xref: /freebsd/sys/geom/part/g_part_bsd64.c (revision 09c999b1557a8031d2b60435d71a0a5ed4f0f016)
1 /*-
2  * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/bio.h>
29 #include <sys/gsb_crc32.h>
30 #include <sys/disklabel.h>
31 #include <sys/endian.h>
32 #include <sys/gpt.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/queue.h>
40 #include <sys/sbuf.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <geom/geom.h>
44 #include <geom/geom_int.h>
45 #include <geom/part/g_part.h>
46 
47 #include "g_part_if.h"
48 
49 FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
50 
51 /* XXX: move this to sys/disklabel64.h */
52 #define	DISKMAGIC64     ((uint32_t)0xc4464c59)
53 #define	MAXPARTITIONS64	16
54 #define	RESPARTITIONS64	32
55 
56 struct disklabel64 {
57 	char	  d_reserved0[512];	/* reserved or unused */
58 	uint32_t d_magic;		/* the magic number */
59 	uint32_t d_crc;		/* crc32() d_magic through last part */
60 	uint32_t d_align;		/* partition alignment requirement */
61 	uint32_t d_npartitions;	/* number of partitions */
62 	struct uuid d_stor_uuid;	/* unique uuid for label */
63 
64 	uint64_t d_total_size;		/* total size incl everything (bytes) */
65 	uint64_t d_bbase;		/* boot area base offset (bytes) */
66 					/* boot area is pbase - bbase */
67 	uint64_t d_pbase;		/* first allocatable offset (bytes) */
68 	uint64_t d_pstop;		/* last allocatable offset+1 (bytes) */
69 	uint64_t d_abase;		/* location of backup copy if not 0 */
70 
71 	u_char	  d_packname[64];
72 	u_char    d_reserved[64];
73 
74 	/*
75 	 * Note: offsets are relative to the base of the slice, NOT to
76 	 * d_pbase.  Unlike 32 bit disklabels the on-disk format for
77 	 * a 64 bit disklabel remains slice-relative.
78 	 *
79 	 * An uninitialized partition has a p_boffset and p_bsize of 0.
80 	 *
81 	 * If p_fstype is not supported for a live partition it is set
82 	 * to FS_OTHER.  This is typically the case when the filesystem
83 	 * is identified by its uuid.
84 	 */
85 	struct partition64 {		/* the partition table */
86 		uint64_t p_boffset;	/* slice relative offset, in bytes */
87 		uint64_t p_bsize;	/* size of partition, in bytes */
88 		uint8_t  p_fstype;
89 		uint8_t  p_unused01;	/* reserved, must be 0 */
90 		uint8_t  p_unused02;	/* reserved, must be 0 */
91 		uint8_t  p_unused03;	/* reserved, must be 0 */
92 		uint32_t p_unused04;	/* reserved, must be 0 */
93 		uint32_t p_unused05;	/* reserved, must be 0 */
94 		uint32_t p_unused06;	/* reserved, must be 0 */
95 		struct uuid p_type_uuid;/* mount type as UUID */
96 		struct uuid p_stor_uuid;/* unique uuid for storage */
97 	} d_partitions[MAXPARTITIONS64];/* actually may be more */
98 };
99 
100 struct g_part_bsd64_table {
101 	struct g_part_table	base;
102 
103 	uint32_t		d_align;
104 	uint64_t		d_bbase;
105 	uint64_t		d_abase;
106 	struct uuid		d_stor_uuid;
107 	char			d_reserved0[512];
108 	u_char			d_packname[64];
109 	u_char			d_reserved[64];
110 };
111 
112 struct g_part_bsd64_entry {
113 	struct g_part_entry	base;
114 
115 	uint8_t			fstype;
116 	struct uuid		type_uuid;
117 	struct uuid		stor_uuid;
118 };
119 
120 static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
121     struct g_part_parms *);
122 static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
123 static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
124 static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
125 static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
126     struct sbuf *, const char *);
127 static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
128 static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
129     struct g_part_parms *);
130 static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
131     char *, size_t);
132 static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
133 static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
134 static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
135     char *, size_t);
136 static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
137 static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
138     struct g_part_parms *);
139 
140 static kobj_method_t g_part_bsd64_methods[] = {
141 	KOBJMETHOD(g_part_add,		g_part_bsd64_add),
142 	KOBJMETHOD(g_part_bootcode,	g_part_bsd64_bootcode),
143 	KOBJMETHOD(g_part_create,	g_part_bsd64_create),
144 	KOBJMETHOD(g_part_destroy,	g_part_bsd64_destroy),
145 	KOBJMETHOD(g_part_dumpconf,	g_part_bsd64_dumpconf),
146 	KOBJMETHOD(g_part_dumpto,	g_part_bsd64_dumpto),
147 	KOBJMETHOD(g_part_modify,	g_part_bsd64_modify),
148 	KOBJMETHOD(g_part_resize,	g_part_bsd64_resize),
149 	KOBJMETHOD(g_part_name,		g_part_bsd64_name),
150 	KOBJMETHOD(g_part_probe,	g_part_bsd64_probe),
151 	KOBJMETHOD(g_part_read,		g_part_bsd64_read),
152 	KOBJMETHOD(g_part_type,		g_part_bsd64_type),
153 	KOBJMETHOD(g_part_write,	g_part_bsd64_write),
154 	{ 0, 0 }
155 };
156 
157 static struct g_part_scheme g_part_bsd64_scheme = {
158 	"BSD64",
159 	g_part_bsd64_methods,
160 	sizeof(struct g_part_bsd64_table),
161 	.gps_entrysz = sizeof(struct g_part_bsd64_entry),
162 	.gps_minent = MAXPARTITIONS64,
163 	.gps_defent = MAXPARTITIONS64,
164 	.gps_maxent = MAXPARTITIONS64
165 };
166 G_PART_SCHEME_DECLARE(g_part_bsd64);
167 MODULE_VERSION(geom_part_bsd64, 0);
168 
169 #define	EQUUID(a, b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
170 static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
171 static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
172 static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
173 static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
174 static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
175 static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
176 static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
177 static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
178 static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
179 static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
180 static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
181 static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
182 static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
183 static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
184 
185 struct bsd64_uuid_alias {
186 	struct uuid *uuid;
187 	uint8_t fstype;
188 	int alias;
189 };
190 static struct bsd64_uuid_alias dfbsd_alias_match[] = {
191 	{ &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
192 	{ &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
193 	{ &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
194 	{ &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
195 	{ &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
196 	{ &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
197 	{ &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
198 	{ NULL, 0, 0}
199 };
200 static struct bsd64_uuid_alias fbsd_alias_match[] = {
201 	{ &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
202 	{ &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
203 	{ &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
204 	{ &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
205 	{ &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
206 	{ &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
207 	{ NULL, 0, 0}
208 };
209 
210 static int
bsd64_parse_type(const char * type,struct g_part_bsd64_entry * entry)211 bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
212 {
213 	struct uuid tmp;
214 	const struct bsd64_uuid_alias *uap;
215 	const char *alias;
216 	char *p;
217 	long lt;
218 	int error;
219 
220 	if (type[0] == '!') {
221 		if (type[1] == '\0')
222 			return (EINVAL);
223 		lt = strtol(type + 1, &p, 0);
224 		/* The type specified as number */
225 		if (*p == '\0') {
226 			if (lt <= 0 || lt > 255)
227 				return (EINVAL);
228 			entry->fstype = lt;
229 			entry->type_uuid = bsd64_uuid_unused;
230 			return (0);
231 		}
232 		/* The type specified as uuid */
233 		error = parse_uuid(type + 1, &tmp);
234 		if (error != 0)
235 			return (error);
236 		if (EQUUID(&tmp, &bsd64_uuid_unused))
237 			return (EINVAL);
238 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
239 			if (EQUUID(&tmp, uap->uuid)) {
240 				/* Prefer fstype for known uuids */
241 				entry->type_uuid = bsd64_uuid_unused;
242 				entry->fstype = uap->fstype;
243 				return (0);
244 			}
245 		}
246 		entry->type_uuid = tmp;
247 		entry->fstype = FS_OTHER;
248 		return (0);
249 	}
250 	/* The type specified as symbolic alias name */
251 	for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
252 		alias = g_part_alias_name(uap->alias);
253 		if (!strcasecmp(type, alias)) {
254 			entry->type_uuid = *uap->uuid;
255 			entry->fstype = uap->fstype;
256 			return (0);
257 		}
258 	}
259 	for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
260 		alias = g_part_alias_name(uap->alias);
261 		if (!strcasecmp(type, alias)) {
262 			entry->type_uuid = bsd64_uuid_unused;
263 			entry->fstype = uap->fstype;
264 			return (0);
265 		}
266 	}
267 	return (EINVAL);
268 }
269 
270 static int
g_part_bsd64_add(struct g_part_table * basetable,struct g_part_entry * baseentry,struct g_part_parms * gpp)271 g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
272     struct g_part_parms *gpp)
273 {
274 	struct g_part_bsd64_entry *entry;
275 
276 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
277 		return (EINVAL);
278 
279 	entry = (struct g_part_bsd64_entry *)baseentry;
280 	if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
281 		return (EINVAL);
282 	kern_uuidgen(&entry->stor_uuid, 1);
283 	return (0);
284 }
285 
286 static int
g_part_bsd64_bootcode(struct g_part_table * basetable,struct g_part_parms * gpp)287 g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
288 {
289 
290 	return (EOPNOTSUPP);
291 }
292 
293 #define	PALIGN_SIZE	(1024 * 1024)
294 #define	PALIGN_MASK	(PALIGN_SIZE - 1)
295 #define	BLKSIZE		(4 * 1024)
296 #define	BOOTSIZE	(32 * 1024)
297 #define	DALIGN_SIZE	(32 * 1024)
298 static int
g_part_bsd64_create(struct g_part_table * basetable,struct g_part_parms * gpp)299 g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
300 {
301 	struct g_part_bsd64_table *table;
302 	struct g_part_entry *baseentry;
303 	struct g_provider *pp;
304 	uint64_t blkmask, pbase;
305 	uint32_t blksize, ressize;
306 
307 	pp = gpp->gpp_provider;
308 	if (pp->mediasize < 2* PALIGN_SIZE)
309 		return (ENOSPC);
310 
311 	/*
312 	 * Use at least 4KB block size. Blksize is stored in the d_align.
313 	 * XXX: Actually it is used just for calculate d_bbase and used
314 	 * for better alignment in bsdlabel64(8).
315 	 */
316 	blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
317 	blkmask = blksize - 1;
318 	/* Reserve enough space for RESPARTITIONS64 partitions. */
319 	ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
320 	ressize = (ressize + blkmask) & ~blkmask;
321 	/*
322 	 * Reserve enough space for bootcode and align first allocatable
323 	 * offset to PALIGN_SIZE.
324 	 * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
325 	 * be bigger, because it is possible change it (it is equal pbase-bbase)
326 	 * in the bsdlabel64(8).
327 	 */
328 	pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
329 	pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
330 	/*
331 	 * Take physical offset into account and make first allocatable
332 	 * offset 32KB aligned to the start of the physical disk.
333 	 * XXX: Actually there are no such restrictions, this is how
334 	 * DragonFlyBSD behaves.
335 	 */
336 	pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
337 
338 	table = (struct g_part_bsd64_table *)basetable;
339 	table->d_align = blksize;
340 	table->d_bbase = ressize / pp->sectorsize;
341 	table->d_abase = ((pp->mediasize - ressize) &
342 	    ~blkmask) / pp->sectorsize;
343 	kern_uuidgen(&table->d_stor_uuid, 1);
344 	basetable->gpt_first = pbase / pp->sectorsize;
345 	basetable->gpt_last = table->d_abase - 1; /* XXX */
346 	/*
347 	 * Create 'c' partition and make it internal, so user will not be
348 	 * able use it.
349 	 */
350 	baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
351 	baseentry->gpe_internal = 1;
352 	return (0);
353 }
354 
355 static int
g_part_bsd64_destroy(struct g_part_table * basetable,struct g_part_parms * gpp)356 g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
357 {
358 	struct g_provider *pp;
359 
360 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
361 	if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
362 		basetable->gpt_smhead |= 1;
363 	else
364 		basetable->gpt_smhead |= 3;
365 	return (0);
366 }
367 
368 static void
g_part_bsd64_dumpconf(struct g_part_table * basetable,struct g_part_entry * baseentry,struct sbuf * sb,const char * indent)369 g_part_bsd64_dumpconf(struct g_part_table *basetable,
370     struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
371 {
372 	struct g_part_bsd64_table *table;
373 	struct g_part_bsd64_entry *entry;
374 	char buf[sizeof(table->d_packname)];
375 
376 	entry = (struct g_part_bsd64_entry *)baseentry;
377 	if (indent == NULL) {
378 		/* conftxt: libdisk compatibility */
379 		sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
380 	} else if (entry != NULL) {
381 		/* confxml: partition entry information */
382 		sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
383 		    entry->fstype);
384 		if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
385 			sbuf_printf(sb, "%s<type_uuid>", indent);
386 			sbuf_printf_uuid(sb, &entry->type_uuid);
387 			sbuf_cat(sb, "</type_uuid>\n");
388 		}
389 		sbuf_printf(sb, "%s<stor_uuid>", indent);
390 		sbuf_printf_uuid(sb, &entry->stor_uuid);
391 		sbuf_cat(sb, "</stor_uuid>\n");
392 	} else {
393 		/* confxml: scheme information */
394 		table = (struct g_part_bsd64_table *)basetable;
395 		sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
396 		    (uintmax_t)table->d_bbase);
397 		if (table->d_abase)
398 			sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
399 			    indent, (uintmax_t)table->d_abase);
400 		sbuf_printf(sb, "%s<stor_uuid>", indent);
401 		sbuf_printf_uuid(sb, &table->d_stor_uuid);
402 		sbuf_cat(sb, "</stor_uuid>\n");
403 		sbuf_printf(sb, "%s<label>", indent);
404 		strncpy(buf, table->d_packname, sizeof(buf) - 1);
405 		buf[sizeof(buf) - 1] = '\0';
406 		g_conf_cat_escaped(sb, buf);
407 		sbuf_cat(sb, "</label>\n");
408 	}
409 }
410 
411 static int
g_part_bsd64_dumpto(struct g_part_table * table,struct g_part_entry * baseentry)412 g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
413 {
414 	struct g_part_bsd64_entry *entry;
415 
416 	/* Allow dumping to a swap partition. */
417 	entry = (struct g_part_bsd64_entry *)baseentry;
418 	if (entry->fstype == FS_SWAP ||
419 	    EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
420 	    EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
421 		return (1);
422 	return (0);
423 }
424 
425 static int
g_part_bsd64_modify(struct g_part_table * basetable,struct g_part_entry * baseentry,struct g_part_parms * gpp)426 g_part_bsd64_modify(struct g_part_table *basetable,
427     struct g_part_entry *baseentry, struct g_part_parms *gpp)
428 {
429 	struct g_part_bsd64_entry *entry;
430 
431 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
432 		return (EINVAL);
433 
434 	entry = (struct g_part_bsd64_entry *)baseentry;
435 	if (gpp->gpp_parms & G_PART_PARM_TYPE)
436 		return (bsd64_parse_type(gpp->gpp_type, entry));
437 	return (0);
438 }
439 
440 static int
g_part_bsd64_resize(struct g_part_table * basetable,struct g_part_entry * baseentry,struct g_part_parms * gpp)441 g_part_bsd64_resize(struct g_part_table *basetable,
442     struct g_part_entry *baseentry, struct g_part_parms *gpp)
443 {
444 	struct g_part_bsd64_table *table;
445 	struct g_provider *pp;
446 
447 	if (baseentry == NULL) {
448 		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
449 		table = (struct g_part_bsd64_table *)basetable;
450 		table->d_abase =
451 		    rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
452 		        table->d_align) / pp->sectorsize;
453 		basetable->gpt_last = table->d_abase - 1;
454 		return (0);
455 	}
456 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
457 	return (0);
458 }
459 
460 static const char *
g_part_bsd64_name(struct g_part_table * table,struct g_part_entry * baseentry,char * buf,size_t bufsz)461 g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
462     char *buf, size_t bufsz)
463 {
464 
465 	snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
466 	return (buf);
467 }
468 
469 static int
g_part_bsd64_probe(struct g_part_table * table,struct g_consumer * cp)470 g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
471 {
472 	struct g_provider *pp;
473 	uint32_t v;
474 	int error;
475 	u_char *buf;
476 
477 	pp = cp->provider;
478 	if (pp->mediasize < 2 * PALIGN_SIZE)
479 		return (ENOSPC);
480 	v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
481 		       pp->sectorsize);
482 	buf = g_read_data(cp, 0, v, &error);
483 	if (buf == NULL)
484 		return (error);
485 	v = le32dec(buf + offsetof(struct disklabel64, d_magic));
486 	g_free(buf);
487 	return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
488 }
489 
490 static int
g_part_bsd64_read(struct g_part_table * basetable,struct g_consumer * cp)491 g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
492 {
493 	struct g_part_bsd64_table *table;
494 	struct g_part_bsd64_entry *entry;
495 	struct g_part_entry *baseentry;
496 	struct g_provider *pp;
497 	struct disklabel64 *dlp;
498 	uint64_t v64, sz;
499 	uint32_t v32;
500 	int error, index;
501 	u_char *buf;
502 
503 	pp = cp->provider;
504 	table = (struct g_part_bsd64_table *)basetable;
505 	v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
506 	buf = g_read_data(cp, 0, v32, &error);
507 	if (buf == NULL)
508 		return (error);
509 
510 	dlp = (struct disklabel64 *)buf;
511 	basetable->gpt_entries = le32toh(dlp->d_npartitions);
512 	if (basetable->gpt_entries > MAXPARTITIONS64 ||
513 	    basetable->gpt_entries < 1)
514 		goto invalid_label;
515 	v32 = le32toh(dlp->d_crc);
516 	dlp->d_crc = 0;
517 	if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
518 	    d_partitions[basetable->gpt_entries]) -
519 	    offsetof(struct disklabel64, d_magic)) != v32)
520 		goto invalid_label;
521 	table->d_align = le32toh(dlp->d_align);
522 	if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
523 		goto invalid_label;
524 	if (le64toh(dlp->d_total_size) > pp->mediasize)
525 		goto invalid_label;
526 	v64 = le64toh(dlp->d_pbase);
527 	if (v64 % pp->sectorsize)
528 		goto invalid_label;
529 	basetable->gpt_first = v64 / pp->sectorsize;
530 	v64 = le64toh(dlp->d_pstop);
531 	if (v64 % pp->sectorsize)
532 		goto invalid_label;
533 	basetable->gpt_last = v64 / pp->sectorsize;
534 	basetable->gpt_isleaf = 1;
535 	v64 = le64toh(dlp->d_bbase);
536 	if (v64 % pp->sectorsize)
537 		goto invalid_label;
538 	table->d_bbase = v64 / pp->sectorsize;
539 	v64 = le64toh(dlp->d_abase);
540 	if (v64 % pp->sectorsize)
541 		goto invalid_label;
542 	table->d_abase = v64 / pp->sectorsize;
543 	le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
544 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
545 		if (index == RAW_PART) {
546 			/* Skip 'c' partition. */
547 			baseentry = g_part_new_entry(basetable,
548 			    index + 1, 0, 0);
549 			baseentry->gpe_internal = 1;
550 			continue;
551 		}
552 		v64 = le64toh(dlp->d_partitions[index].p_boffset);
553 		sz = le64toh(dlp->d_partitions[index].p_bsize);
554 		if (sz == 0 && v64 == 0)
555 			continue;
556 		if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
557 			goto invalid_label;
558 		baseentry = g_part_new_entry(basetable, index + 1,
559 		    v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
560 		entry = (struct g_part_bsd64_entry *)baseentry;
561 		le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
562 		    &entry->type_uuid);
563 		le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
564 		    &entry->stor_uuid);
565 		entry->fstype = dlp->d_partitions[index].p_fstype;
566 	}
567 	bcopy(dlp->d_reserved0, table->d_reserved0,
568 	    sizeof(table->d_reserved0));
569 	bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
570 	bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
571 	g_free(buf);
572 	return (0);
573 
574 invalid_label:
575 	g_free(buf);
576 	return (EINVAL);
577 }
578 
579 static const char *
g_part_bsd64_type(struct g_part_table * basetable,struct g_part_entry * baseentry,char * buf,size_t bufsz)580 g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
581     char *buf, size_t bufsz)
582 {
583 	struct g_part_bsd64_entry *entry;
584 	struct bsd64_uuid_alias *uap;
585 
586 	entry = (struct g_part_bsd64_entry *)baseentry;
587 	if (entry->fstype != FS_OTHER) {
588 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
589 			if (uap->fstype == entry->fstype)
590 				return (g_part_alias_name(uap->alias));
591 	} else {
592 		for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
593 			if (EQUUID(uap->uuid, &entry->type_uuid))
594 				return (g_part_alias_name(uap->alias));
595 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
596 			if (EQUUID(uap->uuid, &entry->type_uuid))
597 				return (g_part_alias_name(uap->alias));
598 	}
599 	if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
600 		snprintf(buf, bufsz, "!%d", entry->fstype);
601 	else {
602 		buf[0] = '!';
603 		snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
604 	}
605 	return (buf);
606 }
607 
608 static int
g_part_bsd64_write(struct g_part_table * basetable,struct g_consumer * cp)609 g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
610 {
611 	struct g_provider *pp;
612 	struct g_part_entry *baseentry;
613 	struct g_part_bsd64_entry *entry;
614 	struct g_part_bsd64_table *table;
615 	struct disklabel64 *dlp;
616 	uint32_t v, sz;
617 	int error, index;
618 
619 	pp = cp->provider;
620 	table = (struct g_part_bsd64_table *)basetable;
621 	sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
622 	dlp = g_malloc(sz, M_WAITOK | M_ZERO);
623 
624 	memcpy(dlp->d_reserved0, table->d_reserved0,
625 	    sizeof(table->d_reserved0));
626 	memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
627 	memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
628 	le32enc(&dlp->d_magic, DISKMAGIC64);
629 	le32enc(&dlp->d_align, table->d_align);
630 	le32enc(&dlp->d_npartitions, basetable->gpt_entries);
631 	le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
632 	le64enc(&dlp->d_total_size, pp->mediasize);
633 	le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
634 	le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
635 	le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
636 	le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
637 
638 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
639 		if (baseentry->gpe_deleted)
640 			continue;
641 		index = baseentry->gpe_index - 1;
642 		entry = (struct g_part_bsd64_entry *)baseentry;
643 		if (index == RAW_PART)
644 			continue;
645 		le64enc(&dlp->d_partitions[index].p_boffset,
646 		    baseentry->gpe_start * pp->sectorsize);
647 		le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
648 		    (baseentry->gpe_end - baseentry->gpe_start + 1));
649 		dlp->d_partitions[index].p_fstype = entry->fstype;
650 		le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
651 		    &entry->type_uuid);
652 		le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
653 		    &entry->stor_uuid);
654 	}
655 	/* Calculate checksum. */
656 	v = offsetof(struct disklabel64,
657 	    d_partitions[basetable->gpt_entries]) -
658 	    offsetof(struct disklabel64, d_magic);
659 	le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
660 	error = g_write_data(cp, 0, dlp, sz);
661 	g_free(dlp);
662 	return (error);
663 }
664