xref: /freebsd/lib/libdevstat/devstat.c (revision a2f733abcff64628b7771a47089628b7327a88bd)
1  /*-
2   * SPDX-License-Identifier: BSD-3-Clause
3   *
4   * Copyright (c) 1997, 1998 Kenneth D. Merry.
5   * All rights reserved.
6   *
7   * Redistribution and use in source and binary forms, with or without
8   * modification, are permitted provided that the following conditions
9   * are met:
10   * 1. Redistributions of source code must retain the above copyright
11   *    notice, this list of conditions and the following disclaimer.
12   * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the distribution.
15   * 3. The name of the author may not be used to endorse or promote products
16   *    derived from this software without specific prior written permission.
17   *
18   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28   * SUCH DAMAGE.
29   */
30  
31  #include <sys/types.h>
32  #include <sys/sysctl.h>
33  #include <sys/errno.h>
34  #include <sys/resource.h>
35  #include <sys/queue.h>
36  
37  #include <ctype.h>
38  #include <err.h>
39  #include <fcntl.h>
40  #include <limits.h>
41  #include <stdio.h>
42  #include <stdlib.h>
43  #include <string.h>
44  #include <stdarg.h>
45  #include <kvm.h>
46  #include <nlist.h>
47  
48  #include "devstat.h"
49  
50  int
51  compute_stats(struct devstat *current, struct devstat *previous,
52  	      long double etime, u_int64_t *total_bytes,
53  	      u_int64_t *total_transfers, u_int64_t *total_blocks,
54  	      long double *kb_per_transfer, long double *transfers_per_second,
55  	      long double *mb_per_second, long double *blocks_per_second,
56  	      long double *ms_per_transaction);
57  
58  typedef enum {
59  	DEVSTAT_ARG_NOTYPE,
60  	DEVSTAT_ARG_UINT64,
61  	DEVSTAT_ARG_LD,
62  	DEVSTAT_ARG_SKIP
63  } devstat_arg_type;
64  
65  char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
66  
67  /*
68   * Table to match descriptive strings with device types.  These are in
69   * order from most common to least common to speed search time.
70   */
71  struct devstat_match_table match_table[] = {
72  	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
73  	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
74  	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
75  	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
76  	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
77  	{"nvme",	DEVSTAT_TYPE_IF_NVME,	DEVSTAT_MATCH_IF},
78  	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
79  	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80  	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
81  	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
82  	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
83  	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
84  	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
85  	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
86  	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
87  	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
88  	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
89  	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
90  	{NULL,		0,			0}
91  };
92  
93  struct devstat_args {
94  	devstat_metric 		metric;
95  	devstat_arg_type	argtype;
96  } devstat_arg_list[] = {
97  	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
98  	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99  	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100  	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101  	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102  	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103  	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104  	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105  	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106  	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107  	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108  	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109  	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110  	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111  	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112  	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113  	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114  	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115  	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116  	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117  	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118  	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119  	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120  	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121  	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122  	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123  	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124  	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
125  	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126  	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127  	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128  	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129  	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130  	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131  	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132  	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133  	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134  	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135  	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136  	{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
137  	{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
138  	{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
139  	{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
140  	{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
141  	{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
142  };
143  
144  static const char *namelist[] = {
145  #define X_NUMDEVS	0
146  	"_devstat_num_devs",
147  #define X_GENERATION	1
148  	"_devstat_generation",
149  #define X_VERSION	2
150  	"_devstat_version",
151  #define X_DEVICE_STATQ	3
152  	"_device_statq",
153  #define X_TIME_UPTIME	4
154  	"_time_uptime",
155  #define X_END		5
156  };
157  
158  /*
159   * Local function declarations.
160   */
161  static int compare_select(const void *arg1, const void *arg2);
162  static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
163  static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
164  static char *get_devstat_kvm(kvm_t *kd);
165  
166  #define KREADNL(kd, var, val) \
167  	readkmem_nl(kd, namelist[var], &val, sizeof(val))
168  
169  int
devstat_getnumdevs(kvm_t * kd)170  devstat_getnumdevs(kvm_t *kd)
171  {
172  	size_t numdevsize;
173  	int numdevs;
174  
175  	numdevsize = sizeof(int);
176  
177  	/*
178  	 * Find out how many devices we have in the system.
179  	 */
180  	if (kd == NULL) {
181  		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
182  				 &numdevsize, NULL, 0) == -1) {
183  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
184  				 "%s: error getting number of devices\n"
185  				 "%s: %s", __func__, __func__,
186  				 strerror(errno));
187  			return(-1);
188  		} else
189  			return(numdevs);
190  	} else {
191  
192  		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
193  			return(-1);
194  		else
195  			return(numdevs);
196  	}
197  }
198  
199  /*
200   * This is an easy way to get the generation number, but the generation is
201   * supplied in a more atmoic manner by the kern.devstat.all sysctl.
202   * Because this generation sysctl is separate from the statistics sysctl,
203   * the device list and the generation could change between the time that
204   * this function is called and the device list is retrieved.
205   */
206  long
devstat_getgeneration(kvm_t * kd)207  devstat_getgeneration(kvm_t *kd)
208  {
209  	size_t gensize;
210  	long generation;
211  
212  	gensize = sizeof(long);
213  
214  	/*
215  	 * Get the current generation number.
216  	 */
217  	if (kd == NULL) {
218  		if (sysctlbyname("kern.devstat.generation", &generation,
219  				 &gensize, NULL, 0) == -1) {
220  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
221  				 "%s: error getting devstat generation\n%s: %s",
222  				 __func__, __func__, strerror(errno));
223  			return(-1);
224  		} else
225  			return(generation);
226  	} else {
227  		if (KREADNL(kd, X_GENERATION, generation) == -1)
228  			return(-1);
229  		else
230  			return(generation);
231  	}
232  }
233  
234  /*
235   * Get the current devstat version.  The return value of this function
236   * should be compared with DEVSTAT_VERSION, which is defined in
237   * sys/devicestat.h.  This will enable userland programs to determine
238   * whether they are out of sync with the kernel.
239   */
240  int
devstat_getversion(kvm_t * kd)241  devstat_getversion(kvm_t *kd)
242  {
243  	size_t versize;
244  	int version;
245  
246  	versize = sizeof(int);
247  
248  	/*
249  	 * Get the current devstat version.
250  	 */
251  	if (kd == NULL) {
252  		if (sysctlbyname("kern.devstat.version", &version, &versize,
253  				 NULL, 0) == -1) {
254  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
255  				 "%s: error getting devstat version\n%s: %s",
256  				 __func__, __func__, strerror(errno));
257  			return(-1);
258  		} else
259  			return(version);
260  	} else {
261  		if (KREADNL(kd, X_VERSION, version) == -1)
262  			return(-1);
263  		else
264  			return(version);
265  	}
266  }
267  
268  /*
269   * Check the devstat version we know about against the devstat version the
270   * kernel knows about.  If they don't match, print an error into the
271   * devstat error buffer, and return -1.  If they match, return 0.
272   */
273  int
devstat_checkversion(kvm_t * kd)274  devstat_checkversion(kvm_t *kd)
275  {
276  	int buflen, res, retval = 0, version;
277  
278  	version = devstat_getversion(kd);
279  
280  	if (version != DEVSTAT_VERSION) {
281  		/*
282  		 * If getversion() returns an error (i.e. -1), then it
283  		 * has printed an error message in the buffer.  Therefore,
284  		 * we need to add a \n to the end of that message before we
285  		 * print our own message in the buffer.
286  		 */
287  		if (version == -1)
288  			buflen = strlen(devstat_errbuf);
289  		else
290  			buflen = 0;
291  
292  		res = snprintf(devstat_errbuf + buflen,
293  			       DEVSTAT_ERRBUF_SIZE - buflen,
294  			       "%s%s: userland devstat version %d is not "
295  			       "the same as the kernel\n%s: devstat "
296  			       "version %d\n", version == -1 ? "\n" : "",
297  			       __func__, DEVSTAT_VERSION, __func__, version);
298  
299  		if (res < 0)
300  			devstat_errbuf[buflen] = '\0';
301  
302  		buflen = strlen(devstat_errbuf);
303  		if (version < DEVSTAT_VERSION)
304  			res = snprintf(devstat_errbuf + buflen,
305  				       DEVSTAT_ERRBUF_SIZE - buflen,
306  				       "%s: libdevstat newer than kernel\n",
307  				       __func__);
308  		else
309  			res = snprintf(devstat_errbuf + buflen,
310  				       DEVSTAT_ERRBUF_SIZE - buflen,
311  				       "%s: kernel newer than libdevstat\n",
312  				       __func__);
313  
314  		if (res < 0)
315  			devstat_errbuf[buflen] = '\0';
316  
317  		retval = -1;
318  	}
319  
320  	return(retval);
321  }
322  
323  /*
324   * Get the current list of devices and statistics, and the current
325   * generation number.
326   *
327   * Return values:
328   * -1  -- error
329   *  0  -- device list is unchanged
330   *  1  -- device list has changed
331   */
332  int
devstat_getdevs(kvm_t * kd,struct statinfo * stats)333  devstat_getdevs(kvm_t *kd, struct statinfo *stats)
334  {
335  	int error;
336  	size_t dssize;
337  	long oldgeneration;
338  	int retval = 0;
339  	struct devinfo *dinfo;
340  	struct timespec ts;
341  
342  	dinfo = stats->dinfo;
343  
344  	if (dinfo == NULL) {
345  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
346  			 "%s: stats->dinfo was NULL", __func__);
347  		return(-1);
348  	}
349  
350  	oldgeneration = dinfo->generation;
351  
352  	if (kd == NULL) {
353  		clock_gettime(CLOCK_MONOTONIC, &ts);
354  		stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
355  
356  		/* If this is our first time through, mem_ptr will be null. */
357  		if (dinfo->mem_ptr == NULL) {
358  			/*
359  			 * Get the number of devices.  If it's negative, it's an
360  			 * error.  Don't bother setting the error string, since
361  			 * getnumdevs() has already done that for us.
362  			 */
363  			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
364  				return(-1);
365  
366  			/*
367  			 * The kern.devstat.all sysctl returns the current
368  			 * generation number, as well as all the devices.
369  			 * So we need four bytes more.
370  			 */
371  			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
372  				 sizeof(long);
373  			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
374  			if (dinfo->mem_ptr == NULL) {
375  				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
376  					 "%s: Cannot allocate memory for mem_ptr element",
377  					 __func__);
378  				return(-1);
379  			}
380  		} else
381  			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
382  				 sizeof(long);
383  
384  		/*
385  		 * Request all of the devices.  We only really allow for one
386  		 * ENOMEM failure.  It would, of course, be possible to just go
387  		 * in a loop and keep reallocing the device structure until we
388  		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
389  		 * If devices are being added to the system that quickly, maybe
390  		 * the user can just wait until all devices are added.
391  		 */
392  		for (;;) {
393  			error = sysctlbyname("kern.devstat.all",
394  					     dinfo->mem_ptr,
395  					     &dssize, NULL, 0);
396  			if (error != -1 || errno != EBUSY)
397  				break;
398  		}
399  		if (error == -1) {
400  			/*
401  			 * If we get ENOMEM back, that means that there are
402  			 * more devices now, so we need to allocate more
403  			 * space for the device array.
404  			 */
405  			if (errno == ENOMEM) {
406  				/*
407  				 * No need to set the error string here,
408  				 * devstat_getnumdevs() will do that if it fails.
409  				 */
410  				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
411  					return(-1);
412  
413  				dssize = (dinfo->numdevs *
414  					sizeof(struct devstat)) + sizeof(long);
415  				dinfo->mem_ptr = (u_int8_t *)
416  					realloc(dinfo->mem_ptr, dssize);
417  				if ((error = sysctlbyname("kern.devstat.all",
418  				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
419  					snprintf(devstat_errbuf,
420  						 sizeof(devstat_errbuf),
421  					    	 "%s: error getting device "
422  					    	 "stats\n%s: %s", __func__,
423  					    	 __func__, strerror(errno));
424  					return(-1);
425  				}
426  			} else {
427  				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
428  					 "%s: error getting device stats\n"
429  					 "%s: %s", __func__, __func__,
430  					 strerror(errno));
431  				return(-1);
432  			}
433  		}
434  
435  	} else {
436  		if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
437  			return(-1);
438  		else
439  			stats->snap_time = ts.tv_sec;
440  
441  		/*
442  		 * This is of course non-atomic, but since we are working
443  		 * on a core dump, the generation is unlikely to change
444  		 */
445  		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
446  			return(-1);
447  		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
448  			return(-1);
449  	}
450  	/*
451  	 * The sysctl spits out the generation as the first four bytes,
452  	 * then all of the device statistics structures.
453  	 */
454  	dinfo->generation = *(long *)dinfo->mem_ptr;
455  
456  	/*
457  	 * If the generation has changed, and if the current number of
458  	 * devices is not the same as the number of devices recorded in the
459  	 * devinfo structure, it is likely that the device list has shrunk.
460  	 * The reason that it is likely that the device list has shrunk in
461  	 * this case is that if the device list has grown, the sysctl above
462  	 * will return an ENOMEM error, and we will reset the number of
463  	 * devices and reallocate the device array.  If the second sysctl
464  	 * fails, we will return an error and therefore never get to this
465  	 * point.  If the device list has shrunk, the sysctl will not
466  	 * return an error since we have more space allocated than is
467  	 * necessary.  So, in the shrinkage case, we catch it here and
468  	 * reallocate the array so that we don't use any more space than is
469  	 * necessary.
470  	 */
471  	if (oldgeneration != dinfo->generation) {
472  		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
473  			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
474  				return(-1);
475  			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
476  				sizeof(long);
477  			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
478  							     dssize);
479  		}
480  		retval = 1;
481  	}
482  
483  	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
484  
485  	return(retval);
486  }
487  
488  /*
489   * selectdevs():
490   *
491   * Devices are selected/deselected based upon the following criteria:
492   * - devices specified by the user on the command line
493   * - devices matching any device type expressions given on the command line
494   * - devices with the highest I/O, if 'top' mode is enabled
495   * - the first n unselected devices in the device list, if maxshowdevs
496   *   devices haven't already been selected and if the user has not
497   *   specified any devices on the command line and if we're in "add" mode.
498   *
499   * Input parameters:
500   * - device selection list (dev_select)
501   * - current number of devices selected (num_selected)
502   * - total number of devices in the selection list (num_selections)
503   * - devstat generation as of the last time selectdevs() was called
504   *   (select_generation)
505   * - current devstat generation (current_generation)
506   * - current list of devices and statistics (devices)
507   * - number of devices in the current device list (numdevs)
508   * - compiled version of the command line device type arguments (matches)
509   *   - This is optional.  If the number of devices is 0, this will be ignored.
510   *   - The matching code pays attention to the current selection mode.  So
511   *     if you pass in a matching expression, it will be evaluated based
512   *     upon the selection mode that is passed in.  See below for details.
513   * - number of device type matching expressions (num_matches)
514   *   - Set to 0 to disable the matching code.
515   * - list of devices specified on the command line by the user (dev_selections)
516   * - number of devices selected on the command line by the user
517   *   (num_dev_selections)
518   * - Our selection mode.  There are four different selection modes:
519   *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
520   *        selected by the user or devices matching a pattern given by the
521   *        user will be selected in addition to devices that are already
522   *        selected.  Additional devices will be selected, up to maxshowdevs
523   *        number of devices.
524   *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
525   *        explicitly given by the user or devices matching a pattern
526   *        given by the user will be selected.  No other devices will be
527   *        selected.
528   *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
529   *        only.  Basically, this will not de-select any devices that are
530   *        current selected, as only mode would, but it will also not
531   *        gratuitously select up to maxshowdevs devices as add mode would.
532   *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
533   *        explicitly selected by the user or devices matching a pattern
534   *        given by the user will be de-selected.
535   * - maximum number of devices we can select (maxshowdevs)
536   * - flag indicating whether or not we're in 'top' mode (perf_select)
537   *
538   * Output data:
539   * - the device selection list may be modified and passed back out
540   * - the number of devices selected and the total number of items in the
541   *   device selection list may be changed
542   * - the selection generation may be changed to match the current generation
543   *
544   * Return values:
545   * -1  -- error
546   *  0  -- selected devices are unchanged
547   *  1  -- selected devices changed
548   */
549  int
devstat_selectdevs(struct device_selection ** dev_select,int * num_selected,int * num_selections,long * select_generation,long current_generation,struct devstat * devices,int numdevs,struct devstat_match * matches,int num_matches,char ** dev_selections,int num_dev_selections,devstat_select_mode select_mode,int maxshowdevs,int perf_select)550  devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
551  		   int *num_selections, long *select_generation,
552  		   long current_generation, struct devstat *devices,
553  		   int numdevs, struct devstat_match *matches, int num_matches,
554  		   char **dev_selections, int num_dev_selections,
555  		   devstat_select_mode select_mode, int maxshowdevs,
556  		   int perf_select)
557  {
558  	int i, j, k;
559  	int init_selections = 0, init_selected_var = 0;
560  	struct device_selection *old_dev_select = NULL;
561  	int old_num_selections = 0, old_num_selected;
562  	int selection_number = 0;
563  	int changed = 0, found = 0;
564  
565  	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
566  		return(-1);
567  
568  	/*
569  	 * We always want to make sure that we have as many dev_select
570  	 * entries as there are devices.
571  	 */
572  	/*
573  	 * In this case, we haven't selected devices before.
574  	 */
575  	if (*dev_select == NULL) {
576  		*dev_select = (struct device_selection *)malloc(numdevs *
577  			sizeof(struct device_selection));
578  		*select_generation = current_generation;
579  		init_selections = 1;
580  		changed = 1;
581  	/*
582  	 * In this case, we have selected devices before, but the device
583  	 * list has changed since we last selected devices, so we need to
584  	 * either enlarge or reduce the size of the device selection list.
585  	 * But delay the resizing until after copying the data to old_dev_select
586  	 * as to not lose any data in the case of reducing the size.
587  	 */
588  	} else if (*num_selections != numdevs) {
589  		*select_generation = current_generation;
590  		init_selections = 1;
591  	/*
592  	 * In this case, we've selected devices before, and the selection
593  	 * list is the same size as it was the last time, but the device
594  	 * list has changed.
595  	 */
596  	} else if (*select_generation < current_generation) {
597  		*select_generation = current_generation;
598  		init_selections = 1;
599  	}
600  
601  	if (*dev_select == NULL) {
602  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
603  			 "%s: Cannot (re)allocate memory for dev_select argument",
604  			 __func__);
605  		return(-1);
606  	}
607  
608  	/*
609  	 * If we're in "only" mode, we want to clear out the selected
610  	 * variable since we're going to select exactly what the user wants
611  	 * this time through.
612  	 */
613  	if (select_mode == DS_SELECT_ONLY)
614  		init_selected_var = 1;
615  
616  	/*
617  	 * In all cases, we want to back up the number of selected devices.
618  	 * It is a quick and accurate way to determine whether the selected
619  	 * devices have changed.
620  	 */
621  	old_num_selected = *num_selected;
622  
623  	/*
624  	 * We want to make a backup of the current selection list if
625  	 * the list of devices has changed, or if we're in performance
626  	 * selection mode.  In both cases, we don't want to make a backup
627  	 * if we already know for sure that the list will be different.
628  	 * This is certainly the case if this is our first time through the
629  	 * selection code.
630  	 */
631  	if (((init_selected_var != 0) || (init_selections != 0)
632  	 || (perf_select != 0)) && (changed == 0)){
633  		old_dev_select = (struct device_selection *)malloc(
634  		    *num_selections * sizeof(struct device_selection));
635  		if (old_dev_select == NULL) {
636  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
637  				 "%s: Cannot allocate memory for selection list backup",
638  				 __func__);
639  			return(-1);
640  		}
641  		old_num_selections = *num_selections;
642  		bcopy(*dev_select, old_dev_select,
643  		    sizeof(struct device_selection) * *num_selections);
644  	}
645  
646  	if (!changed && *num_selections != numdevs) {
647  		*dev_select = (struct device_selection *)reallocf(*dev_select,
648  			numdevs * sizeof(struct device_selection));
649  	}
650  
651  	if (init_selections != 0) {
652  		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
653  
654  		for (i = 0; i < numdevs; i++) {
655  			(*dev_select)[i].device_number =
656  				devices[i].device_number;
657  			strncpy((*dev_select)[i].device_name,
658  				devices[i].device_name,
659  				DEVSTAT_NAME_LEN);
660  			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
661  			(*dev_select)[i].unit_number = devices[i].unit_number;
662  			(*dev_select)[i].position = i;
663  		}
664  		*num_selections = numdevs;
665  	} else if (init_selected_var != 0) {
666  		for (i = 0; i < numdevs; i++)
667  			(*dev_select)[i].selected = 0;
668  	}
669  
670  	/* we haven't gotten around to selecting anything yet.. */
671  	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
672  	 || (init_selected_var != 0))
673  		*num_selected = 0;
674  
675  	/*
676  	 * Look through any devices the user specified on the command line
677  	 * and see if they match known devices.  If so, select them.
678  	 */
679  	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
680  		char tmpstr[80];
681  
682  		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
683  			 (*dev_select)[i].device_name,
684  			 (*dev_select)[i].unit_number);
685  		for (j = 0; j < num_dev_selections; j++) {
686  			if (strcmp(tmpstr, dev_selections[j]) == 0) {
687  				/*
688  				 * Here we do different things based on the
689  				 * mode we're in.  If we're in add or
690  				 * addonly mode, we only select this device
691  				 * if it hasn't already been selected.
692  				 * Otherwise, we would be unnecessarily
693  				 * changing the selection order and
694  				 * incrementing the selection count.  If
695  				 * we're in only mode, we unconditionally
696  				 * select this device, since in only mode
697  				 * any previous selections are erased and
698  				 * manually specified devices are the first
699  				 * ones to be selected.  If we're in remove
700  				 * mode, we de-select the specified device and
701  				 * decrement the selection count.
702  				 */
703  				switch(select_mode) {
704  				case DS_SELECT_ADD:
705  				case DS_SELECT_ADDONLY:
706  					if ((*dev_select)[i].selected)
707  						break;
708  					/* FALLTHROUGH */
709  				case DS_SELECT_ONLY:
710  					(*dev_select)[i].selected =
711  						++selection_number;
712  					(*num_selected)++;
713  					break;
714  				case DS_SELECT_REMOVE:
715  					(*dev_select)[i].selected = 0;
716  					(*num_selected)--;
717  					/*
718  					 * This isn't passed back out, we
719  					 * just use it to keep track of
720  					 * how many devices we've removed.
721  					 */
722  					num_dev_selections--;
723  					break;
724  				}
725  				break;
726  			}
727  		}
728  	}
729  
730  	/*
731  	 * Go through the user's device type expressions and select devices
732  	 * accordingly.  We only do this if the number of devices already
733  	 * selected is less than the maximum number we can show.
734  	 */
735  	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
736  		/* We should probably indicate some error here */
737  		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
738  		 || (matches[i].num_match_categories <= 0))
739  			continue;
740  
741  		for (j = 0; j < numdevs; j++) {
742  			int num_match_categories;
743  
744  			num_match_categories = matches[i].num_match_categories;
745  
746  			/*
747  			 * Determine whether or not the current device
748  			 * matches the given matching expression.  This if
749  			 * statement consists of three components:
750  			 *   - the device type check
751  			 *   - the device interface check
752  			 *   - the passthrough check
753  			 * If a the matching test is successful, it
754  			 * decrements the number of matching categories,
755  			 * and if we've reached the last element that
756  			 * needed to be matched, the if statement succeeds.
757  			 *
758  			 */
759  			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
760  			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
761  			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
762  			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
763  			   || (((matches[i].match_fields &
764  				DEVSTAT_MATCH_PASS) == 0)
765  			    && ((devices[j].device_type &
766  			        DEVSTAT_TYPE_PASS) == 0)))
767  			  && (--num_match_categories == 0))
768  			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
769  			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
770  			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
771  			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
772  			   || (((matches[i].match_fields &
773  				DEVSTAT_MATCH_PASS) == 0)
774  			    && ((devices[j].device_type &
775  				DEVSTAT_TYPE_PASS) == 0)))
776  			  && (--num_match_categories == 0))
777  			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
778  			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
779  			  && (--num_match_categories == 0))) {
780  
781  				/*
782  				 * This is probably a non-optimal solution
783  				 * to the problem that the devices in the
784  				 * device list will not be in the same
785  				 * order as the devices in the selection
786  				 * array.
787  				 */
788  				for (k = 0; k < numdevs; k++) {
789  					if ((*dev_select)[k].position == j) {
790  						found = 1;
791  						break;
792  					}
793  				}
794  
795  				/*
796  				 * There shouldn't be a case where a device
797  				 * in the device list is not in the
798  				 * selection list...but it could happen.
799  				 */
800  				if (found != 1) {
801  					fprintf(stderr, "selectdevs: couldn't"
802  						" find %s%d in selection "
803  						"list\n",
804  						devices[j].device_name,
805  						devices[j].unit_number);
806  					break;
807  				}
808  
809  				/*
810  				 * We do different things based upon the
811  				 * mode we're in.  If we're in add or only
812  				 * mode, we go ahead and select this device
813  				 * if it hasn't already been selected.  If
814  				 * it has already been selected, we leave
815  				 * it alone so we don't mess up the
816  				 * selection ordering.  Manually specified
817  				 * devices have already been selected, and
818  				 * they have higher priority than pattern
819  				 * matched devices.  If we're in remove
820  				 * mode, we de-select the given device and
821  				 * decrement the selected count.
822  				 */
823  				switch(select_mode) {
824  				case DS_SELECT_ADD:
825  				case DS_SELECT_ADDONLY:
826  				case DS_SELECT_ONLY:
827  					if ((*dev_select)[k].selected != 0)
828  						break;
829  					(*dev_select)[k].selected =
830  						++selection_number;
831  					(*num_selected)++;
832  					break;
833  				case DS_SELECT_REMOVE:
834  					(*dev_select)[k].selected = 0;
835  					(*num_selected)--;
836  					break;
837  				}
838  			}
839  		}
840  	}
841  
842  	/*
843  	 * Here we implement "top" mode.  Devices are sorted in the
844  	 * selection array based on two criteria:  whether or not they are
845  	 * selected (not selection number, just the fact that they are
846  	 * selected!) and the number of bytes in the "bytes" field of the
847  	 * selection structure.  The bytes field generally must be kept up
848  	 * by the user.  In the future, it may be maintained by library
849  	 * functions, but for now the user has to do the work.
850  	 *
851  	 * At first glance, it may seem wrong that we don't go through and
852  	 * select every device in the case where the user hasn't specified
853  	 * any devices or patterns.  In fact, though, it won't make any
854  	 * difference in the device sorting.  In that particular case (i.e.
855  	 * when we're in "add" or "only" mode, and the user hasn't
856  	 * specified anything) the first time through no devices will be
857  	 * selected, so the only criterion used to sort them will be their
858  	 * performance.  The second time through, and every time thereafter,
859  	 * all devices will be selected, so again selection won't matter.
860  	 */
861  	if (perf_select != 0) {
862  
863  		/* Sort the device array by throughput  */
864  		qsort(*dev_select, *num_selections,
865  		      sizeof(struct device_selection),
866  		      compare_select);
867  
868  		if (*num_selected == 0) {
869  			/*
870  			 * Here we select every device in the array, if it
871  			 * isn't already selected.  Because the 'selected'
872  			 * variable in the selection array entries contains
873  			 * the selection order, the devstats routine can show
874  			 * the devices that were selected first.
875  			 */
876  			for (i = 0; i < *num_selections; i++) {
877  				if ((*dev_select)[i].selected == 0) {
878  					(*dev_select)[i].selected =
879  						++selection_number;
880  					(*num_selected)++;
881  				}
882  			}
883  		} else {
884  			selection_number = 0;
885  			for (i = 0; i < *num_selections; i++) {
886  				if ((*dev_select)[i].selected != 0) {
887  					(*dev_select)[i].selected =
888  						++selection_number;
889  				}
890  			}
891  		}
892  	}
893  
894  	/*
895  	 * If we're in the "add" selection mode and if we haven't already
896  	 * selected maxshowdevs number of devices, go through the array and
897  	 * select any unselected devices.  If we're in "only" mode, we
898  	 * obviously don't want to select anything other than what the user
899  	 * specifies.  If we're in "remove" mode, it probably isn't a good
900  	 * idea to go through and select any more devices, since we might
901  	 * end up selecting something that the user wants removed.  Through
902  	 * more complicated logic, we could actually figure this out, but
903  	 * that would probably require combining this loop with the various
904  	 * selections loops above.
905  	 */
906  	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
907  		for (i = 0; i < *num_selections; i++)
908  			if ((*dev_select)[i].selected == 0) {
909  				(*dev_select)[i].selected = ++selection_number;
910  				(*num_selected)++;
911  			}
912  	}
913  
914  	/*
915  	 * Look at the number of devices that have been selected.  If it
916  	 * has changed, set the changed variable.  Otherwise, if we've
917  	 * made a backup of the selection list, compare it to the current
918  	 * selection list to see if the selected devices have changed.
919  	 */
920  	if ((changed == 0) && (old_num_selected != *num_selected))
921  		changed = 1;
922  	else if ((changed == 0) && (old_dev_select != NULL)) {
923  		/*
924  		 * Now we go through the selection list and we look at
925  		 * it three different ways.
926  		 */
927  		for (i = 0; (i < *num_selections) && (changed == 0) &&
928  		     (i < old_num_selections); i++) {
929  			/*
930  			 * If the device at index i in both the new and old
931  			 * selection arrays has the same device number and
932  			 * selection status, it hasn't changed.  We
933  			 * continue on to the next index.
934  			 */
935  			if (((*dev_select)[i].device_number ==
936  			     old_dev_select[i].device_number)
937  			 && ((*dev_select)[i].selected ==
938  			     old_dev_select[i].selected))
939  				continue;
940  
941  			/*
942  			 * Now, if we're still going through the if
943  			 * statement, the above test wasn't true.  So we
944  			 * check here to see if the device at index i in
945  			 * the current array is the same as the device at
946  			 * index i in the old array.  If it is, that means
947  			 * that its selection number has changed.  Set
948  			 * changed to 1 and exit the loop.
949  			 */
950  			else if ((*dev_select)[i].device_number ==
951  			          old_dev_select[i].device_number) {
952  				changed = 1;
953  				break;
954  			}
955  			/*
956  			 * If we get here, then the device at index i in
957  			 * the current array isn't the same device as the
958  			 * device at index i in the old array.
959  			 */
960  			else {
961  				found = 0;
962  
963  				/*
964  				 * Search through the old selection array
965  				 * looking for a device with the same
966  				 * device number as the device at index i
967  				 * in the current array.  If the selection
968  				 * status is the same, then we mark it as
969  				 * found.  If the selection status isn't
970  				 * the same, we break out of the loop.
971  				 * Since found isn't set, changed will be
972  				 * set to 1 below.
973  				 */
974  				for (j = 0; j < old_num_selections; j++) {
975  					if (((*dev_select)[i].device_number ==
976  					      old_dev_select[j].device_number)
977  					 && ((*dev_select)[i].selected ==
978  					      old_dev_select[j].selected)){
979  						found = 1;
980  						break;
981  					}
982  					else if ((*dev_select)[i].device_number
983  					    == old_dev_select[j].device_number)
984  						break;
985  				}
986  				if (found == 0)
987  					changed = 1;
988  			}
989  		}
990  	}
991  	if (old_dev_select != NULL)
992  		free(old_dev_select);
993  
994  	return(changed);
995  }
996  
997  /*
998   * Comparison routine for qsort() above.  Note that the comparison here is
999   * backwards -- generally, it should return a value to indicate whether
1000   * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
1001   * it returns the opposite is so that the selection array will be sorted in
1002   * order of decreasing performance.  We sort on two parameters.  The first
1003   * sort key is whether or not one or the other of the devices in question
1004   * has been selected.  If one of them has, and the other one has not, the
1005   * selected device is automatically more important than the unselected
1006   * device.  If neither device is selected, we judge the devices based upon
1007   * performance.
1008   */
1009  static int
compare_select(const void * arg1,const void * arg2)1010  compare_select(const void *arg1, const void *arg2)
1011  {
1012  	if ((((const struct device_selection *)arg1)->selected)
1013  	 && (((const struct device_selection *)arg2)->selected == 0))
1014  		return(-1);
1015  	else if ((((const struct device_selection *)arg1)->selected == 0)
1016  	      && (((const struct device_selection *)arg2)->selected))
1017  		return(1);
1018  	else if (((const struct device_selection *)arg2)->bytes <
1019  	         ((const struct device_selection *)arg1)->bytes)
1020  		return(-1);
1021  	else if (((const struct device_selection *)arg2)->bytes >
1022  		 ((const struct device_selection *)arg1)->bytes)
1023  		return(1);
1024  	else
1025  		return(0);
1026  }
1027  
1028  /*
1029   * Take a string with the general format "arg1,arg2,arg3", and build a
1030   * device matching expression from it.
1031   */
1032  int
devstat_buildmatch(char * match_str,struct devstat_match ** matches,int * num_matches)1033  devstat_buildmatch(char *match_str, struct devstat_match **matches,
1034  		   int *num_matches)
1035  {
1036  	char *tstr[5];
1037  	char **tempstr;
1038  	int num_args;
1039  	int i, j;
1040  
1041  	/* We can't do much without a string to parse */
1042  	if (match_str == NULL) {
1043  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1044  			 "%s: no match expression", __func__);
1045  		return(-1);
1046  	}
1047  
1048  	/*
1049  	 * Break the (comma delimited) input string out into separate strings.
1050  	 */
1051  	for (tempstr = tstr, num_args  = 0;
1052  	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1053  		if (**tempstr != '\0') {
1054  			num_args++;
1055  			if (++tempstr >= &tstr[5])
1056  				break;
1057  		}
1058  
1059  	/* The user gave us too many type arguments */
1060  	if (num_args > 3) {
1061  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1062  			 "%s: too many type arguments", __func__);
1063  		return(-1);
1064  	}
1065  
1066  	if (*num_matches == 0)
1067  		*matches = NULL;
1068  
1069  	*matches = (struct devstat_match *)reallocf(*matches,
1070  		  sizeof(struct devstat_match) * (*num_matches + 1));
1071  
1072  	if (*matches == NULL) {
1073  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1074  			 "%s: Cannot allocate memory for matches list", __func__);
1075  		return(-1);
1076  	}
1077  
1078  	/* Make sure the current entry is clear */
1079  	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1080  
1081  	/*
1082  	 * Step through the arguments the user gave us and build a device
1083  	 * matching expression from them.
1084  	 */
1085  	for (i = 0; i < num_args; i++) {
1086  		char *tempstr2, *tempstr3;
1087  
1088  		/*
1089  		 * Get rid of leading white space.
1090  		 */
1091  		tempstr2 = tstr[i];
1092  		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1093  			tempstr2++;
1094  
1095  		/*
1096  		 * Get rid of trailing white space.
1097  		 */
1098  		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1099  
1100  		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1101  		    && (isspace(*tempstr3))) {
1102  			*tempstr3 = '\0';
1103  			tempstr3--;
1104  		}
1105  
1106  		/*
1107  		 * Go through the match table comparing the user's
1108  		 * arguments to known device types, interfaces, etc.
1109  		 */
1110  		for (j = 0; match_table[j].match_str != NULL; j++) {
1111  			/*
1112  			 * We do case-insensitive matching, in case someone
1113  			 * wants to enter "SCSI" instead of "scsi" or
1114  			 * something like that.  Only compare as many
1115  			 * characters as are in the string in the match
1116  			 * table.  This should help if someone tries to use
1117  			 * a super-long match expression.
1118  			 */
1119  			if (strncasecmp(tempstr2, match_table[j].match_str,
1120  			    strlen(match_table[j].match_str)) == 0) {
1121  				/*
1122  				 * Make sure the user hasn't specified two
1123  				 * items of the same type, like "da" and
1124  				 * "cd".  One device cannot be both.
1125  				 */
1126  				if (((*matches)[*num_matches].match_fields &
1127  				    match_table[j].match_field) != 0) {
1128  					snprintf(devstat_errbuf,
1129  						 sizeof(devstat_errbuf),
1130  						 "%s: cannot have more than "
1131  						 "one match item in a single "
1132  						 "category", __func__);
1133  					return(-1);
1134  				}
1135  				/*
1136  				 * If we've gotten this far, we have a
1137  				 * winner.  Set the appropriate fields in
1138  				 * the match entry.
1139  				 */
1140  				(*matches)[*num_matches].match_fields |=
1141  					match_table[j].match_field;
1142  				(*matches)[*num_matches].device_type |=
1143  					match_table[j].type;
1144  				(*matches)[*num_matches].num_match_categories++;
1145  				break;
1146  			}
1147  		}
1148  		/*
1149  		 * We should have found a match in the above for loop.  If
1150  		 * not, that means the user entered an invalid device type
1151  		 * or interface.
1152  		 */
1153  		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1154  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1155  				 "%s: unknown match item \"%s\"", __func__,
1156  				 tstr[i]);
1157  			return(-1);
1158  		}
1159  	}
1160  
1161  	(*num_matches)++;
1162  
1163  	return(0);
1164  }
1165  
1166  /*
1167   * Compute a number of device statistics.  Only one field is mandatory, and
1168   * that is "current".  Everything else is optional.  The caller passes in
1169   * pointers to variables to hold the various statistics he desires.  If he
1170   * doesn't want a particular staistic, he should pass in a NULL pointer.
1171   * Return values:
1172   * 0   -- success
1173   * -1  -- failure
1174   */
1175  int
compute_stats(struct devstat * current,struct devstat * previous,long double etime,u_int64_t * total_bytes,u_int64_t * total_transfers,u_int64_t * total_blocks,long double * kb_per_transfer,long double * transfers_per_second,long double * mb_per_second,long double * blocks_per_second,long double * ms_per_transaction)1176  compute_stats(struct devstat *current, struct devstat *previous,
1177  	      long double etime, u_int64_t *total_bytes,
1178  	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1179  	      long double *kb_per_transfer, long double *transfers_per_second,
1180  	      long double *mb_per_second, long double *blocks_per_second,
1181  	      long double *ms_per_transaction)
1182  {
1183  	return(devstat_compute_statistics(current, previous, etime,
1184  	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1185  	       total_bytes,
1186  	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1187  	       total_transfers,
1188  	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1189  	       total_blocks,
1190  	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1191  	       kb_per_transfer,
1192  	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1193  	       transfers_per_second,
1194  	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1195  	       mb_per_second,
1196  	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1197  	       blocks_per_second,
1198  	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1199  	       ms_per_transaction,
1200  	       DSM_NONE));
1201  }
1202  
1203  
1204  /* This is 1/2^64 */
1205  #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1206  
1207  long double
devstat_compute_etime(struct bintime * cur_time,struct bintime * prev_time)1208  devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1209  {
1210  	long double etime;
1211  
1212  	etime = cur_time->sec;
1213  	etime += cur_time->frac * BINTIME_SCALE;
1214  	if (prev_time != NULL) {
1215  		etime -= prev_time->sec;
1216  		etime -= prev_time->frac * BINTIME_SCALE;
1217  	}
1218  	return(etime);
1219  }
1220  
1221  #define DELTA(field, index)				\
1222  	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1223  
1224  #define DELTA_T(field)					\
1225  	devstat_compute_etime(&current->field,  	\
1226  	(previous ? &previous->field : NULL))
1227  
1228  int
devstat_compute_statistics(struct devstat * current,struct devstat * previous,long double etime,...)1229  devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1230  			   long double etime, ...)
1231  {
1232  	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1233  	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1234  	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1235  	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1236  	long double totalduration, totaldurationread, totaldurationwrite;
1237  	long double totaldurationfree, totaldurationother;
1238  	va_list ap;
1239  	devstat_metric metric;
1240  	u_int64_t *destu64;
1241  	long double *destld;
1242  	int retval;
1243  
1244  	retval = 0;
1245  
1246  	/*
1247  	 * current is the only mandatory field.
1248  	 */
1249  	if (current == NULL) {
1250  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1251  			 "%s: current stats structure was NULL", __func__);
1252  		return(-1);
1253  	}
1254  
1255  	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1256  	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1257  	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1258  	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1259  
1260  	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1261  	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1262  	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1263  	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1264  	totaltransfers = totaltransfersread + totaltransferswrite +
1265  			 totaltransfersother + totaltransfersfree;
1266  
1267  	totalblocks = totalbytes;
1268  	totalblocksread = totalbytesread;
1269  	totalblockswrite = totalbyteswrite;
1270  	totalblocksfree = totalbytesfree;
1271  
1272  	if (current->block_size > 0) {
1273  		totalblocks /= current->block_size;
1274  		totalblocksread /= current->block_size;
1275  		totalblockswrite /= current->block_size;
1276  		totalblocksfree /= current->block_size;
1277  	} else {
1278  		totalblocks /= 512;
1279  		totalblocksread /= 512;
1280  		totalblockswrite /= 512;
1281  		totalblocksfree /= 512;
1282  	}
1283  
1284  	totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1285  	totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1286  	totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1287  	totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1288  	totalduration = totaldurationread + totaldurationwrite +
1289  	    totaldurationfree + totaldurationother;
1290  
1291  	va_start(ap, etime);
1292  
1293  	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1294  
1295  		if (metric == DSM_NONE)
1296  			break;
1297  
1298  		if (metric >= DSM_MAX) {
1299  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1300  				 "%s: metric %d is out of range", __func__,
1301  				 metric);
1302  			retval = -1;
1303  			goto bailout;
1304  		}
1305  
1306  		switch (devstat_arg_list[metric].argtype) {
1307  		case DEVSTAT_ARG_UINT64:
1308  			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1309  			break;
1310  		case DEVSTAT_ARG_LD:
1311  			destld = (long double *)va_arg(ap, long double *);
1312  			break;
1313  		case DEVSTAT_ARG_SKIP:
1314  			destld = (long double *)va_arg(ap, long double *);
1315  			break;
1316  		default:
1317  			retval = -1;
1318  			goto bailout;
1319  			break; /* NOTREACHED */
1320  		}
1321  
1322  		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1323  			continue;
1324  
1325  		switch (metric) {
1326  		case DSM_TOTAL_BYTES:
1327  			*destu64 = totalbytes;
1328  			break;
1329  		case DSM_TOTAL_BYTES_READ:
1330  			*destu64 = totalbytesread;
1331  			break;
1332  		case DSM_TOTAL_BYTES_WRITE:
1333  			*destu64 = totalbyteswrite;
1334  			break;
1335  		case DSM_TOTAL_BYTES_FREE:
1336  			*destu64 = totalbytesfree;
1337  			break;
1338  		case DSM_TOTAL_TRANSFERS:
1339  			*destu64 = totaltransfers;
1340  			break;
1341  		case DSM_TOTAL_TRANSFERS_READ:
1342  			*destu64 = totaltransfersread;
1343  			break;
1344  		case DSM_TOTAL_TRANSFERS_WRITE:
1345  			*destu64 = totaltransferswrite;
1346  			break;
1347  		case DSM_TOTAL_TRANSFERS_FREE:
1348  			*destu64 = totaltransfersfree;
1349  			break;
1350  		case DSM_TOTAL_TRANSFERS_OTHER:
1351  			*destu64 = totaltransfersother;
1352  			break;
1353  		case DSM_TOTAL_BLOCKS:
1354  			*destu64 = totalblocks;
1355  			break;
1356  		case DSM_TOTAL_BLOCKS_READ:
1357  			*destu64 = totalblocksread;
1358  			break;
1359  		case DSM_TOTAL_BLOCKS_WRITE:
1360  			*destu64 = totalblockswrite;
1361  			break;
1362  		case DSM_TOTAL_BLOCKS_FREE:
1363  			*destu64 = totalblocksfree;
1364  			break;
1365  		case DSM_KB_PER_TRANSFER:
1366  			*destld = totalbytes;
1367  			*destld /= 1024;
1368  			if (totaltransfers > 0)
1369  				*destld /= totaltransfers;
1370  			else
1371  				*destld = 0.0;
1372  			break;
1373  		case DSM_KB_PER_TRANSFER_READ:
1374  			*destld = totalbytesread;
1375  			*destld /= 1024;
1376  			if (totaltransfersread > 0)
1377  				*destld /= totaltransfersread;
1378  			else
1379  				*destld = 0.0;
1380  			break;
1381  		case DSM_KB_PER_TRANSFER_WRITE:
1382  			*destld = totalbyteswrite;
1383  			*destld /= 1024;
1384  			if (totaltransferswrite > 0)
1385  				*destld /= totaltransferswrite;
1386  			else
1387  				*destld = 0.0;
1388  			break;
1389  		case DSM_KB_PER_TRANSFER_FREE:
1390  			*destld = totalbytesfree;
1391  			*destld /= 1024;
1392  			if (totaltransfersfree > 0)
1393  				*destld /= totaltransfersfree;
1394  			else
1395  				*destld = 0.0;
1396  			break;
1397  		case DSM_TRANSFERS_PER_SECOND:
1398  			if (etime > 0.0) {
1399  				*destld = totaltransfers;
1400  				*destld /= etime;
1401  			} else
1402  				*destld = 0.0;
1403  			break;
1404  		case DSM_TRANSFERS_PER_SECOND_READ:
1405  			if (etime > 0.0) {
1406  				*destld = totaltransfersread;
1407  				*destld /= etime;
1408  			} else
1409  				*destld = 0.0;
1410  			break;
1411  		case DSM_TRANSFERS_PER_SECOND_WRITE:
1412  			if (etime > 0.0) {
1413  				*destld = totaltransferswrite;
1414  				*destld /= etime;
1415  			} else
1416  				*destld = 0.0;
1417  			break;
1418  		case DSM_TRANSFERS_PER_SECOND_FREE:
1419  			if (etime > 0.0) {
1420  				*destld = totaltransfersfree;
1421  				*destld /= etime;
1422  			} else
1423  				*destld = 0.0;
1424  			break;
1425  		case DSM_TRANSFERS_PER_SECOND_OTHER:
1426  			if (etime > 0.0) {
1427  				*destld = totaltransfersother;
1428  				*destld /= etime;
1429  			} else
1430  				*destld = 0.0;
1431  			break;
1432  		case DSM_MB_PER_SECOND:
1433  			*destld = totalbytes;
1434  			*destld /= 1024 * 1024;
1435  			if (etime > 0.0)
1436  				*destld /= etime;
1437  			else
1438  				*destld = 0.0;
1439  			break;
1440  		case DSM_MB_PER_SECOND_READ:
1441  			*destld = totalbytesread;
1442  			*destld /= 1024 * 1024;
1443  			if (etime > 0.0)
1444  				*destld /= etime;
1445  			else
1446  				*destld = 0.0;
1447  			break;
1448  		case DSM_MB_PER_SECOND_WRITE:
1449  			*destld = totalbyteswrite;
1450  			*destld /= 1024 * 1024;
1451  			if (etime > 0.0)
1452  				*destld /= etime;
1453  			else
1454  				*destld = 0.0;
1455  			break;
1456  		case DSM_MB_PER_SECOND_FREE:
1457  			*destld = totalbytesfree;
1458  			*destld /= 1024 * 1024;
1459  			if (etime > 0.0)
1460  				*destld /= etime;
1461  			else
1462  				*destld = 0.0;
1463  			break;
1464  		case DSM_BLOCKS_PER_SECOND:
1465  			*destld = totalblocks;
1466  			if (etime > 0.0)
1467  				*destld /= etime;
1468  			else
1469  				*destld = 0.0;
1470  			break;
1471  		case DSM_BLOCKS_PER_SECOND_READ:
1472  			*destld = totalblocksread;
1473  			if (etime > 0.0)
1474  				*destld /= etime;
1475  			else
1476  				*destld = 0.0;
1477  			break;
1478  		case DSM_BLOCKS_PER_SECOND_WRITE:
1479  			*destld = totalblockswrite;
1480  			if (etime > 0.0)
1481  				*destld /= etime;
1482  			else
1483  				*destld = 0.0;
1484  			break;
1485  		case DSM_BLOCKS_PER_SECOND_FREE:
1486  			*destld = totalblocksfree;
1487  			if (etime > 0.0)
1488  				*destld /= etime;
1489  			else
1490  				*destld = 0.0;
1491  			break;
1492  		/*
1493  		 * Some devstat callers update the duration and some don't.
1494  		 * So this will only be accurate if they provide the
1495  		 * duration.
1496  		 */
1497  		case DSM_MS_PER_TRANSACTION:
1498  			if (totaltransfers > 0) {
1499  				*destld = totalduration;
1500  				*destld /= totaltransfers;
1501  				*destld *= 1000;
1502  			} else
1503  				*destld = 0.0;
1504  			break;
1505  		case DSM_MS_PER_TRANSACTION_READ:
1506  			if (totaltransfersread > 0) {
1507  				*destld = totaldurationread;
1508  				*destld /= totaltransfersread;
1509  				*destld *= 1000;
1510  			} else
1511  				*destld = 0.0;
1512  			break;
1513  		case DSM_MS_PER_TRANSACTION_WRITE:
1514  			if (totaltransferswrite > 0) {
1515  				*destld = totaldurationwrite;
1516  				*destld /= totaltransferswrite;
1517  				*destld *= 1000;
1518  			} else
1519  				*destld = 0.0;
1520  			break;
1521  		case DSM_MS_PER_TRANSACTION_FREE:
1522  			if (totaltransfersfree > 0) {
1523  				*destld = totaldurationfree;
1524  				*destld /= totaltransfersfree;
1525  				*destld *= 1000;
1526  			} else
1527  				*destld = 0.0;
1528  			break;
1529  		case DSM_MS_PER_TRANSACTION_OTHER:
1530  			if (totaltransfersother > 0) {
1531  				*destld = totaldurationother;
1532  				*destld /= totaltransfersother;
1533  				*destld *= 1000;
1534  			} else
1535  				*destld = 0.0;
1536  			break;
1537  		case DSM_BUSY_PCT:
1538  			*destld = DELTA_T(busy_time);
1539  			if (*destld < 0)
1540  				*destld = 0;
1541  			*destld /= etime;
1542  			*destld *= 100;
1543  			if (*destld < 0)
1544  				*destld = 0;
1545  			break;
1546  		case DSM_QUEUE_LENGTH:
1547  			*destu64 = current->start_count - current->end_count;
1548  			break;
1549  		case DSM_TOTAL_DURATION:
1550  			*destld = totalduration;
1551  			break;
1552  		case DSM_TOTAL_DURATION_READ:
1553  			*destld = totaldurationread;
1554  			break;
1555  		case DSM_TOTAL_DURATION_WRITE:
1556  			*destld = totaldurationwrite;
1557  			break;
1558  		case DSM_TOTAL_DURATION_FREE:
1559  			*destld = totaldurationfree;
1560  			break;
1561  		case DSM_TOTAL_DURATION_OTHER:
1562  			*destld = totaldurationother;
1563  			break;
1564  		case DSM_TOTAL_BUSY_TIME:
1565  			*destld = DELTA_T(busy_time);
1566  			break;
1567  /*
1568   * XXX: comment out the default block to see if any case's are missing.
1569   */
1570  #if 1
1571  		default:
1572  			/*
1573  			 * This shouldn't happen, since we should have
1574  			 * caught any out of range metrics at the top of
1575  			 * the loop.
1576  			 */
1577  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1578  				 "%s: unknown metric %d", __func__, metric);
1579  			retval = -1;
1580  			goto bailout;
1581  			break; /* NOTREACHED */
1582  #endif
1583  		}
1584  	}
1585  
1586  bailout:
1587  
1588  	va_end(ap);
1589  	return(retval);
1590  }
1591  
1592  static int
readkmem(kvm_t * kd,unsigned long addr,void * buf,size_t nbytes)1593  readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1594  {
1595  
1596  	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1597  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1598  			 "%s: error reading value (kvm_read): %s", __func__,
1599  			 kvm_geterr(kd));
1600  		return(-1);
1601  	}
1602  	return(0);
1603  }
1604  
1605  static int
readkmem_nl(kvm_t * kd,const char * name,void * buf,size_t nbytes)1606  readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1607  {
1608  	struct nlist nl[2];
1609  
1610  	nl[0].n_name = (char *)name;
1611  	nl[1].n_name = NULL;
1612  
1613  	if (kvm_nlist(kd, nl) == -1) {
1614  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1615  			 "%s: error getting name list (kvm_nlist): %s",
1616  			 __func__, kvm_geterr(kd));
1617  		return(-1);
1618  	}
1619  	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1620  }
1621  
1622  /*
1623   * This duplicates the functionality of the kernel sysctl handler for poking
1624   * through crash dumps.
1625   */
1626  static char *
get_devstat_kvm(kvm_t * kd)1627  get_devstat_kvm(kvm_t *kd)
1628  {
1629  	int i, wp;
1630  	long gen;
1631  	struct devstat *nds;
1632  	struct devstat ds;
1633  	struct devstatlist dhead;
1634  	int num_devs;
1635  	char *rv = NULL;
1636  
1637  	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1638  		return(NULL);
1639  	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1640  		return(NULL);
1641  
1642  	nds = STAILQ_FIRST(&dhead);
1643  
1644  	if ((rv = malloc(sizeof(gen))) == NULL) {
1645  		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1646  			 "%s: out of memory (initial malloc failed)",
1647  			 __func__);
1648  		return(NULL);
1649  	}
1650  	gen = devstat_getgeneration(kd);
1651  	memcpy(rv, &gen, sizeof(gen));
1652  	wp = sizeof(gen);
1653  	/*
1654  	 * Now push out all the devices.
1655  	 */
1656  	for (i = 0; (nds != NULL) && (i < num_devs);
1657  	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1658  		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1659  			free(rv);
1660  			return(NULL);
1661  		}
1662  		nds = &ds;
1663  		rv = (char *)reallocf(rv, sizeof(gen) +
1664  				      sizeof(ds) * (i + 1));
1665  		if (rv == NULL) {
1666  			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1667  				 "%s: out of memory (malloc failed)",
1668  				 __func__);
1669  			return(NULL);
1670  		}
1671  		memcpy(rv + wp, &ds, sizeof(ds));
1672  		wp += sizeof(ds);
1673  	}
1674  	return(rv);
1675  }
1676