xref: /linux/mm/percpu-stats.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu-debug.c
4  *
5  * Copyright (C) 2017		Facebook Inc.
6  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
7  *
8  * Prints statistics about the percpu allocator and backing chunks.
9  */
10 #include <linux/debugfs.h>
11 #include <linux/list.h>
12 #include <linux/percpu.h>
13 #include <linux/seq_file.h>
14 #include <linux/sort.h>
15 #include <linux/vmalloc.h>
16 
17 #include "percpu-internal.h"
18 
19 #define P(X, Y) \
20 	seq_printf(m, "  %-20s: %12lld\n", X, (long long int)Y)
21 
22 struct percpu_stats pcpu_stats;
23 struct pcpu_alloc_info pcpu_stats_ai;
24 
cmpint(const void * a,const void * b)25 static int cmpint(const void *a, const void *b)
26 {
27 	return *(int *)a - *(int *)b;
28 }
29 
30 /*
31  * Iterates over all chunks to find the max nr_alloc entries.
32  */
find_max_nr_alloc(void)33 static int find_max_nr_alloc(void)
34 {
35 	struct pcpu_chunk *chunk;
36 	int slot, max_nr_alloc;
37 
38 	max_nr_alloc = 0;
39 	for (slot = 0; slot < pcpu_nr_slots; slot++)
40 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list)
41 			max_nr_alloc = max(max_nr_alloc, chunk->nr_alloc);
42 
43 	return max_nr_alloc;
44 }
45 
46 /*
47  * Prints out chunk state. Fragmentation is considered between
48  * the beginning of the chunk to the last allocation.
49  *
50  * All statistics are in bytes unless stated otherwise.
51  */
chunk_map_stats(struct seq_file * m,struct pcpu_chunk * chunk,int * buffer)52 static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
53 			    int *buffer)
54 {
55 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
56 	int i, last_alloc, as_len, start, end;
57 	int *alloc_sizes, *p;
58 	/* statistics */
59 	int sum_frag = 0, max_frag = 0;
60 	int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
61 
62 	alloc_sizes = buffer;
63 
64 	/*
65 	 * find_last_bit returns the start value if nothing found.
66 	 * Therefore, we must determine if it is a failure of find_last_bit
67 	 * and set the appropriate value.
68 	 */
69 	last_alloc = find_last_bit(chunk->alloc_map,
70 				   pcpu_chunk_map_bits(chunk) -
71 				   chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
72 	last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
73 		     last_alloc + 1 : 0;
74 
75 	as_len = 0;
76 	start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
77 
78 	/*
79 	 * If a bit is set in the allocation map, the bound_map identifies
80 	 * where the allocation ends.  If the allocation is not set, the
81 	 * bound_map does not identify free areas as it is only kept accurate
82 	 * on allocation, not free.
83 	 *
84 	 * Positive values are allocations and negative values are free
85 	 * fragments.
86 	 */
87 	while (start < last_alloc) {
88 		if (test_bit(start, chunk->alloc_map)) {
89 			end = find_next_bit(chunk->bound_map, last_alloc,
90 					    start + 1);
91 			alloc_sizes[as_len] = 1;
92 		} else {
93 			end = find_next_bit(chunk->alloc_map, last_alloc,
94 					    start + 1);
95 			alloc_sizes[as_len] = -1;
96 		}
97 
98 		alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
99 
100 		start = end;
101 	}
102 
103 	/*
104 	 * The negative values are free fragments and thus sorting gives the
105 	 * free fragments at the beginning in largest first order.
106 	 */
107 	if (as_len > 0) {
108 		sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
109 
110 		/* iterate through the unallocated fragments */
111 		for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
112 			sum_frag -= *p;
113 			max_frag = max(max_frag, -1 * (*p));
114 		}
115 
116 		cur_min_alloc = alloc_sizes[i];
117 		cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
118 		cur_max_alloc = alloc_sizes[as_len - 1];
119 	}
120 
121 	P("nr_alloc", chunk->nr_alloc);
122 	P("max_alloc_size", chunk->max_alloc_size);
123 	P("empty_pop_pages", chunk->nr_empty_pop_pages);
124 	P("first_bit", chunk_md->first_free);
125 	P("free_bytes", chunk->free_bytes);
126 	P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
127 	P("sum_frag", sum_frag);
128 	P("max_frag", max_frag);
129 	P("cur_min_alloc", cur_min_alloc);
130 	P("cur_med_alloc", cur_med_alloc);
131 	P("cur_max_alloc", cur_max_alloc);
132 	seq_putc(m, '\n');
133 }
134 
percpu_stats_show(struct seq_file * m,void * v)135 static int percpu_stats_show(struct seq_file *m, void *v)
136 {
137 	struct pcpu_chunk *chunk;
138 	int slot, max_nr_alloc;
139 	int *buffer;
140 
141 alloc_buffer:
142 	spin_lock_irq(&pcpu_lock);
143 	max_nr_alloc = find_max_nr_alloc();
144 	spin_unlock_irq(&pcpu_lock);
145 
146 	/* there can be at most this many free and allocated fragments */
147 	buffer = vmalloc_array(2 * max_nr_alloc + 1, sizeof(int));
148 	if (!buffer)
149 		return -ENOMEM;
150 
151 	spin_lock_irq(&pcpu_lock);
152 
153 	/* if the buffer allocated earlier is too small */
154 	if (max_nr_alloc < find_max_nr_alloc()) {
155 		spin_unlock_irq(&pcpu_lock);
156 		vfree(buffer);
157 		goto alloc_buffer;
158 	}
159 
160 #define PL(X)								\
161 	seq_printf(m, "  %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
162 
163 	seq_printf(m,
164 			"Percpu Memory Statistics\n"
165 			"Allocation Info:\n"
166 			"----------------------------------------\n");
167 	PL(unit_size);
168 	PL(static_size);
169 	PL(reserved_size);
170 	PL(dyn_size);
171 	PL(atom_size);
172 	PL(alloc_size);
173 	seq_putc(m, '\n');
174 
175 #undef PL
176 
177 #define PU(X) \
178 	seq_printf(m, "  %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
179 
180 	seq_printf(m,
181 			"Global Stats:\n"
182 			"----------------------------------------\n");
183 	PU(nr_alloc);
184 	PU(nr_dealloc);
185 	PU(nr_cur_alloc);
186 	PU(nr_max_alloc);
187 	PU(nr_chunks);
188 	PU(nr_max_chunks);
189 	PU(min_alloc_size);
190 	PU(max_alloc_size);
191 	P("empty_pop_pages", pcpu_nr_empty_pop_pages);
192 	seq_putc(m, '\n');
193 
194 #undef PU
195 
196 	seq_printf(m,
197 			"Per Chunk Stats:\n"
198 			"----------------------------------------\n");
199 
200 	if (pcpu_reserved_chunk) {
201 		seq_puts(m, "Chunk: <- Reserved Chunk\n");
202 		chunk_map_stats(m, pcpu_reserved_chunk, buffer);
203 	}
204 
205 	for (slot = 0; slot < pcpu_nr_slots; slot++) {
206 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
207 			if (chunk == pcpu_first_chunk)
208 				seq_puts(m, "Chunk: <- First Chunk\n");
209 			else if (slot == pcpu_to_depopulate_slot)
210 				seq_puts(m, "Chunk (to_depopulate)\n");
211 			else if (slot == pcpu_sidelined_slot)
212 				seq_puts(m, "Chunk (sidelined):\n");
213 			else
214 				seq_puts(m, "Chunk:\n");
215 			chunk_map_stats(m, chunk, buffer);
216 		}
217 	}
218 
219 	spin_unlock_irq(&pcpu_lock);
220 
221 	vfree(buffer);
222 
223 	return 0;
224 }
225 DEFINE_SHOW_ATTRIBUTE(percpu_stats);
226 
init_percpu_stats_debugfs(void)227 static int __init init_percpu_stats_debugfs(void)
228 {
229 	debugfs_create_file("percpu_stats", 0444, NULL, NULL,
230 			&percpu_stats_fops);
231 
232 	return 0;
233 }
234 
235 late_initcall(init_percpu_stats_debugfs);
236