xref: /titanic_51/usr/src/uts/common/io/bnxe/577xx/drivers/common/ecore/ecore_sp_verbs.c (revision d14abf155341d55053c76eeec58b787a456b753b)
1 #ifndef ECORE_ERASE
2 #ifdef __LINUX
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/version.h>
10 #include <linux/module.h>
11 #include <linux/crc32.h>
12 #include <linux/etherdevice.h>
13 
14 #define ECORE_ALIGN(x, a) ALIGN(x, a)
15 #endif
16 
17 /* Always define ECORE_OOO for VBD */
18 #define ECORE_OOO
19 
20 #include "bcmtype.h"
21 #include "utils.h"
22 #include "lm5710.h"
23 #include "ecore_sp_verbs.h"
24 #include "command.h"
25 #include "debug.h"
26 #include "ecore_common.h"
27 
28 /************************ Debug print macros **********************************/
29 #if !defined(UEFI) && defined(DBG)
30 #define ECORE_MSG(pdev, m, ...) \
31 	DbgMessage(pdev, WARNi, m, ##__VA_ARGS__)
32 #else
33 #define ECORE_MSG
34 #endif
35 
36 /************************ Error prints ****************************************/
37 #if !defined(UEFI) && defined(DBG)
38 #define ECORE_ERR(str, ...) DbgMessage(pdev, FATAL, str, ##__VA_ARGS__)
39 #else
40 #define ECORE_ERR
41 #endif
42 
43 
44 /***********************  ECORE WRAPPER MACROS ********************************/
45 
46 #define ECORE_RET_PENDING(pending_bit, pending) \
47 	(ECORE_TEST_BIT(pending_bit, pending) ? ECORE_PENDING : ECORE_SUCCESS)
48 
49 #define ECORE_ZALLOC(_size, _flags, _pdev) mm_rt_zalloc_mem(_pdev, _size)
50 #define ECORE_CALLOC(_len, _size, _flags, _pdev) mm_rt_zalloc_mem(_pdev, _len * _size)
51 #define ECORE_FREE(_pdev, _buf, _size) mm_rt_free_mem(_pdev, _buf, _size, 0)
52 
53 /*
54  *  Ecore implementation of set/get flag
55  *  (differs from VBD set_flags, get_flags)
56  */
57 #define ECORE_SET_FLAG(value, mask, flag) \
58 	do {\
59 		(value) &= ~(mask);\
60 		(value) |= ((flag) << (mask##_SHIFT));\
61 	} while (0)
62 
63 #define ECORE_GET_FLAG(value, mask) \
64 	(((value) &= (mask)) >> (mask##_SHIFT))
65 
66 #define ecore_sp_post(_pdev, _cmd , _cid, _data, _con_type) \
67 	lm_sq_post(_pdev, _cid, (u8)(_cmd), CMD_PRIORITY_NORMAL, _con_type, \
68 	_data)
69 
70 #define ECORE_SET_CTX_VALIDATION(_pdev, _cxt, _cid) \
71 	lm_set_cdu_validation_data(_pdev, _cid, FALSE) /* context? type? */
72 /************************ TODO for LM people!!! *******************************/
73 #define ECORE_TODO_UPDATE_COALESCE_SB_INDEX(a1, a2, a3, a4, a5)
74 #define ECORE_TODO_LINK_REPORT(pdev)
75 #define ECORE_TODO_FW_COMMAND(_pdev, _drv_msg_code, _val) (-1)
76 
77 /************************ Lists ***********************************************/
78 #define ECORE_LIST_FOR_EACH_ENTRY(pos, _head, _link, cast) \
79 	for (pos = (cast *)d_list_peek_head(_head); \
80 	     pos; \
81 	     pos = (cast *)d_list_next_entry(&pos->_link))
82 
83 /**
84  * ECORE_LIST_FOR_EACH_ENTRY_SAFE - iterate over list of given type
85  * @pos:        the type * to use as a loop cursor.
86  * @n:          another type * to use as temporary storage
87  * @head:       the head for your list.
88  * @member:     the name of the list_struct within the struct.
89  *
90  * iterate over list of given type safe against removal of list entry
91  */
92 #define ECORE_LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, member, cast)   \
93 	 for (pos = (cast *)d_list_peek_head(head), \
94 	      n = (pos) ? (cast *)d_list_next_entry(&pos->member) : NULL; \
95 	      pos != NULL;  \
96 	      pos = (cast *)n, \
97 	      n = (pos) ? (cast *)d_list_next_entry(&pos->member) : NULL)
98 
99 #define ECORE_LIST_IS_LAST(_link, _list)                (_link == (_list)->tail)
100 
101 #define ECORE_LIST_IS_EMPTY(head)                       \
102 	d_list_is_empty(head)
103 
104 #define ECORE_LIST_FIRST_ENTRY(head, cast, link)	\
105 	(cast *)d_list_peek_head(head)
106 
107 #define ECORE_LIST_NEXT(pos, link, cast)	\
108 	(cast *)d_list_next_entry(&((pos)->link))
109 
110 #define ECORE_LIST_INIT(head)				\
111 do { \
112 	d_list_clear(head); \
113 } while (0)
114 
115 #define ECORE_LIST_PUSH_TAIL(link, head)		\
116 do { \
117 	d_list_push_tail(head, link); \
118 } while (0)
119 
120 #define ECORE_LIST_PUSH_HEAD(link, head)		\
121 do { \
122 	d_list_push_head(head, link); \
123 } while (0)
124 
125 #define ECORE_LIST_REMOVE_ENTRY(link, head)		\
126 do { \
127 	d_list_remove_entry(head, link); \
128 } while (0)
129 
130 #define ECORE_LIST_SPLICE_INIT(new_head, head) \
131 do { \
132 	d_list_add_head(head, new_head); \
133 	d_list_clear(new_head); \
134 } while (0)
135 
136 static __inline u32_t ecore_crc32_le(u32_t seed, u8_t *mac, u32_t len)
137 {
138 	u32_t packet_buf[2] = {0};
139 
140 	memcpy(((u8_t *)(&packet_buf[0]))+2, &mac[0], 2);
141 	memcpy(&packet_buf[1], &mac[2], 4);
142 	return SWAP_BYTES32(calc_crc32((u8_t *)packet_buf, 8, seed, 0));
143 }
144 
145 /************************ Per compilation target ******************************/
146 #ifdef __LINUX
147 
148 #define ECORE_UNLIKELY	unlikely
149 #define ECORE_LIKELY	likely
150 
151 #define ecore_atomic_read		mm_atomic_read
152 #define ecore_atomic_cmpxchg		mm_atomic_cmpxchg
153 #define ecore_atomic_set(a, v)		mm_atomic_set((u32_t *)(a), v)
154 #define smp_mb__before_atomic() mm_barrier()
155 #define smp_mb__after_atomic()  mm_barrier()
156 
157 /* Other */
158 #define ECORE_IS_VALID_ETHER_ADDR(_mac)               is_valid_ether_addr(_mac)
159 #define ECORE_SET_WAIT_COUNT(_cnt)
160 #define ECORE_SET_WAIT_DELAY_US(_cnt, _delay_us)
161 
162 /* Mutex related */
163 #define ECORE_MUTEX_INIT(_mutex)	mutex_init(_mutex)
164 #define ECORE_MUTEX_LOCK(_mutex)	mutex_lock(_mutex)
165 #define ECORE_MUTEX_UNLOCK(_mutex)	mutex_unlock(_mutex)
166 
167 #define ECORE_MIGHT_SLEEP() ediag_might_sleep()
168 #define ECORE_TEST_BIT(bit, var)  test_bit(bit, var)
169 #define ECORE_TEST_AND_CLEAR_BIT(bit, var) test_and_clear_bit(bit, var)
170 
171 #else /* ! LINUX */
172 
173 typedef u16 __le16;
174 
175 #define ecore_atomic_read		mm_atomic_read
176 #define ecore_atomic_cmpxchg		mm_atomic_cmpxchg
177 #define ecore_atomic_set(a, val)	mm_atomic_set((u32_t *)(a), val)
178 
179 #define ECORE_UNLIKELY(x)	(x)
180 #define ECORE_LIKELY(x)		(x)
181 #define BUG() DbgBreakMsg("Bug")
182 #define smp_mb()                   mm_barrier()
183 #define smp_mb__before_atomic() mm_barrier()
184 #define smp_mb__after_atomic()  mm_barrier()
185 #define mb()                       mm_barrier()
186 #define wmb()                      mm_barrier()
187 #define mmiowb()		   mm_barrier()
188 
189 #define ECORE_MIGHT_SLEEP() /* IRQL_PASSIVE_CODE() */
190 
191 /* Mutex related */
192 #define ECORE_MUTEX_INIT(_mutex)
193 #define ECORE_MUTEX_LOCK(_mutex)
194 #define ECORE_MUTEX_UNLOCK(_mutex)
195 
196 /* Atomic Bit Manipulation */
197 #define ECORE_TEST_BIT(_bit, _var) \
198 	(mm_atomic_long_read(_var) & (1 << (_bit)))
199 
200 /* Other */
201 #define ECORE_IS_VALID_ETHER_ADDR(_mac)         TRUE
202 #define ECORE_SET_WAIT_DELAY_US(_cnt, _delay_us) \
203 do { \
204 	_delay_us = (_cnt >= 2360) ? 100 : 25000; \
205 } while (0)
206 
207 /*
208  * In VBD We'll wait 10,000 times 100us (1 second) +
209  * 2360 times 25000us (59sec) = total 60 sec
210  * (Winodws only note) the 25000 wait will cause
211  * wait to be without CPU stall (look in win_util.c)
212  */
213 #define ECORE_SET_WAIT_COUNT(_cnt) \
214 do { \
215 	_cnt = 10000 + 2360; \
216 } while (0)
217 
218 static __inline BOOL ECORE_TEST_AND_CLEAR_BIT(int bit, unsigned long *vec)
219 {
220 	BOOL set = ECORE_TEST_BIT(bit, vec);
221 	ECORE_CLEAR_BIT(bit, vec);
222 
223 	return set;
224 }
225 
226 #endif /* END if "per LM target type" */
227 
228 /* Spin lock related */
229 #define ECORE_SPIN_LOCK_INIT(_spin, _pdev)	mm_init_lock(_pdev, _spin)
230 #define ECORE_SPIN_LOCK_BH(_spin)		mm_acquire_lock(_spin)
231 #define ECORE_SPIN_UNLOCK_BH(_spin)		mm_release_lock(_spin)
232 
233 #endif /* not ECORE_ERASE */
234 #if defined(__FreeBSD__) && !defined(NOT_LINUX)
235 #include "bxe.h"
236 #include "ecore_init.h"
237 #elif !defined(EDIAG)
238 #ifdef ECORE_ERASE
239 #include <linux/version.h>
240 #include <linux/module.h>
241 #include <linux/crc32.h>
242 #include <linux/netdevice.h>
243 #include <linux/etherdevice.h>
244 #if (LINUX_VERSION_CODE >= 0x02061b) && !defined(BNX2X_DRIVER_DISK) && !defined(__VMKLNX__) /* BNX2X_UPSTREAM */
245 #include <linux/crc32c.h>
246 #endif
247 #include "bnx2x.h"
248 #include "bnx2x_cmn.h"
249 #include "bnx2x_sp.h"
250 
251 #define ECORE_MAX_EMUL_MULTI		16
252 #endif
253 #endif
254 
255 /**** Exe Queue interfaces ****/
256 
257 /**
258  * ecore_exe_queue_init - init the Exe Queue object
259  *
260  * @o:		pointer to the object
261  * @exe_len:	length
262  * @owner:	pointer to the owner
263  * @validate:	validate function pointer
264  * @optimize:	optimize function pointer
265  * @exec:	execute function pointer
266  * @get:	get function pointer
267  */
268 static INLINE void ecore_exe_queue_init(struct _lm_device_t *pdev,
269 					struct ecore_exe_queue_obj *o,
270 					int exe_len,
271 					union ecore_qable_obj *owner,
272 					exe_q_validate validate,
273 					exe_q_remove remove,
274 					exe_q_optimize optimize,
275 					exe_q_execute exec,
276 					exe_q_get get)
277 {
278 	mm_memset(o, 0, sizeof(*o));
279 
280 	ECORE_LIST_INIT(&o->exe_queue);
281 	ECORE_LIST_INIT(&o->pending_comp);
282 
283 	ECORE_SPIN_LOCK_INIT(&o->lock, pdev);
284 
285 	o->exe_chunk_len = exe_len;
286 	o->owner         = owner;
287 
288 	/* Owner specific callbacks */
289 	o->validate      = validate;
290 	o->remove        = remove;
291 	o->optimize      = optimize;
292 	o->execute       = exec;
293 	o->get           = get;
294 
295 	ECORE_MSG(pdev, "Setup the execution queue with the chunk length of %d\n",
296 		  exe_len);
297 }
298 
299 static INLINE void ecore_exe_queue_free_elem(struct _lm_device_t *pdev,
300 					     struct ecore_exeq_elem *elem)
301 {
302 	ECORE_MSG(pdev, "Deleting an exe_queue element\n");
303 	ECORE_FREE(pdev, elem, sizeof(*elem));
304 }
305 
306 static INLINE int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
307 {
308 	struct ecore_exeq_elem *elem;
309 	int cnt = 0;
310 
311 #ifdef ECORE_ERASE
312 	spin_lock_bh(&o->lock);
313 #endif
314 
315 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
316 				  struct ecore_exeq_elem)
317 		cnt++;
318 
319 #ifdef ECORE_ERASE
320 	spin_unlock_bh(&o->lock);
321 #endif
322 
323 	return cnt;
324 }
325 
326 /**
327  * ecore_exe_queue_add - add a new element to the execution queue
328  *
329  * @pdev:	driver handle
330  * @o:		queue
331  * @cmd:	new command to add
332  * @restore:	true - do not optimize the command
333  *
334  * If the element is optimized or is illegal, frees it.
335  */
336 static INLINE int ecore_exe_queue_add(struct _lm_device_t *pdev,
337 				      struct ecore_exe_queue_obj *o,
338 				      struct ecore_exeq_elem *elem,
339 				      BOOL restore)
340 {
341 	int rc;
342 
343 	ECORE_SPIN_LOCK_BH(&o->lock);
344 
345 	if (!restore) {
346 		/* Try to cancel this element queue */
347 		rc = o->optimize(pdev, o->owner, elem);
348 		if (rc)
349 			goto free_and_exit;
350 
351 		/* Check if this request is ok */
352 		rc = o->validate(pdev, o->owner, elem);
353 		if (rc) {
354 			ECORE_MSG(pdev, "Preamble failed: %d\n", rc);
355 			goto free_and_exit;
356 		}
357 	}
358 
359 	/* If so, add it to the execution queue */
360 	ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
361 
362 	ECORE_SPIN_UNLOCK_BH(&o->lock);
363 
364 	return ECORE_SUCCESS;
365 
366 free_and_exit:
367 	ecore_exe_queue_free_elem(pdev, elem);
368 
369 	ECORE_SPIN_UNLOCK_BH(&o->lock);
370 
371 	return rc;
372 }
373 
374 static INLINE void __ecore_exe_queue_reset_pending(
375 	struct _lm_device_t *pdev,
376 	struct ecore_exe_queue_obj *o)
377 {
378 	struct ecore_exeq_elem *elem;
379 
380 	while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
381 		elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
382 					      struct ecore_exeq_elem,
383 					      link);
384 
385 		ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
386 		ecore_exe_queue_free_elem(pdev, elem);
387 	}
388 }
389 
390 /**
391  * ecore_exe_queue_step - execute one execution chunk atomically
392  *
393  * @pdev:		driver handle
394  * @o:			queue
395  * @ramrod_flags:	flags
396  *
397  * (Should be called while holding the exe_queue->lock).
398  */
399 static INLINE int ecore_exe_queue_step(struct _lm_device_t *pdev,
400 				       struct ecore_exe_queue_obj *o,
401 				       unsigned long *ramrod_flags)
402 {
403 	struct ecore_exeq_elem *elem, spacer;
404 	int cur_len = 0, rc;
405 
406 	mm_memset(&spacer, 0, sizeof(spacer));
407 
408 	/* Next step should not be performed until the current is finished,
409 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
410 	 * properly clear object internals without sending any command to the FW
411 	 * which also implies there won't be any completion to clear the
412 	 * 'pending' list.
413 	 */
414 	if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
415 		if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
416 			ECORE_MSG(pdev, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
417 			__ecore_exe_queue_reset_pending(pdev, o);
418 		} else {
419 			return ECORE_PENDING;
420 		}
421 	}
422 
423 	/* Run through the pending commands list and create a next
424 	 * execution chunk.
425 	 */
426 	while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
427 		elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
428 					      struct ecore_exeq_elem,
429 					      link);
430 		DbgBreakIf(!elem->cmd_len);
431 
432 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
433 			cur_len += elem->cmd_len;
434 			/* Prevent from both lists being empty when moving an
435 			 * element. This will allow the call of
436 			 * ecore_exe_queue_empty() without locking.
437 			 */
438 			ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
439 			mb();
440 			ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
441 			ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
442 			ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
443 		} else
444 			break;
445 	}
446 
447 	/* Sanity check */
448 	if (!cur_len)
449 		return ECORE_SUCCESS;
450 
451 	rc = o->execute(pdev, o->owner, &o->pending_comp, ramrod_flags);
452 	if (rc < 0)
453 		/* In case of an error return the commands back to the queue
454 		 *  and reset the pending_comp.
455 		 */
456 		ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
457 	else if (!rc)
458 		/* If zero is returned, means there are no outstanding pending
459 		 * completions and we may dismiss the pending list.
460 		 */
461 		__ecore_exe_queue_reset_pending(pdev, o);
462 
463 	return rc;
464 }
465 
466 static INLINE BOOL ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
467 {
468 	BOOL empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
469 
470 	/* Don't reorder!!! */
471 	mb();
472 
473 	return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
474 }
475 
476 static INLINE struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(
477 	struct _lm_device_t *pdev)
478 {
479 	ECORE_MSG(pdev, "Allocating a new exe_queue element\n");
480 	return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC,
481 			    pdev);
482 }
483 
484 /************************ raw_obj functions ***********************************/
485 static BOOL ecore_raw_check_pending(struct ecore_raw_obj *o)
486 {
487 	/*
488      * !! converts the value returned by ECORE_TEST_BIT such that it
489      * is guaranteed not to be truncated regardless of BOOL definition.
490 	 *
491 	 * Note we cannot simply define the function's return value type
492      * to match the type returned by ECORE_TEST_BIT, as it varies by
493      * platform/implementation.
494 	 */
495 
496 	return !!ECORE_TEST_BIT(o->state, o->pstate);
497 }
498 
499 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
500 {
501 	smp_mb__before_atomic();
502 	ECORE_CLEAR_BIT(o->state, o->pstate);
503 	smp_mb__after_atomic();
504 }
505 
506 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
507 {
508 	smp_mb__before_atomic();
509 	ECORE_SET_BIT(o->state, o->pstate);
510 	smp_mb__after_atomic();
511 }
512 
513 /**
514  * ecore_state_wait - wait until the given bit(state) is cleared
515  *
516  * @pdev:	device handle
517  * @state:	state which is to be cleared
518  * @state_p:	state buffer
519  *
520  */
521 static INLINE int ecore_state_wait(struct _lm_device_t *pdev, int state,
522 				   unsigned long *pstate)
523 {
524 	/* can take a while if any port is running */
525 	int cnt = 5000;
526 
527 #ifndef ECORE_ERASE
528 	int delay_us = 1000;
529 
530 	/* In VBD We'll wait 10,000 times 100us (1 second) +
531 	* 2360 times 25000us (59sec) = total 60 sec
532 	* (Winodws only note) the 25000 wait will cause wait
533 	* to be without CPU stall (look in win_util.c)
534 	*/
535 	cnt = 10000 + 2360;
536 #endif
537 
538 	if (CHIP_REV_IS_EMUL(pdev))
539 		cnt *= 20;
540 
541 	ECORE_MSG(pdev, "waiting for state to become %d\n", state);
542 
543 	ECORE_MIGHT_SLEEP();
544 	while (cnt--) {
545 		if (!ECORE_TEST_BIT(state, pstate)) {
546 #ifdef ECORE_STOP_ON_ERROR
547 			ECORE_MSG(pdev, "exit  (cnt %d)\n", 5000 - cnt);
548 #endif
549 			return ECORE_SUCCESS;
550 		}
551 
552 #ifndef ECORE_ERASE
553 		/* in case reset is in progress we won't get completion */
554 		if (lm_reset_is_inprogress(pdev))
555 			return 0;
556 
557 		delay_us = (cnt >= 2360) ? 100 : 25000;
558 #endif
559 		mm_wait(pdev, delay_us);
560 
561 		if (pdev->panic)
562 			return ECORE_IO;
563 	}
564 
565 	/* timeout! */
566 	ECORE_ERR("timeout waiting for state %d\n", state);
567 #ifdef ECORE_STOP_ON_ERROR
568 	ecore_panic();
569 #endif
570 
571 	return ECORE_TIMEOUT;
572 }
573 
574 static int ecore_raw_wait(struct _lm_device_t *pdev, struct ecore_raw_obj *raw)
575 {
576 	return ecore_state_wait(pdev, raw->state, raw->pstate);
577 }
578 
579 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
580 /* credit handling callbacks */
581 static BOOL ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
582 {
583 	struct ecore_credit_pool_obj *mp = o->macs_pool;
584 
585 	DbgBreakIf(!mp);
586 
587 	return mp->get_entry(mp, offset);
588 }
589 
590 static BOOL ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
591 {
592 	struct ecore_credit_pool_obj *mp = o->macs_pool;
593 
594 	DbgBreakIf(!mp);
595 
596 	return mp->get(mp, 1);
597 }
598 
599 static BOOL ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int *offset)
600 {
601 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
602 
603 	DbgBreakIf(!vp);
604 
605 	return vp->get_entry(vp, offset);
606 }
607 
608 static BOOL ecore_get_credit_vlan(struct ecore_vlan_mac_obj *o)
609 {
610 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
611 
612 	DbgBreakIf(!vp);
613 
614 	return vp->get(vp, 1);
615 }
616 
617 static BOOL ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
618 {
619 	struct ecore_credit_pool_obj *mp = o->macs_pool;
620 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
621 
622 	if (!mp->get(mp, 1))
623 		return FALSE;
624 
625 	if (!vp->get(vp, 1)) {
626 		mp->put(mp, 1);
627 		return FALSE;
628 	}
629 
630 	return TRUE;
631 }
632 
633 static BOOL ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
634 {
635 	struct ecore_credit_pool_obj *mp = o->macs_pool;
636 
637 	return mp->put_entry(mp, offset);
638 }
639 
640 static BOOL ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
641 {
642 	struct ecore_credit_pool_obj *mp = o->macs_pool;
643 
644 	return mp->put(mp, 1);
645 }
646 
647 static BOOL ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int offset)
648 {
649 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
650 
651 	return vp->put_entry(vp, offset);
652 }
653 
654 static BOOL ecore_put_credit_vlan(struct ecore_vlan_mac_obj *o)
655 {
656 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
657 
658 	return vp->put(vp, 1);
659 }
660 
661 static BOOL ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
662 {
663 	struct ecore_credit_pool_obj *mp = o->macs_pool;
664 	struct ecore_credit_pool_obj *vp = o->vlans_pool;
665 
666 	if (!mp->put(mp, 1))
667 		return FALSE;
668 
669 	if (!vp->put(vp, 1)) {
670 		mp->get(mp, 1);
671 		return FALSE;
672 	}
673 
674 	return TRUE;
675 }
676 
677 /**
678  * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
679  * head list.
680  *
681  * @pdev:	device handle
682  * @o:		vlan_mac object
683  *
684  * @details: Non-blocking implementation; should be called under execution
685  *           queue lock.
686  */
687 static int __ecore_vlan_mac_h_write_trylock(struct _lm_device_t *pdev,
688 					    struct ecore_vlan_mac_obj *o)
689 {
690 	if (o->head_reader) {
691 		ECORE_MSG(pdev, "vlan_mac_lock writer - There are readers; Busy\n");
692 		return ECORE_BUSY;
693 	}
694 
695 	ECORE_MSG(pdev, "vlan_mac_lock writer - Taken\n");
696 	return ECORE_SUCCESS;
697 }
698 
699 /**
700  * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
701  * which wasn't able to run due to a taken lock on vlan mac head list.
702  *
703  * @pdev:	device handle
704  * @o:		vlan_mac object
705  *
706  * @details Should be called under execution queue lock; notice it might release
707  *          and reclaim it during its run.
708  */
709 static void __ecore_vlan_mac_h_exec_pending(struct _lm_device_t *pdev,
710 					    struct ecore_vlan_mac_obj *o)
711 {
712 	int rc;
713 	unsigned long ramrod_flags = o->saved_ramrod_flags;
714 
715 	ECORE_MSG(pdev, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
716 		  ramrod_flags);
717 	o->head_exe_request = FALSE;
718 	o->saved_ramrod_flags = 0;
719 	rc = ecore_exe_queue_step(pdev, &o->exe_queue, &ramrod_flags);
720 	if (rc != ECORE_SUCCESS) {
721 		ECORE_ERR("execution of pending commands failed with rc %d\n",
722 			  rc);
723 #ifdef ECORE_STOP_ON_ERROR
724 		ecore_panic();
725 #endif
726 	}
727 }
728 
729 /**
730  * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
731  * called due to vlan mac head list lock being taken.
732  *
733  * @pdev:		device handle
734  * @o:			vlan_mac object
735  * @ramrod_flags:	ramrod flags of missed execution
736  *
737  * @details Should be called under execution queue lock.
738  */
739 static void __ecore_vlan_mac_h_pend(struct _lm_device_t *pdev,
740 				    struct ecore_vlan_mac_obj *o,
741 				    unsigned long ramrod_flags)
742 {
743 	o->head_exe_request = TRUE;
744 	o->saved_ramrod_flags = ramrod_flags;
745 	ECORE_MSG(pdev, "Placing pending execution with ramrod flags %lu\n",
746 		  ramrod_flags);
747 }
748 
749 /**
750  * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
751  *
752  * @pdev:		device handle
753  * @o:			vlan_mac object
754  *
755  * @details Should be called under execution queue lock. Notice if a pending
756  *          execution exists, it would perform it - possibly releasing and
757  *          reclaiming the execution queue lock.
758  */
759 static void __ecore_vlan_mac_h_write_unlock(struct _lm_device_t *pdev,
760 					    struct ecore_vlan_mac_obj *o)
761 {
762 	/* It's possible a new pending execution was added since this writer
763 	 * executed. If so, execute again. [Ad infinitum]
764 	 */
765 	while(o->head_exe_request) {
766 		ECORE_MSG(pdev, "vlan_mac_lock - writer release encountered a pending request\n");
767 		__ecore_vlan_mac_h_exec_pending(pdev, o);
768 	}
769 }
770 
771 /**
772  * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
773  *
774  * @pdev:		device handle
775  * @o:			vlan_mac object
776  *
777  * @details Notice if a pending execution exists, it would perform it -
778  *          possibly releasing and reclaiming the execution queue lock.
779  */
780 void ecore_vlan_mac_h_write_unlock(struct _lm_device_t *pdev,
781 				   struct ecore_vlan_mac_obj *o)
782 {
783 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
784 	__ecore_vlan_mac_h_write_unlock(pdev, o);
785 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
786 }
787 
788 /**
789  * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
790  *
791  * @pdev:		device handle
792  * @o:			vlan_mac object
793  *
794  * @details Should be called under the execution queue lock. May sleep. May
795  *          release and reclaim execution queue lock during its run.
796  */
797 static int __ecore_vlan_mac_h_read_lock(struct _lm_device_t *pdev,
798 					struct ecore_vlan_mac_obj *o)
799 {
800 	/* If we got here, we're holding lock --> no WRITER exists */
801 	o->head_reader++;
802 	ECORE_MSG(pdev, "vlan_mac_lock - locked reader - number %d\n",
803 		  o->head_reader);
804 
805 	return ECORE_SUCCESS;
806 }
807 
808 /**
809  * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
810  *
811  * @pdev:		device handle
812  * @o:			vlan_mac object
813  *
814  * @details May sleep. Claims and releases execution queue lock during its run.
815  */
816 int ecore_vlan_mac_h_read_lock(struct _lm_device_t *pdev,
817 			       struct ecore_vlan_mac_obj *o)
818 {
819 	int rc;
820 
821 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
822 	rc = __ecore_vlan_mac_h_read_lock(pdev, o);
823 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
824 
825 	return rc;
826 }
827 
828 /**
829  * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
830  *
831  * @pdev:		device handle
832  * @o:			vlan_mac object
833  *
834  * @details Should be called under execution queue lock. Notice if a pending
835  *          execution exists, it would be performed if this was the last
836  *          reader. possibly releasing and reclaiming the execution queue lock.
837  */
838 static void __ecore_vlan_mac_h_read_unlock(struct _lm_device_t *pdev,
839 					  struct ecore_vlan_mac_obj *o)
840 {
841 	if (!o->head_reader) {
842 		ECORE_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
843 #ifdef ECORE_STOP_ON_ERROR
844 		ecore_panic();
845 #endif
846 	} else {
847 		o->head_reader--;
848 		ECORE_MSG(pdev, "vlan_mac_lock - decreased readers to %d\n",
849 			  o->head_reader);
850 	}
851 
852 	/* It's possible a new pending execution was added, and that this reader
853 	 * was last - if so we need to execute the command.
854 	 */
855 	if (!o->head_reader && o->head_exe_request) {
856 		ECORE_MSG(pdev, "vlan_mac_lock - reader release encountered a pending request\n");
857 
858 		/* Writer release will do the trick */
859 		__ecore_vlan_mac_h_write_unlock(pdev, o);
860 	}
861 }
862 
863 /**
864  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
865  *
866  * @pdev:		device handle
867  * @o:			vlan_mac object
868  *
869  * @details Notice if a pending execution exists, it would be performed if this
870  *          was the last reader. Claims and releases the execution queue lock
871  *          during its run.
872  */
873 void ecore_vlan_mac_h_read_unlock(struct _lm_device_t *pdev,
874 				  struct ecore_vlan_mac_obj *o)
875 {
876 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
877 	__ecore_vlan_mac_h_read_unlock(pdev, o);
878 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
879 }
880 
881 /**
882  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
883  *
884  * @pdev:		device handle
885  * @o:			vlan_mac object
886  * @n:			number of elements to get
887  * @base:		base address for element placement
888  * @stride:		stride between elements (in bytes)
889  */
890 static int ecore_get_n_elements(struct _lm_device_t *pdev, struct ecore_vlan_mac_obj *o,
891 				 int n, u8 *base, u8 stride, u8 size)
892 {
893 	struct ecore_vlan_mac_registry_elem *pos;
894 	u8 *next = base;
895 	int counter = 0;
896 	int read_lock;
897 
898 	ECORE_MSG(pdev, "get_n_elements - taking vlan_mac_lock (reader)\n");
899 	read_lock = ecore_vlan_mac_h_read_lock(pdev, o);
900 	if (read_lock != ECORE_SUCCESS)
901 		ECORE_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
902 
903 	/* traverse list */
904 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
905 				  struct ecore_vlan_mac_registry_elem) {
906 		if (counter < n) {
907 			mm_memcpy(next, &pos->u, size);
908 			counter++;
909 			ECORE_MSG(pdev, "copied element number %d to address %p element was:\n",
910 				  counter, next);
911 			next += stride + size;
912 		}
913 	}
914 
915 	if (read_lock == ECORE_SUCCESS) {
916 		ECORE_MSG(pdev, "get_n_elements - releasing vlan_mac_lock (reader)\n");
917 		ecore_vlan_mac_h_read_unlock(pdev, o);
918 	}
919 
920 	return counter * ETH_ALEN;
921 }
922 
923 /* check_add() callbacks */
924 static int ecore_check_mac_add(struct _lm_device_t *pdev,
925 			       struct ecore_vlan_mac_obj *o,
926 			       union ecore_classification_ramrod_data *data)
927 {
928 	struct ecore_vlan_mac_registry_elem *pos;
929 
930 	ECORE_MSG(pdev, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
931 
932 	if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
933 		return ECORE_INVAL;
934 
935 	/* Check if a requested MAC already exists */
936 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
937 				  struct ecore_vlan_mac_registry_elem)
938 		if (mm_memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
939 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
940 			return ECORE_EXISTS;
941 
942 	return ECORE_SUCCESS;
943 }
944 
945 static int ecore_check_vlan_add(struct _lm_device_t *pdev,
946 				struct ecore_vlan_mac_obj *o,
947 				union ecore_classification_ramrod_data *data)
948 {
949 	struct ecore_vlan_mac_registry_elem *pos;
950 
951 	ECORE_MSG(pdev, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
952 
953 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
954 				  struct ecore_vlan_mac_registry_elem)
955 		if (data->vlan.vlan == pos->u.vlan.vlan)
956 			return ECORE_EXISTS;
957 
958 	return ECORE_SUCCESS;
959 }
960 
961 static int ecore_check_vlan_mac_add(struct _lm_device_t *pdev,
962 				    struct ecore_vlan_mac_obj *o,
963 				   union ecore_classification_ramrod_data *data)
964 {
965 	struct ecore_vlan_mac_registry_elem *pos;
966 
967 	ECORE_MSG(pdev, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for ADD command\n",
968 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
969 
970 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
971 				  struct ecore_vlan_mac_registry_elem)
972 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
973 		    (mm_memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
974 				  ETH_ALEN)) &&
975 		    (data->vlan_mac.is_inner_mac ==
976 		     pos->u.vlan_mac.is_inner_mac))
977 			return ECORE_EXISTS;
978 
979 	return ECORE_SUCCESS;
980 }
981 
982 /* check_del() callbacks */
983 static struct ecore_vlan_mac_registry_elem *
984 	ecore_check_mac_del(struct _lm_device_t *pdev,
985 			    struct ecore_vlan_mac_obj *o,
986 			    union ecore_classification_ramrod_data *data)
987 {
988 	struct ecore_vlan_mac_registry_elem *pos;
989 
990 	ECORE_MSG(pdev, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
991 
992 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
993 				  struct ecore_vlan_mac_registry_elem)
994 		if ((mm_memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
995 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
996 			return pos;
997 
998 	return NULL;
999 }
1000 
1001 static struct ecore_vlan_mac_registry_elem *
1002 	ecore_check_vlan_del(struct _lm_device_t *pdev,
1003 			     struct ecore_vlan_mac_obj *o,
1004 			     union ecore_classification_ramrod_data *data)
1005 {
1006 	struct ecore_vlan_mac_registry_elem *pos;
1007 
1008 	ECORE_MSG(pdev, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
1009 
1010 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
1011 				  struct ecore_vlan_mac_registry_elem)
1012 		if (data->vlan.vlan == pos->u.vlan.vlan)
1013 			return pos;
1014 
1015 	return NULL;
1016 }
1017 
1018 static struct ecore_vlan_mac_registry_elem *
1019 	ecore_check_vlan_mac_del(struct _lm_device_t *pdev,
1020 				 struct ecore_vlan_mac_obj *o,
1021 				 union ecore_classification_ramrod_data *data)
1022 {
1023 	struct ecore_vlan_mac_registry_elem *pos;
1024 
1025 	ECORE_MSG(pdev, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for DEL command\n",
1026 		  data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
1027 
1028 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
1029 				  struct ecore_vlan_mac_registry_elem)
1030 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
1031 		    (mm_memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
1032 			     ETH_ALEN)) &&
1033 		    (data->vlan_mac.is_inner_mac ==
1034 		     pos->u.vlan_mac.is_inner_mac))
1035 			return pos;
1036 
1037 	return NULL;
1038 }
1039 
1040 /* check_move() callback */
1041 static BOOL ecore_check_move(struct _lm_device_t *pdev,
1042 			     struct ecore_vlan_mac_obj *src_o,
1043 			     struct ecore_vlan_mac_obj *dst_o,
1044 			     union ecore_classification_ramrod_data *data)
1045 {
1046 	struct ecore_vlan_mac_registry_elem *pos;
1047 	int rc;
1048 
1049 	/* Check if we can delete the requested configuration from the first
1050 	 * object.
1051 	 */
1052 	pos = src_o->check_del(pdev, src_o, data);
1053 
1054 	/*  check if configuration can be added */
1055 	rc = dst_o->check_add(pdev, dst_o, data);
1056 
1057 	/* If this classification can not be added (is already set)
1058 	 * or can't be deleted - return an error.
1059 	 */
1060 	if (rc || !pos)
1061 		return FALSE;
1062 
1063 	return TRUE;
1064 }
1065 
1066 static BOOL ecore_check_move_always_err(
1067 	struct _lm_device_t *pdev,
1068 	struct ecore_vlan_mac_obj *src_o,
1069 	struct ecore_vlan_mac_obj *dst_o,
1070 	union ecore_classification_ramrod_data *data)
1071 {
1072 	return FALSE;
1073 }
1074 
1075 static INLINE u8 ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj *o)
1076 {
1077 	struct ecore_raw_obj *raw = &o->raw;
1078 	u8 rx_tx_flag = 0;
1079 
1080 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
1081 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
1082 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
1083 
1084 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
1085 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
1086 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
1087 
1088 	return rx_tx_flag;
1089 }
1090 
1091 void ecore_set_mac_in_nig(struct _lm_device_t *pdev,
1092 			  BOOL add, unsigned char *dev_addr, int index)
1093 {
1094 	u32 wb_data[2];
1095 	u32 reg_offset = PORT_ID(pdev) ? NIG_REG_LLH1_FUNC_MEM :
1096 			 NIG_REG_LLH0_FUNC_MEM;
1097 
1098 	if (!IS_MF_SI_MODE(pdev) && !IS_MF_AFEX(pdev))
1099 		return;
1100 
1101 	if (index > ECORE_LLH_CAM_MAX_PF_LINE)
1102 		return;
1103 
1104 	ECORE_MSG(pdev, "Going to %s LLH configuration at entry %d\n",
1105 		  (add ? "ADD" : "DELETE"), index);
1106 
1107 	if (add) {
1108 		/* LLH_FUNC_MEM is a u64 WB register */
1109 		reg_offset += 8*index;
1110 
1111 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
1112 			      (dev_addr[4] <<  8) |  dev_addr[5]);
1113 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
1114 
1115 		REG_WR_DMAE_LEN(pdev, reg_offset, wb_data, 2);
1116 	}
1117 
1118 	REG_WR(pdev, (PORT_ID(pdev) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
1119 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
1120 }
1121 
1122 /**
1123  * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
1124  *
1125  * @pdev:	device handle
1126  * @o:		queue for which we want to configure this rule
1127  * @add:	if TRUE the command is an ADD command, DEL otherwise
1128  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
1129  * @hdr:	pointer to a header to setup
1130  *
1131  */
1132 static INLINE void ecore_vlan_mac_set_cmd_hdr_e2(struct _lm_device_t *pdev,
1133 	struct ecore_vlan_mac_obj *o, BOOL add, int opcode,
1134 	struct eth_classify_cmd_header *hdr)
1135 {
1136 	struct ecore_raw_obj *raw = &o->raw;
1137 
1138 	hdr->client_id = raw->cl_id;
1139 	hdr->func_id = raw->func_id;
1140 
1141 	/* Rx or/and Tx (internal switching) configuration ? */
1142 	hdr->cmd_general_data |=
1143 		ecore_vlan_mac_get_rx_tx_flag(o);
1144 
1145 	if (add)
1146 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
1147 
1148 	hdr->cmd_general_data |=
1149 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
1150 }
1151 
1152 /**
1153  * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
1154  *
1155  * @cid:	connection id
1156  * @type:	ECORE_FILTER_XXX_PENDING
1157  * @hdr:	pointer to header to setup
1158  * @rule_cnt:
1159  *
1160  * currently we always configure one rule and echo field to contain a CID and an
1161  * opcode type.
1162  */
1163 static INLINE void ecore_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
1164 				struct eth_classify_header *hdr, int rule_cnt)
1165 {
1166 	hdr->echo = mm_cpu_to_le32((cid & ECORE_SWCID_MASK) |
1167 				(type << ECORE_SWCID_SHIFT));
1168 	hdr->rule_cnt = (u8)rule_cnt;
1169 }
1170 
1171 /* hw_config() callbacks */
1172 static void ecore_set_one_mac_e2(struct _lm_device_t *pdev,
1173 				 struct ecore_vlan_mac_obj *o,
1174 				 struct ecore_exeq_elem *elem, int rule_idx,
1175 				 int cam_offset)
1176 {
1177 	struct ecore_raw_obj *raw = &o->raw;
1178 	struct eth_classify_rules_ramrod_data *data =
1179 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1180 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
1181 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1182 	BOOL add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1183 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
1184 	u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
1185 
1186 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
1187 	 * relevant. In addition, current implementation is tuned for a
1188 	 * single ETH MAC.
1189 	 *
1190 	 * When multiple unicast ETH MACs PF configuration in switch
1191 	 * independent mode is required (NetQ, multiple netdev MACs,
1192 	 * etc.), consider better utilisation of 8 per function MAC
1193 	 * entries in the LLH register. There is also
1194 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
1195 	 * total number of CAM entries to 16.
1196 	 *
1197 	 * Currently we won't configure NIG for MACs other than a primary ETH
1198 	 * MAC and iSCSI L2 MAC.
1199 	 *
1200 	 * If this MAC is moving from one Queue to another, no need to change
1201 	 * NIG configuration.
1202 	 */
1203 	if (cmd != ECORE_VLAN_MAC_MOVE) {
1204 		if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
1205 			ecore_set_mac_in_nig(pdev, add, mac,
1206 					     ECORE_LLH_CAM_ISCSI_ETH_LINE);
1207 		else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
1208 			ecore_set_mac_in_nig(pdev, add, mac,
1209 					     ECORE_LLH_CAM_ETH_LINE);
1210 	}
1211 
1212 	/* Reset the ramrod data buffer for the first rule */
1213 	if (rule_idx == 0)
1214 		mm_memset(data, 0, sizeof(*data));
1215 
1216 	/* Setup a command header */
1217 	ecore_vlan_mac_set_cmd_hdr_e2(pdev, o, add, CLASSIFY_RULE_OPCODE_MAC,
1218 				      &rule_entry->mac.header);
1219 
1220 	ECORE_MSG(pdev, "About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d\n",
1221 		  (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id);
1222 
1223 	/* Set a MAC itself */
1224 	ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1225 			      &rule_entry->mac.mac_mid,
1226 			      &rule_entry->mac.mac_lsb, mac);
1227 	rule_entry->mac.inner_mac =
1228 		mm_cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
1229 
1230 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1231 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1232 		rule_entry++;
1233 		rule_cnt++;
1234 
1235 		/* Setup ramrod data */
1236 		ecore_vlan_mac_set_cmd_hdr_e2(pdev,
1237 					elem->cmd_data.vlan_mac.target_obj,
1238 					      TRUE, CLASSIFY_RULE_OPCODE_MAC,
1239 					      &rule_entry->mac.header);
1240 
1241 		/* Set a MAC itself */
1242 		ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1243 				      &rule_entry->mac.mac_mid,
1244 				      &rule_entry->mac.mac_lsb, mac);
1245 		rule_entry->mac.inner_mac =
1246 			mm_cpu_to_le16(elem->cmd_data.vlan_mac.
1247 				       u.mac.is_inner_mac);
1248 	}
1249 
1250 	/* Set the ramrod data header */
1251 	/* TODO: take this to the higher level in order to prevent multiple
1252 		 writing */
1253 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1254 					rule_cnt);
1255 }
1256 
1257 /**
1258  * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
1259  *
1260  * @pdev:	device handle
1261  * @o:		queue
1262  * @type:
1263  * @cam_offset:	offset in cam memory
1264  * @hdr:	pointer to a header to setup
1265  *
1266  * E1/E1H
1267  */
1268 static INLINE void ecore_vlan_mac_set_rdata_hdr_e1x(struct _lm_device_t *pdev,
1269 	struct ecore_vlan_mac_obj *o, int type, int cam_offset,
1270 	struct mac_configuration_hdr *hdr)
1271 {
1272 	struct ecore_raw_obj *r = &o->raw;
1273 
1274 	hdr->length = 1;
1275 	hdr->offset = (u8)cam_offset;
1276 	hdr->client_id = mm_cpu_to_le16(0xff);
1277 	hdr->echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
1278 				(type << ECORE_SWCID_SHIFT));
1279 }
1280 
1281 static INLINE void ecore_vlan_mac_set_cfg_entry_e1x(struct _lm_device_t *pdev,
1282 	struct ecore_vlan_mac_obj *o, BOOL add, int opcode, u8 *mac,
1283 	u16 vlan_id, struct mac_configuration_entry *cfg_entry)
1284 {
1285 	struct ecore_raw_obj *r = &o->raw;
1286 	u32 cl_bit_vec = (1 << r->cl_id);
1287 
1288 	cfg_entry->clients_bit_vector = mm_cpu_to_le32(cl_bit_vec);
1289 	cfg_entry->pf_id = r->func_id;
1290 	cfg_entry->vlan_id = mm_cpu_to_le16(vlan_id);
1291 
1292 	if (add) {
1293 		ECORE_SET_FLAG(cfg_entry->flags,
1294 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1295 			       T_ETH_MAC_COMMAND_SET);
1296 		ECORE_SET_FLAG(cfg_entry->flags,
1297 			       MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
1298 			       opcode);
1299 
1300 		/* Set a MAC in a ramrod data */
1301 		ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1302 				      &cfg_entry->middle_mac_addr,
1303 				      &cfg_entry->lsb_mac_addr, mac);
1304 	} else
1305 		ECORE_SET_FLAG(cfg_entry->flags,
1306 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1307 			       T_ETH_MAC_COMMAND_INVALIDATE);
1308 }
1309 
1310 static INLINE void ecore_vlan_mac_set_rdata_e1x(struct _lm_device_t *pdev,
1311 	struct ecore_vlan_mac_obj *o, int type, int cam_offset, BOOL add,
1312 	u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1313 {
1314 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1315 	struct ecore_raw_obj *raw = &o->raw;
1316 
1317 	ecore_vlan_mac_set_rdata_hdr_e1x(pdev, o, type, cam_offset,
1318 					 &config->hdr);
1319 	ecore_vlan_mac_set_cfg_entry_e1x(pdev, o, add, opcode, mac, vlan_id,
1320 					 cfg_entry);
1321 
1322 	ECORE_MSG(pdev, "%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d\n",
1323 		  (add ? "setting" : "clearing"),
1324 		  mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id, cam_offset);
1325 }
1326 
1327 /**
1328  * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
1329  *
1330  * @pdev:	device handle
1331  * @o:		ecore_vlan_mac_obj
1332  * @elem:	ecore_exeq_elem
1333  * @rule_idx:	rule_idx
1334  * @cam_offset: cam_offset
1335  */
1336 static void ecore_set_one_mac_e1x(struct _lm_device_t *pdev,
1337 				  struct ecore_vlan_mac_obj *o,
1338 				  struct ecore_exeq_elem *elem, int rule_idx,
1339 				  int cam_offset)
1340 {
1341 	struct ecore_raw_obj *raw = &o->raw;
1342 	struct mac_configuration_cmd *config =
1343 		(struct mac_configuration_cmd *)(raw->rdata);
1344 	/* 57710 and 57711 do not support MOVE command,
1345 	 * so it's either ADD or DEL
1346 	 */
1347 	BOOL add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1348 		TRUE : FALSE;
1349 
1350 	/* Reset the ramrod data buffer */
1351 	mm_memset(config, 0, sizeof(*config));
1352 
1353 	ecore_vlan_mac_set_rdata_e1x(pdev, o, raw->state,
1354 				     cam_offset, add,
1355 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1356 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1357 }
1358 
1359 static void ecore_set_one_vlan_e2(struct _lm_device_t *pdev,
1360 				  struct ecore_vlan_mac_obj *o,
1361 				  struct ecore_exeq_elem *elem, int rule_idx,
1362 				  int cam_offset)
1363 {
1364 	struct ecore_raw_obj *raw = &o->raw;
1365 	struct eth_classify_rules_ramrod_data *data =
1366 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1367 	int rule_cnt = rule_idx + 1;
1368 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1369 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1370 	BOOL add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1371 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1372 
1373 	/* Reset the ramrod data buffer for the first rule */
1374 	if (rule_idx == 0)
1375 		mm_memset(data, 0, sizeof(*data));
1376 
1377 	/* Set a rule header */
1378 	ecore_vlan_mac_set_cmd_hdr_e2(pdev, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1379 				      &rule_entry->vlan.header);
1380 
1381 	ECORE_MSG(pdev, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1382 		  vlan);
1383 
1384 	/* Set a VLAN itself */
1385 	rule_entry->vlan.vlan = mm_cpu_to_le16(vlan);
1386 
1387 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1388 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1389 		rule_entry++;
1390 		rule_cnt++;
1391 
1392 		/* Setup ramrod data */
1393 		ecore_vlan_mac_set_cmd_hdr_e2(pdev,
1394 					elem->cmd_data.vlan_mac.target_obj,
1395 					      TRUE, CLASSIFY_RULE_OPCODE_VLAN,
1396 					      &rule_entry->vlan.header);
1397 
1398 		/* Set a VLAN itself */
1399 		rule_entry->vlan.vlan = mm_cpu_to_le16(vlan);
1400 	}
1401 
1402 	/* Set the ramrod data header */
1403 	/* TODO: take this to the higher level in order to prevent multiple
1404 		 writing */
1405 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1406 					rule_cnt);
1407 }
1408 
1409 static void ecore_set_one_vlan_mac_e2(struct _lm_device_t *pdev,
1410 				      struct ecore_vlan_mac_obj *o,
1411 				      struct ecore_exeq_elem *elem,
1412 				      int rule_idx, int cam_offset)
1413 {
1414 	struct ecore_raw_obj *raw = &o->raw;
1415 	struct eth_classify_rules_ramrod_data *data =
1416 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1417 	int rule_cnt = rule_idx + 1;
1418 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1419 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1420 	BOOL add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1421 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1422 	u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1423 
1424 	/* Reset the ramrod data buffer for the first rule */
1425 	if (rule_idx == 0)
1426 		mm_memset(data, 0, sizeof(*data));
1427 
1428 	/* Set a rule header */
1429 	ecore_vlan_mac_set_cmd_hdr_e2(pdev, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1430 				      &rule_entry->pair.header);
1431 
1432 	/* Set VLAN and MAC themselves */
1433 	rule_entry->pair.vlan = mm_cpu_to_le16(vlan);
1434 	ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1435 			      &rule_entry->pair.mac_mid,
1436 			      &rule_entry->pair.mac_lsb, mac);
1437 	rule_entry->pair.inner_mac =
1438 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1439 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1440 	if (cmd == ECORE_VLAN_MAC_MOVE) {
1441 		rule_entry++;
1442 		rule_cnt++;
1443 
1444 		/* Setup ramrod data */
1445 		ecore_vlan_mac_set_cmd_hdr_e2(pdev,
1446 					elem->cmd_data.vlan_mac.target_obj,
1447 					      TRUE, CLASSIFY_RULE_OPCODE_PAIR,
1448 					      &rule_entry->pair.header);
1449 
1450 		/* Set a VLAN itself */
1451 		rule_entry->pair.vlan = mm_cpu_to_le16(vlan);
1452 		ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1453 				      &rule_entry->pair.mac_mid,
1454 				      &rule_entry->pair.mac_lsb, mac);
1455 		rule_entry->pair.inner_mac =
1456 			elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1457 	}
1458 
1459 	/* Set the ramrod data header */
1460 	/* TODO: take this to the higher level in order to prevent multiple
1461 		 writing */
1462 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1463 					rule_cnt);
1464 }
1465 
1466 /**
1467  * ecore_set_one_vlan_mac_e1h -
1468  *
1469  * @pdev:	device handle
1470  * @o:		ecore_vlan_mac_obj
1471  * @elem:	ecore_exeq_elem
1472  * @rule_idx:	rule_idx
1473  * @cam_offset:	cam_offset
1474  */
1475 static void ecore_set_one_vlan_mac_e1h(struct _lm_device_t *pdev,
1476 				       struct ecore_vlan_mac_obj *o,
1477 				       struct ecore_exeq_elem *elem,
1478 				       int rule_idx, int cam_offset)
1479 {
1480 	struct ecore_raw_obj *raw = &o->raw;
1481 	struct mac_configuration_cmd *config =
1482 		(struct mac_configuration_cmd *)(raw->rdata);
1483 	/* 57710 and 57711 do not support MOVE command,
1484 	 * so it's either ADD or DEL
1485 	 */
1486 	BOOL add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1487 		TRUE : FALSE;
1488 
1489 	/* Reset the ramrod data buffer */
1490 	mm_memset(config, 0, sizeof(*config));
1491 
1492 	ecore_vlan_mac_set_rdata_e1x(pdev, o, ECORE_FILTER_VLAN_MAC_PENDING,
1493 				     cam_offset, add,
1494 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1495 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1496 				     ETH_VLAN_FILTER_CLASSIFY, config);
1497 }
1498 
1499 #define list_next_entry(pos, member) \
1500 	list_entry((pos)->member.next, typeof(*(pos)), member)
1501 
1502 /**
1503  * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1504  *
1505  * @pdev:	device handle
1506  * @p:		command parameters
1507  * @ppos:	pointer to the cookie
1508  *
1509  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1510  * previously configured elements list.
1511  *
1512  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1513  * into an account
1514  *
1515  * pointer to the cookie  - that should be given back in the next call to make
1516  * function handle the next element. If *ppos is set to NULL it will restart the
1517  * iterator. If returned *ppos == NULL this means that the last element has been
1518  * handled.
1519  *
1520  */
1521 static int ecore_vlan_mac_restore(struct _lm_device_t *pdev,
1522 			   struct ecore_vlan_mac_ramrod_params *p,
1523 			   struct ecore_vlan_mac_registry_elem **ppos)
1524 {
1525 	struct ecore_vlan_mac_registry_elem *pos;
1526 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1527 
1528 	/* If list is empty - there is nothing to do here */
1529 	if (ECORE_LIST_IS_EMPTY(&o->head)) {
1530 		*ppos = NULL;
1531 		return 0;
1532 	}
1533 
1534 	/* make a step... */
1535 	if (*ppos == NULL)
1536 		*ppos = ECORE_LIST_FIRST_ENTRY(&o->head,
1537 					    struct ecore_vlan_mac_registry_elem,
1538 					       link);
1539 	else
1540 		*ppos = ECORE_LIST_NEXT(*ppos, link,
1541 					struct ecore_vlan_mac_registry_elem);
1542 
1543 	pos = *ppos;
1544 
1545 	/* If it's the last step - return NULL */
1546 	if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1547 		*ppos = NULL;
1548 
1549 	/* Prepare a 'user_req' */
1550 	mm_memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1551 
1552 	/* Set the command */
1553 	p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1554 
1555 	/* Set vlan_mac_flags */
1556 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1557 
1558 	/* Set a restore bit */
1559 	ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1560 
1561 	return ecore_config_vlan_mac(pdev, p);
1562 }
1563 
1564 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1565  * pointer to an element with a specific criteria and NULL if such an element
1566  * hasn't been found.
1567  */
1568 static struct ecore_exeq_elem *ecore_exeq_get_mac(
1569 	struct ecore_exe_queue_obj *o,
1570 	struct ecore_exeq_elem *elem)
1571 {
1572 	struct ecore_exeq_elem *pos;
1573 	struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1574 
1575 	/* Check pending for execution commands */
1576 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1577 				  struct ecore_exeq_elem)
1578 		if (mm_memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1579 			      sizeof(*data)) &&
1580 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1581 			return pos;
1582 
1583 	return NULL;
1584 }
1585 
1586 static struct ecore_exeq_elem *ecore_exeq_get_vlan(
1587 	struct ecore_exe_queue_obj *o,
1588 	struct ecore_exeq_elem *elem)
1589 {
1590 	struct ecore_exeq_elem *pos;
1591 	struct ecore_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1592 
1593 	/* Check pending for execution commands */
1594 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1595 				  struct ecore_exeq_elem)
1596 		if (mm_memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1597 			      sizeof(*data)) &&
1598 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1599 			return pos;
1600 
1601 	return NULL;
1602 }
1603 
1604 static struct ecore_exeq_elem *ecore_exeq_get_vlan_mac(
1605 	struct ecore_exe_queue_obj *o,
1606 	struct ecore_exeq_elem *elem)
1607 {
1608 	struct ecore_exeq_elem *pos;
1609 	struct ecore_vlan_mac_ramrod_data *data =
1610 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1611 
1612 	/* Check pending for execution commands */
1613 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1614 				  struct ecore_exeq_elem)
1615 		if (mm_memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1616 			      sizeof(*data)) &&
1617 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1618 			return pos;
1619 
1620 	return NULL;
1621 }
1622 
1623 /**
1624  * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1625  *
1626  * @pdev:	device handle
1627  * @qo:		ecore_qable_obj
1628  * @elem:	ecore_exeq_elem
1629  *
1630  * Checks that the requested configuration can be added. If yes and if
1631  * requested, consume CAM credit.
1632  *
1633  * The 'validate' is run after the 'optimize'.
1634  *
1635  */
1636 static INLINE int ecore_validate_vlan_mac_add(struct _lm_device_t *pdev,
1637 					      union ecore_qable_obj *qo,
1638 					      struct ecore_exeq_elem *elem)
1639 {
1640 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1641 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1642 	int rc;
1643 
1644 	/* Check the registry */
1645 	rc = o->check_add(pdev, o, &elem->cmd_data.vlan_mac.u);
1646 	if (rc) {
1647 		ECORE_MSG(pdev, "ADD command is not allowed considering current registry state.\n");
1648 		return rc;
1649 	}
1650 
1651 	/* Check if there is a pending ADD command for this
1652 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1653 	 */
1654 	if (exeq->get(exeq, elem)) {
1655 		ECORE_MSG(pdev, "There is a pending ADD command already\n");
1656 		return ECORE_EXISTS;
1657 	}
1658 
1659 	/* TODO: Check the pending MOVE from other objects where this
1660 	 * object is a destination object.
1661 	 */
1662 
1663 	/* Consume the credit if not requested not to */
1664 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1665 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1666 	    o->get_credit(o)))
1667 		return ECORE_INVAL;
1668 
1669 	return ECORE_SUCCESS;
1670 }
1671 
1672 /**
1673  * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1674  *
1675  * @pdev:	device handle
1676  * @qo:		quable object to check
1677  * @elem:	element that needs to be deleted
1678  *
1679  * Checks that the requested configuration can be deleted. If yes and if
1680  * requested, returns a CAM credit.
1681  *
1682  * The 'validate' is run after the 'optimize'.
1683  */
1684 static INLINE int ecore_validate_vlan_mac_del(struct _lm_device_t *pdev,
1685 					      union ecore_qable_obj *qo,
1686 					      struct ecore_exeq_elem *elem)
1687 {
1688 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1689 	struct ecore_vlan_mac_registry_elem *pos;
1690 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1691 	struct ecore_exeq_elem query_elem;
1692 
1693 	/* If this classification can not be deleted (doesn't exist)
1694 	 * - return a ECORE_EXIST.
1695 	 */
1696 	pos = o->check_del(pdev, o, &elem->cmd_data.vlan_mac.u);
1697 	if (!pos) {
1698 		ECORE_MSG(pdev, "DEL command is not allowed considering current registry state\n");
1699 		return ECORE_EXISTS;
1700 	}
1701 
1702 	/* Check if there are pending DEL or MOVE commands for this
1703 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1704 	 */
1705 	mm_memcpy(&query_elem, elem, sizeof(query_elem));
1706 
1707 	/* Check for MOVE commands */
1708 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1709 	if (exeq->get(exeq, &query_elem)) {
1710 		ECORE_ERR("There is a pending MOVE command already\n");
1711 		return ECORE_INVAL;
1712 	}
1713 
1714 	/* Check for DEL commands */
1715 	if (exeq->get(exeq, elem)) {
1716 		ECORE_MSG(pdev, "There is a pending DEL command already\n");
1717 		return ECORE_EXISTS;
1718 	}
1719 
1720 	/* Return the credit to the credit pool if not requested not to */
1721 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1722 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1723 	    o->put_credit(o))) {
1724 		ECORE_ERR("Failed to return a credit\n");
1725 		return ECORE_INVAL;
1726 	}
1727 
1728 	return ECORE_SUCCESS;
1729 }
1730 
1731 /**
1732  * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1733  *
1734  * @pdev:	device handle
1735  * @qo:		quable object to check (source)
1736  * @elem:	element that needs to be moved
1737  *
1738  * Checks that the requested configuration can be moved. If yes and if
1739  * requested, returns a CAM credit.
1740  *
1741  * The 'validate' is run after the 'optimize'.
1742  */
1743 static INLINE int ecore_validate_vlan_mac_move(struct _lm_device_t *pdev,
1744 					       union ecore_qable_obj *qo,
1745 					       struct ecore_exeq_elem *elem)
1746 {
1747 	struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1748 	struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1749 	struct ecore_exeq_elem query_elem;
1750 	struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1751 	struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1752 
1753 	/* Check if we can perform this operation based on the current registry
1754 	 * state.
1755 	 */
1756 	if (!src_o->check_move(pdev, src_o, dest_o,
1757 			       &elem->cmd_data.vlan_mac.u)) {
1758 		ECORE_MSG(pdev, "MOVE command is not allowed considering current registry state\n");
1759 		return ECORE_INVAL;
1760 	}
1761 
1762 	/* Check if there is an already pending DEL or MOVE command for the
1763 	 * source object or ADD command for a destination object. Return an
1764 	 * error if so.
1765 	 */
1766 	mm_memcpy(&query_elem, elem, sizeof(query_elem));
1767 
1768 	/* Check DEL on source */
1769 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1770 	if (src_exeq->get(src_exeq, &query_elem)) {
1771 		ECORE_ERR("There is a pending DEL command on the source queue already\n");
1772 		return ECORE_INVAL;
1773 	}
1774 
1775 	/* Check MOVE on source */
1776 	if (src_exeq->get(src_exeq, elem)) {
1777 		ECORE_MSG(pdev, "There is a pending MOVE command already\n");
1778 		return ECORE_EXISTS;
1779 	}
1780 
1781 	/* Check ADD on destination */
1782 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1783 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1784 		ECORE_ERR("There is a pending ADD command on the destination queue already\n");
1785 		return ECORE_INVAL;
1786 	}
1787 
1788 	/* Consume the credit if not requested not to */
1789 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1790 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1791 	    dest_o->get_credit(dest_o)))
1792 		return ECORE_INVAL;
1793 
1794 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1795 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1796 	    src_o->put_credit(src_o))) {
1797 		/* return the credit taken from dest... */
1798 		dest_o->put_credit(dest_o);
1799 		return ECORE_INVAL;
1800 	}
1801 
1802 	return ECORE_SUCCESS;
1803 }
1804 
1805 static int ecore_validate_vlan_mac(struct _lm_device_t *pdev,
1806 				   union ecore_qable_obj *qo,
1807 				   struct ecore_exeq_elem *elem)
1808 {
1809 	switch (elem->cmd_data.vlan_mac.cmd) {
1810 	case ECORE_VLAN_MAC_ADD:
1811 		return ecore_validate_vlan_mac_add(pdev, qo, elem);
1812 	case ECORE_VLAN_MAC_DEL:
1813 		return ecore_validate_vlan_mac_del(pdev, qo, elem);
1814 	case ECORE_VLAN_MAC_MOVE:
1815 		return ecore_validate_vlan_mac_move(pdev, qo, elem);
1816 	default:
1817 		return ECORE_INVAL;
1818 	}
1819 }
1820 
1821 static int ecore_remove_vlan_mac(struct _lm_device_t *pdev,
1822 				  union ecore_qable_obj *qo,
1823 				  struct ecore_exeq_elem *elem)
1824 {
1825 	int rc = 0;
1826 
1827 	/* If consumption wasn't required, nothing to do */
1828 	if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1829 			   &elem->cmd_data.vlan_mac.vlan_mac_flags))
1830 		return ECORE_SUCCESS;
1831 
1832 	switch (elem->cmd_data.vlan_mac.cmd) {
1833 	case ECORE_VLAN_MAC_ADD:
1834 	case ECORE_VLAN_MAC_MOVE:
1835 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1836 		break;
1837 	case ECORE_VLAN_MAC_DEL:
1838 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1839 		break;
1840 	default:
1841 		return ECORE_INVAL;
1842 	}
1843 
1844 	if (rc != TRUE)
1845 		return ECORE_INVAL;
1846 
1847 	return ECORE_SUCCESS;
1848 }
1849 
1850 /**
1851  * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1852  *
1853  * @pdev:	device handle
1854  * @o:		ecore_vlan_mac_obj
1855  *
1856  */
1857 static int ecore_wait_vlan_mac(struct _lm_device_t *pdev,
1858 			       struct ecore_vlan_mac_obj *o)
1859 {
1860 	int cnt = 5000, rc;
1861 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1862 	struct ecore_raw_obj *raw = &o->raw;
1863 
1864 	while (cnt--) {
1865 		/* Wait for the current command to complete */
1866 		rc = raw->wait_comp(pdev, raw);
1867 		if (rc)
1868 			return rc;
1869 
1870 		/* Wait until there are no pending commands */
1871 		if (!ecore_exe_queue_empty(exeq))
1872 			mm_wait(pdev, 1000);
1873 		else
1874 			return ECORE_SUCCESS;
1875 	}
1876 
1877 	return ECORE_TIMEOUT;
1878 }
1879 
1880 static int __ecore_vlan_mac_execute_step(struct _lm_device_t *pdev,
1881 					 struct ecore_vlan_mac_obj *o,
1882 					 unsigned long *ramrod_flags)
1883 {
1884 	int rc = ECORE_SUCCESS;
1885 
1886 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1887 
1888 	ECORE_MSG(pdev, "vlan_mac_execute_step - trying to take writer lock\n");
1889 	rc = __ecore_vlan_mac_h_write_trylock(pdev, o);
1890 
1891 	if (rc != ECORE_SUCCESS) {
1892 		__ecore_vlan_mac_h_pend(pdev, o, *ramrod_flags);
1893 
1894 		/** Calling function should not diffrentiate between this case
1895 		 *  and the case in which there is already a pending ramrod
1896 		 */
1897 		rc = ECORE_PENDING;
1898 	} else {
1899 		rc = ecore_exe_queue_step(pdev, &o->exe_queue, ramrod_flags);
1900 	}
1901 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1902 
1903 	return rc;
1904 }
1905 
1906 /**
1907  * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1908  *
1909  * @pdev:	device handle
1910  * @o:		ecore_vlan_mac_obj
1911  * @cqe:
1912  * @cont:	if TRUE schedule next execution chunk
1913  *
1914  */
1915 static int ecore_complete_vlan_mac(struct _lm_device_t *pdev,
1916 				   struct ecore_vlan_mac_obj *o,
1917 				   union event_ring_elem *cqe,
1918 				   unsigned long *ramrod_flags)
1919 {
1920 	struct ecore_raw_obj *r = &o->raw;
1921 	int rc;
1922 
1923 	/* Clearing the pending list & raw state should be made
1924 	 * atomically (as execution flow assumes they represent the same)
1925 	 */
1926 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1927 
1928 	/* Reset pending list */
1929 	__ecore_exe_queue_reset_pending(pdev, &o->exe_queue);
1930 
1931 	/* Clear pending */
1932 	r->clear_pending(r);
1933 
1934 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1935 
1936 	/* If ramrod failed this is most likely a SW bug */
1937 	if (cqe->message.error)
1938 		return ECORE_INVAL;
1939 
1940 	/* Run the next bulk of pending commands if requested */
1941 	if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1942 		rc = __ecore_vlan_mac_execute_step(pdev, o, ramrod_flags);
1943 		if (rc < 0)
1944 			return rc;
1945 	}
1946 
1947 	/* If there is more work to do return PENDING */
1948 	if (!ecore_exe_queue_empty(&o->exe_queue))
1949 		return ECORE_PENDING;
1950 
1951 	return ECORE_SUCCESS;
1952 }
1953 
1954 /**
1955  * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1956  *
1957  * @pdev:	device handle
1958  * @o:		ecore_qable_obj
1959  * @elem:	ecore_exeq_elem
1960  */
1961 static int ecore_optimize_vlan_mac(struct _lm_device_t *pdev,
1962 				   union ecore_qable_obj *qo,
1963 				   struct ecore_exeq_elem *elem)
1964 {
1965 	struct ecore_exeq_elem query, *pos;
1966 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1967 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1968 
1969 	mm_memcpy(&query, elem, sizeof(query));
1970 
1971 	switch (elem->cmd_data.vlan_mac.cmd) {
1972 	case ECORE_VLAN_MAC_ADD:
1973 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1974 		break;
1975 	case ECORE_VLAN_MAC_DEL:
1976 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1977 		break;
1978 	default:
1979 		/* Don't handle anything other than ADD or DEL */
1980 		return 0;
1981 	}
1982 
1983 	/* If we found the appropriate element - delete it */
1984 	pos = exeq->get(exeq, &query);
1985 	if (pos) {
1986 
1987 		/* Return the credit of the optimized command */
1988 		if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1989 				     &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1990 			if ((query.cmd_data.vlan_mac.cmd ==
1991 			     ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1992 				ECORE_ERR("Failed to return the credit for the optimized ADD command\n");
1993 				return ECORE_INVAL;
1994 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1995 				ECORE_ERR("Failed to recover the credit from the optimized DEL command\n");
1996 				return ECORE_INVAL;
1997 			}
1998 		}
1999 
2000 		ECORE_MSG(pdev, "Optimizing %s command\n",
2001 			  (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
2002 			  "ADD" : "DEL");
2003 
2004 		ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
2005 		ecore_exe_queue_free_elem(pdev, pos);
2006 		return 1;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 /**
2013  * ecore_vlan_mac_get_registry_elem - prepare a registry element
2014  *
2015  * @pdev:  device handle
2016  * @o:
2017  * @elem:
2018  * @restore:
2019  * @re:
2020  *
2021  * prepare a registry element according to the current command request.
2022  */
2023 static INLINE int ecore_vlan_mac_get_registry_elem(
2024 	struct _lm_device_t *pdev,
2025 	struct ecore_vlan_mac_obj *o,
2026 	struct ecore_exeq_elem *elem,
2027 	BOOL restore,
2028 	struct ecore_vlan_mac_registry_elem **re)
2029 {
2030 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
2031 	struct ecore_vlan_mac_registry_elem *reg_elem;
2032 
2033 	/* Allocate a new registry element if needed. */
2034 	if (!restore &&
2035 	    ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
2036 		reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, pdev);
2037 		if (!reg_elem)
2038 			return ECORE_NOMEM;
2039 
2040 		/* Get a new CAM offset */
2041 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
2042 			/* This shall never happen, because we have checked the
2043 			 * CAM availability in the 'validate'.
2044 			 */
2045 			DbgBreakIf(1);
2046 			ECORE_FREE(pdev, reg_elem, sizeof(*reg_elem));
2047 			return ECORE_INVAL;
2048 		}
2049 
2050 		ECORE_MSG(pdev, "Got cam offset %d\n", reg_elem->cam_offset);
2051 
2052 		/* Set a VLAN-MAC data */
2053 		mm_memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
2054 			  sizeof(reg_elem->u));
2055 
2056 		/* Copy the flags (needed for DEL and RESTORE flows) */
2057 		reg_elem->vlan_mac_flags =
2058 			elem->cmd_data.vlan_mac.vlan_mac_flags;
2059 	} else /* DEL, RESTORE */
2060 		reg_elem = o->check_del(pdev, o, &elem->cmd_data.vlan_mac.u);
2061 
2062 	*re = reg_elem;
2063 	return ECORE_SUCCESS;
2064 }
2065 
2066 /**
2067  * ecore_execute_vlan_mac - execute vlan mac command
2068  *
2069  * @pdev:		device handle
2070  * @qo:
2071  * @exe_chunk:
2072  * @ramrod_flags:
2073  *
2074  * go and send a ramrod!
2075  */
2076 static int ecore_execute_vlan_mac(struct _lm_device_t *pdev,
2077 				  union ecore_qable_obj *qo,
2078 				  d_list_t *exe_chunk,
2079 				  unsigned long *ramrod_flags)
2080 {
2081 	struct ecore_exeq_elem *elem;
2082 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
2083 	struct ecore_raw_obj *r = &o->raw;
2084 	int rc, idx = 0;
2085 	BOOL restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
2086 	BOOL drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
2087 	struct ecore_vlan_mac_registry_elem *reg_elem;
2088 	enum ecore_vlan_mac_cmd cmd;
2089 
2090 	/* If DRIVER_ONLY execution is requested, cleanup a registry
2091 	 * and exit. Otherwise send a ramrod to FW.
2092 	 */
2093 	if (!drv_only) {
2094 		DbgBreakIf(r->check_pending(r));
2095 
2096 		/* Set pending */
2097 		r->set_pending(r);
2098 
2099 		/* Fill the ramrod data */
2100 		ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2101 					  struct ecore_exeq_elem) {
2102 			cmd = elem->cmd_data.vlan_mac.cmd;
2103 			/* We will add to the target object in MOVE command, so
2104 			 * change the object for a CAM search.
2105 			 */
2106 			if (cmd == ECORE_VLAN_MAC_MOVE)
2107 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
2108 			else
2109 				cam_obj = o;
2110 
2111 			rc = ecore_vlan_mac_get_registry_elem(pdev, cam_obj,
2112 							      elem, restore,
2113 							      &reg_elem);
2114 			if (rc)
2115 				goto error_exit;
2116 
2117 			DbgBreakIf(!reg_elem);
2118 
2119 			/* Push a new entry into the registry */
2120 			if (!restore &&
2121 			    ((cmd == ECORE_VLAN_MAC_ADD) ||
2122 			    (cmd == ECORE_VLAN_MAC_MOVE)))
2123 				ECORE_LIST_PUSH_HEAD(&reg_elem->link,
2124 						     &cam_obj->head);
2125 
2126 			/* Configure a single command in a ramrod data buffer */
2127 			o->set_one_rule(pdev, o, elem, idx,
2128 					reg_elem->cam_offset);
2129 
2130 			/* MOVE command consumes 2 entries in the ramrod data */
2131 			if (cmd == ECORE_VLAN_MAC_MOVE)
2132 				idx += 2;
2133 			else
2134 				idx++;
2135 		}
2136 
2137 		/* No need for an explicit memory barrier here as long as we
2138 		 * ensure the ordering of writing to the SPQ element
2139 		 * and updating of the SPQ producer which involves a memory
2140 		 * read. If the memory read is removed we will have to put a
2141 		 * full memory barrier there (inside ecore_sp_post()).
2142 		 */
2143 		rc = ecore_sp_post(pdev, o->ramrod_cmd, r->cid,
2144 				   r->rdata_mapping.as_u64,
2145 				   ETH_CONNECTION_TYPE);
2146 		if (rc)
2147 			goto error_exit;
2148 	}
2149 
2150 	/* Now, when we are done with the ramrod - clean up the registry */
2151 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2152 				  struct ecore_exeq_elem) {
2153 		cmd = elem->cmd_data.vlan_mac.cmd;
2154 		if ((cmd == ECORE_VLAN_MAC_DEL) ||
2155 		    (cmd == ECORE_VLAN_MAC_MOVE)) {
2156 			reg_elem = o->check_del(pdev, o,
2157 						&elem->cmd_data.vlan_mac.u);
2158 
2159 			DbgBreakIf(!reg_elem);
2160 
2161 			o->put_cam_offset(o, reg_elem->cam_offset);
2162 			ECORE_LIST_REMOVE_ENTRY(&reg_elem->link, &o->head);
2163 			ECORE_FREE(pdev, reg_elem, sizeof(*reg_elem));
2164 		}
2165 	}
2166 
2167 	if (!drv_only)
2168 		return ECORE_PENDING;
2169 	else
2170 		return ECORE_SUCCESS;
2171 
2172 error_exit:
2173 	r->clear_pending(r);
2174 
2175 	/* Cleanup a registry in case of a failure */
2176 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2177 				  struct ecore_exeq_elem) {
2178 		cmd = elem->cmd_data.vlan_mac.cmd;
2179 
2180 		if (cmd == ECORE_VLAN_MAC_MOVE)
2181 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
2182 		else
2183 			cam_obj = o;
2184 
2185 		/* Delete all newly added above entries */
2186 		if (!restore &&
2187 		    ((cmd == ECORE_VLAN_MAC_ADD) ||
2188 		    (cmd == ECORE_VLAN_MAC_MOVE))) {
2189 			reg_elem = o->check_del(pdev, cam_obj,
2190 						&elem->cmd_data.vlan_mac.u);
2191 			if (reg_elem) {
2192 				ECORE_LIST_REMOVE_ENTRY(&reg_elem->link,
2193 							&cam_obj->head);
2194 				ECORE_FREE(pdev, reg_elem, sizeof(*reg_elem));
2195 			}
2196 		}
2197 	}
2198 
2199 	return rc;
2200 }
2201 
2202 static INLINE int ecore_vlan_mac_push_new_cmd(
2203 	struct _lm_device_t *pdev,
2204 	struct ecore_vlan_mac_ramrod_params *p)
2205 {
2206 	struct ecore_exeq_elem *elem;
2207 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2208 	BOOL restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
2209 
2210 	/* Allocate the execution queue element */
2211 	elem = ecore_exe_queue_alloc_elem(pdev);
2212 	if (!elem)
2213 		return ECORE_NOMEM;
2214 
2215 	/* Set the command 'length' */
2216 	switch (p->user_req.cmd) {
2217 	case ECORE_VLAN_MAC_MOVE:
2218 		elem->cmd_len = 2;
2219 		break;
2220 	default:
2221 		elem->cmd_len = 1;
2222 	}
2223 
2224 	/* Fill the object specific info */
2225 	mm_memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
2226 
2227 	/* Try to add a new command to the pending list */
2228 	return ecore_exe_queue_add(pdev, &o->exe_queue, elem, restore);
2229 }
2230 
2231 /**
2232  * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
2233  *
2234  * @pdev:  device handle
2235  * @p:
2236  *
2237  */
2238 int ecore_config_vlan_mac(struct _lm_device_t *pdev,
2239 			   struct ecore_vlan_mac_ramrod_params *p)
2240 {
2241 	int rc = ECORE_SUCCESS;
2242 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2243 	unsigned long *ramrod_flags = &p->ramrod_flags;
2244 	BOOL cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
2245 	struct ecore_raw_obj *raw = &o->raw;
2246 
2247 	/*
2248 	 * Add new elements to the execution list for commands that require it.
2249 	 */
2250 	if (!cont) {
2251 		rc = ecore_vlan_mac_push_new_cmd(pdev, p);
2252 		if (rc)
2253 			return rc;
2254 	}
2255 
2256 	/* If nothing will be executed further in this iteration we want to
2257 	 * return PENDING if there are pending commands
2258 	 */
2259 	if (!ecore_exe_queue_empty(&o->exe_queue))
2260 		rc = ECORE_PENDING;
2261 
2262 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
2263 		ECORE_MSG(pdev, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
2264 		raw->clear_pending(raw);
2265 	}
2266 
2267 	/* Execute commands if required */
2268 	if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
2269 	    ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
2270 		rc = __ecore_vlan_mac_execute_step(pdev, p->vlan_mac_obj,
2271 						   &p->ramrod_flags);
2272 		if (rc < 0)
2273 			return rc;
2274 	}
2275 
2276 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
2277 	 * then user want to wait until the last command is done.
2278 	 */
2279 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2280 		/* Wait maximum for the current exe_queue length iterations plus
2281 		 * one (for the current pending command).
2282 		 */
2283 		int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
2284 
2285 		while (!ecore_exe_queue_empty(&o->exe_queue) &&
2286 		       max_iterations--) {
2287 
2288 			/* Wait for the current command to complete */
2289 			rc = raw->wait_comp(pdev, raw);
2290 			if (rc)
2291 				return rc;
2292 
2293 			/* Make a next step */
2294 			rc = __ecore_vlan_mac_execute_step(pdev,
2295 							   p->vlan_mac_obj,
2296 							   &p->ramrod_flags);
2297 			if (rc < 0)
2298 				return rc;
2299 		}
2300 
2301 		return ECORE_SUCCESS;
2302 	}
2303 
2304 	return rc;
2305 }
2306 
2307 /**
2308  * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2309  *
2310  * @pdev:		device handle
2311  * @o:
2312  * @vlan_mac_flags:
2313  * @ramrod_flags:	execution flags to be used for this deletion
2314  *
2315  * if the last operation has completed successfully and there are no
2316  * more elements left, positive value if the last operation has completed
2317  * successfully and there are more previously configured elements, negative
2318  * value is current operation has failed.
2319  */
2320 static int ecore_vlan_mac_del_all(struct _lm_device_t *pdev,
2321 				  struct ecore_vlan_mac_obj *o,
2322 				  unsigned long *vlan_mac_flags,
2323 				  unsigned long *ramrod_flags)
2324 {
2325 	struct ecore_vlan_mac_registry_elem *pos = NULL;
2326 	struct ecore_vlan_mac_ramrod_params p;
2327 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
2328 	struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
2329 	unsigned long flags;
2330 	int read_lock;
2331 	int rc = 0;
2332 
2333 	/* Clear pending commands first */
2334 
2335 	ECORE_SPIN_LOCK_BH(&exeq->lock);
2336 
2337 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
2338 				       &exeq->exe_queue, link,
2339 				       struct ecore_exeq_elem) {
2340 		flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2341 		if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2342 		    ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2343 			rc = exeq->remove(pdev, exeq->owner, exeq_pos);
2344 			if (rc) {
2345 				ECORE_ERR("Failed to remove command\n");
2346 				ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2347 				return rc;
2348 			}
2349 			ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
2350 						&exeq->exe_queue);
2351 			ecore_exe_queue_free_elem(pdev, exeq_pos);
2352 		}
2353 	}
2354 
2355 	ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2356 
2357 	/* Prepare a command request */
2358 	mm_memset(&p, 0, sizeof(p));
2359 	p.vlan_mac_obj = o;
2360 	p.ramrod_flags = *ramrod_flags;
2361 	p.user_req.cmd = ECORE_VLAN_MAC_DEL;
2362 
2363 	/* Add all but the last VLAN-MAC to the execution queue without actually
2364 	 * execution anything.
2365 	 */
2366 	ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
2367 	ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
2368 	ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2369 
2370 	ECORE_MSG(pdev, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2371 	read_lock = ecore_vlan_mac_h_read_lock(pdev, o);
2372 	if (read_lock != ECORE_SUCCESS)
2373 		return read_lock;
2374 
2375 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
2376 				  struct ecore_vlan_mac_registry_elem) {
2377 		flags = pos->vlan_mac_flags;
2378 		if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2379 		    ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2380 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2381 			mm_memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2382 			rc = ecore_config_vlan_mac(pdev, &p);
2383 			if (rc < 0) {
2384 				ECORE_ERR("Failed to add a new DEL command\n");
2385 				ecore_vlan_mac_h_read_unlock(pdev, o);
2386 				return rc;
2387 			}
2388 		}
2389 	}
2390 
2391 	ECORE_MSG(pdev, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2392 	ecore_vlan_mac_h_read_unlock(pdev, o);
2393 
2394 	p.ramrod_flags = *ramrod_flags;
2395 	ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2396 
2397 	return ecore_config_vlan_mac(pdev, &p);
2398 }
2399 
2400 static INLINE void ecore_init_raw_obj(struct ecore_raw_obj *raw, u8 cl_id,
2401 	u32 cid, u8 func_id, void *rdata, lm_address_t rdata_mapping, int state,
2402 	unsigned long *pstate, ecore_obj_type type)
2403 {
2404 	raw->func_id = func_id;
2405 	raw->cid = cid;
2406 	raw->cl_id = cl_id;
2407 	raw->rdata = rdata;
2408 	raw->rdata_mapping = rdata_mapping;
2409 	raw->state = state;
2410 	raw->pstate = pstate;
2411 	raw->obj_type = type;
2412 	raw->check_pending = ecore_raw_check_pending;
2413 	raw->clear_pending = ecore_raw_clear_pending;
2414 	raw->set_pending = ecore_raw_set_pending;
2415 	raw->wait_comp = ecore_raw_wait;
2416 }
2417 
2418 static INLINE void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
2419 	u8 cl_id, u32 cid, u8 func_id, void *rdata, lm_address_t rdata_mapping,
2420 	int state, unsigned long *pstate, ecore_obj_type type,
2421 	struct ecore_credit_pool_obj *macs_pool,
2422 	struct ecore_credit_pool_obj *vlans_pool)
2423 {
2424 	ECORE_LIST_INIT(&o->head);
2425 	o->head_reader = 0;
2426 	o->head_exe_request = FALSE;
2427 	o->saved_ramrod_flags = 0;
2428 
2429 	o->macs_pool = macs_pool;
2430 	o->vlans_pool = vlans_pool;
2431 
2432 	o->delete_all = ecore_vlan_mac_del_all;
2433 	o->restore = ecore_vlan_mac_restore;
2434 	o->complete = ecore_complete_vlan_mac;
2435 	o->wait = ecore_wait_vlan_mac;
2436 
2437 	ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2438 			   state, pstate, type);
2439 }
2440 
2441 void ecore_init_mac_obj(struct _lm_device_t *pdev,
2442 			struct ecore_vlan_mac_obj *mac_obj,
2443 			u8 cl_id, u32 cid, u8 func_id, void *rdata,
2444 			lm_address_t rdata_mapping, int state,
2445 			unsigned long *pstate, ecore_obj_type type,
2446 			struct ecore_credit_pool_obj *macs_pool)
2447 {
2448 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
2449 
2450 	ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2451 				   rdata_mapping, state, pstate, type,
2452 				   macs_pool, NULL);
2453 
2454 	/* CAM credit pool handling */
2455 	mac_obj->get_credit = ecore_get_credit_mac;
2456 	mac_obj->put_credit = ecore_put_credit_mac;
2457 	mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2458 	mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2459 
2460 	if (CHIP_IS_E1x(pdev)) {
2461 		mac_obj->set_one_rule      = ecore_set_one_mac_e1x;
2462 		mac_obj->check_del         = ecore_check_mac_del;
2463 		mac_obj->check_add         = ecore_check_mac_add;
2464 		mac_obj->check_move        = ecore_check_move_always_err;
2465 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2466 
2467 		/* Exe Queue */
2468 		ecore_exe_queue_init(pdev,
2469 				     &mac_obj->exe_queue, 1, qable_obj,
2470 				     ecore_validate_vlan_mac,
2471 				     ecore_remove_vlan_mac,
2472 				     ecore_optimize_vlan_mac,
2473 				     ecore_execute_vlan_mac,
2474 				     ecore_exeq_get_mac);
2475 	} else {
2476 		mac_obj->set_one_rule      = ecore_set_one_mac_e2;
2477 		mac_obj->check_del         = ecore_check_mac_del;
2478 		mac_obj->check_add         = ecore_check_mac_add;
2479 		mac_obj->check_move        = ecore_check_move;
2480 		mac_obj->ramrod_cmd        =
2481 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2482 		mac_obj->get_n_elements    = ecore_get_n_elements;
2483 
2484 		/* Exe Queue */
2485 		ecore_exe_queue_init(pdev,
2486 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2487 				     qable_obj, ecore_validate_vlan_mac,
2488 				     ecore_remove_vlan_mac,
2489 				     ecore_optimize_vlan_mac,
2490 				     ecore_execute_vlan_mac,
2491 				     ecore_exeq_get_mac);
2492 	}
2493 }
2494 
2495 void ecore_init_vlan_obj(struct _lm_device_t *pdev,
2496 			 struct ecore_vlan_mac_obj *vlan_obj,
2497 			 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2498 			 lm_address_t rdata_mapping, int state,
2499 			 unsigned long *pstate, ecore_obj_type type,
2500 			 struct ecore_credit_pool_obj *vlans_pool)
2501 {
2502 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)vlan_obj;
2503 
2504 	ecore_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2505 				   rdata_mapping, state, pstate, type, NULL,
2506 				   vlans_pool);
2507 
2508 	vlan_obj->get_credit = ecore_get_credit_vlan;
2509 	vlan_obj->put_credit = ecore_put_credit_vlan;
2510 	vlan_obj->get_cam_offset = ecore_get_cam_offset_vlan;
2511 	vlan_obj->put_cam_offset = ecore_put_cam_offset_vlan;
2512 
2513 	if (CHIP_IS_E1x(pdev)) {
2514 		ECORE_ERR("Do not support chips others than E2 and newer\n");
2515 		BUG();
2516 	} else {
2517 		vlan_obj->set_one_rule      = ecore_set_one_vlan_e2;
2518 		vlan_obj->check_del         = ecore_check_vlan_del;
2519 		vlan_obj->check_add         = ecore_check_vlan_add;
2520 		vlan_obj->check_move        = ecore_check_move;
2521 		vlan_obj->ramrod_cmd        =
2522 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2523 		vlan_obj->get_n_elements    = ecore_get_n_elements;
2524 
2525 		/* Exe Queue */
2526 		ecore_exe_queue_init(pdev,
2527 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2528 				     qable_obj, ecore_validate_vlan_mac,
2529 				     ecore_remove_vlan_mac,
2530 				     ecore_optimize_vlan_mac,
2531 				     ecore_execute_vlan_mac,
2532 				     ecore_exeq_get_vlan);
2533 	}
2534 }
2535 
2536 void ecore_init_vlan_mac_obj(struct _lm_device_t *pdev,
2537 			     struct ecore_vlan_mac_obj *vlan_mac_obj,
2538 			     u8 cl_id, u32 cid, u8 func_id, void *rdata,
2539 			     lm_address_t rdata_mapping, int state,
2540 			     unsigned long *pstate, ecore_obj_type type,
2541 			     struct ecore_credit_pool_obj *macs_pool,
2542 			     struct ecore_credit_pool_obj *vlans_pool)
2543 {
2544 	union ecore_qable_obj *qable_obj =
2545 		(union ecore_qable_obj *)vlan_mac_obj;
2546 
2547 	ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2548 				   rdata_mapping, state, pstate, type,
2549 				   macs_pool, vlans_pool);
2550 
2551 	/* CAM pool handling */
2552 	vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2553 	vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2554 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2555 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2556 	 * will be taken from MACs' pool object only.
2557 	 */
2558 	vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2559 	vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2560 
2561 	if (CHIP_IS_E1(pdev)) {
2562 		ECORE_ERR("Do not support chips others than E2\n");
2563 		BUG();
2564 	} else if (CHIP_IS_E1H(pdev)) {
2565 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e1h;
2566 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2567 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2568 		vlan_mac_obj->check_move        = ecore_check_move_always_err;
2569 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2570 
2571 		/* Exe Queue */
2572 		ecore_exe_queue_init(pdev,
2573 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2574 				     ecore_validate_vlan_mac,
2575 				     ecore_remove_vlan_mac,
2576 				     ecore_optimize_vlan_mac,
2577 				     ecore_execute_vlan_mac,
2578 				     ecore_exeq_get_vlan_mac);
2579 	} else {
2580 		vlan_mac_obj->set_one_rule      = ecore_set_one_vlan_mac_e2;
2581 		vlan_mac_obj->check_del         = ecore_check_vlan_mac_del;
2582 		vlan_mac_obj->check_add         = ecore_check_vlan_mac_add;
2583 		vlan_mac_obj->check_move        = ecore_check_move;
2584 		vlan_mac_obj->ramrod_cmd        =
2585 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2586 
2587 		/* Exe Queue */
2588 		ecore_exe_queue_init(pdev,
2589 				     &vlan_mac_obj->exe_queue,
2590 				     CLASSIFY_RULES_COUNT,
2591 				     qable_obj, ecore_validate_vlan_mac,
2592 				     ecore_remove_vlan_mac,
2593 				     ecore_optimize_vlan_mac,
2594 				     ecore_execute_vlan_mac,
2595 				     ecore_exeq_get_vlan_mac);
2596 	}
2597 }
2598 
2599 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2600 static INLINE void __storm_memset_mac_filters(struct _lm_device_t *pdev,
2601 			struct tstorm_eth_mac_filter_config *mac_filters,
2602 			u16 pf_id)
2603 {
2604 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2605 
2606 	u32 addr = BAR_TSTRORM_INTMEM +
2607 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2608 
2609 	__storm_memset_struct(pdev, addr, size, (u32 *)mac_filters);
2610 }
2611 
2612 static int ecore_set_rx_mode_e1x(struct _lm_device_t *pdev,
2613 				 struct ecore_rx_mode_ramrod_params *p)
2614 {
2615 	/* update the pdev MAC filter structure */
2616 	u32 mask = (1 << p->cl_id);
2617 
2618 	struct tstorm_eth_mac_filter_config *mac_filters =
2619 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2620 
2621 	/* initial setting is drop-all */
2622 	u8 drop_all_ucast = 1, drop_all_mcast = 1;
2623 	u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2624 	u8 unmatched_unicast = 0;
2625 
2626     /* In e1x there we only take into account rx accept flag since tx switching
2627      * isn't enabled. */
2628 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
2629 		/* accept matched ucast */
2630 		drop_all_ucast = 0;
2631 
2632 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
2633 		/* accept matched mcast */
2634 		drop_all_mcast = 0;
2635 
2636 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2637 		/* accept all mcast */
2638 		drop_all_ucast = 0;
2639 		accp_all_ucast = 1;
2640 	}
2641 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2642 		/* accept all mcast */
2643 		drop_all_mcast = 0;
2644 		accp_all_mcast = 1;
2645 	}
2646 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
2647 		/* accept (all) bcast */
2648 		accp_all_bcast = 1;
2649 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2650 		/* accept unmatched unicasts */
2651 		unmatched_unicast = 1;
2652 
2653 	mac_filters->ucast_drop_all = drop_all_ucast ?
2654 		mac_filters->ucast_drop_all | mask :
2655 		mac_filters->ucast_drop_all & ~mask;
2656 
2657 	mac_filters->mcast_drop_all = drop_all_mcast ?
2658 		mac_filters->mcast_drop_all | mask :
2659 		mac_filters->mcast_drop_all & ~mask;
2660 
2661 	mac_filters->ucast_accept_all = accp_all_ucast ?
2662 		mac_filters->ucast_accept_all | mask :
2663 		mac_filters->ucast_accept_all & ~mask;
2664 
2665 	mac_filters->mcast_accept_all = accp_all_mcast ?
2666 		mac_filters->mcast_accept_all | mask :
2667 		mac_filters->mcast_accept_all & ~mask;
2668 
2669 	mac_filters->bcast_accept_all = accp_all_bcast ?
2670 		mac_filters->bcast_accept_all | mask :
2671 		mac_filters->bcast_accept_all & ~mask;
2672 
2673 	mac_filters->unmatched_unicast = unmatched_unicast ?
2674 		mac_filters->unmatched_unicast | mask :
2675 		mac_filters->unmatched_unicast & ~mask;
2676 
2677 	ECORE_MSG(pdev, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2678 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2679 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2680 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2681 	   mac_filters->bcast_accept_all);
2682 
2683 	/* write the MAC filter structure*/
2684 	__storm_memset_mac_filters(pdev, mac_filters, p->func_id);
2685 
2686 	/* The operation is completed */
2687 	ECORE_CLEAR_BIT(p->state, p->pstate);
2688 	smp_mb__after_atomic();
2689 
2690 	return ECORE_SUCCESS;
2691 }
2692 
2693 /* Setup ramrod data */
2694 static INLINE void ecore_rx_mode_set_rdata_hdr_e2(u32 cid,
2695 				struct eth_classify_header *hdr,
2696 				u8 rule_cnt)
2697 {
2698 	hdr->echo = mm_cpu_to_le32(cid);
2699 	hdr->rule_cnt = rule_cnt;
2700 }
2701 
2702 static INLINE void ecore_rx_mode_set_cmd_state_e2(struct _lm_device_t *pdev,
2703 				unsigned long *accept_flags,
2704 				struct eth_filter_rules_cmd *cmd,
2705 				BOOL clear_accept_all)
2706 {
2707 	u16 state;
2708 
2709 	/* start with 'drop-all' */
2710 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2711 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2712 
2713 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2714 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2715 
2716 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2717 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2718 
2719 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2720 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2721 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2722 	}
2723 
2724 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2725 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2726 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2727 	}
2728 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2729 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2730 
2731 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2732 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2733 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2734 	}
2735 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2736 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2737 
2738 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2739 	if (clear_accept_all) {
2740 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2741 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2742 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2743 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2744 	}
2745 
2746 	cmd->state = mm_cpu_to_le16(state);
2747 }
2748 
2749 static int ecore_set_rx_mode_e2(struct _lm_device_t *pdev,
2750 				struct ecore_rx_mode_ramrod_params *p)
2751 {
2752 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2753 	int rc;
2754 	u8 rule_idx = 0;
2755 
2756 	/* Reset the ramrod data buffer */
2757 	mm_memset(data, 0, sizeof(*data));
2758 
2759 	/* Setup ramrod data */
2760 
2761 	/* Tx (internal switching) */
2762 	if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2763 		data->rules[rule_idx].client_id = p->cl_id;
2764 		data->rules[rule_idx].func_id = p->func_id;
2765 
2766 		data->rules[rule_idx].cmd_general_data =
2767 			ETH_FILTER_RULES_CMD_TX_CMD;
2768 
2769 		ecore_rx_mode_set_cmd_state_e2(pdev, &p->tx_accept_flags,
2770 					       &(data->rules[rule_idx++]),
2771 					       FALSE);
2772 	}
2773 
2774 	/* Rx */
2775 	if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2776 		data->rules[rule_idx].client_id = p->cl_id;
2777 		data->rules[rule_idx].func_id = p->func_id;
2778 
2779 		data->rules[rule_idx].cmd_general_data =
2780 			ETH_FILTER_RULES_CMD_RX_CMD;
2781 
2782 		ecore_rx_mode_set_cmd_state_e2(pdev, &p->rx_accept_flags,
2783 					       &(data->rules[rule_idx++]),
2784 					       FALSE);
2785 	}
2786 
2787 	/* If FCoE Queue configuration has been requested configure the Rx and
2788 	 * internal switching modes for this queue in separate rules.
2789 	 *
2790 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2791 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2792 	 */
2793 	if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2794 		/*  Tx (internal switching) */
2795 		if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2796 			data->rules[rule_idx].client_id = FCOE_CID(pdev);
2797 			data->rules[rule_idx].func_id = p->func_id;
2798 
2799 			data->rules[rule_idx].cmd_general_data =
2800 						ETH_FILTER_RULES_CMD_TX_CMD;
2801 
2802 			ecore_rx_mode_set_cmd_state_e2(pdev, &p->tx_accept_flags,
2803 						       &(data->rules[rule_idx]),
2804 						       TRUE);
2805 			rule_idx++;
2806 		}
2807 
2808 		/* Rx */
2809 		if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2810 			data->rules[rule_idx].client_id = FCOE_CID(pdev);
2811 			data->rules[rule_idx].func_id = p->func_id;
2812 
2813 			data->rules[rule_idx].cmd_general_data =
2814 						ETH_FILTER_RULES_CMD_RX_CMD;
2815 
2816 			ecore_rx_mode_set_cmd_state_e2(pdev, &p->rx_accept_flags,
2817 						       &(data->rules[rule_idx]),
2818 						       TRUE);
2819 			rule_idx++;
2820 		}
2821 	}
2822 
2823 	/* Set the ramrod header (most importantly - number of rules to
2824 	 * configure).
2825 	 */
2826 	ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2827 
2828 	ECORE_MSG(pdev, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2829 		  data->header.rule_cnt, p->rx_accept_flags,
2830 		  p->tx_accept_flags);
2831 
2832 	/* No need for an explicit memory barrier here as long as we
2833 	 * ensure the ordering of writing to the SPQ element
2834 	 * and updating of the SPQ producer which involves a memory
2835 	 * read. If the memory read is removed we will have to put a
2836 	 * full memory barrier there (inside ecore_sp_post()).
2837 	 */
2838 
2839 	/* Send a ramrod */
2840 	rc = ecore_sp_post(pdev,
2841 			   RAMROD_CMD_ID_ETH_FILTER_RULES,
2842 			   p->cid,
2843 			   p->rdata_mapping.as_u64,
2844 			   ETH_CONNECTION_TYPE);
2845 	if (rc)
2846 		return rc;
2847 
2848 	/* Ramrod completion is pending */
2849 	return ECORE_PENDING;
2850 }
2851 
2852 static int ecore_wait_rx_mode_comp_e2(struct _lm_device_t *pdev,
2853 				      struct ecore_rx_mode_ramrod_params *p)
2854 {
2855 	return ecore_state_wait(pdev, p->state, p->pstate);
2856 }
2857 
2858 static int ecore_empty_rx_mode_wait(struct _lm_device_t *pdev,
2859 				    struct ecore_rx_mode_ramrod_params *p)
2860 {
2861 	/* Do nothing */
2862 	return ECORE_SUCCESS;
2863 }
2864 
2865 int ecore_config_rx_mode(struct _lm_device_t *pdev,
2866 			 struct ecore_rx_mode_ramrod_params *p)
2867 {
2868 	int rc;
2869 
2870 	/* Configure the new classification in the chip */
2871 	rc = p->rx_mode_obj->config_rx_mode(pdev, p);
2872 	if (rc < 0)
2873 		return rc;
2874 
2875 	/* Wait for a ramrod completion if was requested */
2876 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2877 		rc = p->rx_mode_obj->wait_comp(pdev, p);
2878 		if (rc)
2879 			return rc;
2880 	}
2881 
2882 	return rc;
2883 }
2884 
2885 void ecore_init_rx_mode_obj(struct _lm_device_t *pdev,
2886 			    struct ecore_rx_mode_obj *o)
2887 {
2888 	if (CHIP_IS_E1x(pdev)) {
2889 		o->wait_comp      = ecore_empty_rx_mode_wait;
2890 		o->config_rx_mode = ecore_set_rx_mode_e1x;
2891 	} else {
2892 		o->wait_comp      = ecore_wait_rx_mode_comp_e2;
2893 		o->config_rx_mode = ecore_set_rx_mode_e2;
2894 	}
2895 }
2896 
2897 /********************* Multicast verbs: SET, CLEAR ****************************/
2898 static INLINE u8 ecore_mcast_bin_from_mac(u8 *mac)
2899 {
2900 	return (ecore_crc32_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2901 }
2902 
2903 struct ecore_mcast_mac_elem {
2904 	d_list_entry_t link;
2905 	u8 mac[ETH_ALEN];
2906 	u8 pad[2]; /* For a natural alignment of the following buffer */
2907 };
2908 
2909 struct ecore_pending_mcast_cmd {
2910 	d_list_entry_t link;
2911 	int type; /* ECORE_MCAST_CMD_X */
2912 	union {
2913 		d_list_t macs_head;
2914 		u32 macs_num; /* Needed for DEL command */
2915 		int next_bin; /* Needed for RESTORE flow with aprox match */
2916 	} data;
2917 
2918 	BOOL done; /* set to TRUE, when the command has been handled,
2919 		    * practically used in 57712 handling only, where one pending
2920 		    * command may be handled in a few operations. As long as for
2921 		    * other chips every operation handling is completed in a
2922 		    * single ramrod, there is no need to utilize this field.
2923 		    */
2924 #ifndef ECORE_ERASE
2925 	u32 alloc_len; /* passed to ECORE_FREE */
2926 #endif
2927 };
2928 
2929 static int ecore_mcast_wait(struct _lm_device_t *pdev,
2930 			    struct ecore_mcast_obj *o)
2931 {
2932 	if (ecore_state_wait(pdev, o->sched_state, o->raw.pstate) ||
2933 			o->raw.wait_comp(pdev, &o->raw))
2934 		return ECORE_TIMEOUT;
2935 
2936 	return ECORE_SUCCESS;
2937 }
2938 
2939 static int ecore_mcast_enqueue_cmd(struct _lm_device_t *pdev,
2940 				   struct ecore_mcast_obj *o,
2941 				   struct ecore_mcast_ramrod_params *p,
2942 				   enum ecore_mcast_cmd cmd)
2943 {
2944 	int total_sz;
2945 	struct ecore_pending_mcast_cmd *new_cmd;
2946 	struct ecore_mcast_mac_elem *cur_mac = NULL;
2947 	struct ecore_mcast_list_elem *pos;
2948 	int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2949 			     p->mcast_list_len : 0);
2950 
2951 	/* If the command is empty ("handle pending commands only"), break */
2952 	if (!p->mcast_list_len)
2953 		return ECORE_SUCCESS;
2954 
2955 	total_sz = sizeof(*new_cmd) +
2956 		macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2957 
2958 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2959 	new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, pdev);
2960 
2961 	if (!new_cmd)
2962 		return ECORE_NOMEM;
2963 
2964 	ECORE_MSG(pdev, "About to enqueue a new %d command. macs_list_len=%d\n",
2965 		  cmd, macs_list_len);
2966 
2967 	ECORE_LIST_INIT(&new_cmd->data.macs_head);
2968 
2969 	new_cmd->type = cmd;
2970 	new_cmd->done = FALSE;
2971 #ifndef ECORE_ERASE
2972 	new_cmd->alloc_len = total_sz;
2973 #endif
2974 
2975 	switch (cmd) {
2976 	case ECORE_MCAST_CMD_ADD:
2977 		cur_mac = (struct ecore_mcast_mac_elem *)
2978 			  ((u8 *)new_cmd + sizeof(*new_cmd));
2979 
2980 		/* Push the MACs of the current command into the pending command
2981 		 * MACs list: FIFO
2982 		 */
2983 		ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2984 					  struct ecore_mcast_list_elem) {
2985 			mm_memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2986 			ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2987 					     &new_cmd->data.macs_head);
2988 			cur_mac++;
2989 		}
2990 
2991 		break;
2992 
2993 	case ECORE_MCAST_CMD_DEL:
2994 		new_cmd->data.macs_num = p->mcast_list_len;
2995 		break;
2996 
2997 	case ECORE_MCAST_CMD_RESTORE:
2998 		new_cmd->data.next_bin = 0;
2999 		break;
3000 
3001 	default:
3002 		ECORE_FREE(pdev, new_cmd, total_sz);
3003 		ECORE_ERR("Unknown command: %d\n", cmd);
3004 		return ECORE_INVAL;
3005 	}
3006 
3007 	/* Push the new pending command to the tail of the pending list: FIFO */
3008 	ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
3009 
3010 	o->set_sched(o);
3011 
3012 	return ECORE_PENDING;
3013 }
3014 
3015 /**
3016  * ecore_mcast_get_next_bin - get the next set bin (index)
3017  *
3018  * @o:
3019  * @last:	index to start looking from (including)
3020  *
3021  * returns the next found (set) bin or a negative value if none is found.
3022  */
3023 static INLINE int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
3024 {
3025 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
3026 
3027 	for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
3028 		if (o->registry.aprox_match.vec[i])
3029 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
3030 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
3031 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
3032 						       vec, cur_bit)) {
3033 					return cur_bit;
3034 				}
3035 			}
3036 		inner_start = 0;
3037 	}
3038 
3039 	/* None found */
3040 	return -1;
3041 }
3042 
3043 /**
3044  * ecore_mcast_clear_first_bin - find the first set bin and clear it
3045  *
3046  * @o:
3047  *
3048  * returns the index of the found bin or -1 if none is found
3049  */
3050 static INLINE int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
3051 {
3052 	int cur_bit = ecore_mcast_get_next_bin(o, 0);
3053 
3054 	if (cur_bit >= 0)
3055 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
3056 
3057 	return cur_bit;
3058 }
3059 
3060 static INLINE u8 ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
3061 {
3062 	struct ecore_raw_obj *raw = &o->raw;
3063 	u8 rx_tx_flag = 0;
3064 
3065 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
3066 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
3067 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
3068 
3069 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
3070 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
3071 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
3072 
3073 	return rx_tx_flag;
3074 }
3075 
3076 static void ecore_mcast_set_one_rule_e2(struct _lm_device_t *pdev,
3077 					struct ecore_mcast_obj *o, int idx,
3078 					union ecore_mcast_config_data *cfg_data,
3079 					enum ecore_mcast_cmd cmd)
3080 {
3081 	struct ecore_raw_obj *r = &o->raw;
3082 	struct eth_multicast_rules_ramrod_data *data =
3083 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3084 	u8 func_id = r->func_id;
3085 	u8 rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
3086 	int bin;
3087 
3088 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
3089 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
3090 
3091 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
3092 
3093 	/* Get a bin and update a bins' vector */
3094 	switch (cmd) {
3095 	case ECORE_MCAST_CMD_ADD:
3096 		bin = ecore_mcast_bin_from_mac(cfg_data->mac);
3097 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
3098 		break;
3099 
3100 	case ECORE_MCAST_CMD_DEL:
3101 		/* If there were no more bins to clear
3102 		 * (ecore_mcast_clear_first_bin() returns -1) then we would
3103 		 * clear any (0xff) bin.
3104 		 * See ecore_mcast_validate_e2() for explanation when it may
3105 		 * happen.
3106 		 */
3107 		bin = ecore_mcast_clear_first_bin(o);
3108 		break;
3109 
3110 	case ECORE_MCAST_CMD_RESTORE:
3111 		bin = cfg_data->bin;
3112 		break;
3113 
3114 	default:
3115 		ECORE_ERR("Unknown command: %d\n", cmd);
3116 		return;
3117 	}
3118 
3119 	ECORE_MSG(pdev, "%s bin %d\n",
3120 		  ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
3121 		   "Setting"  : "Clearing"), bin);
3122 
3123 	data->rules[idx].bin_id    = (u8)bin;
3124 	data->rules[idx].func_id   = func_id;
3125 	data->rules[idx].engine_id = o->engine_id;
3126 }
3127 
3128 /**
3129  * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
3130  *
3131  * @pdev:	device handle
3132  * @o:
3133  * @start_bin:	index in the registry to start from (including)
3134  * @rdata_idx:	index in the ramrod data to start from
3135  *
3136  * returns last handled bin index or -1 if all bins have been handled
3137  */
3138 static INLINE int ecore_mcast_handle_restore_cmd_e2(
3139 	struct _lm_device_t *pdev, struct ecore_mcast_obj *o , int start_bin,
3140 	int *rdata_idx)
3141 {
3142 	int cur_bin, cnt = *rdata_idx;
3143 	union ecore_mcast_config_data cfg_data = {NULL};
3144 
3145 	/* go through the registry and configure the bins from it */
3146 	for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
3147 	    cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
3148 
3149 		cfg_data.bin = (u8)cur_bin;
3150 		o->set_one_rule(pdev, o, cnt, &cfg_data,
3151 				ECORE_MCAST_CMD_RESTORE);
3152 
3153 		cnt++;
3154 
3155 		ECORE_MSG(pdev, "About to configure a bin %d\n", cur_bin);
3156 
3157 		/* Break if we reached the maximum number
3158 		 * of rules.
3159 		 */
3160 		if (cnt >= o->max_cmd_len)
3161 			break;
3162 	}
3163 
3164 	*rdata_idx = cnt;
3165 
3166 	return cur_bin;
3167 }
3168 
3169 static INLINE void ecore_mcast_hdl_pending_add_e2(struct _lm_device_t *pdev,
3170 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3171 	int *line_idx)
3172 {
3173 	struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3174 	int cnt = *line_idx;
3175 	union ecore_mcast_config_data cfg_data = {NULL};
3176 
3177 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
3178 		&cmd_pos->data.macs_head, link, struct ecore_mcast_mac_elem) {
3179 
3180 		cfg_data.mac = &pmac_pos->mac[0];
3181 		o->set_one_rule(pdev, o, cnt, &cfg_data, cmd_pos->type);
3182 
3183 		cnt++;
3184 
3185 		ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3186 			  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3187 
3188 		ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
3189 					&cmd_pos->data.macs_head);
3190 
3191 		/* Break if we reached the maximum number
3192 		 * of rules.
3193 		 */
3194 		if (cnt >= o->max_cmd_len)
3195 			break;
3196 	}
3197 
3198 	*line_idx = cnt;
3199 
3200 	/* if no more MACs to configure - we are done */
3201 	if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
3202 		cmd_pos->done = TRUE;
3203 }
3204 
3205 static INLINE void ecore_mcast_hdl_pending_del_e2(struct _lm_device_t *pdev,
3206 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3207 	int *line_idx)
3208 {
3209 	int cnt = *line_idx;
3210 
3211 	while (cmd_pos->data.macs_num) {
3212 		o->set_one_rule(pdev, o, cnt, NULL, cmd_pos->type);
3213 
3214 		cnt++;
3215 
3216 		cmd_pos->data.macs_num--;
3217 
3218 		  ECORE_MSG(pdev, "Deleting MAC. %d left,cnt is %d\n",
3219 				  cmd_pos->data.macs_num, cnt);
3220 
3221 		/* Break if we reached the maximum
3222 		 * number of rules.
3223 		 */
3224 		if (cnt >= o->max_cmd_len)
3225 			break;
3226 	}
3227 
3228 	*line_idx = cnt;
3229 
3230 	/* If we cleared all bins - we are done */
3231 	if (!cmd_pos->data.macs_num)
3232 		cmd_pos->done = TRUE;
3233 }
3234 
3235 static INLINE void ecore_mcast_hdl_pending_restore_e2(struct _lm_device_t *pdev,
3236 	struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3237 	int *line_idx)
3238 {
3239 	cmd_pos->data.next_bin = o->hdl_restore(pdev, o, cmd_pos->data.next_bin,
3240 						line_idx);
3241 
3242 	if (cmd_pos->data.next_bin < 0)
3243 		/* If o->set_restore returned -1 we are done */
3244 		cmd_pos->done = TRUE;
3245 	else
3246 		/* Start from the next bin next time */
3247 		cmd_pos->data.next_bin++;
3248 }
3249 
3250 static INLINE int ecore_mcast_handle_pending_cmds_e2(struct _lm_device_t *pdev,
3251 				struct ecore_mcast_ramrod_params *p)
3252 {
3253 	struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3254 	int cnt = 0;
3255 	struct ecore_mcast_obj *o = p->mcast_obj;
3256 
3257 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
3258 		&o->pending_cmds_head, link, struct ecore_pending_mcast_cmd) {
3259 		switch (cmd_pos->type) {
3260 		case ECORE_MCAST_CMD_ADD:
3261 			ecore_mcast_hdl_pending_add_e2(pdev, o, cmd_pos, &cnt);
3262 			break;
3263 
3264 		case ECORE_MCAST_CMD_DEL:
3265 			ecore_mcast_hdl_pending_del_e2(pdev, o, cmd_pos, &cnt);
3266 			break;
3267 
3268 		case ECORE_MCAST_CMD_RESTORE:
3269 			ecore_mcast_hdl_pending_restore_e2(pdev, o, cmd_pos,
3270 							   &cnt);
3271 			break;
3272 
3273 		default:
3274 			ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3275 			return ECORE_INVAL;
3276 		}
3277 
3278 		/* If the command has been completed - remove it from the list
3279 		 * and free the memory
3280 		 */
3281 		if (cmd_pos->done) {
3282 			ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
3283 						&o->pending_cmds_head);
3284 			ECORE_FREE(pdev, cmd_pos, cmd_pos->alloc_len);
3285 		}
3286 
3287 		/* Break if we reached the maximum number of rules */
3288 		if (cnt >= o->max_cmd_len)
3289 			break;
3290 	}
3291 
3292 	return cnt;
3293 }
3294 
3295 static INLINE void ecore_mcast_hdl_add(struct _lm_device_t *pdev,
3296 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3297 	int *line_idx)
3298 {
3299 	struct ecore_mcast_list_elem *mlist_pos;
3300 	union ecore_mcast_config_data cfg_data = {NULL};
3301 	int cnt = *line_idx;
3302 
3303 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3304 				  struct ecore_mcast_list_elem) {
3305 		cfg_data.mac = mlist_pos->mac;
3306 		o->set_one_rule(pdev, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
3307 
3308 		cnt++;
3309 
3310 		ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3311 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
3312 	}
3313 
3314 	*line_idx = cnt;
3315 }
3316 
3317 static INLINE void ecore_mcast_hdl_del(struct _lm_device_t *pdev,
3318 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3319 	int *line_idx)
3320 {
3321 	int cnt = *line_idx, i;
3322 
3323 	for (i = 0; i < p->mcast_list_len; i++) {
3324 		o->set_one_rule(pdev, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
3325 
3326 		cnt++;
3327 
3328 		ECORE_MSG(pdev, "Deleting MAC. %d left\n",
3329 			  p->mcast_list_len - i - 1);
3330 	}
3331 
3332 	*line_idx = cnt;
3333 }
3334 
3335 /**
3336  * ecore_mcast_handle_current_cmd -
3337  *
3338  * @pdev:	device handle
3339  * @p:
3340  * @cmd:
3341  * @start_cnt:	first line in the ramrod data that may be used
3342  *
3343  * This function is called iff there is enough place for the current command in
3344  * the ramrod data.
3345  * Returns number of lines filled in the ramrod data in total.
3346  */
3347 static INLINE int ecore_mcast_handle_current_cmd(struct _lm_device_t *pdev,
3348 			struct ecore_mcast_ramrod_params *p,
3349 			enum ecore_mcast_cmd cmd,
3350 			int start_cnt)
3351 {
3352 	struct ecore_mcast_obj *o = p->mcast_obj;
3353 	int cnt = start_cnt;
3354 
3355 	ECORE_MSG(pdev, "p->mcast_list_len=%d\n", p->mcast_list_len);
3356 
3357 	switch (cmd) {
3358 	case ECORE_MCAST_CMD_ADD:
3359 		ecore_mcast_hdl_add(pdev, o, p, &cnt);
3360 		break;
3361 
3362 	case ECORE_MCAST_CMD_DEL:
3363 		ecore_mcast_hdl_del(pdev, o, p, &cnt);
3364 		break;
3365 
3366 	case ECORE_MCAST_CMD_RESTORE:
3367 		o->hdl_restore(pdev, o, 0, &cnt);
3368 		break;
3369 
3370 	default:
3371 		ECORE_ERR("Unknown command: %d\n", cmd);
3372 		return ECORE_INVAL;
3373 	}
3374 
3375 	/* The current command has been handled */
3376 	p->mcast_list_len = 0;
3377 
3378 	return cnt;
3379 }
3380 
3381 static int ecore_mcast_validate_e2(struct _lm_device_t *pdev,
3382 				   struct ecore_mcast_ramrod_params *p,
3383 				   enum ecore_mcast_cmd cmd)
3384 {
3385 	struct ecore_mcast_obj *o = p->mcast_obj;
3386 	int reg_sz = o->get_registry_size(o);
3387 
3388 	switch (cmd) {
3389 	/* DEL command deletes all currently configured MACs */
3390 	case ECORE_MCAST_CMD_DEL:
3391 		o->set_registry_size(o, 0);
3392 		/* Don't break */
3393 
3394 	/* RESTORE command will restore the entire multicast configuration */
3395 	case ECORE_MCAST_CMD_RESTORE:
3396 		/* Here we set the approximate amount of work to do, which in
3397 		 * fact may be only less as some MACs in postponed ADD
3398 		 * command(s) scheduled before this command may fall into
3399 		 * the same bin and the actual number of bins set in the
3400 		 * registry would be less than we estimated here. See
3401 		 * ecore_mcast_set_one_rule_e2() for further details.
3402 		 */
3403 		p->mcast_list_len = reg_sz;
3404 		break;
3405 
3406 	case ECORE_MCAST_CMD_ADD:
3407 	case ECORE_MCAST_CMD_CONT:
3408 		/* Here we assume that all new MACs will fall into new bins.
3409 		 * However we will correct the real registry size after we
3410 		 * handle all pending commands.
3411 		 */
3412 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3413 		break;
3414 
3415 	default:
3416 		ECORE_ERR("Unknown command: %d\n", cmd);
3417 		return ECORE_INVAL;
3418 	}
3419 
3420 	/* Increase the total number of MACs pending to be configured */
3421 	o->total_pending_num += p->mcast_list_len;
3422 
3423 	return ECORE_SUCCESS;
3424 }
3425 
3426 static void ecore_mcast_revert_e2(struct _lm_device_t *pdev,
3427 				      struct ecore_mcast_ramrod_params *p,
3428 				      int old_num_bins)
3429 {
3430 	struct ecore_mcast_obj *o = p->mcast_obj;
3431 
3432 	o->set_registry_size(o, old_num_bins);
3433 	o->total_pending_num -= p->mcast_list_len;
3434 }
3435 
3436 /**
3437  * ecore_mcast_set_rdata_hdr_e2 - sets a header values
3438  *
3439  * @pdev:	device handle
3440  * @p:
3441  * @len:	number of rules to handle
3442  */
3443 static INLINE void ecore_mcast_set_rdata_hdr_e2(struct _lm_device_t *pdev,
3444 					struct ecore_mcast_ramrod_params *p,
3445 					u8 len)
3446 {
3447 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3448 	struct eth_multicast_rules_ramrod_data *data =
3449 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3450 
3451 	data->header.echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
3452 					(ECORE_FILTER_MCAST_PENDING <<
3453 					 ECORE_SWCID_SHIFT));
3454 	data->header.rule_cnt = len;
3455 }
3456 
3457 /**
3458  * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3459  *
3460  * @pdev:	device handle
3461  * @o:
3462  *
3463  * Recalculate the actual number of set bins in the registry using Brian
3464  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3465  *
3466  * returns 0 for the compliance with ecore_mcast_refresh_registry_e1().
3467  */
3468 static INLINE int ecore_mcast_refresh_registry_e2(struct _lm_device_t *pdev,
3469 						  struct ecore_mcast_obj *o)
3470 {
3471 	int i, cnt = 0;
3472 	u64 elem;
3473 
3474 	for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
3475 		elem = o->registry.aprox_match.vec[i];
3476 		for (; elem; cnt++)
3477 			elem &= elem - 1;
3478 	}
3479 
3480 	o->set_registry_size(o, cnt);
3481 
3482 	return ECORE_SUCCESS;
3483 }
3484 
3485 static int ecore_mcast_setup_e2(struct _lm_device_t *pdev,
3486 				struct ecore_mcast_ramrod_params *p,
3487 				enum ecore_mcast_cmd cmd)
3488 {
3489 	struct ecore_raw_obj *raw = &p->mcast_obj->raw;
3490 	struct ecore_mcast_obj *o = p->mcast_obj;
3491 	struct eth_multicast_rules_ramrod_data *data =
3492 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3493 	int cnt = 0, rc;
3494 
3495 	/* Reset the ramrod data buffer */
3496 	mm_memset(data, 0, sizeof(*data));
3497 
3498 	cnt = ecore_mcast_handle_pending_cmds_e2(pdev, p);
3499 
3500 	/* If there are no more pending commands - clear SCHEDULED state */
3501 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3502 		o->clear_sched(o);
3503 
3504 	/* The below may be TRUE iff there was enough room in ramrod
3505 	 * data for all pending commands and for the current
3506 	 * command. Otherwise the current command would have been added
3507 	 * to the pending commands and p->mcast_list_len would have been
3508 	 * zeroed.
3509 	 */
3510 	if (p->mcast_list_len > 0)
3511 		cnt = ecore_mcast_handle_current_cmd(pdev, p, cmd, cnt);
3512 
3513 	/* We've pulled out some MACs - update the total number of
3514 	 * outstanding.
3515 	 */
3516 	o->total_pending_num -= cnt;
3517 
3518 	/* send a ramrod */
3519 	DbgBreakIf(o->total_pending_num < 0);
3520 	DbgBreakIf(cnt > o->max_cmd_len);
3521 
3522 	ecore_mcast_set_rdata_hdr_e2(pdev, p, (u8)cnt);
3523 
3524 	/* Update a registry size if there are no more pending operations.
3525 	 *
3526 	 * We don't want to change the value of the registry size if there are
3527 	 * pending operations because we want it to always be equal to the
3528 	 * exact or the approximate number (see ecore_mcast_validate_e2()) of
3529 	 * set bins after the last requested operation in order to properly
3530 	 * evaluate the size of the next DEL/RESTORE operation.
3531 	 *
3532 	 * Note that we update the registry itself during command(s) handling
3533 	 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
3534 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3535 	 * with a limited amount of update commands (per MAC/bin) and we don't
3536 	 * know in this scope what the actual state of bins configuration is
3537 	 * going to be after this ramrod.
3538 	 */
3539 	if (!o->total_pending_num)
3540 		ecore_mcast_refresh_registry_e2(pdev, o);
3541 
3542 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3543 	 * RAMROD_PENDING status immediately.
3544 	 */
3545 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3546 		raw->clear_pending(raw);
3547 		return ECORE_SUCCESS;
3548 	} else {
3549 		/* No need for an explicit memory barrier here as long as we
3550 		 * ensure the ordering of writing to the SPQ element
3551 		 * and updating of the SPQ producer which involves a memory
3552 		 * read. If the memory read is removed we will have to put a
3553 		 * full memory barrier there (inside ecore_sp_post()).
3554 		 */
3555 
3556 		/* Send a ramrod */
3557 		rc = ecore_sp_post( pdev,
3558 				    RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3559 				    raw->cid,
3560 				    raw->rdata_mapping.as_u64,
3561 				    ETH_CONNECTION_TYPE);
3562 		if (rc)
3563 			return rc;
3564 
3565 		/* Ramrod completion is pending */
3566 		return ECORE_PENDING;
3567 	}
3568 }
3569 
3570 static int ecore_mcast_validate_e1h(struct _lm_device_t *pdev,
3571 				    struct ecore_mcast_ramrod_params *p,
3572 				    enum ecore_mcast_cmd cmd)
3573 {
3574 	/* Mark, that there is a work to do */
3575 	if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
3576 		p->mcast_list_len = 1;
3577 
3578 	return ECORE_SUCCESS;
3579 }
3580 
3581 static void ecore_mcast_revert_e1h(struct _lm_device_t *pdev,
3582 				       struct ecore_mcast_ramrod_params *p,
3583 				       int old_num_bins)
3584 {
3585 	/* Do nothing */
3586 }
3587 
3588 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
3589 do { \
3590 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3591 } while (0)
3592 
3593 static INLINE void ecore_mcast_hdl_add_e1h(struct _lm_device_t *pdev,
3594 					   struct ecore_mcast_obj *o,
3595 					   struct ecore_mcast_ramrod_params *p,
3596 					   u32 *mc_filter)
3597 {
3598 	struct ecore_mcast_list_elem *mlist_pos;
3599 	int bit;
3600 
3601 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3602 				  struct ecore_mcast_list_elem) {
3603 		bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
3604 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3605 
3606 		ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d\n",
3607 			  mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5], bit);
3608 
3609 		/* bookkeeping... */
3610 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3611 				  bit);
3612 	}
3613 }
3614 
3615 static INLINE void ecore_mcast_hdl_restore_e1h(struct _lm_device_t *pdev,
3616 	struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3617 	u32 *mc_filter)
3618 {
3619 	int bit;
3620 
3621 	for (bit = ecore_mcast_get_next_bin(o, 0);
3622 	     bit >= 0;
3623 	     bit = ecore_mcast_get_next_bin(o, bit + 1)) {
3624 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3625 		ECORE_MSG(pdev, "About to set bin %d\n", bit);
3626 	}
3627 }
3628 
3629 /* On 57711 we write the multicast MACs' approximate match
3630  * table by directly into the TSTORM's internal RAM. So we don't
3631  * really need to handle any tricks to make it work.
3632  */
3633 static int ecore_mcast_setup_e1h(struct _lm_device_t *pdev,
3634 				 struct ecore_mcast_ramrod_params *p,
3635 				 enum ecore_mcast_cmd cmd)
3636 {
3637 	int i;
3638 	struct ecore_mcast_obj *o = p->mcast_obj;
3639 	struct ecore_raw_obj *r = &o->raw;
3640 
3641 	/* If CLEAR_ONLY has been requested - clear the registry
3642 	 * and clear a pending bit.
3643 	 */
3644 	if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3645 		u32 mc_filter[MC_HASH_SIZE] = {0};
3646 
3647 		/* Set the multicast filter bits before writing it into
3648 		 * the internal memory.
3649 		 */
3650 		switch (cmd) {
3651 		case ECORE_MCAST_CMD_ADD:
3652 			ecore_mcast_hdl_add_e1h(pdev, o, p, mc_filter);
3653 			break;
3654 
3655 		case ECORE_MCAST_CMD_DEL:
3656 			ECORE_MSG(pdev,
3657 				  "Invalidating multicast MACs configuration\n");
3658 
3659 			/* clear the registry */
3660 			mm_memset(o->registry.aprox_match.vec, 0,
3661 			       sizeof(o->registry.aprox_match.vec));
3662 			break;
3663 
3664 		case ECORE_MCAST_CMD_RESTORE:
3665 			ecore_mcast_hdl_restore_e1h(pdev, o, p, mc_filter);
3666 			break;
3667 
3668 		default:
3669 			ECORE_ERR("Unknown command: %d\n", cmd);
3670 			return ECORE_INVAL;
3671 		}
3672 
3673 		/* Set the mcast filter in the internal memory */
3674 		for (i = 0; i < MC_HASH_SIZE; i++)
3675 			REG_WR(pdev, MC_HASH_OFFSET(pdev, i), mc_filter[i]);
3676 	} else
3677 		/* clear the registry */
3678 		mm_memset(o->registry.aprox_match.vec, 0,
3679 		       sizeof(o->registry.aprox_match.vec));
3680 
3681 	/* We are done */
3682 	r->clear_pending(r);
3683 
3684 	return ECORE_SUCCESS;
3685 }
3686 
3687 static int ecore_mcast_validate_e1(struct _lm_device_t *pdev,
3688 				   struct ecore_mcast_ramrod_params *p,
3689 				   enum ecore_mcast_cmd cmd)
3690 {
3691 	struct ecore_mcast_obj *o = p->mcast_obj;
3692 	int reg_sz = o->get_registry_size(o);
3693 
3694 	switch (cmd) {
3695 	/* DEL command deletes all currently configured MACs */
3696 	case ECORE_MCAST_CMD_DEL:
3697 		o->set_registry_size(o, 0);
3698 		/* Don't break */
3699 
3700 	/* RESTORE command will restore the entire multicast configuration */
3701 	case ECORE_MCAST_CMD_RESTORE:
3702 		p->mcast_list_len = reg_sz;
3703 		  ECORE_MSG(pdev, "Command %d, p->mcast_list_len=%d\n",
3704 				  cmd, p->mcast_list_len);
3705 		break;
3706 
3707 	case ECORE_MCAST_CMD_ADD:
3708 	case ECORE_MCAST_CMD_CONT:
3709 		/* Multicast MACs on 57710 are configured as unicast MACs and
3710 		 * there is only a limited number of CAM entries for that
3711 		 * matter.
3712 		 */
3713 		if (p->mcast_list_len > o->max_cmd_len) {
3714 			ECORE_ERR("Can't configure more than %d multicast MACs on 57710\n",
3715 				  o->max_cmd_len);
3716 			return ECORE_INVAL;
3717 		}
3718 		/* Every configured MAC should be cleared if DEL command is
3719 		 * called. Only the last ADD command is relevant as long as
3720 		 * every ADD commands overrides the previous configuration.
3721 		 */
3722 		ECORE_MSG(pdev, "p->mcast_list_len=%d\n", p->mcast_list_len);
3723 		if (p->mcast_list_len > 0)
3724 			o->set_registry_size(o, p->mcast_list_len);
3725 
3726 		break;
3727 
3728 	default:
3729 		ECORE_ERR("Unknown command: %d\n", cmd);
3730 		return ECORE_INVAL;
3731 	}
3732 
3733 	/* We want to ensure that commands are executed one by one for 57710.
3734 	 * Therefore each none-empty command will consume o->max_cmd_len.
3735 	 */
3736 	if (p->mcast_list_len)
3737 		o->total_pending_num += o->max_cmd_len;
3738 
3739 	return ECORE_SUCCESS;
3740 }
3741 
3742 static void ecore_mcast_revert_e1(struct _lm_device_t *pdev,
3743 				      struct ecore_mcast_ramrod_params *p,
3744 				      int old_num_macs)
3745 {
3746 	struct ecore_mcast_obj *o = p->mcast_obj;
3747 
3748 	o->set_registry_size(o, old_num_macs);
3749 
3750 	/* If current command hasn't been handled yet and we are
3751 	 * here means that it's meant to be dropped and we have to
3752 	 * update the number of outstanding MACs accordingly.
3753 	 */
3754 	if (p->mcast_list_len)
3755 		o->total_pending_num -= o->max_cmd_len;
3756 }
3757 
3758 static void ecore_mcast_set_one_rule_e1(struct _lm_device_t *pdev,
3759 					struct ecore_mcast_obj *o, int idx,
3760 					union ecore_mcast_config_data *cfg_data,
3761 					enum ecore_mcast_cmd cmd)
3762 {
3763 	struct ecore_raw_obj *r = &o->raw;
3764 	struct mac_configuration_cmd *data =
3765 		(struct mac_configuration_cmd *)(r->rdata);
3766 
3767 	/* copy mac */
3768 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE)) {
3769 		ecore_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3770 				      &data->config_table[idx].middle_mac_addr,
3771 				      &data->config_table[idx].lsb_mac_addr,
3772 				      cfg_data->mac);
3773 
3774 		data->config_table[idx].vlan_id = 0;
3775 		data->config_table[idx].pf_id = r->func_id;
3776 		data->config_table[idx].clients_bit_vector =
3777 			mm_cpu_to_le32(1 << r->cl_id);
3778 
3779 		ECORE_SET_FLAG(data->config_table[idx].flags,
3780 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3781 			       T_ETH_MAC_COMMAND_SET);
3782 	}
3783 }
3784 
3785 /**
3786  * ecore_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3787  *
3788  * @pdev:	device handle
3789  * @p:
3790  * @len:	number of rules to handle
3791  */
3792 static INLINE void ecore_mcast_set_rdata_hdr_e1(struct _lm_device_t *pdev,
3793 					struct ecore_mcast_ramrod_params *p,
3794 					u8 len)
3795 {
3796 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
3797 	struct mac_configuration_cmd *data =
3798 		(struct mac_configuration_cmd *)(r->rdata);
3799 
3800 	u8 offset = (CHIP_REV_IS_SLOW(pdev) ?
3801 		     ECORE_MAX_EMUL_MULTI*(1 + r->func_id) :
3802 		     ECORE_MAX_MULTICAST*(1 + r->func_id));
3803 
3804 	data->hdr.offset = offset;
3805 	data->hdr.client_id = mm_cpu_to_le16(0xff);
3806 	data->hdr.echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
3807 				     (ECORE_FILTER_MCAST_PENDING <<
3808 				      ECORE_SWCID_SHIFT));
3809 	data->hdr.length = len;
3810 }
3811 
3812 /**
3813  * ecore_mcast_handle_restore_cmd_e1 - restore command for 57710
3814  *
3815  * @pdev:	device handle
3816  * @o:
3817  * @start_idx:	index in the registry to start from
3818  * @rdata_idx:	index in the ramrod data to start from
3819  *
3820  * restore command for 57710 is like all other commands - always a stand alone
3821  * command - start_idx and rdata_idx will always be 0. This function will always
3822  * succeed.
3823  * returns -1 to comply with 57712 variant.
3824  */
3825 static INLINE int ecore_mcast_handle_restore_cmd_e1(
3826 	struct _lm_device_t *pdev, struct ecore_mcast_obj *o , int start_idx,
3827 	int *rdata_idx)
3828 {
3829 	struct ecore_mcast_mac_elem *elem;
3830 	int i = 0;
3831 	union ecore_mcast_config_data cfg_data = {NULL};
3832 
3833 	/* go through the registry and configure the MACs from it. */
3834 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->registry.exact_match.macs, link,
3835 				  struct ecore_mcast_mac_elem) {
3836 		cfg_data.mac = &elem->mac[0];
3837 		o->set_one_rule(pdev, o, i, &cfg_data, ECORE_MCAST_CMD_RESTORE);
3838 
3839 		i++;
3840 
3841 		ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3842 			  cfg_data.mac[0], cfg_data.mac[1], cfg_data.mac[2], cfg_data.mac[3], cfg_data.mac[4], cfg_data.mac[5]);
3843 	}
3844 
3845 	*rdata_idx = i;
3846 
3847 	return -1;
3848 }
3849 
3850 static INLINE int ecore_mcast_handle_pending_cmds_e1(
3851 	struct _lm_device_t *pdev, struct ecore_mcast_ramrod_params *p)
3852 {
3853 	struct ecore_pending_mcast_cmd *cmd_pos;
3854 	struct ecore_mcast_mac_elem *pmac_pos;
3855 	struct ecore_mcast_obj *o = p->mcast_obj;
3856 	union ecore_mcast_config_data cfg_data = {NULL};
3857 	int cnt = 0;
3858 
3859 	/* If nothing to be done - return */
3860 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3861 		return 0;
3862 
3863 	/* Handle the first command */
3864 	cmd_pos = ECORE_LIST_FIRST_ENTRY(&o->pending_cmds_head,
3865 					 struct ecore_pending_mcast_cmd, link);
3866 
3867 	switch (cmd_pos->type) {
3868 	case ECORE_MCAST_CMD_ADD:
3869 		ECORE_LIST_FOR_EACH_ENTRY(pmac_pos, &cmd_pos->data.macs_head,
3870 					  link, struct ecore_mcast_mac_elem) {
3871 			cfg_data.mac = &pmac_pos->mac[0];
3872 			o->set_one_rule(pdev, o, cnt, &cfg_data, cmd_pos->type);
3873 
3874 			cnt++;
3875 
3876 			ECORE_MSG(pdev, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3877 				  pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3878 		}
3879 		break;
3880 
3881 	case ECORE_MCAST_CMD_DEL:
3882 		cnt = cmd_pos->data.macs_num;
3883 		ECORE_MSG(pdev, "About to delete %d multicast MACs\n", cnt);
3884 		break;
3885 
3886 	case ECORE_MCAST_CMD_RESTORE:
3887 		o->hdl_restore(pdev, o, 0, &cnt);
3888 		break;
3889 
3890 	default:
3891 		ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3892 		return ECORE_INVAL;
3893 	}
3894 
3895 	ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link, &o->pending_cmds_head);
3896 	ECORE_FREE(pdev, cmd_pos, cmd_pos->alloc_len);
3897 
3898 	return cnt;
3899 }
3900 
3901 /**
3902  * ecore_get_fw_mac_addr - revert the ecore_set_fw_mac_addr().
3903  *
3904  * @fw_hi:
3905  * @fw_mid:
3906  * @fw_lo:
3907  * @mac:
3908  */
3909 static INLINE void ecore_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3910 					 __le16 *fw_lo, u8 *mac)
3911 {
3912 	mac[1] = ((u8 *)fw_hi)[0];
3913 	mac[0] = ((u8 *)fw_hi)[1];
3914 	mac[3] = ((u8 *)fw_mid)[0];
3915 	mac[2] = ((u8 *)fw_mid)[1];
3916 	mac[5] = ((u8 *)fw_lo)[0];
3917 	mac[4] = ((u8 *)fw_lo)[1];
3918 }
3919 
3920 /**
3921  * ecore_mcast_refresh_registry_e1 -
3922  *
3923  * @pdev:	device handle
3924  * @cnt:
3925  *
3926  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3927  * and update the registry correspondingly: if ADD - allocate a memory and add
3928  * the entries to the registry (list), if DELETE - clear the registry and free
3929  * the memory.
3930  */
3931 static INLINE int ecore_mcast_refresh_registry_e1(struct _lm_device_t *pdev,
3932 						  struct ecore_mcast_obj *o)
3933 {
3934 	struct ecore_raw_obj *raw = &o->raw;
3935 	struct ecore_mcast_mac_elem *elem;
3936 	struct mac_configuration_cmd *data =
3937 			(struct mac_configuration_cmd *)(raw->rdata);
3938 
3939 	/* If first entry contains a SET bit - the command was ADD,
3940 	 * otherwise - DEL_ALL
3941 	 */
3942 	if (ECORE_GET_FLAG(data->config_table[0].flags,
3943 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3944 		int i, len = data->hdr.length;
3945 
3946 		/* Break if it was a RESTORE command */
3947 		if (!ECORE_LIST_IS_EMPTY(&o->registry.exact_match.macs))
3948 			return ECORE_SUCCESS;
3949 
3950 		elem = ECORE_CALLOC(len, sizeof(*elem), GFP_ATOMIC, pdev);
3951 		if (!elem) {
3952 			ECORE_ERR("Failed to allocate registry memory\n");
3953 			return ECORE_NOMEM;
3954 		}
3955 
3956 		for (i = 0; i < len; i++, elem++) {
3957 			ecore_get_fw_mac_addr(
3958 				&data->config_table[i].msb_mac_addr,
3959 				&data->config_table[i].middle_mac_addr,
3960 				&data->config_table[i].lsb_mac_addr,
3961 				elem->mac);
3962 			ECORE_MSG(pdev, "Adding registry entry for [%02x:%02x:%02x:%02x:%02x:%02x]\n",
3963 				  elem->mac[0], elem->mac[1], elem->mac[2], elem->mac[3], elem->mac[4], elem->mac[5]);
3964 			ECORE_LIST_PUSH_TAIL(&elem->link,
3965 					     &o->registry.exact_match.macs);
3966 		}
3967 	} else {
3968 		elem = ECORE_LIST_FIRST_ENTRY(&o->registry.exact_match.macs,
3969 					      struct ecore_mcast_mac_elem,
3970 					      link);
3971 		ECORE_MSG(pdev, "Deleting a registry\n");
3972 		ECORE_FREE(pdev, elem, sizeof(*elem));
3973 		ECORE_LIST_INIT(&o->registry.exact_match.macs);
3974 	}
3975 
3976 	return ECORE_SUCCESS;
3977 }
3978 
3979 static int ecore_mcast_setup_e1(struct _lm_device_t *pdev,
3980 				struct ecore_mcast_ramrod_params *p,
3981 				enum ecore_mcast_cmd cmd)
3982 {
3983 	struct ecore_mcast_obj *o = p->mcast_obj;
3984 	struct ecore_raw_obj *raw = &o->raw;
3985 	struct mac_configuration_cmd *data =
3986 		(struct mac_configuration_cmd *)(raw->rdata);
3987 	int cnt = 0, i, rc;
3988 
3989 	/* Reset the ramrod data buffer */
3990 	mm_memset(data, 0, sizeof(*data));
3991 
3992 	/* First set all entries as invalid */
3993 	for (i = 0; i < o->max_cmd_len ; i++)
3994 		ECORE_SET_FLAG(data->config_table[i].flags,
3995 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3996 			T_ETH_MAC_COMMAND_INVALIDATE);
3997 
3998 	/* Handle pending commands first */
3999 	cnt = ecore_mcast_handle_pending_cmds_e1(pdev, p);
4000 
4001 	/* If there are no more pending commands - clear SCHEDULED state */
4002 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
4003 		o->clear_sched(o);
4004 
4005 	/* The below may be TRUE iff there were no pending commands */
4006 	if (!cnt)
4007 		cnt = ecore_mcast_handle_current_cmd(pdev, p, cmd, 0);
4008 
4009 	/* For 57710 every command has o->max_cmd_len length to ensure that
4010 	 * commands are done one at a time.
4011 	 */
4012 	o->total_pending_num -= o->max_cmd_len;
4013 
4014 	/* send a ramrod */
4015 
4016 	DbgBreakIf(cnt > o->max_cmd_len);
4017 
4018 	/* Set ramrod header (in particular, a number of entries to update) */
4019 	ecore_mcast_set_rdata_hdr_e1(pdev, p, (u8)cnt);
4020 
4021 	/* update a registry: we need the registry contents to be always up
4022 	 * to date in order to be able to execute a RESTORE opcode. Here
4023 	 * we use the fact that for 57710 we sent one command at a time
4024 	 * hence we may take the registry update out of the command handling
4025 	 * and do it in a simpler way here.
4026 	 */
4027 	rc = ecore_mcast_refresh_registry_e1(pdev, o);
4028 	if (rc)
4029 		return rc;
4030 
4031 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
4032 	 * RAMROD_PENDING status immediately.
4033 	 */
4034 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4035 		raw->clear_pending(raw);
4036 		return ECORE_SUCCESS;
4037 	} else {
4038 		/* No need for an explicit memory barrier here as long as we
4039 		 * ensure the ordering of writing to the SPQ element
4040 		 * and updating of the SPQ producer which involves a memory
4041 		 * read. If the memory read is removed we will have to put a
4042 		 * full memory barrier there (inside ecore_sp_post()).
4043 		 */
4044 
4045 		/* Send a ramrod */
4046 		rc = ecore_sp_post( pdev,
4047 				    RAMROD_CMD_ID_ETH_SET_MAC,
4048 				    raw->cid,
4049 				    raw->rdata_mapping.as_u64,
4050 				    ETH_CONNECTION_TYPE);
4051 		if (rc)
4052 			return rc;
4053 
4054 		/* Ramrod completion is pending */
4055 		return ECORE_PENDING;
4056 	}
4057 }
4058 
4059 static int ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj *o)
4060 {
4061 	return o->registry.exact_match.num_macs_set;
4062 }
4063 
4064 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
4065 {
4066 	return o->registry.aprox_match.num_bins_set;
4067 }
4068 
4069 static void ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj *o,
4070 						int n)
4071 {
4072 	o->registry.exact_match.num_macs_set = n;
4073 }
4074 
4075 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
4076 						int n)
4077 {
4078 	o->registry.aprox_match.num_bins_set = n;
4079 }
4080 
4081 int ecore_config_mcast(struct _lm_device_t *pdev,
4082 		       struct ecore_mcast_ramrod_params *p,
4083 		       enum ecore_mcast_cmd cmd)
4084 {
4085 	struct ecore_mcast_obj *o = p->mcast_obj;
4086 	struct ecore_raw_obj *r = &o->raw;
4087 	int rc = 0, old_reg_size;
4088 
4089 	/* This is needed to recover number of currently configured mcast macs
4090 	 * in case of failure.
4091 	 */
4092 	old_reg_size = o->get_registry_size(o);
4093 
4094 	/* Do some calculations and checks */
4095 	rc = o->validate(pdev, p, cmd);
4096 	if (rc)
4097 		return rc;
4098 
4099 	/* Return if there is no work to do */
4100 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
4101 		return ECORE_SUCCESS;
4102 
4103 	ECORE_MSG(pdev, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4104 		  o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4105 
4106 	/* Enqueue the current command to the pending list if we can't complete
4107 	 * it in the current iteration
4108 	 */
4109 	if (r->check_pending(r) ||
4110 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4111 		rc = o->enqueue_cmd(pdev, p->mcast_obj, p, cmd);
4112 		if (rc < 0)
4113 			goto error_exit1;
4114 
4115 		/* As long as the current command is in a command list we
4116 		 * don't need to handle it separately.
4117 		 */
4118 		p->mcast_list_len = 0;
4119 	}
4120 
4121 	if (!r->check_pending(r)) {
4122 
4123 		/* Set 'pending' state */
4124 		r->set_pending(r);
4125 
4126 		/* Configure the new classification in the chip */
4127 		rc = o->config_mcast(pdev, p, cmd);
4128 		if (rc < 0)
4129 			goto error_exit2;
4130 
4131 		/* Wait for a ramrod completion if was requested */
4132 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4133 			rc = o->wait_comp(pdev, o);
4134 	}
4135 
4136 	return rc;
4137 
4138 error_exit2:
4139 	r->clear_pending(r);
4140 
4141 error_exit1:
4142 	o->revert(pdev, p, old_reg_size);
4143 
4144 	return rc;
4145 }
4146 
4147 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
4148 {
4149 	smp_mb__before_atomic();
4150 	ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
4151 	smp_mb__after_atomic();
4152 }
4153 
4154 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
4155 {
4156 	smp_mb__before_atomic();
4157 	ECORE_SET_BIT(o->sched_state, o->raw.pstate);
4158 	smp_mb__after_atomic();
4159 }
4160 
4161 static BOOL ecore_mcast_check_sched(struct ecore_mcast_obj *o)
4162 {
4163 	return !!ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
4164 }
4165 
4166 static BOOL ecore_mcast_check_pending(struct ecore_mcast_obj *o)
4167 {
4168 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
4169 }
4170 #ifndef ECORE_ERASE
4171 typedef int (*enqueue_cmd_func)(struct _lm_device_t *pdev,
4172 				struct ecore_mcast_obj *o,
4173 				struct ecore_mcast_ramrod_params *p,
4174 				enum ecore_mcast_cmd cmd);
4175 
4176 typedef int (*hdl_restore_func)(struct _lm_device_t *pdev,
4177 				struct ecore_mcast_obj *o,
4178 				int start_bin, int *rdata_idx);
4179 
4180 typedef void (*set_one_rule_func)(struct _lm_device_t *pdev,
4181 				  struct ecore_mcast_obj *o, int idx,
4182 				  union ecore_mcast_config_data *cfg_data,
4183 				  enum ecore_mcast_cmd cmd);
4184 #endif
4185 
4186 void ecore_init_mcast_obj(struct _lm_device_t *pdev,
4187 			  struct ecore_mcast_obj *mcast_obj,
4188 			  u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4189 			  u8 engine_id, void *rdata, lm_address_t rdata_mapping,
4190 			  int state, unsigned long *pstate, ecore_obj_type type)
4191 {
4192 	mm_memset(mcast_obj, 0, sizeof(*mcast_obj));
4193 
4194 	ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4195 			   rdata, rdata_mapping, state, pstate, type);
4196 
4197 	mcast_obj->engine_id = engine_id;
4198 
4199 	ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
4200 
4201 	mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
4202 	mcast_obj->check_sched = ecore_mcast_check_sched;
4203 	mcast_obj->set_sched = ecore_mcast_set_sched;
4204 	mcast_obj->clear_sched = ecore_mcast_clear_sched;
4205 
4206 	if (CHIP_IS_E1(pdev)) {
4207 		mcast_obj->config_mcast      = ecore_mcast_setup_e1;
4208 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
4209 		mcast_obj->hdl_restore       =
4210 			ecore_mcast_handle_restore_cmd_e1;
4211 		mcast_obj->check_pending     = ecore_mcast_check_pending;
4212 
4213 		if (CHIP_REV_IS_SLOW(pdev))
4214 			mcast_obj->max_cmd_len = ECORE_MAX_EMUL_MULTI;
4215 		else
4216 			mcast_obj->max_cmd_len = ECORE_MAX_MULTICAST;
4217 
4218 		mcast_obj->wait_comp         = ecore_mcast_wait;
4219 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e1;
4220 		mcast_obj->validate          = ecore_mcast_validate_e1;
4221 		mcast_obj->revert            = ecore_mcast_revert_e1;
4222 		mcast_obj->get_registry_size =
4223 			ecore_mcast_get_registry_size_exact;
4224 		mcast_obj->set_registry_size =
4225 			ecore_mcast_set_registry_size_exact;
4226 
4227 		/* 57710 is the only chip that uses the exact match for mcast
4228 		 * at the moment.
4229 		 */
4230 		ECORE_LIST_INIT(&mcast_obj->registry.exact_match.macs);
4231 
4232 	} else if (CHIP_IS_E1H(pdev)) {
4233 		mcast_obj->config_mcast  = ecore_mcast_setup_e1h;
4234 		mcast_obj->enqueue_cmd   = (enqueue_cmd_func)NULL;
4235 		mcast_obj->hdl_restore   = (hdl_restore_func)NULL;
4236 		mcast_obj->check_pending = ecore_mcast_check_pending;
4237 
4238 		/* 57711 doesn't send a ramrod, so it has unlimited credit
4239 		 * for one command.
4240 		 */
4241 		mcast_obj->max_cmd_len       = -1;
4242 		mcast_obj->wait_comp         = ecore_mcast_wait;
4243 		mcast_obj->set_one_rule      = (set_one_rule_func)NULL;
4244 		mcast_obj->validate          = ecore_mcast_validate_e1h;
4245 		mcast_obj->revert            = ecore_mcast_revert_e1h;
4246 		mcast_obj->get_registry_size =
4247 			ecore_mcast_get_registry_size_aprox;
4248 		mcast_obj->set_registry_size =
4249 			ecore_mcast_set_registry_size_aprox;
4250 	} else {
4251 		mcast_obj->config_mcast      = ecore_mcast_setup_e2;
4252 		mcast_obj->enqueue_cmd       = ecore_mcast_enqueue_cmd;
4253 		mcast_obj->hdl_restore       =
4254 			ecore_mcast_handle_restore_cmd_e2;
4255 		mcast_obj->check_pending     = ecore_mcast_check_pending;
4256 		/* TODO: There should be a proper HSI define for this number!!!
4257 		 */
4258 		mcast_obj->max_cmd_len       = 16;
4259 		mcast_obj->wait_comp         = ecore_mcast_wait;
4260 		mcast_obj->set_one_rule      = ecore_mcast_set_one_rule_e2;
4261 		mcast_obj->validate          = ecore_mcast_validate_e2;
4262 		mcast_obj->revert            = ecore_mcast_revert_e2;
4263 		mcast_obj->get_registry_size =
4264 			ecore_mcast_get_registry_size_aprox;
4265 		mcast_obj->set_registry_size =
4266 			ecore_mcast_set_registry_size_aprox;
4267 	}
4268 }
4269 
4270 /*************************** Credit handling **********************************/
4271 
4272 /**
4273  * atomic_add_ifless - add if the result is less than a given value.
4274  *
4275  * @v:	pointer of type atomic_t
4276  * @a:	the amount to add to v...
4277  * @u:	...if (v + a) is less than u.
4278  *
4279  * returns TRUE if (v + a) was less than u, and FALSE otherwise.
4280  *
4281  */
4282 static INLINE BOOL __atomic_add_ifless(atomic_t *v, int a, int u)
4283 {
4284 	int c, old;
4285 
4286 	c = ecore_atomic_read(v);
4287 	for (;;) {
4288 		if (ECORE_UNLIKELY(c + a >= u))
4289 			return FALSE;
4290 
4291 		old = ecore_atomic_cmpxchg((v), c, c + a);
4292 		if (ECORE_LIKELY(old == c))
4293 			break;
4294 		c = old;
4295 	}
4296 
4297 	return TRUE;
4298 }
4299 
4300 /**
4301  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4302  *
4303  * @v:	pointer of type atomic_t
4304  * @a:	the amount to dec from v...
4305  * @u:	...if (v - a) is more or equal than u.
4306  *
4307  * returns TRUE if (v - a) was more or equal than u, and FALSE
4308  * otherwise.
4309  */
4310 static INLINE BOOL __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4311 {
4312 	int c, old;
4313 
4314 	c = ecore_atomic_read(v);
4315 	for (;;) {
4316 		if (ECORE_UNLIKELY(c - a < u))
4317 			return FALSE;
4318 
4319 		old = ecore_atomic_cmpxchg((v), c, c - a);
4320 		if (ECORE_LIKELY(old == c))
4321 			break;
4322 		c = old;
4323 	}
4324 
4325 	return TRUE;
4326 }
4327 
4328 static BOOL ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
4329 {
4330 	BOOL rc;
4331 
4332 	smp_mb();
4333 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4334 	smp_mb();
4335 
4336 	return rc;
4337 }
4338 
4339 static BOOL ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
4340 {
4341 	BOOL rc;
4342 
4343 	smp_mb();
4344 
4345 	/* Don't let to refill if credit + cnt > pool_sz */
4346 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4347 
4348 	smp_mb();
4349 
4350 	return rc;
4351 }
4352 
4353 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
4354 {
4355 	int cur_credit;
4356 
4357 	smp_mb();
4358 	cur_credit = ecore_atomic_read(&o->credit);
4359 
4360 	return cur_credit;
4361 }
4362 
4363 static BOOL ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj *o,
4364 					  int cnt)
4365 {
4366 	return TRUE;
4367 }
4368 
4369 static BOOL ecore_credit_pool_get_entry(
4370 	struct ecore_credit_pool_obj *o,
4371 	int *offset)
4372 {
4373 	int idx, vec, i;
4374 
4375 	*offset = -1;
4376 
4377 	/* Find "internal cam-offset" then add to base for this object... */
4378 	for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
4379 
4380 		/* Skip the current vector if there are no free entries in it */
4381 		if (!o->pool_mirror[vec])
4382 			continue;
4383 
4384 		/* If we've got here we are going to find a free entry */
4385 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4386 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4387 
4388 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4389 				/* Got one!! */
4390 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4391 				*offset = o->base_pool_offset + idx;
4392 				return TRUE;
4393 			}
4394 	}
4395 
4396 	return FALSE;
4397 }
4398 
4399 static BOOL ecore_credit_pool_put_entry(
4400 	struct ecore_credit_pool_obj *o,
4401 	int offset)
4402 {
4403 	if (offset < o->base_pool_offset)
4404 		return FALSE;
4405 
4406 	offset -= o->base_pool_offset;
4407 
4408 	if (offset >= o->pool_sz)
4409 		return FALSE;
4410 
4411 	/* Return the entry to the pool */
4412 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4413 
4414 	return TRUE;
4415 }
4416 
4417 static BOOL ecore_credit_pool_put_entry_always_TRUE(
4418 	struct ecore_credit_pool_obj *o,
4419 	int offset)
4420 {
4421 	return TRUE;
4422 }
4423 
4424 static BOOL ecore_credit_pool_get_entry_always_TRUE(
4425 	struct ecore_credit_pool_obj *o,
4426 	int *offset)
4427 {
4428 	*offset = -1;
4429 	return TRUE;
4430 }
4431 /**
4432  * ecore_init_credit_pool - initialize credit pool internals.
4433  *
4434  * @p:
4435  * @base:	Base entry in the CAM to use.
4436  * @credit:	pool size.
4437  *
4438  * If base is negative no CAM entries handling will be performed.
4439  * If credit is negative pool operations will always succeed (unlimited pool).
4440  *
4441  */
4442 static INLINE void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
4443 					  int base, int credit)
4444 {
4445 	/* Zero the object first */
4446 	mm_memset(p, 0, sizeof(*p));
4447 
4448 	/* Set the table to all 1s */
4449 	mm_memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4450 
4451 	/* Init a pool as full */
4452 	ecore_atomic_set(&p->credit, credit);
4453 
4454 	/* The total poll size */
4455 	p->pool_sz = credit;
4456 
4457 	p->base_pool_offset = base;
4458 
4459 	/* Commit the change */
4460 	smp_mb();
4461 
4462 	p->check = ecore_credit_pool_check;
4463 
4464 	/* if pool credit is negative - disable the checks */
4465 	if (credit >= 0) {
4466 		p->put      = ecore_credit_pool_put;
4467 		p->get      = ecore_credit_pool_get;
4468 		p->put_entry = ecore_credit_pool_put_entry;
4469 		p->get_entry = ecore_credit_pool_get_entry;
4470 	} else {
4471 		p->put      = ecore_credit_pool_always_TRUE;
4472 		p->get      = ecore_credit_pool_always_TRUE;
4473 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4474 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4475 	}
4476 
4477 	/* If base is negative - disable entries handling */
4478 	if (base < 0) {
4479 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4480 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4481 	}
4482 }
4483 
4484 void ecore_init_mac_credit_pool(struct _lm_device_t *pdev,
4485 				struct ecore_credit_pool_obj *p, u8 func_id,
4486 				u8 func_num)
4487 {
4488 /* TODO: this will be defined in consts as well... */
4489 #define ECORE_CAM_SIZE_EMUL 5
4490 
4491 	int cam_sz;
4492 
4493 	if (CHIP_IS_E1(pdev)) {
4494 		/* In E1, Multicast is saved in cam... */
4495 		if (!CHIP_REV_IS_SLOW(pdev))
4496 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - ECORE_MAX_MULTICAST;
4497 		else
4498 			cam_sz = ECORE_CAM_SIZE_EMUL - ECORE_MAX_EMUL_MULTI;
4499 
4500 		ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4501 
4502 	} else if (CHIP_IS_E1H(pdev)) {
4503 		/* CAM credit is equally divided between all active functions
4504 		 * on the PORT!.
4505 		 */
4506 		if ((func_num > 0)) {
4507 			if (!CHIP_REV_IS_SLOW(pdev))
4508 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4509 			else
4510 				cam_sz = ECORE_CAM_SIZE_EMUL;
4511 			ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4512 		} else {
4513 			/* this should never happen! Block MAC operations. */
4514 			ecore_init_credit_pool(p, 0, 0);
4515 		}
4516 
4517 	} else {
4518 
4519 		/*
4520 		 * CAM credit is equaly divided between all active functions
4521 		 * on the PATH.
4522 		 */
4523 		if ((func_num > 1)) {
4524 			if (!CHIP_REV_IS_SLOW(pdev))
4525 				cam_sz = (MAX_MAC_CREDIT_E2
4526 				- GET_NUM_VFS_PER_PATH(pdev))
4527 				/ func_num
4528 				+ GET_NUM_VFS_PER_PF(pdev);
4529 			else
4530 				cam_sz = ECORE_CAM_SIZE_EMUL;
4531 
4532 			/* No need for CAM entries handling for 57712 and
4533 			 * newer.
4534 			 */
4535 			ecore_init_credit_pool(p, -1, cam_sz);
4536 		} else if (func_num == 1) {
4537 			if (!CHIP_REV_IS_SLOW(pdev))
4538 				cam_sz = MAX_MAC_CREDIT_E2;
4539 			else
4540 				cam_sz = ECORE_CAM_SIZE_EMUL;
4541 
4542 			/* No need for CAM entries handling for 57712 and
4543 			 * newer.
4544 			 */
4545 			ecore_init_credit_pool(p, -1, cam_sz);
4546 		} else {
4547 			/* this should never happen! Block MAC operations. */
4548 			ecore_init_credit_pool(p, 0, 0);
4549 		}
4550 	}
4551 }
4552 
4553 void ecore_init_vlan_credit_pool(struct _lm_device_t *pdev,
4554 				 struct ecore_credit_pool_obj *p,
4555 				 u8 func_id,
4556 				 u8 func_num)
4557 {
4558 	if (CHIP_IS_E1x(pdev)) {
4559 		/* There is no VLAN credit in HW on 57710 and 57711 only
4560 		 * MAC / MAC-VLAN can be set
4561 		 */
4562 		ecore_init_credit_pool(p, 0, -1);
4563 	} else {
4564 		/* CAM credit is equally divided between all active functions
4565 		 * on the PATH.
4566 		 */
4567 		if (func_num > 0) {
4568 			int credit = MAX_VLAN_CREDIT_E2 / func_num;
4569 			ecore_init_credit_pool(p, func_id * credit, credit);
4570 		} else
4571 			/* this should never happen! Block VLAN operations. */
4572 			ecore_init_credit_pool(p, 0, 0);
4573 	}
4574 }
4575 
4576 /****************** RSS Configuration ******************/
4577 #if defined(ECORE_ERASE) && !defined(__FreeBSD__)
4578 /**
4579  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4580  *
4581  * @bp:		driver handle
4582  * @p:		pointer to rss configuration
4583  *
4584  * Prints it when NETIF_MSG_IFUP debug level is configured.
4585  */
4586 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4587 					struct bnx2x_config_rss_params *p)
4588 {
4589 	int i;
4590 
4591 	DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4592 	DP(BNX2X_MSG_SP, "0x0000: ");
4593 	for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4594 		DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4595 
4596 		/* Print 4 bytes in a line */
4597 		if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4598 		    (((i + 1) & 0x3) == 0)) {
4599 			DP_CONT(BNX2X_MSG_SP, "\n");
4600 			DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4601 		}
4602 	}
4603 
4604 	DP_CONT(BNX2X_MSG_SP, "\n");
4605 }
4606 #endif /* ECORE_ERASE && !__FreeBSD__ */
4607 
4608 /**
4609  * ecore_setup_rss - configure RSS
4610  *
4611  * @pdev:	device handle
4612  * @p:		rss configuration
4613  *
4614  * sends on UPDATE ramrod for that matter.
4615  */
4616 static int ecore_setup_rss(struct _lm_device_t *pdev,
4617 			   struct ecore_config_rss_params *p)
4618 {
4619 	struct ecore_rss_config_obj *o = p->rss_obj;
4620 	struct ecore_raw_obj *r = &o->raw;
4621 	struct eth_rss_update_ramrod_data *data =
4622 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4623 	u16 caps = 0;
4624 	u8 rss_mode = 0;
4625 	int rc;
4626 
4627 	mm_memset(data, 0, sizeof(*data));
4628 
4629 	ECORE_MSG(pdev, "Configuring RSS\n");
4630 
4631 	/* Set an echo field */
4632 	data->echo = mm_cpu_to_le32((r->cid & ECORE_SWCID_MASK) |
4633 				 (r->state << ECORE_SWCID_SHIFT));
4634 
4635 	/* RSS mode */
4636 	if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
4637 		rss_mode = ETH_RSS_MODE_DISABLED;
4638 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
4639 		rss_mode = ETH_RSS_MODE_REGULAR;
4640 #if defined(__VMKLNX__) && (VMWARE_ESX_DDK_VERSION < 55000) /* ! BNX2X_UPSTREAM */
4641 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_ESX51, &p->rss_flags))
4642 		rss_mode = ETH_RSS_MODE_ESX51;
4643 #endif
4644 
4645 	data->rss_mode = rss_mode;
4646 
4647 	ECORE_MSG(pdev, "rss_mode=%d\n", rss_mode);
4648 
4649 	/* RSS capabilities */
4650 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
4651 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4652 
4653 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
4654 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4655 
4656 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
4657 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4658 
4659 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
4660 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4661 
4662 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
4663 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4664 
4665 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
4666 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4667 
4668 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_VXLAN, &p->rss_flags))
4669 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4670 
4671 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_VXLAN, &p->rss_flags))
4672 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4673 
4674 	if (ECORE_TEST_BIT(ECORE_RSS_NVGRE_KEY_ENTROPY, &p->rss_flags))
4675 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_NVGRE_KEY_ENTROPY_CAPABILITY;
4676 
4677 	if (ECORE_TEST_BIT(ECORE_RSS_GRE_INNER_HDRS, &p->rss_flags))
4678 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_GRE_INNER_HDRS_CAPABILITY;
4679 
4680 	data->capabilities = mm_cpu_to_le16(caps);
4681 
4682 	/* Hashing mask */
4683 	data->rss_result_mask = p->rss_result_mask;
4684 
4685 	/* RSS engine ID */
4686 	data->rss_engine_id = o->engine_id;
4687 
4688 	ECORE_MSG(pdev, "rss_engine_id=%d\n", data->rss_engine_id);
4689 
4690 	/* Indirection table */
4691 	mm_memcpy(data->indirection_table, p->ind_table,
4692 		  T_ETH_INDIRECTION_TABLE_SIZE);
4693 
4694 	/* Remember the last configuration */
4695 	mm_memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4696 
4697 #if defined(ECORE_ERASE) && !defined(__FreeBSD__)
4698 	/* Print the indirection table */
4699 	if (netif_msg_ifup(bp))
4700 		bnx2x_debug_print_ind_table(bp, p);
4701 #endif
4702 
4703 	/* RSS keys */
4704 	if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
4705 		mm_memcpy(&data->rss_key[0], &p->rss_key[0],
4706 		       sizeof(data->rss_key));
4707 		data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4708 	}
4709 
4710 	/* No need for an explicit memory barrier here as long as we
4711 	 * ensure the ordering of writing to the SPQ element
4712 	 * and updating of the SPQ producer which involves a memory
4713 	 * read. If the memory read is removed we will have to put a
4714 	 * full memory barrier there (inside ecore_sp_post()).
4715 	 */
4716 
4717 	/* Send a ramrod */
4718 	rc = ecore_sp_post(pdev,
4719 			     RAMROD_CMD_ID_ETH_RSS_UPDATE,
4720 			     r->cid,
4721 			     r->rdata_mapping.as_u64,
4722 			     ETH_CONNECTION_TYPE);
4723 
4724 	if (rc < 0)
4725 		return rc;
4726 
4727 	return ECORE_PENDING;
4728 }
4729 
4730 void ecore_get_rss_ind_table(struct ecore_rss_config_obj *rss_obj,
4731 			     u8 *ind_table)
4732 {
4733 	mm_memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4734 }
4735 
4736 int ecore_config_rss(struct _lm_device_t *pdev,
4737 		     struct ecore_config_rss_params *p)
4738 {
4739 	int rc;
4740 	struct ecore_rss_config_obj *o = p->rss_obj;
4741 	struct ecore_raw_obj *r = &o->raw;
4742 
4743 	/* Do nothing if only driver cleanup was requested */
4744 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4745 		ECORE_MSG(pdev, "Not configuring RSS ramrod_flags=%lx\n",
4746 			  p->ramrod_flags);
4747 		return ECORE_SUCCESS;
4748 	}
4749 
4750 	r->set_pending(r);
4751 
4752 	rc = o->config_rss(pdev, p);
4753 	if (rc < 0) {
4754 		r->clear_pending(r);
4755 		return rc;
4756 	}
4757 
4758 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4759 		rc = r->wait_comp(pdev, r);
4760 
4761 	return rc;
4762 }
4763 
4764 void ecore_init_rss_config_obj(struct _lm_device_t *pdev,
4765 			       struct ecore_rss_config_obj *rss_obj,
4766 			       u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4767 			       void *rdata, lm_address_t rdata_mapping,
4768 			       int state, unsigned long *pstate,
4769 			       ecore_obj_type type)
4770 {
4771 	ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4772 			   rdata_mapping, state, pstate, type);
4773 
4774 	rss_obj->engine_id  = engine_id;
4775 	rss_obj->config_rss = ecore_setup_rss;
4776 }
4777 
4778 #ifdef ECORE_ERASE
4779 /********************** Queue state object ***********************************/
4780 
4781 /**
4782  * ecore_queue_state_change - perform Queue state change transition
4783  *
4784  * @pdev:	device handle
4785  * @params:	parameters to perform the transition
4786  *
4787  * returns 0 in case of successfully completed transition, negative error
4788  * code in case of failure, positive (EBUSY) value if there is a completion
4789  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4790  * not set in params->ramrod_flags for asynchronous commands).
4791  *
4792  */
4793 int ecore_queue_state_change(struct _lm_device_t *pdev,
4794 			     struct ecore_queue_state_params *params)
4795 {
4796 	struct ecore_queue_sp_obj *o = params->q_obj;
4797 	int rc, pending_bit;
4798 	unsigned long *pending = &o->pending;
4799 
4800 	/* Check that the requested transition is legal */
4801 	rc = o->check_transition(pdev, o, params);
4802 	if (rc) {
4803 		ECORE_ERR("check transition returned an error. rc %d\n", rc);
4804 		return ECORE_INVAL;
4805 	}
4806 
4807 	/* Set "pending" bit */
4808 	ECORE_MSG(pdev, "pending bit was=%lx\n", o->pending);
4809 	pending_bit = o->set_pending(o, params);
4810 	ECORE_MSG(pdev, "pending bit now=%lx\n", o->pending);
4811 
4812 	/* Don't send a command if only driver cleanup was requested */
4813 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4814 		o->complete_cmd(pdev, o, pending_bit);
4815 	else {
4816 		/* Send a ramrod */
4817 		rc = o->send_cmd(pdev, params);
4818 		if (rc) {
4819 			o->next_state = ECORE_Q_STATE_MAX;
4820 			ECORE_CLEAR_BIT(pending_bit, pending);
4821 			smp_mb__after_atomic();
4822 			return rc;
4823 		}
4824 
4825 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4826 			rc = o->wait_comp(pdev, o, pending_bit);
4827 			if (rc)
4828 				return rc;
4829 
4830 			return ECORE_SUCCESS;
4831 		}
4832 	}
4833 
4834 	return ECORE_RET_PENDING(pending_bit, pending);
4835 }
4836 
4837 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
4838 				   struct ecore_queue_state_params *params)
4839 {
4840 	enum ecore_queue_cmd cmd = params->cmd, bit;
4841 
4842 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4843 	 * UPDATE command.
4844 	 */
4845 	if ((cmd == ECORE_Q_CMD_ACTIVATE) ||
4846 	    (cmd == ECORE_Q_CMD_DEACTIVATE))
4847 		bit = ECORE_Q_CMD_UPDATE;
4848 	else
4849 		bit = cmd;
4850 
4851 	ECORE_SET_BIT(bit, &obj->pending);
4852 	return bit;
4853 }
4854 
4855 static int ecore_queue_wait_comp(struct _lm_device_t *pdev,
4856 				 struct ecore_queue_sp_obj *o,
4857 				 enum ecore_queue_cmd cmd)
4858 {
4859 	return ecore_state_wait(pdev, cmd, &o->pending);
4860 }
4861 
4862 /**
4863  * ecore_queue_comp_cmd - complete the state change command.
4864  *
4865  * @pdev:	device handle
4866  * @o:
4867  * @cmd:
4868  *
4869  * Checks that the arrived completion is expected.
4870  */
4871 static int ecore_queue_comp_cmd(struct _lm_device_t *pdev,
4872 				struct ecore_queue_sp_obj *o,
4873 				enum ecore_queue_cmd cmd)
4874 {
4875 	unsigned long cur_pending = o->pending;
4876 
4877 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4878 		ECORE_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4879 			  cmd, o->cids[ECORE_PRIMARY_CID_INDEX],
4880 			  o->state, cur_pending, o->next_state);
4881 		return ECORE_INVAL;
4882 	}
4883 
4884 	if (o->next_tx_only >= o->max_cos)
4885 		/* >= because tx only must always be smaller than cos since the
4886 		 * primary connection supports COS 0
4887 		 */
4888 		ECORE_ERR("illegal value for next tx_only: %d. max cos was %d",
4889 			  o->next_tx_only, o->max_cos);
4890 
4891 	ECORE_MSG(pdev,
4892 		  "Completing command %d for queue %d, setting state to %d\n",
4893 		  cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
4894 
4895 	if (o->next_tx_only)  /* print num tx-only if any exist */
4896 		ECORE_MSG(pdev, "primary cid %d: num tx-only cons %d\n",
4897 			  o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
4898 
4899 	o->state = o->next_state;
4900 	o->num_tx_only = o->next_tx_only;
4901 	o->next_state = ECORE_Q_STATE_MAX;
4902 
4903 	/* It's important that o->state and o->next_state are
4904 	 * updated before o->pending.
4905 	 */
4906 	wmb();
4907 
4908 	ECORE_CLEAR_BIT(cmd, &o->pending);
4909 	smp_mb__after_atomic();
4910 
4911 	return ECORE_SUCCESS;
4912 }
4913 
4914 static void ecore_q_fill_setup_data_e2(struct _lm_device_t *pdev,
4915 				struct ecore_queue_state_params *cmd_params,
4916 				struct client_init_ramrod_data *data)
4917 {
4918 	struct ecore_queue_setup_params *params = &cmd_params->params.setup;
4919 
4920 	/* Rx data */
4921 
4922 	/* IPv6 TPA supported for E2 and above only */
4923 	data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
4924 					  &params->flags) *
4925 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4926 }
4927 
4928 static void ecore_q_fill_init_general_data(struct _lm_device_t *pdev,
4929 				struct ecore_queue_sp_obj *o,
4930 				struct ecore_general_setup_params *params,
4931 				struct client_init_general_data *gen_data,
4932 				unsigned long *flags)
4933 {
4934 	gen_data->client_id = o->cl_id;
4935 
4936 	if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
4937 		gen_data->statistics_counter_id =
4938 					params->stat_id;
4939 		gen_data->statistics_en_flg = 1;
4940 		gen_data->statistics_zero_flg =
4941 			ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
4942 	} else
4943 		gen_data->statistics_counter_id =
4944 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4945 
4946 	gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE,
4947 						   flags);
4948 	gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4949 						    flags);
4950 	gen_data->sp_client_id = params->spcl_id;
4951 	gen_data->mtu = mm_cpu_to_le16(params->mtu);
4952 	gen_data->func_id = o->func_id;
4953 
4954 	gen_data->cos = params->cos;
4955 
4956 	gen_data->traffic_type =
4957 		ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
4958 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4959 
4960 	gen_data->fp_hsi_ver = ETH_FP_HSI_VERSION;
4961 
4962 	ECORE_MSG(pdev, "flags: active %d, cos %d, stats en %d\n",
4963 		  gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4964 }
4965 
4966 static void ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj *o,
4967 				struct ecore_txq_setup_params *params,
4968 				struct client_init_tx_data *tx_data,
4969 				unsigned long *flags)
4970 {
4971 	tx_data->enforce_security_flg =
4972 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
4973 	tx_data->default_vlan =
4974 		mm_cpu_to_le16(params->default_vlan);
4975 	tx_data->default_vlan_flg =
4976 		ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
4977 	tx_data->tx_switching_flg =
4978 		ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
4979 	tx_data->anti_spoofing_flg =
4980 		ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
4981 	tx_data->force_default_pri_flg =
4982 		ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
4983 	tx_data->refuse_outband_vlan_flg =
4984 		ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4985 	tx_data->tunnel_lso_inc_ip_id =
4986 		ECORE_TEST_BIT(ECORE_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4987 	tx_data->tunnel_non_lso_pcsum_location =
4988 		ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4989 							    CSUM_ON_BD;
4990 
4991 	tx_data->tx_status_block_id = params->fw_sb_id;
4992 	tx_data->tx_sb_index_number = params->sb_cq_index;
4993 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4994 
4995 	tx_data->tx_bd_page_base.lo =
4996 		mm_cpu_to_le32(U64_LO(params->dscr_map.as_u64));
4997 	tx_data->tx_bd_page_base.hi =
4998 		mm_cpu_to_le32(U64_HI(params->dscr_map.as_u64));
4999 
5000 	/* Don't configure any Tx switching mode during queue SETUP */
5001 	tx_data->state = 0;
5002 }
5003 
5004 static void ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj *o,
5005 				struct rxq_pause_params *params,
5006 				struct client_init_rx_data *rx_data)
5007 {
5008 	/* flow control data */
5009 	rx_data->cqe_pause_thr_low = mm_cpu_to_le16(params->rcq_th_lo);
5010 	rx_data->cqe_pause_thr_high = mm_cpu_to_le16(params->rcq_th_hi);
5011 	rx_data->bd_pause_thr_low = mm_cpu_to_le16(params->bd_th_lo);
5012 	rx_data->bd_pause_thr_high = mm_cpu_to_le16(params->bd_th_hi);
5013 	rx_data->sge_pause_thr_low = mm_cpu_to_le16(params->sge_th_lo);
5014 	rx_data->sge_pause_thr_high = mm_cpu_to_le16(params->sge_th_hi);
5015 	rx_data->rx_cos_mask = mm_cpu_to_le16(params->pri_map);
5016 }
5017 
5018 static void ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj *o,
5019 				struct ecore_rxq_setup_params *params,
5020 				struct client_init_rx_data *rx_data,
5021 				unsigned long *flags)
5022 {
5023 	rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
5024 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
5025 	rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
5026 				CLIENT_INIT_RX_DATA_TPA_MODE;
5027 #ifdef ECORE_UPSTREAM /* ECORE_UPSTREAM */
5028 	rx_data->vmqueue_mode_en_flg = 0;
5029 #else
5030 	rx_data->vmqueue_mode_en_flg =
5031 		ECORE_TEST_BIT(ECORE_Q_FLG_VMQUEUE_MODE, flags);
5032 #endif
5033 
5034 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5035 	rx_data->extra_data_over_sgl_en_flg =
5036 		ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
5037 #endif
5038 	rx_data->cache_line_alignment_log_size =
5039 		params->cache_line_log;
5040 	rx_data->enable_dynamic_hc =
5041 		ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
5042 	rx_data->max_sges_for_packet = params->max_sges_pkt;
5043 	rx_data->client_qzone_id = params->cl_qzone_id;
5044 	rx_data->max_agg_size = mm_cpu_to_le16(params->tpa_agg_sz);
5045 
5046 	/* Always start in DROP_ALL mode */
5047 	rx_data->state = mm_cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
5048 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
5049 
5050 	/* We don't set drop flags */
5051 	rx_data->drop_ip_cs_err_flg = 0;
5052 	rx_data->drop_tcp_cs_err_flg = 0;
5053 	rx_data->drop_ttl0_flg = 0;
5054 	rx_data->drop_udp_cs_err_flg = 0;
5055 	rx_data->inner_vlan_removal_enable_flg =
5056 		ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
5057 	rx_data->outer_vlan_removal_enable_flg =
5058 		ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
5059 	rx_data->status_block_id = params->fw_sb_id;
5060 	rx_data->rx_sb_index_number = params->sb_cq_index;
5061 	rx_data->max_tpa_queues = params->max_tpa_queues;
5062 	rx_data->max_bytes_on_bd = mm_cpu_to_le16(params->buf_sz);
5063 	rx_data->sge_buff_size = mm_cpu_to_le16(params->sge_buf_sz);
5064 	rx_data->bd_page_base.lo =
5065 		mm_cpu_to_le32(U64_LO(params->dscr_map.as_u64));
5066 	rx_data->bd_page_base.hi =
5067 		mm_cpu_to_le32(U64_HI(params->dscr_map.as_u64));
5068 	rx_data->sge_page_base.lo =
5069 		mm_cpu_to_le32(U64_LO(params->sge_map.as_u64));
5070 	rx_data->sge_page_base.hi =
5071 		mm_cpu_to_le32(U64_HI(params->sge_map.as_u64));
5072 	rx_data->cqe_page_base.lo =
5073 		mm_cpu_to_le32(U64_LO(params->rcq_map.as_u64));
5074 	rx_data->cqe_page_base.hi =
5075 		mm_cpu_to_le32(U64_HI(params->rcq_map.as_u64));
5076 	rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
5077 						 flags);
5078 
5079 	if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
5080 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
5081 		rx_data->is_approx_mcast = 1;
5082 	}
5083 
5084 	rx_data->rss_engine_id = params->rss_engine_id;
5085 
5086 	/* silent vlan removal */
5087 	rx_data->silent_vlan_removal_flg =
5088 		ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
5089 	rx_data->silent_vlan_value =
5090 		mm_cpu_to_le16(params->silent_removal_value);
5091 	rx_data->silent_vlan_mask =
5092 		mm_cpu_to_le16(params->silent_removal_mask);
5093 }
5094 
5095 /* initialize the general, tx and rx parts of a queue object */
5096 static void ecore_q_fill_setup_data_cmn(struct _lm_device_t *pdev,
5097 				struct ecore_queue_state_params *cmd_params,
5098 				struct client_init_ramrod_data *data)
5099 {
5100 	ecore_q_fill_init_general_data(pdev, cmd_params->q_obj,
5101 				       &cmd_params->params.setup.gen_params,
5102 				       &data->general,
5103 				       &cmd_params->params.setup.flags);
5104 
5105 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
5106 				  &cmd_params->params.setup.txq_params,
5107 				  &data->tx,
5108 				  &cmd_params->params.setup.flags);
5109 
5110 	ecore_q_fill_init_rx_data(cmd_params->q_obj,
5111 				  &cmd_params->params.setup.rxq_params,
5112 				  &data->rx,
5113 				  &cmd_params->params.setup.flags);
5114 
5115 	ecore_q_fill_init_pause_data(cmd_params->q_obj,
5116 				     &cmd_params->params.setup.pause_params,
5117 				     &data->rx);
5118 }
5119 
5120 /* initialize the general and tx parts of a tx-only queue object */
5121 static void ecore_q_fill_setup_tx_only(struct _lm_device_t *pdev,
5122 				struct ecore_queue_state_params *cmd_params,
5123 				struct tx_queue_init_ramrod_data *data)
5124 {
5125 	ecore_q_fill_init_general_data(pdev, cmd_params->q_obj,
5126 				       &cmd_params->params.tx_only.gen_params,
5127 				       &data->general,
5128 				       &cmd_params->params.tx_only.flags);
5129 
5130 	ecore_q_fill_init_tx_data(cmd_params->q_obj,
5131 				  &cmd_params->params.tx_only.txq_params,
5132 				  &data->tx,
5133 				  &cmd_params->params.tx_only.flags);
5134 
5135 	ECORE_MSG(pdev, "cid %d, tx bd page lo %x hi %x",
5136 		  cmd_params->q_obj->cids[0],
5137 		  data->tx.tx_bd_page_base.lo,
5138 		  data->tx.tx_bd_page_base.hi);
5139 }
5140 
5141 /**
5142  * ecore_q_init - init HW/FW queue
5143  *
5144  * @pdev:	device handle
5145  * @params:
5146  *
5147  * HW/FW initial Queue configuration:
5148  *      - HC: Rx and Tx
5149  *      - CDU context validation
5150  *
5151  */
5152 static INLINE int ecore_q_init(struct _lm_device_t *pdev,
5153 			       struct ecore_queue_state_params *params)
5154 {
5155 	struct ecore_queue_sp_obj *o = params->q_obj;
5156 	struct ecore_queue_init_params *init = &params->params.init;
5157 	u16 hc_usec;
5158 	u8 cos;
5159 
5160 	/* Tx HC configuration */
5161 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
5162 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
5163 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5164 
5165 		ECORE_TODO_UPDATE_COALESCE_SB_INDEX(pdev, init->tx.fw_sb_id,
5166 			init->tx.sb_cq_index,
5167 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->tx.flags),
5168 			hc_usec);
5169 	}
5170 
5171 	/* Rx HC configuration */
5172 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
5173 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
5174 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5175 
5176 		ECORE_TODO_UPDATE_COALESCE_SB_INDEX(pdev, init->rx.fw_sb_id,
5177 			init->rx.sb_cq_index,
5178 			!ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->rx.flags),
5179 			hc_usec);
5180 	}
5181 
5182 	/* Set CDU context validation values */
5183 	for (cos = 0; cos < o->max_cos; cos++) {
5184 		ECORE_MSG(pdev, "setting context validation. cid %d, cos %d\n",
5185 			  o->cids[cos], cos);
5186 		ECORE_MSG(pdev, "context pointer %p\n", init->cxts[cos]);
5187 		ECORE_SET_CTX_VALIDATION(pdev, init->cxts[cos], o->cids[cos]);
5188 	}
5189 
5190 	/* As no ramrod is sent, complete the command immediately  */
5191 	o->complete_cmd(pdev, o, ECORE_Q_CMD_INIT);
5192 
5193 	mmiowb();
5194 	smp_mb();
5195 
5196 	return ECORE_SUCCESS;
5197 }
5198 
5199 static INLINE int ecore_q_send_setup_e1x(struct _lm_device_t *pdev,
5200 					struct ecore_queue_state_params *params)
5201 {
5202 	struct ecore_queue_sp_obj *o = params->q_obj;
5203 	struct client_init_ramrod_data *rdata =
5204 		(struct client_init_ramrod_data *)o->rdata;
5205 	lm_address_t data_mapping = o->rdata_mapping;
5206 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5207 
5208 	/* Clear the ramrod data */
5209 	mm_memset(rdata, 0, sizeof(*rdata));
5210 
5211 	/* Fill the ramrod data */
5212 	ecore_q_fill_setup_data_cmn(pdev, params, rdata);
5213 
5214 	/* No need for an explicit memory barrier here as long as we
5215 	 * ensure the ordering of writing to the SPQ element
5216 	 * and updating of the SPQ producer which involves a memory
5217 	 * read. If the memory read is removed we will have to put a
5218 	 * full memory barrier there (inside ecore_sp_post()).
5219 	 */
5220 	return ecore_sp_post(pdev,
5221 			     ramrod,
5222 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5223 			     data_mapping.as_u64,
5224 			     ETH_CONNECTION_TYPE);
5225 }
5226 
5227 static INLINE int ecore_q_send_setup_e2(struct _lm_device_t *pdev,
5228 					struct ecore_queue_state_params *params)
5229 {
5230 	struct ecore_queue_sp_obj *o = params->q_obj;
5231 	struct client_init_ramrod_data *rdata =
5232 		(struct client_init_ramrod_data *)o->rdata;
5233 	lm_address_t data_mapping = o->rdata_mapping;
5234 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5235 
5236 	/* Clear the ramrod data */
5237 	mm_memset(rdata, 0, sizeof(*rdata));
5238 
5239 	/* Fill the ramrod data */
5240 	ecore_q_fill_setup_data_cmn(pdev, params, rdata);
5241 	ecore_q_fill_setup_data_e2(pdev, params, rdata);
5242 
5243 	/* No need for an explicit memory barrier here as long as we
5244 	 * ensure the ordering of writing to the SPQ element
5245 	 * and updating of the SPQ producer which involves a memory
5246 	 * read. If the memory read is removed we will have to put a
5247 	 * full memory barrier there (inside ecore_sp_post()).
5248 	 */
5249 	return ecore_sp_post(pdev,
5250 			     ramrod,
5251 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5252 			     data_mapping.as_u64,
5253 			     ETH_CONNECTION_TYPE);
5254 }
5255 
5256 static inline int ecore_q_send_setup_tx_only(struct _lm_device_t *pdev,
5257 				  struct ecore_queue_state_params *params)
5258 {
5259 	struct ecore_queue_sp_obj *o = params->q_obj;
5260 	struct tx_queue_init_ramrod_data *rdata =
5261 		(struct tx_queue_init_ramrod_data *)o->rdata;
5262 	lm_address_t data_mapping = o->rdata_mapping;
5263 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5264 	struct ecore_queue_setup_tx_only_params *tx_only_params =
5265 		&params->params.tx_only;
5266 	u8 cid_index = tx_only_params->cid_index;
5267 
5268 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5269 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
5270 		ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
5271 	ECORE_MSG(pdev, "sending forward tx-only ramrod");
5272 #endif
5273 
5274 	if (cid_index >= o->max_cos) {
5275 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5276 			  o->cl_id, cid_index);
5277 		return ECORE_INVAL;
5278 	}
5279 
5280 	ECORE_MSG(pdev, "parameters received: cos: %d sp-id: %d\n",
5281 		  tx_only_params->gen_params.cos,
5282 		  tx_only_params->gen_params.spcl_id);
5283 
5284 	/* Clear the ramrod data */
5285 	mm_memset(rdata, 0, sizeof(*rdata));
5286 
5287 	/* Fill the ramrod data */
5288 	ecore_q_fill_setup_tx_only(pdev, params, rdata);
5289 
5290 	ECORE_MSG(pdev, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5291 		  o->cids[cid_index], rdata->general.client_id,
5292 		  rdata->general.sp_client_id, rdata->general.cos);
5293 
5294 	/* No need for an explicit memory barrier here as long as we
5295 	 * ensure the ordering of writing to the SPQ element
5296 	 * and updating of the SPQ producer which involves a memory
5297 	 * read. If the memory read is removed we will have to put a
5298 	 * full memory barrier there (inside ecore_sp_post()).
5299 	 */
5300 	return ecore_sp_post(pdev, ramrod, o->cids[cid_index],
5301 			     data_mapping.as_u64, ETH_CONNECTION_TYPE);
5302 }
5303 
5304 static void ecore_q_fill_update_data(struct _lm_device_t *pdev,
5305 				     struct ecore_queue_sp_obj *obj,
5306 				     struct ecore_queue_update_params *params,
5307 				     struct client_update_ramrod_data *data)
5308 {
5309 	/* Client ID of the client to update */
5310 	data->client_id = obj->cl_id;
5311 
5312 	/* Function ID of the client to update */
5313 	data->func_id = obj->func_id;
5314 
5315 	/* Default VLAN value */
5316 	data->default_vlan = mm_cpu_to_le16(params->def_vlan);
5317 
5318 	/* Inner VLAN stripping */
5319 	data->inner_vlan_removal_enable_flg =
5320 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM,
5321 			       &params->update_flags);
5322 	data->inner_vlan_removal_change_flg =
5323 		ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
5324 		       &params->update_flags);
5325 
5326 	/* Outer VLAN stripping */
5327 	data->outer_vlan_removal_enable_flg =
5328 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM,
5329 			       &params->update_flags);
5330 	data->outer_vlan_removal_change_flg =
5331 		ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
5332 		       &params->update_flags);
5333 
5334 	/* Drop packets that have source MAC that doesn't belong to this
5335 	 * Queue.
5336 	 */
5337 	data->anti_spoofing_enable_flg =
5338 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF,
5339 			       &params->update_flags);
5340 	data->anti_spoofing_change_flg =
5341 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
5342 		       &params->update_flags);
5343 
5344 	/* Activate/Deactivate */
5345 	data->activate_flg =
5346 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, &params->update_flags);
5347 	data->activate_change_flg =
5348 		ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5349 			       &params->update_flags);
5350 
5351 	/* Enable default VLAN */
5352 	data->default_vlan_enable_flg =
5353 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN,
5354 			       &params->update_flags);
5355 	data->default_vlan_change_flg =
5356 		ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
5357 		       &params->update_flags);
5358 
5359 	/* silent vlan removal */
5360 	data->silent_vlan_change_flg =
5361 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5362 			       &params->update_flags);
5363 	data->silent_vlan_removal_flg =
5364 		ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
5365 			       &params->update_flags);
5366 	data->silent_vlan_value = mm_cpu_to_le16(params->silent_removal_value);
5367 	data->silent_vlan_mask = mm_cpu_to_le16(params->silent_removal_mask);
5368 
5369 	/* tx switching */
5370 	data->tx_switching_flg =
5371 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING,
5372 			       &params->update_flags);
5373 	data->tx_switching_change_flg =
5374 		ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
5375 			       &params->update_flags);
5376 
5377 	/* PTP */
5378 	data->handle_ptp_pkts_flg =
5379 		ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS,
5380 			       &params->update_flags);
5381 	data->handle_ptp_pkts_change_flg =
5382 		ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS_CHNG,
5383 			       &params->update_flags);
5384 }
5385 
5386 static INLINE int ecore_q_send_update(struct _lm_device_t *pdev,
5387 				      struct ecore_queue_state_params *params)
5388 {
5389 	struct ecore_queue_sp_obj *o = params->q_obj;
5390 	struct client_update_ramrod_data *rdata =
5391 		(struct client_update_ramrod_data *)o->rdata;
5392 	lm_address_t data_mapping = o->rdata_mapping;
5393 	struct ecore_queue_update_params *update_params =
5394 		&params->params.update;
5395 	u8 cid_index = update_params->cid_index;
5396 
5397 	if (cid_index >= o->max_cos) {
5398 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5399 			  o->cl_id, cid_index);
5400 		return ECORE_INVAL;
5401 	}
5402 
5403 	/* Clear the ramrod data */
5404 	mm_memset(rdata, 0, sizeof(*rdata));
5405 
5406 	/* Fill the ramrod data */
5407 	ecore_q_fill_update_data(pdev, o, update_params, rdata);
5408 
5409 	/* No need for an explicit memory barrier here as long as we
5410 	 * ensure the ordering of writing to the SPQ element
5411 	 * and updating of the SPQ producer which involves a memory
5412 	 * read. If the memory read is removed we will have to put a
5413 	 * full memory barrier there (inside ecore_sp_post()).
5414 	 */
5415 	return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5416 			     o->cids[cid_index], data_mapping.as_u64,
5417 			     ETH_CONNECTION_TYPE);
5418 }
5419 
5420 /**
5421  * ecore_q_send_deactivate - send DEACTIVATE command
5422  *
5423  * @pdev:	device handle
5424  * @params:
5425  *
5426  * implemented using the UPDATE command.
5427  */
5428 static INLINE int ecore_q_send_deactivate(struct _lm_device_t *pdev,
5429 					struct ecore_queue_state_params *params)
5430 {
5431 	struct ecore_queue_update_params *update = &params->params.update;
5432 
5433 	mm_memset(update, 0, sizeof(*update));
5434 
5435 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5436 
5437 	return ecore_q_send_update(pdev, params);
5438 }
5439 
5440 /**
5441  * ecore_q_send_activate - send ACTIVATE command
5442  *
5443  * @pdev:	device handle
5444  * @params:
5445  *
5446  * implemented using the UPDATE command.
5447  */
5448 static INLINE int ecore_q_send_activate(struct _lm_device_t *pdev,
5449 					struct ecore_queue_state_params *params)
5450 {
5451 	struct ecore_queue_update_params *update = &params->params.update;
5452 
5453 	mm_memset(update, 0, sizeof(*update));
5454 
5455 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
5456 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5457 
5458 	return ecore_q_send_update(pdev, params);
5459 }
5460 
5461 static void ecore_q_fill_update_tpa_data(struct _lm_device_t *pdev,
5462 				struct ecore_queue_sp_obj *obj,
5463 				struct ecore_queue_update_tpa_params *params,
5464 				struct tpa_update_ramrod_data *data)
5465 {
5466 	data->client_id = obj->cl_id;
5467 	data->complete_on_both_clients = params->complete_on_both_clients;
5468 	data->dont_verify_rings_pause_thr_flg =
5469 		params->dont_verify_thr;
5470 	data->max_agg_size = mm_cpu_to_le16(params->max_agg_sz);
5471 	data->max_sges_for_packet = params->max_sges_pkt;
5472 	data->max_tpa_queues = params->max_tpa_queues;
5473 	data->sge_buff_size = mm_cpu_to_le16(params->sge_buff_sz);
5474 	data->sge_page_base_hi = mm_cpu_to_le32(U64_HI(params->sge_map.as_u64));
5475 	data->sge_page_base_lo = mm_cpu_to_le32(U64_LO(params->sge_map.as_u64));
5476 	data->sge_pause_thr_high = mm_cpu_to_le16(params->sge_pause_thr_high);
5477 	data->sge_pause_thr_low = mm_cpu_to_le16(params->sge_pause_thr_low);
5478 	data->tpa_mode = params->tpa_mode;
5479 	data->update_ipv4 = params->update_ipv4;
5480 	data->update_ipv6 = params->update_ipv6;
5481 }
5482 
5483 static INLINE int ecore_q_send_update_tpa(struct _lm_device_t *pdev,
5484 					struct ecore_queue_state_params *params)
5485 {
5486 	struct ecore_queue_sp_obj *o = params->q_obj;
5487 	struct tpa_update_ramrod_data *rdata =
5488 		(struct tpa_update_ramrod_data *)o->rdata;
5489 	lm_address_t data_mapping = o->rdata_mapping;
5490 	struct ecore_queue_update_tpa_params *update_tpa_params =
5491 		&params->params.update_tpa;
5492 	u16 type;
5493 
5494 	/* Clear the ramrod data */
5495 	mm_memset(rdata, 0, sizeof(*rdata));
5496 
5497 	/* Fill the ramrod data */
5498 	ecore_q_fill_update_tpa_data(pdev, o, update_tpa_params, rdata);
5499 
5500 	/* Add the function id inside the type, so that sp post function
5501 	 * doesn't automatically add the PF func-id, this is required
5502 	 * for operations done by PFs on behalf of their VFs
5503 	 */
5504 	type = ETH_CONNECTION_TYPE |
5505 		((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5506 
5507 	/* No need for an explicit memory barrier here as long as we
5508 	 * ensure the ordering of writing to the SPQ element
5509 	 * and updating of the SPQ producer which involves a memory
5510 	 * read. If the memory read is removed we will have to put a
5511 	 * full memory barrier there (inside ecore_sp_post()).
5512 	 */
5513 	return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5514 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5515 			     data_mapping.as_u64, type);
5516 }
5517 
5518 static INLINE int ecore_q_send_halt(struct _lm_device_t *pdev,
5519 				    struct ecore_queue_state_params *params)
5520 {
5521 	struct ecore_queue_sp_obj *o = params->q_obj;
5522 
5523 #if !defined(ECORE_ERASE) || defined(__FreeBSD__)
5524 	/* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
5525 	lm_address_t    data_mapping = { {0} };
5526 	data_mapping.as_u32.low = o->cl_id;
5527 
5528 	/* No need for an explicit memory barrier here as long as we
5529 	 * ensure the ordering of writing to the SPQ element
5530 	 * and updating of the SPQ producer which involves a memory
5531 	 * read. If the memory read is removed we will have to put a
5532 	 * full memory barrier there (inside ecore_sp_post()).
5533 	 */
5534 	return ecore_sp_post(pdev,
5535 			     RAMROD_CMD_ID_ETH_HALT,
5536 			     o->cids[ECORE_PRIMARY_CID_INDEX],
5537 			     data_mapping.as_u64,
5538 			     ETH_CONNECTION_TYPE);
5539 #else
5540 	return bnx2x_sp_post(pdev, RAMROD_CMD_ID_ETH_HALT,
5541 			     o->cids[ECORE_PRIMARY_CID_INDEX], 0, o->cl_id,
5542 			     ETH_CONNECTION_TYPE);
5543 #endif
5544 }
5545 
5546 static INLINE int ecore_q_send_cfc_del(struct _lm_device_t *pdev,
5547 				       struct ecore_queue_state_params *params)
5548 {
5549 	struct ecore_queue_sp_obj *o = params->q_obj;
5550 	u8 cid_idx = params->params.cfc_del.cid_index;
5551 
5552 	if (cid_idx >= o->max_cos) {
5553 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5554 			  o->cl_id, cid_idx);
5555 		return ECORE_INVAL;
5556 	}
5557 
5558 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_CFC_DEL,
5559 			     o->cids[cid_idx], 0,
5560 			     NONE_CONNECTION_TYPE);
5561 }
5562 
5563 static INLINE int ecore_q_send_terminate(struct _lm_device_t *pdev,
5564 					struct ecore_queue_state_params *params)
5565 {
5566 	struct ecore_queue_sp_obj *o = params->q_obj;
5567 	u8 cid_index = params->params.terminate.cid_index;
5568 
5569 	if (cid_index >= o->max_cos) {
5570 		ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5571 			  o->cl_id, cid_index);
5572 		return ECORE_INVAL;
5573 	}
5574 
5575 	return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_TERMINATE,
5576 			     o->cids[cid_index], 0,
5577 			     ETH_CONNECTION_TYPE);
5578 }
5579 
5580 static INLINE int ecore_q_send_empty(struct _lm_device_t *pdev,
5581 				     struct ecore_queue_state_params *params)
5582 {
5583 	struct ecore_queue_sp_obj *o = params->q_obj;
5584 
5585 	return ecore_sp_post(pdev, RAMROD_CMD_ID_ETH_EMPTY,
5586 			     o->cids[ECORE_PRIMARY_CID_INDEX], 0,
5587 			     ETH_CONNECTION_TYPE);
5588 }
5589 
5590 static INLINE int ecore_queue_send_cmd_cmn(struct _lm_device_t *pdev,
5591 					struct ecore_queue_state_params *params)
5592 {
5593 	switch (params->cmd) {
5594 	case ECORE_Q_CMD_INIT:
5595 		return ecore_q_init(pdev, params);
5596 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5597 		return ecore_q_send_setup_tx_only(pdev, params);
5598 	case ECORE_Q_CMD_DEACTIVATE:
5599 		return ecore_q_send_deactivate(pdev, params);
5600 	case ECORE_Q_CMD_ACTIVATE:
5601 		return ecore_q_send_activate(pdev, params);
5602 	case ECORE_Q_CMD_UPDATE:
5603 		return ecore_q_send_update(pdev, params);
5604 	case ECORE_Q_CMD_UPDATE_TPA:
5605 		return ecore_q_send_update_tpa(pdev, params);
5606 	case ECORE_Q_CMD_HALT:
5607 		return ecore_q_send_halt(pdev, params);
5608 	case ECORE_Q_CMD_CFC_DEL:
5609 		return ecore_q_send_cfc_del(pdev, params);
5610 	case ECORE_Q_CMD_TERMINATE:
5611 		return ecore_q_send_terminate(pdev, params);
5612 	case ECORE_Q_CMD_EMPTY:
5613 		return ecore_q_send_empty(pdev, params);
5614 	default:
5615 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5616 		return ECORE_INVAL;
5617 	}
5618 }
5619 
5620 static int ecore_queue_send_cmd_e1x(struct _lm_device_t *pdev,
5621 				    struct ecore_queue_state_params *params)
5622 {
5623 	switch (params->cmd) {
5624 	case ECORE_Q_CMD_SETUP:
5625 		return ecore_q_send_setup_e1x(pdev, params);
5626 	case ECORE_Q_CMD_INIT:
5627 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5628 	case ECORE_Q_CMD_DEACTIVATE:
5629 	case ECORE_Q_CMD_ACTIVATE:
5630 	case ECORE_Q_CMD_UPDATE:
5631 	case ECORE_Q_CMD_UPDATE_TPA:
5632 	case ECORE_Q_CMD_HALT:
5633 	case ECORE_Q_CMD_CFC_DEL:
5634 	case ECORE_Q_CMD_TERMINATE:
5635 	case ECORE_Q_CMD_EMPTY:
5636 		return ecore_queue_send_cmd_cmn(pdev, params);
5637 	default:
5638 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5639 		return ECORE_INVAL;
5640 	}
5641 }
5642 
5643 static int ecore_queue_send_cmd_e2(struct _lm_device_t *pdev,
5644 				   struct ecore_queue_state_params *params)
5645 {
5646 	switch (params->cmd) {
5647 	case ECORE_Q_CMD_SETUP:
5648 		return ecore_q_send_setup_e2(pdev, params);
5649 	case ECORE_Q_CMD_INIT:
5650 	case ECORE_Q_CMD_SETUP_TX_ONLY:
5651 	case ECORE_Q_CMD_DEACTIVATE:
5652 	case ECORE_Q_CMD_ACTIVATE:
5653 	case ECORE_Q_CMD_UPDATE:
5654 	case ECORE_Q_CMD_UPDATE_TPA:
5655 	case ECORE_Q_CMD_HALT:
5656 	case ECORE_Q_CMD_CFC_DEL:
5657 	case ECORE_Q_CMD_TERMINATE:
5658 	case ECORE_Q_CMD_EMPTY:
5659 		return ecore_queue_send_cmd_cmn(pdev, params);
5660 	default:
5661 		ECORE_ERR("Unknown command: %d\n", params->cmd);
5662 		return ECORE_INVAL;
5663 	}
5664 }
5665 
5666 /**
5667  * ecore_queue_chk_transition - check state machine of a regular Queue
5668  *
5669  * @pdev:	device handle
5670  * @o:
5671  * @params:
5672  *
5673  * (not Forwarding)
5674  * It both checks if the requested command is legal in a current
5675  * state and, if it's legal, sets a `next_state' in the object
5676  * that will be used in the completion flow to set the `state'
5677  * of the object.
5678  *
5679  * returns 0 if a requested command is a legal transition,
5680  *         ECORE_INVAL otherwise.
5681  */
5682 static int ecore_queue_chk_transition(struct _lm_device_t *pdev,
5683 				      struct ecore_queue_sp_obj *o,
5684 				      struct ecore_queue_state_params *params)
5685 {
5686 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5687 	enum ecore_queue_cmd cmd = params->cmd;
5688 	struct ecore_queue_update_params *update_params =
5689 		 &params->params.update;
5690 	u8 next_tx_only = o->num_tx_only;
5691 
5692 	/* Forget all pending for completion commands if a driver only state
5693 	 * transition has been requested.
5694 	 */
5695 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5696 		o->pending = 0;
5697 		o->next_state = ECORE_Q_STATE_MAX;
5698 	}
5699 
5700 	/* Don't allow a next state transition if we are in the middle of
5701 	 * the previous one.
5702 	 */
5703 	if (o->pending) {
5704 		ECORE_ERR("Blocking transition since pending was %lx\n",
5705 			  o->pending);
5706 		return ECORE_BUSY;
5707 	}
5708 
5709 	switch (state) {
5710 	case ECORE_Q_STATE_RESET:
5711 		if (cmd == ECORE_Q_CMD_INIT)
5712 			next_state = ECORE_Q_STATE_INITIALIZED;
5713 
5714 		break;
5715 	case ECORE_Q_STATE_INITIALIZED:
5716 		if (cmd == ECORE_Q_CMD_SETUP) {
5717 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5718 					   &params->params.setup.flags))
5719 				next_state = ECORE_Q_STATE_ACTIVE;
5720 			else
5721 				next_state = ECORE_Q_STATE_INACTIVE;
5722 		}
5723 
5724 		break;
5725 	case ECORE_Q_STATE_ACTIVE:
5726 		if (cmd == ECORE_Q_CMD_DEACTIVATE)
5727 			next_state = ECORE_Q_STATE_INACTIVE;
5728 
5729 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5730 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5731 			next_state = ECORE_Q_STATE_ACTIVE;
5732 
5733 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5734 			next_state = ECORE_Q_STATE_MULTI_COS;
5735 			next_tx_only = 1;
5736 		}
5737 
5738 		else if (cmd == ECORE_Q_CMD_HALT)
5739 			next_state = ECORE_Q_STATE_STOPPED;
5740 
5741 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5742 			/* If "active" state change is requested, update the
5743 			 *  state accordingly.
5744 			 */
5745 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5746 					   &update_params->update_flags) &&
5747 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5748 					    &update_params->update_flags))
5749 				next_state = ECORE_Q_STATE_INACTIVE;
5750 			else
5751 				next_state = ECORE_Q_STATE_ACTIVE;
5752 		}
5753 
5754 		break;
5755 	case ECORE_Q_STATE_MULTI_COS:
5756 		if (cmd == ECORE_Q_CMD_TERMINATE)
5757 			next_state = ECORE_Q_STATE_MCOS_TERMINATED;
5758 
5759 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5760 			next_state = ECORE_Q_STATE_MULTI_COS;
5761 			next_tx_only = o->num_tx_only + 1;
5762 		}
5763 
5764 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5765 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5766 			next_state = ECORE_Q_STATE_MULTI_COS;
5767 
5768 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5769 			/* If "active" state change is requested, update the
5770 			 *  state accordingly.
5771 			 */
5772 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5773 					   &update_params->update_flags) &&
5774 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5775 					    &update_params->update_flags))
5776 				next_state = ECORE_Q_STATE_INACTIVE;
5777 			else
5778 				next_state = ECORE_Q_STATE_MULTI_COS;
5779 		}
5780 
5781 		break;
5782 	case ECORE_Q_STATE_MCOS_TERMINATED:
5783 		if (cmd == ECORE_Q_CMD_CFC_DEL) {
5784 			next_tx_only = o->num_tx_only - 1;
5785 			if (next_tx_only == 0)
5786 				next_state = ECORE_Q_STATE_ACTIVE;
5787 			else
5788 				next_state = ECORE_Q_STATE_MULTI_COS;
5789 		}
5790 
5791 		break;
5792 	case ECORE_Q_STATE_INACTIVE:
5793 		if (cmd == ECORE_Q_CMD_ACTIVATE)
5794 			next_state = ECORE_Q_STATE_ACTIVE;
5795 
5796 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5797 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5798 			next_state = ECORE_Q_STATE_INACTIVE;
5799 
5800 		else if (cmd == ECORE_Q_CMD_HALT)
5801 			next_state = ECORE_Q_STATE_STOPPED;
5802 
5803 		else if (cmd == ECORE_Q_CMD_UPDATE) {
5804 			/* If "active" state change is requested, update the
5805 			 * state accordingly.
5806 			 */
5807 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5808 					   &update_params->update_flags) &&
5809 			    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5810 					   &update_params->update_flags)){
5811 				if (o->num_tx_only == 0)
5812 					next_state = ECORE_Q_STATE_ACTIVE;
5813 				else /* tx only queues exist for this queue */
5814 					next_state = ECORE_Q_STATE_MULTI_COS;
5815 			} else
5816 				next_state = ECORE_Q_STATE_INACTIVE;
5817 		}
5818 
5819 		break;
5820 	case ECORE_Q_STATE_STOPPED:
5821 		if (cmd == ECORE_Q_CMD_TERMINATE)
5822 			next_state = ECORE_Q_STATE_TERMINATED;
5823 
5824 		break;
5825 	case ECORE_Q_STATE_TERMINATED:
5826 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5827 			next_state = ECORE_Q_STATE_RESET;
5828 
5829 		break;
5830 	default:
5831 		ECORE_ERR("Illegal state: %d\n", state);
5832 	}
5833 
5834 	/* Transition is assured */
5835 	if (next_state != ECORE_Q_STATE_MAX) {
5836 		ECORE_MSG(pdev, "Good state transition: %d(%d)->%d\n",
5837 			  state, cmd, next_state);
5838 		o->next_state = next_state;
5839 		o->next_tx_only = next_tx_only;
5840 		return ECORE_SUCCESS;
5841 	}
5842 
5843 	ECORE_MSG(pdev, "Bad state transition request: %d %d\n", state, cmd);
5844 
5845 	return ECORE_INVAL;
5846 }
5847 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5848 
5849 /**
5850  * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
5851  *
5852  * @pdev:	device handle
5853  * @o:
5854  * @params:
5855  *
5856  * It both checks if the requested command is legal in a current
5857  * state and, if it's legal, sets a `next_state' in the object
5858  * that will be used in the completion flow to set the `state'
5859  * of the object.
5860  *
5861  * returns 0 if a requested command is a legal transition,
5862  *         ECORE_INVAL otherwise.
5863  */
5864 static int ecore_queue_chk_fwd_transition(struct _lm_device_t *pdev,
5865 					  struct ecore_queue_sp_obj *o,
5866 					struct ecore_queue_state_params *params)
5867 {
5868 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5869 	enum ecore_queue_cmd cmd = params->cmd;
5870 
5871 	switch (state) {
5872 	case ECORE_Q_STATE_RESET:
5873 		if (cmd == ECORE_Q_CMD_INIT)
5874 			next_state = ECORE_Q_STATE_INITIALIZED;
5875 
5876 		break;
5877 	case ECORE_Q_STATE_INITIALIZED:
5878 		if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5879 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5880 					   &params->params.tx_only.flags))
5881 				next_state = ECORE_Q_STATE_ACTIVE;
5882 			else
5883 				next_state = ECORE_Q_STATE_INACTIVE;
5884 		}
5885 
5886 		break;
5887 	case ECORE_Q_STATE_ACTIVE:
5888 	case ECORE_Q_STATE_INACTIVE:
5889 		if (cmd == ECORE_Q_CMD_CFC_DEL)
5890 			next_state = ECORE_Q_STATE_RESET;
5891 
5892 		break;
5893 	default:
5894 		ECORE_ERR("Illegal state: %d\n", state);
5895 	}
5896 
5897 	/* Transition is assured */
5898 	if (next_state != ECORE_Q_STATE_MAX) {
5899 		ECORE_MSG(pdev, "Good state transition: %d(%d)->%d\n",
5900 			  state, cmd, next_state);
5901 		o->next_state = next_state;
5902 		return ECORE_SUCCESS;
5903 	}
5904 
5905 	ECORE_MSG(pdev, "Bad state transition request: %d %d\n", state, cmd);
5906 	return ECORE_INVAL;
5907 }
5908 #endif
5909 
5910 void ecore_init_queue_obj(struct _lm_device_t *pdev,
5911 			  struct ecore_queue_sp_obj *obj,
5912 			  u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5913 			  void *rdata,
5914 			  lm_address_t rdata_mapping, unsigned long type)
5915 {
5916 	mm_memset(obj, 0, sizeof(*obj));
5917 
5918 	/* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
5919 	BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
5920 
5921 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5922 	obj->max_cos = cid_cnt;
5923 	obj->cl_id = cl_id;
5924 	obj->func_id = func_id;
5925 	obj->rdata = rdata;
5926 	obj->rdata_mapping = rdata_mapping;
5927 	obj->type = type;
5928 	obj->next_state = ECORE_Q_STATE_MAX;
5929 
5930 	if (CHIP_IS_E1x(pdev))
5931 		obj->send_cmd = ecore_queue_send_cmd_e1x;
5932 	else
5933 		obj->send_cmd = ecore_queue_send_cmd_e2;
5934 
5935 #ifdef ECORE_OOO /* ! ECORE_UPSTREAM */
5936 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
5937 		obj->check_transition = ecore_queue_chk_fwd_transition;
5938 	else
5939 #endif
5940 	obj->check_transition = ecore_queue_chk_transition;
5941 
5942 	obj->complete_cmd = ecore_queue_comp_cmd;
5943 	obj->wait_comp = ecore_queue_wait_comp;
5944 	obj->set_pending = ecore_queue_set_pending;
5945 }
5946 
5947 /* return a queue object's logical state*/
5948 int ecore_get_q_logical_state(struct _lm_device_t *pdev,
5949 			       struct ecore_queue_sp_obj *obj)
5950 {
5951 	switch (obj->state) {
5952 	case ECORE_Q_STATE_ACTIVE:
5953 	case ECORE_Q_STATE_MULTI_COS:
5954 		return ECORE_Q_LOGICAL_STATE_ACTIVE;
5955 	case ECORE_Q_STATE_RESET:
5956 	case ECORE_Q_STATE_INITIALIZED:
5957 	case ECORE_Q_STATE_MCOS_TERMINATED:
5958 	case ECORE_Q_STATE_INACTIVE:
5959 	case ECORE_Q_STATE_STOPPED:
5960 	case ECORE_Q_STATE_TERMINATED:
5961 	case ECORE_Q_STATE_FLRED:
5962 		return ECORE_Q_LOGICAL_STATE_STOPPED;
5963 	default:
5964 		return ECORE_INVAL;
5965 	}
5966 }
5967 
5968 /********************** Function state object *********************************/
5969 enum ecore_func_state ecore_func_get_state(struct _lm_device_t *pdev,
5970 					   struct ecore_func_sp_obj *o)
5971 {
5972 	/* in the middle of transaction - return INVALID state */
5973 	if (o->pending)
5974 		return ECORE_F_STATE_MAX;
5975 
5976 	/* unsure the order of reading of o->pending and o->state
5977 	 * o->pending should be read first
5978 	 */
5979 	rmb();
5980 
5981 	return o->state;
5982 }
5983 
5984 static int ecore_func_wait_comp(struct _lm_device_t *pdev,
5985 				struct ecore_func_sp_obj *o,
5986 				enum ecore_func_cmd cmd)
5987 {
5988 	return ecore_state_wait(pdev, cmd, &o->pending);
5989 }
5990 
5991 /**
5992  * ecore_func_state_change_comp - complete the state machine transition
5993  *
5994  * @pdev:	device handle
5995  * @o:
5996  * @cmd:
5997  *
5998  * Called on state change transition. Completes the state
5999  * machine transition only - no HW interaction.
6000  */
6001 static INLINE int ecore_func_state_change_comp(struct _lm_device_t *pdev,
6002 					       struct ecore_func_sp_obj *o,
6003 					       enum ecore_func_cmd cmd)
6004 {
6005 	unsigned long cur_pending = o->pending;
6006 
6007 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
6008 		ECORE_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
6009 			  cmd, FUNC_ID(pdev), o->state,
6010 			  cur_pending, o->next_state);
6011 		return ECORE_INVAL;
6012 	}
6013 
6014 	ECORE_MSG(pdev,
6015 		  "Completing command %d for func %d, setting state to %d\n",
6016 		  cmd, FUNC_ID(pdev), o->next_state);
6017 
6018 	o->state = o->next_state;
6019 	o->next_state = ECORE_F_STATE_MAX;
6020 
6021 	/* It's important that o->state and o->next_state are
6022 	 * updated before o->pending.
6023 	 */
6024 	wmb();
6025 
6026 	ECORE_CLEAR_BIT(cmd, &o->pending);
6027 	smp_mb__after_atomic();
6028 
6029 	return ECORE_SUCCESS;
6030 }
6031 
6032 /**
6033  * ecore_func_comp_cmd - complete the state change command
6034  *
6035  * @pdev:	device handle
6036  * @o:
6037  * @cmd:
6038  *
6039  * Checks that the arrived completion is expected.
6040  */
6041 static int ecore_func_comp_cmd(struct _lm_device_t *pdev,
6042 			       struct ecore_func_sp_obj *o,
6043 			       enum ecore_func_cmd cmd)
6044 {
6045 	/* Complete the state machine part first, check if it's a
6046 	 * legal completion.
6047 	 */
6048 	int rc = ecore_func_state_change_comp(pdev, o, cmd);
6049 	return rc;
6050 }
6051 
6052 /**
6053  * ecore_func_chk_transition - perform function state machine transition
6054  *
6055  * @pdev:	device handle
6056  * @o:
6057  * @params:
6058  *
6059  * It both checks if the requested command is legal in a current
6060  * state and, if it's legal, sets a `next_state' in the object
6061  * that will be used in the completion flow to set the `state'
6062  * of the object.
6063  *
6064  * returns 0 if a requested command is a legal transition,
6065  *         ECORE_INVAL otherwise.
6066  */
6067 static int ecore_func_chk_transition(struct _lm_device_t *pdev,
6068 				     struct ecore_func_sp_obj *o,
6069 				     struct ecore_func_state_params *params)
6070 {
6071 	enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
6072 	enum ecore_func_cmd cmd = params->cmd;
6073 
6074 	/* Forget all pending for completion commands if a driver only state
6075 	 * transition has been requested.
6076 	 */
6077 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6078 		o->pending = 0;
6079 		o->next_state = ECORE_F_STATE_MAX;
6080 	}
6081 
6082 	/* Don't allow a next state transition if we are in the middle of
6083 	 * the previous one.
6084 	 */
6085 	if (o->pending)
6086 		return ECORE_BUSY;
6087 
6088 	switch (state) {
6089 	case ECORE_F_STATE_RESET:
6090 		if (cmd == ECORE_F_CMD_HW_INIT)
6091 			next_state = ECORE_F_STATE_INITIALIZED;
6092 
6093 		break;
6094 	case ECORE_F_STATE_INITIALIZED:
6095 		if (cmd == ECORE_F_CMD_START)
6096 			next_state = ECORE_F_STATE_STARTED;
6097 
6098 		else if (cmd == ECORE_F_CMD_HW_RESET)
6099 			next_state = ECORE_F_STATE_RESET;
6100 
6101 		break;
6102 	case ECORE_F_STATE_STARTED:
6103 		if (cmd == ECORE_F_CMD_STOP)
6104 			next_state = ECORE_F_STATE_INITIALIZED;
6105 		/* afex ramrods can be sent only in started mode, and only
6106 		 * if not pending for function_stop ramrod completion
6107 		 * for these events - next state remained STARTED.
6108 		 */
6109 		else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
6110 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6111 			next_state = ECORE_F_STATE_STARTED;
6112 
6113 		else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
6114 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6115 			next_state = ECORE_F_STATE_STARTED;
6116 
6117 		/* Switch_update ramrod can be sent in either started or
6118 		 * tx_stopped state, and it doesn't change the state.
6119 		 */
6120 		else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
6121 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6122 			next_state = ECORE_F_STATE_STARTED;
6123 
6124 		else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
6125 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6126 			next_state = ECORE_F_STATE_STARTED;
6127 
6128 		else if (cmd == ECORE_F_CMD_TX_STOP)
6129 			next_state = ECORE_F_STATE_TX_STOPPED;
6130 
6131 		break;
6132 	case ECORE_F_STATE_TX_STOPPED:
6133 		if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
6134 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6135 			next_state = ECORE_F_STATE_TX_STOPPED;
6136 
6137 		else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
6138 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
6139 			next_state = ECORE_F_STATE_TX_STOPPED;
6140 
6141 		else if (cmd == ECORE_F_CMD_TX_START)
6142 			next_state = ECORE_F_STATE_STARTED;
6143 
6144 		break;
6145 	default:
6146 		ECORE_ERR("Unknown state: %d\n", state);
6147 	}
6148 
6149 	/* Transition is assured */
6150 	if (next_state != ECORE_F_STATE_MAX) {
6151 		ECORE_MSG(pdev, "Good function state transition: %d(%d)->%d\n",
6152 			  state, cmd, next_state);
6153 		o->next_state = next_state;
6154 		return ECORE_SUCCESS;
6155 	}
6156 
6157 	ECORE_MSG(pdev, "Bad function state transition request: %d %d\n",
6158 		  state, cmd);
6159 
6160 	return ECORE_INVAL;
6161 }
6162 
6163 /**
6164  * ecore_func_init_func - performs HW init at function stage
6165  *
6166  * @pdev:	device handle
6167  * @drv:
6168  *
6169  * Init HW when the current phase is
6170  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
6171  * HW blocks.
6172  */
6173 static INLINE int ecore_func_init_func(struct _lm_device_t *pdev,
6174 				       const struct ecore_func_sp_drv_ops *drv)
6175 {
6176 	return drv->init_hw_func(pdev);
6177 }
6178 
6179 /**
6180  * ecore_func_init_port - performs HW init at port stage
6181  *
6182  * @pdev:	device handle
6183  * @drv:
6184  *
6185  * Init HW when the current phase is
6186  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
6187  * FUNCTION-only HW blocks.
6188  *
6189  */
6190 static INLINE int ecore_func_init_port(struct _lm_device_t *pdev,
6191 				       const struct ecore_func_sp_drv_ops *drv)
6192 {
6193 	int rc = drv->init_hw_port(pdev);
6194 	if (rc)
6195 		return rc;
6196 
6197 	return ecore_func_init_func(pdev, drv);
6198 }
6199 
6200 /**
6201  * ecore_func_init_cmn_chip - performs HW init at chip-common stage
6202  *
6203  * @pdev:	device handle
6204  * @drv:
6205  *
6206  * Init HW when the current phase is
6207  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
6208  * PORT-only and FUNCTION-only HW blocks.
6209  */
6210 static INLINE int ecore_func_init_cmn_chip(struct _lm_device_t *pdev,
6211 					const struct ecore_func_sp_drv_ops *drv)
6212 {
6213 	int rc = drv->init_hw_cmn_chip(pdev);
6214 	if (rc)
6215 		return rc;
6216 
6217 	return ecore_func_init_port(pdev, drv);
6218 }
6219 
6220 /**
6221  * ecore_func_init_cmn - performs HW init at common stage
6222  *
6223  * @pdev:	device handle
6224  * @drv:
6225  *
6226  * Init HW when the current phase is
6227  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
6228  * PORT-only and FUNCTION-only HW blocks.
6229  */
6230 static INLINE int ecore_func_init_cmn(struct _lm_device_t *pdev,
6231 				      const struct ecore_func_sp_drv_ops *drv)
6232 {
6233 	int rc = drv->init_hw_cmn(pdev);
6234 	if (rc)
6235 		return rc;
6236 
6237 	return ecore_func_init_port(pdev, drv);
6238 }
6239 
6240 static int ecore_func_hw_init(struct _lm_device_t *pdev,
6241 			      struct ecore_func_state_params *params)
6242 {
6243 	u32 load_code = params->params.hw_init.load_phase;
6244 	struct ecore_func_sp_obj *o = params->f_obj;
6245 	const struct ecore_func_sp_drv_ops *drv = o->drv;
6246 	int rc = 0;
6247 
6248 	ECORE_MSG(pdev, "function %d  load_code %x\n",
6249 		  ABS_FUNC_ID(pdev), load_code);
6250 
6251 	/* Prepare buffers for unzipping the FW */
6252 	rc = drv->gunzip_init(pdev);
6253 	if (rc)
6254 		return rc;
6255 
6256 	/* Prepare FW */
6257 	rc = drv->init_fw(pdev);
6258 	if (rc) {
6259 		ECORE_ERR("Error loading firmware\n");
6260 		goto init_err;
6261 	}
6262 
6263 	/* Handle the beginning of COMMON_XXX pases separately... */
6264 	switch (load_code) {
6265 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6266 		rc = ecore_func_init_cmn_chip(pdev, drv);
6267 		if (rc)
6268 			goto init_err;
6269 
6270 		break;
6271 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6272 		rc = ecore_func_init_cmn(pdev, drv);
6273 		if (rc)
6274 			goto init_err;
6275 
6276 		break;
6277 	case FW_MSG_CODE_DRV_LOAD_PORT:
6278 		rc = ecore_func_init_port(pdev, drv);
6279 		if (rc)
6280 			goto init_err;
6281 
6282 		break;
6283 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6284 		rc = ecore_func_init_func(pdev, drv);
6285 		if (rc)
6286 			goto init_err;
6287 
6288 		break;
6289 	default:
6290 		ECORE_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6291 		rc = ECORE_INVAL;
6292 	}
6293 
6294 init_err:
6295 	drv->gunzip_end(pdev);
6296 
6297 	/* In case of success, complete the command immediately: no ramrods
6298 	 * have been sent.
6299 	 */
6300 	if (!rc)
6301 		o->complete_cmd(pdev, o, ECORE_F_CMD_HW_INIT);
6302 
6303 	return rc;
6304 }
6305 
6306 /**
6307  * ecore_func_reset_func - reset HW at function stage
6308  *
6309  * @pdev:	device handle
6310  * @drv:
6311  *
6312  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6313  * FUNCTION-only HW blocks.
6314  */
6315 static INLINE void ecore_func_reset_func(struct _lm_device_t *pdev,
6316 					const struct ecore_func_sp_drv_ops *drv)
6317 {
6318 	drv->reset_hw_func(pdev);
6319 }
6320 
6321 /**
6322  * ecore_func_reset_port - reser HW at port stage
6323  *
6324  * @pdev:	device handle
6325  * @drv:
6326  *
6327  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6328  * FUNCTION-only and PORT-only HW blocks.
6329  *
6330  *                 !!!IMPORTANT!!!
6331  *
6332  * It's important to call reset_port before reset_func() as the last thing
6333  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6334  * makes impossible any DMAE transactions.
6335  */
6336 static INLINE void ecore_func_reset_port(struct _lm_device_t *pdev,
6337 					const struct ecore_func_sp_drv_ops *drv)
6338 {
6339 	drv->reset_hw_port(pdev);
6340 	ecore_func_reset_func(pdev, drv);
6341 }
6342 
6343 /**
6344  * ecore_func_reset_cmn - reser HW at common stage
6345  *
6346  * @pdev:	device handle
6347  * @drv:
6348  *
6349  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6350  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6351  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6352  */
6353 static INLINE void ecore_func_reset_cmn(struct _lm_device_t *pdev,
6354 					const struct ecore_func_sp_drv_ops *drv)
6355 {
6356 	ecore_func_reset_port(pdev, drv);
6357 	drv->reset_hw_cmn(pdev);
6358 }
6359 
6360 static INLINE int ecore_func_hw_reset(struct _lm_device_t *pdev,
6361 				      struct ecore_func_state_params *params)
6362 {
6363 	u32 reset_phase = params->params.hw_reset.reset_phase;
6364 	struct ecore_func_sp_obj *o = params->f_obj;
6365 	const struct ecore_func_sp_drv_ops *drv = o->drv;
6366 
6367 	ECORE_MSG(pdev, "function %d  reset_phase %x\n", ABS_FUNC_ID(pdev),
6368 		  reset_phase);
6369 
6370 	switch (reset_phase) {
6371 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6372 		ecore_func_reset_cmn(pdev, drv);
6373 		break;
6374 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
6375 		ecore_func_reset_port(pdev, drv);
6376 		break;
6377 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6378 		ecore_func_reset_func(pdev, drv);
6379 		break;
6380 	default:
6381 		ECORE_ERR("Unknown reset_phase (0x%x) from MCP\n",
6382 			  reset_phase);
6383 		break;
6384 	}
6385 
6386 	/* Complete the command immediately: no ramrods have been sent. */
6387 	o->complete_cmd(pdev, o, ECORE_F_CMD_HW_RESET);
6388 
6389 	return ECORE_SUCCESS;
6390 }
6391 
6392 static INLINE int ecore_func_send_start(struct _lm_device_t *pdev,
6393 					struct ecore_func_state_params *params)
6394 {
6395 	struct ecore_func_sp_obj *o = params->f_obj;
6396 	struct function_start_data *rdata =
6397 		(struct function_start_data *)o->rdata;
6398 	lm_address_t data_mapping = o->rdata_mapping;
6399 	struct ecore_func_start_params *start_params = &params->params.start;
6400 
6401 	mm_memset(rdata, 0, sizeof(*rdata));
6402 
6403 	/* Fill the ramrod data with provided parameters */
6404 	rdata->function_mode	= (u8)start_params->mf_mode;
6405 	rdata->sd_vlan_tag	= mm_cpu_to_le16(start_params->sd_vlan_tag);
6406 	rdata->path_id		= PATH_ID(pdev);
6407 	rdata->network_cos_mode	= start_params->network_cos_mode;
6408 	rdata->tunnel_mode	= start_params->tunnel_mode;
6409 	rdata->gre_tunnel_type	= start_params->gre_tunnel_type;
6410 	rdata->inner_gre_rss_en = start_params->inner_gre_rss_en;
6411 	rdata->vxlan_dst_port	= start_params->vxlan_dst_port;
6412 	rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6413 	if (start_params->class_fail_ethtype) {
6414 		rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6415 		rdata->sd_accept_mf_clss_fail_ethtype =
6416 			mm_cpu_to_le16(start_params->class_fail_ethtype);
6417 	}
6418 	rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6419 	rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6420 
6421 	/** @@@TMP - until FW 7.10.7 (which will introduce an HSI change)
6422 	 * `sd_vlan_eth_type' will replace ethertype in SD mode even if
6423 	 * it's set to 0; This will probably break SD, so we're setting it
6424 	 * to ethertype 0x8100 for now.
6425 	 */
6426 	if (start_params->sd_vlan_eth_type)
6427 		rdata->sd_vlan_eth_type =
6428 			mm_cpu_to_le16(start_params->sd_vlan_eth_type);
6429 	else
6430 		rdata->sd_vlan_eth_type =
6431 			mm_cpu_to_le16((u16) 0x8100);
6432 
6433 	rdata->no_added_tags = start_params->no_added_tags;
6434 
6435 	/* No need for an explicit memory barrier here as long as we
6436 	 * ensure the ordering of writing to the SPQ element
6437 	 * and updating of the SPQ producer which involves a memory
6438 	 * read. If the memory read is removed we will have to put a
6439 	 * full memory barrier there (inside ecore_sp_post()).
6440 	 */
6441 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6442 			     data_mapping.as_u64, NONE_CONNECTION_TYPE);
6443 }
6444 
6445 static INLINE int ecore_func_send_switch_update(struct _lm_device_t *pdev,
6446 					struct ecore_func_state_params *params)
6447 {
6448 	struct ecore_func_sp_obj *o = params->f_obj;
6449 	struct function_update_data *rdata =
6450 		(struct function_update_data *)o->rdata;
6451 	lm_address_t data_mapping = o->rdata_mapping;
6452 	struct ecore_func_switch_update_params *switch_update_params =
6453 		&params->params.switch_update;
6454 
6455 	mm_memset(rdata, 0, sizeof(*rdata));
6456 
6457 	/* Fill the ramrod data with provided parameters */
6458 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6459 			   &switch_update_params->changes)) {
6460 		rdata->tx_switch_suspend_change_flg = 1;
6461 		rdata->tx_switch_suspend =
6462 			ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND,
6463 				       &switch_update_params->changes);
6464 	}
6465 
6466 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_TAG_CHNG,
6467 			   &switch_update_params->changes)) {
6468 		rdata->sd_vlan_tag_change_flg = 1;
6469 		rdata->sd_vlan_tag =
6470 			mm_cpu_to_le16(switch_update_params->vlan);
6471 	}
6472 
6473 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6474 			   &switch_update_params->changes)) {
6475 		rdata->sd_vlan_eth_type_change_flg = 1;
6476 		rdata->sd_vlan_eth_type =
6477 			mm_cpu_to_le16(switch_update_params->vlan_eth_type);
6478 	}
6479 
6480 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6481 			   &switch_update_params->changes)) {
6482 		rdata->sd_vlan_force_pri_change_flg = 1;
6483 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6484 				   &switch_update_params->changes))
6485 			rdata->sd_vlan_force_pri_flg = 1;
6486 		rdata->sd_vlan_force_pri_flg =
6487 			switch_update_params->vlan_force_prio;
6488 	}
6489 
6490 	if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CFG_CHNG,
6491 			   &switch_update_params->changes)) {
6492 		rdata->update_tunn_cfg_flg = 1;
6493 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CLSS_EN,
6494 				   &switch_update_params->changes))
6495 			rdata->tunn_clss_en = 1;
6496 		if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_GRE_RSS_EN,
6497 				   &switch_update_params->changes))
6498 			rdata->inner_gre_rss_en = 1;
6499 		rdata->tunnel_mode = switch_update_params->tunnel_mode;
6500 		rdata->gre_tunnel_type = switch_update_params->gre_tunnel_type;
6501 		rdata->vxlan_dst_port =
6502 			mm_cpu_to_le16(switch_update_params->vxlan_dst_port);
6503 	}
6504 
6505 	rdata->echo = SWITCH_UPDATE;
6506 
6507 	/* No need for an explicit memory barrier here as long as we
6508 	 * ensure the ordering of writing to the SPQ element
6509 	 * and updating of the SPQ producer which involves a memory
6510 	 * read. If the memory read is removed we will have to put a
6511 	 * full memory barrier there (inside ecore_sp_post()).
6512 	 */
6513 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6514 			     data_mapping.as_u64, NONE_CONNECTION_TYPE);
6515 }
6516 
6517 static INLINE int ecore_func_send_afex_update(struct _lm_device_t *pdev,
6518 					 struct ecore_func_state_params *params)
6519 {
6520 	struct ecore_func_sp_obj *o = params->f_obj;
6521 	struct function_update_data *rdata =
6522 		(struct function_update_data *)o->afex_rdata;
6523 	lm_address_t data_mapping = o->afex_rdata_mapping;
6524 	struct ecore_func_afex_update_params *afex_update_params =
6525 		&params->params.afex_update;
6526 
6527 	mm_memset(rdata, 0, sizeof(*rdata));
6528 
6529 	/* Fill the ramrod data with provided parameters */
6530 	rdata->vif_id_change_flg = 1;
6531 	rdata->vif_id = mm_cpu_to_le16(afex_update_params->vif_id);
6532 	rdata->afex_default_vlan_change_flg = 1;
6533 	rdata->afex_default_vlan =
6534 		mm_cpu_to_le16(afex_update_params->afex_default_vlan);
6535 	rdata->allowed_priorities_change_flg = 1;
6536 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
6537 	rdata->echo = AFEX_UPDATE;
6538 
6539 	/* No need for an explicit memory barrier here as long as we
6540 	 * ensure the ordering of writing to the SPQ element
6541 	 * and updating of the SPQ producer which involves a memory
6542 	 * read. If the memory read is removed we will have to put a
6543 	 * full memory barrier there (inside ecore_sp_post()).
6544 	 */
6545 	ECORE_MSG(pdev,
6546 		  "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6547 		  rdata->vif_id,
6548 		  rdata->afex_default_vlan, rdata->allowed_priorities);
6549 
6550 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6551 			     data_mapping.as_u64, NONE_CONNECTION_TYPE);
6552 }
6553 
6554 static
6555 INLINE int ecore_func_send_afex_viflists(struct _lm_device_t *pdev,
6556 					 struct ecore_func_state_params *params)
6557 {
6558 	struct ecore_func_sp_obj *o = params->f_obj;
6559 	struct afex_vif_list_ramrod_data *rdata =
6560 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
6561 	struct ecore_func_afex_viflists_params *afex_vif_params =
6562 		&params->params.afex_viflists;
6563 	u64 *p_rdata = (u64 *)rdata;
6564 
6565 	mm_memset(rdata, 0, sizeof(*rdata));
6566 
6567 	/* Fill the ramrod data with provided parameters */
6568 	rdata->vif_list_index = mm_cpu_to_le16(afex_vif_params->vif_list_index);
6569 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
6570 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6571 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
6572 
6573 	/* send in echo type of sub command */
6574 	rdata->echo = afex_vif_params->afex_vif_list_command;
6575 
6576 	ECORE_MSG(pdev, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6577 		  rdata->afex_vif_list_command, rdata->vif_list_index,
6578 		  rdata->func_bit_map, rdata->func_to_clear);
6579 
6580 	/* No need for an explicit memory barrier here as long as we
6581 	 * ensure the ordering of writing to the SPQ element
6582 	 * and updating of the SPQ producer which involves a memory
6583 	 * read. If the memory read is removed we will have to put a
6584 	 * full memory barrier there (inside ecore_sp_post()).
6585 	 */
6586 
6587 	/* this ramrod sends data directly and not through DMA mapping */
6588 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6589 			     *p_rdata, NONE_CONNECTION_TYPE);
6590 }
6591 
6592 static INLINE int ecore_func_send_stop(struct _lm_device_t *pdev,
6593 				       struct ecore_func_state_params *params)
6594 {
6595 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
6596 			     NONE_CONNECTION_TYPE);
6597 }
6598 
6599 static INLINE int ecore_func_send_tx_stop(struct _lm_device_t *pdev,
6600 				       struct ecore_func_state_params *params)
6601 {
6602 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
6603 			     NONE_CONNECTION_TYPE);
6604 }
6605 static INLINE int ecore_func_send_tx_start(struct _lm_device_t *pdev,
6606 				       struct ecore_func_state_params *params)
6607 {
6608 	struct ecore_func_sp_obj *o = params->f_obj;
6609 	struct flow_control_configuration *rdata =
6610 		(struct flow_control_configuration *)o->rdata;
6611 	lm_address_t data_mapping = o->rdata_mapping;
6612 	struct ecore_func_tx_start_params *tx_start_params =
6613 		&params->params.tx_start;
6614 	int i;
6615 
6616 	mm_memset(rdata, 0, sizeof(*rdata));
6617 
6618 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6619 	rdata->dcb_version = tx_start_params->dcb_version;
6620 	rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6621 
6622 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6623 		rdata->traffic_type_to_priority_cos[i] =
6624 			tx_start_params->traffic_type_to_priority_cos[i];
6625 
6626 	/* No need for an explicit memory barrier here as long as we
6627 	 * ensure the ordering of writing to the SPQ element
6628 	 * and updating of the SPQ producer which involves a memory
6629 	 * read. If the memory read is removed we will have to put a
6630 	 * full memory barrier there (inside ecore_sp_post()).
6631 	 */
6632 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6633 			     data_mapping.as_u64, NONE_CONNECTION_TYPE);
6634 }
6635 
6636 static INLINE int ecore_func_send_set_timesync(struct _lm_device_t *pdev,
6637 					struct ecore_func_state_params *params)
6638 {
6639 	struct ecore_func_sp_obj *o = params->f_obj;
6640 	struct set_timesync_ramrod_data *rdata =
6641 		(struct set_timesync_ramrod_data *)o->rdata;
6642 	lm_address_t data_mapping = o->rdata_mapping;
6643 	struct ecore_func_set_timesync_params *set_timesync_params =
6644 		&params->params.set_timesync;
6645 
6646 	mm_memset(rdata, 0, sizeof(*rdata));
6647 
6648 	/* Fill the ramrod data with provided parameters */
6649 	rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6650 	rdata->offset_cmd = set_timesync_params->offset_cmd;
6651 	rdata->add_sub_drift_adjust_value =
6652 		set_timesync_params->add_sub_drift_adjust_value;
6653 	rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6654 	rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6655 	rdata->offset_delta.lo =
6656 		mm_cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6657 	rdata->offset_delta.hi =
6658 		mm_cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6659 
6660 	DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6661 	   rdata->drift_adjust_cmd, rdata->offset_cmd,
6662 	   rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6663 	   rdata->drift_adjust_period, rdata->offset_delta.lo,
6664 	   rdata->offset_delta.hi);
6665 
6666 	return ecore_sp_post(pdev, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6667 			     data_mapping.as_u64, NONE_CONNECTION_TYPE);
6668 }
6669 
6670 static int ecore_func_send_cmd(struct _lm_device_t *pdev,
6671 			       struct ecore_func_state_params *params)
6672 {
6673 	switch (params->cmd) {
6674 	case ECORE_F_CMD_HW_INIT:
6675 		return ecore_func_hw_init(pdev, params);
6676 	case ECORE_F_CMD_START:
6677 		return ecore_func_send_start(pdev, params);
6678 	case ECORE_F_CMD_STOP:
6679 		return ecore_func_send_stop(pdev, params);
6680 	case ECORE_F_CMD_HW_RESET:
6681 		return ecore_func_hw_reset(pdev, params);
6682 	case ECORE_F_CMD_AFEX_UPDATE:
6683 		return ecore_func_send_afex_update(pdev, params);
6684 	case ECORE_F_CMD_AFEX_VIFLISTS:
6685 		return ecore_func_send_afex_viflists(pdev, params);
6686 	case ECORE_F_CMD_TX_STOP:
6687 		return ecore_func_send_tx_stop(pdev, params);
6688 	case ECORE_F_CMD_TX_START:
6689 		return ecore_func_send_tx_start(pdev, params);
6690 	case ECORE_F_CMD_SWITCH_UPDATE:
6691 		return ecore_func_send_switch_update(pdev, params);
6692 	case ECORE_F_CMD_SET_TIMESYNC:
6693 		return ecore_func_send_set_timesync(pdev, params);
6694 	default:
6695 		ECORE_ERR("Unknown command: %d\n", params->cmd);
6696 		return ECORE_INVAL;
6697 	}
6698 }
6699 
6700 void ecore_init_func_obj(struct _lm_device_t *pdev,
6701 			 struct ecore_func_sp_obj *obj,
6702 			 void *rdata, lm_address_t rdata_mapping,
6703 			 void *afex_rdata, lm_address_t afex_rdata_mapping,
6704 			 struct ecore_func_sp_drv_ops *drv_iface)
6705 {
6706 	mm_memset(obj, 0, sizeof(*obj));
6707 
6708 	ECORE_MUTEX_INIT(&obj->one_pending_mutex);
6709 
6710 	obj->rdata = rdata;
6711 	obj->rdata_mapping = rdata_mapping;
6712 	obj->afex_rdata = afex_rdata;
6713 	obj->afex_rdata_mapping = afex_rdata_mapping;
6714 	obj->send_cmd = ecore_func_send_cmd;
6715 	obj->check_transition = ecore_func_chk_transition;
6716 	obj->complete_cmd = ecore_func_comp_cmd;
6717 	obj->wait_comp = ecore_func_wait_comp;
6718 	obj->drv = drv_iface;
6719 }
6720 
6721 /**
6722  * ecore_func_state_change - perform Function state change transition
6723  *
6724  * @pdev:	device handle
6725  * @params:	parameters to perform the transaction
6726  *
6727  * returns 0 in case of successfully completed transition,
6728  *         negative error code in case of failure, positive
6729  *         (EBUSY) value if there is a completion to that is
6730  *         still pending (possible only if RAMROD_COMP_WAIT is
6731  *         not set in params->ramrod_flags for asynchronous
6732  *         commands).
6733  */
6734 int ecore_func_state_change(struct _lm_device_t *pdev,
6735 			    struct ecore_func_state_params *params)
6736 {
6737 	struct ecore_func_sp_obj *o = params->f_obj;
6738 	int rc, cnt = 300;
6739 	enum ecore_func_cmd cmd = params->cmd;
6740 	unsigned long *pending = &o->pending;
6741 
6742 	ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6743 
6744 	/* Check that the requested transition is legal */
6745 	rc = o->check_transition(pdev, o, params);
6746 	if ((rc == ECORE_BUSY) &&
6747 	    (ECORE_TEST_BIT(RAMROD_RETRY, &params->ramrod_flags))) {
6748 		while ((rc == ECORE_BUSY) && (--cnt > 0)) {
6749 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6750 			msleep(10);
6751 			ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6752 			rc = o->check_transition(pdev, o, params);
6753 		}
6754 		if (rc == ECORE_BUSY) {
6755 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6756 			ECORE_ERR("timeout waiting for previous ramrod completion\n");
6757 			return rc;
6758 		}
6759 	} else if (rc) {
6760 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6761 		return rc;
6762 	}
6763 
6764 	/* Set "pending" bit */
6765 	ECORE_SET_BIT(cmd, pending);
6766 
6767 	/* Don't send a command if only driver cleanup was requested */
6768 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6769 		ecore_func_state_change_comp(pdev, o, cmd);
6770 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6771 	} else {
6772 		/* Send a ramrod */
6773 		rc = o->send_cmd(pdev, params);
6774 
6775 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6776 
6777 		if (rc) {
6778 			o->next_state = ECORE_F_STATE_MAX;
6779 			ECORE_CLEAR_BIT(cmd, pending);
6780 			smp_mb__after_atomic();
6781 			return rc;
6782 		}
6783 
6784 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6785 			rc = o->wait_comp(pdev, o, cmd);
6786 			if (rc)
6787 				return rc;
6788 
6789 			return ECORE_SUCCESS;
6790 		}
6791 	}
6792 
6793 	return ECORE_RET_PENDING(cmd, pending);
6794 }
6795 #endif
6796