1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent Inc. All rights reserved.
25 */
26
27 /*
28 * Zones
29 *
30 * A zone is a named collection of processes, namespace constraints,
31 * and other system resources which comprise a secure and manageable
32 * application containment facility.
33 *
34 * Zones (represented by the reference counted zone_t) are tracked in
35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
36 * (zoneid_t) are used to track zone association. Zone IDs are
37 * dynamically generated when the zone is created; if a persistent
38 * identifier is needed (core files, accounting logs, audit trail,
39 * etc.), the zone name should be used.
40 *
41 *
42 * Global Zone:
43 *
44 * The global zone (zoneid 0) is automatically associated with all
45 * system resources that have not been bound to a user-created zone.
46 * This means that even systems where zones are not in active use
47 * have a global zone, and all processes, mounts, etc. are
48 * associated with that zone. The global zone is generally
49 * unconstrained in terms of privileges and access, though the usual
50 * credential and privilege based restrictions apply.
51 *
52 *
53 * Zone States:
54 *
55 * The states in which a zone may be in and the transitions are as
56 * follows:
57 *
58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59 * initialized zone is added to the list of active zones on the system but
60 * isn't accessible.
61 *
62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63 * not yet completed. Not possible to enter the zone, but attributes can
64 * be retrieved.
65 *
66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67 * ready. The zone is made visible after the ZSD constructor callbacks are
68 * executed. A zone remains in this state until it transitions into
69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70 *
71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73 * state.
74 *
75 * ZONE_IS_RUNNING: The zone is open for business: zsched has
76 * successfully started init. A zone remains in this state until
77 * zone_shutdown() is called.
78 *
79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80 * killing all processes running in the zone. The zone remains
81 * in this state until there are no more user processes running in the zone.
82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83 * Since zone_shutdown() is restartable, it may be called successfully
84 * multiple times for the same zone_t. Setting of the zone's state to
85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86 * the zone's status without worrying about it being a moving target.
87 *
88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89 * are no more user processes in the zone. The zone remains in this
90 * state until there are no more kernel threads associated with the
91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
92 * fail.
93 *
94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95 * have exited. zone_shutdown() returns. Henceforth it is not possible to
96 * join the zone or create kernel threads therein.
97 *
98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99 * remains in this state until zsched exits. Calls to zone_find_by_*()
100 * return NULL from now on.
101 *
102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
103 * processes or threads doing work on behalf of the zone. The zone is
104 * removed from the list of active zones. zone_destroy() returns, and
105 * the zone can be recreated.
106 *
107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108 * callbacks are executed, and all memory associated with the zone is
109 * freed.
110 *
111 * Threads can wait for the zone to enter a requested state by using
112 * zone_status_wait() or zone_status_timedwait() with the desired
113 * state passed in as an argument. Zone state transitions are
114 * uni-directional; it is not possible to move back to an earlier state.
115 *
116 *
117 * Zone-Specific Data:
118 *
119 * Subsystems needing to maintain zone-specific data can store that
120 * data using the ZSD mechanism. This provides a zone-specific data
121 * store, similar to thread-specific data (see pthread_getspecific(3C)
122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
123 * to register callbacks to be invoked when a zone is created, shut
124 * down, or destroyed. This can be used to initialize zone-specific
125 * data for new zones and to clean up when zones go away.
126 *
127 *
128 * Data Structures:
129 *
130 * The per-zone structure (zone_t) is reference counted, and freed
131 * when all references are released. zone_hold and zone_rele can be
132 * used to adjust the reference count. In addition, reference counts
133 * associated with the cred_t structure are tracked separately using
134 * zone_cred_hold and zone_cred_rele.
135 *
136 * Pointers to active zone_t's are stored in two hash tables; one
137 * for searching by id, the other for searching by name. Lookups
138 * can be performed on either basis, using zone_find_by_id and
139 * zone_find_by_name. Both return zone_t pointers with the zone
140 * held, so zone_rele should be called when the pointer is no longer
141 * needed. Zones can also be searched by path; zone_find_by_path
142 * returns the zone with which a path name is associated (global
143 * zone if the path is not within some other zone's file system
144 * hierarchy). This currently requires iterating through each zone,
145 * so it is slower than an id or name search via a hash table.
146 *
147 *
148 * Locking:
149 *
150 * zonehash_lock: This is a top-level global lock used to protect the
151 * zone hash tables and lists. Zones cannot be created or destroyed
152 * while this lock is held.
153 * zone_status_lock: This is a global lock protecting zone state.
154 * Zones cannot change state while this lock is held. It also
155 * protects the list of kernel threads associated with a zone.
156 * zone_lock: This is a per-zone lock used to protect several fields of
157 * the zone_t (see <sys/zone.h> for details). In addition, holding
158 * this lock means that the zone cannot go away.
159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
160 * related to the zone.max-lwps rctl.
161 * zone_mem_lock: This is a per-zone lock used to protect the fields
162 * related to the zone.max-locked-memory and zone.max-swap rctls.
163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164 * currently just max_lofi
165 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
166 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
167 * list (a list of zones in the ZONE_IS_DEAD state).
168 *
169 * Ordering requirements:
170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
172 *
173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176 *
177 * Blocking memory allocations are permitted while holding any of the
178 * zone locks.
179 *
180 *
181 * System Call Interface:
182 *
183 * The zone subsystem can be managed and queried from user level with
184 * the following system calls (all subcodes of the primary "zone"
185 * system call):
186 * - zone_create: creates a zone with selected attributes (name,
187 * root path, privileges, resource controls, ZFS datasets)
188 * - zone_enter: allows the current process to enter a zone
189 * - zone_getattr: reports attributes of a zone
190 * - zone_setattr: set attributes of a zone
191 * - zone_boot: set 'init' running for the zone
192 * - zone_list: lists all zones active in the system
193 * - zone_lookup: looks up zone id based on name
194 * - zone_shutdown: initiates shutdown process (see states above)
195 * - zone_destroy: completes shutdown process (see states above)
196 *
197 */
198
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253
254 /*
255 * This constant specifies the number of seconds that threads waiting for
256 * subsystems to release a zone's general-purpose references will wait before
257 * they log the zone's reference counts. The constant's value shouldn't
258 * be so small that reference counts are unnecessarily reported for zones
259 * whose references are slowly released. On the other hand, it shouldn't be so
260 * large that users reboot their systems out of frustration over hung zones
261 * before the system logs the zones' reference counts.
262 */
263 #define ZONE_DESTROY_TIMEOUT_SECS 60
264
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 datalink_id_t zdl_id;
268 nvlist_t *zdl_net;
269 list_node_t zdl_linkage;
270 } zone_dl_t;
271
272 /*
273 * cv used to signal that all references to the zone have been released. This
274 * needs to be global since there may be multiple waiters, and the first to
275 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276 */
277 static kcondvar_t zone_destroy_cv;
278 /*
279 * Lock used to serialize access to zone_cv. This could have been per-zone,
280 * but then we'd need another lock for zone_destroy_cv, and why bother?
281 */
282 static kmutex_t zone_status_lock;
283
284 /*
285 * ZSD-related global variables.
286 */
287 static kmutex_t zsd_key_lock; /* protects the following two */
288 /*
289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290 */
291 static zone_key_t zsd_keyval = 0;
292 /*
293 * Global list of registered keys. We use this when a new zone is created.
294 */
295 static list_t zsd_registered_keys;
296
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302
303 /*
304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305 * kernel proper runs, and which manages all other zones.
306 *
307 * Although not declared as static, the variable "zone0" should not be used
308 * except for by code that needs to reference the global zone early on in boot,
309 * before it is fully initialized. All other consumers should use
310 * 'global_zone'.
311 */
312 zone_t zone0;
313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
314
315 /*
316 * List of active zones, protected by zonehash_lock.
317 */
318 static list_t zone_active;
319
320 /*
321 * List of destroyed zones that still have outstanding cred references.
322 * Used for debugging. Uses a separate lock to avoid lock ordering
323 * problems in zone_free.
324 */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333
334 /*
335 * This table holds the mapping from kernel zone states to
336 * states visible in the state notification API.
337 * The idea is that we only expose "obvious" states and
338 * do not expose states which are just implementation details.
339 */
340 const char *zone_status_table[] = {
341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
342 ZONE_EVENT_INITIALIZED, /* initialized */
343 ZONE_EVENT_READY, /* ready */
344 ZONE_EVENT_READY, /* booting */
345 ZONE_EVENT_RUNNING, /* running */
346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
347 ZONE_EVENT_SHUTTING_DOWN, /* empty */
348 ZONE_EVENT_SHUTTING_DOWN, /* down */
349 ZONE_EVENT_SHUTTING_DOWN, /* dying */
350 ZONE_EVENT_UNINITIALIZED, /* dead */
351 };
352
353 /*
354 * This array contains the names of the subsystems listed in zone_ref_subsys_t
355 * (see sys/zone.h).
356 */
357 static char *zone_ref_subsys_names[] = {
358 "NFS", /* ZONE_REF_NFS */
359 "NFSv4", /* ZONE_REF_NFSV4 */
360 "SMBFS", /* ZONE_REF_SMBFS */
361 "MNTFS", /* ZONE_REF_MNTFS */
362 "LOFI", /* ZONE_REF_LOFI */
363 "VFS", /* ZONE_REF_VFS */
364 "IPC" /* ZONE_REF_IPC */
365 };
366
367 /*
368 * This isn't static so lint doesn't complain.
369 */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
390
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397 zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400 kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402 kmutex_t *);
403
404 /*
405 * Bump this number when you alter the zone syscall interfaces; this is
406 * because we need to have support for previous API versions in libc
407 * to support patching; libc calls into the kernel to determine this number.
408 *
409 * Version 1 of the API is the version originally shipped with Solaris 10
410 * Version 2 alters the zone_create system call in order to support more
411 * arguments by moving the args into a structure; and to do better
412 * error reporting when zone_create() fails.
413 * Version 3 alters the zone_create system call in order to support the
414 * import of ZFS datasets to zones.
415 * Version 4 alters the zone_create system call in order to support
416 * Trusted Extensions.
417 * Version 5 alters the zone_boot system call, and converts its old
418 * bootargs parameter to be set by the zone_setattr API instead.
419 * Version 6 adds the flag argument to zone_create.
420 */
421 static const int ZONE_SYSCALL_API_VERSION = 6;
422
423 /*
424 * Certain filesystems (such as NFS and autofs) need to know which zone
425 * the mount is being placed in. Because of this, we need to be able to
426 * ensure that a zone isn't in the process of being created/destroyed such
427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428 * it gets added the list of mounted zones, it ends up on the wrong zone's
429 * mount list. Since a zone can't reside on an NFS file system, we don't
430 * have to worry about the zonepath itself.
431 *
432 * The following functions: block_mounts()/resume_mounts() and
433 * mount_in_progress()/mount_completed() are used by zones and the VFS
434 * layer (respectively) to synchronize zone state transitions and new
435 * mounts within a zone. This syncronization is on a per-zone basis, so
436 * activity for one zone will not interfere with activity for another zone.
437 *
438 * The semantics are like a reader-reader lock such that there may
439 * either be multiple mounts (or zone state transitions, if that weren't
440 * serialized by zonehash_lock) in progress at the same time, but not
441 * both.
442 *
443 * We use cv's so the user can ctrl-C out of the operation if it's
444 * taking too long.
445 *
446 * The semantics are such that there is unfair bias towards the
447 * "current" operation. This means that zone halt may starve if
448 * there is a rapid succession of new mounts coming in to the zone.
449 */
450 /*
451 * Prevent new mounts from progressing to the point of calling
452 * VFS_MOUNT(). If there are already mounts in this "region", wait for
453 * them to complete.
454 */
455 static int
block_mounts(zone_t * zp)456 block_mounts(zone_t *zp)
457 {
458 int retval = 0;
459
460 /*
461 * Since it may block for a long time, block_mounts() shouldn't be
462 * called with zonehash_lock held.
463 */
464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 mutex_enter(&zp->zone_mount_lock);
466 while (zp->zone_mounts_in_progress > 0) {
467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 goto signaled;
469 }
470 /*
471 * A negative value of mounts_in_progress indicates that mounts
472 * have been blocked by (-mounts_in_progress) different callers
473 * (remotely possible if two threads enter zone_shutdown at the same
474 * time).
475 */
476 zp->zone_mounts_in_progress--;
477 retval = 1;
478 signaled:
479 mutex_exit(&zp->zone_mount_lock);
480 return (retval);
481 }
482
483 /*
484 * The VFS layer may progress with new mounts as far as we're concerned.
485 * Allow them to progress if we were the last obstacle.
486 */
487 static void
resume_mounts(zone_t * zp)488 resume_mounts(zone_t *zp)
489 {
490 mutex_enter(&zp->zone_mount_lock);
491 if (++zp->zone_mounts_in_progress == 0)
492 cv_broadcast(&zp->zone_mount_cv);
493 mutex_exit(&zp->zone_mount_lock);
494 }
495
496 /*
497 * The VFS layer is busy with a mount; this zone should wait until all
498 * of its mounts are completed to progress.
499 */
500 void
mount_in_progress(zone_t * zp)501 mount_in_progress(zone_t *zp)
502 {
503 mutex_enter(&zp->zone_mount_lock);
504 while (zp->zone_mounts_in_progress < 0)
505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 zp->zone_mounts_in_progress++;
507 mutex_exit(&zp->zone_mount_lock);
508 }
509
510 /*
511 * VFS is done with one mount; wake up any waiting block_mounts()
512 * callers if this is the last mount.
513 */
514 void
mount_completed(zone_t * zp)515 mount_completed(zone_t *zp)
516 {
517 mutex_enter(&zp->zone_mount_lock);
518 if (--zp->zone_mounts_in_progress == 0)
519 cv_broadcast(&zp->zone_mount_cv);
520 mutex_exit(&zp->zone_mount_lock);
521 }
522
523 /*
524 * ZSD routines.
525 *
526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527 * defined by the pthread_key_create() and related interfaces.
528 *
529 * Kernel subsystems may register one or more data items and/or
530 * callbacks to be executed when a zone is created, shutdown, or
531 * destroyed.
532 *
533 * Unlike the thread counterpart, destructor callbacks will be executed
534 * even if the data pointer is NULL and/or there are no constructor
535 * callbacks, so it is the responsibility of such callbacks to check for
536 * NULL data values if necessary.
537 *
538 * The locking strategy and overall picture is as follows:
539 *
540 * When someone calls zone_key_create(), a template ZSD entry is added to the
541 * global list "zsd_registered_keys", protected by zsd_key_lock. While
542 * holding that lock all the existing zones are marked as
543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544 * zone_zsd list (protected by zone_lock). The global list is updated first
545 * (under zone_key_lock) to make sure that newly created zones use the
546 * most recent list of keys. Then under zonehash_lock we walk the zones
547 * and mark them. Similar locking is used in zone_key_delete().
548 *
549 * The actual create, shutdown, and destroy callbacks are done without
550 * holding any lock. And zsd_flags are used to ensure that the operations
551 * completed so that when zone_key_create (and zone_create) is done, as well as
552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553 * are completed.
554 *
555 * When new zones are created constructor callbacks for all registered ZSD
556 * entries will be called. That also uses the above two phases of marking
557 * what needs to be done, and then running the callbacks without holding
558 * any locks.
559 *
560 * The framework does not provide any locking around zone_getspecific() and
561 * zone_setspecific() apart from that needed for internal consistency, so
562 * callers interested in atomic "test-and-set" semantics will need to provide
563 * their own locking.
564 */
565
566 /*
567 * Helper function to find the zsd_entry associated with the key in the
568 * given list.
569 */
570 static struct zsd_entry *
zsd_find(list_t * l,zone_key_t key)571 zsd_find(list_t *l, zone_key_t key)
572 {
573 struct zsd_entry *zsd;
574
575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 if (zsd->zsd_key == key) {
577 return (zsd);
578 }
579 }
580 return (NULL);
581 }
582
583 /*
584 * Helper function to find the zsd_entry associated with the key in the
585 * given list. Move it to the front of the list.
586 */
587 static struct zsd_entry *
zsd_find_mru(list_t * l,zone_key_t key)588 zsd_find_mru(list_t *l, zone_key_t key)
589 {
590 struct zsd_entry *zsd;
591
592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 if (zsd->zsd_key == key) {
594 /*
595 * Move to head of list to keep list in MRU order.
596 */
597 if (zsd != list_head(l)) {
598 list_remove(l, zsd);
599 list_insert_head(l, zsd);
600 }
601 return (zsd);
602 }
603 }
604 return (NULL);
605 }
606
607 void
zone_key_create(zone_key_t * keyp,void * (* create)(zoneid_t),void (* shutdown)(zoneid_t,void *),void (* destroy)(zoneid_t,void *))608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 {
611 struct zsd_entry *zsdp;
612 struct zsd_entry *t;
613 struct zone *zone;
614 zone_key_t key;
615
616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 zsdp->zsd_data = NULL;
618 zsdp->zsd_create = create;
619 zsdp->zsd_shutdown = shutdown;
620 zsdp->zsd_destroy = destroy;
621
622 /*
623 * Insert in global list of callbacks. Makes future zone creations
624 * see it.
625 */
626 mutex_enter(&zsd_key_lock);
627 key = zsdp->zsd_key = ++zsd_keyval;
628 ASSERT(zsd_keyval != 0);
629 list_insert_tail(&zsd_registered_keys, zsdp);
630 mutex_exit(&zsd_key_lock);
631
632 /*
633 * Insert for all existing zones and mark them as needing
634 * a create callback.
635 */
636 mutex_enter(&zonehash_lock); /* stop the world */
637 for (zone = list_head(&zone_active); zone != NULL;
638 zone = list_next(&zone_active, zone)) {
639 zone_status_t status;
640
641 mutex_enter(&zone->zone_lock);
642
643 /* Skip zones that are on the way down or not yet up */
644 status = zone_status_get(zone);
645 if (status >= ZONE_IS_DOWN ||
646 status == ZONE_IS_UNINITIALIZED) {
647 mutex_exit(&zone->zone_lock);
648 continue;
649 }
650
651 t = zsd_find_mru(&zone->zone_zsd, key);
652 if (t != NULL) {
653 /*
654 * A zsd_configure already inserted it after
655 * we dropped zsd_key_lock above.
656 */
657 mutex_exit(&zone->zone_lock);
658 continue;
659 }
660 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 t->zsd_key = key;
662 t->zsd_create = create;
663 t->zsd_shutdown = shutdown;
664 t->zsd_destroy = destroy;
665 if (create != NULL) {
666 t->zsd_flags = ZSD_CREATE_NEEDED;
667 DTRACE_PROBE2(zsd__create__needed,
668 zone_t *, zone, zone_key_t, key);
669 }
670 list_insert_tail(&zone->zone_zsd, t);
671 mutex_exit(&zone->zone_lock);
672 }
673 mutex_exit(&zonehash_lock);
674
675 if (create != NULL) {
676 /* Now call the create callback for this key */
677 zsd_apply_all_zones(zsd_apply_create, key);
678 }
679 /*
680 * It is safe for consumers to use the key now, make it
681 * globally visible. Specifically zone_getspecific() will
682 * always successfully return the zone specific data associated
683 * with the key.
684 */
685 *keyp = key;
686
687 }
688
689 /*
690 * Function called when a module is being unloaded, or otherwise wishes
691 * to unregister its ZSD key and callbacks.
692 *
693 * Remove from the global list and determine the functions that need to
694 * be called under a global lock. Then call the functions without
695 * holding any locks. Finally free up the zone_zsd entries. (The apply
696 * functions need to access the zone_zsd entries to find zsd_data etc.)
697 */
698 int
zone_key_delete(zone_key_t key)699 zone_key_delete(zone_key_t key)
700 {
701 struct zsd_entry *zsdp = NULL;
702 zone_t *zone;
703
704 mutex_enter(&zsd_key_lock);
705 zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 if (zsdp == NULL) {
707 mutex_exit(&zsd_key_lock);
708 return (-1);
709 }
710 list_remove(&zsd_registered_keys, zsdp);
711 mutex_exit(&zsd_key_lock);
712
713 mutex_enter(&zonehash_lock);
714 for (zone = list_head(&zone_active); zone != NULL;
715 zone = list_next(&zone_active, zone)) {
716 struct zsd_entry *del;
717
718 mutex_enter(&zone->zone_lock);
719 del = zsd_find_mru(&zone->zone_zsd, key);
720 if (del == NULL) {
721 /*
722 * Somebody else got here first e.g the zone going
723 * away.
724 */
725 mutex_exit(&zone->zone_lock);
726 continue;
727 }
728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 if (del->zsd_shutdown != NULL &&
731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 DTRACE_PROBE2(zsd__shutdown__needed,
734 zone_t *, zone, zone_key_t, key);
735 }
736 if (del->zsd_destroy != NULL &&
737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 DTRACE_PROBE2(zsd__destroy__needed,
740 zone_t *, zone, zone_key_t, key);
741 }
742 mutex_exit(&zone->zone_lock);
743 }
744 mutex_exit(&zonehash_lock);
745 kmem_free(zsdp, sizeof (*zsdp));
746
747 /* Now call the shutdown and destroy callback for this key */
748 zsd_apply_all_zones(zsd_apply_shutdown, key);
749 zsd_apply_all_zones(zsd_apply_destroy, key);
750
751 /* Now we can free up the zsdp structures in each zone */
752 mutex_enter(&zonehash_lock);
753 for (zone = list_head(&zone_active); zone != NULL;
754 zone = list_next(&zone_active, zone)) {
755 struct zsd_entry *del;
756
757 mutex_enter(&zone->zone_lock);
758 del = zsd_find(&zone->zone_zsd, key);
759 if (del != NULL) {
760 list_remove(&zone->zone_zsd, del);
761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 kmem_free(del, sizeof (*del));
763 }
764 mutex_exit(&zone->zone_lock);
765 }
766 mutex_exit(&zonehash_lock);
767
768 return (0);
769 }
770
771 /*
772 * ZSD counterpart of pthread_setspecific().
773 *
774 * Since all zsd callbacks, including those with no create function,
775 * have an entry in zone_zsd, if the key is registered it is part of
776 * the zone_zsd list.
777 * Return an error if the key wasn't registerd.
778 */
779 int
zone_setspecific(zone_key_t key,zone_t * zone,const void * data)780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 {
782 struct zsd_entry *t;
783
784 mutex_enter(&zone->zone_lock);
785 t = zsd_find_mru(&zone->zone_zsd, key);
786 if (t != NULL) {
787 /*
788 * Replace old value with new
789 */
790 t->zsd_data = (void *)data;
791 mutex_exit(&zone->zone_lock);
792 return (0);
793 }
794 mutex_exit(&zone->zone_lock);
795 return (-1);
796 }
797
798 /*
799 * ZSD counterpart of pthread_getspecific().
800 */
801 void *
zone_getspecific(zone_key_t key,zone_t * zone)802 zone_getspecific(zone_key_t key, zone_t *zone)
803 {
804 struct zsd_entry *t;
805 void *data;
806
807 mutex_enter(&zone->zone_lock);
808 t = zsd_find_mru(&zone->zone_zsd, key);
809 data = (t == NULL ? NULL : t->zsd_data);
810 mutex_exit(&zone->zone_lock);
811 return (data);
812 }
813
814 /*
815 * Function used to initialize a zone's list of ZSD callbacks and data
816 * when the zone is being created. The callbacks are initialized from
817 * the template list (zsd_registered_keys). The constructor callback is
818 * executed later (once the zone exists and with locks dropped).
819 */
820 static void
zone_zsd_configure(zone_t * zone)821 zone_zsd_configure(zone_t *zone)
822 {
823 struct zsd_entry *zsdp;
824 struct zsd_entry *t;
825
826 ASSERT(MUTEX_HELD(&zonehash_lock));
827 ASSERT(list_head(&zone->zone_zsd) == NULL);
828 mutex_enter(&zone->zone_lock);
829 mutex_enter(&zsd_key_lock);
830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 /*
833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 * should not have added anything to it.
835 */
836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837
838 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 t->zsd_key = zsdp->zsd_key;
840 t->zsd_create = zsdp->zsd_create;
841 t->zsd_shutdown = zsdp->zsd_shutdown;
842 t->zsd_destroy = zsdp->zsd_destroy;
843 if (zsdp->zsd_create != NULL) {
844 t->zsd_flags = ZSD_CREATE_NEEDED;
845 DTRACE_PROBE2(zsd__create__needed,
846 zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 }
848 list_insert_tail(&zone->zone_zsd, t);
849 }
850 mutex_exit(&zsd_key_lock);
851 mutex_exit(&zone->zone_lock);
852 }
853
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855
856 /*
857 * Helper function to execute shutdown or destructor callbacks.
858 */
859 static void
zone_zsd_callbacks(zone_t * zone,enum zsd_callback_type ct)860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 {
862 struct zsd_entry *t;
863
864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867
868 /*
869 * Run the callback solely based on what is registered for the zone
870 * in zone_zsd. The global list can change independently of this
871 * as keys are registered and unregistered and we don't register new
872 * callbacks for a zone that is in the process of going away.
873 */
874 mutex_enter(&zone->zone_lock);
875 for (t = list_head(&zone->zone_zsd); t != NULL;
876 t = list_next(&zone->zone_zsd, t)) {
877 zone_key_t key = t->zsd_key;
878
879 /* Skip if no callbacks registered */
880
881 if (ct == ZSD_SHUTDOWN) {
882 if (t->zsd_shutdown != NULL &&
883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 DTRACE_PROBE2(zsd__shutdown__needed,
886 zone_t *, zone, zone_key_t, key);
887 }
888 } else {
889 if (t->zsd_destroy != NULL &&
890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 DTRACE_PROBE2(zsd__destroy__needed,
893 zone_t *, zone, zone_key_t, key);
894 }
895 }
896 }
897 mutex_exit(&zone->zone_lock);
898
899 /* Now call the shutdown and destroy callback for this key */
900 zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 zsd_apply_all_keys(zsd_apply_destroy, zone);
902
903 }
904
905 /*
906 * Called when the zone is going away; free ZSD-related memory, and
907 * destroy the zone_zsd list.
908 */
909 static void
zone_free_zsd(zone_t * zone)910 zone_free_zsd(zone_t *zone)
911 {
912 struct zsd_entry *t, *next;
913
914 /*
915 * Free all the zsd_entry's we had on this zone.
916 */
917 mutex_enter(&zone->zone_lock);
918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 next = list_next(&zone->zone_zsd, t);
920 list_remove(&zone->zone_zsd, t);
921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 kmem_free(t, sizeof (*t));
923 }
924 list_destroy(&zone->zone_zsd);
925 mutex_exit(&zone->zone_lock);
926
927 }
928
929 /*
930 * Apply a function to all zones for particular key value.
931 *
932 * The applyfn has to drop zonehash_lock if it does some work, and
933 * then reacquire it before it returns.
934 * When the lock is dropped we don't follow list_next even
935 * if it is possible to do so without any hazards. This is
936 * because we want the design to allow for the list of zones
937 * to change in any arbitrary way during the time the
938 * lock was dropped.
939 *
940 * It is safe to restart the loop at list_head since the applyfn
941 * changes the zsd_flags as it does work, so a subsequent
942 * pass through will have no effect in applyfn, hence the loop will terminate
943 * in at worst O(N^2).
944 */
945 static void
zsd_apply_all_zones(zsd_applyfn_t * applyfn,zone_key_t key)946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 {
948 zone_t *zone;
949
950 mutex_enter(&zonehash_lock);
951 zone = list_head(&zone_active);
952 while (zone != NULL) {
953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 /* Lock dropped - restart at head */
955 zone = list_head(&zone_active);
956 } else {
957 zone = list_next(&zone_active, zone);
958 }
959 }
960 mutex_exit(&zonehash_lock);
961 }
962
963 /*
964 * Apply a function to all keys for a particular zone.
965 *
966 * The applyfn has to drop zonehash_lock if it does some work, and
967 * then reacquire it before it returns.
968 * When the lock is dropped we don't follow list_next even
969 * if it is possible to do so without any hazards. This is
970 * because we want the design to allow for the list of zsd callbacks
971 * to change in any arbitrary way during the time the
972 * lock was dropped.
973 *
974 * It is safe to restart the loop at list_head since the applyfn
975 * changes the zsd_flags as it does work, so a subsequent
976 * pass through will have no effect in applyfn, hence the loop will terminate
977 * in at worst O(N^2).
978 */
979 static void
zsd_apply_all_keys(zsd_applyfn_t * applyfn,zone_t * zone)980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 {
982 struct zsd_entry *t;
983
984 mutex_enter(&zone->zone_lock);
985 t = list_head(&zone->zone_zsd);
986 while (t != NULL) {
987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 /* Lock dropped - restart at head */
989 t = list_head(&zone->zone_zsd);
990 } else {
991 t = list_next(&zone->zone_zsd, t);
992 }
993 }
994 mutex_exit(&zone->zone_lock);
995 }
996
997 /*
998 * Call the create function for the zone and key if CREATE_NEEDED
999 * is set.
1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001 * we wait for that thread to complete so that we can ensure that
1002 * all the callbacks are done when we've looped over all zones/keys.
1003 *
1004 * When we call the create function, we drop the global held by the
1005 * caller, and return true to tell the caller it needs to re-evalute the
1006 * state.
1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008 * remains held on exit.
1009 */
1010 static boolean_t
zsd_apply_create(kmutex_t * lockp,boolean_t zone_lock_held,zone_t * zone,zone_key_t key)1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012 zone_t *zone, zone_key_t key)
1013 {
1014 void *result;
1015 struct zsd_entry *t;
1016 boolean_t dropped;
1017
1018 if (lockp != NULL) {
1019 ASSERT(MUTEX_HELD(lockp));
1020 }
1021 if (zone_lock_held) {
1022 ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 } else {
1024 mutex_enter(&zone->zone_lock);
1025 }
1026
1027 t = zsd_find(&zone->zone_zsd, key);
1028 if (t == NULL) {
1029 /*
1030 * Somebody else got here first e.g the zone going
1031 * away.
1032 */
1033 if (!zone_lock_held)
1034 mutex_exit(&zone->zone_lock);
1035 return (B_FALSE);
1036 }
1037 dropped = B_FALSE;
1038 if (zsd_wait_for_inprogress(zone, t, lockp))
1039 dropped = B_TRUE;
1040
1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 DTRACE_PROBE2(zsd__create__inprogress,
1045 zone_t *, zone, zone_key_t, key);
1046 mutex_exit(&zone->zone_lock);
1047 if (lockp != NULL)
1048 mutex_exit(lockp);
1049
1050 dropped = B_TRUE;
1051 ASSERT(t->zsd_create != NULL);
1052 DTRACE_PROBE2(zsd__create__start,
1053 zone_t *, zone, zone_key_t, key);
1054
1055 result = (*t->zsd_create)(zone->zone_id);
1056
1057 DTRACE_PROBE2(zsd__create__end,
1058 zone_t *, zone, voidn *, result);
1059
1060 ASSERT(result != NULL);
1061 if (lockp != NULL)
1062 mutex_enter(lockp);
1063 mutex_enter(&zone->zone_lock);
1064 t->zsd_data = result;
1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 cv_broadcast(&t->zsd_cv);
1068 DTRACE_PROBE2(zsd__create__completed,
1069 zone_t *, zone, zone_key_t, key);
1070 }
1071 if (!zone_lock_held)
1072 mutex_exit(&zone->zone_lock);
1073 return (dropped);
1074 }
1075
1076 /*
1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078 * is set.
1079 * If some other thread gets here first and sets *_INPROGRESS, then
1080 * we wait for that thread to complete so that we can ensure that
1081 * all the callbacks are done when we've looped over all zones/keys.
1082 *
1083 * When we call the shutdown function, we drop the global held by the
1084 * caller, and return true to tell the caller it needs to re-evalute the
1085 * state.
1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087 * remains held on exit.
1088 */
1089 static boolean_t
zsd_apply_shutdown(kmutex_t * lockp,boolean_t zone_lock_held,zone_t * zone,zone_key_t key)1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091 zone_t *zone, zone_key_t key)
1092 {
1093 struct zsd_entry *t;
1094 void *data;
1095 boolean_t dropped;
1096
1097 if (lockp != NULL) {
1098 ASSERT(MUTEX_HELD(lockp));
1099 }
1100 if (zone_lock_held) {
1101 ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 } else {
1103 mutex_enter(&zone->zone_lock);
1104 }
1105
1106 t = zsd_find(&zone->zone_zsd, key);
1107 if (t == NULL) {
1108 /*
1109 * Somebody else got here first e.g the zone going
1110 * away.
1111 */
1112 if (!zone_lock_held)
1113 mutex_exit(&zone->zone_lock);
1114 return (B_FALSE);
1115 }
1116 dropped = B_FALSE;
1117 if (zsd_wait_for_creator(zone, t, lockp))
1118 dropped = B_TRUE;
1119
1120 if (zsd_wait_for_inprogress(zone, t, lockp))
1121 dropped = B_TRUE;
1122
1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 zone_t *, zone, zone_key_t, key);
1128 mutex_exit(&zone->zone_lock);
1129 if (lockp != NULL)
1130 mutex_exit(lockp);
1131 dropped = B_TRUE;
1132
1133 ASSERT(t->zsd_shutdown != NULL);
1134 data = t->zsd_data;
1135
1136 DTRACE_PROBE2(zsd__shutdown__start,
1137 zone_t *, zone, zone_key_t, key);
1138
1139 (t->zsd_shutdown)(zone->zone_id, data);
1140 DTRACE_PROBE2(zsd__shutdown__end,
1141 zone_t *, zone, zone_key_t, key);
1142
1143 if (lockp != NULL)
1144 mutex_enter(lockp);
1145 mutex_enter(&zone->zone_lock);
1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 cv_broadcast(&t->zsd_cv);
1149 DTRACE_PROBE2(zsd__shutdown__completed,
1150 zone_t *, zone, zone_key_t, key);
1151 }
1152 if (!zone_lock_held)
1153 mutex_exit(&zone->zone_lock);
1154 return (dropped);
1155 }
1156
1157 /*
1158 * Call the destroy function for the zone and key if DESTROY_NEEDED
1159 * is set.
1160 * If some other thread gets here first and sets *_INPROGRESS, then
1161 * we wait for that thread to complete so that we can ensure that
1162 * all the callbacks are done when we've looped over all zones/keys.
1163 *
1164 * When we call the destroy function, we drop the global held by the
1165 * caller, and return true to tell the caller it needs to re-evalute the
1166 * state.
1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168 * remains held on exit.
1169 */
1170 static boolean_t
zsd_apply_destroy(kmutex_t * lockp,boolean_t zone_lock_held,zone_t * zone,zone_key_t key)1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172 zone_t *zone, zone_key_t key)
1173 {
1174 struct zsd_entry *t;
1175 void *data;
1176 boolean_t dropped;
1177
1178 if (lockp != NULL) {
1179 ASSERT(MUTEX_HELD(lockp));
1180 }
1181 if (zone_lock_held) {
1182 ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 } else {
1184 mutex_enter(&zone->zone_lock);
1185 }
1186
1187 t = zsd_find(&zone->zone_zsd, key);
1188 if (t == NULL) {
1189 /*
1190 * Somebody else got here first e.g the zone going
1191 * away.
1192 */
1193 if (!zone_lock_held)
1194 mutex_exit(&zone->zone_lock);
1195 return (B_FALSE);
1196 }
1197 dropped = B_FALSE;
1198 if (zsd_wait_for_creator(zone, t, lockp))
1199 dropped = B_TRUE;
1200
1201 if (zsd_wait_for_inprogress(zone, t, lockp))
1202 dropped = B_TRUE;
1203
1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 DTRACE_PROBE2(zsd__destroy__inprogress,
1208 zone_t *, zone, zone_key_t, key);
1209 mutex_exit(&zone->zone_lock);
1210 if (lockp != NULL)
1211 mutex_exit(lockp);
1212 dropped = B_TRUE;
1213
1214 ASSERT(t->zsd_destroy != NULL);
1215 data = t->zsd_data;
1216 DTRACE_PROBE2(zsd__destroy__start,
1217 zone_t *, zone, zone_key_t, key);
1218
1219 (t->zsd_destroy)(zone->zone_id, data);
1220 DTRACE_PROBE2(zsd__destroy__end,
1221 zone_t *, zone, zone_key_t, key);
1222
1223 if (lockp != NULL)
1224 mutex_enter(lockp);
1225 mutex_enter(&zone->zone_lock);
1226 t->zsd_data = NULL;
1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 cv_broadcast(&t->zsd_cv);
1230 DTRACE_PROBE2(zsd__destroy__completed,
1231 zone_t *, zone, zone_key_t, key);
1232 }
1233 if (!zone_lock_held)
1234 mutex_exit(&zone->zone_lock);
1235 return (dropped);
1236 }
1237
1238 /*
1239 * Wait for any CREATE_NEEDED flag to be cleared.
1240 * Returns true if lockp was temporarily dropped while waiting.
1241 */
1242 static boolean_t
zsd_wait_for_creator(zone_t * zone,struct zsd_entry * t,kmutex_t * lockp)1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 boolean_t dropped = B_FALSE;
1246
1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 DTRACE_PROBE2(zsd__wait__for__creator,
1249 zone_t *, zone, struct zsd_entry *, t);
1250 if (lockp != NULL) {
1251 dropped = B_TRUE;
1252 mutex_exit(lockp);
1253 }
1254 cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 if (lockp != NULL) {
1256 /* First drop zone_lock to preserve order */
1257 mutex_exit(&zone->zone_lock);
1258 mutex_enter(lockp);
1259 mutex_enter(&zone->zone_lock);
1260 }
1261 }
1262 return (dropped);
1263 }
1264
1265 /*
1266 * Wait for any INPROGRESS flag to be cleared.
1267 * Returns true if lockp was temporarily dropped while waiting.
1268 */
1269 static boolean_t
zsd_wait_for_inprogress(zone_t * zone,struct zsd_entry * t,kmutex_t * lockp)1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 {
1272 boolean_t dropped = B_FALSE;
1273
1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 zone_t *, zone, struct zsd_entry *, t);
1277 if (lockp != NULL) {
1278 dropped = B_TRUE;
1279 mutex_exit(lockp);
1280 }
1281 cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 if (lockp != NULL) {
1283 /* First drop zone_lock to preserve order */
1284 mutex_exit(&zone->zone_lock);
1285 mutex_enter(lockp);
1286 mutex_enter(&zone->zone_lock);
1287 }
1288 }
1289 return (dropped);
1290 }
1291
1292 /*
1293 * Frees memory associated with the zone dataset list.
1294 */
1295 static void
zone_free_datasets(zone_t * zone)1296 zone_free_datasets(zone_t *zone)
1297 {
1298 zone_dataset_t *t, *next;
1299
1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 next = list_next(&zone->zone_datasets, t);
1302 list_remove(&zone->zone_datasets, t);
1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 kmem_free(t, sizeof (*t));
1305 }
1306 list_destroy(&zone->zone_datasets);
1307 }
1308
1309 /*
1310 * zone.cpu-shares resource control support.
1311 */
1312 /*ARGSUSED*/
1313 static rctl_qty_t
zone_cpu_shares_usage(rctl_t * rctl,struct proc * p)1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 {
1316 ASSERT(MUTEX_HELD(&p->p_lock));
1317 return (p->p_zone->zone_shares);
1318 }
1319
1320 /*ARGSUSED*/
1321 static int
zone_cpu_shares_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323 rctl_qty_t nv)
1324 {
1325 ASSERT(MUTEX_HELD(&p->p_lock));
1326 ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 if (e->rcep_p.zone == NULL)
1328 return (0);
1329
1330 e->rcep_p.zone->zone_shares = nv;
1331 return (0);
1332 }
1333
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 rcop_no_action,
1336 zone_cpu_shares_usage,
1337 zone_cpu_shares_set,
1338 rcop_no_test
1339 };
1340
1341 /*
1342 * zone.cpu-cap resource control support.
1343 */
1344 /*ARGSUSED*/
1345 static rctl_qty_t
zone_cpu_cap_get(rctl_t * rctl,struct proc * p)1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 {
1348 ASSERT(MUTEX_HELD(&p->p_lock));
1349 return (cpucaps_zone_get(p->p_zone));
1350 }
1351
1352 /*ARGSUSED*/
1353 static int
zone_cpu_cap_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355 rctl_qty_t nv)
1356 {
1357 zone_t *zone = e->rcep_p.zone;
1358
1359 ASSERT(MUTEX_HELD(&p->p_lock));
1360 ASSERT(e->rcep_t == RCENTITY_ZONE);
1361
1362 if (zone == NULL)
1363 return (0);
1364
1365 /*
1366 * set cap to the new value.
1367 */
1368 return (cpucaps_zone_set(zone, nv));
1369 }
1370
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 rcop_no_action,
1373 zone_cpu_cap_get,
1374 zone_cpu_cap_set,
1375 rcop_no_test
1376 };
1377
1378 /*ARGSUSED*/
1379 static rctl_qty_t
zone_lwps_usage(rctl_t * r,proc_t * p)1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 {
1382 rctl_qty_t nlwps;
1383 zone_t *zone = p->p_zone;
1384
1385 ASSERT(MUTEX_HELD(&p->p_lock));
1386
1387 mutex_enter(&zone->zone_nlwps_lock);
1388 nlwps = zone->zone_nlwps;
1389 mutex_exit(&zone->zone_nlwps_lock);
1390
1391 return (nlwps);
1392 }
1393
1394 /*ARGSUSED*/
1395 static int
zone_lwps_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397 rctl_qty_t incr, uint_t flags)
1398 {
1399 rctl_qty_t nlwps;
1400
1401 ASSERT(MUTEX_HELD(&p->p_lock));
1402 ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 if (e->rcep_p.zone == NULL)
1404 return (0);
1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 nlwps = e->rcep_p.zone->zone_nlwps;
1407
1408 if (nlwps + incr > rcntl->rcv_value)
1409 return (1);
1410
1411 return (0);
1412 }
1413
1414 /*ARGSUSED*/
1415 static int
zone_lwps_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 {
1418 ASSERT(MUTEX_HELD(&p->p_lock));
1419 ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 if (e->rcep_p.zone == NULL)
1421 return (0);
1422 e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 return (0);
1424 }
1425
1426 static rctl_ops_t zone_lwps_ops = {
1427 rcop_no_action,
1428 zone_lwps_usage,
1429 zone_lwps_set,
1430 zone_lwps_test,
1431 };
1432
1433 /*ARGSUSED*/
1434 static rctl_qty_t
zone_procs_usage(rctl_t * r,proc_t * p)1435 zone_procs_usage(rctl_t *r, proc_t *p)
1436 {
1437 rctl_qty_t nprocs;
1438 zone_t *zone = p->p_zone;
1439
1440 ASSERT(MUTEX_HELD(&p->p_lock));
1441
1442 mutex_enter(&zone->zone_nlwps_lock);
1443 nprocs = zone->zone_nprocs;
1444 mutex_exit(&zone->zone_nlwps_lock);
1445
1446 return (nprocs);
1447 }
1448
1449 /*ARGSUSED*/
1450 static int
zone_procs_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452 rctl_qty_t incr, uint_t flags)
1453 {
1454 rctl_qty_t nprocs;
1455
1456 ASSERT(MUTEX_HELD(&p->p_lock));
1457 ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 if (e->rcep_p.zone == NULL)
1459 return (0);
1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 nprocs = e->rcep_p.zone->zone_nprocs;
1462
1463 if (nprocs + incr > rcntl->rcv_value)
1464 return (1);
1465
1466 return (0);
1467 }
1468
1469 /*ARGSUSED*/
1470 static int
zone_procs_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 {
1473 ASSERT(MUTEX_HELD(&p->p_lock));
1474 ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 if (e->rcep_p.zone == NULL)
1476 return (0);
1477 e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 return (0);
1479 }
1480
1481 static rctl_ops_t zone_procs_ops = {
1482 rcop_no_action,
1483 zone_procs_usage,
1484 zone_procs_set,
1485 zone_procs_test,
1486 };
1487
1488 /*ARGSUSED*/
1489 static int
zone_shmmax_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1491 rctl_qty_t incr, uint_t flags)
1492 {
1493 rctl_qty_t v;
1494 ASSERT(MUTEX_HELD(&p->p_lock));
1495 ASSERT(e->rcep_t == RCENTITY_ZONE);
1496 v = e->rcep_p.zone->zone_shmmax + incr;
1497 if (v > rval->rcv_value)
1498 return (1);
1499 return (0);
1500 }
1501
1502 static rctl_ops_t zone_shmmax_ops = {
1503 rcop_no_action,
1504 rcop_no_usage,
1505 rcop_no_set,
1506 zone_shmmax_test
1507 };
1508
1509 /*ARGSUSED*/
1510 static int
zone_shmmni_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1512 rctl_qty_t incr, uint_t flags)
1513 {
1514 rctl_qty_t v;
1515 ASSERT(MUTEX_HELD(&p->p_lock));
1516 ASSERT(e->rcep_t == RCENTITY_ZONE);
1517 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1518 if (v > rval->rcv_value)
1519 return (1);
1520 return (0);
1521 }
1522
1523 static rctl_ops_t zone_shmmni_ops = {
1524 rcop_no_action,
1525 rcop_no_usage,
1526 rcop_no_set,
1527 zone_shmmni_test
1528 };
1529
1530 /*ARGSUSED*/
1531 static int
zone_semmni_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1533 rctl_qty_t incr, uint_t flags)
1534 {
1535 rctl_qty_t v;
1536 ASSERT(MUTEX_HELD(&p->p_lock));
1537 ASSERT(e->rcep_t == RCENTITY_ZONE);
1538 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1539 if (v > rval->rcv_value)
1540 return (1);
1541 return (0);
1542 }
1543
1544 static rctl_ops_t zone_semmni_ops = {
1545 rcop_no_action,
1546 rcop_no_usage,
1547 rcop_no_set,
1548 zone_semmni_test
1549 };
1550
1551 /*ARGSUSED*/
1552 static int
zone_msgmni_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1554 rctl_qty_t incr, uint_t flags)
1555 {
1556 rctl_qty_t v;
1557 ASSERT(MUTEX_HELD(&p->p_lock));
1558 ASSERT(e->rcep_t == RCENTITY_ZONE);
1559 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1560 if (v > rval->rcv_value)
1561 return (1);
1562 return (0);
1563 }
1564
1565 static rctl_ops_t zone_msgmni_ops = {
1566 rcop_no_action,
1567 rcop_no_usage,
1568 rcop_no_set,
1569 zone_msgmni_test
1570 };
1571
1572 /*ARGSUSED*/
1573 static rctl_qty_t
zone_locked_mem_usage(rctl_t * rctl,struct proc * p)1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1575 {
1576 rctl_qty_t q;
1577 ASSERT(MUTEX_HELD(&p->p_lock));
1578 mutex_enter(&p->p_zone->zone_mem_lock);
1579 q = p->p_zone->zone_locked_mem;
1580 mutex_exit(&p->p_zone->zone_mem_lock);
1581 return (q);
1582 }
1583
1584 /*ARGSUSED*/
1585 static int
zone_locked_mem_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1587 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1588 {
1589 rctl_qty_t q;
1590 zone_t *z;
1591
1592 z = e->rcep_p.zone;
1593 ASSERT(MUTEX_HELD(&p->p_lock));
1594 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1595 q = z->zone_locked_mem;
1596 if (q + incr > rcntl->rcv_value)
1597 return (1);
1598 return (0);
1599 }
1600
1601 /*ARGSUSED*/
1602 static int
zone_locked_mem_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1604 rctl_qty_t nv)
1605 {
1606 ASSERT(MUTEX_HELD(&p->p_lock));
1607 ASSERT(e->rcep_t == RCENTITY_ZONE);
1608 if (e->rcep_p.zone == NULL)
1609 return (0);
1610 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1611 return (0);
1612 }
1613
1614 static rctl_ops_t zone_locked_mem_ops = {
1615 rcop_no_action,
1616 zone_locked_mem_usage,
1617 zone_locked_mem_set,
1618 zone_locked_mem_test
1619 };
1620
1621 /*ARGSUSED*/
1622 static rctl_qty_t
zone_max_swap_usage(rctl_t * rctl,struct proc * p)1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1624 {
1625 rctl_qty_t q;
1626 zone_t *z = p->p_zone;
1627
1628 ASSERT(MUTEX_HELD(&p->p_lock));
1629 mutex_enter(&z->zone_mem_lock);
1630 q = z->zone_max_swap;
1631 mutex_exit(&z->zone_mem_lock);
1632 return (q);
1633 }
1634
1635 /*ARGSUSED*/
1636 static int
zone_max_swap_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1638 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1639 {
1640 rctl_qty_t q;
1641 zone_t *z;
1642
1643 z = e->rcep_p.zone;
1644 ASSERT(MUTEX_HELD(&p->p_lock));
1645 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1646 q = z->zone_max_swap;
1647 if (q + incr > rcntl->rcv_value)
1648 return (1);
1649 return (0);
1650 }
1651
1652 /*ARGSUSED*/
1653 static int
zone_max_swap_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1655 rctl_qty_t nv)
1656 {
1657 ASSERT(MUTEX_HELD(&p->p_lock));
1658 ASSERT(e->rcep_t == RCENTITY_ZONE);
1659 if (e->rcep_p.zone == NULL)
1660 return (0);
1661 e->rcep_p.zone->zone_max_swap_ctl = nv;
1662 return (0);
1663 }
1664
1665 static rctl_ops_t zone_max_swap_ops = {
1666 rcop_no_action,
1667 zone_max_swap_usage,
1668 zone_max_swap_set,
1669 zone_max_swap_test
1670 };
1671
1672 /*ARGSUSED*/
1673 static rctl_qty_t
zone_max_lofi_usage(rctl_t * rctl,struct proc * p)1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1675 {
1676 rctl_qty_t q;
1677 zone_t *z = p->p_zone;
1678
1679 ASSERT(MUTEX_HELD(&p->p_lock));
1680 mutex_enter(&z->zone_rctl_lock);
1681 q = z->zone_max_lofi;
1682 mutex_exit(&z->zone_rctl_lock);
1683 return (q);
1684 }
1685
1686 /*ARGSUSED*/
1687 static int
zone_max_lofi_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1689 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1690 {
1691 rctl_qty_t q;
1692 zone_t *z;
1693
1694 z = e->rcep_p.zone;
1695 ASSERT(MUTEX_HELD(&p->p_lock));
1696 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1697 q = z->zone_max_lofi;
1698 if (q + incr > rcntl->rcv_value)
1699 return (1);
1700 return (0);
1701 }
1702
1703 /*ARGSUSED*/
1704 static int
zone_max_lofi_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1706 rctl_qty_t nv)
1707 {
1708 ASSERT(MUTEX_HELD(&p->p_lock));
1709 ASSERT(e->rcep_t == RCENTITY_ZONE);
1710 if (e->rcep_p.zone == NULL)
1711 return (0);
1712 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1713 return (0);
1714 }
1715
1716 static rctl_ops_t zone_max_lofi_ops = {
1717 rcop_no_action,
1718 zone_max_lofi_usage,
1719 zone_max_lofi_set,
1720 zone_max_lofi_test
1721 };
1722
1723 /*
1724 * Helper function to brand the zone with a unique ID.
1725 */
1726 static void
zone_uniqid(zone_t * zone)1727 zone_uniqid(zone_t *zone)
1728 {
1729 static uint64_t uniqid = 0;
1730
1731 ASSERT(MUTEX_HELD(&zonehash_lock));
1732 zone->zone_uniqid = uniqid++;
1733 }
1734
1735 /*
1736 * Returns a held pointer to the "kcred" for the specified zone.
1737 */
1738 struct cred *
zone_get_kcred(zoneid_t zoneid)1739 zone_get_kcred(zoneid_t zoneid)
1740 {
1741 zone_t *zone;
1742 cred_t *cr;
1743
1744 if ((zone = zone_find_by_id(zoneid)) == NULL)
1745 return (NULL);
1746 cr = zone->zone_kcred;
1747 crhold(cr);
1748 zone_rele(zone);
1749 return (cr);
1750 }
1751
1752 static int
zone_lockedmem_kstat_update(kstat_t * ksp,int rw)1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1754 {
1755 zone_t *zone = ksp->ks_private;
1756 zone_kstat_t *zk = ksp->ks_data;
1757
1758 if (rw == KSTAT_WRITE)
1759 return (EACCES);
1760
1761 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1762 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1763 return (0);
1764 }
1765
1766 static int
zone_nprocs_kstat_update(kstat_t * ksp,int rw)1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1768 {
1769 zone_t *zone = ksp->ks_private;
1770 zone_kstat_t *zk = ksp->ks_data;
1771
1772 if (rw == KSTAT_WRITE)
1773 return (EACCES);
1774
1775 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1776 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1777 return (0);
1778 }
1779
1780 static int
zone_swapresv_kstat_update(kstat_t * ksp,int rw)1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1782 {
1783 zone_t *zone = ksp->ks_private;
1784 zone_kstat_t *zk = ksp->ks_data;
1785
1786 if (rw == KSTAT_WRITE)
1787 return (EACCES);
1788
1789 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1790 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1791 return (0);
1792 }
1793
1794 static kstat_t *
zone_kstat_create_common(zone_t * zone,char * name,int (* updatefunc)(kstat_t *,int))1795 zone_kstat_create_common(zone_t *zone, char *name,
1796 int (*updatefunc) (kstat_t *, int))
1797 {
1798 kstat_t *ksp;
1799 zone_kstat_t *zk;
1800
1801 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1802 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1803 KSTAT_FLAG_VIRTUAL);
1804
1805 if (ksp == NULL)
1806 return (NULL);
1807
1808 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1809 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1810 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1811 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1812 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1813 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1814 ksp->ks_update = updatefunc;
1815 ksp->ks_private = zone;
1816 kstat_install(ksp);
1817 return (ksp);
1818 }
1819
1820 static int
zone_misc_kstat_update(kstat_t * ksp,int rw)1821 zone_misc_kstat_update(kstat_t *ksp, int rw)
1822 {
1823 zone_t *zone = ksp->ks_private;
1824 zone_misc_kstat_t *zmp = ksp->ks_data;
1825 hrtime_t tmp;
1826
1827 if (rw == KSTAT_WRITE)
1828 return (EACCES);
1829
1830 tmp = zone->zone_utime;
1831 scalehrtime(&tmp);
1832 zmp->zm_utime.value.ui64 = tmp;
1833 tmp = zone->zone_stime;
1834 scalehrtime(&tmp);
1835 zmp->zm_stime.value.ui64 = tmp;
1836 tmp = zone->zone_wtime;
1837 scalehrtime(&tmp);
1838 zmp->zm_wtime.value.ui64 = tmp;
1839
1840 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1841 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1842 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1843
1844 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1845 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1846 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1847 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1848
1849 return (0);
1850 }
1851
1852 static kstat_t *
zone_misc_kstat_create(zone_t * zone)1853 zone_misc_kstat_create(zone_t *zone)
1854 {
1855 kstat_t *ksp;
1856 zone_misc_kstat_t *zmp;
1857
1858 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1859 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1860 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1861 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1862 return (NULL);
1863
1864 if (zone->zone_id != GLOBAL_ZONEID)
1865 kstat_zone_add(ksp, GLOBAL_ZONEID);
1866
1867 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1868 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1869 ksp->ks_lock = &zone->zone_misc_lock;
1870 zone->zone_misc_stats = zmp;
1871
1872 /* The kstat "name" field is not large enough for a full zonename */
1873 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1874 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1875 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1876 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1877 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1878 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1879 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1880 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1881 KSTAT_DATA_UINT32);
1882 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1883 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1884 KSTAT_DATA_UINT32);
1885 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1886 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1887
1888
1889 ksp->ks_update = zone_misc_kstat_update;
1890 ksp->ks_private = zone;
1891
1892 kstat_install(ksp);
1893 return (ksp);
1894 }
1895
1896 static void
zone_kstat_create(zone_t * zone)1897 zone_kstat_create(zone_t *zone)
1898 {
1899 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1900 "lockedmem", zone_lockedmem_kstat_update);
1901 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1902 "swapresv", zone_swapresv_kstat_update);
1903 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1904 "nprocs", zone_nprocs_kstat_update);
1905
1906 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1907 zone->zone_misc_stats = kmem_zalloc(
1908 sizeof (zone_misc_kstat_t), KM_SLEEP);
1909 }
1910 }
1911
1912 static void
zone_kstat_delete_common(kstat_t ** pkstat,size_t datasz)1913 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1914 {
1915 void *data;
1916
1917 if (*pkstat != NULL) {
1918 data = (*pkstat)->ks_data;
1919 kstat_delete(*pkstat);
1920 kmem_free(data, datasz);
1921 *pkstat = NULL;
1922 }
1923 }
1924
1925 static void
zone_kstat_delete(zone_t * zone)1926 zone_kstat_delete(zone_t *zone)
1927 {
1928 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1929 sizeof (zone_kstat_t));
1930 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1931 sizeof (zone_kstat_t));
1932 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1933 sizeof (zone_kstat_t));
1934 zone_kstat_delete_common(&zone->zone_misc_ksp,
1935 sizeof (zone_misc_kstat_t));
1936 }
1937
1938 /*
1939 * Called very early on in boot to initialize the ZSD list so that
1940 * zone_key_create() can be called before zone_init(). It also initializes
1941 * portions of zone0 which may be used before zone_init() is called. The
1942 * variable "global_zone" will be set when zone0 is fully initialized by
1943 * zone_init().
1944 */
1945 void
zone_zsd_init(void)1946 zone_zsd_init(void)
1947 {
1948 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1949 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1950 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1951 offsetof(struct zsd_entry, zsd_linkage));
1952 list_create(&zone_active, sizeof (zone_t),
1953 offsetof(zone_t, zone_linkage));
1954 list_create(&zone_deathrow, sizeof (zone_t),
1955 offsetof(zone_t, zone_linkage));
1956
1957 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1958 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1959 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1960 zone0.zone_shares = 1;
1961 zone0.zone_nlwps = 0;
1962 zone0.zone_nlwps_ctl = INT_MAX;
1963 zone0.zone_nprocs = 0;
1964 zone0.zone_nprocs_ctl = INT_MAX;
1965 zone0.zone_locked_mem = 0;
1966 zone0.zone_locked_mem_ctl = UINT64_MAX;
1967 ASSERT(zone0.zone_max_swap == 0);
1968 zone0.zone_max_swap_ctl = UINT64_MAX;
1969 zone0.zone_max_lofi = 0;
1970 zone0.zone_max_lofi_ctl = UINT64_MAX;
1971 zone0.zone_shmmax = 0;
1972 zone0.zone_ipc.ipcq_shmmni = 0;
1973 zone0.zone_ipc.ipcq_semmni = 0;
1974 zone0.zone_ipc.ipcq_msgmni = 0;
1975 zone0.zone_name = GLOBAL_ZONENAME;
1976 zone0.zone_nodename = utsname.nodename;
1977 zone0.zone_domain = srpc_domain;
1978 zone0.zone_hostid = HW_INVALID_HOSTID;
1979 zone0.zone_fs_allowed = NULL;
1980 zone0.zone_ref = 1;
1981 zone0.zone_id = GLOBAL_ZONEID;
1982 zone0.zone_status = ZONE_IS_RUNNING;
1983 zone0.zone_rootpath = "/";
1984 zone0.zone_rootpathlen = 2;
1985 zone0.zone_psetid = ZONE_PS_INVAL;
1986 zone0.zone_ncpus = 0;
1987 zone0.zone_ncpus_online = 0;
1988 zone0.zone_proc_initpid = 1;
1989 zone0.zone_initname = initname;
1990 zone0.zone_lockedmem_kstat = NULL;
1991 zone0.zone_swapresv_kstat = NULL;
1992 zone0.zone_nprocs_kstat = NULL;
1993
1994 zone0.zone_stime = 0;
1995 zone0.zone_utime = 0;
1996 zone0.zone_wtime = 0;
1997
1998 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
1999 offsetof(zone_ref_t, zref_linkage));
2000 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2001 offsetof(struct zsd_entry, zsd_linkage));
2002 list_insert_head(&zone_active, &zone0);
2003
2004 /*
2005 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2006 * to anything meaningful. It is assigned to be 'rootdir' in
2007 * vfs_mountroot().
2008 */
2009 zone0.zone_rootvp = NULL;
2010 zone0.zone_vfslist = NULL;
2011 zone0.zone_bootargs = initargs;
2012 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2013 /*
2014 * The global zone has all privileges
2015 */
2016 priv_fillset(zone0.zone_privset);
2017 /*
2018 * Add p0 to the global zone
2019 */
2020 zone0.zone_zsched = &p0;
2021 p0.p_zone = &zone0;
2022 }
2023
2024 /*
2025 * Compute a hash value based on the contents of the label and the DOI. The
2026 * hash algorithm is somewhat arbitrary, but is based on the observation that
2027 * humans will likely pick labels that differ by amounts that work out to be
2028 * multiples of the number of hash chains, and thus stirring in some primes
2029 * should help.
2030 */
2031 static uint_t
hash_bylabel(void * hdata,mod_hash_key_t key)2032 hash_bylabel(void *hdata, mod_hash_key_t key)
2033 {
2034 const ts_label_t *lab = (ts_label_t *)key;
2035 const uint32_t *up, *ue;
2036 uint_t hash;
2037 int i;
2038
2039 _NOTE(ARGUNUSED(hdata));
2040
2041 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2042 /* we depend on alignment of label, but not representation */
2043 up = (const uint32_t *)&lab->tsl_label;
2044 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2045 i = 1;
2046 while (up < ue) {
2047 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2048 hash += *up + (*up << ((i % 16) + 1));
2049 up++;
2050 i++;
2051 }
2052 return (hash);
2053 }
2054
2055 /*
2056 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2057 * equal). This may need to be changed if less than / greater than is ever
2058 * needed.
2059 */
2060 static int
hash_labelkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)2061 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2062 {
2063 ts_label_t *lab1 = (ts_label_t *)key1;
2064 ts_label_t *lab2 = (ts_label_t *)key2;
2065
2066 return (label_equal(lab1, lab2) ? 0 : 1);
2067 }
2068
2069 /*
2070 * Called by main() to initialize the zones framework.
2071 */
2072 void
zone_init(void)2073 zone_init(void)
2074 {
2075 rctl_dict_entry_t *rde;
2076 rctl_val_t *dval;
2077 rctl_set_t *set;
2078 rctl_alloc_gp_t *gp;
2079 rctl_entity_p_t e;
2080 int res;
2081
2082 ASSERT(curproc == &p0);
2083
2084 /*
2085 * Create ID space for zone IDs. ID 0 is reserved for the
2086 * global zone.
2087 */
2088 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2089
2090 /*
2091 * Initialize generic zone resource controls, if any.
2092 */
2093 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2094 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2095 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2096 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2097
2098 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2099 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2100 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2101 RCTL_GLOBAL_INFINITE,
2102 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2103
2104 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2105 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2106 INT_MAX, INT_MAX, &zone_lwps_ops);
2107
2108 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2109 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2110 INT_MAX, INT_MAX, &zone_procs_ops);
2111
2112 /*
2113 * System V IPC resource controls
2114 */
2115 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2116 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2117 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2118
2119 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2120 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2121 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2122
2123 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2124 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2125 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2126
2127 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2128 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2129 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2130
2131 /*
2132 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2133 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2134 */
2135 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2136 bzero(dval, sizeof (rctl_val_t));
2137 dval->rcv_value = 1;
2138 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2139 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2140 dval->rcv_action_recip_pid = -1;
2141
2142 rde = rctl_dict_lookup("zone.cpu-shares");
2143 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2144
2145 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2146 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2147 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2148 &zone_locked_mem_ops);
2149
2150 rc_zone_max_swap = rctl_register("zone.max-swap",
2151 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2152 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2153 &zone_max_swap_ops);
2154
2155 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2156 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2157 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2158 &zone_max_lofi_ops);
2159
2160 /*
2161 * Initialize the ``global zone''.
2162 */
2163 set = rctl_set_create();
2164 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2165 mutex_enter(&p0.p_lock);
2166 e.rcep_p.zone = &zone0;
2167 e.rcep_t = RCENTITY_ZONE;
2168 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2169 gp);
2170
2171 zone0.zone_nlwps = p0.p_lwpcnt;
2172 zone0.zone_nprocs = 1;
2173 zone0.zone_ntasks = 1;
2174 mutex_exit(&p0.p_lock);
2175 zone0.zone_restart_init = B_TRUE;
2176 zone0.zone_brand = &native_brand;
2177 rctl_prealloc_destroy(gp);
2178 /*
2179 * pool_default hasn't been initialized yet, so we let pool_init()
2180 * take care of making sure the global zone is in the default pool.
2181 */
2182
2183 /*
2184 * Initialize global zone kstats
2185 */
2186 zone_kstat_create(&zone0);
2187
2188 /*
2189 * Initialize zone label.
2190 * mlp are initialized when tnzonecfg is loaded.
2191 */
2192 zone0.zone_slabel = l_admin_low;
2193 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2194 label_hold(l_admin_low);
2195
2196 /*
2197 * Initialise the lock for the database structure used by mntfs.
2198 */
2199 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2200
2201 mutex_enter(&zonehash_lock);
2202 zone_uniqid(&zone0);
2203 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2204
2205 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2206 mod_hash_null_valdtor);
2207 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2208 zone_hash_size, mod_hash_null_valdtor);
2209 /*
2210 * maintain zonehashbylabel only for labeled systems
2211 */
2212 if (is_system_labeled())
2213 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2214 zone_hash_size, mod_hash_null_keydtor,
2215 mod_hash_null_valdtor, hash_bylabel, NULL,
2216 hash_labelkey_cmp, KM_SLEEP);
2217 zonecount = 1;
2218
2219 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2220 (mod_hash_val_t)&zone0);
2221 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2222 (mod_hash_val_t)&zone0);
2223 if (is_system_labeled()) {
2224 zone0.zone_flags |= ZF_HASHED_LABEL;
2225 (void) mod_hash_insert(zonehashbylabel,
2226 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2227 }
2228 mutex_exit(&zonehash_lock);
2229
2230 /*
2231 * We avoid setting zone_kcred until now, since kcred is initialized
2232 * sometime after zone_zsd_init() and before zone_init().
2233 */
2234 zone0.zone_kcred = kcred;
2235 /*
2236 * The global zone is fully initialized (except for zone_rootvp which
2237 * will be set when the root filesystem is mounted).
2238 */
2239 global_zone = &zone0;
2240
2241 /*
2242 * Setup an event channel to send zone status change notifications on
2243 */
2244 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2245 EVCH_CREAT);
2246
2247 if (res)
2248 panic("Sysevent_evc_bind failed during zone setup.\n");
2249
2250 }
2251
2252 static void
zone_free(zone_t * zone)2253 zone_free(zone_t *zone)
2254 {
2255 ASSERT(zone != global_zone);
2256 ASSERT(zone->zone_ntasks == 0);
2257 ASSERT(zone->zone_nlwps == 0);
2258 ASSERT(zone->zone_nprocs == 0);
2259 ASSERT(zone->zone_cred_ref == 0);
2260 ASSERT(zone->zone_kcred == NULL);
2261 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2262 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2263 ASSERT(list_is_empty(&zone->zone_ref_list));
2264
2265 /*
2266 * Remove any zone caps.
2267 */
2268 cpucaps_zone_remove(zone);
2269
2270 ASSERT(zone->zone_cpucap == NULL);
2271
2272 /* remove from deathrow list */
2273 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2274 ASSERT(zone->zone_ref == 0);
2275 mutex_enter(&zone_deathrow_lock);
2276 list_remove(&zone_deathrow, zone);
2277 mutex_exit(&zone_deathrow_lock);
2278 }
2279
2280 list_destroy(&zone->zone_ref_list);
2281 zone_free_zsd(zone);
2282 zone_free_datasets(zone);
2283 list_destroy(&zone->zone_dl_list);
2284
2285 if (zone->zone_rootvp != NULL)
2286 VN_RELE(zone->zone_rootvp);
2287 if (zone->zone_rootpath)
2288 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2289 if (zone->zone_name != NULL)
2290 kmem_free(zone->zone_name, ZONENAME_MAX);
2291 if (zone->zone_slabel != NULL)
2292 label_rele(zone->zone_slabel);
2293 if (zone->zone_nodename != NULL)
2294 kmem_free(zone->zone_nodename, _SYS_NMLN);
2295 if (zone->zone_domain != NULL)
2296 kmem_free(zone->zone_domain, _SYS_NMLN);
2297 if (zone->zone_privset != NULL)
2298 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2299 if (zone->zone_rctls != NULL)
2300 rctl_set_free(zone->zone_rctls);
2301 if (zone->zone_bootargs != NULL)
2302 strfree(zone->zone_bootargs);
2303 if (zone->zone_initname != NULL)
2304 strfree(zone->zone_initname);
2305 if (zone->zone_fs_allowed != NULL)
2306 strfree(zone->zone_fs_allowed);
2307 if (zone->zone_pfexecd != NULL)
2308 klpd_freelist(&zone->zone_pfexecd);
2309 id_free(zoneid_space, zone->zone_id);
2310 mutex_destroy(&zone->zone_lock);
2311 cv_destroy(&zone->zone_cv);
2312 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2313 rw_destroy(&zone->zone_mntfs_db_lock);
2314 kmem_free(zone, sizeof (zone_t));
2315 }
2316
2317 /*
2318 * See block comment at the top of this file for information about zone
2319 * status values.
2320 */
2321 /*
2322 * Convenience function for setting zone status.
2323 */
2324 static void
zone_status_set(zone_t * zone,zone_status_t status)2325 zone_status_set(zone_t *zone, zone_status_t status)
2326 {
2327
2328 nvlist_t *nvl = NULL;
2329 ASSERT(MUTEX_HELD(&zone_status_lock));
2330 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2331 status >= zone_status_get(zone));
2332
2333 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2334 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2335 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2336 zone_status_table[status]) ||
2337 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2338 zone_status_table[zone->zone_status]) ||
2339 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2340 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2341 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2342 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2343 #ifdef DEBUG
2344 (void) printf(
2345 "Failed to allocate and send zone state change event.\n");
2346 #endif
2347 }
2348 nvlist_free(nvl);
2349
2350 zone->zone_status = status;
2351
2352 cv_broadcast(&zone->zone_cv);
2353 }
2354
2355 /*
2356 * Public function to retrieve the zone status. The zone status may
2357 * change after it is retrieved.
2358 */
2359 zone_status_t
zone_status_get(zone_t * zone)2360 zone_status_get(zone_t *zone)
2361 {
2362 return (zone->zone_status);
2363 }
2364
2365 static int
zone_set_bootargs(zone_t * zone,const char * zone_bootargs)2366 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2367 {
2368 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2369 int err = 0;
2370
2371 ASSERT(zone != global_zone);
2372 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2373 goto done; /* EFAULT or ENAMETOOLONG */
2374
2375 if (zone->zone_bootargs != NULL)
2376 strfree(zone->zone_bootargs);
2377
2378 zone->zone_bootargs = strdup(buf);
2379
2380 done:
2381 kmem_free(buf, BOOTARGS_MAX);
2382 return (err);
2383 }
2384
2385 static int
zone_set_brand(zone_t * zone,const char * brand)2386 zone_set_brand(zone_t *zone, const char *brand)
2387 {
2388 struct brand_attr *attrp;
2389 brand_t *bp;
2390
2391 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2392 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2393 kmem_free(attrp, sizeof (struct brand_attr));
2394 return (EFAULT);
2395 }
2396
2397 bp = brand_register_zone(attrp);
2398 kmem_free(attrp, sizeof (struct brand_attr));
2399 if (bp == NULL)
2400 return (EINVAL);
2401
2402 /*
2403 * This is the only place where a zone can change it's brand.
2404 * We already need to hold zone_status_lock to check the zone
2405 * status, so we'll just use that lock to serialize zone
2406 * branding requests as well.
2407 */
2408 mutex_enter(&zone_status_lock);
2409
2410 /* Re-Branding is not allowed and the zone can't be booted yet */
2411 if ((ZONE_IS_BRANDED(zone)) ||
2412 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2413 mutex_exit(&zone_status_lock);
2414 brand_unregister_zone(bp);
2415 return (EINVAL);
2416 }
2417
2418 /* set up the brand specific data */
2419 zone->zone_brand = bp;
2420 ZBROP(zone)->b_init_brand_data(zone);
2421
2422 mutex_exit(&zone_status_lock);
2423 return (0);
2424 }
2425
2426 static int
zone_set_fs_allowed(zone_t * zone,const char * zone_fs_allowed)2427 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2428 {
2429 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2430 int err = 0;
2431
2432 ASSERT(zone != global_zone);
2433 if ((err = copyinstr(zone_fs_allowed, buf,
2434 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2435 goto done;
2436
2437 if (zone->zone_fs_allowed != NULL)
2438 strfree(zone->zone_fs_allowed);
2439
2440 zone->zone_fs_allowed = strdup(buf);
2441
2442 done:
2443 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2444 return (err);
2445 }
2446
2447 static int
zone_set_initname(zone_t * zone,const char * zone_initname)2448 zone_set_initname(zone_t *zone, const char *zone_initname)
2449 {
2450 char initname[INITNAME_SZ];
2451 size_t len;
2452 int err = 0;
2453
2454 ASSERT(zone != global_zone);
2455 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2456 return (err); /* EFAULT or ENAMETOOLONG */
2457
2458 if (zone->zone_initname != NULL)
2459 strfree(zone->zone_initname);
2460
2461 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2462 (void) strcpy(zone->zone_initname, initname);
2463 return (0);
2464 }
2465
2466 static int
zone_set_phys_mcap(zone_t * zone,const uint64_t * zone_mcap)2467 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2468 {
2469 uint64_t mcap;
2470 int err = 0;
2471
2472 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2473 zone->zone_phys_mcap = mcap;
2474
2475 return (err);
2476 }
2477
2478 static int
zone_set_sched_class(zone_t * zone,const char * new_class)2479 zone_set_sched_class(zone_t *zone, const char *new_class)
2480 {
2481 char sched_class[PC_CLNMSZ];
2482 id_t classid;
2483 int err;
2484
2485 ASSERT(zone != global_zone);
2486 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2487 return (err); /* EFAULT or ENAMETOOLONG */
2488
2489 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2490 return (set_errno(EINVAL));
2491 zone->zone_defaultcid = classid;
2492 ASSERT(zone->zone_defaultcid > 0 &&
2493 zone->zone_defaultcid < loaded_classes);
2494
2495 return (0);
2496 }
2497
2498 /*
2499 * Block indefinitely waiting for (zone_status >= status)
2500 */
2501 void
zone_status_wait(zone_t * zone,zone_status_t status)2502 zone_status_wait(zone_t *zone, zone_status_t status)
2503 {
2504 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2505
2506 mutex_enter(&zone_status_lock);
2507 while (zone->zone_status < status) {
2508 cv_wait(&zone->zone_cv, &zone_status_lock);
2509 }
2510 mutex_exit(&zone_status_lock);
2511 }
2512
2513 /*
2514 * Private CPR-safe version of zone_status_wait().
2515 */
2516 static void
zone_status_wait_cpr(zone_t * zone,zone_status_t status,char * str)2517 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2518 {
2519 callb_cpr_t cprinfo;
2520
2521 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2522
2523 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2524 str);
2525 mutex_enter(&zone_status_lock);
2526 while (zone->zone_status < status) {
2527 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2528 cv_wait(&zone->zone_cv, &zone_status_lock);
2529 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2530 }
2531 /*
2532 * zone_status_lock is implicitly released by the following.
2533 */
2534 CALLB_CPR_EXIT(&cprinfo);
2535 }
2536
2537 /*
2538 * Block until zone enters requested state or signal is received. Return (0)
2539 * if signaled, non-zero otherwise.
2540 */
2541 int
zone_status_wait_sig(zone_t * zone,zone_status_t status)2542 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2543 {
2544 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2545
2546 mutex_enter(&zone_status_lock);
2547 while (zone->zone_status < status) {
2548 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2549 mutex_exit(&zone_status_lock);
2550 return (0);
2551 }
2552 }
2553 mutex_exit(&zone_status_lock);
2554 return (1);
2555 }
2556
2557 /*
2558 * Block until the zone enters the requested state or the timeout expires,
2559 * whichever happens first. Return (-1) if operation timed out, time remaining
2560 * otherwise.
2561 */
2562 clock_t
zone_status_timedwait(zone_t * zone,clock_t tim,zone_status_t status)2563 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2564 {
2565 clock_t timeleft = 0;
2566
2567 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2568
2569 mutex_enter(&zone_status_lock);
2570 while (zone->zone_status < status && timeleft != -1) {
2571 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2572 }
2573 mutex_exit(&zone_status_lock);
2574 return (timeleft);
2575 }
2576
2577 /*
2578 * Block until the zone enters the requested state, the current process is
2579 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2580 * operation timed out, 0 if signaled, time remaining otherwise.
2581 */
2582 clock_t
zone_status_timedwait_sig(zone_t * zone,clock_t tim,zone_status_t status)2583 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2584 {
2585 clock_t timeleft = tim - ddi_get_lbolt();
2586
2587 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2588
2589 mutex_enter(&zone_status_lock);
2590 while (zone->zone_status < status) {
2591 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2592 tim);
2593 if (timeleft <= 0)
2594 break;
2595 }
2596 mutex_exit(&zone_status_lock);
2597 return (timeleft);
2598 }
2599
2600 /*
2601 * Zones have two reference counts: one for references from credential
2602 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2603 * This is so we can allow a zone to be rebooted while there are still
2604 * outstanding cred references, since certain drivers cache dblks (which
2605 * implicitly results in cached creds). We wait for zone_ref to drop to
2606 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2607 * later freed when the zone_cred_ref drops to 0, though nothing other
2608 * than the zone id and privilege set should be accessed once the zone
2609 * is "dead".
2610 *
2611 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2612 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2613 * to 0. This can be useful to flush out other sources of cached creds
2614 * that may be less innocuous than the driver case.
2615 *
2616 * Zones also provide a tracked reference counting mechanism in which zone
2617 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2618 * debuggers determine the sources of leaked zone references. See
2619 * zone_hold_ref() and zone_rele_ref() below for more information.
2620 */
2621
2622 int zone_wait_for_cred = 0;
2623
2624 static void
zone_hold_locked(zone_t * z)2625 zone_hold_locked(zone_t *z)
2626 {
2627 ASSERT(MUTEX_HELD(&z->zone_lock));
2628 z->zone_ref++;
2629 ASSERT(z->zone_ref != 0);
2630 }
2631
2632 /*
2633 * Increment the specified zone's reference count. The zone's zone_t structure
2634 * will not be freed as long as the zone's reference count is nonzero.
2635 * Decrement the zone's reference count via zone_rele().
2636 *
2637 * NOTE: This function should only be used to hold zones for short periods of
2638 * time. Use zone_hold_ref() if the zone must be held for a long time.
2639 */
2640 void
zone_hold(zone_t * z)2641 zone_hold(zone_t *z)
2642 {
2643 mutex_enter(&z->zone_lock);
2644 zone_hold_locked(z);
2645 mutex_exit(&z->zone_lock);
2646 }
2647
2648 /*
2649 * If the non-cred ref count drops to 1 and either the cred ref count
2650 * is 0 or we aren't waiting for cred references, the zone is ready to
2651 * be destroyed.
2652 */
2653 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2654 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2655
2656 /*
2657 * Common zone reference release function invoked by zone_rele() and
2658 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2659 * zone's subsystem-specific reference counters are not affected by the
2660 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2661 * removed from the specified zone's reference list. ref must be non-NULL iff
2662 * subsys is not ZONE_REF_NUM_SUBSYS.
2663 */
2664 static void
zone_rele_common(zone_t * z,zone_ref_t * ref,zone_ref_subsys_t subsys)2665 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2666 {
2667 boolean_t wakeup;
2668
2669 mutex_enter(&z->zone_lock);
2670 ASSERT(z->zone_ref != 0);
2671 z->zone_ref--;
2672 if (subsys != ZONE_REF_NUM_SUBSYS) {
2673 ASSERT(z->zone_subsys_ref[subsys] != 0);
2674 z->zone_subsys_ref[subsys]--;
2675 list_remove(&z->zone_ref_list, ref);
2676 }
2677 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2678 /* no more refs, free the structure */
2679 mutex_exit(&z->zone_lock);
2680 zone_free(z);
2681 return;
2682 }
2683 /* signal zone_destroy so the zone can finish halting */
2684 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2685 mutex_exit(&z->zone_lock);
2686
2687 if (wakeup) {
2688 /*
2689 * Grabbing zonehash_lock here effectively synchronizes with
2690 * zone_destroy() to avoid missed signals.
2691 */
2692 mutex_enter(&zonehash_lock);
2693 cv_broadcast(&zone_destroy_cv);
2694 mutex_exit(&zonehash_lock);
2695 }
2696 }
2697
2698 /*
2699 * Decrement the specified zone's reference count. The specified zone will
2700 * cease to exist after this function returns if the reference count drops to
2701 * zero. This function should be paired with zone_hold().
2702 */
2703 void
zone_rele(zone_t * z)2704 zone_rele(zone_t *z)
2705 {
2706 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2707 }
2708
2709 /*
2710 * Initialize a zone reference structure. This function must be invoked for
2711 * a reference structure before the structure is passed to zone_hold_ref().
2712 */
2713 void
zone_init_ref(zone_ref_t * ref)2714 zone_init_ref(zone_ref_t *ref)
2715 {
2716 ref->zref_zone = NULL;
2717 list_link_init(&ref->zref_linkage);
2718 }
2719
2720 /*
2721 * Acquire a reference to zone z. The caller must specify the
2722 * zone_ref_subsys_t constant associated with its subsystem. The specified
2723 * zone_ref_t structure will represent a reference to the specified zone. Use
2724 * zone_rele_ref() to release the reference.
2725 *
2726 * The referenced zone_t structure will not be freed as long as the zone_t's
2727 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2728 * references.
2729 *
2730 * NOTE: The zone_ref_t structure must be initialized before it is used.
2731 * See zone_init_ref() above.
2732 */
2733 void
zone_hold_ref(zone_t * z,zone_ref_t * ref,zone_ref_subsys_t subsys)2734 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2735 {
2736 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2737
2738 /*
2739 * Prevent consumers from reusing a reference structure before
2740 * releasing it.
2741 */
2742 VERIFY(ref->zref_zone == NULL);
2743
2744 ref->zref_zone = z;
2745 mutex_enter(&z->zone_lock);
2746 zone_hold_locked(z);
2747 z->zone_subsys_ref[subsys]++;
2748 ASSERT(z->zone_subsys_ref[subsys] != 0);
2749 list_insert_head(&z->zone_ref_list, ref);
2750 mutex_exit(&z->zone_lock);
2751 }
2752
2753 /*
2754 * Release the zone reference represented by the specified zone_ref_t.
2755 * The reference is invalid after it's released; however, the zone_ref_t
2756 * structure can be reused without having to invoke zone_init_ref().
2757 * subsys should be the same value that was passed to zone_hold_ref()
2758 * when the reference was acquired.
2759 */
2760 void
zone_rele_ref(zone_ref_t * ref,zone_ref_subsys_t subsys)2761 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2762 {
2763 zone_rele_common(ref->zref_zone, ref, subsys);
2764
2765 /*
2766 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2767 * when consumers dereference the reference. This helps us catch
2768 * consumers who use released references. Furthermore, this lets
2769 * consumers reuse the zone_ref_t structure without having to
2770 * invoke zone_init_ref().
2771 */
2772 ref->zref_zone = NULL;
2773 }
2774
2775 void
zone_cred_hold(zone_t * z)2776 zone_cred_hold(zone_t *z)
2777 {
2778 mutex_enter(&z->zone_lock);
2779 z->zone_cred_ref++;
2780 ASSERT(z->zone_cred_ref != 0);
2781 mutex_exit(&z->zone_lock);
2782 }
2783
2784 void
zone_cred_rele(zone_t * z)2785 zone_cred_rele(zone_t *z)
2786 {
2787 boolean_t wakeup;
2788
2789 mutex_enter(&z->zone_lock);
2790 ASSERT(z->zone_cred_ref != 0);
2791 z->zone_cred_ref--;
2792 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2793 /* no more refs, free the structure */
2794 mutex_exit(&z->zone_lock);
2795 zone_free(z);
2796 return;
2797 }
2798 /*
2799 * If zone_destroy is waiting for the cred references to drain
2800 * out, and they have, signal it.
2801 */
2802 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2803 zone_status_get(z) >= ZONE_IS_DEAD);
2804 mutex_exit(&z->zone_lock);
2805
2806 if (wakeup) {
2807 /*
2808 * Grabbing zonehash_lock here effectively synchronizes with
2809 * zone_destroy() to avoid missed signals.
2810 */
2811 mutex_enter(&zonehash_lock);
2812 cv_broadcast(&zone_destroy_cv);
2813 mutex_exit(&zonehash_lock);
2814 }
2815 }
2816
2817 void
zone_task_hold(zone_t * z)2818 zone_task_hold(zone_t *z)
2819 {
2820 mutex_enter(&z->zone_lock);
2821 z->zone_ntasks++;
2822 ASSERT(z->zone_ntasks != 0);
2823 mutex_exit(&z->zone_lock);
2824 }
2825
2826 void
zone_task_rele(zone_t * zone)2827 zone_task_rele(zone_t *zone)
2828 {
2829 uint_t refcnt;
2830
2831 mutex_enter(&zone->zone_lock);
2832 ASSERT(zone->zone_ntasks != 0);
2833 refcnt = --zone->zone_ntasks;
2834 if (refcnt > 1) { /* Common case */
2835 mutex_exit(&zone->zone_lock);
2836 return;
2837 }
2838 zone_hold_locked(zone); /* so we can use the zone_t later */
2839 mutex_exit(&zone->zone_lock);
2840 if (refcnt == 1) {
2841 /*
2842 * See if the zone is shutting down.
2843 */
2844 mutex_enter(&zone_status_lock);
2845 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2846 goto out;
2847 }
2848
2849 /*
2850 * Make sure the ntasks didn't change since we
2851 * dropped zone_lock.
2852 */
2853 mutex_enter(&zone->zone_lock);
2854 if (refcnt != zone->zone_ntasks) {
2855 mutex_exit(&zone->zone_lock);
2856 goto out;
2857 }
2858 mutex_exit(&zone->zone_lock);
2859
2860 /*
2861 * No more user processes in the zone. The zone is empty.
2862 */
2863 zone_status_set(zone, ZONE_IS_EMPTY);
2864 goto out;
2865 }
2866
2867 ASSERT(refcnt == 0);
2868 /*
2869 * zsched has exited; the zone is dead.
2870 */
2871 zone->zone_zsched = NULL; /* paranoia */
2872 mutex_enter(&zone_status_lock);
2873 zone_status_set(zone, ZONE_IS_DEAD);
2874 out:
2875 mutex_exit(&zone_status_lock);
2876 zone_rele(zone);
2877 }
2878
2879 zoneid_t
getzoneid(void)2880 getzoneid(void)
2881 {
2882 return (curproc->p_zone->zone_id);
2883 }
2884
2885 /*
2886 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2887 * check the validity of a zone's state.
2888 */
2889 static zone_t *
zone_find_all_by_id(zoneid_t zoneid)2890 zone_find_all_by_id(zoneid_t zoneid)
2891 {
2892 mod_hash_val_t hv;
2893 zone_t *zone = NULL;
2894
2895 ASSERT(MUTEX_HELD(&zonehash_lock));
2896
2897 if (mod_hash_find(zonehashbyid,
2898 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2899 zone = (zone_t *)hv;
2900 return (zone);
2901 }
2902
2903 static zone_t *
zone_find_all_by_label(const ts_label_t * label)2904 zone_find_all_by_label(const ts_label_t *label)
2905 {
2906 mod_hash_val_t hv;
2907 zone_t *zone = NULL;
2908
2909 ASSERT(MUTEX_HELD(&zonehash_lock));
2910
2911 /*
2912 * zonehashbylabel is not maintained for unlabeled systems
2913 */
2914 if (!is_system_labeled())
2915 return (NULL);
2916 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2917 zone = (zone_t *)hv;
2918 return (zone);
2919 }
2920
2921 static zone_t *
zone_find_all_by_name(char * name)2922 zone_find_all_by_name(char *name)
2923 {
2924 mod_hash_val_t hv;
2925 zone_t *zone = NULL;
2926
2927 ASSERT(MUTEX_HELD(&zonehash_lock));
2928
2929 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2930 zone = (zone_t *)hv;
2931 return (zone);
2932 }
2933
2934 /*
2935 * Public interface for looking up a zone by zoneid. Only returns the zone if
2936 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2937 * Caller must call zone_rele() once it is done with the zone.
2938 *
2939 * The zone may begin the zone_destroy() sequence immediately after this
2940 * function returns, but may be safely used until zone_rele() is called.
2941 */
2942 zone_t *
zone_find_by_id(zoneid_t zoneid)2943 zone_find_by_id(zoneid_t zoneid)
2944 {
2945 zone_t *zone;
2946 zone_status_t status;
2947
2948 mutex_enter(&zonehash_lock);
2949 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2950 mutex_exit(&zonehash_lock);
2951 return (NULL);
2952 }
2953 status = zone_status_get(zone);
2954 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2955 /*
2956 * For all practical purposes the zone doesn't exist.
2957 */
2958 mutex_exit(&zonehash_lock);
2959 return (NULL);
2960 }
2961 zone_hold(zone);
2962 mutex_exit(&zonehash_lock);
2963 return (zone);
2964 }
2965
2966 /*
2967 * Similar to zone_find_by_id, but using zone label as the key.
2968 */
2969 zone_t *
zone_find_by_label(const ts_label_t * label)2970 zone_find_by_label(const ts_label_t *label)
2971 {
2972 zone_t *zone;
2973 zone_status_t status;
2974
2975 mutex_enter(&zonehash_lock);
2976 if ((zone = zone_find_all_by_label(label)) == NULL) {
2977 mutex_exit(&zonehash_lock);
2978 return (NULL);
2979 }
2980
2981 status = zone_status_get(zone);
2982 if (status > ZONE_IS_DOWN) {
2983 /*
2984 * For all practical purposes the zone doesn't exist.
2985 */
2986 mutex_exit(&zonehash_lock);
2987 return (NULL);
2988 }
2989 zone_hold(zone);
2990 mutex_exit(&zonehash_lock);
2991 return (zone);
2992 }
2993
2994 /*
2995 * Similar to zone_find_by_id, but using zone name as the key.
2996 */
2997 zone_t *
zone_find_by_name(char * name)2998 zone_find_by_name(char *name)
2999 {
3000 zone_t *zone;
3001 zone_status_t status;
3002
3003 mutex_enter(&zonehash_lock);
3004 if ((zone = zone_find_all_by_name(name)) == NULL) {
3005 mutex_exit(&zonehash_lock);
3006 return (NULL);
3007 }
3008 status = zone_status_get(zone);
3009 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3010 /*
3011 * For all practical purposes the zone doesn't exist.
3012 */
3013 mutex_exit(&zonehash_lock);
3014 return (NULL);
3015 }
3016 zone_hold(zone);
3017 mutex_exit(&zonehash_lock);
3018 return (zone);
3019 }
3020
3021 /*
3022 * Similar to zone_find_by_id(), using the path as a key. For instance,
3023 * if there is a zone "foo" rooted at /foo/root, and the path argument
3024 * is "/foo/root/proc", it will return the held zone_t corresponding to
3025 * zone "foo".
3026 *
3027 * zone_find_by_path() always returns a non-NULL value, since at the
3028 * very least every path will be contained in the global zone.
3029 *
3030 * As with the other zone_find_by_*() functions, the caller is
3031 * responsible for zone_rele()ing the return value of this function.
3032 */
3033 zone_t *
zone_find_by_path(const char * path)3034 zone_find_by_path(const char *path)
3035 {
3036 zone_t *zone;
3037 zone_t *zret = NULL;
3038 zone_status_t status;
3039
3040 if (path == NULL) {
3041 /*
3042 * Call from rootconf().
3043 */
3044 zone_hold(global_zone);
3045 return (global_zone);
3046 }
3047 ASSERT(*path == '/');
3048 mutex_enter(&zonehash_lock);
3049 for (zone = list_head(&zone_active); zone != NULL;
3050 zone = list_next(&zone_active, zone)) {
3051 if (ZONE_PATH_VISIBLE(path, zone))
3052 zret = zone;
3053 }
3054 ASSERT(zret != NULL);
3055 status = zone_status_get(zret);
3056 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3057 /*
3058 * Zone practically doesn't exist.
3059 */
3060 zret = global_zone;
3061 }
3062 zone_hold(zret);
3063 mutex_exit(&zonehash_lock);
3064 return (zret);
3065 }
3066
3067 /*
3068 * Public interface for updating per-zone load averages. Called once per
3069 * second.
3070 *
3071 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3072 */
3073 void
zone_loadavg_update()3074 zone_loadavg_update()
3075 {
3076 zone_t *zp;
3077 zone_status_t status;
3078 struct loadavg_s *lavg;
3079 hrtime_t zone_total;
3080 int i;
3081 hrtime_t hr_avg;
3082 int nrun;
3083 static int64_t f[3] = { 135, 27, 9 };
3084 int64_t q, r;
3085
3086 mutex_enter(&zonehash_lock);
3087 for (zp = list_head(&zone_active); zp != NULL;
3088 zp = list_next(&zone_active, zp)) {
3089 mutex_enter(&zp->zone_lock);
3090
3091 /* Skip zones that are on the way down or not yet up */
3092 status = zone_status_get(zp);
3093 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3094 /* For all practical purposes the zone doesn't exist. */
3095 mutex_exit(&zp->zone_lock);
3096 continue;
3097 }
3098
3099 /*
3100 * Update the 10 second moving average data in zone_loadavg.
3101 */
3102 lavg = &zp->zone_loadavg;
3103
3104 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3105 scalehrtime(&zone_total);
3106
3107 /* The zone_total should always be increasing. */
3108 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3109 zone_total - lavg->lg_total : 0;
3110 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3111 /* lg_total holds the prev. 1 sec. total */
3112 lavg->lg_total = zone_total;
3113
3114 /*
3115 * To simplify the calculation, we don't calculate the load avg.
3116 * until the zone has been up for at least 10 seconds and our
3117 * moving average is thus full.
3118 */
3119 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3120 lavg->lg_len++;
3121 mutex_exit(&zp->zone_lock);
3122 continue;
3123 }
3124
3125 /* Now calculate the 1min, 5min, 15 min load avg. */
3126 hr_avg = 0;
3127 for (i = 0; i < S_LOADAVG_SZ; i++)
3128 hr_avg += lavg->lg_loads[i];
3129 hr_avg = hr_avg / S_LOADAVG_SZ;
3130 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3131
3132 /* Compute load avg. See comment in calcloadavg() */
3133 for (i = 0; i < 3; i++) {
3134 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3135 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3136 zp->zone_hp_avenrun[i] +=
3137 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3138
3139 /* avenrun[] can only hold 31 bits of load avg. */
3140 if (zp->zone_hp_avenrun[i] <
3141 ((uint64_t)1<<(31+16-FSHIFT)))
3142 zp->zone_avenrun[i] = (int32_t)
3143 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3144 else
3145 zp->zone_avenrun[i] = 0x7fffffff;
3146 }
3147
3148 mutex_exit(&zp->zone_lock);
3149 }
3150 mutex_exit(&zonehash_lock);
3151 }
3152
3153 /*
3154 * Get the number of cpus visible to this zone. The system-wide global
3155 * 'ncpus' is returned if pools are disabled, the caller is in the
3156 * global zone, or a NULL zone argument is passed in.
3157 */
3158 int
zone_ncpus_get(zone_t * zone)3159 zone_ncpus_get(zone_t *zone)
3160 {
3161 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3162
3163 return (myncpus != 0 ? myncpus : ncpus);
3164 }
3165
3166 /*
3167 * Get the number of online cpus visible to this zone. The system-wide
3168 * global 'ncpus_online' is returned if pools are disabled, the caller
3169 * is in the global zone, or a NULL zone argument is passed in.
3170 */
3171 int
zone_ncpus_online_get(zone_t * zone)3172 zone_ncpus_online_get(zone_t *zone)
3173 {
3174 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3175
3176 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3177 }
3178
3179 /*
3180 * Return the pool to which the zone is currently bound.
3181 */
3182 pool_t *
zone_pool_get(zone_t * zone)3183 zone_pool_get(zone_t *zone)
3184 {
3185 ASSERT(pool_lock_held());
3186
3187 return (zone->zone_pool);
3188 }
3189
3190 /*
3191 * Set the zone's pool pointer and update the zone's visibility to match
3192 * the resources in the new pool.
3193 */
3194 void
zone_pool_set(zone_t * zone,pool_t * pool)3195 zone_pool_set(zone_t *zone, pool_t *pool)
3196 {
3197 ASSERT(pool_lock_held());
3198 ASSERT(MUTEX_HELD(&cpu_lock));
3199
3200 zone->zone_pool = pool;
3201 zone_pset_set(zone, pool->pool_pset->pset_id);
3202 }
3203
3204 /*
3205 * Return the cached value of the id of the processor set to which the
3206 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3207 * facility is disabled.
3208 */
3209 psetid_t
zone_pset_get(zone_t * zone)3210 zone_pset_get(zone_t *zone)
3211 {
3212 ASSERT(MUTEX_HELD(&cpu_lock));
3213
3214 return (zone->zone_psetid);
3215 }
3216
3217 /*
3218 * Set the cached value of the id of the processor set to which the zone
3219 * is currently bound. Also update the zone's visibility to match the
3220 * resources in the new processor set.
3221 */
3222 void
zone_pset_set(zone_t * zone,psetid_t newpsetid)3223 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3224 {
3225 psetid_t oldpsetid;
3226
3227 ASSERT(MUTEX_HELD(&cpu_lock));
3228 oldpsetid = zone_pset_get(zone);
3229
3230 if (oldpsetid == newpsetid)
3231 return;
3232 /*
3233 * Global zone sees all.
3234 */
3235 if (zone != global_zone) {
3236 zone->zone_psetid = newpsetid;
3237 if (newpsetid != ZONE_PS_INVAL)
3238 pool_pset_visibility_add(newpsetid, zone);
3239 if (oldpsetid != ZONE_PS_INVAL)
3240 pool_pset_visibility_remove(oldpsetid, zone);
3241 }
3242 /*
3243 * Disabling pools, so we should start using the global values
3244 * for ncpus and ncpus_online.
3245 */
3246 if (newpsetid == ZONE_PS_INVAL) {
3247 zone->zone_ncpus = 0;
3248 zone->zone_ncpus_online = 0;
3249 }
3250 }
3251
3252 /*
3253 * Walk the list of active zones and issue the provided callback for
3254 * each of them.
3255 *
3256 * Caller must not be holding any locks that may be acquired under
3257 * zonehash_lock. See comment at the beginning of the file for a list of
3258 * common locks and their interactions with zones.
3259 */
3260 int
zone_walk(int (* cb)(zone_t *,void *),void * data)3261 zone_walk(int (*cb)(zone_t *, void *), void *data)
3262 {
3263 zone_t *zone;
3264 int ret = 0;
3265 zone_status_t status;
3266
3267 mutex_enter(&zonehash_lock);
3268 for (zone = list_head(&zone_active); zone != NULL;
3269 zone = list_next(&zone_active, zone)) {
3270 /*
3271 * Skip zones that shouldn't be externally visible.
3272 */
3273 status = zone_status_get(zone);
3274 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3275 continue;
3276 /*
3277 * Bail immediately if any callback invocation returns a
3278 * non-zero value.
3279 */
3280 ret = (*cb)(zone, data);
3281 if (ret != 0)
3282 break;
3283 }
3284 mutex_exit(&zonehash_lock);
3285 return (ret);
3286 }
3287
3288 static int
zone_set_root(zone_t * zone,const char * upath)3289 zone_set_root(zone_t *zone, const char *upath)
3290 {
3291 vnode_t *vp;
3292 int trycount;
3293 int error = 0;
3294 char *path;
3295 struct pathname upn, pn;
3296 size_t pathlen;
3297
3298 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3299 return (error);
3300
3301 pn_alloc(&pn);
3302
3303 /* prevent infinite loop */
3304 trycount = 10;
3305 for (;;) {
3306 if (--trycount <= 0) {
3307 error = ESTALE;
3308 goto out;
3309 }
3310
3311 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3312 /*
3313 * VOP_ACCESS() may cover 'vp' with a new
3314 * filesystem, if 'vp' is an autoFS vnode.
3315 * Get the new 'vp' if so.
3316 */
3317 if ((error =
3318 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3319 (!vn_ismntpt(vp) ||
3320 (error = traverse(&vp)) == 0)) {
3321 pathlen = pn.pn_pathlen + 2;
3322 path = kmem_alloc(pathlen, KM_SLEEP);
3323 (void) strncpy(path, pn.pn_path,
3324 pn.pn_pathlen + 1);
3325 path[pathlen - 2] = '/';
3326 path[pathlen - 1] = '\0';
3327 pn_free(&pn);
3328 pn_free(&upn);
3329
3330 /* Success! */
3331 break;
3332 }
3333 VN_RELE(vp);
3334 }
3335 if (error != ESTALE)
3336 goto out;
3337 }
3338
3339 ASSERT(error == 0);
3340 zone->zone_rootvp = vp; /* we hold a reference to vp */
3341 zone->zone_rootpath = path;
3342 zone->zone_rootpathlen = pathlen;
3343 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3344 zone->zone_flags |= ZF_IS_SCRATCH;
3345 return (0);
3346
3347 out:
3348 pn_free(&pn);
3349 pn_free(&upn);
3350 return (error);
3351 }
3352
3353 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3354 ((c) >= 'a' && (c) <= 'z') || \
3355 ((c) >= 'A' && (c) <= 'Z'))
3356
3357 static int
zone_set_name(zone_t * zone,const char * uname)3358 zone_set_name(zone_t *zone, const char *uname)
3359 {
3360 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3361 size_t len;
3362 int i, err;
3363
3364 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3365 kmem_free(kname, ZONENAME_MAX);
3366 return (err); /* EFAULT or ENAMETOOLONG */
3367 }
3368
3369 /* must be less than ZONENAME_MAX */
3370 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3371 kmem_free(kname, ZONENAME_MAX);
3372 return (EINVAL);
3373 }
3374
3375 /*
3376 * Name must start with an alphanumeric and must contain only
3377 * alphanumerics, '-', '_' and '.'.
3378 */
3379 if (!isalnum(kname[0])) {
3380 kmem_free(kname, ZONENAME_MAX);
3381 return (EINVAL);
3382 }
3383 for (i = 1; i < len - 1; i++) {
3384 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3385 kname[i] != '.') {
3386 kmem_free(kname, ZONENAME_MAX);
3387 return (EINVAL);
3388 }
3389 }
3390
3391 zone->zone_name = kname;
3392 return (0);
3393 }
3394
3395 /*
3396 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3397 * is NULL or it points to a zone with no hostid emulation, then the machine's
3398 * hostid (i.e., the global zone's hostid) is returned. This function returns
3399 * zero if neither the zone nor the host machine (global zone) have hostids. It
3400 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3401 * hostid and the machine's hostid is invalid.
3402 */
3403 uint32_t
zone_get_hostid(zone_t * zonep)3404 zone_get_hostid(zone_t *zonep)
3405 {
3406 unsigned long machine_hostid;
3407
3408 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3409 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3410 return (HW_INVALID_HOSTID);
3411 return ((uint32_t)machine_hostid);
3412 }
3413 return (zonep->zone_hostid);
3414 }
3415
3416 /*
3417 * Similar to thread_create(), but makes sure the thread is in the appropriate
3418 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3419 */
3420 /*ARGSUSED*/
3421 kthread_t *
zthread_create(caddr_t stk,size_t stksize,void (* proc)(),void * arg,size_t len,pri_t pri)3422 zthread_create(
3423 caddr_t stk,
3424 size_t stksize,
3425 void (*proc)(),
3426 void *arg,
3427 size_t len,
3428 pri_t pri)
3429 {
3430 kthread_t *t;
3431 zone_t *zone = curproc->p_zone;
3432 proc_t *pp = zone->zone_zsched;
3433
3434 zone_hold(zone); /* Reference to be dropped when thread exits */
3435
3436 /*
3437 * No-one should be trying to create threads if the zone is shutting
3438 * down and there aren't any kernel threads around. See comment
3439 * in zthread_exit().
3440 */
3441 ASSERT(!(zone->zone_kthreads == NULL &&
3442 zone_status_get(zone) >= ZONE_IS_EMPTY));
3443 /*
3444 * Create a thread, but don't let it run until we've finished setting
3445 * things up.
3446 */
3447 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3448 ASSERT(t->t_forw == NULL);
3449 mutex_enter(&zone_status_lock);
3450 if (zone->zone_kthreads == NULL) {
3451 t->t_forw = t->t_back = t;
3452 } else {
3453 kthread_t *tx = zone->zone_kthreads;
3454
3455 t->t_forw = tx;
3456 t->t_back = tx->t_back;
3457 tx->t_back->t_forw = t;
3458 tx->t_back = t;
3459 }
3460 zone->zone_kthreads = t;
3461 mutex_exit(&zone_status_lock);
3462
3463 mutex_enter(&pp->p_lock);
3464 t->t_proc_flag |= TP_ZTHREAD;
3465 project_rele(t->t_proj);
3466 t->t_proj = project_hold(pp->p_task->tk_proj);
3467
3468 /*
3469 * Setup complete, let it run.
3470 */
3471 thread_lock(t);
3472 t->t_schedflag |= TS_ALLSTART;
3473 setrun_locked(t);
3474 thread_unlock(t);
3475
3476 mutex_exit(&pp->p_lock);
3477
3478 return (t);
3479 }
3480
3481 /*
3482 * Similar to thread_exit(). Must be called by threads created via
3483 * zthread_exit().
3484 */
3485 void
zthread_exit(void)3486 zthread_exit(void)
3487 {
3488 kthread_t *t = curthread;
3489 proc_t *pp = curproc;
3490 zone_t *zone = pp->p_zone;
3491
3492 mutex_enter(&zone_status_lock);
3493
3494 /*
3495 * Reparent to p0
3496 */
3497 kpreempt_disable();
3498 mutex_enter(&pp->p_lock);
3499 t->t_proc_flag &= ~TP_ZTHREAD;
3500 t->t_procp = &p0;
3501 hat_thread_exit(t);
3502 mutex_exit(&pp->p_lock);
3503 kpreempt_enable();
3504
3505 if (t->t_back == t) {
3506 ASSERT(t->t_forw == t);
3507 /*
3508 * If the zone is empty, once the thread count
3509 * goes to zero no further kernel threads can be
3510 * created. This is because if the creator is a process
3511 * in the zone, then it must have exited before the zone
3512 * state could be set to ZONE_IS_EMPTY.
3513 * Otherwise, if the creator is a kernel thread in the
3514 * zone, the thread count is non-zero.
3515 *
3516 * This really means that non-zone kernel threads should
3517 * not create zone kernel threads.
3518 */
3519 zone->zone_kthreads = NULL;
3520 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3521 zone_status_set(zone, ZONE_IS_DOWN);
3522 /*
3523 * Remove any CPU caps on this zone.
3524 */
3525 cpucaps_zone_remove(zone);
3526 }
3527 } else {
3528 t->t_forw->t_back = t->t_back;
3529 t->t_back->t_forw = t->t_forw;
3530 if (zone->zone_kthreads == t)
3531 zone->zone_kthreads = t->t_forw;
3532 }
3533 mutex_exit(&zone_status_lock);
3534 zone_rele(zone);
3535 thread_exit();
3536 /* NOTREACHED */
3537 }
3538
3539 static void
zone_chdir(vnode_t * vp,vnode_t ** vpp,proc_t * pp)3540 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3541 {
3542 vnode_t *oldvp;
3543
3544 /* we're going to hold a reference here to the directory */
3545 VN_HOLD(vp);
3546
3547 /* update abs cwd/root path see c2/audit.c */
3548 if (AU_AUDITING())
3549 audit_chdirec(vp, vpp);
3550
3551 mutex_enter(&pp->p_lock);
3552 oldvp = *vpp;
3553 *vpp = vp;
3554 mutex_exit(&pp->p_lock);
3555 if (oldvp != NULL)
3556 VN_RELE(oldvp);
3557 }
3558
3559 /*
3560 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3561 */
3562 static int
nvlist2rctlval(nvlist_t * nvl,rctl_val_t * rv)3563 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3564 {
3565 nvpair_t *nvp = NULL;
3566 boolean_t priv_set = B_FALSE;
3567 boolean_t limit_set = B_FALSE;
3568 boolean_t action_set = B_FALSE;
3569
3570 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3571 const char *name;
3572 uint64_t ui64;
3573
3574 name = nvpair_name(nvp);
3575 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3576 return (EINVAL);
3577 (void) nvpair_value_uint64(nvp, &ui64);
3578 if (strcmp(name, "privilege") == 0) {
3579 /*
3580 * Currently only privileged values are allowed, but
3581 * this may change in the future.
3582 */
3583 if (ui64 != RCPRIV_PRIVILEGED)
3584 return (EINVAL);
3585 rv->rcv_privilege = ui64;
3586 priv_set = B_TRUE;
3587 } else if (strcmp(name, "limit") == 0) {
3588 rv->rcv_value = ui64;
3589 limit_set = B_TRUE;
3590 } else if (strcmp(name, "action") == 0) {
3591 if (ui64 != RCTL_LOCAL_NOACTION &&
3592 ui64 != RCTL_LOCAL_DENY)
3593 return (EINVAL);
3594 rv->rcv_flagaction = ui64;
3595 action_set = B_TRUE;
3596 } else {
3597 return (EINVAL);
3598 }
3599 }
3600
3601 if (!(priv_set && limit_set && action_set))
3602 return (EINVAL);
3603 rv->rcv_action_signal = 0;
3604 rv->rcv_action_recipient = NULL;
3605 rv->rcv_action_recip_pid = -1;
3606 rv->rcv_firing_time = 0;
3607
3608 return (0);
3609 }
3610
3611 /*
3612 * Non-global zone version of start_init.
3613 */
3614 void
zone_start_init(void)3615 zone_start_init(void)
3616 {
3617 proc_t *p = ttoproc(curthread);
3618 zone_t *z = p->p_zone;
3619
3620 ASSERT(!INGLOBALZONE(curproc));
3621
3622 /*
3623 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3624 * storing just the pid of init is sufficient.
3625 */
3626 z->zone_proc_initpid = p->p_pid;
3627
3628 /*
3629 * We maintain zone_boot_err so that we can return the cause of the
3630 * failure back to the caller of the zone_boot syscall.
3631 */
3632 p->p_zone->zone_boot_err = start_init_common();
3633
3634 /*
3635 * We will prevent booting zones from becoming running zones if the
3636 * global zone is shutting down.
3637 */
3638 mutex_enter(&zone_status_lock);
3639 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3640 ZONE_IS_SHUTTING_DOWN) {
3641 /*
3642 * Make sure we are still in the booting state-- we could have
3643 * raced and already be shutting down, or even further along.
3644 */
3645 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3646 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3647 }
3648 mutex_exit(&zone_status_lock);
3649 /* It's gone bad, dispose of the process */
3650 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3651 mutex_enter(&p->p_lock);
3652 ASSERT(p->p_flag & SEXITLWPS);
3653 lwp_exit();
3654 }
3655 } else {
3656 if (zone_status_get(z) == ZONE_IS_BOOTING)
3657 zone_status_set(z, ZONE_IS_RUNNING);
3658 mutex_exit(&zone_status_lock);
3659 /* cause the process to return to userland. */
3660 lwp_rtt();
3661 }
3662 }
3663
3664 struct zsched_arg {
3665 zone_t *zone;
3666 nvlist_t *nvlist;
3667 };
3668
3669 /*
3670 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3671 * anything to do with scheduling, but rather with the fact that
3672 * per-zone kernel threads are parented to zsched, just like regular
3673 * kernel threads are parented to sched (p0).
3674 *
3675 * zsched is also responsible for launching init for the zone.
3676 */
3677 static void
zsched(void * arg)3678 zsched(void *arg)
3679 {
3680 struct zsched_arg *za = arg;
3681 proc_t *pp = curproc;
3682 proc_t *initp = proc_init;
3683 zone_t *zone = za->zone;
3684 cred_t *cr, *oldcred;
3685 rctl_set_t *set;
3686 rctl_alloc_gp_t *gp;
3687 contract_t *ct = NULL;
3688 task_t *tk, *oldtk;
3689 rctl_entity_p_t e;
3690 kproject_t *pj;
3691
3692 nvlist_t *nvl = za->nvlist;
3693 nvpair_t *nvp = NULL;
3694
3695 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3696 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3697 PTOU(pp)->u_argc = 0;
3698 PTOU(pp)->u_argv = NULL;
3699 PTOU(pp)->u_envp = NULL;
3700 PTOU(pp)->u_commpagep = NULL;
3701 closeall(P_FINFO(pp));
3702
3703 /*
3704 * We are this zone's "zsched" process. As the zone isn't generally
3705 * visible yet we don't need to grab any locks before initializing its
3706 * zone_proc pointer.
3707 */
3708 zone_hold(zone); /* this hold is released by zone_destroy() */
3709 zone->zone_zsched = pp;
3710 mutex_enter(&pp->p_lock);
3711 pp->p_zone = zone;
3712 mutex_exit(&pp->p_lock);
3713
3714 /*
3715 * Disassociate process from its 'parent'; parent ourselves to init
3716 * (pid 1) and change other values as needed.
3717 */
3718 sess_create();
3719
3720 mutex_enter(&pidlock);
3721 proc_detach(pp);
3722 pp->p_ppid = 1;
3723 pp->p_flag |= SZONETOP;
3724 pp->p_ancpid = 1;
3725 pp->p_parent = initp;
3726 pp->p_psibling = NULL;
3727 if (initp->p_child)
3728 initp->p_child->p_psibling = pp;
3729 pp->p_sibling = initp->p_child;
3730 initp->p_child = pp;
3731
3732 /* Decrement what newproc() incremented. */
3733 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3734 /*
3735 * Our credentials are about to become kcred-like, so we don't care
3736 * about the caller's ruid.
3737 */
3738 upcount_inc(crgetruid(kcred), zone->zone_id);
3739 mutex_exit(&pidlock);
3740
3741 /*
3742 * getting out of global zone, so decrement lwp and process counts
3743 */
3744 pj = pp->p_task->tk_proj;
3745 mutex_enter(&global_zone->zone_nlwps_lock);
3746 pj->kpj_nlwps -= pp->p_lwpcnt;
3747 global_zone->zone_nlwps -= pp->p_lwpcnt;
3748 pj->kpj_nprocs--;
3749 global_zone->zone_nprocs--;
3750 mutex_exit(&global_zone->zone_nlwps_lock);
3751
3752 /*
3753 * Decrement locked memory counts on old zone and project.
3754 */
3755 mutex_enter(&global_zone->zone_mem_lock);
3756 global_zone->zone_locked_mem -= pp->p_locked_mem;
3757 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3758 mutex_exit(&global_zone->zone_mem_lock);
3759
3760 /*
3761 * Create and join a new task in project '0' of this zone.
3762 *
3763 * We don't need to call holdlwps() since we know we're the only lwp in
3764 * this process.
3765 *
3766 * task_join() returns with p_lock held.
3767 */
3768 tk = task_create(0, zone);
3769 mutex_enter(&cpu_lock);
3770 oldtk = task_join(tk, 0);
3771
3772 pj = pp->p_task->tk_proj;
3773
3774 mutex_enter(&zone->zone_mem_lock);
3775 zone->zone_locked_mem += pp->p_locked_mem;
3776 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3777 mutex_exit(&zone->zone_mem_lock);
3778
3779 /*
3780 * add lwp and process counts to zsched's zone, and increment
3781 * project's task and process count due to the task created in
3782 * the above task_create.
3783 */
3784 mutex_enter(&zone->zone_nlwps_lock);
3785 pj->kpj_nlwps += pp->p_lwpcnt;
3786 pj->kpj_ntasks += 1;
3787 zone->zone_nlwps += pp->p_lwpcnt;
3788 pj->kpj_nprocs++;
3789 zone->zone_nprocs++;
3790 mutex_exit(&zone->zone_nlwps_lock);
3791
3792 mutex_exit(&curproc->p_lock);
3793 mutex_exit(&cpu_lock);
3794 task_rele(oldtk);
3795
3796 /*
3797 * The process was created by a process in the global zone, hence the
3798 * credentials are wrong. We might as well have kcred-ish credentials.
3799 */
3800 cr = zone->zone_kcred;
3801 crhold(cr);
3802 mutex_enter(&pp->p_crlock);
3803 oldcred = pp->p_cred;
3804 pp->p_cred = cr;
3805 mutex_exit(&pp->p_crlock);
3806 crfree(oldcred);
3807
3808 /*
3809 * Hold credentials again (for thread)
3810 */
3811 crhold(cr);
3812
3813 /*
3814 * p_lwpcnt can't change since this is a kernel process.
3815 */
3816 crset(pp, cr);
3817
3818 /*
3819 * Chroot
3820 */
3821 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3822 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3823
3824 /*
3825 * Initialize zone's rctl set.
3826 */
3827 set = rctl_set_create();
3828 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3829 mutex_enter(&pp->p_lock);
3830 e.rcep_p.zone = zone;
3831 e.rcep_t = RCENTITY_ZONE;
3832 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3833 mutex_exit(&pp->p_lock);
3834 rctl_prealloc_destroy(gp);
3835
3836 /*
3837 * Apply the rctls passed in to zone_create(). This is basically a list
3838 * assignment: all of the old values are removed and the new ones
3839 * inserted. That is, if an empty list is passed in, all values are
3840 * removed.
3841 */
3842 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3843 rctl_dict_entry_t *rde;
3844 rctl_hndl_t hndl;
3845 char *name;
3846 nvlist_t **nvlarray;
3847 uint_t i, nelem;
3848 int error; /* For ASSERT()s */
3849
3850 name = nvpair_name(nvp);
3851 hndl = rctl_hndl_lookup(name);
3852 ASSERT(hndl != -1);
3853 rde = rctl_dict_lookup_hndl(hndl);
3854 ASSERT(rde != NULL);
3855
3856 for (; /* ever */; ) {
3857 rctl_val_t oval;
3858
3859 mutex_enter(&pp->p_lock);
3860 error = rctl_local_get(hndl, NULL, &oval, pp);
3861 mutex_exit(&pp->p_lock);
3862 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3863 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3864 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3865 break;
3866 mutex_enter(&pp->p_lock);
3867 error = rctl_local_delete(hndl, &oval, pp);
3868 mutex_exit(&pp->p_lock);
3869 ASSERT(error == 0);
3870 }
3871 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3872 ASSERT(error == 0);
3873 for (i = 0; i < nelem; i++) {
3874 rctl_val_t *nvalp;
3875
3876 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3877 error = nvlist2rctlval(nvlarray[i], nvalp);
3878 ASSERT(error == 0);
3879 /*
3880 * rctl_local_insert can fail if the value being
3881 * inserted is a duplicate; this is OK.
3882 */
3883 mutex_enter(&pp->p_lock);
3884 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3885 kmem_cache_free(rctl_val_cache, nvalp);
3886 mutex_exit(&pp->p_lock);
3887 }
3888 }
3889 /*
3890 * Tell the world that we're done setting up.
3891 *
3892 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3893 * and atomically set the zone's processor set visibility. Once
3894 * we drop pool_lock() this zone will automatically get updated
3895 * to reflect any future changes to the pools configuration.
3896 *
3897 * Note that after we drop the locks below (zonehash_lock in
3898 * particular) other operations such as a zone_getattr call can
3899 * now proceed and observe the zone. That is the reason for doing a
3900 * state transition to the INITIALIZED state.
3901 */
3902 pool_lock();
3903 mutex_enter(&cpu_lock);
3904 mutex_enter(&zonehash_lock);
3905 zone_uniqid(zone);
3906 zone_zsd_configure(zone);
3907 if (pool_state == POOL_ENABLED)
3908 zone_pset_set(zone, pool_default->pool_pset->pset_id);
3909 mutex_enter(&zone_status_lock);
3910 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3911 zone_status_set(zone, ZONE_IS_INITIALIZED);
3912 mutex_exit(&zone_status_lock);
3913 mutex_exit(&zonehash_lock);
3914 mutex_exit(&cpu_lock);
3915 pool_unlock();
3916
3917 /* Now call the create callback for this key */
3918 zsd_apply_all_keys(zsd_apply_create, zone);
3919
3920 /* The callbacks are complete. Mark ZONE_IS_READY */
3921 mutex_enter(&zone_status_lock);
3922 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3923 zone_status_set(zone, ZONE_IS_READY);
3924 mutex_exit(&zone_status_lock);
3925
3926 /*
3927 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3928 * we launch init, and set the state to running.
3929 */
3930 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3931
3932 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3933 id_t cid;
3934
3935 /*
3936 * Ok, this is a little complicated. We need to grab the
3937 * zone's pool's scheduling class ID; note that by now, we
3938 * are already bound to a pool if we need to be (zoneadmd
3939 * will have done that to us while we're in the READY
3940 * state). *But* the scheduling class for the zone's 'init'
3941 * must be explicitly passed to newproc, which doesn't
3942 * respect pool bindings.
3943 *
3944 * We hold the pool_lock across the call to newproc() to
3945 * close the obvious race: the pool's scheduling class
3946 * could change before we manage to create the LWP with
3947 * classid 'cid'.
3948 */
3949 pool_lock();
3950 if (zone->zone_defaultcid > 0)
3951 cid = zone->zone_defaultcid;
3952 else
3953 cid = pool_get_class(zone->zone_pool);
3954 if (cid == -1)
3955 cid = defaultcid;
3956
3957 /*
3958 * If this fails, zone_boot will ultimately fail. The
3959 * state of the zone will be set to SHUTTING_DOWN-- userland
3960 * will have to tear down the zone, and fail, or try again.
3961 */
3962 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3963 minclsyspri - 1, &ct, 0)) != 0) {
3964 mutex_enter(&zone_status_lock);
3965 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3966 mutex_exit(&zone_status_lock);
3967 } else {
3968 zone->zone_boot_time = gethrestime_sec();
3969 }
3970
3971 pool_unlock();
3972 }
3973
3974 /*
3975 * Wait for zone_destroy() to be called. This is what we spend
3976 * most of our life doing.
3977 */
3978 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3979
3980 if (ct)
3981 /*
3982 * At this point the process contract should be empty.
3983 * (Though if it isn't, it's not the end of the world.)
3984 */
3985 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3986
3987 /*
3988 * Allow kcred to be freed when all referring processes
3989 * (including this one) go away. We can't just do this in
3990 * zone_free because we need to wait for the zone_cred_ref to
3991 * drop to 0 before calling zone_free, and the existence of
3992 * zone_kcred will prevent that. Thus, we call crfree here to
3993 * balance the crdup in zone_create. The crhold calls earlier
3994 * in zsched will be dropped when the thread and process exit.
3995 */
3996 crfree(zone->zone_kcred);
3997 zone->zone_kcred = NULL;
3998
3999 exit(CLD_EXITED, 0);
4000 }
4001
4002 /*
4003 * Helper function to determine if there are any submounts of the
4004 * provided path. Used to make sure the zone doesn't "inherit" any
4005 * mounts from before it is created.
4006 */
4007 static uint_t
zone_mount_count(const char * rootpath)4008 zone_mount_count(const char *rootpath)
4009 {
4010 vfs_t *vfsp;
4011 uint_t count = 0;
4012 size_t rootpathlen = strlen(rootpath);
4013
4014 /*
4015 * Holding zonehash_lock prevents race conditions with
4016 * vfs_list_add()/vfs_list_remove() since we serialize with
4017 * zone_find_by_path().
4018 */
4019 ASSERT(MUTEX_HELD(&zonehash_lock));
4020 /*
4021 * The rootpath must end with a '/'
4022 */
4023 ASSERT(rootpath[rootpathlen - 1] == '/');
4024
4025 /*
4026 * This intentionally does not count the rootpath itself if that
4027 * happens to be a mount point.
4028 */
4029 vfs_list_read_lock();
4030 vfsp = rootvfs;
4031 do {
4032 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4033 rootpathlen) == 0)
4034 count++;
4035 vfsp = vfsp->vfs_next;
4036 } while (vfsp != rootvfs);
4037 vfs_list_unlock();
4038 return (count);
4039 }
4040
4041 /*
4042 * Helper function to make sure that a zone created on 'rootpath'
4043 * wouldn't end up containing other zones' rootpaths.
4044 */
4045 static boolean_t
zone_is_nested(const char * rootpath)4046 zone_is_nested(const char *rootpath)
4047 {
4048 zone_t *zone;
4049 size_t rootpathlen = strlen(rootpath);
4050 size_t len;
4051
4052 ASSERT(MUTEX_HELD(&zonehash_lock));
4053
4054 /*
4055 * zone_set_root() appended '/' and '\0' at the end of rootpath
4056 */
4057 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4058 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4059 return (B_TRUE);
4060
4061 for (zone = list_head(&zone_active); zone != NULL;
4062 zone = list_next(&zone_active, zone)) {
4063 if (zone == global_zone)
4064 continue;
4065 len = strlen(zone->zone_rootpath);
4066 if (strncmp(rootpath, zone->zone_rootpath,
4067 MIN(rootpathlen, len)) == 0)
4068 return (B_TRUE);
4069 }
4070 return (B_FALSE);
4071 }
4072
4073 static int
zone_set_privset(zone_t * zone,const priv_set_t * zone_privs,size_t zone_privssz)4074 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4075 size_t zone_privssz)
4076 {
4077 priv_set_t *privs;
4078
4079 if (zone_privssz < sizeof (priv_set_t))
4080 return (ENOMEM);
4081
4082 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4083
4084 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4085 kmem_free(privs, sizeof (priv_set_t));
4086 return (EFAULT);
4087 }
4088
4089 zone->zone_privset = privs;
4090 return (0);
4091 }
4092
4093 /*
4094 * We make creative use of nvlists to pass in rctls from userland. The list is
4095 * a list of the following structures:
4096 *
4097 * (name = rctl_name, value = nvpair_list_array)
4098 *
4099 * Where each element of the nvpair_list_array is of the form:
4100 *
4101 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4102 * (name = "limit", value = uint64_t),
4103 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4104 */
4105 static int
parse_rctls(caddr_t ubuf,size_t buflen,nvlist_t ** nvlp)4106 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4107 {
4108 nvpair_t *nvp = NULL;
4109 nvlist_t *nvl = NULL;
4110 char *kbuf;
4111 int error;
4112 rctl_val_t rv;
4113
4114 *nvlp = NULL;
4115
4116 if (buflen == 0)
4117 return (0);
4118
4119 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4120 return (ENOMEM);
4121 if (copyin(ubuf, kbuf, buflen)) {
4122 error = EFAULT;
4123 goto out;
4124 }
4125 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4126 /*
4127 * nvl may have been allocated/free'd, but the value set to
4128 * non-NULL, so we reset it here.
4129 */
4130 nvl = NULL;
4131 error = EINVAL;
4132 goto out;
4133 }
4134 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4135 rctl_dict_entry_t *rde;
4136 rctl_hndl_t hndl;
4137 nvlist_t **nvlarray;
4138 uint_t i, nelem;
4139 char *name;
4140
4141 error = EINVAL;
4142 name = nvpair_name(nvp);
4143 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4144 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4145 goto out;
4146 }
4147 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4148 goto out;
4149 }
4150 rde = rctl_dict_lookup_hndl(hndl);
4151 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4152 ASSERT(error == 0);
4153 for (i = 0; i < nelem; i++) {
4154 if (error = nvlist2rctlval(nvlarray[i], &rv))
4155 goto out;
4156 }
4157 if (rctl_invalid_value(rde, &rv)) {
4158 error = EINVAL;
4159 goto out;
4160 }
4161 }
4162 error = 0;
4163 *nvlp = nvl;
4164 out:
4165 kmem_free(kbuf, buflen);
4166 if (error && nvl != NULL)
4167 nvlist_free(nvl);
4168 return (error);
4169 }
4170
4171 int
zone_create_error(int er_error,int er_ext,int * er_out)4172 zone_create_error(int er_error, int er_ext, int *er_out) {
4173 if (er_out != NULL) {
4174 if (copyout(&er_ext, er_out, sizeof (int))) {
4175 return (set_errno(EFAULT));
4176 }
4177 }
4178 return (set_errno(er_error));
4179 }
4180
4181 static int
zone_set_label(zone_t * zone,const bslabel_t * lab,uint32_t doi)4182 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4183 {
4184 ts_label_t *tsl;
4185 bslabel_t blab;
4186
4187 /* Get label from user */
4188 if (copyin(lab, &blab, sizeof (blab)) != 0)
4189 return (EFAULT);
4190 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4191 if (tsl == NULL)
4192 return (ENOMEM);
4193
4194 zone->zone_slabel = tsl;
4195 return (0);
4196 }
4197
4198 /*
4199 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4200 */
4201 static int
parse_zfs(zone_t * zone,caddr_t ubuf,size_t buflen)4202 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4203 {
4204 char *kbuf;
4205 char *dataset, *next;
4206 zone_dataset_t *zd;
4207 size_t len;
4208
4209 if (ubuf == NULL || buflen == 0)
4210 return (0);
4211
4212 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4213 return (ENOMEM);
4214
4215 if (copyin(ubuf, kbuf, buflen) != 0) {
4216 kmem_free(kbuf, buflen);
4217 return (EFAULT);
4218 }
4219
4220 dataset = next = kbuf;
4221 for (;;) {
4222 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4223
4224 next = strchr(dataset, ',');
4225
4226 if (next == NULL)
4227 len = strlen(dataset);
4228 else
4229 len = next - dataset;
4230
4231 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4232 bcopy(dataset, zd->zd_dataset, len);
4233 zd->zd_dataset[len] = '\0';
4234
4235 list_insert_head(&zone->zone_datasets, zd);
4236
4237 if (next == NULL)
4238 break;
4239
4240 dataset = next + 1;
4241 }
4242
4243 kmem_free(kbuf, buflen);
4244 return (0);
4245 }
4246
4247 /*
4248 * System call to create/initialize a new zone named 'zone_name', rooted
4249 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4250 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4251 * with labeling set by 'match', 'doi', and 'label'.
4252 *
4253 * If extended error is non-null, we may use it to return more detailed
4254 * error information.
4255 */
4256 static zoneid_t
zone_create(const char * zone_name,const char * zone_root,const priv_set_t * zone_privs,size_t zone_privssz,caddr_t rctlbuf,size_t rctlbufsz,caddr_t zfsbuf,size_t zfsbufsz,int * extended_error,int match,uint32_t doi,const bslabel_t * label,int flags)4257 zone_create(const char *zone_name, const char *zone_root,
4258 const priv_set_t *zone_privs, size_t zone_privssz,
4259 caddr_t rctlbuf, size_t rctlbufsz,
4260 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4261 int match, uint32_t doi, const bslabel_t *label,
4262 int flags)
4263 {
4264 struct zsched_arg zarg;
4265 nvlist_t *rctls = NULL;
4266 proc_t *pp = curproc;
4267 zone_t *zone, *ztmp;
4268 zoneid_t zoneid;
4269 int error;
4270 int error2 = 0;
4271 char *str;
4272 cred_t *zkcr;
4273 boolean_t insert_label_hash;
4274
4275 if (secpolicy_zone_config(CRED()) != 0)
4276 return (set_errno(EPERM));
4277
4278 /* can't boot zone from within chroot environment */
4279 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4280 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4281 extended_error));
4282
4283 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4284 zoneid = zone->zone_id = id_alloc(zoneid_space);
4285 zone->zone_status = ZONE_IS_UNINITIALIZED;
4286 zone->zone_pool = pool_default;
4287 zone->zone_pool_mod = gethrtime();
4288 zone->zone_psetid = ZONE_PS_INVAL;
4289 zone->zone_ncpus = 0;
4290 zone->zone_ncpus_online = 0;
4291 zone->zone_restart_init = B_TRUE;
4292 zone->zone_brand = &native_brand;
4293 zone->zone_initname = NULL;
4294 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4295 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4296 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4297 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4298 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4299 offsetof(zone_ref_t, zref_linkage));
4300 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4301 offsetof(struct zsd_entry, zsd_linkage));
4302 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4303 offsetof(zone_dataset_t, zd_linkage));
4304 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4305 offsetof(zone_dl_t, zdl_linkage));
4306 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4307 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4308
4309 if (flags & ZCF_NET_EXCL) {
4310 zone->zone_flags |= ZF_NET_EXCL;
4311 }
4312
4313 if ((error = zone_set_name(zone, zone_name)) != 0) {
4314 zone_free(zone);
4315 return (zone_create_error(error, 0, extended_error));
4316 }
4317
4318 if ((error = zone_set_root(zone, zone_root)) != 0) {
4319 zone_free(zone);
4320 return (zone_create_error(error, 0, extended_error));
4321 }
4322 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4323 zone_free(zone);
4324 return (zone_create_error(error, 0, extended_error));
4325 }
4326
4327 /* initialize node name to be the same as zone name */
4328 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4329 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4330 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4331
4332 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4333 zone->zone_domain[0] = '\0';
4334 zone->zone_hostid = HW_INVALID_HOSTID;
4335 zone->zone_shares = 1;
4336 zone->zone_shmmax = 0;
4337 zone->zone_ipc.ipcq_shmmni = 0;
4338 zone->zone_ipc.ipcq_semmni = 0;
4339 zone->zone_ipc.ipcq_msgmni = 0;
4340 zone->zone_bootargs = NULL;
4341 zone->zone_fs_allowed = NULL;
4342 zone->zone_initname =
4343 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4344 (void) strcpy(zone->zone_initname, zone_default_initname);
4345 zone->zone_nlwps = 0;
4346 zone->zone_nlwps_ctl = INT_MAX;
4347 zone->zone_nprocs = 0;
4348 zone->zone_nprocs_ctl = INT_MAX;
4349 zone->zone_locked_mem = 0;
4350 zone->zone_locked_mem_ctl = UINT64_MAX;
4351 zone->zone_max_swap = 0;
4352 zone->zone_max_swap_ctl = UINT64_MAX;
4353 zone->zone_max_lofi = 0;
4354 zone->zone_max_lofi_ctl = UINT64_MAX;
4355 zone0.zone_lockedmem_kstat = NULL;
4356 zone0.zone_swapresv_kstat = NULL;
4357
4358 /*
4359 * Zsched initializes the rctls.
4360 */
4361 zone->zone_rctls = NULL;
4362
4363 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4364 zone_free(zone);
4365 return (zone_create_error(error, 0, extended_error));
4366 }
4367
4368 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4369 zone_free(zone);
4370 return (set_errno(error));
4371 }
4372
4373 /*
4374 * Read in the trusted system parameters:
4375 * match flag and sensitivity label.
4376 */
4377 zone->zone_match = match;
4378 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4379 /* Fail if requested to set doi to anything but system's doi */
4380 if (doi != 0 && doi != default_doi) {
4381 zone_free(zone);
4382 return (set_errno(EINVAL));
4383 }
4384 /* Always apply system's doi to the zone */
4385 error = zone_set_label(zone, label, default_doi);
4386 if (error != 0) {
4387 zone_free(zone);
4388 return (set_errno(error));
4389 }
4390 insert_label_hash = B_TRUE;
4391 } else {
4392 /* all zones get an admin_low label if system is not labeled */
4393 zone->zone_slabel = l_admin_low;
4394 label_hold(l_admin_low);
4395 insert_label_hash = B_FALSE;
4396 }
4397
4398 /*
4399 * Stop all lwps since that's what normally happens as part of fork().
4400 * This needs to happen before we grab any locks to avoid deadlock
4401 * (another lwp in the process could be waiting for the held lock).
4402 */
4403 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4404 zone_free(zone);
4405 if (rctls)
4406 nvlist_free(rctls);
4407 return (zone_create_error(error, 0, extended_error));
4408 }
4409
4410 if (block_mounts(zone) == 0) {
4411 mutex_enter(&pp->p_lock);
4412 if (curthread != pp->p_agenttp)
4413 continuelwps(pp);
4414 mutex_exit(&pp->p_lock);
4415 zone_free(zone);
4416 if (rctls)
4417 nvlist_free(rctls);
4418 return (zone_create_error(error, 0, extended_error));
4419 }
4420
4421 /*
4422 * Set up credential for kernel access. After this, any errors
4423 * should go through the dance in errout rather than calling
4424 * zone_free directly.
4425 */
4426 zone->zone_kcred = crdup(kcred);
4427 crsetzone(zone->zone_kcred, zone);
4428 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4429 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4430 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4431 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4432
4433 mutex_enter(&zonehash_lock);
4434 /*
4435 * Make sure zone doesn't already exist.
4436 *
4437 * If the system and zone are labeled,
4438 * make sure no other zone exists that has the same label.
4439 */
4440 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4441 (insert_label_hash &&
4442 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4443 zone_status_t status;
4444
4445 status = zone_status_get(ztmp);
4446 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4447 error = EEXIST;
4448 else
4449 error = EBUSY;
4450
4451 if (insert_label_hash)
4452 error2 = ZE_LABELINUSE;
4453
4454 goto errout;
4455 }
4456
4457 /*
4458 * Don't allow zone creations which would cause one zone's rootpath to
4459 * be accessible from that of another (non-global) zone.
4460 */
4461 if (zone_is_nested(zone->zone_rootpath)) {
4462 error = EBUSY;
4463 goto errout;
4464 }
4465
4466 ASSERT(zonecount != 0); /* check for leaks */
4467 if (zonecount + 1 > maxzones) {
4468 error = ENOMEM;
4469 goto errout;
4470 }
4471
4472 if (zone_mount_count(zone->zone_rootpath) != 0) {
4473 error = EBUSY;
4474 error2 = ZE_AREMOUNTS;
4475 goto errout;
4476 }
4477
4478 /*
4479 * Zone is still incomplete, but we need to drop all locks while
4480 * zsched() initializes this zone's kernel process. We
4481 * optimistically add the zone to the hashtable and associated
4482 * lists so a parallel zone_create() doesn't try to create the
4483 * same zone.
4484 */
4485 zonecount++;
4486 (void) mod_hash_insert(zonehashbyid,
4487 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4488 (mod_hash_val_t)(uintptr_t)zone);
4489 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4490 (void) strcpy(str, zone->zone_name);
4491 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4492 (mod_hash_val_t)(uintptr_t)zone);
4493 if (insert_label_hash) {
4494 (void) mod_hash_insert(zonehashbylabel,
4495 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4496 zone->zone_flags |= ZF_HASHED_LABEL;
4497 }
4498
4499 /*
4500 * Insert into active list. At this point there are no 'hold's
4501 * on the zone, but everyone else knows not to use it, so we can
4502 * continue to use it. zsched() will do a zone_hold() if the
4503 * newproc() is successful.
4504 */
4505 list_insert_tail(&zone_active, zone);
4506 mutex_exit(&zonehash_lock);
4507
4508 zarg.zone = zone;
4509 zarg.nvlist = rctls;
4510 /*
4511 * The process, task, and project rctls are probably wrong;
4512 * we need an interface to get the default values of all rctls,
4513 * and initialize zsched appropriately. I'm not sure that that
4514 * makes much of a difference, though.
4515 */
4516 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4517 if (error != 0) {
4518 /*
4519 * We need to undo all globally visible state.
4520 */
4521 mutex_enter(&zonehash_lock);
4522 list_remove(&zone_active, zone);
4523 if (zone->zone_flags & ZF_HASHED_LABEL) {
4524 ASSERT(zone->zone_slabel != NULL);
4525 (void) mod_hash_destroy(zonehashbylabel,
4526 (mod_hash_key_t)zone->zone_slabel);
4527 }
4528 (void) mod_hash_destroy(zonehashbyname,
4529 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4530 (void) mod_hash_destroy(zonehashbyid,
4531 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4532 ASSERT(zonecount > 1);
4533 zonecount--;
4534 goto errout;
4535 }
4536
4537 /*
4538 * Zone creation can't fail from now on.
4539 */
4540
4541 /*
4542 * Create zone kstats
4543 */
4544 zone_kstat_create(zone);
4545
4546 /*
4547 * Let the other lwps continue.
4548 */
4549 mutex_enter(&pp->p_lock);
4550 if (curthread != pp->p_agenttp)
4551 continuelwps(pp);
4552 mutex_exit(&pp->p_lock);
4553
4554 /*
4555 * Wait for zsched to finish initializing the zone.
4556 */
4557 zone_status_wait(zone, ZONE_IS_READY);
4558 /*
4559 * The zone is fully visible, so we can let mounts progress.
4560 */
4561 resume_mounts(zone);
4562 if (rctls)
4563 nvlist_free(rctls);
4564
4565 return (zoneid);
4566
4567 errout:
4568 mutex_exit(&zonehash_lock);
4569 /*
4570 * Let the other lwps continue.
4571 */
4572 mutex_enter(&pp->p_lock);
4573 if (curthread != pp->p_agenttp)
4574 continuelwps(pp);
4575 mutex_exit(&pp->p_lock);
4576
4577 resume_mounts(zone);
4578 if (rctls)
4579 nvlist_free(rctls);
4580 /*
4581 * There is currently one reference to the zone, a cred_ref from
4582 * zone_kcred. To free the zone, we call crfree, which will call
4583 * zone_cred_rele, which will call zone_free.
4584 */
4585 ASSERT(zone->zone_cred_ref == 1);
4586 ASSERT(zone->zone_kcred->cr_ref == 1);
4587 ASSERT(zone->zone_ref == 0);
4588 zkcr = zone->zone_kcred;
4589 zone->zone_kcred = NULL;
4590 crfree(zkcr); /* triggers call to zone_free */
4591 return (zone_create_error(error, error2, extended_error));
4592 }
4593
4594 /*
4595 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4596 * the heavy lifting. initname is the path to the program to launch
4597 * at the "top" of the zone; if this is NULL, we use the system default,
4598 * which is stored at zone_default_initname.
4599 */
4600 static int
zone_boot(zoneid_t zoneid)4601 zone_boot(zoneid_t zoneid)
4602 {
4603 int err;
4604 zone_t *zone;
4605
4606 if (secpolicy_zone_config(CRED()) != 0)
4607 return (set_errno(EPERM));
4608 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4609 return (set_errno(EINVAL));
4610
4611 mutex_enter(&zonehash_lock);
4612 /*
4613 * Look for zone under hash lock to prevent races with calls to
4614 * zone_shutdown, zone_destroy, etc.
4615 */
4616 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4617 mutex_exit(&zonehash_lock);
4618 return (set_errno(EINVAL));
4619 }
4620
4621 mutex_enter(&zone_status_lock);
4622 if (zone_status_get(zone) != ZONE_IS_READY) {
4623 mutex_exit(&zone_status_lock);
4624 mutex_exit(&zonehash_lock);
4625 return (set_errno(EINVAL));
4626 }
4627 zone_status_set(zone, ZONE_IS_BOOTING);
4628 mutex_exit(&zone_status_lock);
4629
4630 zone_hold(zone); /* so we can use the zone_t later */
4631 mutex_exit(&zonehash_lock);
4632
4633 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4634 zone_rele(zone);
4635 return (set_errno(EINTR));
4636 }
4637
4638 /*
4639 * Boot (starting init) might have failed, in which case the zone
4640 * will go to the SHUTTING_DOWN state; an appropriate errno will
4641 * be placed in zone->zone_boot_err, and so we return that.
4642 */
4643 err = zone->zone_boot_err;
4644 zone_rele(zone);
4645 return (err ? set_errno(err) : 0);
4646 }
4647
4648 /*
4649 * Kills all user processes in the zone, waiting for them all to exit
4650 * before returning.
4651 */
4652 static int
zone_empty(zone_t * zone)4653 zone_empty(zone_t *zone)
4654 {
4655 int waitstatus;
4656
4657 /*
4658 * We need to drop zonehash_lock before killing all
4659 * processes, otherwise we'll deadlock with zone_find_*
4660 * which can be called from the exit path.
4661 */
4662 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4663 while ((waitstatus = zone_status_timedwait_sig(zone,
4664 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4665 killall(zone->zone_id);
4666 }
4667 /*
4668 * return EINTR if we were signaled
4669 */
4670 if (waitstatus == 0)
4671 return (EINTR);
4672 return (0);
4673 }
4674
4675 /*
4676 * This function implements the policy for zone visibility.
4677 *
4678 * In standard Solaris, a non-global zone can only see itself.
4679 *
4680 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4681 * it dominates. For this test, the label of the global zone is treated as
4682 * admin_high so it is special-cased instead of being checked for dominance.
4683 *
4684 * Returns true if zone attributes are viewable, false otherwise.
4685 */
4686 static boolean_t
zone_list_access(zone_t * zone)4687 zone_list_access(zone_t *zone)
4688 {
4689
4690 if (curproc->p_zone == global_zone ||
4691 curproc->p_zone == zone) {
4692 return (B_TRUE);
4693 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4694 bslabel_t *curproc_label;
4695 bslabel_t *zone_label;
4696
4697 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4698 zone_label = label2bslabel(zone->zone_slabel);
4699
4700 if (zone->zone_id != GLOBAL_ZONEID &&
4701 bldominates(curproc_label, zone_label)) {
4702 return (B_TRUE);
4703 } else {
4704 return (B_FALSE);
4705 }
4706 } else {
4707 return (B_FALSE);
4708 }
4709 }
4710
4711 /*
4712 * Systemcall to start the zone's halt sequence. By the time this
4713 * function successfully returns, all user processes and kernel threads
4714 * executing in it will have exited, ZSD shutdown callbacks executed,
4715 * and the zone status set to ZONE_IS_DOWN.
4716 *
4717 * It is possible that the call will interrupt itself if the caller is the
4718 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4719 */
4720 static int
zone_shutdown(zoneid_t zoneid)4721 zone_shutdown(zoneid_t zoneid)
4722 {
4723 int error;
4724 zone_t *zone;
4725 zone_status_t status;
4726
4727 if (secpolicy_zone_config(CRED()) != 0)
4728 return (set_errno(EPERM));
4729 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4730 return (set_errno(EINVAL));
4731
4732 mutex_enter(&zonehash_lock);
4733 /*
4734 * Look for zone under hash lock to prevent races with other
4735 * calls to zone_shutdown and zone_destroy.
4736 */
4737 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4738 mutex_exit(&zonehash_lock);
4739 return (set_errno(EINVAL));
4740 }
4741
4742 /*
4743 * We have to drop zonehash_lock before calling block_mounts.
4744 * Hold the zone so we can continue to use the zone_t.
4745 */
4746 zone_hold(zone);
4747 mutex_exit(&zonehash_lock);
4748
4749 /*
4750 * Block mounts so that VFS_MOUNT() can get an accurate view of
4751 * the zone's status with regards to ZONE_IS_SHUTTING down.
4752 *
4753 * e.g. NFS can fail the mount if it determines that the zone
4754 * has already begun the shutdown sequence.
4755 *
4756 */
4757 if (block_mounts(zone) == 0) {
4758 zone_rele(zone);
4759 return (set_errno(EINTR));
4760 }
4761
4762 mutex_enter(&zonehash_lock);
4763 mutex_enter(&zone_status_lock);
4764 status = zone_status_get(zone);
4765 /*
4766 * Fail if the zone isn't fully initialized yet.
4767 */
4768 if (status < ZONE_IS_READY) {
4769 mutex_exit(&zone_status_lock);
4770 mutex_exit(&zonehash_lock);
4771 resume_mounts(zone);
4772 zone_rele(zone);
4773 return (set_errno(EINVAL));
4774 }
4775 /*
4776 * If conditions required for zone_shutdown() to return have been met,
4777 * return success.
4778 */
4779 if (status >= ZONE_IS_DOWN) {
4780 mutex_exit(&zone_status_lock);
4781 mutex_exit(&zonehash_lock);
4782 resume_mounts(zone);
4783 zone_rele(zone);
4784 return (0);
4785 }
4786 /*
4787 * If zone_shutdown() hasn't been called before, go through the motions.
4788 * If it has, there's nothing to do but wait for the kernel threads to
4789 * drain.
4790 */
4791 if (status < ZONE_IS_EMPTY) {
4792 uint_t ntasks;
4793
4794 mutex_enter(&zone->zone_lock);
4795 if ((ntasks = zone->zone_ntasks) != 1) {
4796 /*
4797 * There's still stuff running.
4798 */
4799 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4800 }
4801 mutex_exit(&zone->zone_lock);
4802 if (ntasks == 1) {
4803 /*
4804 * The only way to create another task is through
4805 * zone_enter(), which will block until we drop
4806 * zonehash_lock. The zone is empty.
4807 */
4808 if (zone->zone_kthreads == NULL) {
4809 /*
4810 * Skip ahead to ZONE_IS_DOWN
4811 */
4812 zone_status_set(zone, ZONE_IS_DOWN);
4813 } else {
4814 zone_status_set(zone, ZONE_IS_EMPTY);
4815 }
4816 }
4817 }
4818 mutex_exit(&zone_status_lock);
4819 mutex_exit(&zonehash_lock);
4820 resume_mounts(zone);
4821
4822 if (error = zone_empty(zone)) {
4823 zone_rele(zone);
4824 return (set_errno(error));
4825 }
4826 /*
4827 * After the zone status goes to ZONE_IS_DOWN this zone will no
4828 * longer be notified of changes to the pools configuration, so
4829 * in order to not end up with a stale pool pointer, we point
4830 * ourselves at the default pool and remove all resource
4831 * visibility. This is especially important as the zone_t may
4832 * languish on the deathrow for a very long time waiting for
4833 * cred's to drain out.
4834 *
4835 * This rebinding of the zone can happen multiple times
4836 * (presumably due to interrupted or parallel systemcalls)
4837 * without any adverse effects.
4838 */
4839 if (pool_lock_intr() != 0) {
4840 zone_rele(zone);
4841 return (set_errno(EINTR));
4842 }
4843 if (pool_state == POOL_ENABLED) {
4844 mutex_enter(&cpu_lock);
4845 zone_pool_set(zone, pool_default);
4846 /*
4847 * The zone no longer needs to be able to see any cpus.
4848 */
4849 zone_pset_set(zone, ZONE_PS_INVAL);
4850 mutex_exit(&cpu_lock);
4851 }
4852 pool_unlock();
4853
4854 /*
4855 * ZSD shutdown callbacks can be executed multiple times, hence
4856 * it is safe to not be holding any locks across this call.
4857 */
4858 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4859
4860 mutex_enter(&zone_status_lock);
4861 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4862 zone_status_set(zone, ZONE_IS_DOWN);
4863 mutex_exit(&zone_status_lock);
4864
4865 /*
4866 * Wait for kernel threads to drain.
4867 */
4868 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4869 zone_rele(zone);
4870 return (set_errno(EINTR));
4871 }
4872
4873 /*
4874 * Zone can be become down/destroyable even if the above wait
4875 * returns EINTR, so any code added here may never execute.
4876 * (i.e. don't add code here)
4877 */
4878
4879 zone_rele(zone);
4880 return (0);
4881 }
4882
4883 /*
4884 * Log the specified zone's reference counts. The caller should not be
4885 * holding the zone's zone_lock.
4886 */
4887 static void
zone_log_refcounts(zone_t * zone)4888 zone_log_refcounts(zone_t *zone)
4889 {
4890 char *buffer;
4891 char *buffer_position;
4892 uint32_t buffer_size;
4893 uint32_t index;
4894 uint_t ref;
4895 uint_t cred_ref;
4896
4897 /*
4898 * Construct a string representing the subsystem-specific reference
4899 * counts. The counts are printed in ascending order by index into the
4900 * zone_t::zone_subsys_ref array. The list will be surrounded by
4901 * square brackets [] and will only contain nonzero reference counts.
4902 *
4903 * The buffer will hold two square bracket characters plus ten digits,
4904 * one colon, one space, one comma, and some characters for a
4905 * subsystem name per subsystem-specific reference count. (Unsigned 32-
4906 * bit integers have at most ten decimal digits.) The last
4907 * reference count's comma is replaced by the closing square
4908 * bracket and a NULL character to terminate the string.
4909 *
4910 * NOTE: We have to grab the zone's zone_lock to create a consistent
4911 * snapshot of the zone's reference counters.
4912 *
4913 * First, figure out how much space the string buffer will need.
4914 * The buffer's size is stored in buffer_size.
4915 */
4916 buffer_size = 2; /* for the square brackets */
4917 mutex_enter(&zone->zone_lock);
4918 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4919 ref = zone->zone_ref;
4920 cred_ref = zone->zone_cred_ref;
4921 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4922 if (zone->zone_subsys_ref[index] != 0)
4923 buffer_size += strlen(zone_ref_subsys_names[index]) +
4924 13;
4925 if (buffer_size == 2) {
4926 /*
4927 * No subsystems had nonzero reference counts. Don't bother
4928 * with allocating a buffer; just log the general-purpose and
4929 * credential reference counts.
4930 */
4931 mutex_exit(&zone->zone_lock);
4932 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4933 "Zone '%s' (ID: %d) is shutting down, but %u zone "
4934 "references and %u credential references are still extant",
4935 zone->zone_name, zone->zone_id, ref, cred_ref);
4936 return;
4937 }
4938
4939 /*
4940 * buffer_size contains the exact number of characters that the
4941 * buffer will need. Allocate the buffer and fill it with nonzero
4942 * subsystem-specific reference counts. Surround the results with
4943 * square brackets afterwards.
4944 */
4945 buffer = kmem_alloc(buffer_size, KM_SLEEP);
4946 buffer_position = &buffer[1];
4947 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4948 /*
4949 * NOTE: The DDI's version of sprintf() returns a pointer to
4950 * the modified buffer rather than the number of bytes written
4951 * (as in snprintf(3C)). This is unfortunate and annoying.
4952 * Therefore, we'll use snprintf() with INT_MAX to get the
4953 * number of bytes written. Using INT_MAX is safe because
4954 * the buffer is perfectly sized for the data: we'll never
4955 * overrun the buffer.
4956 */
4957 if (zone->zone_subsys_ref[index] != 0)
4958 buffer_position += snprintf(buffer_position, INT_MAX,
4959 "%s: %u,", zone_ref_subsys_names[index],
4960 zone->zone_subsys_ref[index]);
4961 }
4962 mutex_exit(&zone->zone_lock);
4963 buffer[0] = '[';
4964 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4965 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4966 buffer_position[-1] = ']';
4967
4968 /*
4969 * Log the reference counts and free the message buffer.
4970 */
4971 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4972 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4973 "%u credential references are still extant %s", zone->zone_name,
4974 zone->zone_id, ref, cred_ref, buffer);
4975 kmem_free(buffer, buffer_size);
4976 }
4977
4978 /*
4979 * Systemcall entry point to finalize the zone halt process. The caller
4980 * must have already successfully called zone_shutdown().
4981 *
4982 * Upon successful completion, the zone will have been fully destroyed:
4983 * zsched will have exited, destructor callbacks executed, and the zone
4984 * removed from the list of active zones.
4985 */
4986 static int
zone_destroy(zoneid_t zoneid)4987 zone_destroy(zoneid_t zoneid)
4988 {
4989 uint64_t uniqid;
4990 zone_t *zone;
4991 zone_status_t status;
4992 clock_t wait_time;
4993 boolean_t log_refcounts;
4994
4995 if (secpolicy_zone_config(CRED()) != 0)
4996 return (set_errno(EPERM));
4997 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4998 return (set_errno(EINVAL));
4999
5000 mutex_enter(&zonehash_lock);
5001 /*
5002 * Look for zone under hash lock to prevent races with other
5003 * calls to zone_destroy.
5004 */
5005 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5006 mutex_exit(&zonehash_lock);
5007 return (set_errno(EINVAL));
5008 }
5009
5010 if (zone_mount_count(zone->zone_rootpath) != 0) {
5011 mutex_exit(&zonehash_lock);
5012 return (set_errno(EBUSY));
5013 }
5014 mutex_enter(&zone_status_lock);
5015 status = zone_status_get(zone);
5016 if (status < ZONE_IS_DOWN) {
5017 mutex_exit(&zone_status_lock);
5018 mutex_exit(&zonehash_lock);
5019 return (set_errno(EBUSY));
5020 } else if (status == ZONE_IS_DOWN) {
5021 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5022 }
5023 mutex_exit(&zone_status_lock);
5024 zone_hold(zone);
5025 mutex_exit(&zonehash_lock);
5026
5027 /*
5028 * wait for zsched to exit
5029 */
5030 zone_status_wait(zone, ZONE_IS_DEAD);
5031 zone_zsd_callbacks(zone, ZSD_DESTROY);
5032 zone->zone_netstack = NULL;
5033 uniqid = zone->zone_uniqid;
5034 zone_rele(zone);
5035 zone = NULL; /* potentially free'd */
5036
5037 log_refcounts = B_FALSE;
5038 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5039 mutex_enter(&zonehash_lock);
5040 for (; /* ever */; ) {
5041 boolean_t unref;
5042 boolean_t refs_have_been_logged;
5043
5044 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5045 zone->zone_uniqid != uniqid) {
5046 /*
5047 * The zone has gone away. Necessary conditions
5048 * are met, so we return success.
5049 */
5050 mutex_exit(&zonehash_lock);
5051 return (0);
5052 }
5053 mutex_enter(&zone->zone_lock);
5054 unref = ZONE_IS_UNREF(zone);
5055 refs_have_been_logged = (zone->zone_flags &
5056 ZF_REFCOUNTS_LOGGED);
5057 mutex_exit(&zone->zone_lock);
5058 if (unref) {
5059 /*
5060 * There is only one reference to the zone -- that
5061 * added when the zone was added to the hashtables --
5062 * and things will remain this way until we drop
5063 * zonehash_lock... we can go ahead and cleanup the
5064 * zone.
5065 */
5066 break;
5067 }
5068
5069 /*
5070 * Wait for zone_rele_common() or zone_cred_rele() to signal
5071 * zone_destroy_cv. zone_destroy_cv is signaled only when
5072 * some zone's general-purpose reference count reaches one.
5073 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5074 * on zone_destroy_cv, then log the zone's reference counts and
5075 * continue to wait for zone_rele() and zone_cred_rele().
5076 */
5077 if (!refs_have_been_logged) {
5078 if (!log_refcounts) {
5079 /*
5080 * This thread hasn't timed out waiting on
5081 * zone_destroy_cv yet. Wait wait_time clock
5082 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5083 * seconds) for the zone's references to clear.
5084 */
5085 ASSERT(wait_time > 0);
5086 wait_time = cv_reltimedwait_sig(
5087 &zone_destroy_cv, &zonehash_lock, wait_time,
5088 TR_SEC);
5089 if (wait_time > 0) {
5090 /*
5091 * A thread in zone_rele() or
5092 * zone_cred_rele() signaled
5093 * zone_destroy_cv before this thread's
5094 * wait timed out. The zone might have
5095 * only one reference left; find out!
5096 */
5097 continue;
5098 } else if (wait_time == 0) {
5099 /* The thread's process was signaled. */
5100 mutex_exit(&zonehash_lock);
5101 return (set_errno(EINTR));
5102 }
5103
5104 /*
5105 * The thread timed out while waiting on
5106 * zone_destroy_cv. Even though the thread
5107 * timed out, it has to check whether another
5108 * thread woke up from zone_destroy_cv and
5109 * destroyed the zone.
5110 *
5111 * If the zone still exists and has more than
5112 * one unreleased general-purpose reference,
5113 * then log the zone's reference counts.
5114 */
5115 log_refcounts = B_TRUE;
5116 continue;
5117 }
5118
5119 /*
5120 * The thread already timed out on zone_destroy_cv while
5121 * waiting for subsystems to release the zone's last
5122 * general-purpose references. Log the zone's reference
5123 * counts and wait indefinitely on zone_destroy_cv.
5124 */
5125 zone_log_refcounts(zone);
5126 }
5127 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5128 /* The thread's process was signaled. */
5129 mutex_exit(&zonehash_lock);
5130 return (set_errno(EINTR));
5131 }
5132 }
5133
5134 /*
5135 * Remove CPU cap for this zone now since we're not going to
5136 * fail below this point.
5137 */
5138 cpucaps_zone_remove(zone);
5139
5140 /* Get rid of the zone's kstats */
5141 zone_kstat_delete(zone);
5142
5143 /* remove the pfexecd doors */
5144 if (zone->zone_pfexecd != NULL) {
5145 klpd_freelist(&zone->zone_pfexecd);
5146 zone->zone_pfexecd = NULL;
5147 }
5148
5149 /* free brand specific data */
5150 if (ZONE_IS_BRANDED(zone))
5151 ZBROP(zone)->b_free_brand_data(zone);
5152
5153 /* Say goodbye to brand framework. */
5154 brand_unregister_zone(zone->zone_brand);
5155
5156 /*
5157 * It is now safe to let the zone be recreated; remove it from the
5158 * lists. The memory will not be freed until the last cred
5159 * reference goes away.
5160 */
5161 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5162 zonecount--;
5163 /* remove from active list and hash tables */
5164 list_remove(&zone_active, zone);
5165 (void) mod_hash_destroy(zonehashbyname,
5166 (mod_hash_key_t)zone->zone_name);
5167 (void) mod_hash_destroy(zonehashbyid,
5168 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5169 if (zone->zone_flags & ZF_HASHED_LABEL)
5170 (void) mod_hash_destroy(zonehashbylabel,
5171 (mod_hash_key_t)zone->zone_slabel);
5172 mutex_exit(&zonehash_lock);
5173
5174 /*
5175 * Release the root vnode; we're not using it anymore. Nor should any
5176 * other thread that might access it exist.
5177 */
5178 if (zone->zone_rootvp != NULL) {
5179 VN_RELE(zone->zone_rootvp);
5180 zone->zone_rootvp = NULL;
5181 }
5182
5183 /* add to deathrow list */
5184 mutex_enter(&zone_deathrow_lock);
5185 list_insert_tail(&zone_deathrow, zone);
5186 mutex_exit(&zone_deathrow_lock);
5187
5188 /*
5189 * Drop last reference (which was added by zsched()), this will
5190 * free the zone unless there are outstanding cred references.
5191 */
5192 zone_rele(zone);
5193 return (0);
5194 }
5195
5196 /*
5197 * Systemcall entry point for zone_getattr(2).
5198 */
5199 static ssize_t
zone_getattr(zoneid_t zoneid,int attr,void * buf,size_t bufsize)5200 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5201 {
5202 size_t size;
5203 int error = 0, err;
5204 zone_t *zone;
5205 char *zonepath;
5206 char *outstr;
5207 zone_status_t zone_status;
5208 pid_t initpid;
5209 boolean_t global = (curzone == global_zone);
5210 boolean_t inzone = (curzone->zone_id == zoneid);
5211 ushort_t flags;
5212 zone_net_data_t *zbuf;
5213
5214 mutex_enter(&zonehash_lock);
5215 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5216 mutex_exit(&zonehash_lock);
5217 return (set_errno(EINVAL));
5218 }
5219 zone_status = zone_status_get(zone);
5220 if (zone_status < ZONE_IS_INITIALIZED) {
5221 mutex_exit(&zonehash_lock);
5222 return (set_errno(EINVAL));
5223 }
5224 zone_hold(zone);
5225 mutex_exit(&zonehash_lock);
5226
5227 /*
5228 * If not in the global zone, don't show information about other zones,
5229 * unless the system is labeled and the local zone's label dominates
5230 * the other zone.
5231 */
5232 if (!zone_list_access(zone)) {
5233 zone_rele(zone);
5234 return (set_errno(EINVAL));
5235 }
5236
5237 switch (attr) {
5238 case ZONE_ATTR_ROOT:
5239 if (global) {
5240 /*
5241 * Copy the path to trim the trailing "/" (except for
5242 * the global zone).
5243 */
5244 if (zone != global_zone)
5245 size = zone->zone_rootpathlen - 1;
5246 else
5247 size = zone->zone_rootpathlen;
5248 zonepath = kmem_alloc(size, KM_SLEEP);
5249 bcopy(zone->zone_rootpath, zonepath, size);
5250 zonepath[size - 1] = '\0';
5251 } else {
5252 if (inzone || !is_system_labeled()) {
5253 /*
5254 * Caller is not in the global zone.
5255 * if the query is on the current zone
5256 * or the system is not labeled,
5257 * just return faked-up path for current zone.
5258 */
5259 zonepath = "/";
5260 size = 2;
5261 } else {
5262 /*
5263 * Return related path for current zone.
5264 */
5265 int prefix_len = strlen(zone_prefix);
5266 int zname_len = strlen(zone->zone_name);
5267
5268 size = prefix_len + zname_len + 1;
5269 zonepath = kmem_alloc(size, KM_SLEEP);
5270 bcopy(zone_prefix, zonepath, prefix_len);
5271 bcopy(zone->zone_name, zonepath +
5272 prefix_len, zname_len);
5273 zonepath[size - 1] = '\0';
5274 }
5275 }
5276 if (bufsize > size)
5277 bufsize = size;
5278 if (buf != NULL) {
5279 err = copyoutstr(zonepath, buf, bufsize, NULL);
5280 if (err != 0 && err != ENAMETOOLONG)
5281 error = EFAULT;
5282 }
5283 if (global || (is_system_labeled() && !inzone))
5284 kmem_free(zonepath, size);
5285 break;
5286
5287 case ZONE_ATTR_NAME:
5288 size = strlen(zone->zone_name) + 1;
5289 if (bufsize > size)
5290 bufsize = size;
5291 if (buf != NULL) {
5292 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5293 if (err != 0 && err != ENAMETOOLONG)
5294 error = EFAULT;
5295 }
5296 break;
5297
5298 case ZONE_ATTR_STATUS:
5299 /*
5300 * Since we're not holding zonehash_lock, the zone status
5301 * may be anything; leave it up to userland to sort it out.
5302 */
5303 size = sizeof (zone_status);
5304 if (bufsize > size)
5305 bufsize = size;
5306 zone_status = zone_status_get(zone);
5307 if (buf != NULL &&
5308 copyout(&zone_status, buf, bufsize) != 0)
5309 error = EFAULT;
5310 break;
5311 case ZONE_ATTR_FLAGS:
5312 size = sizeof (zone->zone_flags);
5313 if (bufsize > size)
5314 bufsize = size;
5315 flags = zone->zone_flags;
5316 if (buf != NULL &&
5317 copyout(&flags, buf, bufsize) != 0)
5318 error = EFAULT;
5319 break;
5320 case ZONE_ATTR_PRIVSET:
5321 size = sizeof (priv_set_t);
5322 if (bufsize > size)
5323 bufsize = size;
5324 if (buf != NULL &&
5325 copyout(zone->zone_privset, buf, bufsize) != 0)
5326 error = EFAULT;
5327 break;
5328 case ZONE_ATTR_UNIQID:
5329 size = sizeof (zone->zone_uniqid);
5330 if (bufsize > size)
5331 bufsize = size;
5332 if (buf != NULL &&
5333 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5334 error = EFAULT;
5335 break;
5336 case ZONE_ATTR_POOLID:
5337 {
5338 pool_t *pool;
5339 poolid_t poolid;
5340
5341 if (pool_lock_intr() != 0) {
5342 error = EINTR;
5343 break;
5344 }
5345 pool = zone_pool_get(zone);
5346 poolid = pool->pool_id;
5347 pool_unlock();
5348 size = sizeof (poolid);
5349 if (bufsize > size)
5350 bufsize = size;
5351 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5352 error = EFAULT;
5353 }
5354 break;
5355 case ZONE_ATTR_SLBL:
5356 size = sizeof (bslabel_t);
5357 if (bufsize > size)
5358 bufsize = size;
5359 if (zone->zone_slabel == NULL)
5360 error = EINVAL;
5361 else if (buf != NULL &&
5362 copyout(label2bslabel(zone->zone_slabel), buf,
5363 bufsize) != 0)
5364 error = EFAULT;
5365 break;
5366 case ZONE_ATTR_INITPID:
5367 size = sizeof (initpid);
5368 if (bufsize > size)
5369 bufsize = size;
5370 initpid = zone->zone_proc_initpid;
5371 if (initpid == -1) {
5372 error = ESRCH;
5373 break;
5374 }
5375 if (buf != NULL &&
5376 copyout(&initpid, buf, bufsize) != 0)
5377 error = EFAULT;
5378 break;
5379 case ZONE_ATTR_BRAND:
5380 size = strlen(zone->zone_brand->b_name) + 1;
5381
5382 if (bufsize > size)
5383 bufsize = size;
5384 if (buf != NULL) {
5385 err = copyoutstr(zone->zone_brand->b_name, buf,
5386 bufsize, NULL);
5387 if (err != 0 && err != ENAMETOOLONG)
5388 error = EFAULT;
5389 }
5390 break;
5391 case ZONE_ATTR_INITNAME:
5392 size = strlen(zone->zone_initname) + 1;
5393 if (bufsize > size)
5394 bufsize = size;
5395 if (buf != NULL) {
5396 err = copyoutstr(zone->zone_initname, buf, bufsize,
5397 NULL);
5398 if (err != 0 && err != ENAMETOOLONG)
5399 error = EFAULT;
5400 }
5401 break;
5402 case ZONE_ATTR_BOOTARGS:
5403 if (zone->zone_bootargs == NULL)
5404 outstr = "";
5405 else
5406 outstr = zone->zone_bootargs;
5407 size = strlen(outstr) + 1;
5408 if (bufsize > size)
5409 bufsize = size;
5410 if (buf != NULL) {
5411 err = copyoutstr(outstr, buf, bufsize, NULL);
5412 if (err != 0 && err != ENAMETOOLONG)
5413 error = EFAULT;
5414 }
5415 break;
5416 case ZONE_ATTR_PHYS_MCAP:
5417 size = sizeof (zone->zone_phys_mcap);
5418 if (bufsize > size)
5419 bufsize = size;
5420 if (buf != NULL &&
5421 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5422 error = EFAULT;
5423 break;
5424 case ZONE_ATTR_SCHED_CLASS:
5425 mutex_enter(&class_lock);
5426
5427 if (zone->zone_defaultcid >= loaded_classes)
5428 outstr = "";
5429 else
5430 outstr = sclass[zone->zone_defaultcid].cl_name;
5431 size = strlen(outstr) + 1;
5432 if (bufsize > size)
5433 bufsize = size;
5434 if (buf != NULL) {
5435 err = copyoutstr(outstr, buf, bufsize, NULL);
5436 if (err != 0 && err != ENAMETOOLONG)
5437 error = EFAULT;
5438 }
5439
5440 mutex_exit(&class_lock);
5441 break;
5442 case ZONE_ATTR_HOSTID:
5443 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5444 bufsize == sizeof (zone->zone_hostid)) {
5445 size = sizeof (zone->zone_hostid);
5446 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5447 bufsize) != 0)
5448 error = EFAULT;
5449 } else {
5450 error = EINVAL;
5451 }
5452 break;
5453 case ZONE_ATTR_FS_ALLOWED:
5454 if (zone->zone_fs_allowed == NULL)
5455 outstr = "";
5456 else
5457 outstr = zone->zone_fs_allowed;
5458 size = strlen(outstr) + 1;
5459 if (bufsize > size)
5460 bufsize = size;
5461 if (buf != NULL) {
5462 err = copyoutstr(outstr, buf, bufsize, NULL);
5463 if (err != 0 && err != ENAMETOOLONG)
5464 error = EFAULT;
5465 }
5466 break;
5467 case ZONE_ATTR_NETWORK:
5468 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5469 if (copyin(buf, zbuf, bufsize) != 0) {
5470 error = EFAULT;
5471 } else {
5472 error = zone_get_network(zoneid, zbuf);
5473 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5474 error = EFAULT;
5475 }
5476 kmem_free(zbuf, bufsize);
5477 break;
5478 default:
5479 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5480 size = bufsize;
5481 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5482 } else {
5483 error = EINVAL;
5484 }
5485 }
5486 zone_rele(zone);
5487
5488 if (error)
5489 return (set_errno(error));
5490 return ((ssize_t)size);
5491 }
5492
5493 /*
5494 * Systemcall entry point for zone_setattr(2).
5495 */
5496 /*ARGSUSED*/
5497 static int
zone_setattr(zoneid_t zoneid,int attr,void * buf,size_t bufsize)5498 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5499 {
5500 zone_t *zone;
5501 zone_status_t zone_status;
5502 int err = -1;
5503 zone_net_data_t *zbuf;
5504
5505 if (secpolicy_zone_config(CRED()) != 0)
5506 return (set_errno(EPERM));
5507
5508 /*
5509 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5510 * global zone.
5511 */
5512 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5513 return (set_errno(EINVAL));
5514 }
5515
5516 mutex_enter(&zonehash_lock);
5517 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5518 mutex_exit(&zonehash_lock);
5519 return (set_errno(EINVAL));
5520 }
5521 zone_hold(zone);
5522 mutex_exit(&zonehash_lock);
5523
5524 /*
5525 * At present most attributes can only be set on non-running,
5526 * non-global zones.
5527 */
5528 zone_status = zone_status_get(zone);
5529 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5530 err = EINVAL;
5531 goto done;
5532 }
5533
5534 switch (attr) {
5535 case ZONE_ATTR_INITNAME:
5536 err = zone_set_initname(zone, (const char *)buf);
5537 break;
5538 case ZONE_ATTR_INITNORESTART:
5539 zone->zone_restart_init = B_FALSE;
5540 err = 0;
5541 break;
5542 case ZONE_ATTR_BOOTARGS:
5543 err = zone_set_bootargs(zone, (const char *)buf);
5544 break;
5545 case ZONE_ATTR_BRAND:
5546 err = zone_set_brand(zone, (const char *)buf);
5547 break;
5548 case ZONE_ATTR_FS_ALLOWED:
5549 err = zone_set_fs_allowed(zone, (const char *)buf);
5550 break;
5551 case ZONE_ATTR_PHYS_MCAP:
5552 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5553 break;
5554 case ZONE_ATTR_SCHED_CLASS:
5555 err = zone_set_sched_class(zone, (const char *)buf);
5556 break;
5557 case ZONE_ATTR_HOSTID:
5558 if (bufsize == sizeof (zone->zone_hostid)) {
5559 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5560 err = 0;
5561 else
5562 err = EFAULT;
5563 } else {
5564 err = EINVAL;
5565 }
5566 break;
5567 case ZONE_ATTR_NETWORK:
5568 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5569 err = EINVAL;
5570 break;
5571 }
5572 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5573 if (copyin(buf, zbuf, bufsize) != 0) {
5574 kmem_free(zbuf, bufsize);
5575 err = EFAULT;
5576 break;
5577 }
5578 err = zone_set_network(zoneid, zbuf);
5579 kmem_free(zbuf, bufsize);
5580 break;
5581 default:
5582 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5583 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5584 else
5585 err = EINVAL;
5586 }
5587
5588 done:
5589 zone_rele(zone);
5590 ASSERT(err != -1);
5591 return (err != 0 ? set_errno(err) : 0);
5592 }
5593
5594 /*
5595 * Return zero if the process has at least one vnode mapped in to its
5596 * address space which shouldn't be allowed to change zones.
5597 *
5598 * Also return zero if the process has any shared mappings which reserve
5599 * swap. This is because the counting for zone.max-swap does not allow swap
5600 * reservation to be shared between zones. zone swap reservation is counted
5601 * on zone->zone_max_swap.
5602 */
5603 static int
as_can_change_zones(void)5604 as_can_change_zones(void)
5605 {
5606 proc_t *pp = curproc;
5607 struct seg *seg;
5608 struct as *as = pp->p_as;
5609 vnode_t *vp;
5610 int allow = 1;
5611
5612 ASSERT(pp->p_as != &kas);
5613 AS_LOCK_ENTER(as, RW_READER);
5614 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5615
5616 /*
5617 * Cannot enter zone with shared anon memory which
5618 * reserves swap. See comment above.
5619 */
5620 if (seg_can_change_zones(seg) == B_FALSE) {
5621 allow = 0;
5622 break;
5623 }
5624 /*
5625 * if we can't get a backing vnode for this segment then skip
5626 * it.
5627 */
5628 vp = NULL;
5629 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5630 continue;
5631 if (!vn_can_change_zones(vp)) { /* bail on first match */
5632 allow = 0;
5633 break;
5634 }
5635 }
5636 AS_LOCK_EXIT(as);
5637 return (allow);
5638 }
5639
5640 /*
5641 * Count swap reserved by curproc's address space
5642 */
5643 static size_t
as_swresv(void)5644 as_swresv(void)
5645 {
5646 proc_t *pp = curproc;
5647 struct seg *seg;
5648 struct as *as = pp->p_as;
5649 size_t swap = 0;
5650
5651 ASSERT(pp->p_as != &kas);
5652 ASSERT(AS_WRITE_HELD(as));
5653 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5654 swap += seg_swresv(seg);
5655
5656 return (swap);
5657 }
5658
5659 /*
5660 * Systemcall entry point for zone_enter().
5661 *
5662 * The current process is injected into said zone. In the process
5663 * it will change its project membership, privileges, rootdir/cwd,
5664 * zone-wide rctls, and pool association to match those of the zone.
5665 *
5666 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5667 * state will transition it to ZONE_IS_RUNNING. Processes may only
5668 * enter a zone that is "ready" or "running".
5669 */
5670 static int
zone_enter(zoneid_t zoneid)5671 zone_enter(zoneid_t zoneid)
5672 {
5673 zone_t *zone;
5674 vnode_t *vp;
5675 proc_t *pp = curproc;
5676 contract_t *ct;
5677 cont_process_t *ctp;
5678 task_t *tk, *oldtk;
5679 kproject_t *zone_proj0;
5680 cred_t *cr, *newcr;
5681 pool_t *oldpool, *newpool;
5682 sess_t *sp;
5683 uid_t uid;
5684 zone_status_t status;
5685 int err = 0;
5686 rctl_entity_p_t e;
5687 size_t swap;
5688 kthread_id_t t;
5689
5690 if (secpolicy_zone_config(CRED()) != 0)
5691 return (set_errno(EPERM));
5692 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5693 return (set_errno(EINVAL));
5694
5695 /*
5696 * Stop all lwps so we don't need to hold a lock to look at
5697 * curproc->p_zone. This needs to happen before we grab any
5698 * locks to avoid deadlock (another lwp in the process could
5699 * be waiting for the held lock).
5700 */
5701 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5702 return (set_errno(EINTR));
5703
5704 /*
5705 * Make sure we're not changing zones with files open or mapped in
5706 * to our address space which shouldn't be changing zones.
5707 */
5708 if (!files_can_change_zones()) {
5709 err = EBADF;
5710 goto out;
5711 }
5712 if (!as_can_change_zones()) {
5713 err = EFAULT;
5714 goto out;
5715 }
5716
5717 mutex_enter(&zonehash_lock);
5718 if (pp->p_zone != global_zone) {
5719 mutex_exit(&zonehash_lock);
5720 err = EINVAL;
5721 goto out;
5722 }
5723
5724 zone = zone_find_all_by_id(zoneid);
5725 if (zone == NULL) {
5726 mutex_exit(&zonehash_lock);
5727 err = EINVAL;
5728 goto out;
5729 }
5730
5731 /*
5732 * To prevent processes in a zone from holding contracts on
5733 * extrazonal resources, and to avoid process contract
5734 * memberships which span zones, contract holders and processes
5735 * which aren't the sole members of their encapsulating process
5736 * contracts are not allowed to zone_enter.
5737 */
5738 ctp = pp->p_ct_process;
5739 ct = &ctp->conp_contract;
5740 mutex_enter(&ct->ct_lock);
5741 mutex_enter(&pp->p_lock);
5742 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5743 mutex_exit(&pp->p_lock);
5744 mutex_exit(&ct->ct_lock);
5745 mutex_exit(&zonehash_lock);
5746 err = EINVAL;
5747 goto out;
5748 }
5749
5750 /*
5751 * Moreover, we don't allow processes whose encapsulating
5752 * process contracts have inherited extrazonal contracts.
5753 * While it would be easier to eliminate all process contracts
5754 * with inherited contracts, we need to be able to give a
5755 * restarted init (or other zone-penetrating process) its
5756 * predecessor's contracts.
5757 */
5758 if (ctp->conp_ninherited != 0) {
5759 contract_t *next;
5760 for (next = list_head(&ctp->conp_inherited); next;
5761 next = list_next(&ctp->conp_inherited, next)) {
5762 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5763 mutex_exit(&pp->p_lock);
5764 mutex_exit(&ct->ct_lock);
5765 mutex_exit(&zonehash_lock);
5766 err = EINVAL;
5767 goto out;
5768 }
5769 }
5770 }
5771
5772 mutex_exit(&pp->p_lock);
5773 mutex_exit(&ct->ct_lock);
5774
5775 status = zone_status_get(zone);
5776 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5777 /*
5778 * Can't join
5779 */
5780 mutex_exit(&zonehash_lock);
5781 err = EINVAL;
5782 goto out;
5783 }
5784
5785 /*
5786 * Make sure new priv set is within the permitted set for caller
5787 */
5788 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5789 mutex_exit(&zonehash_lock);
5790 err = EPERM;
5791 goto out;
5792 }
5793 /*
5794 * We want to momentarily drop zonehash_lock while we optimistically
5795 * bind curproc to the pool it should be running in. This is safe
5796 * since the zone can't disappear (we have a hold on it).
5797 */
5798 zone_hold(zone);
5799 mutex_exit(&zonehash_lock);
5800
5801 /*
5802 * Grab pool_lock to keep the pools configuration from changing
5803 * and to stop ourselves from getting rebound to another pool
5804 * until we join the zone.
5805 */
5806 if (pool_lock_intr() != 0) {
5807 zone_rele(zone);
5808 err = EINTR;
5809 goto out;
5810 }
5811 ASSERT(secpolicy_pool(CRED()) == 0);
5812 /*
5813 * Bind ourselves to the pool currently associated with the zone.
5814 */
5815 oldpool = curproc->p_pool;
5816 newpool = zone_pool_get(zone);
5817 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5818 (err = pool_do_bind(newpool, P_PID, P_MYID,
5819 POOL_BIND_ALL)) != 0) {
5820 pool_unlock();
5821 zone_rele(zone);
5822 goto out;
5823 }
5824
5825 /*
5826 * Grab cpu_lock now; we'll need it later when we call
5827 * task_join().
5828 */
5829 mutex_enter(&cpu_lock);
5830 mutex_enter(&zonehash_lock);
5831 /*
5832 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5833 */
5834 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5835 /*
5836 * Can't join anymore.
5837 */
5838 mutex_exit(&zonehash_lock);
5839 mutex_exit(&cpu_lock);
5840 if (pool_state == POOL_ENABLED &&
5841 newpool != oldpool)
5842 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5843 POOL_BIND_ALL);
5844 pool_unlock();
5845 zone_rele(zone);
5846 err = EINVAL;
5847 goto out;
5848 }
5849
5850 /*
5851 * a_lock must be held while transfering locked memory and swap
5852 * reservation from the global zone to the non global zone because
5853 * asynchronous faults on the processes' address space can lock
5854 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5855 * segments respectively.
5856 */
5857 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5858 swap = as_swresv();
5859 mutex_enter(&pp->p_lock);
5860 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5861 /* verify that we do not exceed and task or lwp limits */
5862 mutex_enter(&zone->zone_nlwps_lock);
5863 /* add new lwps to zone and zone's proj0 */
5864 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5865 zone->zone_nlwps += pp->p_lwpcnt;
5866 /* add 1 task to zone's proj0 */
5867 zone_proj0->kpj_ntasks += 1;
5868
5869 zone_proj0->kpj_nprocs++;
5870 zone->zone_nprocs++;
5871 mutex_exit(&zone->zone_nlwps_lock);
5872
5873 mutex_enter(&zone->zone_mem_lock);
5874 zone->zone_locked_mem += pp->p_locked_mem;
5875 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5876 zone->zone_max_swap += swap;
5877 mutex_exit(&zone->zone_mem_lock);
5878
5879 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5880 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5881 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5882
5883 /* remove lwps and process from proc's old zone and old project */
5884 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5885 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5886 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5887 pp->p_task->tk_proj->kpj_nprocs--;
5888 pp->p_zone->zone_nprocs--;
5889 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5890
5891 mutex_enter(&pp->p_zone->zone_mem_lock);
5892 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5893 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5894 pp->p_zone->zone_max_swap -= swap;
5895 mutex_exit(&pp->p_zone->zone_mem_lock);
5896
5897 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5898 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5899 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5900
5901 pp->p_flag |= SZONETOP;
5902 pp->p_zone = zone;
5903 mutex_exit(&pp->p_lock);
5904 AS_LOCK_EXIT(pp->p_as);
5905
5906 /*
5907 * Joining the zone cannot fail from now on.
5908 *
5909 * This means that a lot of the following code can be commonized and
5910 * shared with zsched().
5911 */
5912
5913 /*
5914 * If the process contract fmri was inherited, we need to
5915 * flag this so that any contract status will not leak
5916 * extra zone information, svc_fmri in this case
5917 */
5918 if (ctp->conp_svc_ctid != ct->ct_id) {
5919 mutex_enter(&ct->ct_lock);
5920 ctp->conp_svc_zone_enter = ct->ct_id;
5921 mutex_exit(&ct->ct_lock);
5922 }
5923
5924 /*
5925 * Reset the encapsulating process contract's zone.
5926 */
5927 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5928 contract_setzuniqid(ct, zone->zone_uniqid);
5929
5930 /*
5931 * Create a new task and associate the process with the project keyed
5932 * by (projid,zoneid).
5933 *
5934 * We might as well be in project 0; the global zone's projid doesn't
5935 * make much sense in a zone anyhow.
5936 *
5937 * This also increments zone_ntasks, and returns with p_lock held.
5938 */
5939 tk = task_create(0, zone);
5940 oldtk = task_join(tk, 0);
5941 mutex_exit(&cpu_lock);
5942
5943 /*
5944 * call RCTLOP_SET functions on this proc
5945 */
5946 e.rcep_p.zone = zone;
5947 e.rcep_t = RCENTITY_ZONE;
5948 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5949 RCD_CALLBACK);
5950 mutex_exit(&pp->p_lock);
5951
5952 /*
5953 * We don't need to hold any of zsched's locks here; not only do we know
5954 * the process and zone aren't going away, we know its session isn't
5955 * changing either.
5956 *
5957 * By joining zsched's session here, we mimic the behavior in the
5958 * global zone of init's sid being the pid of sched. We extend this
5959 * to all zlogin-like zone_enter()'ing processes as well.
5960 */
5961 mutex_enter(&pidlock);
5962 sp = zone->zone_zsched->p_sessp;
5963 sess_hold(zone->zone_zsched);
5964 mutex_enter(&pp->p_lock);
5965 pgexit(pp);
5966 sess_rele(pp->p_sessp, B_TRUE);
5967 pp->p_sessp = sp;
5968 pgjoin(pp, zone->zone_zsched->p_pidp);
5969
5970 /*
5971 * If any threads are scheduled to be placed on zone wait queue they
5972 * should abandon the idea since the wait queue is changing.
5973 * We need to be holding pidlock & p_lock to do this.
5974 */
5975 if ((t = pp->p_tlist) != NULL) {
5976 do {
5977 thread_lock(t);
5978 /*
5979 * Kick this thread so that he doesn't sit
5980 * on a wrong wait queue.
5981 */
5982 if (ISWAITING(t))
5983 setrun_locked(t);
5984
5985 if (t->t_schedflag & TS_ANYWAITQ)
5986 t->t_schedflag &= ~ TS_ANYWAITQ;
5987
5988 thread_unlock(t);
5989 } while ((t = t->t_forw) != pp->p_tlist);
5990 }
5991
5992 /*
5993 * If there is a default scheduling class for the zone and it is not
5994 * the class we are currently in, change all of the threads in the
5995 * process to the new class. We need to be holding pidlock & p_lock
5996 * when we call parmsset so this is a good place to do it.
5997 */
5998 if (zone->zone_defaultcid > 0 &&
5999 zone->zone_defaultcid != curthread->t_cid) {
6000 pcparms_t pcparms;
6001
6002 pcparms.pc_cid = zone->zone_defaultcid;
6003 pcparms.pc_clparms[0] = 0;
6004
6005 /*
6006 * If setting the class fails, we still want to enter the zone.
6007 */
6008 if ((t = pp->p_tlist) != NULL) {
6009 do {
6010 (void) parmsset(&pcparms, t);
6011 } while ((t = t->t_forw) != pp->p_tlist);
6012 }
6013 }
6014
6015 mutex_exit(&pp->p_lock);
6016 mutex_exit(&pidlock);
6017
6018 mutex_exit(&zonehash_lock);
6019 /*
6020 * We're firmly in the zone; let pools progress.
6021 */
6022 pool_unlock();
6023 task_rele(oldtk);
6024 /*
6025 * We don't need to retain a hold on the zone since we already
6026 * incremented zone_ntasks, so the zone isn't going anywhere.
6027 */
6028 zone_rele(zone);
6029
6030 /*
6031 * Chroot
6032 */
6033 vp = zone->zone_rootvp;
6034 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6035 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6036
6037 /*
6038 * Change process credentials
6039 */
6040 newcr = cralloc();
6041 mutex_enter(&pp->p_crlock);
6042 cr = pp->p_cred;
6043 crcopy_to(cr, newcr);
6044 crsetzone(newcr, zone);
6045 pp->p_cred = newcr;
6046
6047 /*
6048 * Restrict all process privilege sets to zone limit
6049 */
6050 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6051 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6052 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6053 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6054 mutex_exit(&pp->p_crlock);
6055 crset(pp, newcr);
6056
6057 /*
6058 * Adjust upcount to reflect zone entry.
6059 */
6060 uid = crgetruid(newcr);
6061 mutex_enter(&pidlock);
6062 upcount_dec(uid, GLOBAL_ZONEID);
6063 upcount_inc(uid, zoneid);
6064 mutex_exit(&pidlock);
6065
6066 /*
6067 * Set up core file path and content.
6068 */
6069 set_core_defaults();
6070
6071 out:
6072 /*
6073 * Let the other lwps continue.
6074 */
6075 mutex_enter(&pp->p_lock);
6076 if (curthread != pp->p_agenttp)
6077 continuelwps(pp);
6078 mutex_exit(&pp->p_lock);
6079
6080 return (err != 0 ? set_errno(err) : 0);
6081 }
6082
6083 /*
6084 * Systemcall entry point for zone_list(2).
6085 *
6086 * Processes running in a (non-global) zone only see themselves.
6087 * On labeled systems, they see all zones whose label they dominate.
6088 */
6089 static int
zone_list(zoneid_t * zoneidlist,uint_t * numzones)6090 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6091 {
6092 zoneid_t *zoneids;
6093 zone_t *zone, *myzone;
6094 uint_t user_nzones, real_nzones;
6095 uint_t domi_nzones;
6096 int error;
6097
6098 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6099 return (set_errno(EFAULT));
6100
6101 myzone = curproc->p_zone;
6102 if (myzone != global_zone) {
6103 bslabel_t *mybslab;
6104
6105 if (!is_system_labeled()) {
6106 /* just return current zone */
6107 real_nzones = domi_nzones = 1;
6108 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6109 zoneids[0] = myzone->zone_id;
6110 } else {
6111 /* return all zones that are dominated */
6112 mutex_enter(&zonehash_lock);
6113 real_nzones = zonecount;
6114 domi_nzones = 0;
6115 if (real_nzones > 0) {
6116 zoneids = kmem_alloc(real_nzones *
6117 sizeof (zoneid_t), KM_SLEEP);
6118 mybslab = label2bslabel(myzone->zone_slabel);
6119 for (zone = list_head(&zone_active);
6120 zone != NULL;
6121 zone = list_next(&zone_active, zone)) {
6122 if (zone->zone_id == GLOBAL_ZONEID)
6123 continue;
6124 if (zone != myzone &&
6125 (zone->zone_flags & ZF_IS_SCRATCH))
6126 continue;
6127 /*
6128 * Note that a label always dominates
6129 * itself, so myzone is always included
6130 * in the list.
6131 */
6132 if (bldominates(mybslab,
6133 label2bslabel(zone->zone_slabel))) {
6134 zoneids[domi_nzones++] =
6135 zone->zone_id;
6136 }
6137 }
6138 }
6139 mutex_exit(&zonehash_lock);
6140 }
6141 } else {
6142 mutex_enter(&zonehash_lock);
6143 real_nzones = zonecount;
6144 domi_nzones = 0;
6145 if (real_nzones > 0) {
6146 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6147 KM_SLEEP);
6148 for (zone = list_head(&zone_active); zone != NULL;
6149 zone = list_next(&zone_active, zone))
6150 zoneids[domi_nzones++] = zone->zone_id;
6151 ASSERT(domi_nzones == real_nzones);
6152 }
6153 mutex_exit(&zonehash_lock);
6154 }
6155
6156 /*
6157 * If user has allocated space for fewer entries than we found, then
6158 * return only up to his limit. Either way, tell him exactly how many
6159 * we found.
6160 */
6161 if (domi_nzones < user_nzones)
6162 user_nzones = domi_nzones;
6163 error = 0;
6164 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6165 error = EFAULT;
6166 } else if (zoneidlist != NULL && user_nzones != 0) {
6167 if (copyout(zoneids, zoneidlist,
6168 user_nzones * sizeof (zoneid_t)) != 0)
6169 error = EFAULT;
6170 }
6171
6172 if (real_nzones > 0)
6173 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6174
6175 if (error != 0)
6176 return (set_errno(error));
6177 else
6178 return (0);
6179 }
6180
6181 /*
6182 * Systemcall entry point for zone_lookup(2).
6183 *
6184 * Non-global zones are only able to see themselves and (on labeled systems)
6185 * the zones they dominate.
6186 */
6187 static zoneid_t
zone_lookup(const char * zone_name)6188 zone_lookup(const char *zone_name)
6189 {
6190 char *kname;
6191 zone_t *zone;
6192 zoneid_t zoneid;
6193 int err;
6194
6195 if (zone_name == NULL) {
6196 /* return caller's zone id */
6197 return (getzoneid());
6198 }
6199
6200 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6201 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6202 kmem_free(kname, ZONENAME_MAX);
6203 return (set_errno(err));
6204 }
6205
6206 mutex_enter(&zonehash_lock);
6207 zone = zone_find_all_by_name(kname);
6208 kmem_free(kname, ZONENAME_MAX);
6209 /*
6210 * In a non-global zone, can only lookup global and own name.
6211 * In Trusted Extensions zone label dominance rules apply.
6212 */
6213 if (zone == NULL ||
6214 zone_status_get(zone) < ZONE_IS_READY ||
6215 !zone_list_access(zone)) {
6216 mutex_exit(&zonehash_lock);
6217 return (set_errno(EINVAL));
6218 } else {
6219 zoneid = zone->zone_id;
6220 mutex_exit(&zonehash_lock);
6221 return (zoneid);
6222 }
6223 }
6224
6225 static int
zone_version(int * version_arg)6226 zone_version(int *version_arg)
6227 {
6228 int version = ZONE_SYSCALL_API_VERSION;
6229
6230 if (copyout(&version, version_arg, sizeof (int)) != 0)
6231 return (set_errno(EFAULT));
6232 return (0);
6233 }
6234
6235 /* ARGSUSED */
6236 long
zone(int cmd,void * arg1,void * arg2,void * arg3,void * arg4)6237 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6238 {
6239 zone_def zs;
6240 int err;
6241
6242 switch (cmd) {
6243 case ZONE_CREATE:
6244 if (get_udatamodel() == DATAMODEL_NATIVE) {
6245 if (copyin(arg1, &zs, sizeof (zone_def))) {
6246 return (set_errno(EFAULT));
6247 }
6248 } else {
6249 #ifdef _SYSCALL32_IMPL
6250 zone_def32 zs32;
6251
6252 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6253 return (set_errno(EFAULT));
6254 }
6255 zs.zone_name =
6256 (const char *)(unsigned long)zs32.zone_name;
6257 zs.zone_root =
6258 (const char *)(unsigned long)zs32.zone_root;
6259 zs.zone_privs =
6260 (const struct priv_set *)
6261 (unsigned long)zs32.zone_privs;
6262 zs.zone_privssz = zs32.zone_privssz;
6263 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6264 zs.rctlbufsz = zs32.rctlbufsz;
6265 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6266 zs.zfsbufsz = zs32.zfsbufsz;
6267 zs.extended_error =
6268 (int *)(unsigned long)zs32.extended_error;
6269 zs.match = zs32.match;
6270 zs.doi = zs32.doi;
6271 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6272 zs.flags = zs32.flags;
6273 #else
6274 panic("get_udatamodel() returned bogus result\n");
6275 #endif
6276 }
6277
6278 return (zone_create(zs.zone_name, zs.zone_root,
6279 zs.zone_privs, zs.zone_privssz,
6280 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6281 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6282 zs.extended_error, zs.match, zs.doi,
6283 zs.label, zs.flags));
6284 case ZONE_BOOT:
6285 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6286 case ZONE_DESTROY:
6287 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6288 case ZONE_GETATTR:
6289 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6290 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6291 case ZONE_SETATTR:
6292 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6293 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6294 case ZONE_ENTER:
6295 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6296 case ZONE_LIST:
6297 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6298 case ZONE_SHUTDOWN:
6299 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6300 case ZONE_LOOKUP:
6301 return (zone_lookup((const char *)arg1));
6302 case ZONE_VERSION:
6303 return (zone_version((int *)arg1));
6304 case ZONE_ADD_DATALINK:
6305 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6306 (datalink_id_t)(uintptr_t)arg2));
6307 case ZONE_DEL_DATALINK:
6308 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6309 (datalink_id_t)(uintptr_t)arg2));
6310 case ZONE_CHECK_DATALINK: {
6311 zoneid_t zoneid;
6312 boolean_t need_copyout;
6313
6314 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6315 return (EFAULT);
6316 need_copyout = (zoneid == ALL_ZONES);
6317 err = zone_check_datalink(&zoneid,
6318 (datalink_id_t)(uintptr_t)arg2);
6319 if (err == 0 && need_copyout) {
6320 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6321 err = EFAULT;
6322 }
6323 return (err == 0 ? 0 : set_errno(err));
6324 }
6325 case ZONE_LIST_DATALINK:
6326 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6327 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6328 default:
6329 return (set_errno(EINVAL));
6330 }
6331 }
6332
6333 struct zarg {
6334 zone_t *zone;
6335 zone_cmd_arg_t arg;
6336 };
6337
6338 static int
zone_lookup_door(const char * zone_name,door_handle_t * doorp)6339 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6340 {
6341 char *buf;
6342 size_t buflen;
6343 int error;
6344
6345 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6346 buf = kmem_alloc(buflen, KM_SLEEP);
6347 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6348 error = door_ki_open(buf, doorp);
6349 kmem_free(buf, buflen);
6350 return (error);
6351 }
6352
6353 static void
zone_release_door(door_handle_t * doorp)6354 zone_release_door(door_handle_t *doorp)
6355 {
6356 door_ki_rele(*doorp);
6357 *doorp = NULL;
6358 }
6359
6360 static void
zone_ki_call_zoneadmd(struct zarg * zargp)6361 zone_ki_call_zoneadmd(struct zarg *zargp)
6362 {
6363 door_handle_t door = NULL;
6364 door_arg_t darg, save_arg;
6365 char *zone_name;
6366 size_t zone_namelen;
6367 zoneid_t zoneid;
6368 zone_t *zone;
6369 zone_cmd_arg_t arg;
6370 uint64_t uniqid;
6371 size_t size;
6372 int error;
6373 int retry;
6374
6375 zone = zargp->zone;
6376 arg = zargp->arg;
6377 kmem_free(zargp, sizeof (*zargp));
6378
6379 zone_namelen = strlen(zone->zone_name) + 1;
6380 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6381 bcopy(zone->zone_name, zone_name, zone_namelen);
6382 zoneid = zone->zone_id;
6383 uniqid = zone->zone_uniqid;
6384 /*
6385 * zoneadmd may be down, but at least we can empty out the zone.
6386 * We can ignore the return value of zone_empty() since we're called
6387 * from a kernel thread and know we won't be delivered any signals.
6388 */
6389 ASSERT(curproc == &p0);
6390 (void) zone_empty(zone);
6391 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6392 zone_rele(zone);
6393
6394 size = sizeof (arg);
6395 darg.rbuf = (char *)&arg;
6396 darg.data_ptr = (char *)&arg;
6397 darg.rsize = size;
6398 darg.data_size = size;
6399 darg.desc_ptr = NULL;
6400 darg.desc_num = 0;
6401
6402 save_arg = darg;
6403 /*
6404 * Since we're not holding a reference to the zone, any number of
6405 * things can go wrong, including the zone disappearing before we get a
6406 * chance to talk to zoneadmd.
6407 */
6408 for (retry = 0; /* forever */; retry++) {
6409 if (door == NULL &&
6410 (error = zone_lookup_door(zone_name, &door)) != 0) {
6411 goto next;
6412 }
6413 ASSERT(door != NULL);
6414
6415 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6416 SIZE_MAX, 0)) == 0) {
6417 break;
6418 }
6419 switch (error) {
6420 case EINTR:
6421 /* FALLTHROUGH */
6422 case EAGAIN: /* process may be forking */
6423 /*
6424 * Back off for a bit
6425 */
6426 break;
6427 case EBADF:
6428 zone_release_door(&door);
6429 if (zone_lookup_door(zone_name, &door) != 0) {
6430 /*
6431 * zoneadmd may be dead, but it may come back to
6432 * life later.
6433 */
6434 break;
6435 }
6436 break;
6437 default:
6438 cmn_err(CE_WARN,
6439 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6440 error);
6441 goto out;
6442 }
6443 next:
6444 /*
6445 * If this isn't the same zone_t that we originally had in mind,
6446 * then this is the same as if two kadmin requests come in at
6447 * the same time: the first one wins. This means we lose, so we
6448 * bail.
6449 */
6450 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6451 /*
6452 * Problem is solved.
6453 */
6454 break;
6455 }
6456 if (zone->zone_uniqid != uniqid) {
6457 /*
6458 * zoneid recycled
6459 */
6460 zone_rele(zone);
6461 break;
6462 }
6463 /*
6464 * We could zone_status_timedwait(), but there doesn't seem to
6465 * be much point in doing that (plus, it would mean that
6466 * zone_free() isn't called until this thread exits).
6467 */
6468 zone_rele(zone);
6469 delay(hz);
6470 darg = save_arg;
6471 }
6472 out:
6473 if (door != NULL) {
6474 zone_release_door(&door);
6475 }
6476 kmem_free(zone_name, zone_namelen);
6477 thread_exit();
6478 }
6479
6480 /*
6481 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6482 * kadmin(). The caller is a process in the zone.
6483 *
6484 * In order to shutdown the zone, we will hand off control to zoneadmd
6485 * (running in the global zone) via a door. We do a half-hearted job at
6486 * killing all processes in the zone, create a kernel thread to contact
6487 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6488 * a form of generation number used to let zoneadmd (as well as
6489 * zone_destroy()) know exactly which zone they're re talking about.
6490 */
6491 int
zone_kadmin(int cmd,int fcn,const char * mdep,cred_t * credp)6492 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6493 {
6494 struct zarg *zargp;
6495 zone_cmd_t zcmd;
6496 zone_t *zone;
6497
6498 zone = curproc->p_zone;
6499 ASSERT(getzoneid() != GLOBAL_ZONEID);
6500
6501 switch (cmd) {
6502 case A_SHUTDOWN:
6503 switch (fcn) {
6504 case AD_HALT:
6505 case AD_POWEROFF:
6506 zcmd = Z_HALT;
6507 break;
6508 case AD_BOOT:
6509 zcmd = Z_REBOOT;
6510 break;
6511 case AD_IBOOT:
6512 case AD_SBOOT:
6513 case AD_SIBOOT:
6514 case AD_NOSYNC:
6515 return (ENOTSUP);
6516 default:
6517 return (EINVAL);
6518 }
6519 break;
6520 case A_REBOOT:
6521 zcmd = Z_REBOOT;
6522 break;
6523 case A_FTRACE:
6524 case A_REMOUNT:
6525 case A_FREEZE:
6526 case A_DUMP:
6527 case A_CONFIG:
6528 return (ENOTSUP);
6529 default:
6530 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6531 return (EINVAL);
6532 }
6533
6534 if (secpolicy_zone_admin(credp, B_FALSE))
6535 return (EPERM);
6536 mutex_enter(&zone_status_lock);
6537
6538 /*
6539 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6540 * is in the zone.
6541 */
6542 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6543 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6544 /*
6545 * This zone is already on its way down.
6546 */
6547 mutex_exit(&zone_status_lock);
6548 return (0);
6549 }
6550 /*
6551 * Prevent future zone_enter()s
6552 */
6553 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6554 mutex_exit(&zone_status_lock);
6555
6556 /*
6557 * Kill everyone now and call zoneadmd later.
6558 * zone_ki_call_zoneadmd() will do a more thorough job of this
6559 * later.
6560 */
6561 killall(zone->zone_id);
6562 /*
6563 * Now, create the thread to contact zoneadmd and do the rest of the
6564 * work. This thread can't be created in our zone otherwise
6565 * zone_destroy() would deadlock.
6566 */
6567 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6568 zargp->arg.cmd = zcmd;
6569 zargp->arg.uniqid = zone->zone_uniqid;
6570 zargp->zone = zone;
6571 (void) strcpy(zargp->arg.locale, "C");
6572 /* mdep was already copied in for us by uadmin */
6573 if (mdep != NULL)
6574 (void) strlcpy(zargp->arg.bootbuf, mdep,
6575 sizeof (zargp->arg.bootbuf));
6576 zone_hold(zone);
6577
6578 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6579 TS_RUN, minclsyspri);
6580 exit(CLD_EXITED, 0);
6581
6582 return (EINVAL);
6583 }
6584
6585 /*
6586 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6587 * status to ZONE_IS_SHUTTING_DOWN.
6588 *
6589 * This function also shuts down all running zones to ensure that they won't
6590 * fork new processes.
6591 */
6592 void
zone_shutdown_global(void)6593 zone_shutdown_global(void)
6594 {
6595 zone_t *current_zonep;
6596
6597 ASSERT(INGLOBALZONE(curproc));
6598 mutex_enter(&zonehash_lock);
6599 mutex_enter(&zone_status_lock);
6600
6601 /* Modify the global zone's status first. */
6602 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6603 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6604
6605 /*
6606 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6607 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6608 * could cause assertions to fail (e.g., assertions about a zone's
6609 * state during initialization, readying, or booting) or produce races.
6610 * We'll let threads continue to initialize and ready new zones: they'll
6611 * fail to boot the new zones when they see that the global zone is
6612 * shutting down.
6613 */
6614 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6615 current_zonep = list_next(&zone_active, current_zonep)) {
6616 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6617 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6618 }
6619 mutex_exit(&zone_status_lock);
6620 mutex_exit(&zonehash_lock);
6621 }
6622
6623 /*
6624 * Returns true if the named dataset is visible in the current zone.
6625 * The 'write' parameter is set to 1 if the dataset is also writable.
6626 */
6627 int
zone_dataset_visible(const char * dataset,int * write)6628 zone_dataset_visible(const char *dataset, int *write)
6629 {
6630 static int zfstype = -1;
6631 zone_dataset_t *zd;
6632 size_t len;
6633 zone_t *zone = curproc->p_zone;
6634 const char *name = NULL;
6635 vfs_t *vfsp = NULL;
6636
6637 if (dataset[0] == '\0')
6638 return (0);
6639
6640 /*
6641 * Walk the list once, looking for datasets which match exactly, or
6642 * specify a dataset underneath an exported dataset. If found, return
6643 * true and note that it is writable.
6644 */
6645 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6646 zd = list_next(&zone->zone_datasets, zd)) {
6647
6648 len = strlen(zd->zd_dataset);
6649 if (strlen(dataset) >= len &&
6650 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6651 (dataset[len] == '\0' || dataset[len] == '/' ||
6652 dataset[len] == '@')) {
6653 if (write)
6654 *write = 1;
6655 return (1);
6656 }
6657 }
6658
6659 /*
6660 * Walk the list a second time, searching for datasets which are parents
6661 * of exported datasets. These should be visible, but read-only.
6662 *
6663 * Note that we also have to support forms such as 'pool/dataset/', with
6664 * a trailing slash.
6665 */
6666 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6667 zd = list_next(&zone->zone_datasets, zd)) {
6668
6669 len = strlen(dataset);
6670 if (dataset[len - 1] == '/')
6671 len--; /* Ignore trailing slash */
6672 if (len < strlen(zd->zd_dataset) &&
6673 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6674 zd->zd_dataset[len] == '/') {
6675 if (write)
6676 *write = 0;
6677 return (1);
6678 }
6679 }
6680
6681 /*
6682 * We reach here if the given dataset is not found in the zone_dataset
6683 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6684 * instead of delegation. For this we search for the dataset in the
6685 * zone_vfslist of this zone. If found, return true and note that it is
6686 * not writable.
6687 */
6688
6689 /*
6690 * Initialize zfstype if it is not initialized yet.
6691 */
6692 if (zfstype == -1) {
6693 struct vfssw *vswp = vfs_getvfssw("zfs");
6694 zfstype = vswp - vfssw;
6695 vfs_unrefvfssw(vswp);
6696 }
6697
6698 vfs_list_read_lock();
6699 vfsp = zone->zone_vfslist;
6700 do {
6701 ASSERT(vfsp);
6702 if (vfsp->vfs_fstype == zfstype) {
6703 name = refstr_value(vfsp->vfs_resource);
6704
6705 /*
6706 * Check if we have an exact match.
6707 */
6708 if (strcmp(dataset, name) == 0) {
6709 vfs_list_unlock();
6710 if (write)
6711 *write = 0;
6712 return (1);
6713 }
6714 /*
6715 * We need to check if we are looking for parents of
6716 * a dataset. These should be visible, but read-only.
6717 */
6718 len = strlen(dataset);
6719 if (dataset[len - 1] == '/')
6720 len--;
6721
6722 if (len < strlen(name) &&
6723 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6724 vfs_list_unlock();
6725 if (write)
6726 *write = 0;
6727 return (1);
6728 }
6729 }
6730 vfsp = vfsp->vfs_zone_next;
6731 } while (vfsp != zone->zone_vfslist);
6732
6733 vfs_list_unlock();
6734 return (0);
6735 }
6736
6737 /*
6738 * zone_find_by_any_path() -
6739 *
6740 * kernel-private routine similar to zone_find_by_path(), but which
6741 * effectively compares against zone paths rather than zonerootpath
6742 * (i.e., the last component of zonerootpaths, which should be "root/",
6743 * are not compared.) This is done in order to accurately identify all
6744 * paths, whether zone-visible or not, including those which are parallel
6745 * to /root/, such as /dev/, /home/, etc...
6746 *
6747 * If the specified path does not fall under any zone path then global
6748 * zone is returned.
6749 *
6750 * The treat_abs parameter indicates whether the path should be treated as
6751 * an absolute path although it does not begin with "/". (This supports
6752 * nfs mount syntax such as host:any/path.)
6753 *
6754 * The caller is responsible for zone_rele of the returned zone.
6755 */
6756 zone_t *
zone_find_by_any_path(const char * path,boolean_t treat_abs)6757 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6758 {
6759 zone_t *zone;
6760 int path_offset = 0;
6761
6762 if (path == NULL) {
6763 zone_hold(global_zone);
6764 return (global_zone);
6765 }
6766
6767 if (*path != '/') {
6768 ASSERT(treat_abs);
6769 path_offset = 1;
6770 }
6771
6772 mutex_enter(&zonehash_lock);
6773 for (zone = list_head(&zone_active); zone != NULL;
6774 zone = list_next(&zone_active, zone)) {
6775 char *c;
6776 size_t pathlen;
6777 char *rootpath_start;
6778
6779 if (zone == global_zone) /* skip global zone */
6780 continue;
6781
6782 /* scan backwards to find start of last component */
6783 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6784 do {
6785 c--;
6786 } while (*c != '/');
6787
6788 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6789 rootpath_start = (zone->zone_rootpath + path_offset);
6790 if (strncmp(path, rootpath_start, pathlen) == 0)
6791 break;
6792 }
6793 if (zone == NULL)
6794 zone = global_zone;
6795 zone_hold(zone);
6796 mutex_exit(&zonehash_lock);
6797 return (zone);
6798 }
6799
6800 /*
6801 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6802 * zone_dl_t pointer if found, and NULL otherwise.
6803 */
6804 static zone_dl_t *
zone_find_dl(zone_t * zone,datalink_id_t linkid)6805 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6806 {
6807 zone_dl_t *zdl;
6808
6809 ASSERT(mutex_owned(&zone->zone_lock));
6810 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6811 zdl = list_next(&zone->zone_dl_list, zdl)) {
6812 if (zdl->zdl_id == linkid)
6813 break;
6814 }
6815 return (zdl);
6816 }
6817
6818 static boolean_t
zone_dl_exists(zone_t * zone,datalink_id_t linkid)6819 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6820 {
6821 boolean_t exists;
6822
6823 mutex_enter(&zone->zone_lock);
6824 exists = (zone_find_dl(zone, linkid) != NULL);
6825 mutex_exit(&zone->zone_lock);
6826 return (exists);
6827 }
6828
6829 /*
6830 * Add an data link name for the zone.
6831 */
6832 static int
zone_add_datalink(zoneid_t zoneid,datalink_id_t linkid)6833 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6834 {
6835 zone_dl_t *zdl;
6836 zone_t *zone;
6837 zone_t *thiszone;
6838
6839 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6840 return (set_errno(ENXIO));
6841
6842 /* Verify that the datalink ID doesn't already belong to a zone. */
6843 mutex_enter(&zonehash_lock);
6844 for (zone = list_head(&zone_active); zone != NULL;
6845 zone = list_next(&zone_active, zone)) {
6846 if (zone_dl_exists(zone, linkid)) {
6847 mutex_exit(&zonehash_lock);
6848 zone_rele(thiszone);
6849 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6850 }
6851 }
6852
6853 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6854 zdl->zdl_id = linkid;
6855 zdl->zdl_net = NULL;
6856 mutex_enter(&thiszone->zone_lock);
6857 list_insert_head(&thiszone->zone_dl_list, zdl);
6858 mutex_exit(&thiszone->zone_lock);
6859 mutex_exit(&zonehash_lock);
6860 zone_rele(thiszone);
6861 return (0);
6862 }
6863
6864 static int
zone_remove_datalink(zoneid_t zoneid,datalink_id_t linkid)6865 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6866 {
6867 zone_dl_t *zdl;
6868 zone_t *zone;
6869 int err = 0;
6870
6871 if ((zone = zone_find_by_id(zoneid)) == NULL)
6872 return (set_errno(EINVAL));
6873
6874 mutex_enter(&zone->zone_lock);
6875 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6876 err = ENXIO;
6877 } else {
6878 list_remove(&zone->zone_dl_list, zdl);
6879 if (zdl->zdl_net != NULL)
6880 nvlist_free(zdl->zdl_net);
6881 kmem_free(zdl, sizeof (zone_dl_t));
6882 }
6883 mutex_exit(&zone->zone_lock);
6884 zone_rele(zone);
6885 return (err == 0 ? 0 : set_errno(err));
6886 }
6887
6888 /*
6889 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6890 * the linkid. Otherwise we just check if the specified zoneidp has been
6891 * assigned the supplied linkid.
6892 */
6893 int
zone_check_datalink(zoneid_t * zoneidp,datalink_id_t linkid)6894 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6895 {
6896 zone_t *zone;
6897 int err = ENXIO;
6898
6899 if (*zoneidp != ALL_ZONES) {
6900 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6901 if (zone_dl_exists(zone, linkid))
6902 err = 0;
6903 zone_rele(zone);
6904 }
6905 return (err);
6906 }
6907
6908 mutex_enter(&zonehash_lock);
6909 for (zone = list_head(&zone_active); zone != NULL;
6910 zone = list_next(&zone_active, zone)) {
6911 if (zone_dl_exists(zone, linkid)) {
6912 *zoneidp = zone->zone_id;
6913 err = 0;
6914 break;
6915 }
6916 }
6917 mutex_exit(&zonehash_lock);
6918 return (err);
6919 }
6920
6921 /*
6922 * Get the list of datalink IDs assigned to a zone.
6923 *
6924 * On input, *nump is the number of datalink IDs that can fit in the supplied
6925 * idarray. Upon return, *nump is either set to the number of datalink IDs
6926 * that were placed in the array if the array was large enough, or to the
6927 * number of datalink IDs that the function needs to place in the array if the
6928 * array is too small.
6929 */
6930 static int
zone_list_datalink(zoneid_t zoneid,int * nump,datalink_id_t * idarray)6931 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6932 {
6933 uint_t num, dlcount;
6934 zone_t *zone;
6935 zone_dl_t *zdl;
6936 datalink_id_t *idptr = idarray;
6937
6938 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6939 return (set_errno(EFAULT));
6940 if ((zone = zone_find_by_id(zoneid)) == NULL)
6941 return (set_errno(ENXIO));
6942
6943 num = 0;
6944 mutex_enter(&zone->zone_lock);
6945 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6946 zdl = list_next(&zone->zone_dl_list, zdl)) {
6947 /*
6948 * If the list is bigger than what the caller supplied, just
6949 * count, don't do copyout.
6950 */
6951 if (++num > dlcount)
6952 continue;
6953 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6954 mutex_exit(&zone->zone_lock);
6955 zone_rele(zone);
6956 return (set_errno(EFAULT));
6957 }
6958 idptr++;
6959 }
6960 mutex_exit(&zone->zone_lock);
6961 zone_rele(zone);
6962
6963 /* Increased or decreased, caller should be notified. */
6964 if (num != dlcount) {
6965 if (copyout(&num, nump, sizeof (num)) != 0)
6966 return (set_errno(EFAULT));
6967 }
6968 return (0);
6969 }
6970
6971 /*
6972 * Public interface for looking up a zone by zoneid. It's a customized version
6973 * for netstack_zone_create(). It can only be called from the zsd create
6974 * callbacks, since it doesn't have reference on the zone structure hence if
6975 * it is called elsewhere the zone could disappear after the zonehash_lock
6976 * is dropped.
6977 *
6978 * Furthermore it
6979 * 1. Doesn't check the status of the zone.
6980 * 2. It will be called even before zone_init is called, in that case the
6981 * address of zone0 is returned directly, and netstack_zone_create()
6982 * will only assign a value to zone0.zone_netstack, won't break anything.
6983 * 3. Returns without the zone being held.
6984 */
6985 zone_t *
zone_find_by_id_nolock(zoneid_t zoneid)6986 zone_find_by_id_nolock(zoneid_t zoneid)
6987 {
6988 zone_t *zone;
6989
6990 mutex_enter(&zonehash_lock);
6991 if (zonehashbyid == NULL)
6992 zone = &zone0;
6993 else
6994 zone = zone_find_all_by_id(zoneid);
6995 mutex_exit(&zonehash_lock);
6996 return (zone);
6997 }
6998
6999 /*
7000 * Walk the datalinks for a given zone
7001 */
7002 int
zone_datalink_walk(zoneid_t zoneid,int (* cb)(datalink_id_t,void *),void * data)7003 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7004 void *data)
7005 {
7006 zone_t *zone;
7007 zone_dl_t *zdl;
7008 datalink_id_t *idarray;
7009 uint_t idcount = 0;
7010 int i, ret = 0;
7011
7012 if ((zone = zone_find_by_id(zoneid)) == NULL)
7013 return (ENOENT);
7014
7015 /*
7016 * We first build an array of linkid's so that we can walk these and
7017 * execute the callback with the zone_lock dropped.
7018 */
7019 mutex_enter(&zone->zone_lock);
7020 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7021 zdl = list_next(&zone->zone_dl_list, zdl)) {
7022 idcount++;
7023 }
7024
7025 if (idcount == 0) {
7026 mutex_exit(&zone->zone_lock);
7027 zone_rele(zone);
7028 return (0);
7029 }
7030
7031 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7032 if (idarray == NULL) {
7033 mutex_exit(&zone->zone_lock);
7034 zone_rele(zone);
7035 return (ENOMEM);
7036 }
7037
7038 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7039 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7040 idarray[i] = zdl->zdl_id;
7041 }
7042
7043 mutex_exit(&zone->zone_lock);
7044
7045 for (i = 0; i < idcount && ret == 0; i++) {
7046 if ((ret = (*cb)(idarray[i], data)) != 0)
7047 break;
7048 }
7049
7050 zone_rele(zone);
7051 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7052 return (ret);
7053 }
7054
7055 static char *
zone_net_type2name(int type)7056 zone_net_type2name(int type)
7057 {
7058 switch (type) {
7059 case ZONE_NETWORK_ADDRESS:
7060 return (ZONE_NET_ADDRNAME);
7061 case ZONE_NETWORK_DEFROUTER:
7062 return (ZONE_NET_RTRNAME);
7063 default:
7064 return (NULL);
7065 }
7066 }
7067
7068 static int
zone_set_network(zoneid_t zoneid,zone_net_data_t * znbuf)7069 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7070 {
7071 zone_t *zone;
7072 zone_dl_t *zdl;
7073 nvlist_t *nvl;
7074 int err = 0;
7075 uint8_t *new = NULL;
7076 char *nvname;
7077 int bufsize;
7078 datalink_id_t linkid = znbuf->zn_linkid;
7079
7080 if (secpolicy_zone_config(CRED()) != 0)
7081 return (set_errno(EPERM));
7082
7083 if (zoneid == GLOBAL_ZONEID)
7084 return (set_errno(EINVAL));
7085
7086 nvname = zone_net_type2name(znbuf->zn_type);
7087 bufsize = znbuf->zn_len;
7088 new = znbuf->zn_val;
7089 if (nvname == NULL)
7090 return (set_errno(EINVAL));
7091
7092 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7093 return (set_errno(EINVAL));
7094 }
7095
7096 mutex_enter(&zone->zone_lock);
7097 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7098 err = ENXIO;
7099 goto done;
7100 }
7101 if ((nvl = zdl->zdl_net) == NULL) {
7102 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7103 err = ENOMEM;
7104 goto done;
7105 } else {
7106 zdl->zdl_net = nvl;
7107 }
7108 }
7109 if (nvlist_exists(nvl, nvname)) {
7110 err = EINVAL;
7111 goto done;
7112 }
7113 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7114 ASSERT(err == 0);
7115 done:
7116 mutex_exit(&zone->zone_lock);
7117 zone_rele(zone);
7118 if (err != 0)
7119 return (set_errno(err));
7120 else
7121 return (0);
7122 }
7123
7124 static int
zone_get_network(zoneid_t zoneid,zone_net_data_t * znbuf)7125 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7126 {
7127 zone_t *zone;
7128 zone_dl_t *zdl;
7129 nvlist_t *nvl;
7130 uint8_t *ptr;
7131 uint_t psize;
7132 int err = 0;
7133 char *nvname;
7134 int bufsize;
7135 void *buf;
7136 datalink_id_t linkid = znbuf->zn_linkid;
7137
7138 if (zoneid == GLOBAL_ZONEID)
7139 return (set_errno(EINVAL));
7140
7141 nvname = zone_net_type2name(znbuf->zn_type);
7142 bufsize = znbuf->zn_len;
7143 buf = znbuf->zn_val;
7144
7145 if (nvname == NULL)
7146 return (set_errno(EINVAL));
7147 if ((zone = zone_find_by_id(zoneid)) == NULL)
7148 return (set_errno(EINVAL));
7149
7150 mutex_enter(&zone->zone_lock);
7151 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7152 err = ENXIO;
7153 goto done;
7154 }
7155 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7156 err = ENOENT;
7157 goto done;
7158 }
7159 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7160 ASSERT(err == 0);
7161
7162 if (psize > bufsize) {
7163 err = ENOBUFS;
7164 goto done;
7165 }
7166 znbuf->zn_len = psize;
7167 bcopy(ptr, buf, psize);
7168 done:
7169 mutex_exit(&zone->zone_lock);
7170 zone_rele(zone);
7171 if (err != 0)
7172 return (set_errno(err));
7173 else
7174 return (0);
7175 }
7176