
4176 dnode_t *dn;
4177 boolean_t evict_dbuf = db->db_pending_evict;
4178
4179 /*
4180 * If the dnode moves here, we cannot cross this
4181 * barrier until the move completes.
4182 */
4183 DB_DNODE_ENTER(db);
4184
4185 dn = DB_DNODE(db);
4186 atomic_dec_32(&dn->dn_dbufs_count);
4187
4188 /*
4189 * Decrementing the dbuf count means that the bonus
4190 * buffer's dnode hold is no longer discounted in
4191 * dnode_move(). The dnode cannot move until after
4192 * the dnode_rele() below.
4193 */
4194 DB_DNODE_EXIT(db);
4195
4196 /*
4197 * Do not reference db after its lock is dropped.
4198 * Another thread may evict it.
4199 */
4200 mutex_exit(&db->db_mtx);
4201
4202 if (evict_dbuf)
4203 dnode_evict_bonus(dn);
4204
4205 dnode_rele(dn, db);
4206 } else if (db->db_buf == NULL) {
4207 /*
4208 * This is a special case: we never associated this
4209 * dbuf with any data allocated from the ARC.
4210 */
4211 ASSERT(db->db_state == DB_UNCACHED ||
4212 db->db_state == DB_NOFILL);
4213 dbuf_destroy(db);
4214 } else if (arc_released(db->db_buf)) {
4215 /*
4216 * This dbuf has anonymous data associated with it.
4217 */
4218 dbuf_destroy(db);
4219 } else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) {
4220 /*
4221 * We don't expect more accesses to the dbuf, and it
4222 * is either not cacheable or was marked for eviction.
4223 */
4224 dbuf_destroy(db);
4225 } else if (!multilist_link_active(&db->db_cache_link)) {
4226 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4227
4228 dbuf_cached_state_t dcs =
4229 dbuf_include_in_metadata_cache(db) ?
4230 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4231 db->db_caching_status = dcs;
4232
4233 multilist_insert(&dbuf_caches[dcs].cache, db);
4234 uint64_t db_size = db->db.db_size;
4235 uint64_t dbu_size = dmu_buf_user_size(&db->db);
4236 (void) zfs_refcount_add_many(
4237 &dbuf_caches[dcs].size, db_size, db);
4238 size = zfs_refcount_add_many(
4239 &dbuf_caches[dcs].size, dbu_size, db->db_user);
4240 uint8_t db_level = db->db_level;
4241 mutex_exit(&db->db_mtx);
4242
4243 if (dcs == DB_DBUF_METADATA_CACHE) {
4244 DBUF_STAT_BUMP(metadata_cache_count);
4245 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4246 size);
4247 } else {
4248 DBUF_STAT_BUMP(cache_count);
4249 DBUF_STAT_MAX(cache_size_bytes_max, size);
4250 DBUF_STAT_BUMP(cache_levels[db_level]);
4251 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4252 db_size + dbu_size);
4253 }
4254
4255 if (dcs == DB_DBUF_CACHE && !evicting)
4256 dbuf_evict_notify(size);
4257 }
4258 } else {
4259 mutex_exit(&db->db_mtx);
4260 }
4261 }
4262
4263 #pragma weak dmu_buf_refcount = dbuf_refcount
4264 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)4265 dbuf_refcount(dmu_buf_impl_t *db)
4266 {
4267 return (zfs_refcount_count(&db->db_holds));
4268 }
4269
4270 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)4271 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4272 {
4273 uint64_t holds;
4274 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4275
4276 mutex_enter(&db->db_mtx);
4277 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4278 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4279 mutex_exit(&db->db_mtx);
4280
4281 return (holds);
4282 }
4283
4284 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)4285 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4286 dmu_buf_user_t *new_user)
4287 {
4288 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4289
4290 mutex_enter(&db->db_mtx);
4291 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4292 if (db->db_user == old_user)
4293 db->db_user = new_user;
4294 else
4295 old_user = db->db_user;
4296 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4297 mutex_exit(&db->db_mtx);
4298
4299 return (old_user);
4300 }
4301
4302 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4303 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4304 {
4305 return (dmu_buf_replace_user(db_fake, NULL, user));
4306 }
4307
4308 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)4309 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4310 {
4311 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4312
4313 db->db_user_immediate_evict = TRUE;
4314 return (dmu_buf_set_user(db_fake, user));
4315 }
4316
4317 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4318 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4319 {
4320 return (dmu_buf_replace_user(db_fake, user, NULL));
4321 }
4322
4323 void *
dmu_buf_get_user(dmu_buf_t * db_fake)4324 dmu_buf_get_user(dmu_buf_t *db_fake)
4325 {
4326 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4327
4328 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4329 return (db->db_user);
4330 }
4331
4332 uint64_t
dmu_buf_user_size(dmu_buf_t * db_fake)4333 dmu_buf_user_size(dmu_buf_t *db_fake)
4334 {
4335 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4336 if (db->db_user == NULL)
4337 return (0);
4338 return (atomic_load_64(&db->db_user->dbu_size));
4339 }
4340
4341 void
dmu_buf_add_user_size(dmu_buf_t * db_fake,uint64_t nadd)4342 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4343 {
4344 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4345 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4346 ASSERT3P(db->db_user, !=, NULL);
4347 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4348 atomic_add_64(&db->db_user->dbu_size, nadd);
4349 }
4350
4351 void
dmu_buf_sub_user_size(dmu_buf_t * db_fake,uint64_t nsub)4352 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4353 {
4354 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4355 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4356 ASSERT3P(db->db_user, !=, NULL);
4357 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4358 atomic_sub_64(&db->db_user->dbu_size, nsub);
4359 }
4360
4361 void
dmu_buf_user_evict_wait(void)4362 dmu_buf_user_evict_wait(void)
4363 {
4364 taskq_wait(dbu_evict_taskq);
4365 }
4366
4367 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)4368 dmu_buf_get_blkptr(dmu_buf_t *db)
4369 {
4370 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4371 return (dbi->db_blkptr);
4372 }
4373
4374 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)4375 dmu_buf_get_objset(dmu_buf_t *db)
4376 {
4377 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4378 return (dbi->db_objset);
4379 }
4380
4381 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)4382 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4383 {
4384 /* ASSERT(dmu_tx_is_syncing(tx) */
4385 ASSERT(MUTEX_HELD(&db->db_mtx));
4386
4387 if (db->db_blkptr != NULL)
4388 return;
4389
4390 if (db->db_blkid == DMU_SPILL_BLKID) {
4391 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4392 BP_ZERO(db->db_blkptr);
4393 return;
4394 }
4395 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4396 /*
4397 * This buffer was allocated at a time when there was
4398 * no available blkptrs from the dnode, or it was
4399 * inappropriate to hook it in (i.e., nlevels mismatch).
4400 */
4401 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4402 ASSERT0P(db->db_parent);
4403 db->db_parent = dn->dn_dbuf;
4404 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4405 DBUF_VERIFY(db);
4406 } else {
4407 dmu_buf_impl_t *parent = db->db_parent;
4408 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4409
4410 ASSERT(dn->dn_phys->dn_nlevels > 1);
4411 if (parent == NULL) {
4412 mutex_exit(&db->db_mtx);
4413 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4414 parent = dbuf_hold_level(dn, db->db_level + 1,
4415 db->db_blkid >> epbs, db);
4416 rw_exit(&dn->dn_struct_rwlock);
4417 mutex_enter(&db->db_mtx);
4418 db->db_parent = parent;
4419 }
4420 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4421 (db->db_blkid & ((1ULL << epbs) - 1));
4422 DBUF_VERIFY(db);
4423 }
4424 }
4425
4426 static void
dbuf_sync_bonus(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4427 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4428 {
4429 dmu_buf_impl_t *db = dr->dr_dbuf;
4430 void *data = dr->dt.dl.dr_data;
4431
4432 ASSERT0(db->db_level);
4433 ASSERT(MUTEX_HELD(&db->db_mtx));
4434 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4435 ASSERT(data != NULL);
4436
4437 dnode_t *dn = dr->dr_dnode;
4438 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4439 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4440 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4441
4442 dbuf_sync_leaf_verify_bonus_dnode(dr);
4443
4444 dbuf_undirty_bonus(dr);
4445 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4446 }
4447
4448 /*
4449 * When syncing out a blocks of dnodes, adjust the block to deal with
4450 * encryption. Normally, we make sure the block is decrypted before writing
4451 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4452 * from a raw receive. In this case, set the ARC buf's crypt params so
4453 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4454 */
4455 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)4456 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4457 {
4458 int err;
4459 dmu_buf_impl_t *db = dr->dr_dbuf;
4460
4461 ASSERT(MUTEX_HELD(&db->db_mtx));
4462 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4463 ASSERT0(db->db_level);
4464
4465 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4466 zbookmark_phys_t zb;
4467
4468 /*
4469 * Unfortunately, there is currently no mechanism for
4470 * syncing context to handle decryption errors. An error
4471 * here is only possible if an attacker maliciously
4472 * changed a dnode block and updated the associated
4473 * checksums going up the block tree.
4474 */
4475 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4476 db->db.db_object, db->db_level, db->db_blkid);
4477 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4478 &zb, B_TRUE);
4479 if (err)
4480 panic("Invalid dnode block MAC");
4481 } else if (dr->dt.dl.dr_has_raw_params) {
4482 (void) arc_release(dr->dt.dl.dr_data, db);
4483 arc_convert_to_raw(dr->dt.dl.dr_data,
4484 dmu_objset_id(db->db_objset),
4485 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4486 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4487 }
4488 }
4489
4490 /*
4491 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4492 * is critical the we not allow the compiler to inline this function in to
4493 * dbuf_sync_list() thereby drastically bloating the stack usage.
4494 */
4495 noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4496 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4497 {
4498 dmu_buf_impl_t *db = dr->dr_dbuf;
4499 dnode_t *dn = dr->dr_dnode;
4500
4501 ASSERT(dmu_tx_is_syncing(tx));
4502
4503 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4504
4505 mutex_enter(&db->db_mtx);
4506
4507 ASSERT(db->db_level > 0);
4508 DBUF_VERIFY(db);
4509
4510 /* Read the block if it hasn't been read yet. */
4511 if (db->db_buf == NULL) {
4512 mutex_exit(&db->db_mtx);
4513 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4514 mutex_enter(&db->db_mtx);
4515 }
4516 ASSERT3U(db->db_state, ==, DB_CACHED);
4517 ASSERT(db->db_buf != NULL);
4518
4519 /* Indirect block size must match what the dnode thinks it is. */
4520 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4521 dbuf_check_blkptr(dn, db);
4522
4523 /* Provide the pending dirty record to child dbufs */
4524 db->db_data_pending = dr;
4525
4526 mutex_exit(&db->db_mtx);
4527
4528 dbuf_write(dr, db->db_buf, tx);
4529
4530 zio_t *zio = dr->dr_zio;
4531 mutex_enter(&dr->dt.di.dr_mtx);
4532 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4533 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4534 mutex_exit(&dr->dt.di.dr_mtx);
4535 zio_nowait(zio);
4536 }
4537
4538 /*
4539 * Verify that the size of the data in our bonus buffer does not exceed
4540 * its recorded size.
4541 *
4542 * The purpose of this verification is to catch any cases in development
4543 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4544 * due to incorrect feature management, older pools expect to read more
4545 * data even though they didn't actually write it to begin with.
4546 *
4547 * For a example, this would catch an error in the feature logic where we
4548 * open an older pool and we expect to write the space map histogram of
4549 * a space map with size SPACE_MAP_SIZE_V0.
4550 */
4551 static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t * dr)4552 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4553 {
4554 #ifdef ZFS_DEBUG
4555 dnode_t *dn = dr->dr_dnode;
4556
4557 /*
4558 * Encrypted bonus buffers can have data past their bonuslen.
4559 * Skip the verification of these blocks.
4560 */
4561 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4562 return;
4563
4564 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4565 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4566 ASSERT3U(bonuslen, <=, maxbonuslen);
4567
4568 arc_buf_t *datap = dr->dt.dl.dr_data;
4569 char *datap_end = ((char *)datap) + bonuslen;
4570 char *datap_max = ((char *)datap) + maxbonuslen;
4571
4572 /* ensure that everything is zero after our data */
4573 for (; datap_end < datap_max; datap_end++)
4574 ASSERT0(*datap_end);
4575 #endif
4576 }
4577
4578 static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t * dr)4579 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4580 {
4581 /* This must be a lightweight dirty record. */
4582 ASSERT0P(dr->dr_dbuf);
4583 dnode_t *dn = dr->dr_dnode;
4584
4585 if (dn->dn_phys->dn_nlevels == 1) {
4586 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4587 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4588 } else {
4589 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4590 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4591 VERIFY3U(parent_db->db_level, ==, 1);
4592 VERIFY3P(DB_DNODE(parent_db), ==, dn);
4593 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4594 blkptr_t *bp = parent_db->db.db_data;
4595 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4596 }
4597 }
4598
4599 static void
dbuf_lightweight_ready(zio_t * zio)4600 dbuf_lightweight_ready(zio_t *zio)
4601 {
4602 dbuf_dirty_record_t *dr = zio->io_private;
4603 blkptr_t *bp = zio->io_bp;
4604
4605 if (zio->io_error != 0)
4606 return;
4607
4608 dnode_t *dn = dr->dr_dnode;
4609
4610 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4611 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4612 int64_t delta = bp_get_dsize_sync(spa, bp) -
4613 bp_get_dsize_sync(spa, bp_orig);
4614 dnode_diduse_space(dn, delta);
4615
4616 uint64_t blkid = dr->dt.dll.dr_blkid;
4617 mutex_enter(&dn->dn_mtx);
4618 if (blkid > dn->dn_phys->dn_maxblkid) {
4619 ASSERT0(dn->dn_objset->os_raw_receive);
4620 dn->dn_phys->dn_maxblkid = blkid;
4621 }
4622 mutex_exit(&dn->dn_mtx);
4623
4624 if (!BP_IS_EMBEDDED(bp)) {
4625 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4626 BP_SET_FILL(bp, fill);
4627 }
4628
4629 dmu_buf_impl_t *parent_db;
4630 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4631 if (dr->dr_parent == NULL) {
4632 parent_db = dn->dn_dbuf;
4633 } else {
4634 parent_db = dr->dr_parent->dr_dbuf;
4635 }
4636 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4637 *bp_orig = *bp;
4638 rw_exit(&parent_db->db_rwlock);
4639 }
4640
4641 static void
dbuf_lightweight_done(zio_t * zio)4642 dbuf_lightweight_done(zio_t *zio)
4643 {
4644 dbuf_dirty_record_t *dr = zio->io_private;
4645
4646 VERIFY0(zio->io_error);
4647
4648 objset_t *os = dr->dr_dnode->dn_objset;
4649 dmu_tx_t *tx = os->os_synctx;
4650
4651 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4652 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4653 } else {
4654 dsl_dataset_t *ds = os->os_dsl_dataset;
4655 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4656 dsl_dataset_block_born(ds, zio->io_bp, tx);
4657 }
4658
4659 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4660 zio->io_txg);
4661
4662 abd_free(dr->dt.dll.dr_abd);
4663 kmem_free(dr, sizeof (*dr));
4664 }
4665
4666 noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4667 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4668 {
4669 dnode_t *dn = dr->dr_dnode;
4670 zio_t *pio;
4671 if (dn->dn_phys->dn_nlevels == 1) {
4672 pio = dn->dn_zio;
4673 } else {
4674 pio = dr->dr_parent->dr_zio;
4675 }
4676
4677 zbookmark_phys_t zb = {
4678 .zb_objset = dmu_objset_id(dn->dn_objset),
4679 .zb_object = dn->dn_object,
4680 .zb_level = 0,
4681 .zb_blkid = dr->dt.dll.dr_blkid,
4682 };
4683
4684 /*
4685 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4686 * will have the old BP in dbuf_lightweight_done().
4687 */
4688 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4689
4690 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4691 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4692 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4693 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4694 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4695 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4696
4697 zio_nowait(dr->dr_zio);
4698 }
4699
4700 /*
4701 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4702 * critical the we not allow the compiler to inline this function in to
4703 * dbuf_sync_list() thereby drastically bloating the stack usage.
4704 */
4705 noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4706 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4707 {
4708 arc_buf_t **datap = &dr->dt.dl.dr_data;
4709 dmu_buf_impl_t *db = dr->dr_dbuf;
4710 dnode_t *dn = dr->dr_dnode;
4711 objset_t *os;
4712 uint64_t txg = tx->tx_txg;
4713
4714 ASSERT(dmu_tx_is_syncing(tx));
4715
4716 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4717
4718 mutex_enter(&db->db_mtx);
4719 /*
4720 * To be synced, we must be dirtied. But we might have been freed
4721 * after the dirty.
4722 */
4723 if (db->db_state == DB_UNCACHED) {
4724 /* This buffer has been freed since it was dirtied */
4725 ASSERT0P(db->db.db_data);
4726 } else if (db->db_state == DB_FILL) {
4727 /* This buffer was freed and is now being re-filled */
4728 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4729 } else if (db->db_state == DB_READ) {
4730 /*
4731 * This buffer was either cloned or had a Direct I/O write
4732 * occur and has an in-flgiht read on the BP. It is safe to
4733 * issue the write here, because the read has already been
4734 * issued and the contents won't change.
4735 *
4736 * We can verify the case of both the clone and Direct I/O
4737 * write by making sure the first dirty record for the dbuf
4738 * has no ARC buffer associated with it.
4739 */
4740 dbuf_dirty_record_t *dr_head =
4741 list_head(&db->db_dirty_records);
4742 ASSERT0P(db->db_buf);
4743 ASSERT0P(db->db.db_data);
4744 ASSERT0P(dr_head->dt.dl.dr_data);
4745 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4746 } else {
4747 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4748 }
4749 DBUF_VERIFY(db);
4750
4751 if (db->db_blkid == DMU_SPILL_BLKID) {
4752 mutex_enter(&dn->dn_mtx);
4753 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4754 /*
4755 * In the previous transaction group, the bonus buffer
4756 * was entirely used to store the attributes for the
4757 * dnode which overrode the dn_spill field. However,
4758 * when adding more attributes to the file a spill
4759 * block was required to hold the extra attributes.
4760 *
4761 * Make sure to clear the garbage left in the dn_spill
4762 * field from the previous attributes in the bonus
4763 * buffer. Otherwise, after writing out the spill
4764 * block to the new allocated dva, it will free
4765 * the old block pointed to by the invalid dn_spill.
4766 */
4767 db->db_blkptr = NULL;
4768 }
4769 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4770 mutex_exit(&dn->dn_mtx);
4771 }
4772
4773 /*
4774 * If this is a bonus buffer, simply copy the bonus data into the
4775 * dnode. It will be written out when the dnode is synced (and it
4776 * will be synced, since it must have been dirty for dbuf_sync to
4777 * be called).
4778 */
4779 if (db->db_blkid == DMU_BONUS_BLKID) {
4780 ASSERT(dr->dr_dbuf == db);
4781 dbuf_sync_bonus(dr, tx);
4782 return;
4783 }
4784
4785 os = dn->dn_objset;
4786
4787 /*
4788 * This function may have dropped the db_mtx lock allowing a dmu_sync
4789 * operation to sneak in. As a result, we need to ensure that we
4790 * don't check the dr_override_state until we have returned from
4791 * dbuf_check_blkptr.
4792 */
4793 dbuf_check_blkptr(dn, db);
4794
4795 /*
4796 * If this buffer is in the middle of an immediate write, wait for the
4797 * synchronous IO to complete.
4798 *
4799 * This is also valid even with Direct I/O writes setting a dirty
4800 * records override state into DR_IN_DMU_SYNC, because all
4801 * Direct I/O writes happen in open-context.
4802 */
4803 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4804 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4805 cv_wait(&db->db_changed, &db->db_mtx);
4806 }
4807
4808 /*
4809 * If this is a dnode block, ensure it is appropriately encrypted
4810 * or decrypted, depending on what we are writing to it this txg.
4811 */
4812 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4813 dbuf_prepare_encrypted_dnode_leaf(dr);
4814
4815 if (*datap != NULL && *datap == db->db_buf &&
4816 dn->dn_object != DMU_META_DNODE_OBJECT &&
4817 zfs_refcount_count(&db->db_holds) > 1) {
4818 /*
4819 * If this buffer is currently "in use" (i.e., there
4820 * are active holds and db_data still references it),
4821 * then make a copy before we start the write so that
4822 * any modifications from the open txg will not leak
4823 * into this write.
4824 *
4825 * NOTE: this copy does not need to be made for
4826 * objects only modified in the syncing context (e.g.
4827 * DNONE_DNODE blocks).
4828 */
4829 int psize = arc_buf_size(*datap);
4830 int lsize = arc_buf_lsize(*datap);
4831 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4832 enum zio_compress compress_type = arc_get_compression(*datap);
4833 uint8_t complevel = arc_get_complevel(*datap);
4834
4835 if (arc_is_encrypted(*datap)) {
4836 boolean_t byteorder;
4837 uint8_t salt[ZIO_DATA_SALT_LEN];
4838 uint8_t iv[ZIO_DATA_IV_LEN];
4839 uint8_t mac[ZIO_DATA_MAC_LEN];
4840
4841 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4842 *datap = arc_alloc_raw_buf(os->os_spa, db,
4843 dmu_objset_id(os), byteorder, salt, iv, mac,
4844 dn->dn_type, psize, lsize, compress_type,
4845 complevel);
4846 } else if (compress_type != ZIO_COMPRESS_OFF) {
4847 ASSERT3U(type, ==, ARC_BUFC_DATA);
4848 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4849 psize, lsize, compress_type, complevel);
4850 } else {
4851 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4852 }
4853 memcpy((*datap)->b_data, db->db.db_data, psize);
4854 }
4855 db->db_data_pending = dr;
4856
4857 mutex_exit(&db->db_mtx);
4858
4859 dbuf_write(dr, *datap, tx);
4860
4861 ASSERT(!list_link_active(&dr->dr_dirty_node));
4862 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4863 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4864 } else {
4865 zio_nowait(dr->dr_zio);
4866 }
4867 }
4868
4869 /*
4870 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4871 * called recursively from dbuf_sync_indirect().
4872 */
4873 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)4874 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4875 {
4876 dbuf_dirty_record_t *dr;
4877
4878 while ((dr = list_head(list))) {
4879 if (dr->dr_zio != NULL) {
4880 /*
4881 * If we find an already initialized zio then we
4882 * are processing the meta-dnode, and we have finished.
4883 * The dbufs for all dnodes are put back on the list
4884 * during processing, so that we can zio_wait()
4885 * these IOs after initiating all child IOs.
4886 */
4887 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4888 DMU_META_DNODE_OBJECT);
4889 break;
4890 }
4891 list_remove(list, dr);
4892 if (dr->dr_dbuf == NULL) {
4893 dbuf_sync_lightweight(dr, tx);
4894 } else {
4895 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4896 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4897 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4898 }
4899 if (dr->dr_dbuf->db_level > 0)
4900 dbuf_sync_indirect(dr, tx);
4901 else
4902 dbuf_sync_leaf(dr, tx);
4903 }
4904 }
4905 }
4906
4907 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4908 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4909 {
4910 (void) buf;
4911 dmu_buf_impl_t *db = vdb;
4912 dnode_t *dn;
4913 blkptr_t *bp = zio->io_bp;
4914 blkptr_t *bp_orig = &zio->io_bp_orig;
4915 spa_t *spa = zio->io_spa;
4916 int64_t delta;
4917 uint64_t fill = 0;
4918 int i;
4919
4920 ASSERT3P(db->db_blkptr, !=, NULL);
4921 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4922
4923 DB_DNODE_ENTER(db);
4924 dn = DB_DNODE(db);
4925 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4926 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4927 zio->io_prev_space_delta = delta;
4928
4929 if (BP_GET_BIRTH(bp) != 0) {
4930 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4931 BP_GET_TYPE(bp) == dn->dn_type) ||
4932 (db->db_blkid == DMU_SPILL_BLKID &&
4933 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4934 BP_IS_EMBEDDED(bp));
4935 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4936 }
4937
4938 mutex_enter(&db->db_mtx);
4939
4940 #ifdef ZFS_DEBUG
4941 if (db->db_blkid == DMU_SPILL_BLKID) {
4942 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4943 ASSERT(!(BP_IS_HOLE(bp)) &&
4944 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4945 }
4946 #endif
4947
4948 if (db->db_level == 0) {
4949 mutex_enter(&dn->dn_mtx);
4950 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4951 db->db_blkid != DMU_SPILL_BLKID) {
4952 ASSERT0(db->db_objset->os_raw_receive);
4953 dn->dn_phys->dn_maxblkid = db->db_blkid;
4954 }
4955 mutex_exit(&dn->dn_mtx);
4956
4957 if (dn->dn_type == DMU_OT_DNODE) {
4958 i = 0;
4959 while (i < db->db.db_size) {
4960 dnode_phys_t *dnp =
4961 (void *)(((char *)db->db.db_data) + i);
4962
4963 i += DNODE_MIN_SIZE;
4964 if (dnp->dn_type != DMU_OT_NONE) {
4965 fill++;
4966 for (int j = 0; j < dnp->dn_nblkptr;
4967 j++) {
4968 (void) zfs_blkptr_verify(spa,
4969 &dnp->dn_blkptr[j],
4970 BLK_CONFIG_SKIP,
4971 BLK_VERIFY_HALT);
4972 }
4973 if (dnp->dn_flags &
4974 DNODE_FLAG_SPILL_BLKPTR) {
4975 (void) zfs_blkptr_verify(spa,
4976 DN_SPILL_BLKPTR(dnp),
4977 BLK_CONFIG_SKIP,
4978 BLK_VERIFY_HALT);
4979 }
4980 i += dnp->dn_extra_slots *
4981 DNODE_MIN_SIZE;
4982 }
4983 }
4984 } else {
4985 if (BP_IS_HOLE(bp)) {
4986 fill = 0;
4987 } else {
4988 fill = 1;
4989 }
4990 }
4991 } else {
4992 blkptr_t *ibp = db->db.db_data;
4993 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4994 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4995 if (BP_IS_HOLE(ibp))
4996 continue;
4997 (void) zfs_blkptr_verify(spa, ibp,
4998 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4999 fill += BP_GET_FILL(ibp);
5000 }
5001 }
5002 DB_DNODE_EXIT(db);
5003
5004 if (!BP_IS_EMBEDDED(bp))
5005 BP_SET_FILL(bp, fill);
5006
5007 mutex_exit(&db->db_mtx);
5008
5009 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
5010 *db->db_blkptr = *bp;
5011 dmu_buf_unlock_parent(db, dblt, FTAG);
5012 }
5013
5014 /*
5015 * This function gets called just prior to running through the compression
5016 * stage of the zio pipeline. If we're an indirect block comprised of only
5017 * holes, then we want this indirect to be compressed away to a hole. In
5018 * order to do that we must zero out any information about the holes that
5019 * this indirect points to prior to before we try to compress it.
5020 */
5021 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)5022 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
5023 {
5024 (void) zio, (void) buf;
5025 dmu_buf_impl_t *db = vdb;
5026 blkptr_t *bp;
5027 unsigned int epbs, i;
5028
5029 ASSERT3U(db->db_level, >, 0);
5030 DB_DNODE_ENTER(db);
5031 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
5032 DB_DNODE_EXIT(db);
5033 ASSERT3U(epbs, <, 31);
5034
5035 /* Determine if all our children are holes */
5036 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
5037 if (!BP_IS_HOLE(bp))
5038 break;
5039 }
5040
5041 /*
5042 * If all the children are holes, then zero them all out so that
5043 * we may get compressed away.
5044 */
5045 if (i == 1ULL << epbs) {
5046 /*
5047 * We only found holes. Grab the rwlock to prevent
5048 * anybody from reading the blocks we're about to
5049 * zero out.
5050 */
5051 rw_enter(&db->db_rwlock, RW_WRITER);
5052 memset(db->db.db_data, 0, db->db.db_size);
5053 rw_exit(&db->db_rwlock);
5054 }
5055 }
5056
5057 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)5058 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5059 {
5060 (void) buf;
5061 dmu_buf_impl_t *db = vdb;
5062 blkptr_t *bp_orig = &zio->io_bp_orig;
5063 blkptr_t *bp = db->db_blkptr;
5064 objset_t *os = db->db_objset;
5065 dmu_tx_t *tx = os->os_synctx;
5066
5067 ASSERT0(zio->io_error);
5068 ASSERT(db->db_blkptr == bp);
5069
5070 /*
5071 * For nopwrites and rewrites we ensure that the bp matches our
5072 * original and bypass all the accounting.
5073 */
5074 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5075 ASSERT(BP_EQUAL(bp, bp_orig));
5076 } else {
5077 dsl_dataset_t *ds = os->os_dsl_dataset;
5078 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5079 dsl_dataset_block_born(ds, bp, tx);
5080 }
5081
5082 mutex_enter(&db->db_mtx);
5083
5084 DBUF_VERIFY(db);
5085
5086 dbuf_dirty_record_t *dr = db->db_data_pending;
5087 dnode_t *dn = dr->dr_dnode;
5088 ASSERT(!list_link_active(&dr->dr_dirty_node));
5089 ASSERT(dr->dr_dbuf == db);
5090 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5091 list_remove(&db->db_dirty_records, dr);
5092
5093 #ifdef ZFS_DEBUG
5094 if (db->db_blkid == DMU_SPILL_BLKID) {
5095 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5096 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5097 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5098 }
5099 #endif
5100
5101 if (db->db_level == 0) {
5102 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5103 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5104
5105 /* no dr_data if this is a NO_FILL or Direct I/O */
5106 if (dr->dt.dl.dr_data != NULL &&
5107 dr->dt.dl.dr_data != db->db_buf) {
5108 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5109 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5110 arc_buf_destroy(dr->dt.dl.dr_data, db);
5111 }
5112 } else {
5113 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5114 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5115 if (!BP_IS_HOLE(db->db_blkptr)) {
5116 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5117 SPA_BLKPTRSHIFT;
5118 ASSERT3U(db->db_blkid, <=,
5119 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5120 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5121 db->db.db_size);
5122 }
5123 mutex_destroy(&dr->dt.di.dr_mtx);
5124 list_destroy(&dr->dt.di.dr_children);
5125 }
5126
5127 cv_broadcast(&db->db_changed);
5128 ASSERT(db->db_dirtycnt > 0);
5129 db->db_dirtycnt -= 1;
5130 db->db_data_pending = NULL;
5131 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5132
5133 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5134 zio->io_txg);
5135
5136 kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5137 }
5138
5139 static void
dbuf_write_nofill_ready(zio_t * zio)5140 dbuf_write_nofill_ready(zio_t *zio)
5141 {
5142 dbuf_write_ready(zio, NULL, zio->io_private);
5143 }
5144
5145 static void
dbuf_write_nofill_done(zio_t * zio)5146 dbuf_write_nofill_done(zio_t *zio)
5147 {
5148 dbuf_write_done(zio, NULL, zio->io_private);
5149 }
5150
5151 static void
dbuf_write_override_ready(zio_t * zio)5152 dbuf_write_override_ready(zio_t *zio)
5153 {
5154 dbuf_dirty_record_t *dr = zio->io_private;
5155 dmu_buf_impl_t *db = dr->dr_dbuf;
5156
5157 dbuf_write_ready(zio, NULL, db);
5158 }
5159
5160 static void
dbuf_write_override_done(zio_t * zio)5161 dbuf_write_override_done(zio_t *zio)
5162 {
5163 dbuf_dirty_record_t *dr = zio->io_private;
5164 dmu_buf_impl_t *db = dr->dr_dbuf;
5165 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5166
5167 mutex_enter(&db->db_mtx);
5168 if (!BP_EQUAL(zio->io_bp, obp)) {
5169 if (!BP_IS_HOLE(obp))
5170 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5171 arc_release(dr->dt.dl.dr_data, db);
5172 }
5173 mutex_exit(&db->db_mtx);
5174
5175 dbuf_write_done(zio, NULL, db);
5176
5177 if (zio->io_abd != NULL)
5178 abd_free(zio->io_abd);
5179 }
5180
5181 typedef struct dbuf_remap_impl_callback_arg {
5182 objset_t *drica_os;
5183 uint64_t drica_blk_birth;
5184 dmu_tx_t *drica_tx;
5185 } dbuf_remap_impl_callback_arg_t;
5186
5187 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)5188 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5189 void *arg)
5190 {
5191 dbuf_remap_impl_callback_arg_t *drica = arg;
5192 objset_t *os = drica->drica_os;
5193 spa_t *spa = dmu_objset_spa(os);
5194 dmu_tx_t *tx = drica->drica_tx;
5195
5196 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5197
5198 if (os == spa_meta_objset(spa)) {
5199 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5200 } else {
5201 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5202 size, drica->drica_blk_birth, tx);
5203 }
5204 }
5205
5206 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)5207 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5208 {
5209 blkptr_t bp_copy = *bp;
5210 spa_t *spa = dmu_objset_spa(dn->dn_objset);
5211 dbuf_remap_impl_callback_arg_t drica;
5212
5213 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5214
5215 drica.drica_os = dn->dn_objset;
5216 drica.drica_blk_birth = BP_GET_BIRTH(bp);
5217 drica.drica_tx = tx;
5218 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5219 &drica)) {
5220 /*
5221 * If the blkptr being remapped is tracked by a livelist,
5222 * then we need to make sure the livelist reflects the update.
5223 * First, cancel out the old blkptr by appending a 'FREE'
5224 * entry. Next, add an 'ALLOC' to track the new version. This
5225 * way we avoid trying to free an inaccurate blkptr at delete.
5226 * Note that embedded blkptrs are not tracked in livelists.
5227 */
5228 if (dn->dn_objset != spa_meta_objset(spa)) {
5229 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5230 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5231 BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) {
5232 ASSERT(!BP_IS_EMBEDDED(bp));
5233 ASSERT(dsl_dir_is_clone(ds->ds_dir));
5234 ASSERT(spa_feature_is_enabled(spa,
5235 SPA_FEATURE_LIVELIST));
5236 bplist_append(&ds->ds_dir->dd_pending_frees,
5237 bp);
5238 bplist_append(&ds->ds_dir->dd_pending_allocs,
5239 &bp_copy);
5240 }
5241 }
5242
5243 /*
5244 * The db_rwlock prevents dbuf_read_impl() from
5245 * dereferencing the BP while we are changing it. To
5246 * avoid lock contention, only grab it when we are actually
5247 * changing the BP.
5248 */
5249 if (rw != NULL)
5250 rw_enter(rw, RW_WRITER);
5251 *bp = bp_copy;
5252 if (rw != NULL)
5253 rw_exit(rw);
5254 }
5255 }
5256
5257 /*
5258 * Remap any existing BP's to concrete vdevs, if possible.
5259 */
5260 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)5261 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5262 {
5263 spa_t *spa = dmu_objset_spa(db->db_objset);
5264 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5265
5266 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5267 return;
5268
5269 if (db->db_level > 0) {
5270 blkptr_t *bp = db->db.db_data;
5271 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5272 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5273 }
5274 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5275 dnode_phys_t *dnp = db->db.db_data;
5276 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5277 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5278 i += dnp[i].dn_extra_slots + 1) {
5279 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5280 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5281 &dn->dn_dbuf->db_rwlock);
5282 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5283 tx);
5284 }
5285 }
5286 }
5287 }
5288
5289
5290 /*
5291 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5292 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5293 */
5294 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)5295 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5296 {
5297 dmu_buf_impl_t *db = dr->dr_dbuf;
5298 dnode_t *dn = dr->dr_dnode;
5299 objset_t *os;
5300 dmu_buf_impl_t *parent = db->db_parent;
5301 uint64_t txg = tx->tx_txg;
5302 zbookmark_phys_t zb;
5303 zio_prop_t zp;
5304 zio_t *pio; /* parent I/O */
5305 int wp_flag = 0;
5306
5307 ASSERT(dmu_tx_is_syncing(tx));
5308
5309 os = dn->dn_objset;
5310
5311 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5312 /*
5313 * Private object buffers are released here rather than in
5314 * dbuf_dirty() since they are only modified in the syncing
5315 * context and we don't want the overhead of making multiple
5316 * copies of the data.
5317 */
5318 if (BP_IS_HOLE(db->db_blkptr))
5319 arc_buf_thaw(data);
5320 else
5321 dbuf_release_bp(db);
5322 dbuf_remap(dn, db, tx);
5323 }
5324
5325 if (parent != dn->dn_dbuf) {
5326 /* Our parent is an indirect block. */
5327 /* We have a dirty parent that has been scheduled for write. */
5328 ASSERT(parent && parent->db_data_pending);
5329 /* Our parent's buffer is one level closer to the dnode. */
5330 ASSERT(db->db_level == parent->db_level-1);
5331 /*
5332 * We're about to modify our parent's db_data by modifying
5333 * our block pointer, so the parent must be released.
5334 */
5335 ASSERT(arc_released(parent->db_buf));
5336 pio = parent->db_data_pending->dr_zio;
5337 } else {
5338 /* Our parent is the dnode itself. */
5339 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5340 db->db_blkid != DMU_SPILL_BLKID) ||
5341 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5342 if (db->db_blkid != DMU_SPILL_BLKID)
5343 ASSERT3P(db->db_blkptr, ==,
5344 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5345 pio = dn->dn_zio;
5346 }
5347
5348 ASSERT(db->db_level == 0 || data == db->db_buf);
5349 ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg);
5350 ASSERT(pio);
5351
5352 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5353 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5354 db->db.db_object, db->db_level, db->db_blkid);
5355
5356 if (db->db_blkid == DMU_SPILL_BLKID)
5357 wp_flag = WP_SPILL;
5358 wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5359
5360 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5361
5362 /*
5363 * Set rewrite properties for zfs_rewrite() operations.
5364 */
5365 if (db->db_level == 0 && dr->dt.dl.dr_rewrite) {
5366 zp.zp_rewrite = B_TRUE;
5367
5368 /*
5369 * Mark physical rewrite feature for activation.
5370 * This will be activated automatically during dataset sync.
5371 */
5372 dsl_dataset_t *ds = os->os_dsl_dataset;
5373 if (!dsl_dataset_feature_is_active(ds,
5374 SPA_FEATURE_PHYSICAL_REWRITE)) {
5375 ds->ds_feature_activation[
5376 SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE;
5377 }
5378 }
5379
5380 /*
5381 * We copy the blkptr now (rather than when we instantiate the dirty
5382 * record), because its value can change between open context and
5383 * syncing context. We do not need to hold dn_struct_rwlock to read
5384 * db_blkptr because we are in syncing context.
5385 */
5386 dr->dr_bp_copy = *db->db_blkptr;
5387
5388 if (db->db_level == 0 &&
5389 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5390 /*
5391 * The BP for this block has been provided by open context
5392 * (by dmu_sync(), dmu_write_direct(),
5393 * or dmu_buf_write_embedded()).
5394 */
5395 abd_t *contents = (data != NULL) ?
5396 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5397
5398 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5399 contents, db->db.db_size, db->db.db_size, &zp,
5400 dbuf_write_override_ready, NULL,
5401 dbuf_write_override_done,
5402 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5403 mutex_enter(&db->db_mtx);
5404 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5405 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5406 dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies,
5407 dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite);
5408 mutex_exit(&db->db_mtx);
5409 } else if (data == NULL) {
5410 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5411 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5412 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5413 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5414 dbuf_write_nofill_ready, NULL,
5415 dbuf_write_nofill_done, db,
5416 ZIO_PRIORITY_ASYNC_WRITE,
5417 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5418 } else {
5419 ASSERT(arc_released(data));
5420
5421 /*
5422 * For indirect blocks, we want to setup the children
5423 * ready callback so that we can properly handle an indirect
5424 * block that only contains holes.
5425 */
5426 arc_write_done_func_t *children_ready_cb = NULL;
5427 if (db->db_level != 0)
5428 children_ready_cb = dbuf_write_children_ready;
5429
5430 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5431 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5432 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5433 children_ready_cb, dbuf_write_done, db,
5434 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5435 }
5436 }
5437
5438 EXPORT_SYMBOL(dbuf_find);
5439 EXPORT_SYMBOL(dbuf_is_metadata);
5440 EXPORT_SYMBOL(dbuf_destroy);
5441 EXPORT_SYMBOL(dbuf_whichblock);
5442 EXPORT_SYMBOL(dbuf_read);
5443 EXPORT_SYMBOL(dbuf_unoverride);
5444 EXPORT_SYMBOL(dbuf_free_range);
5445 EXPORT_SYMBOL(dbuf_new_size);
5446 EXPORT_SYMBOL(dbuf_release_bp);
5447 EXPORT_SYMBOL(dbuf_dirty);
5448 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5449 EXPORT_SYMBOL(dmu_buf_will_dirty);
5450 EXPORT_SYMBOL(dmu_buf_will_rewrite);
5451 EXPORT_SYMBOL(dmu_buf_is_dirty);
5452 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5453 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5454 EXPORT_SYMBOL(dmu_buf_will_fill);
5455 EXPORT_SYMBOL(dmu_buf_fill_done);
5456 EXPORT_SYMBOL(dmu_buf_rele);
5457 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5458 EXPORT_SYMBOL(dbuf_prefetch);
5459 EXPORT_SYMBOL(dbuf_hold_impl);
5460 EXPORT_SYMBOL(dbuf_hold);
5461 EXPORT_SYMBOL(dbuf_hold_level);
5462 EXPORT_SYMBOL(dbuf_create_bonus);
5463 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5464 EXPORT_SYMBOL(dbuf_rm_spill);
5465 EXPORT_SYMBOL(dbuf_add_ref);
5466 EXPORT_SYMBOL(dbuf_rele);
5467 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5468 EXPORT_SYMBOL(dbuf_refcount);
5469 EXPORT_SYMBOL(dbuf_sync_list);
5470 EXPORT_SYMBOL(dmu_buf_set_user);
5471 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5472 EXPORT_SYMBOL(dmu_buf_get_user);
5473 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5474
5475 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5476 "Maximum size in bytes of the dbuf cache.");
5477
5478 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5479 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5480
5481 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5482 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5483
5484 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5485 "Maximum size in bytes of dbuf metadata cache.");
5486
5487 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5488 "Set size of dbuf cache to log2 fraction of arc size.");
5489
5490 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5491 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5492
5493 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5494 "Set size of dbuf cache mutex array as log2 shift.");
5495