xref: /linux/drivers/md/md-bitmap.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
4  *
5  * bitmap_create  - sets up the bitmap structure
6  * bitmap_destroy - destroys the bitmap structure
7  *
8  * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
9  * - added disk storage for bitmap
10  * - changes to allow various bitmap chunk sizes
11  */
12 
13 /*
14  * Still to do:
15  *
16  * flush after percent set rather than just time based. (maybe both).
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/timer.h>
25 #include <linux/sched.h>
26 #include <linux/list.h>
27 #include <linux/file.h>
28 #include <linux/mount.h>
29 #include <linux/buffer_head.h>
30 #include <linux/seq_file.h>
31 #include <trace/events/block.h>
32 #include "md.h"
33 #include "md-bitmap.h"
34 
35 #define BITMAP_MAJOR_LO 3
36 /* version 4 insists the bitmap is in little-endian order
37  * with version 3, it is host-endian which is non-portable
38  * Version 5 is currently set only for clustered devices
39  */
40 #define BITMAP_MAJOR_HI 4
41 #define BITMAP_MAJOR_CLUSTERED 5
42 #define	BITMAP_MAJOR_HOSTENDIAN 3
43 
44 /*
45  * in-memory bitmap:
46  *
47  * Use 16 bit block counters to track pending writes to each "chunk".
48  * The 2 high order bits are special-purpose, the first is a flag indicating
49  * whether a resync is needed.  The second is a flag indicating whether a
50  * resync is active.
51  * This means that the counter is actually 14 bits:
52  *
53  * +--------+--------+------------------------------------------------+
54  * | resync | resync |               counter                          |
55  * | needed | active |                                                |
56  * |  (0-1) |  (0-1) |              (0-16383)                         |
57  * +--------+--------+------------------------------------------------+
58  *
59  * The "resync needed" bit is set when:
60  *    a '1' bit is read from storage at startup.
61  *    a write request fails on some drives
62  *    a resync is aborted on a chunk with 'resync active' set
63  * It is cleared (and resync-active set) when a resync starts across all drives
64  * of the chunk.
65  *
66  *
67  * The "resync active" bit is set when:
68  *    a resync is started on all drives, and resync_needed is set.
69  *       resync_needed will be cleared (as long as resync_active wasn't already set).
70  * It is cleared when a resync completes.
71  *
72  * The counter counts pending write requests, plus the on-disk bit.
73  * When the counter is '1' and the resync bits are clear, the on-disk
74  * bit can be cleared as well, thus setting the counter to 0.
75  * When we set a bit, or in the counter (to start a write), if the fields is
76  * 0, we first set the disk bit and set the counter to 1.
77  *
78  * If the counter is 0, the on-disk bit is clear and the stripe is clean
79  * Anything that dirties the stripe pushes the counter to 2 (at least)
80  * and sets the on-disk bit (lazily).
81  * If a periodic sweep find the counter at 2, it is decremented to 1.
82  * If the sweep find the counter at 1, the on-disk bit is cleared and the
83  * counter goes to zero.
84  *
85  * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
86  * counters as a fallback when "page" memory cannot be allocated:
87  *
88  * Normal case (page memory allocated):
89  *
90  *     page pointer (32-bit)
91  *
92  *     [ ] ------+
93  *               |
94  *               +-------> [   ][   ]..[   ] (4096 byte page == 2048 counters)
95  *                          c1   c2    c2048
96  *
97  * Hijacked case (page memory allocation failed):
98  *
99  *     hijacked page pointer (32-bit)
100  *
101  *     [		  ][		  ] (no page memory allocated)
102  *      counter #1 (16-bit) counter #2 (16-bit)
103  *
104  */
105 
106 #define PAGE_BITS (PAGE_SIZE << 3)
107 #define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
108 
109 #define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
110 #define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
111 #define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
112 
113 /* how many counters per page? */
114 #define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
115 /* same, except a shift value for more efficient bitops */
116 #define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
117 /* same, except a mask value for more efficient bitops */
118 #define PAGE_COUNTER_MASK  (PAGE_COUNTER_RATIO - 1)
119 
120 #define BITMAP_BLOCK_SHIFT 9
121 
122 /*
123  * bitmap structures:
124  */
125 
126 /* the in-memory bitmap is represented by bitmap_pages */
127 struct bitmap_page {
128 	/*
129 	 * map points to the actual memory page
130 	 */
131 	char *map;
132 	/*
133 	 * in emergencies (when map cannot be alloced), hijack the map
134 	 * pointer and use it as two counters itself
135 	 */
136 	unsigned int hijacked:1;
137 	/*
138 	 * If any counter in this page is '1' or '2' - and so could be
139 	 * cleared then that page is marked as 'pending'
140 	 */
141 	unsigned int pending:1;
142 	/*
143 	 * count of dirty bits on the page
144 	 */
145 	unsigned int  count:30;
146 };
147 
148 /* the main bitmap structure - one per mddev */
149 struct bitmap {
150 
151 	struct bitmap_counts {
152 		spinlock_t lock;
153 		struct bitmap_page *bp;
154 		/* total number of pages in the bitmap */
155 		unsigned long pages;
156 		/* number of pages not yet allocated */
157 		unsigned long missing_pages;
158 		/* chunksize = 2^chunkshift (for bitops) */
159 		unsigned long chunkshift;
160 		/* total number of data chunks for the array */
161 		unsigned long chunks;
162 	} counts;
163 
164 	struct mddev *mddev; /* the md device that the bitmap is for */
165 
166 	__u64	events_cleared;
167 	int need_sync;
168 
169 	struct bitmap_storage {
170 		/* backing disk file */
171 		struct file *file;
172 		/* cached copy of the bitmap file superblock */
173 		struct page *sb_page;
174 		unsigned long sb_index;
175 		/* list of cache pages for the file */
176 		struct page **filemap;
177 		/* attributes associated filemap pages */
178 		unsigned long *filemap_attr;
179 		/* number of pages in the file */
180 		unsigned long file_pages;
181 		/* total bytes in the bitmap */
182 		unsigned long bytes;
183 	} storage;
184 
185 	unsigned long flags;
186 
187 	int allclean;
188 
189 	atomic_t behind_writes;
190 	/* highest actual value at runtime */
191 	unsigned long behind_writes_used;
192 
193 	/*
194 	 * the bitmap daemon - periodically wakes up and sweeps the bitmap
195 	 * file, cleaning up bits and flushing out pages to disk as necessary
196 	 */
197 	unsigned long daemon_lastrun; /* jiffies of last run */
198 	/*
199 	 * when we lasted called end_sync to update bitmap with resync
200 	 * progress.
201 	 */
202 	unsigned long last_end_sync;
203 
204 	/* pending writes to the bitmap file */
205 	atomic_t pending_writes;
206 	wait_queue_head_t write_wait;
207 	wait_queue_head_t overflow_wait;
208 	wait_queue_head_t behind_wait;
209 
210 	struct kernfs_node *sysfs_can_clear;
211 	/* slot offset for clustered env */
212 	int cluster_slot;
213 };
214 
215 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks,
216 			   int chunksize, bool init);
217 
bmname(struct bitmap * bitmap)218 static inline char *bmname(struct bitmap *bitmap)
219 {
220 	return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
221 }
222 
__bitmap_enabled(struct bitmap * bitmap)223 static bool __bitmap_enabled(struct bitmap *bitmap)
224 {
225 	return bitmap->storage.filemap &&
226 	       !test_bit(BITMAP_STALE, &bitmap->flags);
227 }
228 
bitmap_enabled(struct mddev * mddev)229 static bool bitmap_enabled(struct mddev *mddev)
230 {
231 	struct bitmap *bitmap = mddev->bitmap;
232 
233 	if (!bitmap)
234 		return false;
235 
236 	return __bitmap_enabled(bitmap);
237 }
238 
239 /*
240  * check a page and, if necessary, allocate it (or hijack it if the alloc fails)
241  *
242  * 1) check to see if this page is allocated, if it's not then try to alloc
243  * 2) if the alloc fails, set the page's hijacked flag so we'll use the
244  *    page pointer directly as a counter
245  *
246  * if we find our page, we increment the page's refcount so that it stays
247  * allocated while we're using it
248  */
md_bitmap_checkpage(struct bitmap_counts * bitmap,unsigned long page,int create,int no_hijack)249 static int md_bitmap_checkpage(struct bitmap_counts *bitmap,
250 			       unsigned long page, int create, int no_hijack)
251 __releases(bitmap->lock)
252 __acquires(bitmap->lock)
253 {
254 	unsigned char *mappage;
255 
256 	WARN_ON_ONCE(page >= bitmap->pages);
257 	if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
258 		return 0;
259 
260 	if (bitmap->bp[page].map) /* page is already allocated, just return */
261 		return 0;
262 
263 	if (!create)
264 		return -ENOENT;
265 
266 	/* this page has not been allocated yet */
267 
268 	spin_unlock_irq(&bitmap->lock);
269 	/* It is possible that this is being called inside a
270 	 * prepare_to_wait/finish_wait loop from raid5c:make_request().
271 	 * In general it is not permitted to sleep in that context as it
272 	 * can cause the loop to spin freely.
273 	 * That doesn't apply here as we can only reach this point
274 	 * once with any loop.
275 	 * When this function completes, either bp[page].map or
276 	 * bp[page].hijacked.  In either case, this function will
277 	 * abort before getting to this point again.  So there is
278 	 * no risk of a free-spin, and so it is safe to assert
279 	 * that sleeping here is allowed.
280 	 */
281 	sched_annotate_sleep();
282 	mappage = kzalloc(PAGE_SIZE, GFP_NOIO);
283 	spin_lock_irq(&bitmap->lock);
284 
285 	if (mappage == NULL) {
286 		pr_debug("md/bitmap: map page allocation failed, hijacking\n");
287 		/* We don't support hijack for cluster raid */
288 		if (no_hijack)
289 			return -ENOMEM;
290 		/* failed - set the hijacked flag so that we can use the
291 		 * pointer as a counter */
292 		if (!bitmap->bp[page].map)
293 			bitmap->bp[page].hijacked = 1;
294 	} else if (bitmap->bp[page].map ||
295 		   bitmap->bp[page].hijacked) {
296 		/* somebody beat us to getting the page */
297 		kfree(mappage);
298 	} else {
299 
300 		/* no page was in place and we have one, so install it */
301 
302 		bitmap->bp[page].map = mappage;
303 		bitmap->missing_pages--;
304 	}
305 	return 0;
306 }
307 
308 /* if page is completely empty, put it back on the free list, or dealloc it */
309 /* if page was hijacked, unmark the flag so it might get alloced next time */
310 /* Note: lock should be held when calling this */
md_bitmap_checkfree(struct bitmap_counts * bitmap,unsigned long page)311 static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page)
312 {
313 	char *ptr;
314 
315 	if (bitmap->bp[page].count) /* page is still busy */
316 		return;
317 
318 	/* page is no longer in use, it can be released */
319 
320 	if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
321 		bitmap->bp[page].hijacked = 0;
322 		bitmap->bp[page].map = NULL;
323 	} else {
324 		/* normal case, free the page */
325 		ptr = bitmap->bp[page].map;
326 		bitmap->bp[page].map = NULL;
327 		bitmap->missing_pages++;
328 		kfree(ptr);
329 	}
330 }
331 
332 /*
333  * bitmap file handling - read and write the bitmap file and its superblock
334  */
335 
336 /*
337  * basic page I/O operations
338  */
339 
340 /* IO operations when bitmap is stored near all superblocks */
341 
342 /* choose a good rdev and read the page from there */
read_sb_page(struct mddev * mddev,loff_t offset,struct page * page,unsigned long index,int size)343 static int read_sb_page(struct mddev *mddev, loff_t offset,
344 		struct page *page, unsigned long index, int size)
345 {
346 
347 	sector_t sector = mddev->bitmap_info.offset + offset +
348 		index * (PAGE_SIZE / SECTOR_SIZE);
349 	struct md_rdev *rdev;
350 
351 	rdev_for_each(rdev, mddev) {
352 		u32 iosize = roundup(size, bdev_logical_block_size(rdev->bdev));
353 
354 		if (!test_bit(In_sync, &rdev->flags) ||
355 		    test_bit(Faulty, &rdev->flags) ||
356 		    test_bit(Bitmap_sync, &rdev->flags))
357 			continue;
358 
359 		if (sync_page_io(rdev, sector, iosize, page, REQ_OP_READ, true))
360 			return 0;
361 	}
362 	return -EIO;
363 }
364 
next_active_rdev(struct md_rdev * rdev,struct mddev * mddev)365 static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev)
366 {
367 	/* Iterate the disks of an mddev, using rcu to protect access to the
368 	 * linked list, and raising the refcount of devices we return to ensure
369 	 * they don't disappear while in use.
370 	 * As devices are only added or removed when raid_disk is < 0 and
371 	 * nr_pending is 0 and In_sync is clear, the entries we return will
372 	 * still be in the same position on the list when we re-enter
373 	 * list_for_each_entry_continue_rcu.
374 	 *
375 	 * Note that if entered with 'rdev == NULL' to start at the
376 	 * beginning, we temporarily assign 'rdev' to an address which
377 	 * isn't really an rdev, but which can be used by
378 	 * list_for_each_entry_continue_rcu() to find the first entry.
379 	 */
380 	rcu_read_lock();
381 	if (rdev == NULL)
382 		/* start at the beginning */
383 		rdev = list_entry(&mddev->disks, struct md_rdev, same_set);
384 	else {
385 		/* release the previous rdev and start from there. */
386 		rdev_dec_pending(rdev, mddev);
387 	}
388 	list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) {
389 		if (rdev->raid_disk >= 0 &&
390 		    !test_bit(Faulty, &rdev->flags)) {
391 			/* this is a usable devices */
392 			atomic_inc(&rdev->nr_pending);
393 			rcu_read_unlock();
394 			return rdev;
395 		}
396 	}
397 	rcu_read_unlock();
398 	return NULL;
399 }
400 
optimal_io_size(struct block_device * bdev,unsigned int last_page_size,unsigned int io_size)401 static unsigned int optimal_io_size(struct block_device *bdev,
402 				    unsigned int last_page_size,
403 				    unsigned int io_size)
404 {
405 	if (bdev_io_opt(bdev) > bdev_logical_block_size(bdev))
406 		return roundup(last_page_size, bdev_io_opt(bdev));
407 	return io_size;
408 }
409 
bitmap_io_size(unsigned int io_size,unsigned int opt_size,loff_t start,loff_t boundary)410 static unsigned int bitmap_io_size(unsigned int io_size, unsigned int opt_size,
411 				   loff_t start, loff_t boundary)
412 {
413 	if (io_size != opt_size &&
414 	    start + opt_size / SECTOR_SIZE <= boundary)
415 		return opt_size;
416 	if (start + io_size / SECTOR_SIZE <= boundary)
417 		return io_size;
418 
419 	/* Overflows boundary */
420 	return 0;
421 }
422 
__write_sb_page(struct md_rdev * rdev,struct bitmap * bitmap,unsigned long pg_index,struct page * page)423 static int __write_sb_page(struct md_rdev *rdev, struct bitmap *bitmap,
424 			   unsigned long pg_index, struct page *page)
425 {
426 	struct block_device *bdev;
427 	struct mddev *mddev = bitmap->mddev;
428 	struct bitmap_storage *store = &bitmap->storage;
429 	unsigned int bitmap_limit = (bitmap->storage.file_pages - pg_index) <<
430 		PAGE_SHIFT;
431 	loff_t sboff, offset = mddev->bitmap_info.offset;
432 	sector_t ps = pg_index * PAGE_SIZE / SECTOR_SIZE;
433 	unsigned int size = PAGE_SIZE;
434 	unsigned int opt_size = PAGE_SIZE;
435 	sector_t doff;
436 
437 	bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev;
438 	/* we compare length (page numbers), not page offset. */
439 	if ((pg_index - store->sb_index) == store->file_pages - 1) {
440 		unsigned int last_page_size = store->bytes & (PAGE_SIZE - 1);
441 
442 		if (last_page_size == 0)
443 			last_page_size = PAGE_SIZE;
444 		size = roundup(last_page_size, bdev_logical_block_size(bdev));
445 		opt_size = optimal_io_size(bdev, last_page_size, size);
446 	}
447 
448 	sboff = rdev->sb_start + offset;
449 	doff = rdev->data_offset;
450 
451 	/* Just make sure we aren't corrupting data or metadata */
452 	if (mddev->external) {
453 		/* Bitmap could be anywhere. */
454 		if (sboff + ps > doff &&
455 		    sboff < (doff + mddev->dev_sectors + PAGE_SIZE / SECTOR_SIZE))
456 			return -EINVAL;
457 	} else if (offset < 0) {
458 		/* DATA  BITMAP METADATA  */
459 		size = bitmap_io_size(size, opt_size, offset + ps, 0);
460 		if (size == 0)
461 			/* bitmap runs in to metadata */
462 			return -EINVAL;
463 
464 		if (doff + mddev->dev_sectors > sboff)
465 			/* data runs in to bitmap */
466 			return -EINVAL;
467 	} else if (rdev->sb_start < rdev->data_offset) {
468 		/* METADATA BITMAP DATA */
469 		size = bitmap_io_size(size, opt_size, sboff + ps, doff);
470 		if (size == 0)
471 			/* bitmap runs in to data */
472 			return -EINVAL;
473 	}
474 
475 	md_super_write(mddev, rdev, sboff + ps, (int)min(size, bitmap_limit), page);
476 	return 0;
477 }
478 
write_sb_page(struct bitmap * bitmap,unsigned long pg_index,struct page * page,bool wait)479 static void write_sb_page(struct bitmap *bitmap, unsigned long pg_index,
480 			  struct page *page, bool wait)
481 {
482 	struct mddev *mddev = bitmap->mddev;
483 
484 	do {
485 		struct md_rdev *rdev = NULL;
486 
487 		while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
488 			if (__write_sb_page(rdev, bitmap, pg_index, page) < 0) {
489 				set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
490 				return;
491 			}
492 		}
493 	} while (wait && md_super_wait(mddev) < 0);
494 }
495 
496 static void md_bitmap_file_kick(struct bitmap *bitmap);
497 
498 #ifdef CONFIG_MD_BITMAP_FILE
write_file_page(struct bitmap * bitmap,struct page * page,int wait)499 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait)
500 {
501 	struct buffer_head *bh = page_buffers(page);
502 
503 	while (bh && bh->b_blocknr) {
504 		atomic_inc(&bitmap->pending_writes);
505 		set_buffer_locked(bh);
506 		set_buffer_mapped(bh);
507 		submit_bh(REQ_OP_WRITE | REQ_SYNC, bh);
508 		bh = bh->b_this_page;
509 	}
510 
511 	if (wait)
512 		wait_event(bitmap->write_wait,
513 			   atomic_read(&bitmap->pending_writes) == 0);
514 }
515 
end_bitmap_write(struct buffer_head * bh,int uptodate)516 static void end_bitmap_write(struct buffer_head *bh, int uptodate)
517 {
518 	struct bitmap *bitmap = bh->b_private;
519 
520 	if (!uptodate)
521 		set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
522 	if (atomic_dec_and_test(&bitmap->pending_writes))
523 		wake_up(&bitmap->write_wait);
524 }
525 
free_buffers(struct page * page)526 static void free_buffers(struct page *page)
527 {
528 	struct buffer_head *bh;
529 
530 	if (!PagePrivate(page))
531 		return;
532 
533 	bh = page_buffers(page);
534 	while (bh) {
535 		struct buffer_head *next = bh->b_this_page;
536 		free_buffer_head(bh);
537 		bh = next;
538 	}
539 	detach_page_private(page);
540 	put_page(page);
541 }
542 
543 /* read a page from a file.
544  * We both read the page, and attach buffers to the page to record the
545  * address of each block (using bmap).  These addresses will be used
546  * to write the block later, completely bypassing the filesystem.
547  * This usage is similar to how swap files are handled, and allows us
548  * to write to a file with no concerns of memory allocation failing.
549  */
read_file_page(struct file * file,unsigned long index,struct bitmap * bitmap,unsigned long count,struct page * page)550 static int read_file_page(struct file *file, unsigned long index,
551 		struct bitmap *bitmap, unsigned long count, struct page *page)
552 {
553 	int ret = 0;
554 	struct inode *inode = file_inode(file);
555 	struct buffer_head *bh;
556 	sector_t block, blk_cur;
557 	unsigned long blocksize = i_blocksize(inode);
558 
559 	pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE,
560 		 (unsigned long long)index << PAGE_SHIFT);
561 
562 	bh = alloc_page_buffers(page, blocksize);
563 	if (!bh) {
564 		ret = -ENOMEM;
565 		goto out;
566 	}
567 	attach_page_private(page, bh);
568 	blk_cur = index << (PAGE_SHIFT - inode->i_blkbits);
569 	while (bh) {
570 		block = blk_cur;
571 
572 		if (count == 0)
573 			bh->b_blocknr = 0;
574 		else {
575 			ret = bmap(inode, &block);
576 			if (ret || !block) {
577 				ret = -EINVAL;
578 				bh->b_blocknr = 0;
579 				goto out;
580 			}
581 
582 			bh->b_blocknr = block;
583 			bh->b_bdev = inode->i_sb->s_bdev;
584 			if (count < blocksize)
585 				count = 0;
586 			else
587 				count -= blocksize;
588 
589 			bh->b_end_io = end_bitmap_write;
590 			bh->b_private = bitmap;
591 			atomic_inc(&bitmap->pending_writes);
592 			set_buffer_locked(bh);
593 			set_buffer_mapped(bh);
594 			submit_bh(REQ_OP_READ, bh);
595 		}
596 		blk_cur++;
597 		bh = bh->b_this_page;
598 	}
599 
600 	wait_event(bitmap->write_wait,
601 		   atomic_read(&bitmap->pending_writes)==0);
602 	if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
603 		ret = -EIO;
604 out:
605 	if (ret)
606 		pr_err("md: bitmap read error: (%dB @ %llu): %d\n",
607 		       (int)PAGE_SIZE,
608 		       (unsigned long long)index << PAGE_SHIFT,
609 		       ret);
610 	return ret;
611 }
612 #else /* CONFIG_MD_BITMAP_FILE */
write_file_page(struct bitmap * bitmap,struct page * page,int wait)613 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait)
614 {
615 }
read_file_page(struct file * file,unsigned long index,struct bitmap * bitmap,unsigned long count,struct page * page)616 static int read_file_page(struct file *file, unsigned long index,
617 		struct bitmap *bitmap, unsigned long count, struct page *page)
618 {
619 	return -EIO;
620 }
free_buffers(struct page * page)621 static void free_buffers(struct page *page)
622 {
623 	put_page(page);
624 }
625 #endif /* CONFIG_MD_BITMAP_FILE */
626 
627 /*
628  * bitmap file superblock operations
629  */
630 
631 /*
632  * write out a page to a file
633  */
filemap_write_page(struct bitmap * bitmap,unsigned long pg_index,bool wait)634 static void filemap_write_page(struct bitmap *bitmap, unsigned long pg_index,
635 			       bool wait)
636 {
637 	struct bitmap_storage *store = &bitmap->storage;
638 	struct page *page = store->filemap[pg_index];
639 
640 	if (mddev_is_clustered(bitmap->mddev)) {
641 		/* go to node bitmap area starting point */
642 		pg_index += store->sb_index;
643 	}
644 
645 	if (store->file)
646 		write_file_page(bitmap, page, wait);
647 	else
648 		write_sb_page(bitmap, pg_index, page, wait);
649 }
650 
651 /*
652  * md_bitmap_wait_writes() should be called before writing any bitmap
653  * blocks, to ensure previous writes, particularly from
654  * md_bitmap_daemon_work(), have completed.
655  */
md_bitmap_wait_writes(struct bitmap * bitmap)656 static void md_bitmap_wait_writes(struct bitmap *bitmap)
657 {
658 	if (bitmap->storage.file)
659 		wait_event(bitmap->write_wait,
660 			   atomic_read(&bitmap->pending_writes)==0);
661 	else
662 		/* Note that we ignore the return value.  The writes
663 		 * might have failed, but that would just mean that
664 		 * some bits which should be cleared haven't been,
665 		 * which is safe.  The relevant bitmap blocks will
666 		 * probably get written again, but there is no great
667 		 * loss if they aren't.
668 		 */
669 		md_super_wait(bitmap->mddev);
670 }
671 
672 
673 /* update the event counter and sync the superblock to disk */
bitmap_update_sb(void * data)674 static void bitmap_update_sb(void *data)
675 {
676 	bitmap_super_t *sb;
677 	struct bitmap *bitmap = data;
678 
679 	if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
680 		return;
681 	if (bitmap->mddev->bitmap_info.external)
682 		return;
683 	if (!bitmap->storage.sb_page) /* no superblock */
684 		return;
685 	sb = kmap_atomic(bitmap->storage.sb_page);
686 	sb->events = cpu_to_le64(bitmap->mddev->events);
687 	if (bitmap->mddev->events < bitmap->events_cleared)
688 		/* rocking back to read-only */
689 		bitmap->events_cleared = bitmap->mddev->events;
690 	sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
691 	/*
692 	 * clear BITMAP_WRITE_ERROR bit to protect against the case that
693 	 * a bitmap write error occurred but the later writes succeeded.
694 	 */
695 	sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR));
696 	/* Just in case these have been changed via sysfs: */
697 	sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ);
698 	sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind);
699 	/* This might have been changed by a reshape */
700 	sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
701 	sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize);
702 	sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes);
703 	sb->sectors_reserved = cpu_to_le32(bitmap->mddev->
704 					   bitmap_info.space);
705 	kunmap_atomic(sb);
706 
707 	if (bitmap->storage.file)
708 		write_file_page(bitmap, bitmap->storage.sb_page, 1);
709 	else
710 		write_sb_page(bitmap, bitmap->storage.sb_index,
711 			      bitmap->storage.sb_page, 1);
712 }
713 
bitmap_print_sb(struct bitmap * bitmap)714 static void bitmap_print_sb(struct bitmap *bitmap)
715 {
716 	bitmap_super_t *sb;
717 
718 	if (!bitmap || !bitmap->storage.sb_page)
719 		return;
720 	sb = kmap_atomic(bitmap->storage.sb_page);
721 	pr_debug("%s: bitmap file superblock:\n", bmname(bitmap));
722 	pr_debug("         magic: %08x\n", le32_to_cpu(sb->magic));
723 	pr_debug("       version: %u\n", le32_to_cpu(sb->version));
724 	pr_debug("          uuid: %08x.%08x.%08x.%08x\n",
725 		 le32_to_cpu(*(__le32 *)(sb->uuid+0)),
726 		 le32_to_cpu(*(__le32 *)(sb->uuid+4)),
727 		 le32_to_cpu(*(__le32 *)(sb->uuid+8)),
728 		 le32_to_cpu(*(__le32 *)(sb->uuid+12)));
729 	pr_debug("        events: %llu\n",
730 		 (unsigned long long) le64_to_cpu(sb->events));
731 	pr_debug("events cleared: %llu\n",
732 		 (unsigned long long) le64_to_cpu(sb->events_cleared));
733 	pr_debug("         state: %08x\n", le32_to_cpu(sb->state));
734 	pr_debug("     chunksize: %u B\n", le32_to_cpu(sb->chunksize));
735 	pr_debug("  daemon sleep: %us\n", le32_to_cpu(sb->daemon_sleep));
736 	pr_debug("     sync size: %llu KB\n",
737 		 (unsigned long long)le64_to_cpu(sb->sync_size)/2);
738 	pr_debug("max write behind: %u\n", le32_to_cpu(sb->write_behind));
739 	kunmap_atomic(sb);
740 }
741 
742 /*
743  * bitmap_new_disk_sb
744  * @bitmap
745  *
746  * This function is somewhat the reverse of bitmap_read_sb.  bitmap_read_sb
747  * reads and verifies the on-disk bitmap superblock and populates bitmap_info.
748  * This function verifies 'bitmap_info' and populates the on-disk bitmap
749  * structure, which is to be written to disk.
750  *
751  * Returns: 0 on success, -Exxx on error
752  */
md_bitmap_new_disk_sb(struct bitmap * bitmap)753 static int md_bitmap_new_disk_sb(struct bitmap *bitmap)
754 {
755 	bitmap_super_t *sb;
756 	unsigned long chunksize, daemon_sleep, write_behind;
757 
758 	bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
759 	if (bitmap->storage.sb_page == NULL)
760 		return -ENOMEM;
761 	bitmap->storage.sb_index = 0;
762 
763 	sb = kmap_atomic(bitmap->storage.sb_page);
764 
765 	sb->magic = cpu_to_le32(BITMAP_MAGIC);
766 	sb->version = cpu_to_le32(BITMAP_MAJOR_HI);
767 
768 	chunksize = bitmap->mddev->bitmap_info.chunksize;
769 	BUG_ON(!chunksize);
770 	if (!is_power_of_2(chunksize)) {
771 		kunmap_atomic(sb);
772 		pr_warn("bitmap chunksize not a power of 2\n");
773 		return -EINVAL;
774 	}
775 	sb->chunksize = cpu_to_le32(chunksize);
776 
777 	daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep;
778 	if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) {
779 		pr_debug("Choosing daemon_sleep default (5 sec)\n");
780 		daemon_sleep = 5 * HZ;
781 	}
782 	sb->daemon_sleep = cpu_to_le32(daemon_sleep);
783 	bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
784 
785 	/*
786 	 * FIXME: write_behind for RAID1.  If not specified, what
787 	 * is a good choice?  We choose COUNTER_MAX / 2 arbitrarily.
788 	 */
789 	write_behind = bitmap->mddev->bitmap_info.max_write_behind;
790 	if (write_behind > COUNTER_MAX)
791 		write_behind = COUNTER_MAX / 2;
792 	sb->write_behind = cpu_to_le32(write_behind);
793 	bitmap->mddev->bitmap_info.max_write_behind = write_behind;
794 
795 	/* keep the array size field of the bitmap superblock up to date */
796 	sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
797 
798 	memcpy(sb->uuid, bitmap->mddev->uuid, 16);
799 
800 	set_bit(BITMAP_STALE, &bitmap->flags);
801 	sb->state = cpu_to_le32(bitmap->flags);
802 	bitmap->events_cleared = bitmap->mddev->events;
803 	sb->events_cleared = cpu_to_le64(bitmap->mddev->events);
804 	bitmap->mddev->bitmap_info.nodes = 0;
805 
806 	kunmap_atomic(sb);
807 
808 	return 0;
809 }
810 
811 /* read the superblock from the bitmap file and initialize some bitmap fields */
md_bitmap_read_sb(struct bitmap * bitmap)812 static int md_bitmap_read_sb(struct bitmap *bitmap)
813 {
814 	char *reason = NULL;
815 	bitmap_super_t *sb;
816 	unsigned long chunksize, daemon_sleep, write_behind;
817 	unsigned long long events;
818 	int nodes = 0;
819 	unsigned long sectors_reserved = 0;
820 	int err = -EINVAL;
821 	struct page *sb_page;
822 	loff_t offset = 0;
823 
824 	if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) {
825 		chunksize = 128 * 1024 * 1024;
826 		daemon_sleep = 5 * HZ;
827 		write_behind = 0;
828 		set_bit(BITMAP_STALE, &bitmap->flags);
829 		err = 0;
830 		goto out_no_sb;
831 	}
832 	/* page 0 is the superblock, read it... */
833 	sb_page = alloc_page(GFP_KERNEL);
834 	if (!sb_page)
835 		return -ENOMEM;
836 	bitmap->storage.sb_page = sb_page;
837 
838 re_read:
839 	/* If cluster_slot is set, the cluster is setup */
840 	if (bitmap->cluster_slot >= 0) {
841 		sector_t bm_blocks = bitmap->mddev->resync_max_sectors;
842 
843 		bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks,
844 			   (bitmap->mddev->bitmap_info.chunksize >> 9));
845 		/* bits to bytes */
846 		bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t);
847 		/* to 4k blocks */
848 		bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096);
849 		offset = bitmap->cluster_slot * (bm_blocks << 3);
850 		pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__,
851 			bitmap->cluster_slot, offset);
852 	}
853 
854 	if (bitmap->storage.file) {
855 		loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host);
856 		int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
857 
858 		err = read_file_page(bitmap->storage.file, 0,
859 				bitmap, bytes, sb_page);
860 	} else {
861 		err = read_sb_page(bitmap->mddev, offset, sb_page, 0,
862 				   sizeof(bitmap_super_t));
863 	}
864 	if (err)
865 		return err;
866 
867 	err = -EINVAL;
868 	sb = kmap_atomic(sb_page);
869 
870 	chunksize = le32_to_cpu(sb->chunksize);
871 	daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ;
872 	write_behind = le32_to_cpu(sb->write_behind);
873 	sectors_reserved = le32_to_cpu(sb->sectors_reserved);
874 
875 	/* verify that the bitmap-specific fields are valid */
876 	if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
877 		reason = "bad magic";
878 	else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
879 		 le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED)
880 		reason = "unrecognized superblock version";
881 	else if (chunksize < 512)
882 		reason = "bitmap chunksize too small";
883 	else if (!is_power_of_2(chunksize))
884 		reason = "bitmap chunksize not a power of 2";
885 	else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT)
886 		reason = "daemon sleep period out of range";
887 	else if (write_behind > COUNTER_MAX)
888 		reason = "write-behind limit out of range (0 - 16383)";
889 	if (reason) {
890 		pr_warn("%s: invalid bitmap file superblock: %s\n",
891 			bmname(bitmap), reason);
892 		goto out;
893 	}
894 
895 	/*
896 	 * Setup nodes/clustername only if bitmap version is
897 	 * cluster-compatible
898 	 */
899 	if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) {
900 		nodes = le32_to_cpu(sb->nodes);
901 		strscpy(bitmap->mddev->bitmap_info.cluster_name,
902 				sb->cluster_name, 64);
903 	}
904 
905 	/* keep the array size field of the bitmap superblock up to date */
906 	sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
907 
908 	if (bitmap->mddev->persistent) {
909 		/*
910 		 * We have a persistent array superblock, so compare the
911 		 * bitmap's UUID and event counter to the mddev's
912 		 */
913 		if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
914 			pr_warn("%s: bitmap superblock UUID mismatch\n",
915 				bmname(bitmap));
916 			goto out;
917 		}
918 		events = le64_to_cpu(sb->events);
919 		if (!nodes && (events < bitmap->mddev->events)) {
920 			pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n",
921 				bmname(bitmap), events,
922 				(unsigned long long) bitmap->mddev->events);
923 			set_bit(BITMAP_STALE, &bitmap->flags);
924 		}
925 	}
926 
927 	/* assign fields using values from superblock */
928 	bitmap->flags |= le32_to_cpu(sb->state);
929 	if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
930 		set_bit(BITMAP_HOSTENDIAN, &bitmap->flags);
931 	bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
932 	err = 0;
933 
934 out:
935 	kunmap_atomic(sb);
936 	if (err == 0 && nodes && (bitmap->cluster_slot < 0)) {
937 		/* Assigning chunksize is required for "re_read" */
938 		bitmap->mddev->bitmap_info.chunksize = chunksize;
939 		err = md_setup_cluster(bitmap->mddev, nodes);
940 		if (err) {
941 			pr_warn("%s: Could not setup cluster service (%d)\n",
942 				bmname(bitmap), err);
943 			goto out_no_sb;
944 		}
945 		bitmap->cluster_slot = md_cluster_ops->slot_number(bitmap->mddev);
946 		goto re_read;
947 	}
948 
949 out_no_sb:
950 	if (err == 0) {
951 		if (test_bit(BITMAP_STALE, &bitmap->flags))
952 			bitmap->events_cleared = bitmap->mddev->events;
953 		bitmap->mddev->bitmap_info.chunksize = chunksize;
954 		bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
955 		bitmap->mddev->bitmap_info.max_write_behind = write_behind;
956 		bitmap->mddev->bitmap_info.nodes = nodes;
957 		if (bitmap->mddev->bitmap_info.space == 0 ||
958 			bitmap->mddev->bitmap_info.space > sectors_reserved)
959 			bitmap->mddev->bitmap_info.space = sectors_reserved;
960 	} else {
961 		bitmap_print_sb(bitmap);
962 		if (bitmap->cluster_slot < 0)
963 			md_cluster_stop(bitmap->mddev);
964 	}
965 	return err;
966 }
967 
968 /*
969  * general bitmap file operations
970  */
971 
972 /*
973  * on-disk bitmap:
974  *
975  * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap
976  * file a page at a time. There's a superblock at the start of the file.
977  */
978 /* calculate the index of the page that contains this bit */
file_page_index(struct bitmap_storage * store,unsigned long chunk)979 static inline unsigned long file_page_index(struct bitmap_storage *store,
980 					    unsigned long chunk)
981 {
982 	if (store->sb_page)
983 		chunk += sizeof(bitmap_super_t) << 3;
984 	return chunk >> PAGE_BIT_SHIFT;
985 }
986 
987 /* calculate the (bit) offset of this bit within a page */
file_page_offset(struct bitmap_storage * store,unsigned long chunk)988 static inline unsigned long file_page_offset(struct bitmap_storage *store,
989 					     unsigned long chunk)
990 {
991 	if (store->sb_page)
992 		chunk += sizeof(bitmap_super_t) << 3;
993 	return chunk & (PAGE_BITS - 1);
994 }
995 
996 /*
997  * return a pointer to the page in the filemap that contains the given bit
998  *
999  */
filemap_get_page(struct bitmap_storage * store,unsigned long chunk)1000 static inline struct page *filemap_get_page(struct bitmap_storage *store,
1001 					    unsigned long chunk)
1002 {
1003 	if (file_page_index(store, chunk) >= store->file_pages)
1004 		return NULL;
1005 	return store->filemap[file_page_index(store, chunk)];
1006 }
1007 
md_bitmap_storage_alloc(struct bitmap_storage * store,unsigned long chunks,int with_super,int slot_number)1008 static int md_bitmap_storage_alloc(struct bitmap_storage *store,
1009 				   unsigned long chunks, int with_super,
1010 				   int slot_number)
1011 {
1012 	int pnum, offset = 0;
1013 	unsigned long num_pages;
1014 	unsigned long bytes;
1015 
1016 	bytes = DIV_ROUND_UP(chunks, 8);
1017 	if (with_super)
1018 		bytes += sizeof(bitmap_super_t);
1019 
1020 	num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
1021 	offset = slot_number * num_pages;
1022 
1023 	store->filemap = kmalloc_array(num_pages, sizeof(struct page *),
1024 				       GFP_KERNEL);
1025 	if (!store->filemap)
1026 		return -ENOMEM;
1027 
1028 	if (with_super && !store->sb_page) {
1029 		store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO);
1030 		if (store->sb_page == NULL)
1031 			return -ENOMEM;
1032 	}
1033 
1034 	pnum = 0;
1035 	if (store->sb_page) {
1036 		store->filemap[0] = store->sb_page;
1037 		pnum = 1;
1038 		store->sb_index = offset;
1039 	}
1040 
1041 	for ( ; pnum < num_pages; pnum++) {
1042 		store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO);
1043 		if (!store->filemap[pnum]) {
1044 			store->file_pages = pnum;
1045 			return -ENOMEM;
1046 		}
1047 	}
1048 	store->file_pages = pnum;
1049 
1050 	/* We need 4 bits per page, rounded up to a multiple
1051 	 * of sizeof(unsigned long) */
1052 	store->filemap_attr = kzalloc(
1053 		roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
1054 		GFP_KERNEL);
1055 	if (!store->filemap_attr)
1056 		return -ENOMEM;
1057 
1058 	store->bytes = bytes;
1059 
1060 	return 0;
1061 }
1062 
md_bitmap_file_unmap(struct bitmap_storage * store)1063 static void md_bitmap_file_unmap(struct bitmap_storage *store)
1064 {
1065 	struct file *file = store->file;
1066 	struct page *sb_page = store->sb_page;
1067 	struct page **map = store->filemap;
1068 	int pages = store->file_pages;
1069 
1070 	while (pages--)
1071 		if (map[pages] != sb_page) /* 0 is sb_page, release it below */
1072 			free_buffers(map[pages]);
1073 	kfree(map);
1074 	kfree(store->filemap_attr);
1075 
1076 	if (sb_page)
1077 		free_buffers(sb_page);
1078 
1079 	if (file) {
1080 		struct inode *inode = file_inode(file);
1081 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
1082 		fput(file);
1083 	}
1084 }
1085 
1086 /*
1087  * bitmap_file_kick - if an error occurs while manipulating the bitmap file
1088  * then it is no longer reliable, so we stop using it and we mark the file
1089  * as failed in the superblock
1090  */
md_bitmap_file_kick(struct bitmap * bitmap)1091 static void md_bitmap_file_kick(struct bitmap *bitmap)
1092 {
1093 	if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) {
1094 		bitmap_update_sb(bitmap);
1095 
1096 		if (bitmap->storage.file) {
1097 			pr_warn("%s: kicking failed bitmap file %pD4 from array!\n",
1098 				bmname(bitmap), bitmap->storage.file);
1099 
1100 		} else
1101 			pr_warn("%s: disabling internal bitmap due to errors\n",
1102 				bmname(bitmap));
1103 	}
1104 }
1105 
1106 enum bitmap_page_attr {
1107 	BITMAP_PAGE_DIRTY = 0,     /* there are set bits that need to be synced */
1108 	BITMAP_PAGE_PENDING = 1,   /* there are bits that are being cleaned.
1109 				    * i.e. counter is 1 or 2. */
1110 	BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */
1111 };
1112 
set_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1113 static inline void set_page_attr(struct bitmap *bitmap, int pnum,
1114 				 enum bitmap_page_attr attr)
1115 {
1116 	set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
1117 }
1118 
clear_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1119 static inline void clear_page_attr(struct bitmap *bitmap, int pnum,
1120 				   enum bitmap_page_attr attr)
1121 {
1122 	clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
1123 }
1124 
test_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1125 static inline int test_page_attr(struct bitmap *bitmap, int pnum,
1126 				 enum bitmap_page_attr attr)
1127 {
1128 	return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
1129 }
1130 
test_and_clear_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1131 static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum,
1132 					   enum bitmap_page_attr attr)
1133 {
1134 	return test_and_clear_bit((pnum<<2) + attr,
1135 				  bitmap->storage.filemap_attr);
1136 }
1137 /*
1138  * bitmap_file_set_bit -- called before performing a write to the md device
1139  * to set (and eventually sync) a particular bit in the bitmap file
1140  *
1141  * we set the bit immediately, then we record the page number so that
1142  * when an unplug occurs, we can flush the dirty pages out to disk
1143  */
md_bitmap_file_set_bit(struct bitmap * bitmap,sector_t block)1144 static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
1145 {
1146 	unsigned long bit;
1147 	struct page *page;
1148 	void *kaddr;
1149 	unsigned long chunk = block >> bitmap->counts.chunkshift;
1150 	struct bitmap_storage *store = &bitmap->storage;
1151 	unsigned long index = file_page_index(store, chunk);
1152 	unsigned long node_offset = 0;
1153 
1154 	index += store->sb_index;
1155 	if (mddev_is_clustered(bitmap->mddev))
1156 		node_offset = bitmap->cluster_slot * store->file_pages;
1157 
1158 	page = filemap_get_page(&bitmap->storage, chunk);
1159 	if (!page)
1160 		return;
1161 	bit = file_page_offset(&bitmap->storage, chunk);
1162 
1163 	/* set the bit */
1164 	kaddr = kmap_atomic(page);
1165 	if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1166 		set_bit(bit, kaddr);
1167 	else
1168 		set_bit_le(bit, kaddr);
1169 	kunmap_atomic(kaddr);
1170 	pr_debug("set file bit %lu page %lu\n", bit, index);
1171 	/* record page number so it gets flushed to disk when unplug occurs */
1172 	set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_DIRTY);
1173 }
1174 
md_bitmap_file_clear_bit(struct bitmap * bitmap,sector_t block)1175 static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block)
1176 {
1177 	unsigned long bit;
1178 	struct page *page;
1179 	void *paddr;
1180 	unsigned long chunk = block >> bitmap->counts.chunkshift;
1181 	struct bitmap_storage *store = &bitmap->storage;
1182 	unsigned long index = file_page_index(store, chunk);
1183 	unsigned long node_offset = 0;
1184 
1185 	index += store->sb_index;
1186 	if (mddev_is_clustered(bitmap->mddev))
1187 		node_offset = bitmap->cluster_slot * store->file_pages;
1188 
1189 	page = filemap_get_page(&bitmap->storage, chunk);
1190 	if (!page)
1191 		return;
1192 	bit = file_page_offset(&bitmap->storage, chunk);
1193 	paddr = kmap_atomic(page);
1194 	if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1195 		clear_bit(bit, paddr);
1196 	else
1197 		clear_bit_le(bit, paddr);
1198 	kunmap_atomic(paddr);
1199 	if (!test_page_attr(bitmap, index - node_offset, BITMAP_PAGE_NEEDWRITE)) {
1200 		set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_PENDING);
1201 		bitmap->allclean = 0;
1202 	}
1203 }
1204 
md_bitmap_file_test_bit(struct bitmap * bitmap,sector_t block)1205 static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block)
1206 {
1207 	unsigned long bit;
1208 	struct page *page;
1209 	void *paddr;
1210 	unsigned long chunk = block >> bitmap->counts.chunkshift;
1211 	int set = 0;
1212 
1213 	page = filemap_get_page(&bitmap->storage, chunk);
1214 	if (!page)
1215 		return -EINVAL;
1216 	bit = file_page_offset(&bitmap->storage, chunk);
1217 	paddr = kmap_atomic(page);
1218 	if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1219 		set = test_bit(bit, paddr);
1220 	else
1221 		set = test_bit_le(bit, paddr);
1222 	kunmap_atomic(paddr);
1223 	return set;
1224 }
1225 
1226 /* this gets called when the md device is ready to unplug its underlying
1227  * (slave) device queues -- before we let any writes go down, we need to
1228  * sync the dirty pages of the bitmap file to disk */
__bitmap_unplug(struct bitmap * bitmap)1229 static void __bitmap_unplug(struct bitmap *bitmap)
1230 {
1231 	unsigned long i;
1232 	int dirty, need_write;
1233 	int writing = 0;
1234 
1235 	if (!__bitmap_enabled(bitmap))
1236 		return;
1237 
1238 	/* look at each page to see if there are any set bits that need to be
1239 	 * flushed out to disk */
1240 	for (i = 0; i < bitmap->storage.file_pages; i++) {
1241 		dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
1242 		need_write = test_and_clear_page_attr(bitmap, i,
1243 						      BITMAP_PAGE_NEEDWRITE);
1244 		if (dirty || need_write) {
1245 			if (!writing) {
1246 				md_bitmap_wait_writes(bitmap);
1247 				mddev_add_trace_msg(bitmap->mddev,
1248 					"md bitmap_unplug");
1249 			}
1250 			clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING);
1251 			filemap_write_page(bitmap, i, false);
1252 			writing = 1;
1253 		}
1254 	}
1255 	if (writing)
1256 		md_bitmap_wait_writes(bitmap);
1257 
1258 	if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
1259 		md_bitmap_file_kick(bitmap);
1260 }
1261 
1262 struct bitmap_unplug_work {
1263 	struct work_struct work;
1264 	struct bitmap *bitmap;
1265 	struct completion *done;
1266 };
1267 
md_bitmap_unplug_fn(struct work_struct * work)1268 static void md_bitmap_unplug_fn(struct work_struct *work)
1269 {
1270 	struct bitmap_unplug_work *unplug_work =
1271 		container_of(work, struct bitmap_unplug_work, work);
1272 
1273 	__bitmap_unplug(unplug_work->bitmap);
1274 	complete(unplug_work->done);
1275 }
1276 
bitmap_unplug_async(struct bitmap * bitmap)1277 static void bitmap_unplug_async(struct bitmap *bitmap)
1278 {
1279 	DECLARE_COMPLETION_ONSTACK(done);
1280 	struct bitmap_unplug_work unplug_work;
1281 
1282 	INIT_WORK_ONSTACK(&unplug_work.work, md_bitmap_unplug_fn);
1283 	unplug_work.bitmap = bitmap;
1284 	unplug_work.done = &done;
1285 
1286 	queue_work(md_bitmap_wq, &unplug_work.work);
1287 	wait_for_completion(&done);
1288 	destroy_work_on_stack(&unplug_work.work);
1289 }
1290 
bitmap_unplug(struct mddev * mddev,bool sync)1291 static void bitmap_unplug(struct mddev *mddev, bool sync)
1292 {
1293 	struct bitmap *bitmap = mddev->bitmap;
1294 
1295 	if (!bitmap)
1296 		return;
1297 
1298 	if (sync)
1299 		__bitmap_unplug(bitmap);
1300 	else
1301 		bitmap_unplug_async(bitmap);
1302 }
1303 
1304 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
1305 
1306 /*
1307  * Initialize the in-memory bitmap from the on-disk bitmap and set up the memory
1308  * mapping of the bitmap file.
1309  *
1310  * Special case: If there's no bitmap file, or if the bitmap file had been
1311  * previously kicked from the array, we mark all the bits as 1's in order to
1312  * cause a full resync.
1313  *
1314  * We ignore all bits for sectors that end earlier than 'start'.
1315  * This is used when reading an out-of-date bitmap.
1316  */
md_bitmap_init_from_disk(struct bitmap * bitmap,sector_t start)1317 static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
1318 {
1319 	bool outofdate = test_bit(BITMAP_STALE, &bitmap->flags);
1320 	struct mddev *mddev = bitmap->mddev;
1321 	unsigned long chunks = bitmap->counts.chunks;
1322 	struct bitmap_storage *store = &bitmap->storage;
1323 	struct file *file = store->file;
1324 	unsigned long node_offset = 0;
1325 	unsigned long bit_cnt = 0;
1326 	unsigned long i;
1327 	int ret;
1328 
1329 	if (!file && !mddev->bitmap_info.offset) {
1330 		/* No permanent bitmap - fill with '1s'. */
1331 		store->filemap = NULL;
1332 		store->file_pages = 0;
1333 		for (i = 0; i < chunks ; i++) {
1334 			/* if the disk bit is set, set the memory bit */
1335 			int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift)
1336 				      >= start);
1337 			md_bitmap_set_memory_bits(bitmap,
1338 						  (sector_t)i << bitmap->counts.chunkshift,
1339 						  needed);
1340 		}
1341 		return 0;
1342 	}
1343 
1344 	if (file && i_size_read(file->f_mapping->host) < store->bytes) {
1345 		pr_warn("%s: bitmap file too short %lu < %lu\n",
1346 			bmname(bitmap),
1347 			(unsigned long) i_size_read(file->f_mapping->host),
1348 			store->bytes);
1349 		ret = -ENOSPC;
1350 		goto err;
1351 	}
1352 
1353 	if (mddev_is_clustered(mddev))
1354 		node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE));
1355 
1356 	for (i = 0; i < store->file_pages; i++) {
1357 		struct page *page = store->filemap[i];
1358 		int count;
1359 
1360 		/* unmap the old page, we're done with it */
1361 		if (i == store->file_pages - 1)
1362 			count = store->bytes - i * PAGE_SIZE;
1363 		else
1364 			count = PAGE_SIZE;
1365 
1366 		if (file)
1367 			ret = read_file_page(file, i, bitmap, count, page);
1368 		else
1369 			ret = read_sb_page(mddev, 0, page, i + node_offset,
1370 					   count);
1371 		if (ret)
1372 			goto err;
1373 	}
1374 
1375 	if (outofdate) {
1376 		pr_warn("%s: bitmap file is out of date, doing full recovery\n",
1377 			bmname(bitmap));
1378 
1379 		for (i = 0; i < store->file_pages; i++) {
1380 			struct page *page = store->filemap[i];
1381 			unsigned long offset = 0;
1382 			void *paddr;
1383 
1384 			if (i == 0 && !mddev->bitmap_info.external)
1385 				offset = sizeof(bitmap_super_t);
1386 
1387 			/*
1388 			 * If the bitmap is out of date, dirty the whole page
1389 			 * and write it out
1390 			 */
1391 			paddr = kmap_atomic(page);
1392 			memset(paddr + offset, 0xff, PAGE_SIZE - offset);
1393 			kunmap_atomic(paddr);
1394 
1395 			filemap_write_page(bitmap, i, true);
1396 			if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) {
1397 				ret = -EIO;
1398 				goto err;
1399 			}
1400 		}
1401 	}
1402 
1403 	for (i = 0; i < chunks; i++) {
1404 		struct page *page = filemap_get_page(&bitmap->storage, i);
1405 		unsigned long bit = file_page_offset(&bitmap->storage, i);
1406 		void *paddr;
1407 		bool was_set;
1408 
1409 		paddr = kmap_atomic(page);
1410 		if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1411 			was_set = test_bit(bit, paddr);
1412 		else
1413 			was_set = test_bit_le(bit, paddr);
1414 		kunmap_atomic(paddr);
1415 
1416 		if (was_set) {
1417 			/* if the disk bit is set, set the memory bit */
1418 			int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift
1419 				      >= start);
1420 			md_bitmap_set_memory_bits(bitmap,
1421 						  (sector_t)i << bitmap->counts.chunkshift,
1422 						  needed);
1423 			bit_cnt++;
1424 		}
1425 	}
1426 
1427 	pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n",
1428 		 bmname(bitmap), store->file_pages,
1429 		 bit_cnt, chunks);
1430 
1431 	return 0;
1432 
1433  err:
1434 	pr_warn("%s: bitmap initialisation failed: %d\n",
1435 		bmname(bitmap), ret);
1436 	return ret;
1437 }
1438 
1439 /* just flag bitmap pages as needing to be written. */
bitmap_write_all(struct mddev * mddev)1440 static void bitmap_write_all(struct mddev *mddev)
1441 {
1442 	int i;
1443 	struct bitmap *bitmap = mddev->bitmap;
1444 
1445 	if (!bitmap || !bitmap->storage.filemap)
1446 		return;
1447 
1448 	/* Only one copy, so nothing needed */
1449 	if (bitmap->storage.file)
1450 		return;
1451 
1452 	for (i = 0; i < bitmap->storage.file_pages; i++)
1453 		set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE);
1454 	bitmap->allclean = 0;
1455 }
1456 
md_bitmap_count_page(struct bitmap_counts * bitmap,sector_t offset,int inc)1457 static void md_bitmap_count_page(struct bitmap_counts *bitmap,
1458 				 sector_t offset, int inc)
1459 {
1460 	sector_t chunk = offset >> bitmap->chunkshift;
1461 	unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1462 	bitmap->bp[page].count += inc;
1463 	md_bitmap_checkfree(bitmap, page);
1464 }
1465 
md_bitmap_set_pending(struct bitmap_counts * bitmap,sector_t offset)1466 static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset)
1467 {
1468 	sector_t chunk = offset >> bitmap->chunkshift;
1469 	unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1470 	struct bitmap_page *bp = &bitmap->bp[page];
1471 
1472 	if (!bp->pending)
1473 		bp->pending = 1;
1474 }
1475 
1476 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
1477 					       sector_t offset, sector_t *blocks,
1478 					       int create);
1479 
mddev_set_timeout(struct mddev * mddev,unsigned long timeout,bool force)1480 static void mddev_set_timeout(struct mddev *mddev, unsigned long timeout,
1481 			      bool force)
1482 {
1483 	struct md_thread *thread;
1484 
1485 	rcu_read_lock();
1486 	thread = rcu_dereference(mddev->thread);
1487 
1488 	if (!thread)
1489 		goto out;
1490 
1491 	if (force || thread->timeout < MAX_SCHEDULE_TIMEOUT)
1492 		thread->timeout = timeout;
1493 
1494 out:
1495 	rcu_read_unlock();
1496 }
1497 
1498 /*
1499  * bitmap daemon -- periodically wakes up to clean bits and flush pages
1500  *			out to disk
1501  */
bitmap_daemon_work(struct mddev * mddev)1502 static void bitmap_daemon_work(struct mddev *mddev)
1503 {
1504 	struct bitmap *bitmap;
1505 	unsigned long j;
1506 	unsigned long nextpage;
1507 	sector_t blocks;
1508 	struct bitmap_counts *counts;
1509 
1510 	/* Use a mutex to guard daemon_work against
1511 	 * bitmap_destroy.
1512 	 */
1513 	mutex_lock(&mddev->bitmap_info.mutex);
1514 	bitmap = mddev->bitmap;
1515 	if (bitmap == NULL) {
1516 		mutex_unlock(&mddev->bitmap_info.mutex);
1517 		return;
1518 	}
1519 	if (time_before(jiffies, bitmap->daemon_lastrun
1520 			+ mddev->bitmap_info.daemon_sleep))
1521 		goto done;
1522 
1523 	bitmap->daemon_lastrun = jiffies;
1524 	if (bitmap->allclean) {
1525 		mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true);
1526 		goto done;
1527 	}
1528 	bitmap->allclean = 1;
1529 
1530 	mddev_add_trace_msg(bitmap->mddev, "md bitmap_daemon_work");
1531 
1532 	/* Any file-page which is PENDING now needs to be written.
1533 	 * So set NEEDWRITE now, then after we make any last-minute changes
1534 	 * we will write it.
1535 	 */
1536 	for (j = 0; j < bitmap->storage.file_pages; j++)
1537 		if (test_and_clear_page_attr(bitmap, j,
1538 					     BITMAP_PAGE_PENDING))
1539 			set_page_attr(bitmap, j,
1540 				      BITMAP_PAGE_NEEDWRITE);
1541 
1542 	if (bitmap->need_sync &&
1543 	    mddev->bitmap_info.external == 0) {
1544 		/* Arrange for superblock update as well as
1545 		 * other changes */
1546 		bitmap_super_t *sb;
1547 		bitmap->need_sync = 0;
1548 		if (bitmap->storage.filemap) {
1549 			sb = kmap_atomic(bitmap->storage.sb_page);
1550 			sb->events_cleared =
1551 				cpu_to_le64(bitmap->events_cleared);
1552 			kunmap_atomic(sb);
1553 			set_page_attr(bitmap, 0,
1554 				      BITMAP_PAGE_NEEDWRITE);
1555 		}
1556 	}
1557 	/* Now look at the bitmap counters and if any are '2' or '1',
1558 	 * decrement and handle accordingly.
1559 	 */
1560 	counts = &bitmap->counts;
1561 	spin_lock_irq(&counts->lock);
1562 	nextpage = 0;
1563 	for (j = 0; j < counts->chunks; j++) {
1564 		bitmap_counter_t *bmc;
1565 		sector_t  block = (sector_t)j << counts->chunkshift;
1566 
1567 		if (j == nextpage) {
1568 			nextpage += PAGE_COUNTER_RATIO;
1569 			if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) {
1570 				j |= PAGE_COUNTER_MASK;
1571 				continue;
1572 			}
1573 			counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0;
1574 		}
1575 
1576 		bmc = md_bitmap_get_counter(counts, block, &blocks, 0);
1577 		if (!bmc) {
1578 			j |= PAGE_COUNTER_MASK;
1579 			continue;
1580 		}
1581 		if (*bmc == 1 && !bitmap->need_sync) {
1582 			/* We can clear the bit */
1583 			*bmc = 0;
1584 			md_bitmap_count_page(counts, block, -1);
1585 			md_bitmap_file_clear_bit(bitmap, block);
1586 		} else if (*bmc && *bmc <= 2) {
1587 			*bmc = 1;
1588 			md_bitmap_set_pending(counts, block);
1589 			bitmap->allclean = 0;
1590 		}
1591 	}
1592 	spin_unlock_irq(&counts->lock);
1593 
1594 	md_bitmap_wait_writes(bitmap);
1595 	/* Now start writeout on any page in NEEDWRITE that isn't DIRTY.
1596 	 * DIRTY pages need to be written by bitmap_unplug so it can wait
1597 	 * for them.
1598 	 * If we find any DIRTY page we stop there and let bitmap_unplug
1599 	 * handle all the rest.  This is important in the case where
1600 	 * the first blocking holds the superblock and it has been updated.
1601 	 * We mustn't write any other blocks before the superblock.
1602 	 */
1603 	for (j = 0;
1604 	     j < bitmap->storage.file_pages
1605 		     && !test_bit(BITMAP_STALE, &bitmap->flags);
1606 	     j++) {
1607 		if (test_page_attr(bitmap, j,
1608 				   BITMAP_PAGE_DIRTY))
1609 			/* bitmap_unplug will handle the rest */
1610 			break;
1611 		if (bitmap->storage.filemap &&
1612 		    test_and_clear_page_attr(bitmap, j,
1613 					     BITMAP_PAGE_NEEDWRITE))
1614 			filemap_write_page(bitmap, j, false);
1615 	}
1616 
1617  done:
1618 	if (bitmap->allclean == 0)
1619 		mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true);
1620 	mutex_unlock(&mddev->bitmap_info.mutex);
1621 }
1622 
md_bitmap_get_counter(struct bitmap_counts * bitmap,sector_t offset,sector_t * blocks,int create)1623 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
1624 					       sector_t offset, sector_t *blocks,
1625 					       int create)
1626 __releases(bitmap->lock)
1627 __acquires(bitmap->lock)
1628 {
1629 	/* If 'create', we might release the lock and reclaim it.
1630 	 * The lock must have been taken with interrupts enabled.
1631 	 * If !create, we don't release the lock.
1632 	 */
1633 	sector_t chunk = offset >> bitmap->chunkshift;
1634 	unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1635 	unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
1636 	sector_t csize = ((sector_t)1) << bitmap->chunkshift;
1637 	int err;
1638 
1639 	if (page >= bitmap->pages) {
1640 		/*
1641 		 * This can happen if bitmap_start_sync goes beyond
1642 		 * End-of-device while looking for a whole page or
1643 		 * user set a huge number to sysfs bitmap_set_bits.
1644 		 */
1645 		*blocks = csize - (offset & (csize - 1));
1646 		return NULL;
1647 	}
1648 	err = md_bitmap_checkpage(bitmap, page, create, 0);
1649 
1650 	if (bitmap->bp[page].hijacked ||
1651 	    bitmap->bp[page].map == NULL)
1652 		csize = ((sector_t)1) << (bitmap->chunkshift +
1653 					  PAGE_COUNTER_SHIFT);
1654 
1655 	*blocks = csize - (offset & (csize - 1));
1656 
1657 	if (err < 0)
1658 		return NULL;
1659 
1660 	/* now locked ... */
1661 
1662 	if (bitmap->bp[page].hijacked) { /* hijacked pointer */
1663 		/* should we use the first or second counter field
1664 		 * of the hijacked pointer? */
1665 		int hi = (pageoff > PAGE_COUNTER_MASK);
1666 		return  &((bitmap_counter_t *)
1667 			  &bitmap->bp[page].map)[hi];
1668 	} else /* page is allocated */
1669 		return (bitmap_counter_t *)
1670 			&(bitmap->bp[page].map[pageoff]);
1671 }
1672 
bitmap_startwrite(struct mddev * mddev,sector_t offset,unsigned long sectors,bool behind)1673 static int bitmap_startwrite(struct mddev *mddev, sector_t offset,
1674 			     unsigned long sectors, bool behind)
1675 {
1676 	struct bitmap *bitmap = mddev->bitmap;
1677 
1678 	if (!bitmap)
1679 		return 0;
1680 
1681 	if (behind) {
1682 		int bw;
1683 		atomic_inc(&bitmap->behind_writes);
1684 		bw = atomic_read(&bitmap->behind_writes);
1685 		if (bw > bitmap->behind_writes_used)
1686 			bitmap->behind_writes_used = bw;
1687 
1688 		pr_debug("inc write-behind count %d/%lu\n",
1689 			 bw, bitmap->mddev->bitmap_info.max_write_behind);
1690 	}
1691 
1692 	while (sectors) {
1693 		sector_t blocks;
1694 		bitmap_counter_t *bmc;
1695 
1696 		spin_lock_irq(&bitmap->counts.lock);
1697 		bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1);
1698 		if (!bmc) {
1699 			spin_unlock_irq(&bitmap->counts.lock);
1700 			return 0;
1701 		}
1702 
1703 		if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) {
1704 			DEFINE_WAIT(__wait);
1705 			/* note that it is safe to do the prepare_to_wait
1706 			 * after the test as long as we do it before dropping
1707 			 * the spinlock.
1708 			 */
1709 			prepare_to_wait(&bitmap->overflow_wait, &__wait,
1710 					TASK_UNINTERRUPTIBLE);
1711 			spin_unlock_irq(&bitmap->counts.lock);
1712 			schedule();
1713 			finish_wait(&bitmap->overflow_wait, &__wait);
1714 			continue;
1715 		}
1716 
1717 		switch (*bmc) {
1718 		case 0:
1719 			md_bitmap_file_set_bit(bitmap, offset);
1720 			md_bitmap_count_page(&bitmap->counts, offset, 1);
1721 			fallthrough;
1722 		case 1:
1723 			*bmc = 2;
1724 		}
1725 
1726 		(*bmc)++;
1727 
1728 		spin_unlock_irq(&bitmap->counts.lock);
1729 
1730 		offset += blocks;
1731 		if (sectors > blocks)
1732 			sectors -= blocks;
1733 		else
1734 			sectors = 0;
1735 	}
1736 	return 0;
1737 }
1738 
bitmap_endwrite(struct mddev * mddev,sector_t offset,unsigned long sectors,bool success,bool behind)1739 static void bitmap_endwrite(struct mddev *mddev, sector_t offset,
1740 			    unsigned long sectors, bool success, bool behind)
1741 {
1742 	struct bitmap *bitmap = mddev->bitmap;
1743 
1744 	if (!bitmap)
1745 		return;
1746 
1747 	if (behind) {
1748 		if (atomic_dec_and_test(&bitmap->behind_writes))
1749 			wake_up(&bitmap->behind_wait);
1750 		pr_debug("dec write-behind count %d/%lu\n",
1751 			 atomic_read(&bitmap->behind_writes),
1752 			 bitmap->mddev->bitmap_info.max_write_behind);
1753 	}
1754 
1755 	while (sectors) {
1756 		sector_t blocks;
1757 		unsigned long flags;
1758 		bitmap_counter_t *bmc;
1759 
1760 		spin_lock_irqsave(&bitmap->counts.lock, flags);
1761 		bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0);
1762 		if (!bmc) {
1763 			spin_unlock_irqrestore(&bitmap->counts.lock, flags);
1764 			return;
1765 		}
1766 
1767 		if (success && !bitmap->mddev->degraded &&
1768 		    bitmap->events_cleared < bitmap->mddev->events) {
1769 			bitmap->events_cleared = bitmap->mddev->events;
1770 			bitmap->need_sync = 1;
1771 			sysfs_notify_dirent_safe(bitmap->sysfs_can_clear);
1772 		}
1773 
1774 		if (!success && !NEEDED(*bmc))
1775 			*bmc |= NEEDED_MASK;
1776 
1777 		if (COUNTER(*bmc) == COUNTER_MAX)
1778 			wake_up(&bitmap->overflow_wait);
1779 
1780 		(*bmc)--;
1781 		if (*bmc <= 2) {
1782 			md_bitmap_set_pending(&bitmap->counts, offset);
1783 			bitmap->allclean = 0;
1784 		}
1785 		spin_unlock_irqrestore(&bitmap->counts.lock, flags);
1786 		offset += blocks;
1787 		if (sectors > blocks)
1788 			sectors -= blocks;
1789 		else
1790 			sectors = 0;
1791 	}
1792 }
1793 
__bitmap_start_sync(struct bitmap * bitmap,sector_t offset,sector_t * blocks,bool degraded)1794 static bool __bitmap_start_sync(struct bitmap *bitmap, sector_t offset,
1795 				sector_t *blocks, bool degraded)
1796 {
1797 	bitmap_counter_t *bmc;
1798 	bool rv;
1799 
1800 	if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
1801 		*blocks = 1024;
1802 		return true; /* always resync if no bitmap */
1803 	}
1804 	spin_lock_irq(&bitmap->counts.lock);
1805 
1806 	rv = false;
1807 	bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
1808 	if (bmc) {
1809 		/* locked */
1810 		if (RESYNC(*bmc)) {
1811 			rv = true;
1812 		} else if (NEEDED(*bmc)) {
1813 			rv = true;
1814 			if (!degraded) { /* don't set/clear bits if degraded */
1815 				*bmc |= RESYNC_MASK;
1816 				*bmc &= ~NEEDED_MASK;
1817 			}
1818 		}
1819 	}
1820 	spin_unlock_irq(&bitmap->counts.lock);
1821 
1822 	return rv;
1823 }
1824 
bitmap_start_sync(struct mddev * mddev,sector_t offset,sector_t * blocks,bool degraded)1825 static bool bitmap_start_sync(struct mddev *mddev, sector_t offset,
1826 			      sector_t *blocks, bool degraded)
1827 {
1828 	/* bitmap_start_sync must always report on multiples of whole
1829 	 * pages, otherwise resync (which is very PAGE_SIZE based) will
1830 	 * get confused.
1831 	 * So call __bitmap_start_sync repeatedly (if needed) until
1832 	 * At least PAGE_SIZE>>9 blocks are covered.
1833 	 * Return the 'or' of the result.
1834 	 */
1835 	bool rv = false;
1836 	sector_t blocks1;
1837 
1838 	*blocks = 0;
1839 	while (*blocks < (PAGE_SIZE>>9)) {
1840 		rv |= __bitmap_start_sync(mddev->bitmap, offset,
1841 					  &blocks1, degraded);
1842 		offset += blocks1;
1843 		*blocks += blocks1;
1844 	}
1845 
1846 	return rv;
1847 }
1848 
__bitmap_end_sync(struct bitmap * bitmap,sector_t offset,sector_t * blocks,bool aborted)1849 static void __bitmap_end_sync(struct bitmap *bitmap, sector_t offset,
1850 			      sector_t *blocks, bool aborted)
1851 {
1852 	bitmap_counter_t *bmc;
1853 	unsigned long flags;
1854 
1855 	if (bitmap == NULL) {
1856 		*blocks = 1024;
1857 		return;
1858 	}
1859 	spin_lock_irqsave(&bitmap->counts.lock, flags);
1860 	bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
1861 	if (bmc == NULL)
1862 		goto unlock;
1863 	/* locked */
1864 	if (RESYNC(*bmc)) {
1865 		*bmc &= ~RESYNC_MASK;
1866 
1867 		if (!NEEDED(*bmc) && aborted)
1868 			*bmc |= NEEDED_MASK;
1869 		else {
1870 			if (*bmc <= 2) {
1871 				md_bitmap_set_pending(&bitmap->counts, offset);
1872 				bitmap->allclean = 0;
1873 			}
1874 		}
1875 	}
1876  unlock:
1877 	spin_unlock_irqrestore(&bitmap->counts.lock, flags);
1878 }
1879 
bitmap_end_sync(struct mddev * mddev,sector_t offset,sector_t * blocks)1880 static void bitmap_end_sync(struct mddev *mddev, sector_t offset,
1881 			    sector_t *blocks)
1882 {
1883 	__bitmap_end_sync(mddev->bitmap, offset, blocks, true);
1884 }
1885 
bitmap_close_sync(struct mddev * mddev)1886 static void bitmap_close_sync(struct mddev *mddev)
1887 {
1888 	/* Sync has finished, and any bitmap chunks that weren't synced
1889 	 * properly have been aborted.  It remains to us to clear the
1890 	 * RESYNC bit wherever it is still on
1891 	 */
1892 	sector_t sector = 0;
1893 	sector_t blocks;
1894 	struct bitmap *bitmap = mddev->bitmap;
1895 
1896 	if (!bitmap)
1897 		return;
1898 
1899 	while (sector < bitmap->mddev->resync_max_sectors) {
1900 		__bitmap_end_sync(bitmap, sector, &blocks, false);
1901 		sector += blocks;
1902 	}
1903 }
1904 
bitmap_cond_end_sync(struct mddev * mddev,sector_t sector,bool force)1905 static void bitmap_cond_end_sync(struct mddev *mddev, sector_t sector,
1906 				 bool force)
1907 {
1908 	sector_t s = 0;
1909 	sector_t blocks;
1910 	struct bitmap *bitmap = mddev->bitmap;
1911 
1912 	if (!bitmap)
1913 		return;
1914 	if (sector == 0) {
1915 		bitmap->last_end_sync = jiffies;
1916 		return;
1917 	}
1918 	if (!force && time_before(jiffies, (bitmap->last_end_sync
1919 				  + bitmap->mddev->bitmap_info.daemon_sleep)))
1920 		return;
1921 	wait_event(bitmap->mddev->recovery_wait,
1922 		   atomic_read(&bitmap->mddev->recovery_active) == 0);
1923 
1924 	bitmap->mddev->curr_resync_completed = sector;
1925 	set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags);
1926 	sector &= ~((1ULL << bitmap->counts.chunkshift) - 1);
1927 	s = 0;
1928 	while (s < sector && s < bitmap->mddev->resync_max_sectors) {
1929 		__bitmap_end_sync(bitmap, s, &blocks, false);
1930 		s += blocks;
1931 	}
1932 	bitmap->last_end_sync = jiffies;
1933 	sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed);
1934 }
1935 
bitmap_sync_with_cluster(struct mddev * mddev,sector_t old_lo,sector_t old_hi,sector_t new_lo,sector_t new_hi)1936 static void bitmap_sync_with_cluster(struct mddev *mddev,
1937 				     sector_t old_lo, sector_t old_hi,
1938 				     sector_t new_lo, sector_t new_hi)
1939 {
1940 	struct bitmap *bitmap = mddev->bitmap;
1941 	sector_t sector, blocks = 0;
1942 
1943 	for (sector = old_lo; sector < new_lo; ) {
1944 		__bitmap_end_sync(bitmap, sector, &blocks, false);
1945 		sector += blocks;
1946 	}
1947 	WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n");
1948 
1949 	for (sector = old_hi; sector < new_hi; ) {
1950 		bitmap_start_sync(mddev, sector, &blocks, false);
1951 		sector += blocks;
1952 	}
1953 	WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n");
1954 }
1955 
md_bitmap_set_memory_bits(struct bitmap * bitmap,sector_t offset,int needed)1956 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
1957 {
1958 	/* For each chunk covered by any of these sectors, set the
1959 	 * counter to 2 and possibly set resync_needed.  They should all
1960 	 * be 0 at this point
1961 	 */
1962 
1963 	sector_t secs;
1964 	bitmap_counter_t *bmc;
1965 	spin_lock_irq(&bitmap->counts.lock);
1966 	bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1);
1967 	if (!bmc) {
1968 		spin_unlock_irq(&bitmap->counts.lock);
1969 		return;
1970 	}
1971 	if (!*bmc) {
1972 		*bmc = 2;
1973 		md_bitmap_count_page(&bitmap->counts, offset, 1);
1974 		md_bitmap_set_pending(&bitmap->counts, offset);
1975 		bitmap->allclean = 0;
1976 	}
1977 	if (needed)
1978 		*bmc |= NEEDED_MASK;
1979 	spin_unlock_irq(&bitmap->counts.lock);
1980 }
1981 
1982 /* dirty the memory and file bits for bitmap chunks "s" to "e" */
bitmap_dirty_bits(struct mddev * mddev,unsigned long s,unsigned long e)1983 static void bitmap_dirty_bits(struct mddev *mddev, unsigned long s,
1984 			      unsigned long e)
1985 {
1986 	unsigned long chunk;
1987 	struct bitmap *bitmap = mddev->bitmap;
1988 
1989 	if (!bitmap)
1990 		return;
1991 
1992 	for (chunk = s; chunk <= e; chunk++) {
1993 		sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift;
1994 
1995 		md_bitmap_set_memory_bits(bitmap, sec, 1);
1996 		md_bitmap_file_set_bit(bitmap, sec);
1997 		if (sec < bitmap->mddev->recovery_cp)
1998 			/* We are asserting that the array is dirty,
1999 			 * so move the recovery_cp address back so
2000 			 * that it is obvious that it is dirty
2001 			 */
2002 			bitmap->mddev->recovery_cp = sec;
2003 	}
2004 }
2005 
bitmap_flush(struct mddev * mddev)2006 static void bitmap_flush(struct mddev *mddev)
2007 {
2008 	struct bitmap *bitmap = mddev->bitmap;
2009 	long sleep;
2010 
2011 	if (!bitmap) /* there was no bitmap */
2012 		return;
2013 
2014 	/* run the daemon_work three time to ensure everything is flushed
2015 	 * that can be
2016 	 */
2017 	sleep = mddev->bitmap_info.daemon_sleep * 2;
2018 	bitmap->daemon_lastrun -= sleep;
2019 	bitmap_daemon_work(mddev);
2020 	bitmap->daemon_lastrun -= sleep;
2021 	bitmap_daemon_work(mddev);
2022 	bitmap->daemon_lastrun -= sleep;
2023 	bitmap_daemon_work(mddev);
2024 	if (mddev->bitmap_info.external)
2025 		md_super_wait(mddev);
2026 	bitmap_update_sb(bitmap);
2027 }
2028 
md_bitmap_free(void * data)2029 static void md_bitmap_free(void *data)
2030 {
2031 	unsigned long k, pages;
2032 	struct bitmap_page *bp;
2033 	struct bitmap *bitmap = data;
2034 
2035 	if (!bitmap) /* there was no bitmap */
2036 		return;
2037 
2038 	if (bitmap->sysfs_can_clear)
2039 		sysfs_put(bitmap->sysfs_can_clear);
2040 
2041 	if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info &&
2042 		bitmap->cluster_slot == md_cluster_ops->slot_number(bitmap->mddev))
2043 		md_cluster_stop(bitmap->mddev);
2044 
2045 	/* Shouldn't be needed - but just in case.... */
2046 	wait_event(bitmap->write_wait,
2047 		   atomic_read(&bitmap->pending_writes) == 0);
2048 
2049 	/* release the bitmap file  */
2050 	md_bitmap_file_unmap(&bitmap->storage);
2051 
2052 	bp = bitmap->counts.bp;
2053 	pages = bitmap->counts.pages;
2054 
2055 	/* free all allocated memory */
2056 
2057 	if (bp) /* deallocate the page memory */
2058 		for (k = 0; k < pages; k++)
2059 			if (bp[k].map && !bp[k].hijacked)
2060 				kfree(bp[k].map);
2061 	kfree(bp);
2062 	kfree(bitmap);
2063 }
2064 
bitmap_wait_behind_writes(struct mddev * mddev)2065 static void bitmap_wait_behind_writes(struct mddev *mddev)
2066 {
2067 	struct bitmap *bitmap = mddev->bitmap;
2068 
2069 	/* wait for behind writes to complete */
2070 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2071 		pr_debug("md:%s: behind writes in progress - waiting to stop.\n",
2072 			 mdname(mddev));
2073 		/* need to kick something here to make sure I/O goes? */
2074 		wait_event(bitmap->behind_wait,
2075 			   atomic_read(&bitmap->behind_writes) == 0);
2076 	}
2077 }
2078 
bitmap_destroy(struct mddev * mddev)2079 static void bitmap_destroy(struct mddev *mddev)
2080 {
2081 	struct bitmap *bitmap = mddev->bitmap;
2082 
2083 	if (!bitmap) /* there was no bitmap */
2084 		return;
2085 
2086 	bitmap_wait_behind_writes(mddev);
2087 	if (!mddev->serialize_policy)
2088 		mddev_destroy_serial_pool(mddev, NULL);
2089 
2090 	mutex_lock(&mddev->bitmap_info.mutex);
2091 	spin_lock(&mddev->lock);
2092 	mddev->bitmap = NULL; /* disconnect from the md device */
2093 	spin_unlock(&mddev->lock);
2094 	mutex_unlock(&mddev->bitmap_info.mutex);
2095 	mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true);
2096 
2097 	md_bitmap_free(bitmap);
2098 }
2099 
2100 /*
2101  * initialize the bitmap structure
2102  * if this returns an error, bitmap_destroy must be called to do clean up
2103  * once mddev->bitmap is set
2104  */
__bitmap_create(struct mddev * mddev,int slot)2105 static struct bitmap *__bitmap_create(struct mddev *mddev, int slot)
2106 {
2107 	struct bitmap *bitmap;
2108 	sector_t blocks = mddev->resync_max_sectors;
2109 	struct file *file = mddev->bitmap_info.file;
2110 	int err;
2111 	struct kernfs_node *bm = NULL;
2112 
2113 	BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
2114 
2115 	BUG_ON(file && mddev->bitmap_info.offset);
2116 
2117 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
2118 		pr_notice("md/raid:%s: array with journal cannot have bitmap\n",
2119 			  mdname(mddev));
2120 		return ERR_PTR(-EBUSY);
2121 	}
2122 
2123 	bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
2124 	if (!bitmap)
2125 		return ERR_PTR(-ENOMEM);
2126 
2127 	spin_lock_init(&bitmap->counts.lock);
2128 	atomic_set(&bitmap->pending_writes, 0);
2129 	init_waitqueue_head(&bitmap->write_wait);
2130 	init_waitqueue_head(&bitmap->overflow_wait);
2131 	init_waitqueue_head(&bitmap->behind_wait);
2132 
2133 	bitmap->mddev = mddev;
2134 	bitmap->cluster_slot = slot;
2135 
2136 	if (mddev->kobj.sd)
2137 		bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap");
2138 	if (bm) {
2139 		bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear");
2140 		sysfs_put(bm);
2141 	} else
2142 		bitmap->sysfs_can_clear = NULL;
2143 
2144 	bitmap->storage.file = file;
2145 	if (file) {
2146 		get_file(file);
2147 		/* As future accesses to this file will use bmap,
2148 		 * and bypass the page cache, we must sync the file
2149 		 * first.
2150 		 */
2151 		vfs_fsync(file, 1);
2152 	}
2153 	/* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */
2154 	if (!mddev->bitmap_info.external) {
2155 		/*
2156 		 * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is
2157 		 * instructing us to create a new on-disk bitmap instance.
2158 		 */
2159 		if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags))
2160 			err = md_bitmap_new_disk_sb(bitmap);
2161 		else
2162 			err = md_bitmap_read_sb(bitmap);
2163 	} else {
2164 		err = 0;
2165 		if (mddev->bitmap_info.chunksize == 0 ||
2166 		    mddev->bitmap_info.daemon_sleep == 0)
2167 			/* chunksize and time_base need to be
2168 			 * set first. */
2169 			err = -EINVAL;
2170 	}
2171 	if (err)
2172 		goto error;
2173 
2174 	bitmap->daemon_lastrun = jiffies;
2175 	err = __bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize,
2176 			      true);
2177 	if (err)
2178 		goto error;
2179 
2180 	pr_debug("created bitmap (%lu pages) for device %s\n",
2181 		 bitmap->counts.pages, bmname(bitmap));
2182 
2183 	err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0;
2184 	if (err)
2185 		goto error;
2186 
2187 	return bitmap;
2188  error:
2189 	md_bitmap_free(bitmap);
2190 	return ERR_PTR(err);
2191 }
2192 
bitmap_create(struct mddev * mddev,int slot)2193 static int bitmap_create(struct mddev *mddev, int slot)
2194 {
2195 	struct bitmap *bitmap = __bitmap_create(mddev, slot);
2196 
2197 	if (IS_ERR(bitmap))
2198 		return PTR_ERR(bitmap);
2199 
2200 	mddev->bitmap = bitmap;
2201 	return 0;
2202 }
2203 
bitmap_load(struct mddev * mddev)2204 static int bitmap_load(struct mddev *mddev)
2205 {
2206 	int err = 0;
2207 	sector_t start = 0;
2208 	sector_t sector = 0;
2209 	struct bitmap *bitmap = mddev->bitmap;
2210 	struct md_rdev *rdev;
2211 
2212 	if (!bitmap)
2213 		goto out;
2214 
2215 	rdev_for_each(rdev, mddev)
2216 		mddev_create_serial_pool(mddev, rdev);
2217 
2218 	if (mddev_is_clustered(mddev))
2219 		md_cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes);
2220 
2221 	/* Clear out old bitmap info first:  Either there is none, or we
2222 	 * are resuming after someone else has possibly changed things,
2223 	 * so we should forget old cached info.
2224 	 * All chunks should be clean, but some might need_sync.
2225 	 */
2226 	while (sector < mddev->resync_max_sectors) {
2227 		sector_t blocks;
2228 		bitmap_start_sync(mddev, sector, &blocks, false);
2229 		sector += blocks;
2230 	}
2231 	bitmap_close_sync(mddev);
2232 
2233 	if (mddev->degraded == 0
2234 	    || bitmap->events_cleared == mddev->events)
2235 		/* no need to keep dirty bits to optimise a
2236 		 * re-add of a missing device */
2237 		start = mddev->recovery_cp;
2238 
2239 	mutex_lock(&mddev->bitmap_info.mutex);
2240 	err = md_bitmap_init_from_disk(bitmap, start);
2241 	mutex_unlock(&mddev->bitmap_info.mutex);
2242 
2243 	if (err)
2244 		goto out;
2245 	clear_bit(BITMAP_STALE, &bitmap->flags);
2246 
2247 	/* Kick recovery in case any bits were set */
2248 	set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
2249 
2250 	mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true);
2251 	md_wakeup_thread(mddev->thread);
2252 
2253 	bitmap_update_sb(bitmap);
2254 
2255 	if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
2256 		err = -EIO;
2257 out:
2258 	return err;
2259 }
2260 
2261 /* caller need to free returned bitmap with md_bitmap_free() */
bitmap_get_from_slot(struct mddev * mddev,int slot)2262 static void *bitmap_get_from_slot(struct mddev *mddev, int slot)
2263 {
2264 	int rv = 0;
2265 	struct bitmap *bitmap;
2266 
2267 	bitmap = __bitmap_create(mddev, slot);
2268 	if (IS_ERR(bitmap)) {
2269 		rv = PTR_ERR(bitmap);
2270 		return ERR_PTR(rv);
2271 	}
2272 
2273 	rv = md_bitmap_init_from_disk(bitmap, 0);
2274 	if (rv) {
2275 		md_bitmap_free(bitmap);
2276 		return ERR_PTR(rv);
2277 	}
2278 
2279 	return bitmap;
2280 }
2281 
2282 /* Loads the bitmap associated with slot and copies the resync information
2283  * to our bitmap
2284  */
bitmap_copy_from_slot(struct mddev * mddev,int slot,sector_t * low,sector_t * high,bool clear_bits)2285 static int bitmap_copy_from_slot(struct mddev *mddev, int slot, sector_t *low,
2286 				 sector_t *high, bool clear_bits)
2287 {
2288 	int rv = 0, i, j;
2289 	sector_t block, lo = 0, hi = 0;
2290 	struct bitmap_counts *counts;
2291 	struct bitmap *bitmap;
2292 
2293 	bitmap = bitmap_get_from_slot(mddev, slot);
2294 	if (IS_ERR(bitmap)) {
2295 		pr_err("%s can't get bitmap from slot %d\n", __func__, slot);
2296 		return -1;
2297 	}
2298 
2299 	counts = &bitmap->counts;
2300 	for (j = 0; j < counts->chunks; j++) {
2301 		block = (sector_t)j << counts->chunkshift;
2302 		if (md_bitmap_file_test_bit(bitmap, block)) {
2303 			if (!lo)
2304 				lo = block;
2305 			hi = block;
2306 			md_bitmap_file_clear_bit(bitmap, block);
2307 			md_bitmap_set_memory_bits(mddev->bitmap, block, 1);
2308 			md_bitmap_file_set_bit(mddev->bitmap, block);
2309 		}
2310 	}
2311 
2312 	if (clear_bits) {
2313 		bitmap_update_sb(bitmap);
2314 		/* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs
2315 		 * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */
2316 		for (i = 0; i < bitmap->storage.file_pages; i++)
2317 			if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING))
2318 				set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE);
2319 		__bitmap_unplug(bitmap);
2320 	}
2321 	__bitmap_unplug(mddev->bitmap);
2322 	*low = lo;
2323 	*high = hi;
2324 	md_bitmap_free(bitmap);
2325 
2326 	return rv;
2327 }
2328 
bitmap_set_pages(void * data,unsigned long pages)2329 static void bitmap_set_pages(void *data, unsigned long pages)
2330 {
2331 	struct bitmap *bitmap = data;
2332 
2333 	bitmap->counts.pages = pages;
2334 }
2335 
bitmap_get_stats(void * data,struct md_bitmap_stats * stats)2336 static int bitmap_get_stats(void *data, struct md_bitmap_stats *stats)
2337 {
2338 	struct bitmap_storage *storage;
2339 	struct bitmap_counts *counts;
2340 	struct bitmap *bitmap = data;
2341 	bitmap_super_t *sb;
2342 
2343 	if (!bitmap)
2344 		return -ENOENT;
2345 
2346 	sb = kmap_local_page(bitmap->storage.sb_page);
2347 	stats->sync_size = le64_to_cpu(sb->sync_size);
2348 	kunmap_local(sb);
2349 
2350 	counts = &bitmap->counts;
2351 	stats->missing_pages = counts->missing_pages;
2352 	stats->pages = counts->pages;
2353 
2354 	storage = &bitmap->storage;
2355 	stats->file_pages = storage->file_pages;
2356 	stats->file = storage->file;
2357 
2358 	stats->behind_writes = atomic_read(&bitmap->behind_writes);
2359 	stats->behind_wait = wq_has_sleeper(&bitmap->behind_wait);
2360 	stats->events_cleared = bitmap->events_cleared;
2361 	return 0;
2362 }
2363 
__bitmap_resize(struct bitmap * bitmap,sector_t blocks,int chunksize,bool init)2364 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks,
2365 			   int chunksize, bool init)
2366 {
2367 	/* If chunk_size is 0, choose an appropriate chunk size.
2368 	 * Then possibly allocate new storage space.
2369 	 * Then quiesce, copy bits, replace bitmap, and re-start
2370 	 *
2371 	 * This function is called both to set up the initial bitmap
2372 	 * and to resize the bitmap while the array is active.
2373 	 * If this happens as a result of the array being resized,
2374 	 * chunksize will be zero, and we need to choose a suitable
2375 	 * chunksize, otherwise we use what we are given.
2376 	 */
2377 	struct bitmap_storage store;
2378 	struct bitmap_counts old_counts;
2379 	unsigned long chunks;
2380 	sector_t block;
2381 	sector_t old_blocks, new_blocks;
2382 	int chunkshift;
2383 	int ret = 0;
2384 	long pages;
2385 	struct bitmap_page *new_bp;
2386 
2387 	if (bitmap->storage.file && !init) {
2388 		pr_info("md: cannot resize file-based bitmap\n");
2389 		return -EINVAL;
2390 	}
2391 
2392 	if (chunksize == 0) {
2393 		/* If there is enough space, leave the chunk size unchanged,
2394 		 * else increase by factor of two until there is enough space.
2395 		 */
2396 		long bytes;
2397 		long space = bitmap->mddev->bitmap_info.space;
2398 
2399 		if (space == 0) {
2400 			/* We don't know how much space there is, so limit
2401 			 * to current size - in sectors.
2402 			 */
2403 			bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8);
2404 			if (!bitmap->mddev->bitmap_info.external)
2405 				bytes += sizeof(bitmap_super_t);
2406 			space = DIV_ROUND_UP(bytes, 512);
2407 			bitmap->mddev->bitmap_info.space = space;
2408 		}
2409 		chunkshift = bitmap->counts.chunkshift;
2410 		chunkshift--;
2411 		do {
2412 			/* 'chunkshift' is shift from block size to chunk size */
2413 			chunkshift++;
2414 			chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
2415 			bytes = DIV_ROUND_UP(chunks, 8);
2416 			if (!bitmap->mddev->bitmap_info.external)
2417 				bytes += sizeof(bitmap_super_t);
2418 		} while (bytes > (space << 9) && (chunkshift + BITMAP_BLOCK_SHIFT) <
2419 			(BITS_PER_BYTE * sizeof(((bitmap_super_t *)0)->chunksize) - 1));
2420 	} else
2421 		chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT;
2422 
2423 	chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
2424 	memset(&store, 0, sizeof(store));
2425 	if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file)
2426 		ret = md_bitmap_storage_alloc(&store, chunks,
2427 					      !bitmap->mddev->bitmap_info.external,
2428 					      mddev_is_clustered(bitmap->mddev)
2429 					      ? bitmap->cluster_slot : 0);
2430 	if (ret) {
2431 		md_bitmap_file_unmap(&store);
2432 		goto err;
2433 	}
2434 
2435 	pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO);
2436 
2437 	new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL);
2438 	ret = -ENOMEM;
2439 	if (!new_bp) {
2440 		md_bitmap_file_unmap(&store);
2441 		goto err;
2442 	}
2443 
2444 	if (!init)
2445 		bitmap->mddev->pers->quiesce(bitmap->mddev, 1);
2446 
2447 	store.file = bitmap->storage.file;
2448 	bitmap->storage.file = NULL;
2449 
2450 	if (store.sb_page && bitmap->storage.sb_page)
2451 		memcpy(page_address(store.sb_page),
2452 		       page_address(bitmap->storage.sb_page),
2453 		       sizeof(bitmap_super_t));
2454 	spin_lock_irq(&bitmap->counts.lock);
2455 	md_bitmap_file_unmap(&bitmap->storage);
2456 	bitmap->storage = store;
2457 
2458 	old_counts = bitmap->counts;
2459 	bitmap->counts.bp = new_bp;
2460 	bitmap->counts.pages = pages;
2461 	bitmap->counts.missing_pages = pages;
2462 	bitmap->counts.chunkshift = chunkshift;
2463 	bitmap->counts.chunks = chunks;
2464 	bitmap->mddev->bitmap_info.chunksize = 1UL << (chunkshift +
2465 						     BITMAP_BLOCK_SHIFT);
2466 
2467 	blocks = min(old_counts.chunks << old_counts.chunkshift,
2468 		     chunks << chunkshift);
2469 
2470 	/* For cluster raid, need to pre-allocate bitmap */
2471 	if (mddev_is_clustered(bitmap->mddev)) {
2472 		unsigned long page;
2473 		for (page = 0; page < pages; page++) {
2474 			ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1);
2475 			if (ret) {
2476 				unsigned long k;
2477 
2478 				/* deallocate the page memory */
2479 				for (k = 0; k < page; k++) {
2480 					kfree(new_bp[k].map);
2481 				}
2482 				kfree(new_bp);
2483 
2484 				/* restore some fields from old_counts */
2485 				bitmap->counts.bp = old_counts.bp;
2486 				bitmap->counts.pages = old_counts.pages;
2487 				bitmap->counts.missing_pages = old_counts.pages;
2488 				bitmap->counts.chunkshift = old_counts.chunkshift;
2489 				bitmap->counts.chunks = old_counts.chunks;
2490 				bitmap->mddev->bitmap_info.chunksize =
2491 					1UL << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT);
2492 				blocks = old_counts.chunks << old_counts.chunkshift;
2493 				pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n");
2494 				break;
2495 			} else
2496 				bitmap->counts.bp[page].count += 1;
2497 		}
2498 	}
2499 
2500 	for (block = 0; block < blocks; ) {
2501 		bitmap_counter_t *bmc_old, *bmc_new;
2502 		int set;
2503 
2504 		bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0);
2505 		set = bmc_old && NEEDED(*bmc_old);
2506 
2507 		if (set) {
2508 			bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
2509 			if (bmc_new) {
2510 				if (*bmc_new == 0) {
2511 					/* need to set on-disk bits too. */
2512 					sector_t end = block + new_blocks;
2513 					sector_t start = block >> chunkshift;
2514 
2515 					start <<= chunkshift;
2516 					while (start < end) {
2517 						md_bitmap_file_set_bit(bitmap, block);
2518 						start += 1 << chunkshift;
2519 					}
2520 					*bmc_new = 2;
2521 					md_bitmap_count_page(&bitmap->counts, block, 1);
2522 					md_bitmap_set_pending(&bitmap->counts, block);
2523 				}
2524 				*bmc_new |= NEEDED_MASK;
2525 			}
2526 			if (new_blocks < old_blocks)
2527 				old_blocks = new_blocks;
2528 		}
2529 		block += old_blocks;
2530 	}
2531 
2532 	if (bitmap->counts.bp != old_counts.bp) {
2533 		unsigned long k;
2534 		for (k = 0; k < old_counts.pages; k++)
2535 			if (!old_counts.bp[k].hijacked)
2536 				kfree(old_counts.bp[k].map);
2537 		kfree(old_counts.bp);
2538 	}
2539 
2540 	if (!init) {
2541 		int i;
2542 		while (block < (chunks << chunkshift)) {
2543 			bitmap_counter_t *bmc;
2544 			bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
2545 			if (bmc) {
2546 				/* new space.  It needs to be resynced, so
2547 				 * we set NEEDED_MASK.
2548 				 */
2549 				if (*bmc == 0) {
2550 					*bmc = NEEDED_MASK | 2;
2551 					md_bitmap_count_page(&bitmap->counts, block, 1);
2552 					md_bitmap_set_pending(&bitmap->counts, block);
2553 				}
2554 			}
2555 			block += new_blocks;
2556 		}
2557 		for (i = 0; i < bitmap->storage.file_pages; i++)
2558 			set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
2559 	}
2560 	spin_unlock_irq(&bitmap->counts.lock);
2561 
2562 	if (!init) {
2563 		__bitmap_unplug(bitmap);
2564 		bitmap->mddev->pers->quiesce(bitmap->mddev, 0);
2565 	}
2566 	ret = 0;
2567 err:
2568 	return ret;
2569 }
2570 
bitmap_resize(struct mddev * mddev,sector_t blocks,int chunksize,bool init)2571 static int bitmap_resize(struct mddev *mddev, sector_t blocks, int chunksize,
2572 			 bool init)
2573 {
2574 	struct bitmap *bitmap = mddev->bitmap;
2575 
2576 	if (!bitmap)
2577 		return 0;
2578 
2579 	return __bitmap_resize(bitmap, blocks, chunksize, init);
2580 }
2581 
2582 static ssize_t
location_show(struct mddev * mddev,char * page)2583 location_show(struct mddev *mddev, char *page)
2584 {
2585 	ssize_t len;
2586 	if (mddev->bitmap_info.file)
2587 		len = sprintf(page, "file");
2588 	else if (mddev->bitmap_info.offset)
2589 		len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset);
2590 	else
2591 		len = sprintf(page, "none");
2592 	len += sprintf(page+len, "\n");
2593 	return len;
2594 }
2595 
2596 static ssize_t
location_store(struct mddev * mddev,const char * buf,size_t len)2597 location_store(struct mddev *mddev, const char *buf, size_t len)
2598 {
2599 	int rv;
2600 
2601 	rv = mddev_suspend_and_lock(mddev);
2602 	if (rv)
2603 		return rv;
2604 
2605 	if (mddev->pers) {
2606 		if (mddev->recovery || mddev->sync_thread) {
2607 			rv = -EBUSY;
2608 			goto out;
2609 		}
2610 	}
2611 
2612 	if (mddev->bitmap || mddev->bitmap_info.file ||
2613 	    mddev->bitmap_info.offset) {
2614 		/* bitmap already configured.  Only option is to clear it */
2615 		if (strncmp(buf, "none", 4) != 0) {
2616 			rv = -EBUSY;
2617 			goto out;
2618 		}
2619 
2620 		bitmap_destroy(mddev);
2621 		mddev->bitmap_info.offset = 0;
2622 		if (mddev->bitmap_info.file) {
2623 			struct file *f = mddev->bitmap_info.file;
2624 			mddev->bitmap_info.file = NULL;
2625 			fput(f);
2626 		}
2627 	} else {
2628 		/* No bitmap, OK to set a location */
2629 		long long offset;
2630 
2631 		if (strncmp(buf, "none", 4) == 0)
2632 			/* nothing to be done */;
2633 		else if (strncmp(buf, "file:", 5) == 0) {
2634 			/* Not supported yet */
2635 			rv = -EINVAL;
2636 			goto out;
2637 		} else {
2638 			if (buf[0] == '+')
2639 				rv = kstrtoll(buf+1, 10, &offset);
2640 			else
2641 				rv = kstrtoll(buf, 10, &offset);
2642 			if (rv)
2643 				goto out;
2644 			if (offset == 0) {
2645 				rv = -EINVAL;
2646 				goto out;
2647 			}
2648 			if (mddev->bitmap_info.external == 0 &&
2649 			    mddev->major_version == 0 &&
2650 			    offset != mddev->bitmap_info.default_offset) {
2651 				rv = -EINVAL;
2652 				goto out;
2653 			}
2654 
2655 			mddev->bitmap_info.offset = offset;
2656 			rv = bitmap_create(mddev, -1);
2657 			if (rv)
2658 				goto out;
2659 
2660 			rv = bitmap_load(mddev);
2661 			if (rv) {
2662 				mddev->bitmap_info.offset = 0;
2663 				bitmap_destroy(mddev);
2664 				goto out;
2665 			}
2666 		}
2667 	}
2668 	if (!mddev->external) {
2669 		/* Ensure new bitmap info is stored in
2670 		 * metadata promptly.
2671 		 */
2672 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2673 		md_wakeup_thread(mddev->thread);
2674 	}
2675 	rv = 0;
2676 out:
2677 	mddev_unlock_and_resume(mddev);
2678 	if (rv)
2679 		return rv;
2680 	return len;
2681 }
2682 
2683 static struct md_sysfs_entry bitmap_location =
2684 __ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store);
2685 
2686 /* 'bitmap/space' is the space available at 'location' for the
2687  * bitmap.  This allows the kernel to know when it is safe to
2688  * resize the bitmap to match a resized array.
2689  */
2690 static ssize_t
space_show(struct mddev * mddev,char * page)2691 space_show(struct mddev *mddev, char *page)
2692 {
2693 	return sprintf(page, "%lu\n", mddev->bitmap_info.space);
2694 }
2695 
2696 static ssize_t
space_store(struct mddev * mddev,const char * buf,size_t len)2697 space_store(struct mddev *mddev, const char *buf, size_t len)
2698 {
2699 	struct bitmap *bitmap;
2700 	unsigned long sectors;
2701 	int rv;
2702 
2703 	rv = kstrtoul(buf, 10, &sectors);
2704 	if (rv)
2705 		return rv;
2706 
2707 	if (sectors == 0)
2708 		return -EINVAL;
2709 
2710 	bitmap = mddev->bitmap;
2711 	if (bitmap && sectors < (bitmap->storage.bytes + 511) >> 9)
2712 		return -EFBIG; /* Bitmap is too big for this small space */
2713 
2714 	/* could make sure it isn't too big, but that isn't really
2715 	 * needed - user-space should be careful.
2716 	 */
2717 	mddev->bitmap_info.space = sectors;
2718 	return len;
2719 }
2720 
2721 static struct md_sysfs_entry bitmap_space =
2722 __ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store);
2723 
2724 static ssize_t
timeout_show(struct mddev * mddev,char * page)2725 timeout_show(struct mddev *mddev, char *page)
2726 {
2727 	ssize_t len;
2728 	unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ;
2729 	unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ;
2730 
2731 	len = sprintf(page, "%lu", secs);
2732 	if (jifs)
2733 		len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs));
2734 	len += sprintf(page+len, "\n");
2735 	return len;
2736 }
2737 
2738 static ssize_t
timeout_store(struct mddev * mddev,const char * buf,size_t len)2739 timeout_store(struct mddev *mddev, const char *buf, size_t len)
2740 {
2741 	/* timeout can be set at any time */
2742 	unsigned long timeout;
2743 	int rv = strict_strtoul_scaled(buf, &timeout, 4);
2744 	if (rv)
2745 		return rv;
2746 
2747 	/* just to make sure we don't overflow... */
2748 	if (timeout >= LONG_MAX / HZ)
2749 		return -EINVAL;
2750 
2751 	timeout = timeout * HZ / 10000;
2752 
2753 	if (timeout >= MAX_SCHEDULE_TIMEOUT)
2754 		timeout = MAX_SCHEDULE_TIMEOUT-1;
2755 	if (timeout < 1)
2756 		timeout = 1;
2757 
2758 	mddev->bitmap_info.daemon_sleep = timeout;
2759 	mddev_set_timeout(mddev, timeout, false);
2760 	md_wakeup_thread(mddev->thread);
2761 
2762 	return len;
2763 }
2764 
2765 static struct md_sysfs_entry bitmap_timeout =
2766 __ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store);
2767 
2768 static ssize_t
backlog_show(struct mddev * mddev,char * page)2769 backlog_show(struct mddev *mddev, char *page)
2770 {
2771 	return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind);
2772 }
2773 
2774 static ssize_t
backlog_store(struct mddev * mddev,const char * buf,size_t len)2775 backlog_store(struct mddev *mddev, const char *buf, size_t len)
2776 {
2777 	unsigned long backlog;
2778 	unsigned long old_mwb = mddev->bitmap_info.max_write_behind;
2779 	struct md_rdev *rdev;
2780 	bool has_write_mostly = false;
2781 	int rv = kstrtoul(buf, 10, &backlog);
2782 	if (rv)
2783 		return rv;
2784 	if (backlog > COUNTER_MAX)
2785 		return -EINVAL;
2786 
2787 	rv = mddev_suspend_and_lock(mddev);
2788 	if (rv)
2789 		return rv;
2790 
2791 	/*
2792 	 * Without write mostly device, it doesn't make sense to set
2793 	 * backlog for max_write_behind.
2794 	 */
2795 	rdev_for_each(rdev, mddev) {
2796 		if (test_bit(WriteMostly, &rdev->flags)) {
2797 			has_write_mostly = true;
2798 			break;
2799 		}
2800 	}
2801 	if (!has_write_mostly) {
2802 		pr_warn_ratelimited("%s: can't set backlog, no write mostly device available\n",
2803 				    mdname(mddev));
2804 		mddev_unlock(mddev);
2805 		return -EINVAL;
2806 	}
2807 
2808 	mddev->bitmap_info.max_write_behind = backlog;
2809 	if (!backlog && mddev->serial_info_pool) {
2810 		/* serial_info_pool is not needed if backlog is zero */
2811 		if (!mddev->serialize_policy)
2812 			mddev_destroy_serial_pool(mddev, NULL);
2813 	} else if (backlog && !mddev->serial_info_pool) {
2814 		/* serial_info_pool is needed since backlog is not zero */
2815 		rdev_for_each(rdev, mddev)
2816 			mddev_create_serial_pool(mddev, rdev);
2817 	}
2818 	if (old_mwb != backlog)
2819 		bitmap_update_sb(mddev->bitmap);
2820 
2821 	mddev_unlock_and_resume(mddev);
2822 	return len;
2823 }
2824 
2825 static struct md_sysfs_entry bitmap_backlog =
2826 __ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store);
2827 
2828 static ssize_t
chunksize_show(struct mddev * mddev,char * page)2829 chunksize_show(struct mddev *mddev, char *page)
2830 {
2831 	return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize);
2832 }
2833 
2834 static ssize_t
chunksize_store(struct mddev * mddev,const char * buf,size_t len)2835 chunksize_store(struct mddev *mddev, const char *buf, size_t len)
2836 {
2837 	/* Can only be changed when no bitmap is active */
2838 	int rv;
2839 	unsigned long csize;
2840 	if (mddev->bitmap)
2841 		return -EBUSY;
2842 	rv = kstrtoul(buf, 10, &csize);
2843 	if (rv)
2844 		return rv;
2845 	if (csize < 512 ||
2846 	    !is_power_of_2(csize))
2847 		return -EINVAL;
2848 	if (BITS_PER_LONG > 32 && csize >= (1ULL << (BITS_PER_BYTE *
2849 		sizeof(((bitmap_super_t *)0)->chunksize))))
2850 		return -EOVERFLOW;
2851 	mddev->bitmap_info.chunksize = csize;
2852 	return len;
2853 }
2854 
2855 static struct md_sysfs_entry bitmap_chunksize =
2856 __ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store);
2857 
metadata_show(struct mddev * mddev,char * page)2858 static ssize_t metadata_show(struct mddev *mddev, char *page)
2859 {
2860 	if (mddev_is_clustered(mddev))
2861 		return sprintf(page, "clustered\n");
2862 	return sprintf(page, "%s\n", (mddev->bitmap_info.external
2863 				      ? "external" : "internal"));
2864 }
2865 
metadata_store(struct mddev * mddev,const char * buf,size_t len)2866 static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len)
2867 {
2868 	if (mddev->bitmap ||
2869 	    mddev->bitmap_info.file ||
2870 	    mddev->bitmap_info.offset)
2871 		return -EBUSY;
2872 	if (strncmp(buf, "external", 8) == 0)
2873 		mddev->bitmap_info.external = 1;
2874 	else if ((strncmp(buf, "internal", 8) == 0) ||
2875 			(strncmp(buf, "clustered", 9) == 0))
2876 		mddev->bitmap_info.external = 0;
2877 	else
2878 		return -EINVAL;
2879 	return len;
2880 }
2881 
2882 static struct md_sysfs_entry bitmap_metadata =
2883 __ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2884 
can_clear_show(struct mddev * mddev,char * page)2885 static ssize_t can_clear_show(struct mddev *mddev, char *page)
2886 {
2887 	int len;
2888 	struct bitmap *bitmap;
2889 
2890 	spin_lock(&mddev->lock);
2891 	bitmap = mddev->bitmap;
2892 	if (bitmap)
2893 		len = sprintf(page, "%s\n", (bitmap->need_sync ? "false" :
2894 								 "true"));
2895 	else
2896 		len = sprintf(page, "\n");
2897 	spin_unlock(&mddev->lock);
2898 	return len;
2899 }
2900 
can_clear_store(struct mddev * mddev,const char * buf,size_t len)2901 static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len)
2902 {
2903 	struct bitmap *bitmap = mddev->bitmap;
2904 
2905 	if (!bitmap)
2906 		return -ENOENT;
2907 
2908 	if (strncmp(buf, "false", 5) == 0) {
2909 		bitmap->need_sync = 1;
2910 		return len;
2911 	}
2912 
2913 	if (strncmp(buf, "true", 4) == 0) {
2914 		if (mddev->degraded)
2915 			return -EBUSY;
2916 		bitmap->need_sync = 0;
2917 		return len;
2918 	}
2919 
2920 	return -EINVAL;
2921 }
2922 
2923 static struct md_sysfs_entry bitmap_can_clear =
2924 __ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store);
2925 
2926 static ssize_t
behind_writes_used_show(struct mddev * mddev,char * page)2927 behind_writes_used_show(struct mddev *mddev, char *page)
2928 {
2929 	ssize_t ret;
2930 	struct bitmap *bitmap;
2931 
2932 	spin_lock(&mddev->lock);
2933 	bitmap = mddev->bitmap;
2934 	if (!bitmap)
2935 		ret = sprintf(page, "0\n");
2936 	else
2937 		ret = sprintf(page, "%lu\n", bitmap->behind_writes_used);
2938 	spin_unlock(&mddev->lock);
2939 
2940 	return ret;
2941 }
2942 
2943 static ssize_t
behind_writes_used_reset(struct mddev * mddev,const char * buf,size_t len)2944 behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len)
2945 {
2946 	struct bitmap *bitmap = mddev->bitmap;
2947 
2948 	if (bitmap)
2949 		bitmap->behind_writes_used = 0;
2950 	return len;
2951 }
2952 
2953 static struct md_sysfs_entry max_backlog_used =
2954 __ATTR(max_backlog_used, S_IRUGO | S_IWUSR,
2955        behind_writes_used_show, behind_writes_used_reset);
2956 
2957 static struct attribute *md_bitmap_attrs[] = {
2958 	&bitmap_location.attr,
2959 	&bitmap_space.attr,
2960 	&bitmap_timeout.attr,
2961 	&bitmap_backlog.attr,
2962 	&bitmap_chunksize.attr,
2963 	&bitmap_metadata.attr,
2964 	&bitmap_can_clear.attr,
2965 	&max_backlog_used.attr,
2966 	NULL
2967 };
2968 const struct attribute_group md_bitmap_group = {
2969 	.name = "bitmap",
2970 	.attrs = md_bitmap_attrs,
2971 };
2972 
2973 static struct bitmap_operations bitmap_ops = {
2974 	.enabled		= bitmap_enabled,
2975 	.create			= bitmap_create,
2976 	.resize			= bitmap_resize,
2977 	.load			= bitmap_load,
2978 	.destroy		= bitmap_destroy,
2979 	.flush			= bitmap_flush,
2980 	.write_all		= bitmap_write_all,
2981 	.dirty_bits		= bitmap_dirty_bits,
2982 	.unplug			= bitmap_unplug,
2983 	.daemon_work		= bitmap_daemon_work,
2984 	.wait_behind_writes	= bitmap_wait_behind_writes,
2985 
2986 	.startwrite		= bitmap_startwrite,
2987 	.endwrite		= bitmap_endwrite,
2988 	.start_sync		= bitmap_start_sync,
2989 	.end_sync		= bitmap_end_sync,
2990 	.cond_end_sync		= bitmap_cond_end_sync,
2991 	.close_sync		= bitmap_close_sync,
2992 
2993 	.update_sb		= bitmap_update_sb,
2994 	.get_stats		= bitmap_get_stats,
2995 
2996 	.sync_with_cluster	= bitmap_sync_with_cluster,
2997 	.get_from_slot		= bitmap_get_from_slot,
2998 	.copy_from_slot		= bitmap_copy_from_slot,
2999 	.set_pages		= bitmap_set_pages,
3000 	.free			= md_bitmap_free,
3001 };
3002 
mddev_set_bitmap_ops(struct mddev * mddev)3003 void mddev_set_bitmap_ops(struct mddev *mddev)
3004 {
3005 	mddev->bitmap_ops = &bitmap_ops;
3006 }
3007