xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_draid.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2018 Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/vdev_draid.h>
32 #include <sys/vdev_raidz.h>
33 #include <sys/vdev_rebuild.h>
34 #include <sys/abd.h>
35 #include <sys/zio.h>
36 #include <sys/nvpair.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/fs/zfs.h>
39 #include <sys/fm/fs/zfs.h>
40 #include <zfs_fletcher.h>
41 
42 #ifdef ZFS_DEBUG
43 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_draid_io_verify() */
44 #endif
45 
46 /*
47  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
48  * comprised of multiple raidz redundancy groups which are spread over the
49  * dRAID children. To ensure an even distribution, and avoid hot spots, a
50  * permutation mapping is applied to the order of the dRAID children.
51  * This mixing effectively distributes the parity columns evenly over all
52  * of the disks in the dRAID.
53  *
54  * This is beneficial because it means when resilvering all of the disks
55  * can participate thereby increasing the available IOPs and bandwidth.
56  * Furthermore, by reserving a small fraction of each child's total capacity
57  * virtual distributed spare disks can be created. These spares similarly
58  * benefit from the performance gains of spanning all of the children. The
59  * consequence of which is that resilvering to a distributed spare can
60  * substantially reduce the time required to restore full parity to pool
61  * with a failed disks.
62  *
63  * === dRAID group layout ===
64  *
65  * First, let's define a "row" in the configuration to be a 16M chunk from
66  * each physical drive at the same offset. This is the minimum allowable
67  * size since it must be possible to store a full 16M block when there is
68  * only a single data column. Next, we define a "group" to be a set of
69  * sequential disks containing both the parity and data columns. We allow
70  * groups to span multiple rows in order to align any group size to any
71  * number of physical drives. Finally, a "slice" is comprised of the rows
72  * which contain the target number of groups. The permutation mappings
73  * are applied in a round robin fashion to each slice.
74  *
75  * Given D+P drives in a group (including parity drives) and C-S physical
76  * drives (not including the spare drives), we can distribute the groups
77  * across R rows without remainder by selecting the least common multiple
78  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
79  *
80  * In the example below, there are C=14 physical drives in the configuration
81  * with S=2 drives worth of spare capacity. Each group has a width of 9
82  * which includes D=8 data and P=1 parity drive. There are 4 groups and
83  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
84  * size is 576M (144M * 4). When allocating from a dRAID each group is
85  * filled before moving on to the next as show in slice0 below.
86  *
87  *             data disks (8 data + 1 parity)          spares (2)
88  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
89  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
90  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
91  *  |  |              group 0              |  group 1..|       |
92  *  |  +-----------------------------------+-----------+-------|
93  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
94  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
95  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
96  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
97  *  s  +-----------------------+-----------------------+-------+
98  *  l  |       ..group 1       |        group 2..      |       |
99  *  i  +-----------------------+-----------------------+-------+
100  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
101  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
102  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
103  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
104  *  |  +-----------+-----------+-----------------------+-------+
105  *  |  |..group 2  |            group 3                |       |
106  *  |  +-----------+-----------+-----------------------+-------+
107  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
108  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
109  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
110  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
111  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
112  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
113  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
114  *  l  |              group 4              |  group 5..|       | row 3
115  *  i  +-----------------------+-----------+-----------+-------|
116  *  c  |       ..group 5       |        group 6..      |       | row 4
117  *  e  +-----------+-----------+-----------------------+-------+
118  *  1  |..group 6  |            group 7                |       | row 5
119  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
120  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
121  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
122  *  l  |              group 8              |  group 9..|       | row 6
123  *  i  +-----------------------------------------------+-------|
124  *  c  |       ..group 9       |        group 10..     |       | row 7
125  *  e  +-----------------------+-----------------------+-------+
126  *  2  |..group 10 |            group 11               |       | row 8
127  *     +-----------+-----------------------------------+-------+
128  *
129  * This layout has several advantages over requiring that each row contain
130  * a whole number of groups.
131  *
132  * 1. The group count is not a relevant parameter when defining a dRAID
133  *    layout. Only the group width is needed, and *all* groups will have
134  *    the desired size.
135  *
136  * 2. All possible group widths (<= physical disk count) can be supported.
137  *
138  * 3. The logic within vdev_draid.c is simplified when the group width is
139  *    the same for all groups (although some of the logic around computing
140  *    permutation numbers and drive offsets is more complicated).
141  *
142  * N.B. The following array describes all valid dRAID permutation maps.
143  * Each row is used to generate a permutation map for a different number
144  * of children from a unique seed. The seeds were generated and carefully
145  * evaluated by the 'draid' utility in order to provide balanced mappings.
146  * In addition to the seed a checksum of the in-memory mapping is stored
147  * for verification.
148  *
149  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
150  * with a given permutation map) is the ratio of the amounts of I/O that will
151  * be sent to the least and most busy disks when resilvering. The average
152  * imbalance ratio (of a given number of disks and permutation map) is the
153  * average of the ratios of all possible single and double disk failures.
154  *
155  * In order to achieve a low imbalance ratio the number of permutations in
156  * the mapping must be significantly larger than the number of children.
157  * For dRAID the number of permutations has been limited to 512 to minimize
158  * the map size. This does result in a gradually increasing imbalance ratio
159  * as seen in the table below. Increasing the number of permutations for
160  * larger child counts would reduce the imbalance ratio. However, in practice
161  * when there are a large number of children each child is responsible for
162  * fewer total IOs so it's less of a concern.
163  *
164  * Note these values are hard coded and must never be changed.  Existing
165  * pools depend on the same mapping always being generated in order to
166  * read and write from the correct locations.  Any change would make
167  * existing pools completely inaccessible.
168  */
169 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
170 	{   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },	/* 1.000 */
171 	{   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },	/* 1.000 */
172 	{   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },	/* 1.000 */
173 	{   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },	/* 1.010 */
174 	{   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },	/* 1.031 */
175 	{   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },	/* 1.043 */
176 	{   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },	/* 1.059 */
177 	{   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },	/* 1.056 */
178 	{  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },	/* 1.072 */
179 	{  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },	/* 1.083 */
180 	{  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },	/* 1.097 */
181 	{  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },	/* 1.100 */
182 	{  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },	/* 1.121 */
183 	{  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },	/* 1.103 */
184 	{  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },	/* 1.111 */
185 	{  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },	/* 1.133 */
186 	{  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },	/* 1.131 */
187 	{  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },	/* 1.130 */
188 	{  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },	/* 1.141 */
189 	{  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },	/* 1.139 */
190 	{  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },	/* 1.150 */
191 	{  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },	/* 1.174 */
192 	{  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },	/* 1.168 */
193 	{  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },	/* 1.180 */
194 	{  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },	/* 1.226 */
195 	{  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },	/* 1.228 */
196 	{  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },	/* 1.217 */
197 	{  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },	/* 1.239 */
198 	{  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },	/* 1.238 */
199 	{  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },	/* 1.273 */
200 	{  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },	/* 1.191 */
201 	{  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },	/* 1.199 */
202 	{  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },	/* 1.195 */
203 	{  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },	/* 1.201 */
204 	{  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },	/* 1.194 */
205 	{  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },	/* 1.237 */
206 	{  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },	/* 1.242 */
207 	{  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },	/* 1.231 */
208 	{  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },	/* 1.233 */
209 	{  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },	/* 1.271 */
210 	{  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },	/* 1.263 */
211 	{  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },	/* 1.270 */
212 	{  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },	/* 1.281 */
213 	{  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },	/* 1.282 */
214 	{  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },	/* 1.286 */
215 	{  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },	/* 1.329 */
216 	{  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },	/* 1.286 */
217 	{  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },	/* 1.322 */
218 	{  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },	/* 1.335 */
219 	{  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },	/* 1.305 */
220 	{  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },	/* 1.330 */
221 	{  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },	/* 1.365 */
222 	{  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },	/* 1.334 */
223 	{  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },	/* 1.364 */
224 	{  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },	/* 1.374 */
225 	{  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },	/* 1.363 */
226 	{  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },	/* 1.401 */
227 	{  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },	/* 1.392 */
228 	{  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },	/* 1.360 */
229 	{  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },	/* 1.396 */
230 	{  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },	/* 1.453 */
231 	{  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },	/* 1.437 */
232 	{  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },	/* 1.402 */
233 	{  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },	/* 1.459 */
234 	{  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },	/* 1.423 */
235 	{  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },	/* 1.447 */
236 	{  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },	/* 1.450 */
237 	{  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },	/* 1.455 */
238 	{  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },	/* 1.463 */
239 	{  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },	/* 1.463 */
240 	{  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },	/* 1.452 */
241 	{  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },	/* 1.498 */
242 	{  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },	/* 1.526 */
243 	{  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },	/* 1.491 */
244 	{  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },	/* 1.470 */
245 	{  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },	/* 1.527 */
246 	{  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },	/* 1.509 */
247 	{  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },	/* 1.569 */
248 	{  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },	/* 1.555 */
249 	{  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },	/* 1.509 */
250 	{  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },	/* 1.596 */
251 	{  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },	/* 1.568 */
252 	{  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },	/* 1.541 */
253 	{  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },	/* 1.623 */
254 	{  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },	/* 1.620 */
255 	{  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },	/* 1.597 */
256 	{  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },	/* 1.575 */
257 	{  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },	/* 1.627 */
258 	{  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },	/* 1.596 */
259 	{  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },	/* 1.622 */
260 	{  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },	/* 1.695 */
261 	{  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },	/* 1.605 */
262 	{  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },	/* 1.625 */
263 	{  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },	/* 1.687 */
264 	{  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },	/* 1.621 */
265 	{  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },	/* 1.699 */
266 	{  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },	/* 1.688 */
267 	{  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },	/* 1.642 */
268 	{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },	/* 1.683 */
269 	{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },	/* 1.755 */
270 	{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },	/* 1.692 */
271 	{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },	/* 1.747 */
272 	{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },	/* 1.751 */
273 	{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },	/* 1.751 */
274 	{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },	/* 1.726 */
275 	{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },	/* 1.788 */
276 	{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },	/* 1.740 */
277 	{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },	/* 1.780 */
278 	{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },	/* 1.836 */
279 	{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },	/* 1.778 */
280 	{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },	/* 1.831 */
281 	{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },	/* 1.825 */
282 	{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },	/* 1.826 */
283 	{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },	/* 1.843 */
284 	{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },	/* 1.826 */
285 	{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },	/* 1.803 */
286 	{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },	/* 1.857 */
287 	{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },	/* 1.877 */
288 	{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },	/* 1.849 */
289 	{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },	/* 1.867 */
290 	{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },	/* 1.978 */
291 	{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },	/* 1.947 */
292 	{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },	/* 1.865 */
293 	{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },	/* 1.881 */
294 	{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },	/* 1.882 */
295 	{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },	/* 1.867 */
296 	{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },	/* 1.972 */
297 	{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },	/* 1.896 */
298 	{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },	/* 1.965 */
299 	{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },	/* 1.963 */
300 	{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },	/* 1.925 */
301 	{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },	/* 1.862 */
302 	{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },	/* 2.042 */
303 	{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },	/* 1.935 */
304 	{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },	/* 2.005 */
305 	{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },	/* 2.041 */
306 	{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },	/* 1.997 */
307 	{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },	/* 1.996 */
308 	{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },	/* 2.053 */
309 	{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },	/* 1.971 */
310 	{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },	/* 2.018 */
311 	{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },	/* 1.961 */
312 	{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },	/* 2.046 */
313 	{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },	/* 1.968 */
314 	{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },	/* 2.143 */
315 	{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },	/* 2.064 */
316 	{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },	/* 2.023 */
317 	{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },	/* 2.136 */
318 	{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },	/* 2.063 */
319 	{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },	/* 1.974 */
320 	{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },	/* 2.210 */
321 	{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },	/* 2.006 */
322 	{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },	/* 2.193 */
323 	{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },	/* 2.163 */
324 	{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },	/* 2.046 */
325 	{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },	/* 2.084 */
326 	{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },	/* 2.264 */
327 	{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },	/* 2.074 */
328 	{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },	/* 2.282 */
329 	{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },	/* 2.148 */
330 	{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },	/* 2.355 */
331 	{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },	/* 2.164 */
332 	{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },	/* 2.393 */
333 	{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },	/* 2.178 */
334 	{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },	/* 2.334 */
335 	{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },	/* 2.266 */
336 	{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },	/* 2.304 */
337 	{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },	/* 2.218 */
338 	{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },	/* 2.377 */
339 	{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },	/* 2.155 */
340 	{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },	/* 2.404 */
341 	{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },	/* 2.205 */
342 	{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },	/* 2.359 */
343 	{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },	/* 2.158 */
344 	{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },	/* 2.614 */
345 	{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },	/* 2.239 */
346 	{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },	/* 2.493 */
347 	{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },	/* 2.327 */
348 	{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },	/* 2.231 */
349 	{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },	/* 2.237 */
350 	{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },	/* 2.691 */
351 	{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },	/* 2.170 */
352 	{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },	/* 2.600 */
353 	{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },	/* 2.391 */
354 	{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },	/* 2.677 */
355 	{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },	/* 2.410 */
356 	{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },	/* 2.776 */
357 	{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },	/* 2.266 */
358 	{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },	/* 2.717 */
359 	{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },	/* 2.474 */
360 	{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },	/* 2.673 */
361 	{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },	/* 2.420 */
362 	{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },	/* 2.898 */
363 	{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },	/* 2.363 */
364 	{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },	/* 2.747 */
365 	{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },	/* 2.531 */
366 	{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },	/* 2.707 */
367 	{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },	/* 2.315 */
368 	{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },	/* 3.012 */
369 	{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },	/* 2.378 */
370 	{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },	/* 2.969 */
371 	{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },	/* 2.594 */
372 	{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },	/* 2.763 */
373 	{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },	/* 2.457 */
374 	{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },	/* 3.057 */
375 	{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },	/* 2.590 */
376 	{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },	/* 3.047 */
377 	{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },	/* 2.676 */
378 	{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },	/* 2.993 */
379 	{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },	/* 2.457 */
380 	{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },	/* 3.182 */
381 	{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },	/* 2.563 */
382 	{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },	/* 3.025 */
383 	{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },	/* 2.730 */
384 	{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },	/* 3.036 */
385 	{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },	/* 2.722 */
386 	{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },	/* 3.356 */
387 	{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },	/* 2.697 */
388 	{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },	/* 2.979 */
389 	{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },	/* 2.858 */
390 	{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },	/* 3.258 */
391 	{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },	/* 2.693 */
392 	{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },	/* 3.259 */
393 	{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },	/* 2.733 */
394 	{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },	/* 3.235 */
395 	{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },	/* 2.983 */
396 	{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },	/* 3.308 */
397 	{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },	/* 2.715 */
398 	{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },	/* 3.540 */
399 	{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },	/* 2.779 */
400 	{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },	/* 3.084 */
401 	{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },	/* 2.987 */
402 	{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },	/* 3.341 */
403 	{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },	/* 2.793 */
404 	{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },	/* 3.518 */
405 	{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },	/* 2.962 */
406 	{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },	/* 3.196 */
407 	{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },	/* 2.914 */
408 	{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },	/* 3.408 */
409 	{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },	/* 2.903 */
410 	{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },	/* 3.778 */
411 	{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },	/* 3.026 */
412 	{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },	/* 3.347 */
413 	{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },	/* 3.212 */
414 	{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },	/* 3.482 */
415 	{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },	/* 3.146 */
416 	{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },	/* 3.626 */
417 	{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },	/* 2.952 */
418 	{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },	/* 3.463 */
419 	{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },	/* 3.131 */
420 	{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },	/* 3.538 */
421 	{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },	/* 2.974 */
422 	{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },	/* 3.843 */
423 	{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },	/* 3.088 */
424 };
425 
426 /*
427  * Verify the map is valid. Each device index must appear exactly
428  * once in every row, and the permutation array checksum must match.
429  */
430 static int
verify_perms(uint8_t * perms,uint64_t children,uint64_t nperms,uint64_t checksum)431 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
432     uint64_t checksum)
433 {
434 	int countssz = sizeof (uint16_t) * children;
435 	uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
436 
437 	for (int i = 0; i < nperms; i++) {
438 		for (int j = 0; j < children; j++) {
439 			uint8_t val = perms[(i * children) + j];
440 
441 			if (val >= children || counts[val] != i) {
442 				kmem_free(counts, countssz);
443 				return (EINVAL);
444 			}
445 
446 			counts[val]++;
447 		}
448 	}
449 
450 	if (checksum != 0) {
451 		int permssz = sizeof (uint8_t) * children * nperms;
452 		zio_cksum_t cksum;
453 
454 		fletcher_4_native_varsize(perms, permssz, &cksum);
455 
456 		if (checksum != cksum.zc_word[0]) {
457 			kmem_free(counts, countssz);
458 			return (ECKSUM);
459 		}
460 	}
461 
462 	kmem_free(counts, countssz);
463 
464 	return (0);
465 }
466 
467 /*
468  * Generate the permutation array for the draid_map_t.  These maps control
469  * the placement of all data in a dRAID.  Therefore it's critical that the
470  * seed always generates the same mapping.  We provide our own pseudo-random
471  * number generator for this purpose.
472  */
473 int
vdev_draid_generate_perms(const draid_map_t * map,uint8_t ** permsp)474 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
475 {
476 	VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
477 	VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
478 	VERIFY3U(map->dm_seed, !=, 0);
479 	VERIFY3U(map->dm_nperms, !=, 0);
480 	VERIFY3P(map->dm_perms, ==, NULL);
481 
482 #ifdef _KERNEL
483 	/*
484 	 * The kernel code always provides both a map_seed and checksum.
485 	 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
486 	 * a zero checksum when generating new candidate maps.
487 	 */
488 	VERIFY3U(map->dm_checksum, !=, 0);
489 #endif
490 	uint64_t children = map->dm_children;
491 	uint64_t nperms = map->dm_nperms;
492 	int rowsz = sizeof (uint8_t) * children;
493 	int permssz = rowsz * nperms;
494 	uint8_t *perms;
495 
496 	/* Allocate the permutation array */
497 	perms = vmem_alloc(permssz, KM_SLEEP);
498 
499 	/* Setup an initial row with a known pattern */
500 	uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
501 	for (int i = 0; i < children; i++)
502 		initial_row[i] = i;
503 
504 	uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
505 	uint8_t *current_row, *previous_row = initial_row;
506 
507 	/*
508 	 * Perform a Fisher-Yates shuffle of each row using the previous
509 	 * row as the starting point.  An initial_row with known pattern
510 	 * is used as the input for the first row.
511 	 */
512 	for (int i = 0; i < nperms; i++) {
513 		current_row = &perms[i * children];
514 		memcpy(current_row, previous_row, rowsz);
515 
516 		for (int j = children - 1; j > 0; j--) {
517 			uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
518 			uint8_t val = current_row[j];
519 			current_row[j] = current_row[k];
520 			current_row[k] = val;
521 		}
522 
523 		previous_row = current_row;
524 	}
525 
526 	kmem_free(initial_row, rowsz);
527 
528 	int error = verify_perms(perms, children, nperms, map->dm_checksum);
529 	if (error) {
530 		vmem_free(perms, permssz);
531 		return (error);
532 	}
533 
534 	*permsp = perms;
535 
536 	return (0);
537 }
538 
539 /*
540  * Lookup the fixed draid_map_t for the requested number of children.
541  */
542 int
vdev_draid_lookup_map(uint64_t children,const draid_map_t ** mapp)543 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
544 {
545 	for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) {
546 		if (draid_maps[i].dm_children == children) {
547 			*mapp = &draid_maps[i];
548 			return (0);
549 		}
550 	}
551 
552 	return (ENOENT);
553 }
554 
555 /*
556  * Lookup the permutation array and iteration id for the provided offset.
557  */
558 static void
vdev_draid_get_perm(vdev_draid_config_t * vdc,uint64_t pindex,uint8_t ** base,uint64_t * iter)559 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
560     uint8_t **base, uint64_t *iter)
561 {
562 	uint64_t ncols = vdc->vdc_children;
563 	uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
564 
565 	*base = vdc->vdc_perms + (poff / ncols) * ncols;
566 	*iter = poff % ncols;
567 }
568 
569 static inline uint64_t
vdev_draid_permute_id(vdev_draid_config_t * vdc,uint8_t * base,uint64_t iter,uint64_t index)570 vdev_draid_permute_id(vdev_draid_config_t *vdc,
571     uint8_t *base, uint64_t iter, uint64_t index)
572 {
573 	return ((base[index] + iter) % vdc->vdc_children);
574 }
575 
576 /*
577  * Return the asize which is the psize rounded up to a full group width.
578  * i.e. vdev_draid_psize_to_asize().
579  */
580 static uint64_t
vdev_draid_asize(vdev_t * vd,uint64_t psize,uint64_t txg)581 vdev_draid_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
582 {
583 	(void) txg;
584 	vdev_draid_config_t *vdc = vd->vdev_tsd;
585 	uint64_t ashift = vd->vdev_ashift;
586 
587 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
588 
589 	uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
590 	uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
591 
592 	ASSERT3U(asize, !=, 0);
593 	ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
594 
595 	return (asize);
596 }
597 
598 /*
599  * Deflate the asize to the psize, this includes stripping parity.
600  */
601 uint64_t
vdev_draid_asize_to_psize(vdev_t * vd,uint64_t asize)602 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
603 {
604 	vdev_draid_config_t *vdc = vd->vdev_tsd;
605 
606 	ASSERT0(asize % vdc->vdc_groupwidth);
607 
608 	return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
609 }
610 
611 /*
612  * Convert a logical offset to the corresponding group number.
613  */
614 static uint64_t
vdev_draid_offset_to_group(vdev_t * vd,uint64_t offset)615 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
616 {
617 	vdev_draid_config_t *vdc = vd->vdev_tsd;
618 
619 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
620 
621 	return (offset / vdc->vdc_groupsz);
622 }
623 
624 /*
625  * Convert a group number to the logical starting offset for that group.
626  */
627 static uint64_t
vdev_draid_group_to_offset(vdev_t * vd,uint64_t group)628 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
629 {
630 	vdev_draid_config_t *vdc = vd->vdev_tsd;
631 
632 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
633 
634 	return (group * vdc->vdc_groupsz);
635 }
636 
637 /*
638  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
639  * is calculated over all the columns, including empty zero filled sectors,
640  * and each is written to disk.  While only the data columns are needed for
641  * a normal read, all of the columns are required for reconstruction when
642  * performing a sequential resilver.
643  *
644  * For "big columns" it's sufficient to map the correct range of the zio ABD.
645  * Partial columns require allocating a gang ABD in order to zero fill the
646  * empty sectors.  When the column is empty a zero filled sector must be
647  * mapped.  In all cases the data ABDs must be the same size as the parity
648  * ABDs (e.g. rc->rc_size == parity_size).
649  */
650 static void
vdev_draid_map_alloc_write(zio_t * zio,uint64_t abd_offset,raidz_row_t * rr)651 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
652 {
653 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
654 	uint64_t parity_size = rr->rr_col[0].rc_size;
655 	uint64_t abd_off = abd_offset;
656 
657 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
658 	ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
659 
660 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
661 		raidz_col_t *rc = &rr->rr_col[c];
662 
663 		if (rc->rc_size == 0) {
664 			/* empty data column (small write), add a skip sector */
665 			ASSERT3U(skip_size, ==, parity_size);
666 			rc->rc_abd = abd_get_zeros(skip_size);
667 		} else if (rc->rc_size == parity_size) {
668 			/* this is a "big column" */
669 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
670 			    zio->io_abd, abd_off, rc->rc_size);
671 		} else {
672 			/* short data column, add a skip sector */
673 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
674 			rc->rc_abd = abd_alloc_gang();
675 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
676 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
677 			abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
678 			    B_TRUE);
679 		}
680 
681 		ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
682 
683 		abd_off += rc->rc_size;
684 		rc->rc_size = parity_size;
685 	}
686 
687 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
688 }
689 
690 /*
691  * Scrub/resilver reads.  In order to store the contents of the skip sectors
692  * an additional ABD is allocated.  The columns are handled in the same way
693  * as a full stripe write except instead of using the zero ABD the newly
694  * allocated skip ABD is used to back the skip sectors.  In all cases the
695  * data ABD must be the same size as the parity ABDs.
696  */
697 static void
vdev_draid_map_alloc_scrub(zio_t * zio,uint64_t abd_offset,raidz_row_t * rr)698 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
699 {
700 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
701 	uint64_t parity_size = rr->rr_col[0].rc_size;
702 	uint64_t abd_off = abd_offset;
703 	uint64_t skip_off = 0;
704 
705 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
706 	ASSERT3P(rr->rr_abd_empty, ==, NULL);
707 
708 	if (rr->rr_nempty > 0) {
709 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
710 		    B_FALSE);
711 	}
712 
713 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
714 		raidz_col_t *rc = &rr->rr_col[c];
715 
716 		if (rc->rc_size == 0) {
717 			/* empty data column (small read), add a skip sector */
718 			ASSERT3U(skip_size, ==, parity_size);
719 			ASSERT3U(rr->rr_nempty, !=, 0);
720 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
721 			    skip_off, skip_size);
722 			skip_off += skip_size;
723 		} else if (rc->rc_size == parity_size) {
724 			/* this is a "big column" */
725 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
726 			    zio->io_abd, abd_off, rc->rc_size);
727 		} else {
728 			/* short data column, add a skip sector */
729 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
730 			ASSERT3U(rr->rr_nempty, !=, 0);
731 			rc->rc_abd = abd_alloc_gang();
732 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
733 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
734 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
735 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
736 			skip_off += skip_size;
737 		}
738 
739 		uint64_t abd_size = abd_get_size(rc->rc_abd);
740 		ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
741 
742 		/*
743 		 * Increase rc_size so the skip ABD is included in subsequent
744 		 * parity calculations.
745 		 */
746 		abd_off += rc->rc_size;
747 		rc->rc_size = abd_size;
748 	}
749 
750 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
751 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
752 }
753 
754 /*
755  * Normal reads.  In this common case only the columns containing data
756  * are read in to the zio ABDs.  Neither the parity columns or empty skip
757  * sectors are read unless the checksum fails verification.  In which case
758  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
759  * the raid map in order to allow reconstruction using the parity data and
760  * skip sectors.
761  */
762 static void
vdev_draid_map_alloc_read(zio_t * zio,uint64_t abd_offset,raidz_row_t * rr)763 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
764 {
765 	uint64_t abd_off = abd_offset;
766 
767 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
768 
769 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
770 		raidz_col_t *rc = &rr->rr_col[c];
771 
772 		if (rc->rc_size > 0) {
773 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
774 			    zio->io_abd, abd_off, rc->rc_size);
775 			abd_off += rc->rc_size;
776 		}
777 	}
778 
779 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
780 }
781 
782 /*
783  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
784  * difference is that an ABD is allocated to back skip sectors so they may
785  * be read in to memory, verified, and repaired if needed.
786  */
787 void
vdev_draid_map_alloc_empty(zio_t * zio,raidz_row_t * rr)788 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
789 {
790 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
791 	uint64_t parity_size = rr->rr_col[0].rc_size;
792 	uint64_t skip_off = 0;
793 
794 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
795 	ASSERT3P(rr->rr_abd_empty, ==, NULL);
796 
797 	if (rr->rr_nempty > 0) {
798 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
799 		    B_FALSE);
800 	}
801 
802 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
803 		raidz_col_t *rc = &rr->rr_col[c];
804 
805 		if (rc->rc_size == 0) {
806 			/* empty data column (small read), add a skip sector */
807 			ASSERT3U(skip_size, ==, parity_size);
808 			ASSERT3U(rr->rr_nempty, !=, 0);
809 			ASSERT3P(rc->rc_abd, ==, NULL);
810 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
811 			    skip_off, skip_size);
812 			skip_off += skip_size;
813 		} else if (rc->rc_size == parity_size) {
814 			/* this is a "big column", nothing to add */
815 			ASSERT3P(rc->rc_abd, !=, NULL);
816 		} else {
817 			/*
818 			 * short data column, add a skip sector and clear
819 			 * rc_tried to force the entire column to be re-read
820 			 * thereby including the missing skip sector data
821 			 * which is needed for reconstruction.
822 			 */
823 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
824 			ASSERT3U(rr->rr_nempty, !=, 0);
825 			ASSERT3P(rc->rc_abd, !=, NULL);
826 			ASSERT(!abd_is_gang(rc->rc_abd));
827 			abd_t *read_abd = rc->rc_abd;
828 			rc->rc_abd = abd_alloc_gang();
829 			abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
830 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
831 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
832 			skip_off += skip_size;
833 			rc->rc_tried = 0;
834 		}
835 
836 		/*
837 		 * Increase rc_size so the empty ABD is included in subsequent
838 		 * parity calculations.
839 		 */
840 		rc->rc_size = parity_size;
841 	}
842 
843 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
844 }
845 
846 /*
847  * Verify that all empty sectors are zero filled before using them to
848  * calculate parity.  Otherwise, silent corruption in an empty sector will
849  * result in bad parity being generated.  That bad parity will then be
850  * considered authoritative and overwrite the good parity on disk.  This
851  * is possible because the checksum is only calculated over the data,
852  * thus it cannot be used to detect damage in empty sectors.
853  */
854 int
vdev_draid_map_verify_empty(zio_t * zio,raidz_row_t * rr)855 vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
856 {
857 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
858 	uint64_t parity_size = rr->rr_col[0].rc_size;
859 	uint64_t skip_off = parity_size - skip_size;
860 	uint64_t empty_off = 0;
861 	int ret = 0;
862 
863 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
864 	ASSERT3P(rr->rr_abd_empty, !=, NULL);
865 	ASSERT3U(rr->rr_bigcols, >, 0);
866 
867 	void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
868 
869 	for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
870 		raidz_col_t *rc = &rr->rr_col[c];
871 
872 		ASSERT3P(rc->rc_abd, !=, NULL);
873 		ASSERT3U(rc->rc_size, ==, parity_size);
874 
875 		if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
876 		    skip_size) != 0) {
877 			vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
878 			abd_zero_off(rc->rc_abd, skip_off, skip_size);
879 			rc->rc_error = SET_ERROR(ECKSUM);
880 			ret++;
881 		}
882 
883 		empty_off += skip_size;
884 	}
885 
886 	ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
887 
888 	kmem_free(zero_buf, skip_size);
889 
890 	return (ret);
891 }
892 
893 /*
894  * Given a logical address within a dRAID configuration, return the physical
895  * address on the first drive in the group that this address maps to
896  * (at position 'start' in permutation number 'perm').
897  */
898 static uint64_t
vdev_draid_logical_to_physical(vdev_t * vd,uint64_t logical_offset,uint64_t * perm,uint64_t * start)899 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
900     uint64_t *perm, uint64_t *start)
901 {
902 	vdev_draid_config_t *vdc = vd->vdev_tsd;
903 
904 	/* b is the dRAID (parent) sector offset. */
905 	uint64_t ashift = vd->vdev_top->vdev_ashift;
906 	uint64_t b_offset = logical_offset >> ashift;
907 
908 	/*
909 	 * The height of a row in units of the vdev's minimum sector size.
910 	 * This is the amount of data written to each disk of each group
911 	 * in a given permutation.
912 	 */
913 	uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
914 
915 	/*
916 	 * We cycle through a disk permutation every groupsz * ngroups chunk
917 	 * of address space. Note that ngroups * groupsz must be a multiple
918 	 * of the number of data drives (ndisks) in order to guarantee
919 	 * alignment. So, for example, if our row height is 16MB, our group
920 	 * size is 10, and there are 13 data drives in the draid, then ngroups
921 	 * will be 13, we will change permutation every 2.08GB and each
922 	 * disk will have 160MB of data per chunk.
923 	 */
924 	uint64_t groupwidth = vdc->vdc_groupwidth;
925 	uint64_t ngroups = vdc->vdc_ngroups;
926 	uint64_t ndisks = vdc->vdc_ndisks;
927 
928 	/*
929 	 * groupstart is where the group this IO will land in "starts" in
930 	 * the permutation array.
931 	 */
932 	uint64_t group = logical_offset / vdc->vdc_groupsz;
933 	uint64_t groupstart = (group * groupwidth) % ndisks;
934 	ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
935 	*start = groupstart;
936 
937 	/* b_offset is the sector offset within a group chunk */
938 	b_offset = b_offset % (rowheight_sectors * groupwidth);
939 	ASSERT0(b_offset % groupwidth);
940 
941 	/*
942 	 * Find the starting byte offset on each child vdev:
943 	 * - within a permutation there are ngroups groups spread over the
944 	 *   rows, where each row covers a slice portion of the disk
945 	 * - each permutation has (groupwidth * ngroups) / ndisks rows
946 	 * - so each permutation covers rows * slice portion of the disk
947 	 * - so we need to find the row where this IO group target begins
948 	 */
949 	*perm = group / ngroups;
950 	uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
951 	    (((group % ngroups) * groupwidth) / ndisks);
952 
953 	return (((rowheight_sectors * row) +
954 	    (b_offset / groupwidth)) << ashift);
955 }
956 
957 static uint64_t
vdev_draid_map_alloc_row(zio_t * zio,raidz_row_t ** rrp,uint64_t io_offset,uint64_t abd_offset,uint64_t abd_size)958 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
959     uint64_t abd_offset, uint64_t abd_size)
960 {
961 	vdev_t *vd = zio->io_vd;
962 	vdev_draid_config_t *vdc = vd->vdev_tsd;
963 	uint64_t ashift = vd->vdev_top->vdev_ashift;
964 	uint64_t io_size = abd_size;
965 	uint64_t io_asize = vdev_draid_asize(vd, io_size, 0);
966 	uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
967 	uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
968 
969 	/*
970 	 * Limit the io_size to the space remaining in the group.  A second
971 	 * row in the raidz_map_t is created for the remainder.
972 	 */
973 	if (io_offset + io_asize > start_offset) {
974 		io_size = vdev_draid_asize_to_psize(vd,
975 		    start_offset - io_offset);
976 	}
977 
978 	/*
979 	 * At most a block may span the logical end of one group and the start
980 	 * of the next group. Therefore, at the end of a group the io_size must
981 	 * span the group width evenly and the remainder must be aligned to the
982 	 * start of the next group.
983 	 */
984 	IMPLY(abd_offset == 0 && io_size < zio->io_size,
985 	    (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
986 	IMPLY(abd_offset != 0,
987 	    vdev_draid_group_to_offset(vd, group) == io_offset);
988 
989 	/* Lookup starting byte offset on each child vdev */
990 	uint64_t groupstart, perm;
991 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
992 	    io_offset, &perm, &groupstart);
993 
994 	/*
995 	 * If there is less than groupwidth drives available after the group
996 	 * start, the group is going to wrap onto the next row. 'wrap' is the
997 	 * group disk number that starts on the next row.
998 	 */
999 	uint64_t ndisks = vdc->vdc_ndisks;
1000 	uint64_t groupwidth = vdc->vdc_groupwidth;
1001 	uint64_t wrap = groupwidth;
1002 
1003 	if (groupstart + groupwidth > ndisks)
1004 		wrap = ndisks - groupstart;
1005 
1006 	/* The io size in units of the vdev's minimum sector size. */
1007 	const uint64_t psize = io_size >> ashift;
1008 
1009 	/*
1010 	 * "Quotient": The number of data sectors for this stripe on all but
1011 	 * the "big column" child vdevs that also contain "remainder" data.
1012 	 */
1013 	uint64_t q = psize / vdc->vdc_ndata;
1014 
1015 	/*
1016 	 * "Remainder": The number of partial stripe data sectors in this I/O.
1017 	 * This will add a sector to some, but not all, child vdevs.
1018 	 */
1019 	uint64_t r = psize - q * vdc->vdc_ndata;
1020 
1021 	/* The number of "big columns" - those which contain remainder data. */
1022 	uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
1023 	ASSERT3U(bc, <, groupwidth);
1024 
1025 	/* The total number of data and parity sectors for this I/O. */
1026 	uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
1027 
1028 	ASSERT3U(vdc->vdc_nparity, >, 0);
1029 
1030 	raidz_row_t *rr = vdev_raidz_row_alloc(groupwidth, zio);
1031 	rr->rr_bigcols = bc;
1032 	rr->rr_firstdatacol = vdc->vdc_nparity;
1033 #ifdef ZFS_DEBUG
1034 	rr->rr_offset = io_offset;
1035 	rr->rr_size = io_size;
1036 #endif
1037 	*rrp = rr;
1038 
1039 	uint8_t *base;
1040 	uint64_t iter, asize = 0;
1041 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1042 	for (uint64_t i = 0; i < groupwidth; i++) {
1043 		raidz_col_t *rc = &rr->rr_col[i];
1044 		uint64_t c = (groupstart + i) % ndisks;
1045 
1046 		/* increment the offset if we wrap to the next row */
1047 		if (i == wrap)
1048 			physical_offset += VDEV_DRAID_ROWHEIGHT;
1049 
1050 		rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1051 		rc->rc_offset = physical_offset;
1052 
1053 		if (q == 0 && i >= bc)
1054 			rc->rc_size = 0;
1055 		else if (i < bc)
1056 			rc->rc_size = (q + 1) << ashift;
1057 		else
1058 			rc->rc_size = q << ashift;
1059 
1060 		asize += rc->rc_size;
1061 	}
1062 
1063 	ASSERT3U(asize, ==, tot << ashift);
1064 	rr->rr_nempty = roundup(tot, groupwidth) - tot;
1065 	IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1066 
1067 	/* Allocate buffers for the parity columns */
1068 	for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1069 		raidz_col_t *rc = &rr->rr_col[c];
1070 		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1071 	}
1072 
1073 	/*
1074 	 * Map buffers for data columns and allocate/map buffers for skip
1075 	 * sectors.  There are three distinct cases for dRAID which are
1076 	 * required to support sequential rebuild.
1077 	 */
1078 	if (zio->io_type == ZIO_TYPE_WRITE) {
1079 		vdev_draid_map_alloc_write(zio, abd_offset, rr);
1080 	} else if ((rr->rr_nempty > 0) &&
1081 	    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1082 		vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1083 	} else {
1084 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1085 		vdev_draid_map_alloc_read(zio, abd_offset, rr);
1086 	}
1087 
1088 	return (io_size);
1089 }
1090 
1091 /*
1092  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1093  * calculations for dRAID are identical to raidz however there are a few
1094  * differences in the layout.
1095  *
1096  * - dRAID always allocates a full stripe width. Any extra sectors due
1097  *   this padding are zero filled and written to disk. They will be read
1098  *   back during a scrub or repair operation since they are included in
1099  *   the parity calculation. This property enables sequential resilvering.
1100  *
1101  * - When the block at the logical offset spans redundancy groups then two
1102  *   rows are allocated in the raidz_map_t. One row resides at the end of
1103  *   the first group and the other at the start of the following group.
1104  */
1105 static raidz_map_t *
vdev_draid_map_alloc(zio_t * zio)1106 vdev_draid_map_alloc(zio_t *zio)
1107 {
1108 	raidz_row_t *rr[2];
1109 	uint64_t abd_offset = 0;
1110 	uint64_t abd_size = zio->io_size;
1111 	uint64_t io_offset = zio->io_offset;
1112 	uint64_t size;
1113 	int nrows = 1;
1114 
1115 	size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1116 	    abd_offset, abd_size);
1117 	if (size < abd_size) {
1118 		vdev_t *vd = zio->io_vd;
1119 
1120 		io_offset += vdev_draid_asize(vd, size, 0);
1121 		abd_offset += size;
1122 		abd_size -= size;
1123 		nrows++;
1124 
1125 		ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1126 		    vd, vdev_draid_offset_to_group(vd, io_offset)));
1127 		ASSERT3U(abd_offset, <, zio->io_size);
1128 		ASSERT3U(abd_size, !=, 0);
1129 
1130 		size = vdev_draid_map_alloc_row(zio, &rr[1],
1131 		    io_offset, abd_offset, abd_size);
1132 		VERIFY3U(size, ==, abd_size);
1133 	}
1134 
1135 	raidz_map_t *rm;
1136 	rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1137 	rm->rm_ops = vdev_raidz_math_get_ops();
1138 	rm->rm_nrows = nrows;
1139 	rm->rm_row[0] = rr[0];
1140 	if (nrows == 2)
1141 		rm->rm_row[1] = rr[1];
1142 	return (rm);
1143 }
1144 
1145 /*
1146  * Given an offset into a dRAID return the next group width aligned offset
1147  * which can be used to start an allocation.
1148  */
1149 static uint64_t
vdev_draid_get_astart(vdev_t * vd,const uint64_t start)1150 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1151 {
1152 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1153 
1154 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1155 
1156 	return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1157 }
1158 
1159 /*
1160  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1161  * rounded down to the last full slice.  So each child must provide at least
1162  * 1 / (children - nspares) of its asize.
1163  */
1164 static uint64_t
vdev_draid_min_asize(vdev_t * vd)1165 vdev_draid_min_asize(vdev_t *vd)
1166 {
1167 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1168 
1169 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1170 
1171 	return (VDEV_DRAID_REFLOW_RESERVE +
1172 	    (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1173 }
1174 
1175 /*
1176  * When using dRAID the minimum allocation size is determined by the number
1177  * of data disks in the redundancy group.  Full stripes are always used.
1178  */
1179 static uint64_t
vdev_draid_min_alloc(vdev_t * vd)1180 vdev_draid_min_alloc(vdev_t *vd)
1181 {
1182 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1183 
1184 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1185 
1186 	return (vdc->vdc_ndata << vd->vdev_ashift);
1187 }
1188 
1189 /*
1190  * Returns true if the txg range does not exist on any leaf vdev.
1191  *
1192  * A dRAID spare does not fit into the DTL model. While it has child vdevs
1193  * there is no redundancy among them, and the effective child vdev is
1194  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1195  * fly by replacing a dRAID spare with the child vdev under the offset.
1196  * Note that it is a recursive process because the child vdev can be
1197  * another dRAID spare and so on.
1198  */
1199 boolean_t
vdev_draid_missing(vdev_t * vd,uint64_t physical_offset,uint64_t txg,uint64_t size)1200 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1201     uint64_t size)
1202 {
1203 	if (vd->vdev_ops == &vdev_spare_ops ||
1204 	    vd->vdev_ops == &vdev_replacing_ops) {
1205 		/*
1206 		 * Check all of the readable children, if any child
1207 		 * contains the txg range the data it is not missing.
1208 		 */
1209 		for (int c = 0; c < vd->vdev_children; c++) {
1210 			vdev_t *cvd = vd->vdev_child[c];
1211 
1212 			if (!vdev_readable(cvd))
1213 				continue;
1214 
1215 			if (!vdev_draid_missing(cvd, physical_offset,
1216 			    txg, size))
1217 				return (B_FALSE);
1218 		}
1219 
1220 		return (B_TRUE);
1221 	}
1222 
1223 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1224 		/*
1225 		 * When sequentially resilvering we don't have a proper
1226 		 * txg range so instead we must presume all txgs are
1227 		 * missing on this vdev until the resilver completes.
1228 		 */
1229 		if (vd->vdev_rebuild_txg != 0)
1230 			return (B_TRUE);
1231 
1232 		/*
1233 		 * DTL_MISSING is set for all prior txgs when a resilver
1234 		 * is started in spa_vdev_attach().
1235 		 */
1236 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1237 			return (B_TRUE);
1238 
1239 		/*
1240 		 * Consult the DTL on the relevant vdev. Either a vdev
1241 		 * leaf or spare/replace mirror child may be returned so
1242 		 * we must recursively call vdev_draid_missing_impl().
1243 		 */
1244 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1245 		if (vd == NULL)
1246 			return (B_TRUE);
1247 
1248 		return (vdev_draid_missing(vd, physical_offset,
1249 		    txg, size));
1250 	}
1251 
1252 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1253 }
1254 
1255 /*
1256  * Returns true if the txg is only partially replicated on the leaf vdevs.
1257  */
1258 static boolean_t
vdev_draid_partial(vdev_t * vd,uint64_t physical_offset,uint64_t txg,uint64_t size)1259 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1260     uint64_t size)
1261 {
1262 	if (vd->vdev_ops == &vdev_spare_ops ||
1263 	    vd->vdev_ops == &vdev_replacing_ops) {
1264 		/*
1265 		 * Check all of the readable children, if any child is
1266 		 * missing the txg range then it is partially replicated.
1267 		 */
1268 		for (int c = 0; c < vd->vdev_children; c++) {
1269 			vdev_t *cvd = vd->vdev_child[c];
1270 
1271 			if (!vdev_readable(cvd))
1272 				continue;
1273 
1274 			if (vdev_draid_partial(cvd, physical_offset, txg, size))
1275 				return (B_TRUE);
1276 		}
1277 
1278 		return (B_FALSE);
1279 	}
1280 
1281 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1282 		/*
1283 		 * When sequentially resilvering we don't have a proper
1284 		 * txg range so instead we must presume all txgs are
1285 		 * missing on this vdev until the resilver completes.
1286 		 */
1287 		if (vd->vdev_rebuild_txg != 0)
1288 			return (B_TRUE);
1289 
1290 		/*
1291 		 * DTL_MISSING is set for all prior txgs when a resilver
1292 		 * is started in spa_vdev_attach().
1293 		 */
1294 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1295 			return (B_TRUE);
1296 
1297 		/*
1298 		 * Consult the DTL on the relevant vdev. Either a vdev
1299 		 * leaf or spare/replace mirror child may be returned so
1300 		 * we must recursively call vdev_draid_missing_impl().
1301 		 */
1302 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1303 		if (vd == NULL)
1304 			return (B_TRUE);
1305 
1306 		return (vdev_draid_partial(vd, physical_offset, txg, size));
1307 	}
1308 
1309 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1310 }
1311 
1312 /*
1313  * Determine if the vdev is readable at the given offset.
1314  */
1315 boolean_t
vdev_draid_readable(vdev_t * vd,uint64_t physical_offset)1316 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1317 {
1318 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1319 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1320 		if (vd == NULL)
1321 			return (B_FALSE);
1322 	}
1323 
1324 	if (vd->vdev_ops == &vdev_spare_ops ||
1325 	    vd->vdev_ops == &vdev_replacing_ops) {
1326 
1327 		for (int c = 0; c < vd->vdev_children; c++) {
1328 			vdev_t *cvd = vd->vdev_child[c];
1329 
1330 			if (!vdev_readable(cvd))
1331 				continue;
1332 
1333 			if (vdev_draid_readable(cvd, physical_offset))
1334 				return (B_TRUE);
1335 		}
1336 
1337 		return (B_FALSE);
1338 	}
1339 
1340 	return (vdev_readable(vd));
1341 }
1342 
1343 /*
1344  * Returns the first distributed spare found under the provided vdev tree.
1345  */
1346 static vdev_t *
vdev_draid_find_spare(vdev_t * vd)1347 vdev_draid_find_spare(vdev_t *vd)
1348 {
1349 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1350 		return (vd);
1351 
1352 	for (int c = 0; c < vd->vdev_children; c++) {
1353 		vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1354 		if (svd != NULL)
1355 			return (svd);
1356 	}
1357 
1358 	return (NULL);
1359 }
1360 
1361 /*
1362  * Returns B_TRUE if the passed in vdev is currently "faulted".
1363  * Faulted, in this context, means that the vdev represents a
1364  * replacing or sparing vdev tree.
1365  */
1366 static boolean_t
vdev_draid_faulted(vdev_t * vd,uint64_t physical_offset)1367 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1368 {
1369 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1370 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1371 		if (vd == NULL)
1372 			return (B_FALSE);
1373 
1374 		/*
1375 		 * After resolving the distributed spare to a leaf vdev
1376 		 * check the parent to determine if it's "faulted".
1377 		 */
1378 		vd = vd->vdev_parent;
1379 	}
1380 
1381 	return (vd->vdev_ops == &vdev_replacing_ops ||
1382 	    vd->vdev_ops == &vdev_spare_ops);
1383 }
1384 
1385 /*
1386  * Determine if the dRAID block at the logical offset is degraded.
1387  * Used by sequential resilver.
1388  */
1389 static boolean_t
vdev_draid_group_degraded(vdev_t * vd,uint64_t offset)1390 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1391 {
1392 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1393 
1394 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1395 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1396 
1397 	uint64_t groupstart, perm;
1398 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1399 	    offset, &perm, &groupstart);
1400 
1401 	uint8_t *base;
1402 	uint64_t iter;
1403 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1404 
1405 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1406 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1407 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1408 		vdev_t *cvd = vd->vdev_child[cid];
1409 
1410 		/* Group contains a faulted vdev. */
1411 		if (vdev_draid_faulted(cvd, physical_offset))
1412 			return (B_TRUE);
1413 
1414 		/*
1415 		 * Always check groups with active distributed spares
1416 		 * because any vdev failure in the pool will affect them.
1417 		 */
1418 		if (vdev_draid_find_spare(cvd) != NULL)
1419 			return (B_TRUE);
1420 	}
1421 
1422 	return (B_FALSE);
1423 }
1424 
1425 /*
1426  * Determine if the txg is missing.  Used by healing resilver.
1427  */
1428 static boolean_t
vdev_draid_group_missing(vdev_t * vd,uint64_t offset,uint64_t txg,uint64_t size)1429 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1430     uint64_t size)
1431 {
1432 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1433 
1434 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1435 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1436 
1437 	uint64_t groupstart, perm;
1438 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1439 	    offset, &perm, &groupstart);
1440 
1441 	uint8_t *base;
1442 	uint64_t iter;
1443 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1444 
1445 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1446 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1447 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1448 		vdev_t *cvd = vd->vdev_child[cid];
1449 
1450 		/* Transaction group is known to be partially replicated. */
1451 		if (vdev_draid_partial(cvd, physical_offset, txg, size))
1452 			return (B_TRUE);
1453 
1454 		/*
1455 		 * Always check groups with active distributed spares
1456 		 * because any vdev failure in the pool will affect them.
1457 		 */
1458 		if (vdev_draid_find_spare(cvd) != NULL)
1459 			return (B_TRUE);
1460 	}
1461 
1462 	return (B_FALSE);
1463 }
1464 
1465 /*
1466  * Find the smallest child asize and largest sector size to calculate the
1467  * available capacity.  Distributed spares are ignored since their capacity
1468  * is also based of the minimum child size in the top-level dRAID.
1469  */
1470 static void
vdev_draid_calculate_asize(vdev_t * vd,uint64_t * asizep,uint64_t * max_asizep,uint64_t * logical_ashiftp,uint64_t * physical_ashiftp)1471 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1472     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1473 {
1474 	uint64_t logical_ashift = 0, physical_ashift = 0;
1475 	uint64_t asize = 0, max_asize = 0;
1476 
1477 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1478 
1479 	for (int c = 0; c < vd->vdev_children; c++) {
1480 		vdev_t *cvd = vd->vdev_child[c];
1481 
1482 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1483 			continue;
1484 
1485 		asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1486 		max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1487 		logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1488 	}
1489 	for (int c = 0; c < vd->vdev_children; c++) {
1490 		vdev_t *cvd = vd->vdev_child[c];
1491 
1492 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1493 			continue;
1494 		physical_ashift = vdev_best_ashift(logical_ashift,
1495 		    physical_ashift, cvd->vdev_physical_ashift);
1496 	}
1497 
1498 	*asizep = asize;
1499 	*max_asizep = max_asize;
1500 	*logical_ashiftp = logical_ashift;
1501 	*physical_ashiftp = physical_ashift;
1502 }
1503 
1504 /*
1505  * Open spare vdevs.
1506  */
1507 static boolean_t
vdev_draid_open_spares(vdev_t * vd)1508 vdev_draid_open_spares(vdev_t *vd)
1509 {
1510 	return (vd->vdev_ops == &vdev_draid_spare_ops ||
1511 	    vd->vdev_ops == &vdev_replacing_ops ||
1512 	    vd->vdev_ops == &vdev_spare_ops);
1513 }
1514 
1515 /*
1516  * Open all children, excluding spares.
1517  */
1518 static boolean_t
vdev_draid_open_children(vdev_t * vd)1519 vdev_draid_open_children(vdev_t *vd)
1520 {
1521 	return (!vdev_draid_open_spares(vd));
1522 }
1523 
1524 /*
1525  * Open a top-level dRAID vdev.
1526  */
1527 static int
vdev_draid_open(vdev_t * vd,uint64_t * asize,uint64_t * max_asize,uint64_t * logical_ashift,uint64_t * physical_ashift)1528 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1529     uint64_t *logical_ashift, uint64_t *physical_ashift)
1530 {
1531 	vdev_draid_config_t *vdc =  vd->vdev_tsd;
1532 	uint64_t nparity = vdc->vdc_nparity;
1533 	int open_errors = 0;
1534 
1535 	if (nparity > VDEV_DRAID_MAXPARITY ||
1536 	    vd->vdev_children < nparity + 1) {
1537 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1538 		return (SET_ERROR(EINVAL));
1539 	}
1540 
1541 	/*
1542 	 * First open the normal children then the distributed spares.  This
1543 	 * ordering is important to ensure the distributed spares calculate
1544 	 * the correct psize in the event that the dRAID vdevs were expanded.
1545 	 */
1546 	vdev_open_children_subset(vd, vdev_draid_open_children);
1547 	vdev_open_children_subset(vd, vdev_draid_open_spares);
1548 
1549 	/* Verify enough of the children are available to continue. */
1550 	for (int c = 0; c < vd->vdev_children; c++) {
1551 		if (vd->vdev_child[c]->vdev_open_error != 0) {
1552 			if ((++open_errors) > nparity) {
1553 				vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1554 				return (SET_ERROR(ENXIO));
1555 			}
1556 		}
1557 	}
1558 
1559 	/*
1560 	 * Allocatable capacity is the sum of the space on all children less
1561 	 * the number of distributed spares rounded down to last full row
1562 	 * and then to the last full group. An additional 32MB of scratch
1563 	 * space is reserved at the end of each child for use by the dRAID
1564 	 * expansion feature.
1565 	 */
1566 	uint64_t child_asize, child_max_asize;
1567 	vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1568 	    logical_ashift, physical_ashift);
1569 
1570 	/*
1571 	 * Should be unreachable since the minimum child size is 64MB, but
1572 	 * we want to make sure an underflow absolutely cannot occur here.
1573 	 */
1574 	if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1575 	    child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1576 		return (SET_ERROR(ENXIO));
1577 	}
1578 
1579 	child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1580 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1581 	child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1582 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1583 
1584 	*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1585 	    vdc->vdc_groupsz);
1586 	*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1587 	    vdc->vdc_groupsz);
1588 
1589 	return (0);
1590 }
1591 
1592 /*
1593  * Close a top-level dRAID vdev.
1594  */
1595 static void
vdev_draid_close(vdev_t * vd)1596 vdev_draid_close(vdev_t *vd)
1597 {
1598 	for (int c = 0; c < vd->vdev_children; c++) {
1599 		if (vd->vdev_child[c] != NULL)
1600 			vdev_close(vd->vdev_child[c]);
1601 	}
1602 }
1603 
1604 /*
1605  * Return the maximum asize for a rebuild zio in the provided range
1606  * given the following constraints.  A dRAID chunks may not:
1607  *
1608  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1609  * - Span dRAID redundancy groups.
1610  */
1611 static uint64_t
vdev_draid_rebuild_asize(vdev_t * vd,uint64_t start,uint64_t asize,uint64_t max_segment)1612 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1613     uint64_t max_segment)
1614 {
1615 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1616 
1617 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1618 
1619 	uint64_t ashift = vd->vdev_ashift;
1620 	uint64_t ndata = vdc->vdc_ndata;
1621 	uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1622 	    SPA_MAXBLOCKSIZE);
1623 
1624 	ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1625 	ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
1626 
1627 	/* Chunks must evenly span all data columns in the group. */
1628 	psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1629 	uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1630 
1631 	/* Reduce the chunk size to the group space remaining. */
1632 	uint64_t group = vdev_draid_offset_to_group(vd, start);
1633 	uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1634 	chunk_size = MIN(chunk_size, left);
1635 
1636 	ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
1637 	ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1638 	    vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1639 
1640 	return (chunk_size);
1641 }
1642 
1643 /*
1644  * Align the start of the metaslab to the group width and slightly reduce
1645  * its size to a multiple of the group width.  Since full stripe writes are
1646  * required by dRAID this space is unallocable.  Furthermore, aligning the
1647  * metaslab start is important for vdev initialize and TRIM which both operate
1648  * on metaslab boundaries which vdev_xlate() expects to be aligned.
1649  */
1650 static void
vdev_draid_metaslab_init(vdev_t * vd,uint64_t * ms_start,uint64_t * ms_size)1651 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1652 {
1653 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1654 
1655 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1656 
1657 	uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1658 	uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1659 	uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1660 
1661 	*ms_start = astart;
1662 	*ms_size = asize;
1663 
1664 	ASSERT0(*ms_start % sz);
1665 	ASSERT0(*ms_size % sz);
1666 }
1667 
1668 /*
1669  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1670  * this the existing array must be freed and reallocated with the additional
1671  * entries.
1672  */
1673 int
vdev_draid_spare_create(nvlist_t * nvroot,vdev_t * vd,uint64_t * ndraidp,uint64_t next_vdev_id)1674 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1675     uint64_t next_vdev_id)
1676 {
1677 	uint64_t draid_nspares = 0;
1678 	uint64_t ndraid = 0;
1679 	int error;
1680 
1681 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1682 		vdev_t *cvd = vd->vdev_child[i];
1683 
1684 		if (cvd->vdev_ops == &vdev_draid_ops) {
1685 			vdev_draid_config_t *vdc = cvd->vdev_tsd;
1686 			draid_nspares += vdc->vdc_nspares;
1687 			ndraid++;
1688 		}
1689 	}
1690 
1691 	if (draid_nspares == 0) {
1692 		*ndraidp = ndraid;
1693 		return (0);
1694 	}
1695 
1696 	nvlist_t **old_spares, **new_spares;
1697 	uint_t old_nspares;
1698 	error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1699 	    &old_spares, &old_nspares);
1700 	if (error)
1701 		old_nspares = 0;
1702 
1703 	/* Allocate memory and copy of the existing spares. */
1704 	new_spares = kmem_alloc(sizeof (nvlist_t *) *
1705 	    (draid_nspares + old_nspares), KM_SLEEP);
1706 	for (uint_t i = 0; i < old_nspares; i++)
1707 		new_spares[i] = fnvlist_dup(old_spares[i]);
1708 
1709 	/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1710 	uint64_t n = old_nspares;
1711 	for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1712 		vdev_t *cvd = vd->vdev_child[vdev_id];
1713 		char path[64];
1714 
1715 		if (cvd->vdev_ops != &vdev_draid_ops)
1716 			continue;
1717 
1718 		vdev_draid_config_t *vdc = cvd->vdev_tsd;
1719 		uint64_t nspares = vdc->vdc_nspares;
1720 		uint64_t nparity = vdc->vdc_nparity;
1721 
1722 		for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1723 			memset(path, 0, sizeof (path));
1724 			(void) snprintf(path, sizeof (path) - 1,
1725 			    "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1726 			    (u_longlong_t)nparity,
1727 			    (u_longlong_t)next_vdev_id + vdev_id,
1728 			    (u_longlong_t)spare_id);
1729 
1730 			nvlist_t *spare = fnvlist_alloc();
1731 			fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1732 			fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1733 			    VDEV_TYPE_DRAID_SPARE);
1734 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1735 			    cvd->vdev_guid);
1736 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1737 			    spare_id);
1738 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1739 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1740 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1741 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1742 			    cvd->vdev_ashift);
1743 
1744 			new_spares[n] = spare;
1745 			n++;
1746 		}
1747 	}
1748 
1749 	if (n > 0) {
1750 		(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1751 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1752 		    (const nvlist_t **)new_spares, n);
1753 	}
1754 
1755 	for (int i = 0; i < n; i++)
1756 		nvlist_free(new_spares[i]);
1757 
1758 	kmem_free(new_spares, sizeof (*new_spares) * n);
1759 	*ndraidp = ndraid;
1760 
1761 	return (0);
1762 }
1763 
1764 /*
1765  * Determine if any portion of the provided block resides on a child vdev
1766  * with a dirty DTL and therefore needs to be resilvered.
1767  */
1768 static boolean_t
vdev_draid_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)1769 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1770     uint64_t phys_birth)
1771 {
1772 	uint64_t offset = DVA_GET_OFFSET(dva);
1773 	uint64_t asize = vdev_draid_asize(vd, psize, 0);
1774 
1775 	if (phys_birth == TXG_UNKNOWN) {
1776 		/*
1777 		 * Sequential resilver.  There is no meaningful phys_birth
1778 		 * for this block, we can only determine if block resides
1779 		 * in a degraded group in which case it must be resilvered.
1780 		 */
1781 		ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1782 		    vdev_draid_offset_to_group(vd, offset + asize - 1));
1783 
1784 		return (vdev_draid_group_degraded(vd, offset));
1785 	} else {
1786 		/*
1787 		 * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1788 		 * as are blocks in non-degraded groups.
1789 		 */
1790 		if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1791 			return (B_FALSE);
1792 
1793 		if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1794 			return (B_TRUE);
1795 
1796 		/* The block may span groups in which case check both. */
1797 		if (vdev_draid_offset_to_group(vd, offset) !=
1798 		    vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1799 			if (vdev_draid_group_missing(vd,
1800 			    offset + asize, phys_birth, 1))
1801 				return (B_TRUE);
1802 		}
1803 
1804 		return (B_FALSE);
1805 	}
1806 }
1807 
1808 static boolean_t
vdev_draid_rebuilding(vdev_t * vd)1809 vdev_draid_rebuilding(vdev_t *vd)
1810 {
1811 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1812 		return (B_TRUE);
1813 
1814 	for (int i = 0; i < vd->vdev_children; i++) {
1815 		if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1816 			return (B_TRUE);
1817 		}
1818 	}
1819 
1820 	return (B_FALSE);
1821 }
1822 
1823 static void
vdev_draid_io_verify(vdev_t * vd,raidz_row_t * rr,int col)1824 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1825 {
1826 #ifdef ZFS_DEBUG
1827 	zfs_range_seg64_t logical_rs, physical_rs, remain_rs;
1828 	logical_rs.rs_start = rr->rr_offset;
1829 	logical_rs.rs_end = logical_rs.rs_start +
1830 	    vdev_draid_asize(vd, rr->rr_size, 0);
1831 
1832 	raidz_col_t *rc = &rr->rr_col[col];
1833 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1834 
1835 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1836 	ASSERT(vdev_xlate_is_empty(&remain_rs));
1837 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1838 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1839 	ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1840 #endif
1841 }
1842 
1843 /*
1844  * For write operations:
1845  * 1. Generate the parity data
1846  * 2. Create child zio write operations to each column's vdev, for both
1847  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1848  *    if a skip sector needs to be added to a column.
1849  */
1850 static void
vdev_draid_io_start_write(zio_t * zio,raidz_row_t * rr)1851 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1852 {
1853 	vdev_t *vd = zio->io_vd;
1854 	raidz_map_t *rm = zio->io_vsd;
1855 
1856 	vdev_raidz_generate_parity_row(rm, rr);
1857 
1858 	for (int c = 0; c < rr->rr_cols; c++) {
1859 		raidz_col_t *rc = &rr->rr_col[c];
1860 
1861 		/*
1862 		 * Empty columns are zero filled and included in the parity
1863 		 * calculation and therefore must be written.
1864 		 */
1865 		ASSERT3U(rc->rc_size, !=, 0);
1866 
1867 		/* Verify physical to logical translation */
1868 		vdev_draid_io_verify(vd, rr, c);
1869 
1870 		zio_nowait(zio_vdev_child_io(zio, NULL,
1871 		    vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1872 		    rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1873 		    0, vdev_raidz_child_done, rc));
1874 	}
1875 }
1876 
1877 /*
1878  * For read operations:
1879  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1880  *    mapping for the read based on the zio->io_flags.  There are two
1881  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1882  * 2. Create the zio read operations.  This will include all parity
1883  *    columns and skip sectors for a scrub/resilver.
1884  */
1885 static void
vdev_draid_io_start_read(zio_t * zio,raidz_row_t * rr)1886 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1887 {
1888 	vdev_t *vd = zio->io_vd;
1889 
1890 	/* Sequential rebuild must do IO at redundancy group boundary. */
1891 	IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1892 
1893 	/*
1894 	 * Iterate over the columns in reverse order so that we hit the parity
1895 	 * last.  Any errors along the way will force us to read the parity.
1896 	 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1897 	 * have been allocated to store them and rc->rc_size is increased.
1898 	 */
1899 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1900 		raidz_col_t *rc = &rr->rr_col[c];
1901 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1902 
1903 		if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1904 			if (c >= rr->rr_firstdatacol)
1905 				rr->rr_missingdata++;
1906 			else
1907 				rr->rr_missingparity++;
1908 			rc->rc_error = SET_ERROR(ENXIO);
1909 			rc->rc_tried = 1;
1910 			rc->rc_skipped = 1;
1911 			continue;
1912 		}
1913 
1914 		if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1915 			if (c >= rr->rr_firstdatacol)
1916 				rr->rr_missingdata++;
1917 			else
1918 				rr->rr_missingparity++;
1919 			rc->rc_error = SET_ERROR(ESTALE);
1920 			rc->rc_skipped = 1;
1921 			continue;
1922 		}
1923 
1924 		/*
1925 		 * Empty columns may be read during vdev_draid_io_done().
1926 		 * Only skip them after the readable and missing checks
1927 		 * verify they are available.
1928 		 */
1929 		if (rc->rc_size == 0) {
1930 			rc->rc_skipped = 1;
1931 			continue;
1932 		}
1933 
1934 		if (zio->io_flags & ZIO_FLAG_RESILVER) {
1935 			vdev_t *svd;
1936 
1937 			/*
1938 			 * Sequential rebuilds need to always consider the data
1939 			 * on the child being rebuilt to be stale.  This is
1940 			 * important when all columns are available to aid
1941 			 * known reconstruction in identifing which columns
1942 			 * contain incorrect data.
1943 			 *
1944 			 * Furthermore, all repairs need to be constrained to
1945 			 * the devices being rebuilt because without a checksum
1946 			 * we cannot verify the data is actually correct and
1947 			 * performing an incorrect repair could result in
1948 			 * locking in damage and making the data unrecoverable.
1949 			 */
1950 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
1951 				if (vdev_draid_rebuilding(cvd)) {
1952 					if (c >= rr->rr_firstdatacol)
1953 						rr->rr_missingdata++;
1954 					else
1955 						rr->rr_missingparity++;
1956 					rc->rc_error = SET_ERROR(ESTALE);
1957 					rc->rc_skipped = 1;
1958 					rc->rc_allow_repair = 1;
1959 					continue;
1960 				} else {
1961 					rc->rc_allow_repair = 0;
1962 				}
1963 			} else {
1964 				rc->rc_allow_repair = 1;
1965 			}
1966 
1967 			/*
1968 			 * If this child is a distributed spare then the
1969 			 * offset might reside on the vdev being replaced.
1970 			 * In which case this data must be written to the
1971 			 * new device.  Failure to do so would result in
1972 			 * checksum errors when the old device is detached
1973 			 * and the pool is scrubbed.
1974 			 */
1975 			if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1976 				svd = vdev_draid_spare_get_child(svd,
1977 				    rc->rc_offset);
1978 				if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1979 				    svd->vdev_ops == &vdev_replacing_ops)) {
1980 					rc->rc_force_repair = 1;
1981 
1982 					if (vdev_draid_rebuilding(svd))
1983 						rc->rc_allow_repair = 1;
1984 				}
1985 			}
1986 
1987 			/*
1988 			 * Always issue a repair IO to this child when its
1989 			 * a spare or replacing vdev with an active rebuild.
1990 			 */
1991 			if ((cvd->vdev_ops == &vdev_spare_ops ||
1992 			    cvd->vdev_ops == &vdev_replacing_ops) &&
1993 			    vdev_draid_rebuilding(cvd)) {
1994 				rc->rc_force_repair = 1;
1995 				rc->rc_allow_repair = 1;
1996 			}
1997 		}
1998 	}
1999 
2000 	/*
2001 	 * Either a parity or data column is missing this means a repair
2002 	 * may be attempted by vdev_draid_io_done().  Expand the raid map
2003 	 * to read in empty columns which are needed along with the parity
2004 	 * during reconstruction.
2005 	 */
2006 	if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
2007 	    rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
2008 		vdev_draid_map_alloc_empty(zio, rr);
2009 	}
2010 
2011 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
2012 		raidz_col_t *rc = &rr->rr_col[c];
2013 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2014 
2015 		if (rc->rc_error || rc->rc_size == 0)
2016 			continue;
2017 
2018 		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2019 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2020 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2021 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2022 			    zio->io_type, zio->io_priority, 0,
2023 			    vdev_raidz_child_done, rc));
2024 		}
2025 	}
2026 }
2027 
2028 /*
2029  * Start an IO operation to a dRAID vdev.
2030  */
2031 static void
vdev_draid_io_start(zio_t * zio)2032 vdev_draid_io_start(zio_t *zio)
2033 {
2034 	vdev_t *vd __maybe_unused = zio->io_vd;
2035 
2036 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2037 	ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
2038 
2039 	raidz_map_t *rm = vdev_draid_map_alloc(zio);
2040 	zio->io_vsd = rm;
2041 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2042 
2043 	if (zio->io_type == ZIO_TYPE_WRITE) {
2044 		for (int i = 0; i < rm->rm_nrows; i++) {
2045 			vdev_draid_io_start_write(zio, rm->rm_row[i]);
2046 		}
2047 	} else {
2048 		ASSERT(zio->io_type == ZIO_TYPE_READ);
2049 
2050 		for (int i = 0; i < rm->rm_nrows; i++) {
2051 			vdev_draid_io_start_read(zio, rm->rm_row[i]);
2052 		}
2053 	}
2054 
2055 	zio_execute(zio);
2056 }
2057 
2058 /*
2059  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
2060  * to dRAID since the layout is fully described by the raidz_map_t.
2061  */
2062 static void
vdev_draid_io_done(zio_t * zio)2063 vdev_draid_io_done(zio_t *zio)
2064 {
2065 	vdev_raidz_io_done(zio);
2066 }
2067 
2068 static void
vdev_draid_state_change(vdev_t * vd,int faulted,int degraded)2069 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
2070 {
2071 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2072 	ASSERT(vd->vdev_ops == &vdev_draid_ops);
2073 
2074 	if (faulted > vdc->vdc_nparity)
2075 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2076 		    VDEV_AUX_NO_REPLICAS);
2077 	else if (degraded + faulted != 0)
2078 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2079 	else
2080 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2081 }
2082 
2083 static void
vdev_draid_xlate(vdev_t * cvd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)2084 vdev_draid_xlate(vdev_t *cvd, const zfs_range_seg64_t *logical_rs,
2085     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
2086 {
2087 	vdev_t *raidvd = cvd->vdev_parent;
2088 	ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2089 
2090 	vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2091 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2092 
2093 	/* Make sure the offsets are block-aligned */
2094 	ASSERT0(logical_rs->rs_start % (1 << ashift));
2095 	ASSERT0(logical_rs->rs_end % (1 << ashift));
2096 
2097 	uint64_t logical_start = logical_rs->rs_start;
2098 	uint64_t logical_end = logical_rs->rs_end;
2099 
2100 	/*
2101 	 * Unaligned ranges must be skipped. All metaslabs are correctly
2102 	 * aligned so this should not happen, but this case is handled in
2103 	 * case it's needed by future callers.
2104 	 */
2105 	uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2106 	if (astart != logical_start) {
2107 		physical_rs->rs_start = logical_start;
2108 		physical_rs->rs_end = logical_start;
2109 		remain_rs->rs_start = MIN(astart, logical_end);
2110 		remain_rs->rs_end = logical_end;
2111 		return;
2112 	}
2113 
2114 	/*
2115 	 * Unlike with mirrors and raidz a dRAID logical range can map
2116 	 * to multiple non-contiguous physical ranges. This is handled by
2117 	 * limiting the size of the logical range to a single group and
2118 	 * setting the remain argument such that it describes the remaining
2119 	 * unmapped logical range. This is stricter than absolutely
2120 	 * necessary but helps simplify the logic below.
2121 	 */
2122 	uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2123 	uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2124 	if (logical_end > nextstart)
2125 		logical_end = nextstart;
2126 
2127 	/* Find the starting offset for each vdev in the group */
2128 	uint64_t perm, groupstart;
2129 	uint64_t start = vdev_draid_logical_to_physical(raidvd,
2130 	    logical_start, &perm, &groupstart);
2131 	uint64_t end = start;
2132 
2133 	uint8_t *base;
2134 	uint64_t iter, id;
2135 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2136 
2137 	/*
2138 	 * Check if the passed child falls within the group.  If it does
2139 	 * update the start and end to reflect the physical range.
2140 	 * Otherwise, leave them unmodified which will result in an empty
2141 	 * (zero-length) physical range being returned.
2142 	 */
2143 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2144 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2145 
2146 		if (c == 0 && i != 0) {
2147 			/* the group wrapped, increment the start */
2148 			start += VDEV_DRAID_ROWHEIGHT;
2149 			end = start;
2150 		}
2151 
2152 		id = vdev_draid_permute_id(vdc, base, iter, c);
2153 		if (id == cvd->vdev_id) {
2154 			uint64_t b_size = (logical_end >> ashift) -
2155 			    (logical_start >> ashift);
2156 			ASSERT3U(b_size, >, 0);
2157 			end = start + ((((b_size - 1) /
2158 			    vdc->vdc_groupwidth) + 1) << ashift);
2159 			break;
2160 		}
2161 	}
2162 	physical_rs->rs_start = start;
2163 	physical_rs->rs_end = end;
2164 
2165 	/*
2166 	 * Only top-level vdevs are allowed to set remain_rs because
2167 	 * when .vdev_op_xlate() is called for their children the full
2168 	 * logical range is not provided by vdev_xlate().
2169 	 */
2170 	remain_rs->rs_start = logical_end;
2171 	remain_rs->rs_end = logical_rs->rs_end;
2172 
2173 	ASSERT3U(physical_rs->rs_start, <=, logical_start);
2174 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2175 	    logical_end - logical_start);
2176 }
2177 
2178 /*
2179  * Add dRAID specific fields to the config nvlist.
2180  */
2181 static void
vdev_draid_config_generate(vdev_t * vd,nvlist_t * nv)2182 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2183 {
2184 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2185 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2186 
2187 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2188 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2189 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2190 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2191 }
2192 
2193 /*
2194  * Initialize private dRAID specific fields from the nvlist.
2195  */
2196 static int
vdev_draid_init(spa_t * spa,nvlist_t * nv,void ** tsd)2197 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2198 {
2199 	(void) spa;
2200 	uint64_t ndata, nparity, nspares, ngroups;
2201 	int error;
2202 
2203 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2204 		return (SET_ERROR(EINVAL));
2205 
2206 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2207 	    nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2208 		return (SET_ERROR(EINVAL));
2209 	}
2210 
2211 	uint_t children;
2212 	nvlist_t **child;
2213 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2214 	    &child, &children) != 0 || children == 0 ||
2215 	    children > VDEV_DRAID_MAX_CHILDREN) {
2216 		return (SET_ERROR(EINVAL));
2217 	}
2218 
2219 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2220 	    nspares > 100 || nspares > (children - (ndata + nparity))) {
2221 		return (SET_ERROR(EINVAL));
2222 	}
2223 
2224 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2225 	    ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2226 		return (SET_ERROR(EINVAL));
2227 	}
2228 
2229 	/*
2230 	 * Validate the minimum number of children exist per group for the
2231 	 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2232 	 */
2233 	if (children < (ndata + nparity + nspares))
2234 		return (SET_ERROR(EINVAL));
2235 
2236 	/*
2237 	 * Create the dRAID configuration using the pool nvlist configuration
2238 	 * and the fixed mapping for the correct number of children.
2239 	 */
2240 	vdev_draid_config_t *vdc;
2241 	const draid_map_t *map;
2242 
2243 	error = vdev_draid_lookup_map(children, &map);
2244 	if (error)
2245 		return (SET_ERROR(EINVAL));
2246 
2247 	vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2248 	vdc->vdc_ndata = ndata;
2249 	vdc->vdc_nparity = nparity;
2250 	vdc->vdc_nspares = nspares;
2251 	vdc->vdc_children = children;
2252 	vdc->vdc_ngroups = ngroups;
2253 	vdc->vdc_nperms = map->dm_nperms;
2254 
2255 	error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2256 	if (error) {
2257 		kmem_free(vdc, sizeof (*vdc));
2258 		return (SET_ERROR(EINVAL));
2259 	}
2260 
2261 	/*
2262 	 * Derived constants.
2263 	 */
2264 	vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2265 	vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2266 	vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2267 	vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2268 	    vdc->vdc_ndisks;
2269 
2270 	ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2271 	ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2272 	ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2273 	ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2274 	ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
2275 	ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2276 	    vdc->vdc_ndisks, ==, 0);
2277 
2278 	*tsd = vdc;
2279 
2280 	return (0);
2281 }
2282 
2283 static void
vdev_draid_fini(vdev_t * vd)2284 vdev_draid_fini(vdev_t *vd)
2285 {
2286 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2287 
2288 	vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2289 	    vdc->vdc_children * vdc->vdc_nperms);
2290 	kmem_free(vdc, sizeof (*vdc));
2291 }
2292 
2293 static uint64_t
vdev_draid_nparity(vdev_t * vd)2294 vdev_draid_nparity(vdev_t *vd)
2295 {
2296 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2297 
2298 	return (vdc->vdc_nparity);
2299 }
2300 
2301 static uint64_t
vdev_draid_ndisks(vdev_t * vd)2302 vdev_draid_ndisks(vdev_t *vd)
2303 {
2304 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2305 
2306 	return (vdc->vdc_ndisks);
2307 }
2308 
2309 vdev_ops_t vdev_draid_ops = {
2310 	.vdev_op_init = vdev_draid_init,
2311 	.vdev_op_fini = vdev_draid_fini,
2312 	.vdev_op_open = vdev_draid_open,
2313 	.vdev_op_close = vdev_draid_close,
2314 	.vdev_op_asize = vdev_draid_asize,
2315 	.vdev_op_min_asize = vdev_draid_min_asize,
2316 	.vdev_op_min_alloc = vdev_draid_min_alloc,
2317 	.vdev_op_io_start = vdev_draid_io_start,
2318 	.vdev_op_io_done = vdev_draid_io_done,
2319 	.vdev_op_state_change = vdev_draid_state_change,
2320 	.vdev_op_need_resilver = vdev_draid_need_resilver,
2321 	.vdev_op_hold = NULL,
2322 	.vdev_op_rele = NULL,
2323 	.vdev_op_remap = NULL,
2324 	.vdev_op_xlate = vdev_draid_xlate,
2325 	.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2326 	.vdev_op_metaslab_init = vdev_draid_metaslab_init,
2327 	.vdev_op_config_generate = vdev_draid_config_generate,
2328 	.vdev_op_nparity = vdev_draid_nparity,
2329 	.vdev_op_ndisks = vdev_draid_ndisks,
2330 	.vdev_op_type = VDEV_TYPE_DRAID,
2331 	.vdev_op_leaf = B_FALSE,
2332 };
2333 
2334 
2335 /*
2336  * A dRAID distributed spare is a virtual leaf vdev which is included in the
2337  * parent dRAID configuration.  The last N columns of the dRAID permutation
2338  * table are used to determine on which dRAID children a specific offset
2339  * should be written.  These spare leaf vdevs can only be used to replace
2340  * faulted children in the same dRAID configuration.
2341  */
2342 
2343 /*
2344  * Distributed spare state.  All fields are set when the distributed spare is
2345  * first opened and are immutable.
2346  */
2347 typedef struct {
2348 	vdev_t *vds_draid_vdev;		/* top-level parent dRAID vdev */
2349 	uint64_t vds_top_guid;		/* top-level parent dRAID guid */
2350 	uint64_t vds_spare_id;		/* spare id (0 - vdc->vdc_nspares-1) */
2351 } vdev_draid_spare_t;
2352 
2353 /*
2354  * Returns the parent dRAID vdev to which the distributed spare belongs.
2355  * This may be safely called even when the vdev is not open.
2356  */
2357 vdev_t *
vdev_draid_spare_get_parent(vdev_t * vd)2358 vdev_draid_spare_get_parent(vdev_t *vd)
2359 {
2360 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2361 
2362 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2363 
2364 	if (vds->vds_draid_vdev != NULL)
2365 		return (vds->vds_draid_vdev);
2366 
2367 	return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2368 	    vds->vds_top_guid));
2369 }
2370 
2371 /*
2372  * A dRAID space is active when it's the child of a vdev using the
2373  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2374  */
2375 static boolean_t
vdev_draid_spare_is_active(vdev_t * vd)2376 vdev_draid_spare_is_active(vdev_t *vd)
2377 {
2378 	vdev_t *pvd = vd->vdev_parent;
2379 
2380 	if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2381 	    pvd->vdev_ops == &vdev_replacing_ops ||
2382 	    pvd->vdev_ops == &vdev_draid_ops)) {
2383 		return (B_TRUE);
2384 	} else {
2385 		return (B_FALSE);
2386 	}
2387 }
2388 
2389 /*
2390  * Given a dRAID distribute spare vdev, returns the physical child vdev
2391  * on which the provided offset resides.  This may involve recursing through
2392  * multiple layers of distributed spares.  Note that offset is relative to
2393  * this vdev.
2394  */
2395 vdev_t *
vdev_draid_spare_get_child(vdev_t * vd,uint64_t physical_offset)2396 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2397 {
2398 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2399 
2400 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2401 
2402 	/* The vdev is closed */
2403 	if (vds->vds_draid_vdev == NULL)
2404 		return (NULL);
2405 
2406 	vdev_t *tvd = vds->vds_draid_vdev;
2407 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2408 
2409 	ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2410 	ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2411 
2412 	uint8_t *base;
2413 	uint64_t iter;
2414 	uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2415 
2416 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2417 
2418 	uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2419 	    (tvd->vdev_children - 1) - vds->vds_spare_id);
2420 	vdev_t *cvd = tvd->vdev_child[cid];
2421 
2422 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
2423 		return (vdev_draid_spare_get_child(cvd, physical_offset));
2424 
2425 	return (cvd);
2426 }
2427 
2428 static void
vdev_draid_spare_close(vdev_t * vd)2429 vdev_draid_spare_close(vdev_t *vd)
2430 {
2431 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2432 	vds->vds_draid_vdev = NULL;
2433 }
2434 
2435 /*
2436  * Opening a dRAID spare device is done by looking up the associated dRAID
2437  * top-level vdev guid from the spare configuration.
2438  */
2439 static int
vdev_draid_spare_open(vdev_t * vd,uint64_t * psize,uint64_t * max_psize,uint64_t * logical_ashift,uint64_t * physical_ashift)2440 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2441     uint64_t *logical_ashift, uint64_t *physical_ashift)
2442 {
2443 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2444 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2445 	uint64_t asize, max_asize;
2446 
2447 	vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2448 	if (tvd == NULL) {
2449 		/*
2450 		 * When spa_vdev_add() is labeling new spares the
2451 		 * associated dRAID is not attached to the root vdev
2452 		 * nor does this spare have a parent.  Simulate a valid
2453 		 * device in order to allow the label to be initialized
2454 		 * and the distributed spare added to the configuration.
2455 		 */
2456 		if (vd->vdev_parent == NULL) {
2457 			*psize = *max_psize = SPA_MINDEVSIZE;
2458 			*logical_ashift = *physical_ashift = ASHIFT_MIN;
2459 			return (0);
2460 		}
2461 
2462 		return (SET_ERROR(EINVAL));
2463 	}
2464 
2465 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2466 	if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2467 		return (SET_ERROR(EINVAL));
2468 
2469 	if (vds->vds_spare_id >= vdc->vdc_nspares)
2470 		return (SET_ERROR(EINVAL));
2471 
2472 	/*
2473 	 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2474 	 * because the caller may be vdev_draid_open() in which case the
2475 	 * values are stale as they haven't yet been updated by vdev_open().
2476 	 * To avoid this always recalculate the dRAID asize and max_asize.
2477 	 */
2478 	vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2479 	    logical_ashift, physical_ashift);
2480 
2481 	*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2482 	*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2483 
2484 	vds->vds_draid_vdev = tvd;
2485 
2486 	return (0);
2487 }
2488 
2489 /*
2490  * Completed distributed spare IO.  Store the result in the parent zio
2491  * as if it had performed the operation itself.  Only the first error is
2492  * preserved if there are multiple errors.
2493  */
2494 static void
vdev_draid_spare_child_done(zio_t * zio)2495 vdev_draid_spare_child_done(zio_t *zio)
2496 {
2497 	zio_t *pio = zio->io_private;
2498 
2499 	/*
2500 	 * IOs are issued to non-writable vdevs in order to keep their
2501 	 * DTLs accurate.  However, we don't want to propagate the
2502 	 * error in to the distributed spare's DTL.  When resilvering
2503 	 * vdev_draid_need_resilver() will consult the relevant DTL
2504 	 * to determine if the data is missing and must be repaired.
2505 	 */
2506 	if (!vdev_writeable(zio->io_vd))
2507 		return;
2508 
2509 	if (pio->io_error == 0)
2510 		pio->io_error = zio->io_error;
2511 }
2512 
2513 /*
2514  * Returns a valid label nvlist for the distributed spare vdev.  This is
2515  * used to bypass the IO pipeline to avoid the complexity of constructing
2516  * a complete label with valid checksum to return when read.
2517  */
2518 nvlist_t *
vdev_draid_read_config_spare(vdev_t * vd)2519 vdev_draid_read_config_spare(vdev_t *vd)
2520 {
2521 	spa_t *spa = vd->vdev_spa;
2522 	spa_aux_vdev_t *sav = &spa->spa_spares;
2523 	uint64_t guid = vd->vdev_guid;
2524 
2525 	nvlist_t *nv = fnvlist_alloc();
2526 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2527 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2528 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2529 	fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2530 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2531 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2532 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2533 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2534 	    vdev_draid_spare_is_active(vd) ?
2535 	    POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2536 
2537 	/* Set the vdev guid based on the vdev list in sav_count. */
2538 	for (int i = 0; i < sav->sav_count; i++) {
2539 		if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2540 		    strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2541 			guid = sav->sav_vdevs[i]->vdev_guid;
2542 			break;
2543 		}
2544 	}
2545 
2546 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2547 
2548 	return (nv);
2549 }
2550 
2551 /*
2552  * Handle any flush requested of the distributed spare. All children must be
2553  * flushed.
2554  */
2555 static int
vdev_draid_spare_flush(zio_t * zio)2556 vdev_draid_spare_flush(zio_t *zio)
2557 {
2558 	vdev_t *vd = zio->io_vd;
2559 	int error = 0;
2560 
2561 	for (int c = 0; c < vd->vdev_children; c++) {
2562 		zio_nowait(zio_vdev_child_io(zio, NULL,
2563 		    vd->vdev_child[c], zio->io_offset, zio->io_abd,
2564 		    zio->io_size, zio->io_type, zio->io_priority, 0,
2565 		    vdev_draid_spare_child_done, zio));
2566 	}
2567 
2568 	return (error);
2569 }
2570 
2571 /*
2572  * Initiate an IO to the distributed spare.  For normal IOs this entails using
2573  * the zio->io_offset and permutation table to calculate which child dRAID vdev
2574  * is responsible for the data.  Then passing along the zio to that child to
2575  * perform the actual IO.  The label ranges are not stored on disk and require
2576  * some special handling which is described below.
2577  */
2578 static void
vdev_draid_spare_io_start(zio_t * zio)2579 vdev_draid_spare_io_start(zio_t *zio)
2580 {
2581 	vdev_t *cvd = NULL, *vd = zio->io_vd;
2582 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2583 	uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2584 
2585 	/*
2586 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2587 	 * Nothing to be done here but return failure.
2588 	 */
2589 	if (vds == NULL) {
2590 		zio->io_error = ENXIO;
2591 		zio_interrupt(zio);
2592 		return;
2593 	}
2594 
2595 	switch (zio->io_type) {
2596 	case ZIO_TYPE_FLUSH:
2597 		zio->io_error = vdev_draid_spare_flush(zio);
2598 		break;
2599 
2600 	case ZIO_TYPE_WRITE:
2601 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2602 			/*
2603 			 * Accept probe IOs and config writers to simulate the
2604 			 * existence of an on disk label.  vdev_label_sync(),
2605 			 * vdev_uberblock_sync() and vdev_copy_uberblocks()
2606 			 * skip the distributed spares.  This only leaves
2607 			 * vdev_label_init() which is allowed to succeed to
2608 			 * avoid adding special cases the function.
2609 			 */
2610 			if (zio->io_flags & ZIO_FLAG_PROBE ||
2611 			    zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2612 				zio->io_error = 0;
2613 			} else {
2614 				zio->io_error = SET_ERROR(EIO);
2615 			}
2616 		} else {
2617 			cvd = vdev_draid_spare_get_child(vd, offset);
2618 
2619 			if (cvd == NULL) {
2620 				zio->io_error = SET_ERROR(ENXIO);
2621 			} else {
2622 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2623 				    offset, zio->io_abd, zio->io_size,
2624 				    zio->io_type, zio->io_priority, 0,
2625 				    vdev_draid_spare_child_done, zio));
2626 			}
2627 		}
2628 		break;
2629 
2630 	case ZIO_TYPE_READ:
2631 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2632 			/*
2633 			 * Accept probe IOs to simulate the existence of a
2634 			 * label.  vdev_label_read_config() bypasses the
2635 			 * pipeline to read the label configuration and
2636 			 * vdev_uberblock_load() skips distributed spares
2637 			 * when attempting to locate the best uberblock.
2638 			 */
2639 			if (zio->io_flags & ZIO_FLAG_PROBE) {
2640 				zio->io_error = 0;
2641 			} else {
2642 				zio->io_error = SET_ERROR(EIO);
2643 			}
2644 		} else {
2645 			cvd = vdev_draid_spare_get_child(vd, offset);
2646 
2647 			if (cvd == NULL || !vdev_readable(cvd)) {
2648 				zio->io_error = SET_ERROR(ENXIO);
2649 			} else {
2650 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2651 				    offset, zio->io_abd, zio->io_size,
2652 				    zio->io_type, zio->io_priority, 0,
2653 				    vdev_draid_spare_child_done, zio));
2654 			}
2655 		}
2656 		break;
2657 
2658 	case ZIO_TYPE_TRIM:
2659 		/* The vdev label ranges are never trimmed */
2660 		ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2661 
2662 		cvd = vdev_draid_spare_get_child(vd, offset);
2663 
2664 		if (cvd == NULL || !cvd->vdev_has_trim) {
2665 			zio->io_error = SET_ERROR(ENXIO);
2666 		} else {
2667 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2668 			    offset, zio->io_abd, zio->io_size,
2669 			    zio->io_type, zio->io_priority, 0,
2670 			    vdev_draid_spare_child_done, zio));
2671 		}
2672 		break;
2673 
2674 	default:
2675 		zio->io_error = SET_ERROR(ENOTSUP);
2676 		break;
2677 	}
2678 
2679 	zio_execute(zio);
2680 }
2681 
2682 static void
vdev_draid_spare_io_done(zio_t * zio)2683 vdev_draid_spare_io_done(zio_t *zio)
2684 {
2685 	(void) zio;
2686 }
2687 
2688 /*
2689  * Lookup the full spare config in spa->spa_spares.sav_config and
2690  * return the top_guid and spare_id for the named spare.
2691  */
2692 static int
vdev_draid_spare_lookup(spa_t * spa,nvlist_t * nv,uint64_t * top_guidp,uint64_t * spare_idp)2693 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2694     uint64_t *spare_idp)
2695 {
2696 	nvlist_t **spares;
2697 	uint_t nspares;
2698 	int error;
2699 
2700 	if ((spa->spa_spares.sav_config == NULL) ||
2701 	    (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2702 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2703 		return (SET_ERROR(ENOENT));
2704 	}
2705 
2706 	const char *spare_name;
2707 	error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2708 	if (error != 0)
2709 		return (SET_ERROR(EINVAL));
2710 
2711 	for (int i = 0; i < nspares; i++) {
2712 		nvlist_t *spare = spares[i];
2713 		uint64_t top_guid, spare_id;
2714 		const char *type, *path;
2715 
2716 		/* Skip non-distributed spares */
2717 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2718 		if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2719 			continue;
2720 
2721 		/* Skip spares with the wrong name */
2722 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2723 		if (error != 0 || strcmp(path, spare_name) != 0)
2724 			continue;
2725 
2726 		/* Found the matching spare */
2727 		error = nvlist_lookup_uint64(spare,
2728 		    ZPOOL_CONFIG_TOP_GUID, &top_guid);
2729 		if (error == 0) {
2730 			error = nvlist_lookup_uint64(spare,
2731 			    ZPOOL_CONFIG_SPARE_ID, &spare_id);
2732 		}
2733 
2734 		if (error != 0) {
2735 			return (SET_ERROR(EINVAL));
2736 		} else {
2737 			*top_guidp = top_guid;
2738 			*spare_idp = spare_id;
2739 			return (0);
2740 		}
2741 	}
2742 
2743 	return (SET_ERROR(ENOENT));
2744 }
2745 
2746 /*
2747  * Initialize private dRAID spare specific fields from the nvlist.
2748  */
2749 static int
vdev_draid_spare_init(spa_t * spa,nvlist_t * nv,void ** tsd)2750 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2751 {
2752 	vdev_draid_spare_t *vds;
2753 	uint64_t top_guid = 0;
2754 	uint64_t spare_id;
2755 
2756 	/*
2757 	 * In the normal case check the list of spares stored in the spa
2758 	 * to lookup the top_guid and spare_id for provided spare config.
2759 	 * When creating a new pool or adding vdevs the spare list is not
2760 	 * yet populated and the values are provided in the passed config.
2761 	 */
2762 	if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2763 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2764 		    &top_guid) != 0)
2765 			return (SET_ERROR(EINVAL));
2766 
2767 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2768 		    &spare_id) != 0)
2769 			return (SET_ERROR(EINVAL));
2770 	}
2771 
2772 	vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2773 	vds->vds_draid_vdev = NULL;
2774 	vds->vds_top_guid = top_guid;
2775 	vds->vds_spare_id = spare_id;
2776 
2777 	*tsd = vds;
2778 
2779 	return (0);
2780 }
2781 
2782 static void
vdev_draid_spare_fini(vdev_t * vd)2783 vdev_draid_spare_fini(vdev_t *vd)
2784 {
2785 	kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2786 }
2787 
2788 static void
vdev_draid_spare_config_generate(vdev_t * vd,nvlist_t * nv)2789 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2790 {
2791 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2792 
2793 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2794 
2795 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2796 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2797 }
2798 
2799 vdev_ops_t vdev_draid_spare_ops = {
2800 	.vdev_op_init = vdev_draid_spare_init,
2801 	.vdev_op_fini = vdev_draid_spare_fini,
2802 	.vdev_op_open = vdev_draid_spare_open,
2803 	.vdev_op_close = vdev_draid_spare_close,
2804 	.vdev_op_asize = vdev_default_asize,
2805 	.vdev_op_min_asize = vdev_default_min_asize,
2806 	.vdev_op_min_alloc = NULL,
2807 	.vdev_op_io_start = vdev_draid_spare_io_start,
2808 	.vdev_op_io_done = vdev_draid_spare_io_done,
2809 	.vdev_op_state_change = NULL,
2810 	.vdev_op_need_resilver = NULL,
2811 	.vdev_op_hold = NULL,
2812 	.vdev_op_rele = NULL,
2813 	.vdev_op_remap = NULL,
2814 	.vdev_op_xlate = vdev_default_xlate,
2815 	.vdev_op_rebuild_asize = NULL,
2816 	.vdev_op_metaslab_init = NULL,
2817 	.vdev_op_config_generate = vdev_draid_spare_config_generate,
2818 	.vdev_op_nparity = NULL,
2819 	.vdev_op_ndisks = NULL,
2820 	.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2821 	.vdev_op_leaf = B_TRUE,
2822 };
2823