xref: /freebsd/crypto/openssl/ssl/record/methods/ssl3_cbc.c (revision f25b8c9fb4f58cf61adb47d7570abe7caa6d385d)
1 /*
2  * Copyright 2012-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * This file has no dependencies on the rest of libssl because it is shared
12  * with the providers. It contains functions for low level MAC calculations.
13  * Responsibility for this lies with the HMAC implementation in the
14  * providers. However there are legacy code paths in libssl which also need to
15  * do this. In time those legacy code paths can be removed and this file can be
16  * moved out of libssl.
17  */
18 
19 /*
20  * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
21  * internal use.
22  */
23 #include "internal/deprecated.h"
24 
25 #include <openssl/evp.h>
26 #ifndef FIPS_MODULE
27 #include <openssl/md5.h>
28 #endif
29 #include <openssl/sha.h>
30 
31 #include "internal/ssl3_cbc.h"
32 #include "internal/constant_time.h"
33 #include "internal/cryptlib.h"
34 
35 /*
36  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
37  * length field. (SHA-384/512 have 128-bit length.)
38  */
39 #define MAX_HASH_BIT_COUNT_BYTES 16
40 
41 /*
42  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
43  * Currently SHA-384/512 has a 128-byte block size and that's the largest
44  * supported by TLS.)
45  */
46 #define MAX_HASH_BLOCK_SIZE 128
47 
48 #ifndef FIPS_MODULE
49 /*
50  * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
51  * little-endian order. The value of p is advanced by four.
52  */
53 #define u32toLE(n, p)                        \
54     (*((p)++) = (unsigned char)(n),          \
55         *((p)++) = (unsigned char)(n >> 8),  \
56         *((p)++) = (unsigned char)(n >> 16), \
57         *((p)++) = (unsigned char)(n >> 24))
58 
59 /*
60  * These functions serialize the state of a hash and thus perform the
61  * standard "final" operation without adding the padding and length that such
62  * a function typically does.
63  */
tls1_md5_final_raw(void * ctx,unsigned char * md_out)64 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
65 {
66     MD5_CTX *md5 = ctx;
67 
68     u32toLE(md5->A, md_out);
69     u32toLE(md5->B, md_out);
70     u32toLE(md5->C, md_out);
71     u32toLE(md5->D, md_out);
72 }
73 #endif /* FIPS_MODULE */
74 
tls1_sha1_final_raw(void * ctx,unsigned char * md_out)75 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
76 {
77     SHA_CTX *sha1 = ctx;
78 
79     l2n(sha1->h0, md_out);
80     l2n(sha1->h1, md_out);
81     l2n(sha1->h2, md_out);
82     l2n(sha1->h3, md_out);
83     l2n(sha1->h4, md_out);
84 }
85 
tls1_sha256_final_raw(void * ctx,unsigned char * md_out)86 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
87 {
88     SHA256_CTX *sha256 = ctx;
89     unsigned i;
90 
91     for (i = 0; i < 8; i++)
92         l2n(sha256->h[i], md_out);
93 }
94 
tls1_sha512_final_raw(void * ctx,unsigned char * md_out)95 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
96 {
97     SHA512_CTX *sha512 = ctx;
98     unsigned i;
99 
100     for (i = 0; i < 8; i++)
101         l2n8(sha512->h[i], md_out);
102 }
103 
104 #undef LARGEST_DIGEST_CTX
105 #define LARGEST_DIGEST_CTX SHA512_CTX
106 
107 /*-
108  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
109  * record.
110  *
111  *   ctx: the EVP_MD_CTX from which we take the hash function.
112  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
113  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
114  *   md_out_size: if non-NULL, the number of output bytes is written here.
115  *   header: the 13-byte, TLS record header.
116  *   data: the record data itself, less any preceding explicit IV.
117  *   data_size: the secret, reported length of the data once the MAC and padding
118  *              has been removed.
119  *   data_plus_mac_plus_padding_size: the public length of the whole
120  *     record, including MAC and padding.
121  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
122  *
123  * On entry: we know that data is data_plus_mac_plus_padding_size in length
124  * Returns 1 on success or 0 on error
125  */
ssl3_cbc_digest_record(const EVP_MD * md,unsigned char * md_out,size_t * md_out_size,const unsigned char * header,const unsigned char * data,size_t data_size,size_t data_plus_mac_plus_padding_size,const unsigned char * mac_secret,size_t mac_secret_length,char is_sslv3)126 int ssl3_cbc_digest_record(const EVP_MD *md,
127     unsigned char *md_out,
128     size_t *md_out_size,
129     const unsigned char *header,
130     const unsigned char *data,
131     size_t data_size,
132     size_t data_plus_mac_plus_padding_size,
133     const unsigned char *mac_secret,
134     size_t mac_secret_length, char is_sslv3)
135 {
136     union {
137         OSSL_UNION_ALIGN;
138         unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
139     } md_state;
140     void (*md_final_raw)(void *ctx, unsigned char *md_out);
141     void (*md_transform)(void *ctx, const unsigned char *block);
142     size_t md_size, md_block_size = 64;
143     size_t sslv3_pad_length = 40, header_length, variance_blocks,
144            len, max_mac_bytes, num_blocks,
145            num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
146     size_t bits; /* at most 18 bits */
147     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
148     /* hmac_pad is the masked HMAC key. */
149     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
150     unsigned char first_block[MAX_HASH_BLOCK_SIZE];
151     unsigned char mac_out[EVP_MAX_MD_SIZE];
152     size_t i, j;
153     unsigned md_out_size_u;
154     EVP_MD_CTX *md_ctx = NULL;
155     /*
156      * mdLengthSize is the number of bytes in the length field that
157      * terminates * the hash.
158      */
159     size_t md_length_size = 8;
160     char length_is_big_endian = 1;
161     int ret = 0;
162 
163     /*
164      * This is a, hopefully redundant, check that allows us to forget about
165      * many possible overflows later in this function.
166      */
167     if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
168         return 0;
169 
170     if (EVP_MD_is_a(md, "MD5")) {
171 #ifdef FIPS_MODULE
172         return 0;
173 #else
174         if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
175             return 0;
176         md_final_raw = tls1_md5_final_raw;
177         md_transform = (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
178         md_size = 16;
179         sslv3_pad_length = 48;
180         length_is_big_endian = 0;
181 #endif
182     } else if (EVP_MD_is_a(md, "SHA1")) {
183         if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
184             return 0;
185         md_final_raw = tls1_sha1_final_raw;
186         md_transform = (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
187         md_size = 20;
188     } else if (EVP_MD_is_a(md, "SHA2-224")) {
189         if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
190             return 0;
191         md_final_raw = tls1_sha256_final_raw;
192         md_transform = (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
193         md_size = 224 / 8;
194     } else if (EVP_MD_is_a(md, "SHA2-256")) {
195         if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
196             return 0;
197         md_final_raw = tls1_sha256_final_raw;
198         md_transform = (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
199         md_size = 32;
200     } else if (EVP_MD_is_a(md, "SHA2-384")) {
201         if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
202             return 0;
203         md_final_raw = tls1_sha512_final_raw;
204         md_transform = (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
205         md_size = 384 / 8;
206         md_block_size = 128;
207         md_length_size = 16;
208     } else if (EVP_MD_is_a(md, "SHA2-512")) {
209         if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
210             return 0;
211         md_final_raw = tls1_sha512_final_raw;
212         md_transform = (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
213         md_size = 64;
214         md_block_size = 128;
215         md_length_size = 16;
216     } else {
217         /*
218          * ssl3_cbc_record_digest_supported should have been called first to
219          * check that the hash function is supported.
220          */
221         if (md_out_size != NULL)
222             *md_out_size = 0;
223         return ossl_assert(0);
224     }
225 
226     if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
227         || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
228         || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
229         return 0;
230 
231     header_length = 13;
232     if (is_sslv3) {
233         header_length = mac_secret_length
234             + sslv3_pad_length
235             + 8 /* sequence number */
236             + 1 /* record type */
237             + 2; /* record length */
238     }
239 
240     /*
241      * variance_blocks is the number of blocks of the hash that we have to
242      * calculate in constant time because they could be altered by the
243      * padding value. In SSLv3, the padding must be minimal so the end of
244      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
245      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
246      * of hash termination (0x80 + 64-bit length) don't fit in the final
247      * block, we say that the final two blocks can vary based on the padding.
248      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
249      * required to be minimal. Therefore we say that the final |variance_blocks|
250      * blocks can
251      * vary based on the padding. Later in the function, if the message is
252      * short and there obviously cannot be this many blocks then
253      * variance_blocks can be reduced.
254      */
255     variance_blocks = is_sslv3 ? 2
256                                : (((255 + 1 + md_size + md_block_size - 1)
257                                       / md_block_size)
258                                      + 1);
259     /*
260      * From now on we're dealing with the MAC, which conceptually has 13
261      * bytes of `header' before the start of the data (TLS) or 71/75 bytes
262      * (SSLv3)
263      */
264     len = data_plus_mac_plus_padding_size + header_length;
265     /*
266      * max_mac_bytes contains the maximum bytes of bytes in the MAC,
267      * including * |header|, assuming that there's no padding.
268      */
269     max_mac_bytes = len - md_size - 1;
270     /* num_blocks is the maximum number of hash blocks. */
271     num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
272     /*
273      * In order to calculate the MAC in constant time we have to handle the
274      * final blocks specially because the padding value could cause the end
275      * to appear somewhere in the final |variance_blocks| blocks and we can't
276      * leak where. However, |num_starting_blocks| worth of data can be hashed
277      * right away because no padding value can affect whether they are
278      * plaintext.
279      */
280     num_starting_blocks = 0;
281     /*
282      * k is the starting byte offset into the conceptual header||data where
283      * we start processing.
284      */
285     k = 0;
286     /*
287      * mac_end_offset is the index just past the end of the data to be MACed.
288      */
289     mac_end_offset = data_size + header_length;
290     /*
291      * c is the index of the 0x80 byte in the final hash block that contains
292      * application data.
293      */
294     c = mac_end_offset % md_block_size;
295     /*
296      * index_a is the hash block number that contains the 0x80 terminating
297      * value.
298      */
299     index_a = mac_end_offset / md_block_size;
300     /*
301      * index_b is the hash block number that contains the 64-bit hash length,
302      * in bits.
303      */
304     index_b = (mac_end_offset + md_length_size) / md_block_size;
305     /*
306      * bits is the hash-length in bits. It includes the additional hash block
307      * for the masked HMAC key, or whole of |header| in the case of SSLv3.
308      */
309 
310     /*
311      * For SSLv3, if we're going to have any starting blocks then we need at
312      * least two because the header is larger than a single block.
313      */
314     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
315         num_starting_blocks = num_blocks - variance_blocks;
316         k = md_block_size * num_starting_blocks;
317     }
318 
319     bits = 8 * mac_end_offset;
320     if (!is_sslv3) {
321         /*
322          * Compute the initial HMAC block. For SSLv3, the padding and secret
323          * bytes are included in |header| because they take more than a
324          * single block.
325          */
326         bits += 8 * md_block_size;
327         memset(hmac_pad, 0, md_block_size);
328         if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
329             return 0;
330         memcpy(hmac_pad, mac_secret, mac_secret_length);
331         for (i = 0; i < md_block_size; i++)
332             hmac_pad[i] ^= 0x36;
333 
334         md_transform(md_state.c, hmac_pad);
335     }
336 
337     if (length_is_big_endian) {
338         memset(length_bytes, 0, md_length_size - 4);
339         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
340         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
341         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
342         length_bytes[md_length_size - 1] = (unsigned char)bits;
343     } else {
344         memset(length_bytes, 0, md_length_size);
345         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
346         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
347         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
348         length_bytes[md_length_size - 8] = (unsigned char)bits;
349     }
350 
351     if (k > 0) {
352         if (is_sslv3) {
353             size_t overhang;
354 
355             /*
356              * The SSLv3 header is larger than a single block. overhang is
357              * the number of bytes beyond a single block that the header
358              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
359              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
360              * therefore we can be confident that the header_length will be
361              * greater than |md_block_size|. However we add a sanity check just
362              * in case
363              */
364             if (header_length <= md_block_size) {
365                 /* Should never happen */
366                 return 0;
367             }
368             overhang = header_length - md_block_size;
369             md_transform(md_state.c, header);
370             memcpy(first_block, header + md_block_size, overhang);
371             memcpy(first_block + overhang, data, md_block_size - overhang);
372             md_transform(md_state.c, first_block);
373             for (i = 1; i < k / md_block_size - 1; i++)
374                 md_transform(md_state.c, data + md_block_size * i - overhang);
375         } else {
376             /* k is a multiple of md_block_size. */
377             memcpy(first_block, header, 13);
378             memcpy(first_block + 13, data, md_block_size - 13);
379             md_transform(md_state.c, first_block);
380             for (i = 1; i < k / md_block_size; i++)
381                 md_transform(md_state.c, data + md_block_size * i - 13);
382         }
383     }
384 
385     memset(mac_out, 0, sizeof(mac_out));
386 
387     /*
388      * We now process the final hash blocks. For each block, we construct it
389      * in constant time. If the |i==index_a| then we'll include the 0x80
390      * bytes and zero pad etc. For each block we selectively copy it, in
391      * constant time, to |mac_out|.
392      */
393     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
394         i++) {
395         unsigned char block[MAX_HASH_BLOCK_SIZE];
396         unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
397         unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
398 
399         for (j = 0; j < md_block_size; j++) {
400             unsigned char b = 0, is_past_c, is_past_cp1;
401 
402             if (k < header_length)
403                 b = header[k];
404             else if (k < data_plus_mac_plus_padding_size + header_length)
405                 b = data[k - header_length];
406             k++;
407 
408             is_past_c = is_block_a & constant_time_ge_8_s(j, c);
409             is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
410             /*
411              * If this is the block containing the end of the application
412              * data, and we are at the offset for the 0x80 value, then
413              * overwrite b with 0x80.
414              */
415             b = constant_time_select_8(is_past_c, 0x80, b);
416             /*
417              * If this block contains the end of the application data
418              * and we're past the 0x80 value then just write zero.
419              */
420             b = b & ~is_past_cp1;
421             /*
422              * If this is index_b (the final block), but not index_a (the end
423              * of the data), then the 64-bit length didn't fit into index_a
424              * and we're having to add an extra block of zeros.
425              */
426             b &= ~is_block_b | is_block_a;
427 
428             /*
429              * The final bytes of one of the blocks contains the length.
430              */
431             if (j >= md_block_size - md_length_size) {
432                 /* If this is index_b, write a length byte. */
433                 b = constant_time_select_8(is_block_b,
434                     length_bytes[j - (md_block_size - md_length_size)], b);
435             }
436             block[j] = b;
437         }
438 
439         md_transform(md_state.c, block);
440         md_final_raw(md_state.c, block);
441         /* If this is index_b, copy the hash value to |mac_out|. */
442         for (j = 0; j < md_size; j++)
443             mac_out[j] |= block[j] & is_block_b;
444     }
445 
446     md_ctx = EVP_MD_CTX_new();
447     if (md_ctx == NULL)
448         goto err;
449 
450     if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */) <= 0)
451         goto err;
452     if (is_sslv3) {
453         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
454         memset(hmac_pad, 0x5c, sslv3_pad_length);
455 
456         if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
457             || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
458             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
459             goto err;
460     } else {
461         /* Complete the HMAC in the standard manner. */
462         for (i = 0; i < md_block_size; i++)
463             hmac_pad[i] ^= 0x6a;
464 
465         if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
466             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
467             goto err;
468     }
469     ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
470     if (ret && md_out_size)
471         *md_out_size = md_out_size_u;
472 
473     ret = 1;
474 err:
475     EVP_MD_CTX_free(md_ctx);
476     return ret;
477 }
478