1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 43 * slot is the time from now that the stack wants to be called but it 44 * must be converted to tcp_hpts's notion of slot. This is done with 45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 46 * call from the tcp_output() routine might look like: 47 * 48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 49 * 50 * The above would schedule tcp_output() to be called in 550 useconds. 51 * Note that if using this mechanism the stack will want to add near 52 * its top a check to prevent unwanted calls (from user land or the 53 * arrival of incoming ack's). So it would add something like: 54 * 55 * if (tcp_in_hpts(inp)) 56 * return; 57 * 58 * to prevent output processing until the time alotted has gone by. 59 * Of course this is a bare bones example and the stack will probably 60 * have more consideration then just the above. 61 * 62 * In order to run input queued segments from the HPTS context the 63 * tcp stack must define an input function for 64 * tfb_do_queued_segments(). This function understands 65 * how to dequeue a array of packets that were input and 66 * knows how to call the correct processing routine. 67 * 68 * Locking in this is important as well so most likely the 69 * stack will need to define the tfb_do_segment_nounlock() 70 * splitting tfb_do_segment() into two parts. The main processing 71 * part that does not unlock the INP and returns a value of 1 or 0. 72 * It returns 0 if all is well and the lock was not released. It 73 * returns 1 if we had to destroy the TCB (a reset received etc). 74 * The remains of tfb_do_segment() then become just a simple call 75 * to the tfb_do_segment_nounlock() function and check the return 76 * code and possibly unlock. 77 * 78 * The stack must also set the flag on the INP that it supports this 79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 80 * this flag as well and will queue packets when it is set. 81 * There are other flags as well INP_MBUF_QUEUE_READY and 82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 83 * that we are in the pacer for output so there is no 84 * need to wake up the hpts system to get immediate 85 * input. The second tells the LRO code that its okay 86 * if a SACK arrives you can still defer input and let 87 * the current hpts timer run (this is usually set when 88 * a rack timer is up so we know SACK's are happening 89 * on the connection already and don't want to wakeup yet). 90 * 91 * There is a common functions within the rack_bbr_common code 92 * version i.e. ctf_do_queued_segments(). This function 93 * knows how to take the input queue of packets from tp->t_inqueue 94 * and process them digging out all the arguments, calling any bpf tap and 95 * calling into tfb_do_segment_nounlock(). The common 96 * function (ctf_do_queued_segments()) requires that 97 * you have defined the tfb_do_segment_nounlock() as 98 * described above. 99 */ 100 101 #include <sys/param.h> 102 #include <sys/bus.h> 103 #include <sys/interrupt.h> 104 #include <sys/module.h> 105 #include <sys/kernel.h> 106 #include <sys/hhook.h> 107 #include <sys/malloc.h> 108 #include <sys/mbuf.h> 109 #include <sys/proc.h> /* for proc0 declaration */ 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/refcount.h> 115 #include <sys/sched.h> 116 #include <sys/queue.h> 117 #include <sys/smp.h> 118 #include <sys/counter.h> 119 #include <sys/time.h> 120 #include <sys/kthread.h> 121 #include <sys/kern_prefetch.h> 122 123 #include <vm/uma.h> 124 #include <vm/vm.h> 125 126 #include <net/route.h> 127 #include <net/vnet.h> 128 129 #ifdef RSS 130 #include <net/netisr.h> 131 #include <net/rss_config.h> 132 #endif 133 134 #define TCPSTATES /* for logging */ 135 136 #include <netinet/in.h> 137 #include <netinet/in_kdtrace.h> 138 #include <netinet/in_pcb.h> 139 #include <netinet/ip.h> 140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 142 #include <netinet/ip_var.h> 143 #include <netinet/ip6.h> 144 #include <netinet6/in6_pcb.h> 145 #include <netinet6/ip6_var.h> 146 #include <netinet/tcp.h> 147 #include <netinet/tcp_fsm.h> 148 #include <netinet/tcp_seq.h> 149 #include <netinet/tcp_timer.h> 150 #include <netinet/tcp_var.h> 151 #include <netinet/tcpip.h> 152 #include <netinet/cc/cc.h> 153 #include <netinet/tcp_hpts.h> 154 #include <netinet/tcp_log_buf.h> 155 156 #ifdef tcp_offload 157 #include <netinet/tcp_offload.h> 158 #endif 159 160 /* 161 * The hpts uses a 102400 wheel. The wheel 162 * defines the time in 10 usec increments (102400 x 10). 163 * This gives a range of 10usec - 1024ms to place 164 * an entry within. If the user requests more than 165 * 1.024 second, a remaineder is attached and the hpts 166 * when seeing the remainder will re-insert the 167 * inpcb forward in time from where it is until 168 * the remainder is zero. 169 */ 170 171 #define NUM_OF_HPTSI_SLOTS 102400 172 173 /* Each hpts has its own p_mtx which is used for locking */ 174 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 175 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 176 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 177 struct tcp_hpts_entry { 178 /* Cache line 0x00 */ 179 struct mtx p_mtx; /* Mutex for hpts */ 180 struct timeval p_mysleep; /* Our min sleep time */ 181 uint64_t syscall_cnt; 182 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 183 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 184 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 185 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 186 uint32_t p_runningslot; /* Current tick we are at if we are running */ 187 uint32_t p_prev_slot; /* Previous slot we were on */ 188 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 189 uint32_t p_nxt_slot; /* The next slot outside the current range of 190 * slots that the hpts is running on. */ 191 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 192 uint32_t p_lasttick; /* Last tick before the current one */ 193 uint8_t p_direct_wake :1, /* boolean */ 194 p_on_min_sleep:1, /* boolean */ 195 p_hpts_wake_scheduled:1, /* boolean */ 196 hit_callout_thresh:1, 197 p_avail:4; 198 uint8_t p_fill[3]; /* Fill to 32 bits */ 199 /* Cache line 0x40 */ 200 struct hptsh { 201 TAILQ_HEAD(, tcpcb) head; 202 uint32_t count; 203 uint32_t gencnt; 204 } *p_hptss; /* Hptsi wheel */ 205 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 206 * of 255ms */ 207 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 208 uint32_t saved_lasttick; /* for logging */ 209 uint32_t saved_curtick; /* for logging */ 210 uint32_t saved_curslot; /* for logging */ 211 uint32_t saved_prev_slot; /* for logging */ 212 uint32_t p_delayed_by; /* How much were we delayed by */ 213 /* Cache line 0x80 */ 214 struct sysctl_ctx_list hpts_ctx; 215 struct sysctl_oid *hpts_root; 216 struct intr_event *ie; 217 void *ie_cookie; 218 uint16_t p_num; /* The hpts number one per cpu */ 219 uint16_t p_cpu; /* The hpts CPU */ 220 /* There is extra space in here */ 221 /* Cache line 0x100 */ 222 struct callout co __aligned(CACHE_LINE_SIZE); 223 } __aligned(CACHE_LINE_SIZE); 224 225 static struct tcp_hptsi { 226 struct cpu_group **grps; 227 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 228 uint32_t *cts_last_ran; 229 uint32_t grp_cnt; 230 uint32_t rp_num_hptss; /* Number of hpts threads */ 231 } tcp_pace; 232 233 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 234 #ifdef RSS 235 static int tcp_bind_threads = 1; 236 #else 237 static int tcp_bind_threads = 2; 238 #endif 239 static int tcp_use_irq_cpu = 0; 240 static int hpts_does_tp_logging = 0; 241 242 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 243 static void tcp_hpts_thread(void *ctx); 244 245 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 246 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 247 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 248 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 249 250 251 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 252 "TCP Hpts controls"); 253 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 254 "TCP Hpts statistics"); 255 256 #define timersub(tvp, uvp, vvp) \ 257 do { \ 258 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 259 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 260 if ((vvp)->tv_usec < 0) { \ 261 (vvp)->tv_sec--; \ 262 (vvp)->tv_usec += 1000000; \ 263 } \ 264 } while (0) 265 266 static int32_t tcp_hpts_precision = 120; 267 268 static struct hpts_domain_info { 269 int count; 270 int cpu[MAXCPU]; 271 } hpts_domains[MAXMEMDOM]; 272 273 counter_u64_t hpts_hopelessly_behind; 274 275 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 276 &hpts_hopelessly_behind, 277 "Number of times hpts could not catch up and was behind hopelessly"); 278 279 counter_u64_t hpts_loops; 280 281 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 282 &hpts_loops, "Number of times hpts had to loop to catch up"); 283 284 counter_u64_t back_tosleep; 285 286 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 287 &back_tosleep, "Number of times hpts found no tcbs"); 288 289 counter_u64_t combined_wheel_wrap; 290 291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 292 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 293 294 counter_u64_t wheel_wrap; 295 296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 297 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 298 299 counter_u64_t hpts_direct_call; 300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 301 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 302 303 counter_u64_t hpts_wake_timeout; 304 305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 306 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 307 308 counter_u64_t hpts_direct_awakening; 309 310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 311 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 312 313 counter_u64_t hpts_back_tosleep; 314 315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 316 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 317 318 counter_u64_t cpu_uses_flowid; 319 counter_u64_t cpu_uses_random; 320 321 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 322 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 323 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 324 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 325 326 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 327 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 328 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 329 &tcp_bind_threads, 2, 330 "Thread Binding tunable"); 331 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 332 &tcp_use_irq_cpu, 0, 333 "Use of irq CPU tunable"); 334 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 335 &tcp_hpts_precision, 120, 336 "Value for PRE() precision of callout"); 337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 338 &conn_cnt_thresh, 0, 339 "How many connections (below) make us use the callout based mechanism"); 340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 341 &hpts_does_tp_logging, 0, 342 "Do we add to any tp that has logging on pacer logs"); 343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 344 &dynamic_min_sleep, 250, 345 "What is the dynamic minsleep value?"); 346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 347 &dynamic_max_sleep, 5000, 348 "What is the dynamic maxsleep value?"); 349 350 static int32_t max_pacer_loops = 10; 351 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 352 &max_pacer_loops, 10, 353 "What is the maximum number of times the pacer will loop trying to catch up"); 354 355 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 356 357 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 358 359 static int 360 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 361 { 362 int error; 363 uint32_t new; 364 365 new = hpts_sleep_max; 366 error = sysctl_handle_int(oidp, &new, 0, req); 367 if (error == 0 && req->newptr) { 368 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 369 (new > HPTS_MAX_SLEEP_ALLOWED)) 370 error = EINVAL; 371 else 372 hpts_sleep_max = new; 373 } 374 return (error); 375 } 376 377 static int 378 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 379 { 380 int error; 381 uint32_t new; 382 383 new = tcp_min_hptsi_time; 384 error = sysctl_handle_int(oidp, &new, 0, req); 385 if (error == 0 && req->newptr) { 386 if (new < LOWEST_SLEEP_ALLOWED) 387 error = EINVAL; 388 else 389 tcp_min_hptsi_time = new; 390 } 391 return (error); 392 } 393 394 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 395 CTLTYPE_UINT | CTLFLAG_RW, 396 &hpts_sleep_max, 0, 397 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 398 "Maximum time hpts will sleep in slots"); 399 400 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 401 CTLTYPE_UINT | CTLFLAG_RW, 402 &tcp_min_hptsi_time, 0, 403 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 404 "The minimum time the hpts must sleep before processing more slots"); 405 406 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 407 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 408 static int tcp_hpts_no_wake_over_thresh = 1; 409 410 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 411 &ticks_indicate_more_sleep, 0, 412 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 413 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 414 &ticks_indicate_less_sleep, 0, 415 "If we process this many or more on a timeout, we need less sleep on the next callout"); 416 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 417 &tcp_hpts_no_wake_over_thresh, 0, 418 "When we are over the threshold on the pacer do we prohibit wakeups?"); 419 420 static uint16_t 421 hpts_random_cpu(void) 422 { 423 uint16_t cpuid; 424 uint32_t ran; 425 426 ran = arc4random(); 427 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 428 return (cpuid); 429 } 430 431 static void 432 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 433 int slots_to_run, int idx, int from_callout) 434 { 435 union tcp_log_stackspecific log; 436 /* 437 * Unused logs are 438 * 64 bit - delRate, rttProp, bw_inuse 439 * 16 bit - cwnd_gain 440 * 8 bit - bbr_state, bbr_substate, inhpts; 441 */ 442 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 443 log.u_bbr.flex1 = hpts->p_nxt_slot; 444 log.u_bbr.flex2 = hpts->p_cur_slot; 445 log.u_bbr.flex3 = hpts->p_prev_slot; 446 log.u_bbr.flex4 = idx; 447 log.u_bbr.flex5 = hpts->p_curtick; 448 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 449 log.u_bbr.flex7 = hpts->p_cpu; 450 log.u_bbr.flex8 = (uint8_t)from_callout; 451 log.u_bbr.inflight = slots_to_run; 452 log.u_bbr.applimited = hpts->overidden_sleep; 453 log.u_bbr.delivered = hpts->saved_curtick; 454 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 455 log.u_bbr.epoch = hpts->saved_curslot; 456 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 457 log.u_bbr.pkts_out = hpts->p_delayed_by; 458 log.u_bbr.lost = hpts->p_hpts_sleep_time; 459 log.u_bbr.pacing_gain = hpts->p_cpu; 460 log.u_bbr.pkt_epoch = hpts->p_runningslot; 461 log.u_bbr.use_lt_bw = 1; 462 TCP_LOG_EVENTP(tp, NULL, 463 &tptosocket(tp)->so_rcv, 464 &tptosocket(tp)->so_snd, 465 BBR_LOG_HPTSDIAG, 0, 466 0, &log, false, tv); 467 } 468 469 static void 470 tcp_wakehpts(struct tcp_hpts_entry *hpts) 471 { 472 HPTS_MTX_ASSERT(hpts); 473 474 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 475 hpts->p_direct_wake = 0; 476 return; 477 } 478 if (hpts->p_hpts_wake_scheduled == 0) { 479 hpts->p_hpts_wake_scheduled = 1; 480 swi_sched(hpts->ie_cookie, 0); 481 } 482 } 483 484 static void 485 hpts_timeout_swi(void *arg) 486 { 487 struct tcp_hpts_entry *hpts; 488 489 hpts = (struct tcp_hpts_entry *)arg; 490 swi_sched(hpts->ie_cookie, 0); 491 } 492 493 static void 494 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 495 { 496 struct inpcb *inp = tptoinpcb(tp); 497 struct hptsh *hptsh; 498 499 INP_WLOCK_ASSERT(inp); 500 HPTS_MTX_ASSERT(hpts); 501 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 502 MPASS(!(inp->inp_flags & INP_DROPPED)); 503 504 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 505 506 if (tp->t_in_hpts == IHPTS_NONE) { 507 tp->t_in_hpts = IHPTS_ONQUEUE; 508 in_pcbref(inp); 509 } else if (tp->t_in_hpts == IHPTS_MOVING) { 510 tp->t_in_hpts = IHPTS_ONQUEUE; 511 } else 512 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 513 tp->t_hpts_gencnt = hptsh->gencnt; 514 515 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 516 hptsh->count++; 517 hpts->p_on_queue_cnt++; 518 } 519 520 static struct tcp_hpts_entry * 521 tcp_hpts_lock(struct tcpcb *tp) 522 { 523 struct tcp_hpts_entry *hpts; 524 525 INP_LOCK_ASSERT(tptoinpcb(tp)); 526 527 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 528 HPTS_LOCK(hpts); 529 530 return (hpts); 531 } 532 533 static void 534 tcp_hpts_release(struct tcpcb *tp) 535 { 536 bool released __diagused; 537 538 tp->t_in_hpts = IHPTS_NONE; 539 released = in_pcbrele_wlocked(tptoinpcb(tp)); 540 MPASS(released == false); 541 } 542 543 /* 544 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU 545 * is preferred on the first incoming packet. Before that avoid crowding 546 * a single CPU with newborn connections and use a random one. 547 * This initialization is normally called on a newborn tcpcb, but potentially 548 * can be called once again if stack is switched. In that case we inherit CPU 549 * that the previous stack has set, be it random or not. In extreme cases, 550 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state 551 * and has never received a first packet. 552 */ 553 void 554 tcp_hpts_init(struct tcpcb *tp) 555 { 556 557 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) { 558 tp->t_hpts_cpu = hpts_random_cpu(); 559 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 560 } 561 } 562 563 /* 564 * Called normally with the INP_LOCKED but it 565 * does not matter, the hpts lock is the key 566 * but the lock order allows us to hold the 567 * INP lock and then get the hpts lock. 568 */ 569 void 570 tcp_hpts_remove(struct tcpcb *tp) 571 { 572 struct tcp_hpts_entry *hpts; 573 struct hptsh *hptsh; 574 575 INP_WLOCK_ASSERT(tptoinpcb(tp)); 576 577 hpts = tcp_hpts_lock(tp); 578 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 579 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 580 tp->t_hpts_request = 0; 581 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 582 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 583 MPASS(hptsh->count > 0); 584 hptsh->count--; 585 MPASS(hpts->p_on_queue_cnt > 0); 586 hpts->p_on_queue_cnt--; 587 tcp_hpts_release(tp); 588 } else { 589 /* 590 * tcp_hptsi() now owns the TAILQ head of this inp. 591 * Can't TAILQ_REMOVE, just mark it. 592 */ 593 #ifdef INVARIANTS 594 struct tcpcb *tmp; 595 596 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 597 MPASS(tmp != tp); 598 #endif 599 tp->t_in_hpts = IHPTS_MOVING; 600 tp->t_hpts_slot = -1; 601 } 602 } else if (tp->t_in_hpts == IHPTS_MOVING) { 603 /* 604 * Handle a special race condition: 605 * tcp_hptsi() moves inpcb to detached tailq 606 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 607 * tcp_hpts_insert() sets slot to a meaningful value 608 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 609 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 610 */ 611 tp->t_hpts_slot = -1; 612 } 613 HPTS_UNLOCK(hpts); 614 } 615 616 static inline int 617 hpts_slot(uint32_t wheel_slot, uint32_t plus) 618 { 619 /* 620 * Given a slot on the wheel, what slot 621 * is that plus ticks out? 622 */ 623 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 624 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 625 } 626 627 static inline int 628 tick_to_wheel(uint32_t cts_in_wticks) 629 { 630 /* 631 * Given a timestamp in ticks (so by 632 * default to get it to a real time one 633 * would multiply by 10.. i.e the number 634 * of ticks in a slot) map it to our limited 635 * space wheel. 636 */ 637 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 638 } 639 640 static inline int 641 hpts_slots_diff(int prev_slot, int slot_now) 642 { 643 /* 644 * Given two slots that are someplace 645 * on our wheel. How far are they apart? 646 */ 647 if (slot_now > prev_slot) 648 return (slot_now - prev_slot); 649 else if (slot_now == prev_slot) 650 /* 651 * Special case, same means we can go all of our 652 * wheel less one slot. 653 */ 654 return (NUM_OF_HPTSI_SLOTS - 1); 655 else 656 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 657 } 658 659 /* 660 * Given a slot on the wheel that is the current time 661 * mapped to the wheel (wheel_slot), what is the maximum 662 * distance forward that can be obtained without 663 * wrapping past either prev_slot or running_slot 664 * depending on the htps state? Also if passed 665 * a uint32_t *, fill it with the slot location. 666 * 667 * Note if you do not give this function the current 668 * time (that you think it is) mapped to the wheel slot 669 * then the results will not be what you expect and 670 * could lead to invalid inserts. 671 */ 672 static inline int32_t 673 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 674 { 675 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 676 677 if ((hpts->p_hpts_active == 1) && 678 (hpts->p_wheel_complete == 0)) { 679 end_slot = hpts->p_runningslot; 680 /* Back up one tick */ 681 if (end_slot == 0) 682 end_slot = NUM_OF_HPTSI_SLOTS - 1; 683 else 684 end_slot--; 685 if (target_slot) 686 *target_slot = end_slot; 687 } else { 688 /* 689 * For the case where we are 690 * not active, or we have 691 * completed the pass over 692 * the wheel, we can use the 693 * prev tick and subtract one from it. This puts us 694 * as far out as possible on the wheel. 695 */ 696 end_slot = hpts->p_prev_slot; 697 if (end_slot == 0) 698 end_slot = NUM_OF_HPTSI_SLOTS - 1; 699 else 700 end_slot--; 701 if (target_slot) 702 *target_slot = end_slot; 703 /* 704 * Now we have close to the full wheel left minus the 705 * time it has been since the pacer went to sleep. Note 706 * that wheel_tick, passed in, should be the current time 707 * from the perspective of the caller, mapped to the wheel. 708 */ 709 if (hpts->p_prev_slot != wheel_slot) 710 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 711 else 712 dis_to_travel = 1; 713 /* 714 * dis_to_travel in this case is the space from when the 715 * pacer stopped (p_prev_slot) and where our wheel_slot 716 * is now. To know how many slots we can put it in we 717 * subtract from the wheel size. We would not want 718 * to place something after p_prev_slot or it will 719 * get ran too soon. 720 */ 721 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 722 } 723 /* 724 * So how many slots are open between p_runningslot -> p_cur_slot 725 * that is what is currently un-available for insertion. Special 726 * case when we are at the last slot, this gets 1, so that 727 * the answer to how many slots are available is all but 1. 728 */ 729 if (hpts->p_runningslot == hpts->p_cur_slot) 730 dis_to_travel = 1; 731 else 732 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 733 /* 734 * How long has the pacer been running? 735 */ 736 if (hpts->p_cur_slot != wheel_slot) { 737 /* The pacer is a bit late */ 738 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 739 } else { 740 /* The pacer is right on time, now == pacers start time */ 741 pacer_to_now = 0; 742 } 743 /* 744 * To get the number left we can insert into we simply 745 * subtract the distance the pacer has to run from how 746 * many slots there are. 747 */ 748 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 749 /* 750 * Now how many of those we will eat due to the pacer's 751 * time (p_cur_slot) of start being behind the 752 * real time (wheel_slot)? 753 */ 754 if (avail_on_wheel <= pacer_to_now) { 755 /* 756 * Wheel wrap, we can't fit on the wheel, that 757 * is unusual the system must be way overloaded! 758 * Insert into the assured slot, and return special 759 * "0". 760 */ 761 counter_u64_add(combined_wheel_wrap, 1); 762 if (target_slot) 763 *target_slot = hpts->p_nxt_slot; 764 return (0); 765 } else { 766 /* 767 * We know how many slots are open 768 * on the wheel (the reverse of what 769 * is left to run. Take away the time 770 * the pacer started to now (wheel_slot) 771 * and that tells you how many slots are 772 * open that can be inserted into that won't 773 * be touched by the pacer until later. 774 */ 775 return (avail_on_wheel - pacer_to_now); 776 } 777 } 778 779 780 #ifdef INVARIANTS 781 static void 782 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 783 uint32_t hptsslot, int line) 784 { 785 /* 786 * Sanity checks for the pacer with invariants 787 * on insert. 788 */ 789 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 790 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 791 if ((hpts->p_hpts_active) && 792 (hpts->p_wheel_complete == 0)) { 793 /* 794 * If the pacer is processing a arc 795 * of the wheel, we need to make 796 * sure we are not inserting within 797 * that arc. 798 */ 799 int distance, yet_to_run; 800 801 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 802 if (hpts->p_runningslot != hpts->p_cur_slot) 803 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 804 else 805 yet_to_run = 0; /* processing last slot */ 806 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 807 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 808 hptsslot, distance, yet_to_run, hpts->p_runningslot, 809 hpts->p_cur_slot)); 810 } 811 } 812 #endif 813 814 uint32_t 815 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 816 { 817 struct tcp_hpts_entry *hpts; 818 struct timeval tv; 819 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 820 int32_t wheel_slot, maxslots; 821 bool need_wakeup = false; 822 823 INP_WLOCK_ASSERT(tptoinpcb(tp)); 824 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 825 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE)); 826 827 /* 828 * We now return the next-slot the hpts will be on, beyond its 829 * current run (if up) or where it was when it stopped if it is 830 * sleeping. 831 */ 832 hpts = tcp_hpts_lock(tp); 833 microuptime(&tv); 834 if (diag) { 835 memset(diag, 0, sizeof(struct hpts_diag)); 836 diag->p_hpts_active = hpts->p_hpts_active; 837 diag->p_prev_slot = hpts->p_prev_slot; 838 diag->p_runningslot = hpts->p_runningslot; 839 diag->p_nxt_slot = hpts->p_nxt_slot; 840 diag->p_cur_slot = hpts->p_cur_slot; 841 diag->p_curtick = hpts->p_curtick; 842 diag->p_lasttick = hpts->p_lasttick; 843 diag->slot_req = slot; 844 diag->p_on_min_sleep = hpts->p_on_min_sleep; 845 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 846 } 847 if (slot == 0) { 848 /* Ok we need to set it on the hpts in the current slot */ 849 tp->t_hpts_request = 0; 850 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 851 /* 852 * A sleeping hpts we want in next slot to run 853 * note that in this state p_prev_slot == p_cur_slot 854 */ 855 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 856 if ((hpts->p_on_min_sleep == 0) && 857 (hpts->p_hpts_active == 0)) 858 need_wakeup = true; 859 } else 860 tp->t_hpts_slot = hpts->p_runningslot; 861 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 862 tcp_hpts_insert_internal(tp, hpts); 863 if (need_wakeup) { 864 /* 865 * Activate the hpts if it is sleeping and its 866 * timeout is not 1. 867 */ 868 hpts->p_direct_wake = 1; 869 tcp_wakehpts(hpts); 870 } 871 slot_on = hpts->p_nxt_slot; 872 HPTS_UNLOCK(hpts); 873 874 return (slot_on); 875 } 876 /* Get the current time relative to the wheel */ 877 wheel_cts = tcp_tv_to_hptstick(&tv); 878 /* Map it onto the wheel */ 879 wheel_slot = tick_to_wheel(wheel_cts); 880 /* Now what's the max we can place it at? */ 881 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 882 if (diag) { 883 diag->wheel_slot = wheel_slot; 884 diag->maxslots = maxslots; 885 diag->wheel_cts = wheel_cts; 886 } 887 if (maxslots == 0) { 888 /* The pacer is in a wheel wrap behind, yikes! */ 889 if (slot > 1) { 890 /* 891 * Reduce by 1 to prevent a forever loop in 892 * case something else is wrong. Note this 893 * probably does not hurt because the pacer 894 * if its true is so far behind we will be 895 * > 1second late calling anyway. 896 */ 897 slot--; 898 } 899 tp->t_hpts_slot = last_slot; 900 tp->t_hpts_request = slot; 901 } else if (maxslots >= slot) { 902 /* It all fits on the wheel */ 903 tp->t_hpts_request = 0; 904 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 905 } else { 906 /* It does not fit */ 907 tp->t_hpts_request = slot - maxslots; 908 tp->t_hpts_slot = last_slot; 909 } 910 if (diag) { 911 diag->slot_remaining = tp->t_hpts_request; 912 diag->inp_hptsslot = tp->t_hpts_slot; 913 } 914 #ifdef INVARIANTS 915 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 916 #endif 917 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 918 tcp_hpts_insert_internal(tp, hpts); 919 if ((hpts->p_hpts_active == 0) && 920 (tp->t_hpts_request == 0) && 921 (hpts->p_on_min_sleep == 0)) { 922 /* 923 * The hpts is sleeping and NOT on a minimum 924 * sleep time, we need to figure out where 925 * it will wake up at and if we need to reschedule 926 * its time-out. 927 */ 928 uint32_t have_slept, yet_to_sleep; 929 930 /* Now do we need to restart the hpts's timer? */ 931 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 932 if (have_slept < hpts->p_hpts_sleep_time) 933 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 934 else { 935 /* We are over-due */ 936 yet_to_sleep = 0; 937 need_wakeup = 1; 938 } 939 if (diag) { 940 diag->have_slept = have_slept; 941 diag->yet_to_sleep = yet_to_sleep; 942 } 943 if (yet_to_sleep && 944 (yet_to_sleep > slot)) { 945 /* 946 * We need to reschedule the hpts's time-out. 947 */ 948 hpts->p_hpts_sleep_time = slot; 949 need_new_to = slot * HPTS_TICKS_PER_SLOT; 950 } 951 } 952 /* 953 * Now how far is the hpts sleeping to? if active is 1, its 954 * up and ticking we do nothing, otherwise we may need to 955 * reschedule its callout if need_new_to is set from above. 956 */ 957 if (need_wakeup) { 958 hpts->p_direct_wake = 1; 959 tcp_wakehpts(hpts); 960 if (diag) { 961 diag->need_new_to = 0; 962 diag->co_ret = 0xffff0000; 963 } 964 } else if (need_new_to) { 965 int32_t co_ret; 966 struct timeval tv; 967 sbintime_t sb; 968 969 tv.tv_sec = 0; 970 tv.tv_usec = 0; 971 while (need_new_to > HPTS_USEC_IN_SEC) { 972 tv.tv_sec++; 973 need_new_to -= HPTS_USEC_IN_SEC; 974 } 975 tv.tv_usec = need_new_to; 976 sb = tvtosbt(tv); 977 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 978 hpts_timeout_swi, hpts, hpts->p_cpu, 979 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 980 if (diag) { 981 diag->need_new_to = need_new_to; 982 diag->co_ret = co_ret; 983 } 984 } 985 slot_on = hpts->p_nxt_slot; 986 HPTS_UNLOCK(hpts); 987 988 return (slot_on); 989 } 990 991 static uint16_t 992 hpts_cpuid(struct tcpcb *tp, int *failed) 993 { 994 struct inpcb *inp = tptoinpcb(tp); 995 u_int cpuid; 996 #ifdef NUMA 997 struct hpts_domain_info *di; 998 #endif 999 1000 *failed = 0; 1001 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 1002 return (tp->t_hpts_cpu); 1003 } 1004 /* 1005 * If we are using the irq cpu set by LRO or 1006 * the driver then it overrides all other domains. 1007 */ 1008 if (tcp_use_irq_cpu) { 1009 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1010 *failed = 1; 1011 return (0); 1012 } 1013 return (tp->t_lro_cpu); 1014 } 1015 /* If one is set the other must be the same */ 1016 #ifdef RSS 1017 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1018 if (cpuid == NETISR_CPUID_NONE) 1019 return (hpts_random_cpu()); 1020 else 1021 return (cpuid); 1022 #endif 1023 /* 1024 * We don't have a flowid -> cpuid mapping, so cheat and just map 1025 * unknown cpuids to curcpu. Not the best, but apparently better 1026 * than defaulting to swi 0. 1027 */ 1028 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1029 counter_u64_add(cpu_uses_random, 1); 1030 return (hpts_random_cpu()); 1031 } 1032 /* 1033 * Hash to a thread based on the flowid. If we are using numa, 1034 * then restrict the hash to the numa domain where the inp lives. 1035 */ 1036 1037 #ifdef NUMA 1038 if ((vm_ndomains == 1) || 1039 (inp->inp_numa_domain == M_NODOM)) { 1040 #endif 1041 cpuid = inp->inp_flowid % mp_ncpus; 1042 #ifdef NUMA 1043 } else { 1044 /* Hash into the cpu's that use that domain */ 1045 di = &hpts_domains[inp->inp_numa_domain]; 1046 cpuid = di->cpu[inp->inp_flowid % di->count]; 1047 } 1048 #endif 1049 counter_u64_add(cpu_uses_flowid, 1); 1050 return (cpuid); 1051 } 1052 1053 static void 1054 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1055 { 1056 uint32_t t = 0, i; 1057 1058 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1059 /* 1060 * Find next slot that is occupied and use that to 1061 * be the sleep time. 1062 */ 1063 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1064 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1065 break; 1066 } 1067 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1068 } 1069 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1070 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1071 } else { 1072 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1073 hpts->p_hpts_sleep_time = hpts_sleep_max; 1074 } 1075 } 1076 1077 static int32_t 1078 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1079 { 1080 struct tcpcb *tp; 1081 struct timeval tv; 1082 int32_t slots_to_run, i, error; 1083 int32_t loop_cnt = 0; 1084 int32_t did_prefetch = 0; 1085 int32_t prefetch_tp = 0; 1086 int32_t wrap_loop_cnt = 0; 1087 int32_t slot_pos_of_endpoint = 0; 1088 int32_t orig_exit_slot; 1089 int8_t completed_measure = 0, seen_endpoint = 0; 1090 1091 HPTS_MTX_ASSERT(hpts); 1092 NET_EPOCH_ASSERT(); 1093 /* record previous info for any logging */ 1094 hpts->saved_lasttick = hpts->p_lasttick; 1095 hpts->saved_curtick = hpts->p_curtick; 1096 hpts->saved_curslot = hpts->p_cur_slot; 1097 hpts->saved_prev_slot = hpts->p_prev_slot; 1098 1099 hpts->p_lasttick = hpts->p_curtick; 1100 hpts->p_curtick = tcp_gethptstick(&tv); 1101 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1102 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1103 if ((hpts->p_on_queue_cnt == 0) || 1104 (hpts->p_lasttick == hpts->p_curtick)) { 1105 /* 1106 * No time has yet passed, 1107 * or nothing to do. 1108 */ 1109 hpts->p_prev_slot = hpts->p_cur_slot; 1110 hpts->p_lasttick = hpts->p_curtick; 1111 goto no_run; 1112 } 1113 again: 1114 hpts->p_wheel_complete = 0; 1115 HPTS_MTX_ASSERT(hpts); 1116 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1117 if (((hpts->p_curtick - hpts->p_lasttick) > 1118 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1119 (hpts->p_on_queue_cnt != 0)) { 1120 /* 1121 * Wheel wrap is occuring, basically we 1122 * are behind and the distance between 1123 * run's has spread so much it has exceeded 1124 * the time on the wheel (1.024 seconds). This 1125 * is ugly and should NOT be happening. We 1126 * need to run the entire wheel. We last processed 1127 * p_prev_slot, so that needs to be the last slot 1128 * we run. The next slot after that should be our 1129 * reserved first slot for new, and then starts 1130 * the running position. Now the problem is the 1131 * reserved "not to yet" place does not exist 1132 * and there may be inp's in there that need 1133 * running. We can merge those into the 1134 * first slot at the head. 1135 */ 1136 wrap_loop_cnt++; 1137 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1138 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1139 /* 1140 * Adjust p_cur_slot to be where we are starting from 1141 * hopefully we will catch up (fat chance if something 1142 * is broken this bad :( ) 1143 */ 1144 hpts->p_cur_slot = hpts->p_prev_slot; 1145 /* 1146 * The next slot has guys to run too, and that would 1147 * be where we would normally start, lets move them into 1148 * the next slot (p_prev_slot + 2) so that we will 1149 * run them, the extra 10usecs of late (by being 1150 * put behind) does not really matter in this situation. 1151 */ 1152 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1153 t_hpts) { 1154 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1155 MPASS(tp->t_hpts_gencnt == 1156 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1157 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1158 1159 /* 1160 * Update gencnt and nextslot accordingly to match 1161 * the new location. This is safe since it takes both 1162 * the INP lock and the pacer mutex to change the 1163 * t_hptsslot and t_hpts_gencnt. 1164 */ 1165 tp->t_hpts_gencnt = 1166 hpts->p_hptss[hpts->p_runningslot].gencnt; 1167 tp->t_hpts_slot = hpts->p_runningslot; 1168 } 1169 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1170 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1171 hpts->p_hptss[hpts->p_runningslot].count += 1172 hpts->p_hptss[hpts->p_nxt_slot].count; 1173 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1174 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1175 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1176 counter_u64_add(wheel_wrap, 1); 1177 } else { 1178 /* 1179 * Nxt slot is always one after p_runningslot though 1180 * its not used usually unless we are doing wheel wrap. 1181 */ 1182 hpts->p_nxt_slot = hpts->p_prev_slot; 1183 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1184 } 1185 if (hpts->p_on_queue_cnt == 0) { 1186 goto no_one; 1187 } 1188 for (i = 0; i < slots_to_run; i++) { 1189 struct tcpcb *tp, *ntp; 1190 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1191 struct hptsh *hptsh; 1192 uint32_t runningslot; 1193 1194 /* 1195 * Calculate our delay, if there are no extra ticks there 1196 * was not any (i.e. if slots_to_run == 1, no delay). 1197 */ 1198 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1199 HPTS_TICKS_PER_SLOT; 1200 1201 runningslot = hpts->p_runningslot; 1202 hptsh = &hpts->p_hptss[runningslot]; 1203 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1204 hpts->p_on_queue_cnt -= hptsh->count; 1205 hptsh->count = 0; 1206 hptsh->gencnt++; 1207 1208 HPTS_UNLOCK(hpts); 1209 1210 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1211 struct inpcb *inp = tptoinpcb(tp); 1212 bool set_cpu; 1213 1214 if (ntp != NULL) { 1215 /* 1216 * If we have a next tcpcb, see if we can 1217 * prefetch it. Note this may seem 1218 * "risky" since we have no locks (other 1219 * than the previous inp) and there no 1220 * assurance that ntp was not pulled while 1221 * we were processing tp and freed. If this 1222 * occurred it could mean that either: 1223 * 1224 * a) Its NULL (which is fine we won't go 1225 * here) <or> b) Its valid (which is cool we 1226 * will prefetch it) <or> c) The inp got 1227 * freed back to the slab which was 1228 * reallocated. Then the piece of memory was 1229 * re-used and something else (not an 1230 * address) is in inp_ppcb. If that occurs 1231 * we don't crash, but take a TLB shootdown 1232 * performance hit (same as if it was NULL 1233 * and we tried to pre-fetch it). 1234 * 1235 * Considering that the likelyhood of <c> is 1236 * quite rare we will take a risk on doing 1237 * this. If performance drops after testing 1238 * we can always take this out. NB: the 1239 * kern_prefetch on amd64 actually has 1240 * protection against a bad address now via 1241 * the DMAP_() tests. This will prevent the 1242 * TLB hit, and instead if <c> occurs just 1243 * cause us to load cache with a useless 1244 * address (to us). 1245 * 1246 * XXXGL: this comment and the prefetch action 1247 * could be outdated after tp == inp change. 1248 */ 1249 kern_prefetch(ntp, &prefetch_tp); 1250 prefetch_tp = 1; 1251 } 1252 1253 /* For debugging */ 1254 if (seen_endpoint == 0) { 1255 seen_endpoint = 1; 1256 orig_exit_slot = slot_pos_of_endpoint = 1257 runningslot; 1258 } else if (completed_measure == 0) { 1259 /* Record the new position */ 1260 orig_exit_slot = runningslot; 1261 } 1262 1263 INP_WLOCK(inp); 1264 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1265 set_cpu = true; 1266 } else { 1267 set_cpu = false; 1268 } 1269 1270 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1271 if (tp->t_hpts_slot == -1) { 1272 tp->t_in_hpts = IHPTS_NONE; 1273 if (in_pcbrele_wlocked(inp) == false) 1274 INP_WUNLOCK(inp); 1275 } else { 1276 HPTS_LOCK(hpts); 1277 tcp_hpts_insert_internal(tp, hpts); 1278 HPTS_UNLOCK(hpts); 1279 INP_WUNLOCK(inp); 1280 } 1281 continue; 1282 } 1283 1284 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1285 MPASS(!(inp->inp_flags & INP_DROPPED)); 1286 KASSERT(runningslot == tp->t_hpts_slot, 1287 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1288 hpts, inp, runningslot, tp->t_hpts_slot)); 1289 1290 if (tp->t_hpts_request) { 1291 /* 1292 * This guy is deferred out further in time 1293 * then our wheel had available on it. 1294 * Push him back on the wheel or run it 1295 * depending. 1296 */ 1297 uint32_t maxslots, last_slot, remaining_slots; 1298 1299 remaining_slots = slots_to_run - (i + 1); 1300 if (tp->t_hpts_request > remaining_slots) { 1301 HPTS_LOCK(hpts); 1302 /* 1303 * How far out can we go? 1304 */ 1305 maxslots = max_slots_available(hpts, 1306 hpts->p_cur_slot, &last_slot); 1307 if (maxslots >= tp->t_hpts_request) { 1308 /* We can place it finally to 1309 * be processed. */ 1310 tp->t_hpts_slot = hpts_slot( 1311 hpts->p_runningslot, 1312 tp->t_hpts_request); 1313 tp->t_hpts_request = 0; 1314 } else { 1315 /* Work off some more time */ 1316 tp->t_hpts_slot = last_slot; 1317 tp->t_hpts_request -= 1318 maxslots; 1319 } 1320 tcp_hpts_insert_internal(tp, hpts); 1321 HPTS_UNLOCK(hpts); 1322 INP_WUNLOCK(inp); 1323 continue; 1324 } 1325 tp->t_hpts_request = 0; 1326 /* Fall through we will so do it now */ 1327 } 1328 1329 tcp_hpts_release(tp); 1330 if (set_cpu) { 1331 /* 1332 * Setup so the next time we will move to 1333 * the right CPU. This should be a rare 1334 * event. It will sometimes happens when we 1335 * are the client side (usually not the 1336 * server). Somehow tcp_output() gets called 1337 * before the tcp_do_segment() sets the 1338 * intial state. This means the r_cpu and 1339 * r_hpts_cpu is 0. We get on the hpts, and 1340 * then tcp_input() gets called setting up 1341 * the r_cpu to the correct value. The hpts 1342 * goes off and sees the mis-match. We 1343 * simply correct it here and the CPU will 1344 * switch to the new hpts nextime the tcb 1345 * gets added to the hpts (not this one) 1346 * :-) 1347 */ 1348 tcp_set_hpts(tp); 1349 } 1350 CURVNET_SET(inp->inp_vnet); 1351 /* Lets do any logging that we might want to */ 1352 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 1353 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1354 } 1355 1356 if (tp->t_fb_ptr != NULL) { 1357 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1358 did_prefetch = 1; 1359 } 1360 /* 1361 * We set TF2_HPTS_CALLS before any possible output. 1362 * The contract with the transport is that if it cares 1363 * about hpts calling it should clear the flag. That 1364 * way next time it is called it will know it is hpts. 1365 * 1366 * We also only call tfb_do_queued_segments() <or> 1367 * tcp_output(). It is expected that if segments are 1368 * queued and come in that the final input mbuf will 1369 * cause a call to output if it is needed so we do 1370 * not need a second call to tcp_output(). So we do 1371 * one or the other but not both. 1372 */ 1373 tp->t_flags2 |= TF2_HPTS_CALLS; 1374 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1375 !STAILQ_EMPTY(&tp->t_inqueue)) { 1376 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0); 1377 /* 1378 * A non-zero return for input queue processing 1379 * is the lock is released and most likely the 1380 * inp is gone. 1381 */ 1382 if (error) 1383 goto skip_pacing; 1384 } else 1385 error = tcp_output(tp); 1386 if (error < 0) 1387 goto skip_pacing; 1388 INP_WUNLOCK(inp); 1389 skip_pacing: 1390 CURVNET_RESTORE(); 1391 } 1392 if (seen_endpoint) { 1393 /* 1394 * We now have a accurate distance between 1395 * slot_pos_of_endpoint <-> orig_exit_slot 1396 * to tell us how late we were, orig_exit_slot 1397 * is where we calculated the end of our cycle to 1398 * be when we first entered. 1399 */ 1400 completed_measure = 1; 1401 } 1402 HPTS_LOCK(hpts); 1403 hpts->p_runningslot++; 1404 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1405 hpts->p_runningslot = 0; 1406 } 1407 } 1408 no_one: 1409 HPTS_MTX_ASSERT(hpts); 1410 hpts->p_delayed_by = 0; 1411 /* 1412 * Check to see if we took an excess amount of time and need to run 1413 * more ticks (if we did not hit eno-bufs). 1414 */ 1415 hpts->p_prev_slot = hpts->p_cur_slot; 1416 hpts->p_lasttick = hpts->p_curtick; 1417 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1418 /* 1419 * Something is serious slow we have 1420 * looped through processing the wheel 1421 * and by the time we cleared the 1422 * needs to run max_pacer_loops time 1423 * we still needed to run. That means 1424 * the system is hopelessly behind and 1425 * can never catch up :( 1426 * 1427 * We will just lie to this thread 1428 * and let it thing p_curtick is 1429 * correct. When it next awakens 1430 * it will find itself further behind. 1431 */ 1432 if (from_callout) 1433 counter_u64_add(hpts_hopelessly_behind, 1); 1434 goto no_run; 1435 } 1436 hpts->p_curtick = tcp_gethptstick(&tv); 1437 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1438 if (seen_endpoint == 0) { 1439 /* We saw no endpoint but we may be looping */ 1440 orig_exit_slot = hpts->p_cur_slot; 1441 } 1442 if ((wrap_loop_cnt < 2) && 1443 (hpts->p_lasttick != hpts->p_curtick)) { 1444 counter_u64_add(hpts_loops, 1); 1445 loop_cnt++; 1446 goto again; 1447 } 1448 no_run: 1449 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1450 /* 1451 * Set flag to tell that we are done for 1452 * any slot input that happens during 1453 * input. 1454 */ 1455 hpts->p_wheel_complete = 1; 1456 /* 1457 * Now did we spend too long running input and need to run more ticks? 1458 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1459 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1460 * is greater than 2, then the condtion most likely are *not* true. 1461 * Also if we are called not from the callout, we don't run the wheel 1462 * multiple times so the slots may not align either. 1463 */ 1464 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1465 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1466 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1467 hpts->p_prev_slot, hpts->p_cur_slot)); 1468 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1469 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1470 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1471 hpts->p_lasttick, hpts->p_curtick)); 1472 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1473 hpts->p_curtick = tcp_gethptstick(&tv); 1474 counter_u64_add(hpts_loops, 1); 1475 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1476 goto again; 1477 } 1478 1479 if (from_callout){ 1480 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1481 } 1482 if (seen_endpoint) 1483 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1484 else 1485 return (0); 1486 } 1487 1488 void 1489 __tcp_set_hpts(struct tcpcb *tp, int32_t line) 1490 { 1491 struct tcp_hpts_entry *hpts; 1492 int failed; 1493 1494 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1495 1496 hpts = tcp_hpts_lock(tp); 1497 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1498 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1499 if (failed == 0) 1500 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1501 } 1502 mtx_unlock(&hpts->p_mtx); 1503 } 1504 1505 static struct tcp_hpts_entry * 1506 tcp_choose_hpts_to_run(void) 1507 { 1508 int i, oldest_idx, start, end; 1509 uint32_t cts, time_since_ran, calc; 1510 1511 cts = tcp_get_usecs(NULL); 1512 time_since_ran = 0; 1513 /* Default is all one group */ 1514 start = 0; 1515 end = tcp_pace.rp_num_hptss; 1516 /* 1517 * If we have more than one L3 group figure out which one 1518 * this CPU is in. 1519 */ 1520 if (tcp_pace.grp_cnt > 1) { 1521 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1522 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1523 start = tcp_pace.grps[i]->cg_first; 1524 end = (tcp_pace.grps[i]->cg_last + 1); 1525 break; 1526 } 1527 } 1528 } 1529 oldest_idx = -1; 1530 for (i = start; i < end; i++) { 1531 if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i])) 1532 calc = cts - tcp_pace.cts_last_ran[i]; 1533 else 1534 calc = 0; 1535 if (calc > time_since_ran) { 1536 oldest_idx = i; 1537 time_since_ran = calc; 1538 } 1539 } 1540 if (oldest_idx >= 0) 1541 return(tcp_pace.rp_ent[oldest_idx]); 1542 else 1543 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1544 } 1545 1546 static void 1547 __tcp_run_hpts(void) 1548 { 1549 struct epoch_tracker et; 1550 struct tcp_hpts_entry *hpts; 1551 int ticks_ran; 1552 1553 hpts = tcp_choose_hpts_to_run(); 1554 1555 if (hpts->p_hpts_active) { 1556 /* Already active */ 1557 return; 1558 } 1559 if (mtx_trylock(&hpts->p_mtx) == 0) { 1560 /* Someone else got the lock */ 1561 return; 1562 } 1563 NET_EPOCH_ENTER(et); 1564 if (hpts->p_hpts_active) 1565 goto out_with_mtx; 1566 hpts->syscall_cnt++; 1567 counter_u64_add(hpts_direct_call, 1); 1568 hpts->p_hpts_active = 1; 1569 ticks_ran = tcp_hptsi(hpts, 0); 1570 /* We may want to adjust the sleep values here */ 1571 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1572 if (ticks_ran > ticks_indicate_less_sleep) { 1573 struct timeval tv; 1574 sbintime_t sb; 1575 1576 hpts->p_mysleep.tv_usec /= 2; 1577 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1578 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1579 /* Reschedule with new to value */ 1580 tcp_hpts_set_max_sleep(hpts, 0); 1581 tv.tv_sec = 0; 1582 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1583 /* Validate its in the right ranges */ 1584 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1585 hpts->overidden_sleep = tv.tv_usec; 1586 tv.tv_usec = hpts->p_mysleep.tv_usec; 1587 } else if (tv.tv_usec > dynamic_max_sleep) { 1588 /* Lets not let sleep get above this value */ 1589 hpts->overidden_sleep = tv.tv_usec; 1590 tv.tv_usec = dynamic_max_sleep; 1591 } 1592 /* 1593 * In this mode the timer is a backstop to 1594 * all the userret/lro_flushes so we use 1595 * the dynamic value and set the on_min_sleep 1596 * flag so we will not be awoken. 1597 */ 1598 sb = tvtosbt(tv); 1599 /* Store off to make visible the actual sleep time */ 1600 hpts->sleeping = tv.tv_usec; 1601 callout_reset_sbt_on(&hpts->co, sb, 0, 1602 hpts_timeout_swi, hpts, hpts->p_cpu, 1603 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1604 } else if (ticks_ran < ticks_indicate_more_sleep) { 1605 /* For the further sleep, don't reschedule hpts */ 1606 hpts->p_mysleep.tv_usec *= 2; 1607 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1608 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1609 } 1610 hpts->p_on_min_sleep = 1; 1611 } 1612 hpts->p_hpts_active = 0; 1613 out_with_mtx: 1614 HPTS_MTX_ASSERT(hpts); 1615 mtx_unlock(&hpts->p_mtx); 1616 NET_EPOCH_EXIT(et); 1617 } 1618 1619 static void 1620 tcp_hpts_thread(void *ctx) 1621 { 1622 struct tcp_hpts_entry *hpts; 1623 struct epoch_tracker et; 1624 struct timeval tv; 1625 sbintime_t sb; 1626 int ticks_ran; 1627 1628 hpts = (struct tcp_hpts_entry *)ctx; 1629 mtx_lock(&hpts->p_mtx); 1630 if (hpts->p_direct_wake) { 1631 /* Signaled by input or output with low occupancy count. */ 1632 callout_stop(&hpts->co); 1633 counter_u64_add(hpts_direct_awakening, 1); 1634 } else { 1635 /* Timed out, the normal case. */ 1636 counter_u64_add(hpts_wake_timeout, 1); 1637 if (callout_pending(&hpts->co) || 1638 !callout_active(&hpts->co)) { 1639 mtx_unlock(&hpts->p_mtx); 1640 return; 1641 } 1642 } 1643 callout_deactivate(&hpts->co); 1644 hpts->p_hpts_wake_scheduled = 0; 1645 NET_EPOCH_ENTER(et); 1646 if (hpts->p_hpts_active) { 1647 /* 1648 * We are active already. This means that a syscall 1649 * trap or LRO is running in behalf of hpts. In that case 1650 * we need to double our timeout since there seems to be 1651 * enough activity in the system that we don't need to 1652 * run as often (if we were not directly woken). 1653 */ 1654 tv.tv_sec = 0; 1655 if (hpts->p_direct_wake == 0) { 1656 counter_u64_add(hpts_back_tosleep, 1); 1657 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1658 hpts->p_mysleep.tv_usec *= 2; 1659 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1660 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1661 tv.tv_usec = hpts->p_mysleep.tv_usec; 1662 hpts->p_on_min_sleep = 1; 1663 } else { 1664 /* 1665 * Here we have low count on the wheel, but 1666 * somehow we still collided with one of the 1667 * connections. Lets go back to sleep for a 1668 * min sleep time, but clear the flag so we 1669 * can be awoken by insert. 1670 */ 1671 hpts->p_on_min_sleep = 0; 1672 tv.tv_usec = tcp_min_hptsi_time; 1673 } 1674 } else { 1675 /* 1676 * Directly woken most likely to reset the 1677 * callout time. 1678 */ 1679 tv.tv_usec = hpts->p_mysleep.tv_usec; 1680 } 1681 goto back_to_sleep; 1682 } 1683 hpts->sleeping = 0; 1684 hpts->p_hpts_active = 1; 1685 ticks_ran = tcp_hptsi(hpts, 1); 1686 tv.tv_sec = 0; 1687 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1688 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) { 1689 hpts->hit_callout_thresh = 1; 1690 atomic_add_int(&hpts_that_need_softclock, 1); 1691 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) { 1692 hpts->hit_callout_thresh = 0; 1693 atomic_subtract_int(&hpts_that_need_softclock, 1); 1694 } 1695 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1696 if(hpts->p_direct_wake == 0) { 1697 /* 1698 * Only adjust sleep time if we were 1699 * called from the callout i.e. direct_wake == 0. 1700 */ 1701 if (ticks_ran < ticks_indicate_more_sleep) { 1702 hpts->p_mysleep.tv_usec *= 2; 1703 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1704 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1705 } else if (ticks_ran > ticks_indicate_less_sleep) { 1706 hpts->p_mysleep.tv_usec /= 2; 1707 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1708 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1709 } 1710 } 1711 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1712 hpts->overidden_sleep = tv.tv_usec; 1713 tv.tv_usec = hpts->p_mysleep.tv_usec; 1714 } else if (tv.tv_usec > dynamic_max_sleep) { 1715 /* Lets not let sleep get above this value */ 1716 hpts->overidden_sleep = tv.tv_usec; 1717 tv.tv_usec = dynamic_max_sleep; 1718 } 1719 /* 1720 * In this mode the timer is a backstop to 1721 * all the userret/lro_flushes so we use 1722 * the dynamic value and set the on_min_sleep 1723 * flag so we will not be awoken. 1724 */ 1725 hpts->p_on_min_sleep = 1; 1726 } else if (hpts->p_on_queue_cnt == 0) { 1727 /* 1728 * No one on the wheel, please wake us up 1729 * if you insert on the wheel. 1730 */ 1731 hpts->p_on_min_sleep = 0; 1732 hpts->overidden_sleep = 0; 1733 } else { 1734 /* 1735 * We hit here when we have a low number of 1736 * clients on the wheel (our else clause). 1737 * We may need to go on min sleep, if we set 1738 * the flag we will not be awoken if someone 1739 * is inserted ahead of us. Clearing the flag 1740 * means we can be awoken. This is "old mode" 1741 * where the timer is what runs hpts mainly. 1742 */ 1743 if (tv.tv_usec < tcp_min_hptsi_time) { 1744 /* 1745 * Yes on min sleep, which means 1746 * we cannot be awoken. 1747 */ 1748 hpts->overidden_sleep = tv.tv_usec; 1749 tv.tv_usec = tcp_min_hptsi_time; 1750 hpts->p_on_min_sleep = 1; 1751 } else { 1752 /* Clear the min sleep flag */ 1753 hpts->overidden_sleep = 0; 1754 hpts->p_on_min_sleep = 0; 1755 } 1756 } 1757 HPTS_MTX_ASSERT(hpts); 1758 hpts->p_hpts_active = 0; 1759 back_to_sleep: 1760 hpts->p_direct_wake = 0; 1761 sb = tvtosbt(tv); 1762 /* Store off to make visible the actual sleep time */ 1763 hpts->sleeping = tv.tv_usec; 1764 callout_reset_sbt_on(&hpts->co, sb, 0, 1765 hpts_timeout_swi, hpts, hpts->p_cpu, 1766 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1767 NET_EPOCH_EXIT(et); 1768 mtx_unlock(&hpts->p_mtx); 1769 } 1770 1771 #undef timersub 1772 1773 static int32_t 1774 hpts_count_level(struct cpu_group *cg) 1775 { 1776 int32_t count_l3, i; 1777 1778 count_l3 = 0; 1779 if (cg->cg_level == CG_SHARE_L3) 1780 count_l3++; 1781 /* Walk all the children looking for L3 */ 1782 for (i = 0; i < cg->cg_children; i++) { 1783 count_l3 += hpts_count_level(&cg->cg_child[i]); 1784 } 1785 return (count_l3); 1786 } 1787 1788 static void 1789 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1790 { 1791 int32_t idx, i; 1792 1793 idx = *at; 1794 if (cg->cg_level == CG_SHARE_L3) { 1795 grps[idx] = cg; 1796 idx++; 1797 if (idx == max) { 1798 *at = idx; 1799 return; 1800 } 1801 } 1802 *at = idx; 1803 /* Walk all the children looking for L3 */ 1804 for (i = 0; i < cg->cg_children; i++) { 1805 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1806 } 1807 } 1808 1809 static void 1810 tcp_hpts_mod_load(void) 1811 { 1812 struct cpu_group *cpu_top; 1813 int32_t error __diagused; 1814 int32_t i, j, bound = 0, created = 0; 1815 size_t sz, asz; 1816 struct timeval tv; 1817 sbintime_t sb; 1818 struct tcp_hpts_entry *hpts; 1819 struct pcpu *pc; 1820 char unit[16]; 1821 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1822 int count, domain; 1823 1824 #ifdef SMP 1825 cpu_top = smp_topo(); 1826 #else 1827 cpu_top = NULL; 1828 #endif 1829 tcp_pace.rp_num_hptss = ncpus; 1830 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1831 hpts_loops = counter_u64_alloc(M_WAITOK); 1832 back_tosleep = counter_u64_alloc(M_WAITOK); 1833 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1834 wheel_wrap = counter_u64_alloc(M_WAITOK); 1835 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1836 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1837 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1838 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1839 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1840 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1841 1842 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1843 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1844 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1845 tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1846 tcp_pace.grp_cnt = 0; 1847 if (cpu_top == NULL) { 1848 tcp_pace.grp_cnt = 1; 1849 } else { 1850 /* Find out how many cache level 3 domains we have */ 1851 count = 0; 1852 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1853 if (tcp_pace.grp_cnt == 0) { 1854 tcp_pace.grp_cnt = 1; 1855 } 1856 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1857 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1858 /* Now populate the groups */ 1859 if (tcp_pace.grp_cnt == 1) { 1860 /* 1861 * All we need is the top level all cpu's are in 1862 * the same cache so when we use grp[0]->cg_mask 1863 * with the cg_first <-> cg_last it will include 1864 * all cpu's in it. The level here is probably 1865 * zero which is ok. 1866 */ 1867 tcp_pace.grps[0] = cpu_top; 1868 } else { 1869 /* 1870 * Here we must find all the level three cache domains 1871 * and setup our pointers to them. 1872 */ 1873 count = 0; 1874 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1875 } 1876 } 1877 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1878 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1879 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1880 M_TCPHPTS, M_WAITOK | M_ZERO); 1881 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1882 hpts = tcp_pace.rp_ent[i]; 1883 /* 1884 * Init all the hpts structures that are not specifically 1885 * zero'd by the allocations. Also lets attach them to the 1886 * appropriate sysctl block as well. 1887 */ 1888 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1889 "hpts", MTX_DEF | MTX_DUPOK); 1890 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1891 TAILQ_INIT(&hpts->p_hptss[j].head); 1892 hpts->p_hptss[j].count = 0; 1893 hpts->p_hptss[j].gencnt = 0; 1894 } 1895 sysctl_ctx_init(&hpts->hpts_ctx); 1896 sprintf(unit, "%d", i); 1897 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1898 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1899 OID_AUTO, 1900 unit, 1901 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1902 ""); 1903 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1904 SYSCTL_CHILDREN(hpts->hpts_root), 1905 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1906 &hpts->p_on_queue_cnt, 0, 1907 "Count TCB's awaiting output processing"); 1908 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1909 SYSCTL_CHILDREN(hpts->hpts_root), 1910 OID_AUTO, "active", CTLFLAG_RD, 1911 &hpts->p_hpts_active, 0, 1912 "Is the hpts active"); 1913 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1914 SYSCTL_CHILDREN(hpts->hpts_root), 1915 OID_AUTO, "curslot", CTLFLAG_RD, 1916 &hpts->p_cur_slot, 0, 1917 "What the current running pacers goal"); 1918 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1919 SYSCTL_CHILDREN(hpts->hpts_root), 1920 OID_AUTO, "runtick", CTLFLAG_RD, 1921 &hpts->p_runningslot, 0, 1922 "What the running pacers current slot is"); 1923 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1924 SYSCTL_CHILDREN(hpts->hpts_root), 1925 OID_AUTO, "curtick", CTLFLAG_RD, 1926 &hpts->p_curtick, 0, 1927 "What the running pacers last tick mapped to the wheel was"); 1928 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1929 SYSCTL_CHILDREN(hpts->hpts_root), 1930 OID_AUTO, "lastran", CTLFLAG_RD, 1931 &tcp_pace.cts_last_ran[i], 0, 1932 "The last usec tick that this hpts ran"); 1933 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1934 SYSCTL_CHILDREN(hpts->hpts_root), 1935 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1936 &hpts->p_mysleep.tv_usec, 1937 "What the running pacers is using for p_mysleep.tv_usec"); 1938 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1939 SYSCTL_CHILDREN(hpts->hpts_root), 1940 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1941 &hpts->sleeping, 0, 1942 "What the running pacers is actually sleeping for"); 1943 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1944 SYSCTL_CHILDREN(hpts->hpts_root), 1945 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1946 &hpts->syscall_cnt, 0, 1947 "How many times we had syscalls on this hpts"); 1948 1949 hpts->p_hpts_sleep_time = hpts_sleep_max; 1950 hpts->p_num = i; 1951 hpts->p_curtick = tcp_gethptstick(&tv); 1952 tcp_pace.cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1953 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1954 hpts->p_cpu = 0xffff; 1955 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1956 callout_init(&hpts->co, 1); 1957 } 1958 /* Don't try to bind to NUMA domains if we don't have any */ 1959 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1960 tcp_bind_threads = 0; 1961 1962 /* 1963 * Now lets start ithreads to handle the hptss. 1964 */ 1965 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1966 hpts = tcp_pace.rp_ent[i]; 1967 hpts->p_cpu = i; 1968 1969 error = swi_add(&hpts->ie, "hpts", 1970 tcp_hpts_thread, (void *)hpts, 1971 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1972 KASSERT(error == 0, 1973 ("Can't add hpts:%p i:%d err:%d", 1974 hpts, i, error)); 1975 created++; 1976 hpts->p_mysleep.tv_sec = 0; 1977 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1978 if (tcp_bind_threads == 1) { 1979 if (intr_event_bind(hpts->ie, i) == 0) 1980 bound++; 1981 } else if (tcp_bind_threads == 2) { 1982 /* Find the group for this CPU (i) and bind into it */ 1983 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1984 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1985 if (intr_event_bind_ithread_cpuset(hpts->ie, 1986 &tcp_pace.grps[j]->cg_mask) == 0) { 1987 bound++; 1988 pc = pcpu_find(i); 1989 domain = pc->pc_domain; 1990 count = hpts_domains[domain].count; 1991 hpts_domains[domain].cpu[count] = i; 1992 hpts_domains[domain].count++; 1993 break; 1994 } 1995 } 1996 } 1997 } 1998 tv.tv_sec = 0; 1999 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2000 hpts->sleeping = tv.tv_usec; 2001 sb = tvtosbt(tv); 2002 callout_reset_sbt_on(&hpts->co, sb, 0, 2003 hpts_timeout_swi, hpts, hpts->p_cpu, 2004 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2005 } 2006 /* 2007 * If we somehow have an empty domain, fall back to choosing 2008 * among all htps threads. 2009 */ 2010 for (i = 0; i < vm_ndomains; i++) { 2011 if (hpts_domains[i].count == 0) { 2012 tcp_bind_threads = 0; 2013 break; 2014 } 2015 } 2016 tcp_hpts_softclock = __tcp_run_hpts; 2017 tcp_lro_hpts_init(); 2018 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2019 created, bound, 2020 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2021 } 2022 2023 static void 2024 tcp_hpts_mod_unload(void) 2025 { 2026 int rv __diagused; 2027 2028 tcp_lro_hpts_uninit(); 2029 atomic_store_ptr(&tcp_hpts_softclock, NULL); 2030 2031 for (int i = 0; i < tcp_pace.rp_num_hptss; i++) { 2032 struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i]; 2033 2034 rv = callout_drain(&hpts->co); 2035 MPASS(rv != 0); 2036 2037 rv = swi_remove(hpts->ie_cookie); 2038 MPASS(rv == 0); 2039 2040 rv = sysctl_ctx_free(&hpts->hpts_ctx); 2041 MPASS(rv == 0); 2042 2043 mtx_destroy(&hpts->p_mtx); 2044 free(hpts->p_hptss, M_TCPHPTS); 2045 free(hpts, M_TCPHPTS); 2046 } 2047 2048 free(tcp_pace.rp_ent, M_TCPHPTS); 2049 free(tcp_pace.cts_last_ran, M_TCPHPTS); 2050 #ifdef SMP 2051 free(tcp_pace.grps, M_TCPHPTS); 2052 #endif 2053 2054 counter_u64_free(hpts_hopelessly_behind); 2055 counter_u64_free(hpts_loops); 2056 counter_u64_free(back_tosleep); 2057 counter_u64_free(combined_wheel_wrap); 2058 counter_u64_free(wheel_wrap); 2059 counter_u64_free(hpts_wake_timeout); 2060 counter_u64_free(hpts_direct_awakening); 2061 counter_u64_free(hpts_back_tosleep); 2062 counter_u64_free(hpts_direct_call); 2063 counter_u64_free(cpu_uses_flowid); 2064 counter_u64_free(cpu_uses_random); 2065 } 2066 2067 static int 2068 tcp_hpts_modevent(module_t mod, int what, void *arg) 2069 { 2070 2071 switch (what) { 2072 case MOD_LOAD: 2073 tcp_hpts_mod_load(); 2074 return (0); 2075 case MOD_QUIESCE: 2076 /* 2077 * Since we are a dependency of TCP stack modules, they should 2078 * already be unloaded, and the HPTS ring is empty. However, 2079 * function pointer manipulations aren't 100% safe. Although, 2080 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't. 2081 * Thus, allow only forced unload of HPTS. 2082 */ 2083 return (EBUSY); 2084 case MOD_UNLOAD: 2085 tcp_hpts_mod_unload(); 2086 return (0); 2087 default: 2088 return (EINVAL); 2089 }; 2090 } 2091 2092 static moduledata_t tcp_hpts_module = { 2093 .name = "tcphpts", 2094 .evhand = tcp_hpts_modevent, 2095 }; 2096 2097 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY); 2098 MODULE_VERSION(tcphpts, 1); 2099