1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #define pr_fmt(fmt) "habanalabs: " fmt
9
10 #include <uapi/drm/habanalabs_accel.h>
11 #include "habanalabs.h"
12
13 #include <linux/pci.h>
14 #include <linux/hwmon.h>
15 #include <linux/vmalloc.h>
16
17 #include <drm/drm_accel.h>
18 #include <drm/drm_drv.h>
19
20 #include <trace/events/habanalabs.h>
21
22 #define HL_RESET_DELAY_USEC 10000 /* 10ms */
23
24 #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC 30
25
26 enum dma_alloc_type {
27 DMA_ALLOC_COHERENT,
28 DMA_ALLOC_POOL,
29 };
30
31 #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
32
33 static void hl_device_heartbeat(struct work_struct *work);
34
35 /*
36 * hl_set_dram_bar- sets the bar to allow later access to address
37 *
38 * @hdev: pointer to habanalabs device structure.
39 * @addr: the address the caller wants to access.
40 * @region: the PCI region.
41 * @new_bar_region_base: the new BAR region base address.
42 *
43 * @return: the old BAR base address on success, U64_MAX for failure.
44 * The caller should set it back to the old address after use.
45 *
46 * In case the bar space does not cover the whole address space,
47 * the bar base address should be set to allow access to a given address.
48 * This function can be called also if the bar doesn't need to be set,
49 * in that case it just won't change the base.
50 */
hl_set_dram_bar(struct hl_device * hdev,u64 addr,struct pci_mem_region * region,u64 * new_bar_region_base)51 static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
52 u64 *new_bar_region_base)
53 {
54 struct asic_fixed_properties *prop = &hdev->asic_prop;
55 u64 bar_base_addr, old_base;
56
57 if (is_power_of_2(prop->dram_pci_bar_size))
58 bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
59 else
60 bar_base_addr = region->region_base +
61 div64_u64((addr - region->region_base), prop->dram_pci_bar_size) *
62 prop->dram_pci_bar_size;
63
64 old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
65
66 /* in case of success we need to update the new BAR base */
67 if ((old_base != U64_MAX) && new_bar_region_base)
68 *new_bar_region_base = bar_base_addr;
69
70 return old_base;
71 }
72
hl_access_sram_dram_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type,enum pci_region region_type,bool set_dram_bar)73 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
74 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
75 {
76 struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
77 u64 old_base = 0, rc, bar_region_base = region->region_base;
78 void __iomem *acc_addr;
79
80 if (set_dram_bar) {
81 old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
82 if (old_base == U64_MAX)
83 return -EIO;
84 }
85
86 acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
87 (addr - bar_region_base);
88
89 switch (acc_type) {
90 case DEBUGFS_READ8:
91 *val = readb(acc_addr);
92 break;
93 case DEBUGFS_WRITE8:
94 writeb(*val, acc_addr);
95 break;
96 case DEBUGFS_READ32:
97 *val = readl(acc_addr);
98 break;
99 case DEBUGFS_WRITE32:
100 writel(*val, acc_addr);
101 break;
102 case DEBUGFS_READ64:
103 *val = readq(acc_addr);
104 break;
105 case DEBUGFS_WRITE64:
106 writeq(*val, acc_addr);
107 break;
108 }
109
110 if (set_dram_bar) {
111 rc = hl_set_dram_bar(hdev, old_base, region, NULL);
112 if (rc == U64_MAX)
113 return -EIO;
114 }
115
116 return 0;
117 }
118
hl_dma_alloc_common(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,enum dma_alloc_type alloc_type,const char * caller)119 static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
120 gfp_t flag, enum dma_alloc_type alloc_type,
121 const char *caller)
122 {
123 void *ptr = NULL;
124
125 switch (alloc_type) {
126 case DMA_ALLOC_COHERENT:
127 ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
128 break;
129 case DMA_ALLOC_POOL:
130 ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
131 break;
132 }
133
134 if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
135 trace_habanalabs_dma_alloc(&(hdev)->pdev->dev, (u64) (uintptr_t) ptr, *dma_handle,
136 size, caller);
137
138 return ptr;
139 }
140
hl_asic_dma_free_common(struct hl_device * hdev,size_t size,void * cpu_addr,dma_addr_t dma_handle,enum dma_alloc_type alloc_type,const char * caller)141 static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
142 dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
143 const char *caller)
144 {
145 /* this is needed to avoid warning on using freed pointer */
146 u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
147
148 switch (alloc_type) {
149 case DMA_ALLOC_COHERENT:
150 hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
151 break;
152 case DMA_ALLOC_POOL:
153 hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
154 break;
155 }
156
157 trace_habanalabs_dma_free(&(hdev)->pdev->dev, store_cpu_addr, dma_handle, size, caller);
158 }
159
hl_asic_dma_alloc_coherent_caller(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,const char * caller)160 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
161 gfp_t flag, const char *caller)
162 {
163 return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
164 }
165
hl_asic_dma_free_coherent_caller(struct hl_device * hdev,size_t size,void * cpu_addr,dma_addr_t dma_handle,const char * caller)166 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
167 dma_addr_t dma_handle, const char *caller)
168 {
169 hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
170 }
171
hl_asic_dma_pool_zalloc_caller(struct hl_device * hdev,size_t size,gfp_t mem_flags,dma_addr_t * dma_handle,const char * caller)172 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
173 dma_addr_t *dma_handle, const char *caller)
174 {
175 return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
176 }
177
hl_asic_dma_pool_free_caller(struct hl_device * hdev,void * vaddr,dma_addr_t dma_addr,const char * caller)178 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
179 const char *caller)
180 {
181 hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
182 }
183
hl_cpu_accessible_dma_pool_alloc(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle)184 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle)
185 {
186 return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
187 }
188
hl_cpu_accessible_dma_pool_free(struct hl_device * hdev,size_t size,void * vaddr)189 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
190 {
191 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr);
192 }
193
hl_dma_map_sgtable_caller(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir,const char * caller)194 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
195 enum dma_data_direction dir, const char *caller)
196 {
197 struct asic_fixed_properties *prop = &hdev->asic_prop;
198 struct scatterlist *sg;
199 int rc, i;
200
201 rc = hdev->asic_funcs->dma_map_sgtable(hdev, sgt, dir);
202 if (rc)
203 return rc;
204
205 if (!trace_habanalabs_dma_map_page_enabled())
206 return 0;
207
208 for_each_sgtable_dma_sg(sgt, sg, i)
209 trace_habanalabs_dma_map_page(&(hdev)->pdev->dev,
210 page_to_phys(sg_page(sg)),
211 sg->dma_address - prop->device_dma_offset_for_host_access,
212 #ifdef CONFIG_NEED_SG_DMA_LENGTH
213 sg->dma_length,
214 #else
215 sg->length,
216 #endif
217 dir, caller);
218
219 return 0;
220 }
221
hl_asic_dma_map_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)222 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
223 enum dma_data_direction dir)
224 {
225 struct asic_fixed_properties *prop = &hdev->asic_prop;
226 struct scatterlist *sg;
227 int rc, i;
228
229 rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
230 if (rc)
231 return rc;
232
233 /* Shift to the device's base physical address of host memory if necessary */
234 if (prop->device_dma_offset_for_host_access)
235 for_each_sgtable_dma_sg(sgt, sg, i)
236 sg->dma_address += prop->device_dma_offset_for_host_access;
237
238 return 0;
239 }
240
hl_dma_unmap_sgtable_caller(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir,const char * caller)241 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
242 enum dma_data_direction dir, const char *caller)
243 {
244 struct asic_fixed_properties *prop = &hdev->asic_prop;
245 struct scatterlist *sg;
246 int i;
247
248 hdev->asic_funcs->dma_unmap_sgtable(hdev, sgt, dir);
249
250 if (trace_habanalabs_dma_unmap_page_enabled()) {
251 for_each_sgtable_dma_sg(sgt, sg, i)
252 trace_habanalabs_dma_unmap_page(&(hdev)->pdev->dev,
253 page_to_phys(sg_page(sg)),
254 sg->dma_address - prop->device_dma_offset_for_host_access,
255 #ifdef CONFIG_NEED_SG_DMA_LENGTH
256 sg->dma_length,
257 #else
258 sg->length,
259 #endif
260 dir, caller);
261 }
262 }
263
hl_asic_dma_unmap_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)264 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
265 enum dma_data_direction dir)
266 {
267 struct asic_fixed_properties *prop = &hdev->asic_prop;
268 struct scatterlist *sg;
269 int i;
270
271 /* Cancel the device's base physical address of host memory if necessary */
272 if (prop->device_dma_offset_for_host_access)
273 for_each_sgtable_dma_sg(sgt, sg, i)
274 sg->dma_address -= prop->device_dma_offset_for_host_access;
275
276 dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
277 }
278
279 /*
280 * hl_access_cfg_region - access the config region
281 *
282 * @hdev: pointer to habanalabs device structure
283 * @addr: the address to access
284 * @val: the value to write from or read to
285 * @acc_type: the type of access (read/write 64/32)
286 */
hl_access_cfg_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type)287 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
288 enum debugfs_access_type acc_type)
289 {
290 struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
291 u32 val_h, val_l;
292
293 if (!IS_ALIGNED(addr, sizeof(u32))) {
294 dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
295 return -EINVAL;
296 }
297
298 switch (acc_type) {
299 case DEBUGFS_READ32:
300 *val = RREG32(addr - cfg_region->region_base);
301 break;
302 case DEBUGFS_WRITE32:
303 WREG32(addr - cfg_region->region_base, *val);
304 break;
305 case DEBUGFS_READ64:
306 val_l = RREG32(addr - cfg_region->region_base);
307 val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
308
309 *val = (((u64) val_h) << 32) | val_l;
310 break;
311 case DEBUGFS_WRITE64:
312 WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
313 WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
314 break;
315 default:
316 dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
317 return -EOPNOTSUPP;
318 }
319
320 return 0;
321 }
322
323 /*
324 * hl_access_dev_mem - access device memory
325 *
326 * @hdev: pointer to habanalabs device structure
327 * @region_type: the type of the region the address belongs to
328 * @addr: the address to access
329 * @val: the value to write from or read to
330 * @acc_type: the type of access (r/w, 32/64)
331 */
hl_access_dev_mem(struct hl_device * hdev,enum pci_region region_type,u64 addr,u64 * val,enum debugfs_access_type acc_type)332 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
333 u64 addr, u64 *val, enum debugfs_access_type acc_type)
334 {
335 switch (region_type) {
336 case PCI_REGION_CFG:
337 return hl_access_cfg_region(hdev, addr, val, acc_type);
338 case PCI_REGION_SRAM:
339 case PCI_REGION_DRAM:
340 return hl_access_sram_dram_region(hdev, addr, val, acc_type,
341 region_type, (region_type == PCI_REGION_DRAM));
342 default:
343 return -EFAULT;
344 }
345
346 return 0;
347 }
348
hl_engine_data_sprintf(struct engines_data * e,const char * fmt,...)349 void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
350 {
351 va_list args;
352 int str_size;
353
354 va_start(args, fmt);
355 /* Calculate formatted string length. Assuming each string is null terminated, hence
356 * increment result by 1
357 */
358 str_size = vsnprintf(NULL, 0, fmt, args) + 1;
359 va_end(args);
360
361 if ((e->actual_size + str_size) < e->allocated_buf_size) {
362 va_start(args, fmt);
363 vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
364 va_end(args);
365 }
366
367 /* Need to update the size even when not updating destination buffer to get the exact size
368 * of all input strings
369 */
370 e->actual_size += str_size;
371 }
372
hl_device_status(struct hl_device * hdev)373 enum hl_device_status hl_device_status(struct hl_device *hdev)
374 {
375 enum hl_device_status status;
376
377 if (hdev->device_fini_pending) {
378 status = HL_DEVICE_STATUS_MALFUNCTION;
379 } else if (hdev->reset_info.in_reset) {
380 if (hdev->reset_info.in_compute_reset)
381 status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
382 else
383 status = HL_DEVICE_STATUS_IN_RESET;
384 } else if (hdev->reset_info.needs_reset) {
385 status = HL_DEVICE_STATUS_NEEDS_RESET;
386 } else if (hdev->disabled) {
387 status = HL_DEVICE_STATUS_MALFUNCTION;
388 } else if (!hdev->init_done) {
389 status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
390 } else {
391 status = HL_DEVICE_STATUS_OPERATIONAL;
392 }
393
394 return status;
395 }
396
hl_device_operational(struct hl_device * hdev,enum hl_device_status * status)397 bool hl_device_operational(struct hl_device *hdev,
398 enum hl_device_status *status)
399 {
400 enum hl_device_status current_status;
401
402 current_status = hl_device_status(hdev);
403 if (status)
404 *status = current_status;
405
406 switch (current_status) {
407 case HL_DEVICE_STATUS_MALFUNCTION:
408 case HL_DEVICE_STATUS_IN_RESET:
409 case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
410 case HL_DEVICE_STATUS_NEEDS_RESET:
411 return false;
412 case HL_DEVICE_STATUS_OPERATIONAL:
413 case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
414 default:
415 return true;
416 }
417 }
418
hl_ctrl_device_operational(struct hl_device * hdev,enum hl_device_status * status)419 bool hl_ctrl_device_operational(struct hl_device *hdev,
420 enum hl_device_status *status)
421 {
422 enum hl_device_status current_status;
423
424 current_status = hl_device_status(hdev);
425 if (status)
426 *status = current_status;
427
428 switch (current_status) {
429 case HL_DEVICE_STATUS_MALFUNCTION:
430 return false;
431 case HL_DEVICE_STATUS_IN_RESET:
432 case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
433 case HL_DEVICE_STATUS_NEEDS_RESET:
434 case HL_DEVICE_STATUS_OPERATIONAL:
435 case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
436 default:
437 return true;
438 }
439 }
440
print_idle_status_mask(struct hl_device * hdev,const char * message,u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])441 static void print_idle_status_mask(struct hl_device *hdev, const char *message,
442 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
443 {
444 if (idle_mask[3])
445 dev_err(hdev->dev, "%s %s (mask %#llx_%016llx_%016llx_%016llx)\n",
446 dev_name(&hdev->pdev->dev), message,
447 idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]);
448 else if (idle_mask[2])
449 dev_err(hdev->dev, "%s %s (mask %#llx_%016llx_%016llx)\n",
450 dev_name(&hdev->pdev->dev), message,
451 idle_mask[2], idle_mask[1], idle_mask[0]);
452 else if (idle_mask[1])
453 dev_err(hdev->dev, "%s %s (mask %#llx_%016llx)\n",
454 dev_name(&hdev->pdev->dev), message, idle_mask[1], idle_mask[0]);
455 else
456 dev_err(hdev->dev, "%s %s (mask %#llx)\n", dev_name(&hdev->pdev->dev), message,
457 idle_mask[0]);
458 }
459
hpriv_release(struct kref * ref)460 static void hpriv_release(struct kref *ref)
461 {
462 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
463 bool reset_device, device_is_idle = true;
464 struct hl_fpriv *hpriv;
465 struct hl_device *hdev;
466
467 hpriv = container_of(ref, struct hl_fpriv, refcount);
468
469 hdev = hpriv->hdev;
470
471 hdev->asic_funcs->send_device_activity(hdev, false);
472
473 hl_debugfs_remove_file(hpriv);
474
475 mutex_destroy(&hpriv->ctx_lock);
476 mutex_destroy(&hpriv->restore_phase_mutex);
477
478 /* There should be no memory buffers at this point and handles IDR can be destroyed */
479 hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
480
481 /* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
482 * reset that waits for device release.
483 */
484 reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
485
486 /* Check the device idle status and reset if not idle.
487 * Skip it if already in reset, or if device is going to be reset in any case.
488 */
489 if (!hdev->reset_info.in_reset && !reset_device && !hdev->pldm)
490 device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
491 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
492 if (!device_is_idle) {
493 print_idle_status_mask(hdev, "device is not idle after user context is closed",
494 idle_mask);
495 reset_device = true;
496 }
497
498 /* We need to remove the user from the list to make sure the reset process won't
499 * try to kill the user process. Because, if we got here, it means there are no
500 * more driver/device resources that the user process is occupying so there is
501 * no need to kill it
502 *
503 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
504 * a race between the release and opening the device again. We don't want to let
505 * a user open the device while there a reset is about to happen.
506 */
507 mutex_lock(&hdev->fpriv_list_lock);
508 list_del(&hpriv->dev_node);
509 mutex_unlock(&hdev->fpriv_list_lock);
510
511 put_pid(hpriv->taskpid);
512
513 if (reset_device) {
514 hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
515 } else {
516 /* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
517 int rc = hdev->asic_funcs->scrub_device_mem(hdev);
518
519 if (rc) {
520 dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
521 hl_device_reset(hdev, HL_DRV_RESET_HARD);
522 }
523 }
524
525 /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
526 * thread, we don't care because the in_reset is marked so if a user will try to open
527 * the device it will fail on that, even if compute_ctx is false.
528 */
529 mutex_lock(&hdev->fpriv_list_lock);
530 hdev->is_compute_ctx_active = false;
531 mutex_unlock(&hdev->fpriv_list_lock);
532
533 hdev->compute_ctx_in_release = 0;
534
535 /* release the eventfd */
536 if (hpriv->notifier_event.eventfd)
537 eventfd_ctx_put(hpriv->notifier_event.eventfd);
538
539 mutex_destroy(&hpriv->notifier_event.lock);
540
541 kfree(hpriv);
542 }
543
hl_hpriv_get(struct hl_fpriv * hpriv)544 void hl_hpriv_get(struct hl_fpriv *hpriv)
545 {
546 kref_get(&hpriv->refcount);
547 }
548
hl_hpriv_put(struct hl_fpriv * hpriv)549 int hl_hpriv_put(struct hl_fpriv *hpriv)
550 {
551 return kref_put(&hpriv->refcount, hpriv_release);
552 }
553
print_device_in_use_info(struct hl_device * hdev,struct hl_mem_mgr_fini_stats * mm_fini_stats,const char * message)554 static void print_device_in_use_info(struct hl_device *hdev,
555 struct hl_mem_mgr_fini_stats *mm_fini_stats, const char *message)
556 {
557 u32 active_cs_num, dmabuf_export_cnt;
558 bool unknown_reason = true;
559 char buf[128];
560 size_t size;
561 int offset;
562
563 size = sizeof(buf);
564 offset = 0;
565
566 active_cs_num = hl_get_active_cs_num(hdev);
567 if (active_cs_num) {
568 unknown_reason = false;
569 offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num);
570 }
571
572 dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
573 if (dmabuf_export_cnt) {
574 unknown_reason = false;
575 offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]",
576 dmabuf_export_cnt);
577 }
578
579 if (mm_fini_stats->n_busy_cb) {
580 unknown_reason = false;
581 offset += scnprintf(buf + offset, size - offset, " [%u live CB handles]",
582 mm_fini_stats->n_busy_cb);
583 }
584
585 if (unknown_reason)
586 scnprintf(buf + offset, size - offset, " [unknown reason]");
587
588 dev_notice(hdev->dev, "%s%s\n", message, buf);
589 }
590
591 /*
592 * hl_device_release() - release function for habanalabs device.
593 * @ddev: pointer to DRM device structure.
594 * @file: pointer to DRM file private data structure.
595 *
596 * Called when process closes an habanalabs device
597 */
hl_device_release(struct drm_device * ddev,struct drm_file * file_priv)598 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv)
599 {
600 struct hl_fpriv *hpriv = file_priv->driver_priv;
601 struct hl_device *hdev = to_hl_device(ddev);
602 struct hl_mem_mgr_fini_stats mm_fini_stats;
603
604 if (!hdev) {
605 pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
606 put_pid(hpriv->taskpid);
607 }
608
609 hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
610
611 /* Memory buffers might be still in use at this point and thus the handles IDR destruction
612 * is postponed to hpriv_release().
613 */
614 hl_mem_mgr_fini(&hpriv->mem_mgr, &mm_fini_stats);
615
616 hdev->compute_ctx_in_release = 1;
617
618 if (!hl_hpriv_put(hpriv)) {
619 print_device_in_use_info(hdev, &mm_fini_stats,
620 "User process closed FD but device still in use");
621 hl_device_reset(hdev, HL_DRV_RESET_HARD);
622 }
623
624 hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
625 }
626
hl_device_release_ctrl(struct inode * inode,struct file * filp)627 static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
628 {
629 struct hl_fpriv *hpriv = filp->private_data;
630 struct hl_device *hdev = hpriv->hdev;
631
632 filp->private_data = NULL;
633
634 if (!hdev) {
635 pr_err("Closing FD after device was removed\n");
636 goto out;
637 }
638
639 mutex_lock(&hdev->fpriv_ctrl_list_lock);
640 list_del(&hpriv->dev_node);
641 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
642 out:
643 put_pid(hpriv->taskpid);
644
645 kfree(hpriv);
646
647 return 0;
648 }
649
__hl_mmap(struct hl_fpriv * hpriv,struct vm_area_struct * vma)650 static int __hl_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
651 {
652 struct hl_device *hdev = hpriv->hdev;
653 unsigned long vm_pgoff;
654
655 if (!hdev) {
656 pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
657 return -ENODEV;
658 }
659
660 vm_pgoff = vma->vm_pgoff;
661
662 switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
663 case HL_MMAP_TYPE_BLOCK:
664 vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
665 return hl_hw_block_mmap(hpriv, vma);
666
667 case HL_MMAP_TYPE_CB:
668 case HL_MMAP_TYPE_TS_BUFF:
669 return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
670 }
671 return -EINVAL;
672 }
673
674 /*
675 * hl_mmap - mmap function for habanalabs device
676 *
677 * @*filp: pointer to file structure
678 * @*vma: pointer to vm_area_struct of the process
679 *
680 * Called when process does an mmap on habanalabs device. Call the relevant mmap
681 * function at the end of the common code.
682 */
hl_mmap(struct file * filp,struct vm_area_struct * vma)683 int hl_mmap(struct file *filp, struct vm_area_struct *vma)
684 {
685 struct drm_file *file_priv = filp->private_data;
686 struct hl_fpriv *hpriv = file_priv->driver_priv;
687
688 return __hl_mmap(hpriv, vma);
689 }
690
691 static const struct file_operations hl_ctrl_ops = {
692 .owner = THIS_MODULE,
693 .open = hl_device_open_ctrl,
694 .release = hl_device_release_ctrl,
695 .unlocked_ioctl = hl_ioctl_control,
696 .compat_ioctl = hl_ioctl_control
697 };
698
device_release_func(struct device * dev)699 static void device_release_func(struct device *dev)
700 {
701 kfree(dev);
702 }
703
704 /*
705 * device_init_cdev - Initialize cdev and device for habanalabs device
706 *
707 * @hdev: pointer to habanalabs device structure
708 * @class: pointer to the class object of the device
709 * @minor: minor number of the specific device
710 * @fops: file operations to install for this device
711 * @name: name of the device as it will appear in the filesystem
712 * @cdev: pointer to the char device object that will be initialized
713 * @dev: pointer to the device object that will be initialized
714 *
715 * Initialize a cdev and a Linux device for habanalabs's device.
716 */
device_init_cdev(struct hl_device * hdev,const struct class * class,int minor,const struct file_operations * fops,char * name,struct cdev * cdev,struct device ** dev)717 static int device_init_cdev(struct hl_device *hdev, const struct class *class,
718 int minor, const struct file_operations *fops,
719 char *name, struct cdev *cdev,
720 struct device **dev)
721 {
722 cdev_init(cdev, fops);
723 cdev->owner = THIS_MODULE;
724
725 *dev = kzalloc(sizeof(**dev), GFP_KERNEL);
726 if (!*dev)
727 return -ENOMEM;
728
729 device_initialize(*dev);
730 (*dev)->devt = MKDEV(hdev->major, minor);
731 (*dev)->class = class;
732 (*dev)->release = device_release_func;
733 dev_set_drvdata(*dev, hdev);
734 dev_set_name(*dev, "%s", name);
735
736 return 0;
737 }
738
cdev_sysfs_debugfs_add(struct hl_device * hdev)739 static int cdev_sysfs_debugfs_add(struct hl_device *hdev)
740 {
741 const struct class *accel_class = hdev->drm.accel->kdev->class;
742 char name[32];
743 int rc;
744
745 hdev->cdev_idx = hdev->drm.accel->index;
746
747 /* Initialize cdev and device structures for the control device */
748 snprintf(name, sizeof(name), "accel_controlD%d", hdev->cdev_idx);
749 rc = device_init_cdev(hdev, accel_class, hdev->cdev_idx, &hl_ctrl_ops, name,
750 &hdev->cdev_ctrl, &hdev->dev_ctrl);
751 if (rc)
752 return rc;
753
754 rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
755 if (rc) {
756 dev_err(hdev->dev_ctrl,
757 "failed to add an accel control char device to the system\n");
758 goto free_ctrl_device;
759 }
760
761 rc = hl_sysfs_init(hdev);
762 if (rc) {
763 dev_err(hdev->dev, "failed to initialize sysfs\n");
764 goto delete_ctrl_cdev_device;
765 }
766
767 hl_debugfs_add_device(hdev);
768
769 hdev->cdev_sysfs_debugfs_created = true;
770
771 return 0;
772
773 delete_ctrl_cdev_device:
774 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
775 free_ctrl_device:
776 put_device(hdev->dev_ctrl);
777 return rc;
778 }
779
cdev_sysfs_debugfs_remove(struct hl_device * hdev)780 static void cdev_sysfs_debugfs_remove(struct hl_device *hdev)
781 {
782 if (!hdev->cdev_sysfs_debugfs_created)
783 return;
784
785 hl_sysfs_fini(hdev);
786
787 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
788 put_device(hdev->dev_ctrl);
789 }
790
device_hard_reset_pending(struct work_struct * work)791 static void device_hard_reset_pending(struct work_struct *work)
792 {
793 struct hl_device_reset_work *device_reset_work =
794 container_of(work, struct hl_device_reset_work, reset_work.work);
795 struct hl_device *hdev = device_reset_work->hdev;
796 u32 flags;
797 int rc;
798
799 flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
800
801 rc = hl_device_reset(hdev, flags);
802
803 if ((rc == -EBUSY) && !hdev->device_fini_pending) {
804 struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
805
806 if (ctx) {
807 /* The read refcount value should subtracted by one, because the read is
808 * protected with hl_get_compute_ctx().
809 */
810 dev_info(hdev->dev,
811 "Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
812 kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
813 hl_ctx_put(ctx);
814 } else {
815 dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
816 HL_PENDING_RESET_PER_SEC);
817 }
818
819 queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
820 msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
821 }
822 }
823
device_release_watchdog_func(struct work_struct * work)824 static void device_release_watchdog_func(struct work_struct *work)
825 {
826 struct hl_device_reset_work *watchdog_work =
827 container_of(work, struct hl_device_reset_work, reset_work.work);
828 struct hl_device *hdev = watchdog_work->hdev;
829 u32 flags;
830
831 dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n");
832
833 flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR;
834
835 hl_device_reset(hdev, flags);
836 }
837
838 /*
839 * device_early_init - do some early initialization for the habanalabs device
840 *
841 * @hdev: pointer to habanalabs device structure
842 *
843 * Install the relevant function pointers and call the early_init function,
844 * if such a function exists
845 */
device_early_init(struct hl_device * hdev)846 static int device_early_init(struct hl_device *hdev)
847 {
848 int i, rc;
849 char workq_name[32];
850
851 switch (hdev->asic_type) {
852 case ASIC_GOYA:
853 goya_set_asic_funcs(hdev);
854 strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
855 break;
856 case ASIC_GAUDI:
857 gaudi_set_asic_funcs(hdev);
858 strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
859 break;
860 case ASIC_GAUDI_SEC:
861 gaudi_set_asic_funcs(hdev);
862 strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
863 break;
864 case ASIC_GAUDI2:
865 gaudi2_set_asic_funcs(hdev);
866 strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
867 break;
868 case ASIC_GAUDI2B:
869 gaudi2_set_asic_funcs(hdev);
870 strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
871 break;
872 case ASIC_GAUDI2C:
873 gaudi2_set_asic_funcs(hdev);
874 strscpy(hdev->asic_name, "GAUDI2C", sizeof(hdev->asic_name));
875 break;
876 case ASIC_GAUDI2D:
877 gaudi2_set_asic_funcs(hdev);
878 strscpy(hdev->asic_name, "GAUDI2D", sizeof(hdev->asic_name));
879 break;
880 default:
881 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
882 hdev->asic_type);
883 return -EINVAL;
884 }
885
886 rc = hdev->asic_funcs->early_init(hdev);
887 if (rc)
888 return rc;
889
890 rc = hl_asid_init(hdev);
891 if (rc)
892 goto early_fini;
893
894 if (hdev->asic_prop.completion_queues_count) {
895 hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
896 sizeof(struct workqueue_struct *),
897 GFP_KERNEL);
898 if (!hdev->cq_wq) {
899 rc = -ENOMEM;
900 goto asid_fini;
901 }
902 }
903
904 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
905 snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i);
906 hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
907 if (hdev->cq_wq[i] == NULL) {
908 dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
909 rc = -ENOMEM;
910 goto free_cq_wq;
911 }
912 }
913
914 snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx);
915 hdev->eq_wq = create_singlethread_workqueue(workq_name);
916 if (hdev->eq_wq == NULL) {
917 dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
918 rc = -ENOMEM;
919 goto free_cq_wq;
920 }
921
922 snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx);
923 hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
924 if (!hdev->cs_cmplt_wq) {
925 dev_err(hdev->dev,
926 "Failed to allocate CS completions workqueue\n");
927 rc = -ENOMEM;
928 goto free_eq_wq;
929 }
930
931 snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx);
932 hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
933 if (!hdev->ts_free_obj_wq) {
934 dev_err(hdev->dev,
935 "Failed to allocate Timestamp registration free workqueue\n");
936 rc = -ENOMEM;
937 goto free_cs_cmplt_wq;
938 }
939
940 snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx);
941 hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
942 if (!hdev->prefetch_wq) {
943 dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
944 rc = -ENOMEM;
945 goto free_ts_free_wq;
946 }
947
948 hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL);
949 if (!hdev->hl_chip_info) {
950 rc = -ENOMEM;
951 goto free_prefetch_wq;
952 }
953
954 rc = hl_mmu_if_set_funcs(hdev);
955 if (rc)
956 goto free_chip_info;
957
958 hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
959
960 snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx);
961 hdev->reset_wq = create_singlethread_workqueue(workq_name);
962 if (!hdev->reset_wq) {
963 rc = -ENOMEM;
964 dev_err(hdev->dev, "Failed to create device reset WQ\n");
965 goto free_cb_mgr;
966 }
967
968 INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
969
970 INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
971 hdev->device_reset_work.hdev = hdev;
972 hdev->device_fini_pending = 0;
973
974 INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
975 device_release_watchdog_func);
976 hdev->device_release_watchdog_work.hdev = hdev;
977
978 mutex_init(&hdev->send_cpu_message_lock);
979 mutex_init(&hdev->debug_lock);
980 INIT_LIST_HEAD(&hdev->cs_mirror_list);
981 spin_lock_init(&hdev->cs_mirror_lock);
982 spin_lock_init(&hdev->reset_info.lock);
983 INIT_LIST_HEAD(&hdev->fpriv_list);
984 INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
985 mutex_init(&hdev->fpriv_list_lock);
986 mutex_init(&hdev->fpriv_ctrl_list_lock);
987 mutex_init(&hdev->clk_throttling.lock);
988
989 return 0;
990
991 free_cb_mgr:
992 hl_mem_mgr_fini(&hdev->kernel_mem_mgr, NULL);
993 hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
994 free_chip_info:
995 kfree(hdev->hl_chip_info);
996 free_prefetch_wq:
997 destroy_workqueue(hdev->prefetch_wq);
998 free_ts_free_wq:
999 destroy_workqueue(hdev->ts_free_obj_wq);
1000 free_cs_cmplt_wq:
1001 destroy_workqueue(hdev->cs_cmplt_wq);
1002 free_eq_wq:
1003 destroy_workqueue(hdev->eq_wq);
1004 free_cq_wq:
1005 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1006 if (hdev->cq_wq[i])
1007 destroy_workqueue(hdev->cq_wq[i]);
1008 kfree(hdev->cq_wq);
1009 asid_fini:
1010 hl_asid_fini(hdev);
1011 early_fini:
1012 if (hdev->asic_funcs->early_fini)
1013 hdev->asic_funcs->early_fini(hdev);
1014
1015 return rc;
1016 }
1017
1018 /*
1019 * device_early_fini - finalize all that was done in device_early_init
1020 *
1021 * @hdev: pointer to habanalabs device structure
1022 *
1023 */
device_early_fini(struct hl_device * hdev)1024 static void device_early_fini(struct hl_device *hdev)
1025 {
1026 int i;
1027
1028 mutex_destroy(&hdev->debug_lock);
1029 mutex_destroy(&hdev->send_cpu_message_lock);
1030
1031 mutex_destroy(&hdev->fpriv_list_lock);
1032 mutex_destroy(&hdev->fpriv_ctrl_list_lock);
1033
1034 mutex_destroy(&hdev->clk_throttling.lock);
1035
1036 hl_mem_mgr_fini(&hdev->kernel_mem_mgr, NULL);
1037 hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
1038
1039 kfree(hdev->hl_chip_info);
1040
1041 destroy_workqueue(hdev->prefetch_wq);
1042 destroy_workqueue(hdev->ts_free_obj_wq);
1043 destroy_workqueue(hdev->cs_cmplt_wq);
1044 destroy_workqueue(hdev->eq_wq);
1045 destroy_workqueue(hdev->reset_wq);
1046
1047 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1048 destroy_workqueue(hdev->cq_wq[i]);
1049 kfree(hdev->cq_wq);
1050
1051 hl_asid_fini(hdev);
1052
1053 if (hdev->asic_funcs->early_fini)
1054 hdev->asic_funcs->early_fini(hdev);
1055 }
1056
is_pci_link_healthy(struct hl_device * hdev)1057 static bool is_pci_link_healthy(struct hl_device *hdev)
1058 {
1059 u16 device_id;
1060
1061 if (!hdev->pdev)
1062 return false;
1063
1064 pci_read_config_word(hdev->pdev, PCI_DEVICE_ID, &device_id);
1065
1066 return (device_id == hdev->pdev->device);
1067 }
1068
stringify_time_of_last_heartbeat(struct hl_device * hdev,char * time_str,size_t size,bool is_pq_hb)1069 static void stringify_time_of_last_heartbeat(struct hl_device *hdev, char *time_str, size_t size,
1070 bool is_pq_hb)
1071 {
1072 time64_t seconds = is_pq_hb ? hdev->heartbeat_debug_info.last_pq_heartbeat_ts
1073 : hdev->heartbeat_debug_info.last_eq_heartbeat_ts;
1074 struct tm tm;
1075
1076 if (!seconds)
1077 return;
1078
1079 time64_to_tm(seconds, 0, &tm);
1080
1081 snprintf(time_str, size, "%ld-%02d-%02d %02d:%02d:%02d (UTC)",
1082 tm.tm_year + 1900, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
1083 }
1084
hl_device_eq_heartbeat_received(struct hl_device * hdev)1085 static bool hl_device_eq_heartbeat_received(struct hl_device *hdev)
1086 {
1087 struct eq_heartbeat_debug_info *heartbeat_debug_info = &hdev->heartbeat_debug_info;
1088 u32 cpu_q_id = heartbeat_debug_info->cpu_queue_id, pq_pi_mask = (HL_QUEUE_LENGTH << 1) - 1;
1089 struct asic_fixed_properties *prop = &hdev->asic_prop;
1090 char pq_time_str[64] = "N/A", eq_time_str[64] = "N/A";
1091
1092 if (!prop->cpucp_info.eq_health_check_supported)
1093 return true;
1094
1095 if (!hdev->eq_heartbeat_received) {
1096 dev_err(hdev->dev, "EQ heartbeat event was not received!\n");
1097
1098 stringify_time_of_last_heartbeat(hdev, pq_time_str, sizeof(pq_time_str), true);
1099 stringify_time_of_last_heartbeat(hdev, eq_time_str, sizeof(eq_time_str), false);
1100 dev_err(hdev->dev,
1101 "EQ: {CI %u, HB counter %u, last HB time: %s}, PQ: {PI: %u, CI: %u (%u), last HB time: %s}\n",
1102 hdev->event_queue.ci,
1103 heartbeat_debug_info->heartbeat_event_counter,
1104 eq_time_str,
1105 hdev->kernel_queues[cpu_q_id].pi,
1106 atomic_read(&hdev->kernel_queues[cpu_q_id].ci),
1107 atomic_read(&hdev->kernel_queues[cpu_q_id].ci) & pq_pi_mask,
1108 pq_time_str);
1109
1110 hl_eq_dump(hdev, &hdev->event_queue);
1111
1112 return false;
1113 }
1114
1115 hdev->eq_heartbeat_received = false;
1116
1117 return true;
1118 }
1119
hl_device_heartbeat(struct work_struct * work)1120 static void hl_device_heartbeat(struct work_struct *work)
1121 {
1122 struct hl_device *hdev = container_of(work, struct hl_device,
1123 work_heartbeat.work);
1124 struct hl_info_fw_err_info info = {0};
1125 u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
1126
1127 /* Start heartbeat checks only after driver has enabled events from FW */
1128 if (!hl_device_operational(hdev, NULL) || !hdev->init_done)
1129 goto reschedule;
1130
1131 /*
1132 * For EQ health check need to check if driver received the heartbeat eq event
1133 * in order to validate the eq is working.
1134 * Only if both the EQ is healthy and we managed to send the next heartbeat reschedule.
1135 */
1136 if (hl_device_eq_heartbeat_received(hdev) && (!hdev->asic_funcs->send_heartbeat(hdev)))
1137 goto reschedule;
1138
1139 if (hl_device_operational(hdev, NULL))
1140 dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n",
1141 is_pci_link_healthy(hdev) ? "healthy" : "broken");
1142
1143 info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
1144 info.event_mask = &event_mask;
1145 hl_handle_fw_err(hdev, &info);
1146 hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1147
1148 return;
1149
1150 reschedule:
1151 /*
1152 * prev_reset_trigger tracks consecutive fatal h/w errors until first
1153 * heartbeat immediately post reset.
1154 * If control reached here, then at least one heartbeat work has been
1155 * scheduled since last reset/init cycle.
1156 * So if the device is not already in reset cycle, reset the flag
1157 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1158 * status for at least one heartbeat. From this point driver restarts
1159 * tracking future consecutive fatal errors.
1160 */
1161 if (!hdev->reset_info.in_reset)
1162 hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1163
1164 schedule_delayed_work(&hdev->work_heartbeat,
1165 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1166 }
1167
1168 /*
1169 * device_late_init - do late stuff initialization for the habanalabs device
1170 *
1171 * @hdev: pointer to habanalabs device structure
1172 *
1173 * Do stuff that either needs the device H/W queues to be active or needs
1174 * to happen after all the rest of the initialization is finished
1175 */
device_late_init(struct hl_device * hdev)1176 static int device_late_init(struct hl_device *hdev)
1177 {
1178 int rc;
1179
1180 if (hdev->asic_funcs->late_init) {
1181 rc = hdev->asic_funcs->late_init(hdev);
1182 if (rc) {
1183 dev_err(hdev->dev,
1184 "failed late initialization for the H/W\n");
1185 return rc;
1186 }
1187 }
1188
1189 hdev->high_pll = hdev->asic_prop.high_pll;
1190 hdev->late_init_done = true;
1191
1192 return 0;
1193 }
1194
1195 /*
1196 * device_late_fini - finalize all that was done in device_late_init
1197 *
1198 * @hdev: pointer to habanalabs device structure
1199 *
1200 */
device_late_fini(struct hl_device * hdev)1201 static void device_late_fini(struct hl_device *hdev)
1202 {
1203 if (!hdev->late_init_done)
1204 return;
1205
1206 if (hdev->asic_funcs->late_fini)
1207 hdev->asic_funcs->late_fini(hdev);
1208
1209 hdev->late_init_done = false;
1210 }
1211
hl_device_utilization(struct hl_device * hdev,u32 * utilization)1212 int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1213 {
1214 u64 max_power, curr_power, dc_power, dividend, divisor;
1215 int rc;
1216
1217 max_power = hdev->max_power;
1218 dc_power = hdev->asic_prop.dc_power_default;
1219 divisor = max_power - dc_power;
1220 if (!divisor) {
1221 dev_warn(hdev->dev, "device utilization is not supported\n");
1222 return -EOPNOTSUPP;
1223 }
1224 rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1225
1226 if (rc)
1227 return rc;
1228
1229 curr_power = clamp(curr_power, dc_power, max_power);
1230
1231 dividend = (curr_power - dc_power) * 100;
1232 *utilization = (u32) div_u64(dividend, divisor);
1233
1234 return 0;
1235 }
1236
hl_device_set_debug_mode(struct hl_device * hdev,struct hl_ctx * ctx,bool enable)1237 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1238 {
1239 int rc = 0;
1240
1241 mutex_lock(&hdev->debug_lock);
1242
1243 if (!enable) {
1244 if (!hdev->in_debug) {
1245 dev_err(hdev->dev,
1246 "Failed to disable debug mode because device was not in debug mode\n");
1247 rc = -EFAULT;
1248 goto out;
1249 }
1250
1251 if (!hdev->reset_info.hard_reset_pending)
1252 hdev->asic_funcs->halt_coresight(hdev, ctx);
1253
1254 hdev->in_debug = 0;
1255
1256 goto out;
1257 }
1258
1259 if (hdev->in_debug) {
1260 dev_err(hdev->dev,
1261 "Failed to enable debug mode because device is already in debug mode\n");
1262 rc = -EFAULT;
1263 goto out;
1264 }
1265
1266 hdev->in_debug = 1;
1267
1268 out:
1269 mutex_unlock(&hdev->debug_lock);
1270
1271 return rc;
1272 }
1273
take_release_locks(struct hl_device * hdev)1274 static void take_release_locks(struct hl_device *hdev)
1275 {
1276 /* Flush anyone that is inside the critical section of enqueue
1277 * jobs to the H/W
1278 */
1279 hdev->asic_funcs->hw_queues_lock(hdev);
1280 hdev->asic_funcs->hw_queues_unlock(hdev);
1281
1282 /* Flush processes that are sending message to CPU */
1283 mutex_lock(&hdev->send_cpu_message_lock);
1284 mutex_unlock(&hdev->send_cpu_message_lock);
1285
1286 /* Flush anyone that is inside device open */
1287 mutex_lock(&hdev->fpriv_list_lock);
1288 mutex_unlock(&hdev->fpriv_list_lock);
1289 mutex_lock(&hdev->fpriv_ctrl_list_lock);
1290 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1291 }
1292
hl_abort_waiting_for_completions(struct hl_device * hdev)1293 static void hl_abort_waiting_for_completions(struct hl_device *hdev)
1294 {
1295 hl_abort_waiting_for_cs_completions(hdev);
1296
1297 /* Release all pending user interrupts, each pending user interrupt
1298 * holds a reference to a user context.
1299 */
1300 hl_release_pending_user_interrupts(hdev);
1301 }
1302
cleanup_resources(struct hl_device * hdev,bool hard_reset,bool fw_reset,bool skip_wq_flush)1303 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
1304 bool skip_wq_flush)
1305 {
1306 if (hard_reset) {
1307 if (hdev->heartbeat)
1308 cancel_delayed_work_sync(&hdev->work_heartbeat);
1309
1310 device_late_fini(hdev);
1311 }
1312
1313 /*
1314 * Halt the engines and disable interrupts so we won't get any more
1315 * completions from H/W and we won't have any accesses from the
1316 * H/W to the host machine
1317 */
1318 hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1319
1320 /* Go over all the queues, release all CS and their jobs */
1321 hl_cs_rollback_all(hdev, skip_wq_flush);
1322
1323 /* flush the MMU prefetch workqueue */
1324 flush_workqueue(hdev->prefetch_wq);
1325
1326 hl_abort_waiting_for_completions(hdev);
1327 }
1328
1329 /*
1330 * hl_device_suspend - initiate device suspend
1331 *
1332 * @hdev: pointer to habanalabs device structure
1333 *
1334 * Puts the hw in the suspend state (all asics).
1335 * Returns 0 for success or an error on failure.
1336 * Called at driver suspend.
1337 */
hl_device_suspend(struct hl_device * hdev)1338 int hl_device_suspend(struct hl_device *hdev)
1339 {
1340 int rc;
1341
1342 pci_save_state(hdev->pdev);
1343
1344 /* Block future CS/VM/JOB completion operations */
1345 spin_lock(&hdev->reset_info.lock);
1346 if (hdev->reset_info.in_reset) {
1347 spin_unlock(&hdev->reset_info.lock);
1348 dev_err(hdev->dev, "Can't suspend while in reset\n");
1349 return -EIO;
1350 }
1351 hdev->reset_info.in_reset = 1;
1352 spin_unlock(&hdev->reset_info.lock);
1353
1354 /* This blocks all other stuff that is not blocked by in_reset */
1355 hdev->disabled = true;
1356
1357 take_release_locks(hdev);
1358
1359 rc = hdev->asic_funcs->suspend(hdev);
1360 if (rc)
1361 dev_err(hdev->dev,
1362 "Failed to disable PCI access of device CPU\n");
1363
1364 /* Shut down the device */
1365 pci_disable_device(hdev->pdev);
1366 pci_set_power_state(hdev->pdev, PCI_D3hot);
1367
1368 return 0;
1369 }
1370
1371 /*
1372 * hl_device_resume - initiate device resume
1373 *
1374 * @hdev: pointer to habanalabs device structure
1375 *
1376 * Bring the hw back to operating state (all asics).
1377 * Returns 0 for success or an error on failure.
1378 * Called at driver resume.
1379 */
hl_device_resume(struct hl_device * hdev)1380 int hl_device_resume(struct hl_device *hdev)
1381 {
1382 int rc;
1383
1384 pci_set_power_state(hdev->pdev, PCI_D0);
1385 pci_restore_state(hdev->pdev);
1386 rc = pci_enable_device_mem(hdev->pdev);
1387 if (rc) {
1388 dev_err(hdev->dev,
1389 "Failed to enable PCI device in resume\n");
1390 return rc;
1391 }
1392
1393 pci_set_master(hdev->pdev);
1394
1395 rc = hdev->asic_funcs->resume(hdev);
1396 if (rc) {
1397 dev_err(hdev->dev, "Failed to resume device after suspend\n");
1398 goto disable_device;
1399 }
1400
1401
1402 /* 'in_reset' was set to true during suspend, now we must clear it in order
1403 * for hard reset to be performed
1404 */
1405 spin_lock(&hdev->reset_info.lock);
1406 hdev->reset_info.in_reset = 0;
1407 spin_unlock(&hdev->reset_info.lock);
1408
1409 rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1410 if (rc) {
1411 dev_err(hdev->dev, "Failed to reset device during resume\n");
1412 goto disable_device;
1413 }
1414
1415 return 0;
1416
1417 disable_device:
1418 pci_disable_device(hdev->pdev);
1419
1420 return rc;
1421 }
1422
device_kill_open_processes(struct hl_device * hdev,u32 timeout,bool control_dev)1423 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1424 {
1425 struct task_struct *task = NULL;
1426 struct list_head *hpriv_list;
1427 struct hl_fpriv *hpriv;
1428 struct mutex *hpriv_lock;
1429 u32 pending_cnt;
1430
1431 hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1432 hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1433
1434 /* Giving time for user to close FD, and for processes that are inside
1435 * hl_device_open to finish
1436 */
1437 if (!list_empty(hpriv_list))
1438 ssleep(1);
1439
1440 if (timeout) {
1441 pending_cnt = timeout;
1442 } else {
1443 if (hdev->process_kill_trial_cnt) {
1444 /* Processes have been already killed */
1445 pending_cnt = 1;
1446 goto wait_for_processes;
1447 } else {
1448 /* Wait a small period after process kill */
1449 pending_cnt = HL_PENDING_RESET_PER_SEC;
1450 }
1451 }
1452
1453 mutex_lock(hpriv_lock);
1454
1455 /* This section must be protected because we are dereferencing
1456 * pointers that are freed if the process exits
1457 */
1458 list_for_each_entry(hpriv, hpriv_list, dev_node) {
1459 task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1460 if (task) {
1461 dev_info(hdev->dev, "Killing user process pid=%d\n",
1462 task_pid_nr(task));
1463 send_sig(SIGKILL, task, 1);
1464 usleep_range(1000, 10000);
1465
1466 put_task_struct(task);
1467 } else {
1468 dev_dbg(hdev->dev,
1469 "Can't get task struct for user process %d, process was killed from outside the driver\n",
1470 pid_nr(hpriv->taskpid));
1471 }
1472 }
1473
1474 mutex_unlock(hpriv_lock);
1475
1476 /*
1477 * We killed the open users, but that doesn't mean they are closed.
1478 * It could be that they are running a long cleanup phase in the driver
1479 * e.g. MMU unmappings, or running other long teardown flow even before
1480 * our cleanup.
1481 * Therefore we need to wait again to make sure they are closed before
1482 * continuing with the reset.
1483 */
1484
1485 wait_for_processes:
1486 while ((!list_empty(hpriv_list)) && (pending_cnt)) {
1487 dev_dbg(hdev->dev,
1488 "Waiting for all unmap operations to finish before hard reset\n");
1489
1490 pending_cnt--;
1491
1492 ssleep(1);
1493 }
1494
1495 /* All processes exited successfully */
1496 if (list_empty(hpriv_list))
1497 return 0;
1498
1499 /* Give up waiting for processes to exit */
1500 if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1501 return -ETIME;
1502
1503 hdev->process_kill_trial_cnt++;
1504
1505 return -EBUSY;
1506 }
1507
device_disable_open_processes(struct hl_device * hdev,bool control_dev)1508 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1509 {
1510 struct list_head *hpriv_list;
1511 struct hl_fpriv *hpriv;
1512 struct mutex *hpriv_lock;
1513
1514 hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1515 hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1516
1517 mutex_lock(hpriv_lock);
1518 list_for_each_entry(hpriv, hpriv_list, dev_node)
1519 hpriv->hdev = NULL;
1520 mutex_unlock(hpriv_lock);
1521 }
1522
send_disable_pci_access(struct hl_device * hdev,u32 flags)1523 static void send_disable_pci_access(struct hl_device *hdev, u32 flags)
1524 {
1525 /* If reset is due to heartbeat, device CPU is no responsive in
1526 * which case no point sending PCI disable message to it.
1527 */
1528 if ((flags & HL_DRV_RESET_HARD) &&
1529 !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1530 /* Disable PCI access from device F/W so he won't send
1531 * us additional interrupts. We disable MSI/MSI-X at
1532 * the halt_engines function and we can't have the F/W
1533 * sending us interrupts after that. We need to disable
1534 * the access here because if the device is marked
1535 * disable, the message won't be send. Also, in case
1536 * of heartbeat, the device CPU is marked as disable
1537 * so this message won't be sent
1538 */
1539 if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0))
1540 return;
1541
1542 /* disable_irq also generates sync irq, this verifies that last EQs are handled
1543 * before disabled is set. The IRQ will be enabled again in request_irq call.
1544 */
1545 if (hdev->cpu_queues_enable)
1546 disable_irq(pci_irq_vector(hdev->pdev, hdev->asic_prop.eq_interrupt_id));
1547 }
1548 }
1549
handle_reset_trigger(struct hl_device * hdev,u32 flags)1550 static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1551 {
1552 u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1553
1554 /* No consecutive mechanism when user context exists */
1555 if (hdev->is_compute_ctx_active)
1556 return;
1557
1558 /*
1559 * 'reset cause' is being updated here, because getting here
1560 * means that it's the 1st time and the last time we're here
1561 * ('in_reset' makes sure of it). This makes sure that
1562 * 'reset_cause' will continue holding its 1st recorded reason!
1563 */
1564 if (flags & HL_DRV_RESET_HEARTBEAT) {
1565 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1566 cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1567 } else if (flags & HL_DRV_RESET_TDR) {
1568 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1569 cur_reset_trigger = HL_DRV_RESET_TDR;
1570 } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1571 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1572 cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1573 } else {
1574 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1575 }
1576
1577 /*
1578 * If reset cause is same twice, then reset_trigger_repeated
1579 * is set and if this reset is due to a fatal FW error
1580 * device is set to an unstable state.
1581 */
1582 if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1583 hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1584 hdev->reset_info.reset_trigger_repeated = 0;
1585 } else {
1586 hdev->reset_info.reset_trigger_repeated = 1;
1587 }
1588 }
1589
reset_heartbeat_debug_info(struct hl_device * hdev)1590 static void reset_heartbeat_debug_info(struct hl_device *hdev)
1591 {
1592 hdev->heartbeat_debug_info.last_pq_heartbeat_ts = 0;
1593 hdev->heartbeat_debug_info.last_eq_heartbeat_ts = 0;
1594 hdev->heartbeat_debug_info.heartbeat_event_counter = 0;
1595 }
1596
device_heartbeat_schedule(struct hl_device * hdev)1597 static inline void device_heartbeat_schedule(struct hl_device *hdev)
1598 {
1599 if (!hdev->heartbeat)
1600 return;
1601
1602 reset_heartbeat_debug_info(hdev);
1603
1604 /*
1605 * Before scheduling the heartbeat driver will check if eq event has received.
1606 * for the first schedule we need to set the indication as true then for the next
1607 * one this indication will be true only if eq event was sent by FW.
1608 */
1609 hdev->eq_heartbeat_received = true;
1610
1611 schedule_delayed_work(&hdev->work_heartbeat,
1612 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1613 }
1614
1615 /*
1616 * hl_device_reset - reset the device
1617 *
1618 * @hdev: pointer to habanalabs device structure
1619 * @flags: reset flags.
1620 *
1621 * Block future CS and wait for pending CS to be enqueued
1622 * Call ASIC H/W fini
1623 * Flush all completions
1624 * Re-initialize all internal data structures
1625 * Call ASIC H/W init, late_init
1626 * Test queues
1627 * Enable device
1628 *
1629 * Returns 0 for success or an error on failure.
1630 */
hl_device_reset(struct hl_device * hdev,u32 flags)1631 int hl_device_reset(struct hl_device *hdev, u32 flags)
1632 {
1633 bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release,
1634 schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread;
1635 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1636 struct hl_ctx *ctx;
1637 int i, rc, hw_fini_rc;
1638
1639 if (!hdev->init_done) {
1640 dev_err(hdev->dev, "Can't reset before initialization is done\n");
1641 return 0;
1642 }
1643
1644 hard_reset = !!(flags & HL_DRV_RESET_HARD);
1645 from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1646 fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1647 from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1648 delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1649 from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1650 reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release;
1651
1652 if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
1653 dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
1654 return 0;
1655 }
1656
1657 if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1658 dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n");
1659 hard_reset = true;
1660 }
1661
1662 if (reset_upon_device_release) {
1663 if (hard_reset) {
1664 dev_crit(hdev->dev,
1665 "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1666 return -EINVAL;
1667 }
1668
1669 goto do_reset;
1670 }
1671
1672 if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1673 dev_dbg(hdev->dev,
1674 "asic doesn't allow inference soft reset - do hard-reset instead\n");
1675 hard_reset = true;
1676 }
1677
1678 do_reset:
1679 /* Re-entry of reset thread */
1680 if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1681 goto kill_processes;
1682
1683 /*
1684 * Prevent concurrency in this function - only one reset should be
1685 * done at any given time. We need to perform this only if we didn't
1686 * get here from a dedicated hard reset thread.
1687 */
1688 if (!from_hard_reset_thread) {
1689 /* Block future CS/VM/JOB completion operations */
1690 spin_lock(&hdev->reset_info.lock);
1691 if (hdev->reset_info.in_reset) {
1692 /* We allow scheduling of a hard reset only during a compute reset */
1693 if (hard_reset && hdev->reset_info.in_compute_reset)
1694 hdev->reset_info.hard_reset_schedule_flags = flags;
1695 spin_unlock(&hdev->reset_info.lock);
1696 return 0;
1697 }
1698
1699 /* This still allows the completion of some KDMA ops
1700 * Update this before in_reset because in_compute_reset implies we are in reset
1701 */
1702 hdev->reset_info.in_compute_reset = !hard_reset;
1703
1704 hdev->reset_info.in_reset = 1;
1705
1706 spin_unlock(&hdev->reset_info.lock);
1707
1708 /* Cancel the device release watchdog work if required.
1709 * In case of reset-upon-device-release while the release watchdog work is
1710 * scheduled due to a hard-reset, do hard-reset instead of compute-reset.
1711 */
1712 if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
1713 struct hl_device_reset_work *watchdog_work =
1714 &hdev->device_release_watchdog_work;
1715
1716 hdev->reset_info.watchdog_active = 0;
1717 if (!from_watchdog_thread)
1718 cancel_delayed_work_sync(&watchdog_work->reset_work);
1719
1720 if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) {
1721 hdev->reset_info.in_compute_reset = 0;
1722 flags |= HL_DRV_RESET_HARD;
1723 flags &= ~HL_DRV_RESET_DEV_RELEASE;
1724 hard_reset = true;
1725 }
1726 }
1727
1728 if (delay_reset)
1729 usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1730
1731 escalate_reset_flow:
1732 handle_reset_trigger(hdev, flags);
1733 send_disable_pci_access(hdev, flags);
1734
1735 /* This also blocks future CS/VM/JOB completion operations */
1736 hdev->disabled = true;
1737
1738 take_release_locks(hdev);
1739
1740 if (hard_reset)
1741 dev_info(hdev->dev, "Going to reset device\n");
1742 else if (reset_upon_device_release)
1743 dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1744 else
1745 dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1746 }
1747
1748 if ((hard_reset) && (!from_hard_reset_thread)) {
1749 hdev->reset_info.hard_reset_pending = true;
1750
1751 hdev->process_kill_trial_cnt = 0;
1752
1753 hdev->device_reset_work.flags = flags;
1754
1755 /*
1756 * Because the reset function can't run from heartbeat work,
1757 * we need to call the reset function from a dedicated work.
1758 */
1759 queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1760
1761 return 0;
1762 }
1763
1764 cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1765
1766 kill_processes:
1767 if (hard_reset) {
1768 /* Kill processes here after CS rollback. This is because the
1769 * process can't really exit until all its CSs are done, which
1770 * is what we do in cs rollback
1771 */
1772 rc = device_kill_open_processes(hdev, 0, false);
1773
1774 if (rc == -EBUSY) {
1775 if (hdev->device_fini_pending) {
1776 dev_crit(hdev->dev,
1777 "%s Failed to kill all open processes, stopping hard reset\n",
1778 dev_name(&(hdev)->pdev->dev));
1779 goto out_err;
1780 }
1781
1782 /* signal reset thread to reschedule */
1783 return rc;
1784 }
1785
1786 if (rc) {
1787 dev_crit(hdev->dev,
1788 "%s Failed to kill all open processes, stopping hard reset\n",
1789 dev_name(&(hdev)->pdev->dev));
1790 goto out_err;
1791 }
1792
1793 /* Flush the Event queue workers to make sure no other thread is
1794 * reading or writing to registers during the reset
1795 */
1796 flush_workqueue(hdev->eq_wq);
1797 }
1798
1799 /* Reset the H/W. It will be in idle state after this returns */
1800 hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1801
1802 if (hard_reset) {
1803 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1804
1805 /* Release kernel context */
1806 if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1807 hdev->kernel_ctx = NULL;
1808
1809 hl_vm_fini(hdev);
1810 hl_mmu_fini(hdev);
1811 hl_eq_reset(hdev, &hdev->event_queue);
1812 }
1813
1814 /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1815 hl_hw_queue_reset(hdev, hard_reset);
1816 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1817 hl_cq_reset(hdev, &hdev->completion_queue[i]);
1818
1819 /* Make sure the context switch phase will run again */
1820 ctx = hl_get_compute_ctx(hdev);
1821 if (ctx) {
1822 atomic_set(&ctx->thread_ctx_switch_token, 1);
1823 ctx->thread_ctx_switch_wait_token = 0;
1824 hl_ctx_put(ctx);
1825 }
1826
1827 if (hw_fini_rc) {
1828 rc = hw_fini_rc;
1829 goto out_err;
1830 }
1831 /* Finished tear-down, starting to re-initialize */
1832
1833 if (hard_reset) {
1834 hdev->device_cpu_disabled = false;
1835 hdev->reset_info.hard_reset_pending = false;
1836
1837 /*
1838 * Put the device in an unusable state if there are 2 back to back resets due to
1839 * fatal errors.
1840 */
1841 if (hdev->reset_info.reset_trigger_repeated &&
1842 (hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_FW_FATAL_ERR ||
1843 hdev->reset_info.prev_reset_trigger ==
1844 HL_DRV_RESET_HEARTBEAT)) {
1845 dev_crit(hdev->dev,
1846 "%s Consecutive fatal errors, stopping hard reset\n",
1847 dev_name(&(hdev)->pdev->dev));
1848 rc = -EIO;
1849 goto out_err;
1850 }
1851
1852 if (hdev->kernel_ctx) {
1853 dev_crit(hdev->dev,
1854 "%s kernel ctx was alive during hard reset, something is terribly wrong\n",
1855 dev_name(&(hdev)->pdev->dev));
1856 rc = -EBUSY;
1857 goto out_err;
1858 }
1859
1860 rc = hl_mmu_init(hdev);
1861 if (rc) {
1862 dev_err(hdev->dev,
1863 "Failed to initialize MMU S/W after hard reset\n");
1864 goto out_err;
1865 }
1866
1867 /* Allocate the kernel context */
1868 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1869 GFP_KERNEL);
1870 if (!hdev->kernel_ctx) {
1871 rc = -ENOMEM;
1872 hl_mmu_fini(hdev);
1873 goto out_err;
1874 }
1875
1876 hdev->is_compute_ctx_active = false;
1877
1878 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1879 if (rc) {
1880 dev_err(hdev->dev,
1881 "failed to init kernel ctx in hard reset\n");
1882 kfree(hdev->kernel_ctx);
1883 hdev->kernel_ctx = NULL;
1884 hl_mmu_fini(hdev);
1885 goto out_err;
1886 }
1887 }
1888
1889 /* Device is now enabled as part of the initialization requires
1890 * communication with the device firmware to get information that
1891 * is required for the initialization itself
1892 */
1893 hdev->disabled = false;
1894
1895 /* F/W security enabled indication might be updated after hard-reset */
1896 if (hard_reset) {
1897 rc = hl_fw_read_preboot_status(hdev);
1898 if (rc)
1899 goto out_err;
1900 }
1901
1902 rc = hdev->asic_funcs->hw_init(hdev);
1903 if (rc) {
1904 dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1905 goto out_err;
1906 }
1907
1908 /* If device is not idle fail the reset process */
1909 if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1910 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1911 print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1912 rc = -EIO;
1913 goto out_err;
1914 }
1915
1916 /* Check that the communication with the device is working */
1917 rc = hdev->asic_funcs->test_queues(hdev);
1918 if (rc) {
1919 dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1920 goto out_err;
1921 }
1922
1923 if (hard_reset) {
1924 rc = device_late_init(hdev);
1925 if (rc) {
1926 dev_err(hdev->dev, "Failed late init after hard reset\n");
1927 goto out_err;
1928 }
1929
1930 rc = hl_vm_init(hdev);
1931 if (rc) {
1932 dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1933 goto out_err;
1934 }
1935
1936 if (!hdev->asic_prop.fw_security_enabled)
1937 hl_fw_set_max_power(hdev);
1938 } else {
1939 rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1940 if (rc) {
1941 if (reset_upon_device_release)
1942 dev_err(hdev->dev,
1943 "Failed late init in reset after device release\n");
1944 else
1945 dev_err(hdev->dev, "Failed late init after compute reset\n");
1946 goto out_err;
1947 }
1948 }
1949
1950 rc = hdev->asic_funcs->scrub_device_mem(hdev);
1951 if (rc) {
1952 dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1953 goto out_err;
1954 }
1955
1956 spin_lock(&hdev->reset_info.lock);
1957 hdev->reset_info.in_compute_reset = 0;
1958
1959 /* Schedule hard reset only if requested and if not already in hard reset.
1960 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1961 * reset schedule
1962 */
1963 if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1964 schedule_hard_reset = true;
1965 else
1966 hdev->reset_info.in_reset = 0;
1967
1968 spin_unlock(&hdev->reset_info.lock);
1969
1970 hdev->reset_info.needs_reset = false;
1971
1972 if (hard_reset)
1973 dev_info(hdev->dev,
1974 "Successfully finished resetting the %s device\n",
1975 dev_name(&(hdev)->pdev->dev));
1976 else
1977 dev_dbg(hdev->dev,
1978 "Successfully finished resetting the %s device\n",
1979 dev_name(&(hdev)->pdev->dev));
1980
1981 if (hard_reset) {
1982 hdev->reset_info.hard_reset_cnt++;
1983
1984 device_heartbeat_schedule(hdev);
1985
1986 /* After reset is done, we are ready to receive events from
1987 * the F/W. We can't do it before because we will ignore events
1988 * and if those events are fatal, we won't know about it and
1989 * the device will be operational although it shouldn't be
1990 */
1991 hdev->asic_funcs->enable_events_from_fw(hdev);
1992 } else {
1993 if (!reset_upon_device_release)
1994 hdev->reset_info.compute_reset_cnt++;
1995
1996 if (schedule_hard_reset) {
1997 dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
1998 flags = hdev->reset_info.hard_reset_schedule_flags;
1999 hdev->reset_info.hard_reset_schedule_flags = 0;
2000 hard_reset = true;
2001 goto escalate_reset_flow;
2002 }
2003 }
2004
2005 return 0;
2006
2007 out_err:
2008 hdev->disabled = true;
2009
2010 spin_lock(&hdev->reset_info.lock);
2011 hdev->reset_info.in_compute_reset = 0;
2012
2013 if (hard_reset) {
2014 dev_err(hdev->dev,
2015 "%s Failed to reset! Device is NOT usable\n",
2016 dev_name(&(hdev)->pdev->dev));
2017 hdev->reset_info.hard_reset_cnt++;
2018 } else {
2019 if (reset_upon_device_release) {
2020 dev_err(hdev->dev, "Failed to reset device after user release\n");
2021 flags &= ~HL_DRV_RESET_DEV_RELEASE;
2022 } else {
2023 dev_err(hdev->dev, "Failed to do compute reset\n");
2024 hdev->reset_info.compute_reset_cnt++;
2025 }
2026
2027 spin_unlock(&hdev->reset_info.lock);
2028 flags |= HL_DRV_RESET_HARD;
2029 hard_reset = true;
2030 goto escalate_reset_flow;
2031 }
2032
2033 hdev->reset_info.in_reset = 0;
2034
2035 spin_unlock(&hdev->reset_info.lock);
2036
2037 return rc;
2038 }
2039
2040 /*
2041 * hl_device_cond_reset() - conditionally reset the device.
2042 * @hdev: pointer to habanalabs device structure.
2043 * @reset_flags: reset flags.
2044 * @event_mask: events to notify user about.
2045 *
2046 * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
2047 * unless another reset precedes it.
2048 */
hl_device_cond_reset(struct hl_device * hdev,u32 flags,u64 event_mask)2049 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
2050 {
2051 struct hl_ctx *ctx = NULL;
2052
2053 /* F/W reset cannot be postponed */
2054 if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
2055 goto device_reset;
2056
2057 /* Device release watchdog is relevant only if user exists and gets a reset notification */
2058 if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
2059 dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
2060 goto device_reset;
2061 }
2062
2063 ctx = hl_get_compute_ctx(hdev);
2064 if (!ctx)
2065 goto device_reset;
2066
2067 /*
2068 * There is no point in postponing the reset if user is not registered for events.
2069 * However if no eventfd_ctx exists but the device release watchdog is already scheduled, it
2070 * just implies that user has unregistered as part of handling a previous event. In this
2071 * case an immediate reset is not required.
2072 */
2073 if (!ctx->hpriv->notifier_event.eventfd && !hdev->reset_info.watchdog_active)
2074 goto device_reset;
2075
2076 /* Schedule the device release watchdog work unless reset is already in progress or if the
2077 * work is already scheduled.
2078 */
2079 spin_lock(&hdev->reset_info.lock);
2080 if (hdev->reset_info.in_reset) {
2081 spin_unlock(&hdev->reset_info.lock);
2082 goto device_reset;
2083 }
2084
2085 if (hdev->reset_info.watchdog_active) {
2086 hdev->device_release_watchdog_work.flags |= flags;
2087 goto out;
2088 }
2089
2090 hdev->device_release_watchdog_work.flags = flags;
2091 dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n",
2092 hdev->device_release_watchdog_timeout_sec);
2093 schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
2094 msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
2095 hdev->reset_info.watchdog_active = 1;
2096 out:
2097 spin_unlock(&hdev->reset_info.lock);
2098
2099 hl_notifier_event_send_all(hdev, event_mask);
2100
2101 hl_ctx_put(ctx);
2102
2103 hl_abort_waiting_for_completions(hdev);
2104
2105 return 0;
2106
2107 device_reset:
2108 if (event_mask)
2109 hl_notifier_event_send_all(hdev, event_mask);
2110 if (ctx)
2111 hl_ctx_put(ctx);
2112
2113 return hl_device_reset(hdev, flags | HL_DRV_RESET_HARD);
2114 }
2115
hl_notifier_event_send(struct hl_notifier_event * notifier_event,u64 event_mask)2116 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
2117 {
2118 mutex_lock(¬ifier_event->lock);
2119 notifier_event->events_mask |= event_mask;
2120
2121 if (notifier_event->eventfd)
2122 eventfd_signal(notifier_event->eventfd);
2123
2124 mutex_unlock(¬ifier_event->lock);
2125 }
2126
2127 /*
2128 * hl_notifier_event_send_all - notify all user processes via eventfd
2129 *
2130 * @hdev: pointer to habanalabs device structure
2131 * @event_mask: the occurred event/s
2132 * Returns 0 for success or an error on failure.
2133 */
hl_notifier_event_send_all(struct hl_device * hdev,u64 event_mask)2134 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
2135 {
2136 struct hl_fpriv *hpriv;
2137
2138 if (!event_mask) {
2139 dev_warn(hdev->dev, "Skip sending zero event");
2140 return;
2141 }
2142
2143 mutex_lock(&hdev->fpriv_list_lock);
2144
2145 list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
2146 hl_notifier_event_send(&hpriv->notifier_event, event_mask);
2147
2148 mutex_unlock(&hdev->fpriv_list_lock);
2149 }
2150
2151 /*
2152 * hl_device_init - main initialization function for habanalabs device
2153 *
2154 * @hdev: pointer to habanalabs device structure
2155 *
2156 * Allocate an id for the device, do early initialization and then call the
2157 * ASIC specific initialization functions. Finally, create the cdev and the
2158 * Linux device to expose it to the user
2159 */
hl_device_init(struct hl_device * hdev)2160 int hl_device_init(struct hl_device *hdev)
2161 {
2162 int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
2163 struct hl_ts_free_jobs *free_jobs_data;
2164 bool expose_interfaces_on_err = false;
2165 void *p;
2166
2167 /* Initialize ASIC function pointers and perform early init */
2168 rc = device_early_init(hdev);
2169 if (rc)
2170 goto out_disabled;
2171
2172 user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2173 hdev->asic_prop.user_interrupt_count;
2174
2175 if (user_interrupt_cnt) {
2176 hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
2177 GFP_KERNEL);
2178 if (!hdev->user_interrupt) {
2179 rc = -ENOMEM;
2180 goto early_fini;
2181 }
2182
2183 /* Timestamp records supported only if CQ supported in device */
2184 if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) {
2185 for (i = 0 ; i < user_interrupt_cnt ; i++) {
2186 p = vzalloc(TIMESTAMP_FREE_NODES_NUM *
2187 sizeof(struct timestamp_reg_free_node));
2188 if (!p) {
2189 rc = -ENOMEM;
2190 goto free_usr_intr_mem;
2191 }
2192 free_jobs_data = &hdev->user_interrupt[i].ts_free_jobs_data;
2193 free_jobs_data->free_nodes_pool = p;
2194 free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM;
2195 free_jobs_data->next_avail_free_node_idx = 0;
2196 }
2197 }
2198 }
2199
2200 free_jobs_data = &hdev->common_user_cq_interrupt.ts_free_jobs_data;
2201 p = vzalloc(TIMESTAMP_FREE_NODES_NUM *
2202 sizeof(struct timestamp_reg_free_node));
2203 if (!p) {
2204 rc = -ENOMEM;
2205 goto free_usr_intr_mem;
2206 }
2207
2208 free_jobs_data->free_nodes_pool = p;
2209 free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM;
2210 free_jobs_data->next_avail_free_node_idx = 0;
2211
2212 /*
2213 * Start calling ASIC initialization. First S/W then H/W and finally
2214 * late init
2215 */
2216 rc = hdev->asic_funcs->sw_init(hdev);
2217 if (rc)
2218 goto free_common_usr_intr_mem;
2219
2220
2221 /* initialize completion structure for multi CS wait */
2222 hl_multi_cs_completion_init(hdev);
2223
2224 /*
2225 * Initialize the H/W queues. Must be done before hw_init, because
2226 * there the addresses of the kernel queue are being written to the
2227 * registers of the device
2228 */
2229 rc = hl_hw_queues_create(hdev);
2230 if (rc) {
2231 dev_err(hdev->dev, "failed to initialize kernel queues\n");
2232 goto sw_fini;
2233 }
2234
2235 cq_cnt = hdev->asic_prop.completion_queues_count;
2236
2237 /*
2238 * Initialize the completion queues. Must be done before hw_init,
2239 * because there the addresses of the completion queues are being
2240 * passed as arguments to request_irq
2241 */
2242 if (cq_cnt) {
2243 hdev->completion_queue = kcalloc(cq_cnt,
2244 sizeof(*hdev->completion_queue),
2245 GFP_KERNEL);
2246
2247 if (!hdev->completion_queue) {
2248 dev_err(hdev->dev,
2249 "failed to allocate completion queues\n");
2250 rc = -ENOMEM;
2251 goto hw_queues_destroy;
2252 }
2253 }
2254
2255 for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
2256 rc = hl_cq_init(hdev, &hdev->completion_queue[i],
2257 hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2258 if (rc) {
2259 dev_err(hdev->dev,
2260 "failed to initialize completion queue\n");
2261 goto cq_fini;
2262 }
2263 hdev->completion_queue[i].cq_idx = i;
2264 }
2265
2266 hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2267 sizeof(struct hl_cs *), GFP_KERNEL);
2268 if (!hdev->shadow_cs_queue) {
2269 rc = -ENOMEM;
2270 goto cq_fini;
2271 }
2272
2273 /*
2274 * Initialize the event queue. Must be done before hw_init,
2275 * because there the address of the event queue is being
2276 * passed as argument to request_irq
2277 */
2278 rc = hl_eq_init(hdev, &hdev->event_queue);
2279 if (rc) {
2280 dev_err(hdev->dev, "failed to initialize event queue\n");
2281 goto free_shadow_cs_queue;
2282 }
2283
2284 /* MMU S/W must be initialized before kernel context is created */
2285 rc = hl_mmu_init(hdev);
2286 if (rc) {
2287 dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
2288 goto eq_fini;
2289 }
2290
2291 /* Allocate the kernel context */
2292 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
2293 if (!hdev->kernel_ctx) {
2294 rc = -ENOMEM;
2295 goto mmu_fini;
2296 }
2297
2298 hdev->is_compute_ctx_active = false;
2299
2300 hdev->asic_funcs->state_dump_init(hdev);
2301
2302 hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
2303
2304 hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2305
2306 rc = hl_debugfs_device_init(hdev);
2307 if (rc) {
2308 dev_err(hdev->dev, "failed to initialize debugfs entry structure\n");
2309 kfree(hdev->kernel_ctx);
2310 goto mmu_fini;
2311 }
2312
2313 /* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after
2314 * hl_debugfs_device_init().
2315 */
2316 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
2317 if (rc) {
2318 dev_err(hdev->dev, "failed to initialize kernel context\n");
2319 kfree(hdev->kernel_ctx);
2320 goto debugfs_device_fini;
2321 }
2322
2323 rc = hl_cb_pool_init(hdev);
2324 if (rc) {
2325 dev_err(hdev->dev, "failed to initialize CB pool\n");
2326 goto release_ctx;
2327 }
2328
2329 rc = hl_dec_init(hdev);
2330 if (rc) {
2331 dev_err(hdev->dev, "Failed to initialize the decoder module\n");
2332 goto cb_pool_fini;
2333 }
2334
2335 /*
2336 * From this point, override rc (=0) in case of an error to allow debugging
2337 * (by adding char devices and creating sysfs/debugfs files as part of the error flow).
2338 */
2339 expose_interfaces_on_err = true;
2340
2341 /* Device is now enabled as part of the initialization requires
2342 * communication with the device firmware to get information that
2343 * is required for the initialization itself
2344 */
2345 hdev->disabled = false;
2346
2347 rc = hdev->asic_funcs->hw_init(hdev);
2348 if (rc) {
2349 dev_err(hdev->dev, "failed to initialize the H/W\n");
2350 rc = 0;
2351 goto out_disabled;
2352 }
2353
2354 /* Check that the communication with the device is working */
2355 rc = hdev->asic_funcs->test_queues(hdev);
2356 if (rc) {
2357 dev_err(hdev->dev, "Failed to detect if device is alive\n");
2358 rc = 0;
2359 goto out_disabled;
2360 }
2361
2362 rc = device_late_init(hdev);
2363 if (rc) {
2364 dev_err(hdev->dev, "Failed late initialization\n");
2365 rc = 0;
2366 goto out_disabled;
2367 }
2368
2369 dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
2370 hdev->asic_name,
2371 hdev->asic_prop.dram_size / SZ_1G);
2372
2373 rc = hl_vm_init(hdev);
2374 if (rc) {
2375 dev_err(hdev->dev, "Failed to initialize memory module\n");
2376 rc = 0;
2377 goto out_disabled;
2378 }
2379
2380 /*
2381 * Expose devices and sysfs/debugfs files to user.
2382 * From here there is no need to expose them in case of an error.
2383 */
2384 expose_interfaces_on_err = false;
2385
2386 rc = drm_dev_register(&hdev->drm, 0);
2387 if (rc) {
2388 dev_err(hdev->dev, "Failed to register DRM device, rc %d\n", rc);
2389 rc = 0;
2390 goto out_disabled;
2391 }
2392
2393 rc = cdev_sysfs_debugfs_add(hdev);
2394 if (rc) {
2395 dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n");
2396 rc = 0;
2397 goto out_disabled;
2398 }
2399
2400 /* Need to call this again because the max power might change,
2401 * depending on card type for certain ASICs
2402 */
2403 if (hdev->asic_prop.set_max_power_on_device_init &&
2404 !hdev->asic_prop.fw_security_enabled)
2405 hl_fw_set_max_power(hdev);
2406
2407 /*
2408 * hl_hwmon_init() must be called after device_late_init(), because only
2409 * there we get the information from the device about which
2410 * hwmon-related sensors the device supports.
2411 * Furthermore, it must be done after adding the device to the system.
2412 */
2413 rc = hl_hwmon_init(hdev);
2414 if (rc) {
2415 dev_err(hdev->dev, "Failed to initialize hwmon\n");
2416 rc = 0;
2417 goto out_disabled;
2418 }
2419
2420 /* Scheduling the EQ heartbeat thread must come after driver is done with all
2421 * initializations, as we want to make sure the FW gets enough time to be prepared
2422 * to respond to heartbeat packets.
2423 */
2424 device_heartbeat_schedule(hdev);
2425
2426 dev_notice(hdev->dev,
2427 "Successfully added device %s to habanalabs driver\n",
2428 dev_name(&(hdev)->pdev->dev));
2429
2430 /* After initialization is done, we are ready to receive events from
2431 * the F/W. We can't do it before because we will ignore events and if
2432 * those events are fatal, we won't know about it and the device will
2433 * be operational although it shouldn't be
2434 */
2435 hdev->asic_funcs->enable_events_from_fw(hdev);
2436
2437 hdev->init_done = true;
2438
2439 return 0;
2440
2441 cb_pool_fini:
2442 hl_cb_pool_fini(hdev);
2443 release_ctx:
2444 if (hl_ctx_put(hdev->kernel_ctx) != 1)
2445 dev_err(hdev->dev,
2446 "kernel ctx is still alive on initialization failure\n");
2447 debugfs_device_fini:
2448 hl_debugfs_device_fini(hdev);
2449 mmu_fini:
2450 hl_mmu_fini(hdev);
2451 eq_fini:
2452 hl_eq_fini(hdev, &hdev->event_queue);
2453 free_shadow_cs_queue:
2454 kfree(hdev->shadow_cs_queue);
2455 cq_fini:
2456 for (i = 0 ; i < cq_ready_cnt ; i++)
2457 hl_cq_fini(hdev, &hdev->completion_queue[i]);
2458 kfree(hdev->completion_queue);
2459 hw_queues_destroy:
2460 hl_hw_queues_destroy(hdev);
2461 sw_fini:
2462 hdev->asic_funcs->sw_fini(hdev);
2463 free_common_usr_intr_mem:
2464 vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool);
2465 free_usr_intr_mem:
2466 if (user_interrupt_cnt) {
2467 for (i = 0 ; i < user_interrupt_cnt ; i++) {
2468 if (!hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool)
2469 break;
2470 vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool);
2471 }
2472 kfree(hdev->user_interrupt);
2473 }
2474 early_fini:
2475 device_early_fini(hdev);
2476 out_disabled:
2477 hdev->disabled = true;
2478 if (expose_interfaces_on_err) {
2479 drm_dev_register(&hdev->drm, 0);
2480 cdev_sysfs_debugfs_add(hdev);
2481 }
2482
2483 pr_err("Failed to initialize accel%d. Device %s is NOT usable!\n",
2484 hdev->cdev_idx, dev_name(&hdev->pdev->dev));
2485
2486 return rc;
2487 }
2488
2489 /*
2490 * hl_device_fini - main tear-down function for habanalabs device
2491 *
2492 * @hdev: pointer to habanalabs device structure
2493 *
2494 * Destroy the device, call ASIC fini functions and release the id
2495 */
hl_device_fini(struct hl_device * hdev)2496 void hl_device_fini(struct hl_device *hdev)
2497 {
2498 u32 user_interrupt_cnt;
2499 bool device_in_reset;
2500 ktime_t timeout;
2501 u64 reset_sec;
2502 int i, rc;
2503
2504 dev_info(hdev->dev, "Removing device %s\n", dev_name(&(hdev)->pdev->dev));
2505
2506 hdev->device_fini_pending = 1;
2507 flush_delayed_work(&hdev->device_reset_work.reset_work);
2508
2509 if (hdev->pldm)
2510 reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
2511 else
2512 reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
2513
2514 /*
2515 * This function is competing with the reset function, so try to
2516 * take the reset atomic and if we are already in middle of reset,
2517 * wait until reset function is finished. Reset function is designed
2518 * to always finish. However, in Gaudi, because of all the network
2519 * ports, the hard reset could take between 10-30 seconds
2520 */
2521
2522 timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2523
2524 spin_lock(&hdev->reset_info.lock);
2525 device_in_reset = !!hdev->reset_info.in_reset;
2526 if (!device_in_reset)
2527 hdev->reset_info.in_reset = 1;
2528 spin_unlock(&hdev->reset_info.lock);
2529
2530 while (device_in_reset) {
2531 usleep_range(50, 200);
2532
2533 spin_lock(&hdev->reset_info.lock);
2534 device_in_reset = !!hdev->reset_info.in_reset;
2535 if (!device_in_reset)
2536 hdev->reset_info.in_reset = 1;
2537 spin_unlock(&hdev->reset_info.lock);
2538
2539 if (ktime_compare(ktime_get(), timeout) > 0) {
2540 dev_crit(hdev->dev,
2541 "%s Failed to remove device because reset function did not finish\n",
2542 dev_name(&(hdev)->pdev->dev));
2543 return;
2544 }
2545 }
2546
2547 cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
2548
2549 /* Disable PCI access from device F/W so it won't send us additional
2550 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
2551 * can't have the F/W sending us interrupts after that. We need to
2552 * disable the access here because if the device is marked disable, the
2553 * message won't be send. Also, in case of heartbeat, the device CPU is
2554 * marked as disable so this message won't be sent
2555 */
2556 hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2557
2558 /* Mark device as disabled */
2559 hdev->disabled = true;
2560
2561 take_release_locks(hdev);
2562
2563 hdev->reset_info.hard_reset_pending = true;
2564
2565 hl_hwmon_fini(hdev);
2566
2567 cleanup_resources(hdev, true, false, false);
2568
2569 /* Kill processes here after CS rollback. This is because the process
2570 * can't really exit until all its CSs are done, which is what we
2571 * do in cs rollback
2572 */
2573 dev_info(hdev->dev,
2574 "Waiting for all processes to exit (timeout of %u seconds)",
2575 HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2576
2577 hdev->process_kill_trial_cnt = 0;
2578 rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2579 if (rc) {
2580 dev_crit(hdev->dev, "Failed to kill all open processes (%d)\n", rc);
2581 device_disable_open_processes(hdev, false);
2582 }
2583
2584 hdev->process_kill_trial_cnt = 0;
2585 rc = device_kill_open_processes(hdev, 0, true);
2586 if (rc) {
2587 dev_crit(hdev->dev, "Failed to kill all control device open processes (%d)\n", rc);
2588 device_disable_open_processes(hdev, true);
2589 }
2590
2591 hl_cb_pool_fini(hdev);
2592
2593 /* Reset the H/W. It will be in idle state after this returns */
2594 rc = hdev->asic_funcs->hw_fini(hdev, true, false);
2595 if (rc)
2596 dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc);
2597
2598 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2599
2600 /* Release kernel context */
2601 if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
2602 dev_err(hdev->dev, "kernel ctx is still alive\n");
2603
2604 hl_dec_fini(hdev);
2605
2606 hl_vm_fini(hdev);
2607
2608 hl_mmu_fini(hdev);
2609
2610 vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2611
2612 hl_eq_fini(hdev, &hdev->event_queue);
2613
2614 kfree(hdev->shadow_cs_queue);
2615
2616 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2617 hl_cq_fini(hdev, &hdev->completion_queue[i]);
2618 kfree(hdev->completion_queue);
2619
2620 user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2621 hdev->asic_prop.user_interrupt_count;
2622
2623 if (user_interrupt_cnt) {
2624 if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) {
2625 for (i = 0 ; i < user_interrupt_cnt ; i++)
2626 vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool);
2627 }
2628
2629 kfree(hdev->user_interrupt);
2630 }
2631
2632 vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool);
2633
2634 hl_hw_queues_destroy(hdev);
2635
2636 /* Call ASIC S/W finalize function */
2637 hdev->asic_funcs->sw_fini(hdev);
2638
2639 device_early_fini(hdev);
2640
2641 /* Hide devices and sysfs/debugfs files from user */
2642 cdev_sysfs_debugfs_remove(hdev);
2643 drm_dev_unregister(&hdev->drm);
2644
2645 hl_debugfs_device_fini(hdev);
2646
2647 pr_info("removed device successfully\n");
2648 }
2649
2650 /*
2651 * MMIO register access helper functions.
2652 */
2653
2654 /*
2655 * hl_rreg - Read an MMIO register
2656 *
2657 * @hdev: pointer to habanalabs device structure
2658 * @reg: MMIO register offset (in bytes)
2659 *
2660 * Returns the value of the MMIO register we are asked to read
2661 *
2662 */
hl_rreg(struct hl_device * hdev,u32 reg)2663 inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2664 {
2665 u32 val = readl(hdev->rmmio + reg);
2666
2667 if (unlikely(trace_habanalabs_rreg32_enabled()))
2668 trace_habanalabs_rreg32(&(hdev)->pdev->dev, reg, val);
2669
2670 return val;
2671 }
2672
2673 /*
2674 * hl_wreg - Write to an MMIO register
2675 *
2676 * @hdev: pointer to habanalabs device structure
2677 * @reg: MMIO register offset (in bytes)
2678 * @val: 32-bit value
2679 *
2680 * Writes the 32-bit value into the MMIO register
2681 *
2682 */
hl_wreg(struct hl_device * hdev,u32 reg,u32 val)2683 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2684 {
2685 if (unlikely(trace_habanalabs_wreg32_enabled()))
2686 trace_habanalabs_wreg32(&(hdev)->pdev->dev, reg, val);
2687
2688 writel(val, hdev->rmmio + reg);
2689 }
2690
hl_capture_razwi(struct hl_device * hdev,u64 addr,u16 * engine_id,u16 num_of_engines,u8 flags)2691 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2692 u8 flags)
2693 {
2694 struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
2695
2696 if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
2697 dev_err(hdev->dev,
2698 "Number of possible razwi initiators (%u) exceeded limit (%u)\n",
2699 num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
2700 return;
2701 }
2702
2703 /* In case it's the first razwi since the device was opened, capture its parameters */
2704 if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2705 return;
2706
2707 razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
2708 razwi_info->razwi.addr = addr;
2709 razwi_info->razwi.num_of_possible_engines = num_of_engines;
2710 memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2711 num_of_engines * sizeof(u16));
2712 razwi_info->razwi.flags = flags;
2713
2714 razwi_info->razwi_info_available = true;
2715 }
2716
hl_handle_razwi(struct hl_device * hdev,u64 addr,u16 * engine_id,u16 num_of_engines,u8 flags,u64 * event_mask)2717 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2718 u8 flags, u64 *event_mask)
2719 {
2720 hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2721
2722 if (event_mask)
2723 *event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2724 }
2725
hl_capture_user_mappings(struct hl_device * hdev,bool is_pmmu)2726 static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2727 {
2728 struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2729 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2730 struct hl_vm_hash_node *hnode;
2731 struct hl_userptr *userptr;
2732 enum vm_type *vm_type;
2733 struct hl_ctx *ctx;
2734 u32 map_idx = 0;
2735 int i;
2736
2737 /* Reset previous session count*/
2738 pgf_info->num_of_user_mappings = 0;
2739
2740 ctx = hl_get_compute_ctx(hdev);
2741 if (!ctx) {
2742 dev_err(hdev->dev, "Can't get user context for user mappings\n");
2743 return;
2744 }
2745
2746 mutex_lock(&ctx->mem_hash_lock);
2747 hash_for_each(ctx->mem_hash, i, hnode, node) {
2748 vm_type = hnode->ptr;
2749 if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
2750 ((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
2751 pgf_info->num_of_user_mappings++;
2752
2753 }
2754
2755 if (!pgf_info->num_of_user_mappings)
2756 goto finish;
2757
2758 /* In case we already allocated in previous session, need to release it before
2759 * allocating new buffer.
2760 */
2761 vfree(pgf_info->user_mappings);
2762 pgf_info->user_mappings =
2763 vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2764 if (!pgf_info->user_mappings) {
2765 pgf_info->num_of_user_mappings = 0;
2766 goto finish;
2767 }
2768
2769 hash_for_each(ctx->mem_hash, i, hnode, node) {
2770 vm_type = hnode->ptr;
2771 if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
2772 userptr = hnode->ptr;
2773 pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2774 pgf_info->user_mappings[map_idx].size = userptr->size;
2775 map_idx++;
2776 } else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
2777 phys_pg_pack = hnode->ptr;
2778 pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2779 pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
2780 map_idx++;
2781 }
2782 }
2783 finish:
2784 mutex_unlock(&ctx->mem_hash_lock);
2785 hl_ctx_put(ctx);
2786 }
2787
hl_capture_page_fault(struct hl_device * hdev,u64 addr,u16 eng_id,bool is_pmmu)2788 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
2789 {
2790 struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2791
2792 /* Capture only the first page fault */
2793 if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2794 return;
2795
2796 pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
2797 pgf_info->page_fault.addr = addr;
2798 pgf_info->page_fault.engine_id = eng_id;
2799 hl_capture_user_mappings(hdev, is_pmmu);
2800
2801 pgf_info->page_fault_info_available = true;
2802 }
2803
hl_handle_page_fault(struct hl_device * hdev,u64 addr,u16 eng_id,bool is_pmmu,u64 * event_mask)2804 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
2805 u64 *event_mask)
2806 {
2807 hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
2808
2809 if (event_mask)
2810 *event_mask |= HL_NOTIFIER_EVENT_PAGE_FAULT;
2811 }
2812
hl_capture_hw_err(struct hl_device * hdev,u16 event_id)2813 static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
2814 {
2815 struct hw_err_info *info = &hdev->captured_err_info.hw_err;
2816
2817 /* Capture only the first HW err */
2818 if (atomic_cmpxchg(&info->event_detected, 0, 1))
2819 return;
2820
2821 info->event.timestamp = ktime_to_ns(ktime_get());
2822 info->event.event_id = event_id;
2823
2824 info->event_info_available = true;
2825 }
2826
hl_handle_critical_hw_err(struct hl_device * hdev,u16 event_id,u64 * event_mask)2827 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
2828 {
2829 hl_capture_hw_err(hdev, event_id);
2830
2831 if (event_mask)
2832 *event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
2833 }
2834
hl_capture_fw_err(struct hl_device * hdev,struct hl_info_fw_err_info * fw_info)2835 static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
2836 {
2837 struct fw_err_info *info = &hdev->captured_err_info.fw_err;
2838
2839 /* Capture only the first FW error */
2840 if (atomic_cmpxchg(&info->event_detected, 0, 1))
2841 return;
2842
2843 info->event.timestamp = ktime_to_ns(ktime_get());
2844 info->event.err_type = fw_info->err_type;
2845 if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
2846 info->event.event_id = fw_info->event_id;
2847
2848 info->event_info_available = true;
2849 }
2850
hl_handle_fw_err(struct hl_device * hdev,struct hl_info_fw_err_info * info)2851 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
2852 {
2853 hl_capture_fw_err(hdev, info);
2854
2855 if (info->event_mask)
2856 *info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
2857 }
2858
hl_capture_engine_err(struct hl_device * hdev,u16 engine_id,u16 error_count)2859 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count)
2860 {
2861 struct engine_err_info *info = &hdev->captured_err_info.engine_err;
2862
2863 /* Capture only the first engine error */
2864 if (atomic_cmpxchg(&info->event_detected, 0, 1))
2865 return;
2866
2867 info->event.timestamp = ktime_to_ns(ktime_get());
2868 info->event.engine_id = engine_id;
2869 info->event.error_count = error_count;
2870 info->event_info_available = true;
2871 }
2872
hl_enable_err_info_capture(struct hl_error_info * captured_err_info)2873 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info)
2874 {
2875 vfree(captured_err_info->page_fault_info.user_mappings);
2876 memset(captured_err_info, 0, sizeof(struct hl_error_info));
2877 atomic_set(&captured_err_info->cs_timeout.write_enable, 1);
2878 captured_err_info->undef_opcode.write_enable = true;
2879 }
2880
hl_init_cpu_for_irq(struct hl_device * hdev)2881 void hl_init_cpu_for_irq(struct hl_device *hdev)
2882 {
2883 #ifdef CONFIG_NUMA
2884 struct cpumask *available_mask = &hdev->irq_affinity_mask;
2885 int numa_node = hdev->pdev->dev.numa_node, i;
2886 static struct cpumask cpu_mask;
2887
2888 if (numa_node < 0)
2889 return;
2890
2891 if (!cpumask_and(&cpu_mask, cpumask_of_node(numa_node), cpu_online_mask)) {
2892 dev_err(hdev->dev, "No available affinities in current numa node\n");
2893 return;
2894 }
2895
2896 /* Remove HT siblings */
2897 for_each_cpu(i, &cpu_mask)
2898 cpumask_set_cpu(cpumask_first(topology_sibling_cpumask(i)), available_mask);
2899 #endif
2900 }
2901
hl_set_irq_affinity(struct hl_device * hdev,int irq)2902 void hl_set_irq_affinity(struct hl_device *hdev, int irq)
2903 {
2904 if (cpumask_empty(&hdev->irq_affinity_mask)) {
2905 dev_dbg(hdev->dev, "affinity mask is empty\n");
2906 return;
2907 }
2908
2909 if (irq_set_affinity_and_hint(irq, &hdev->irq_affinity_mask))
2910 dev_err(hdev->dev, "Failed setting irq %d affinity\n", irq);
2911 }
2912
hl_eq_heartbeat_event_handle(struct hl_device * hdev)2913 void hl_eq_heartbeat_event_handle(struct hl_device *hdev)
2914 {
2915 hdev->heartbeat_debug_info.heartbeat_event_counter++;
2916 hdev->heartbeat_debug_info.last_eq_heartbeat_ts = ktime_get_real_seconds();
2917 hdev->eq_heartbeat_received = true;
2918 }
2919
hl_handle_clk_change_event(struct hl_device * hdev,u16 event_type,u64 * event_mask)2920 void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask)
2921 {
2922 struct hl_clk_throttle *clk_throttle = &hdev->clk_throttling;
2923 ktime_t zero_time = ktime_set(0, 0);
2924
2925 mutex_lock(&clk_throttle->lock);
2926
2927 switch (event_type) {
2928 case EQ_EVENT_POWER_EVT_START:
2929 clk_throttle->current_reason |= HL_CLK_THROTTLE_POWER;
2930 clk_throttle->aggregated_reason |= HL_CLK_THROTTLE_POWER;
2931 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get();
2932 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time;
2933 dev_dbg_ratelimited(hdev->dev, "Clock throttling due to power consumption\n");
2934 break;
2935
2936 case EQ_EVENT_POWER_EVT_END:
2937 clk_throttle->current_reason &= ~HL_CLK_THROTTLE_POWER;
2938 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get();
2939 dev_dbg_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n");
2940 break;
2941
2942 case EQ_EVENT_THERMAL_EVT_START:
2943 clk_throttle->current_reason |= HL_CLK_THROTTLE_THERMAL;
2944 clk_throttle->aggregated_reason |= HL_CLK_THROTTLE_THERMAL;
2945 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get();
2946 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time;
2947 *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
2948 dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n");
2949 break;
2950
2951 case EQ_EVENT_THERMAL_EVT_END:
2952 clk_throttle->current_reason &= ~HL_CLK_THROTTLE_THERMAL;
2953 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get();
2954 *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
2955 dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n");
2956 break;
2957
2958 default:
2959 dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type);
2960 break;
2961 }
2962
2963 mutex_unlock(&clk_throttle->lock);
2964 }
2965