1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 struct nvme_tcp_queue;
28
29 /* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization. Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
34 */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39 /*
40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41 * from sysfs.
42 */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46
47 /*
48 * TLS handshake timeout
49 */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56
57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58
59 #ifdef CONFIG_DEBUG_LOCK_ALLOC
60 /* lockdep can detect a circular dependency of the form
61 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
62 * because dependencies are tracked for both nvme-tcp and user contexts. Using
63 * a separate class prevents lockdep from conflating nvme-tcp socket use with
64 * user-space socket API use.
65 */
66 static struct lock_class_key nvme_tcp_sk_key[2];
67 static struct lock_class_key nvme_tcp_slock_key[2];
68
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 {
71 struct sock *sk = sock->sk;
72
73 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 return;
75
76 switch (sk->sk_family) {
77 case AF_INET:
78 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
79 &nvme_tcp_slock_key[0],
80 "sk_lock-AF_INET-NVME",
81 &nvme_tcp_sk_key[0]);
82 break;
83 case AF_INET6:
84 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
85 &nvme_tcp_slock_key[1],
86 "sk_lock-AF_INET6-NVME",
87 &nvme_tcp_sk_key[1]);
88 break;
89 default:
90 WARN_ON_ONCE(1);
91 }
92 }
93 #else
nvme_tcp_reclassify_socket(struct socket * sock)94 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 #endif
96
97 enum nvme_tcp_send_state {
98 NVME_TCP_SEND_CMD_PDU = 0,
99 NVME_TCP_SEND_H2C_PDU,
100 NVME_TCP_SEND_DATA,
101 NVME_TCP_SEND_DDGST,
102 };
103
104 struct nvme_tcp_request {
105 struct nvme_request req;
106 void *pdu;
107 struct nvme_tcp_queue *queue;
108 u32 data_len;
109 u32 pdu_len;
110 u32 pdu_sent;
111 u32 h2cdata_left;
112 u32 h2cdata_offset;
113 u16 ttag;
114 __le16 status;
115 struct list_head entry;
116 struct llist_node lentry;
117 __le32 ddgst;
118
119 struct bio *curr_bio;
120 struct iov_iter iter;
121
122 /* send state */
123 size_t offset;
124 size_t data_sent;
125 enum nvme_tcp_send_state state;
126 };
127
128 enum nvme_tcp_queue_flags {
129 NVME_TCP_Q_ALLOCATED = 0,
130 NVME_TCP_Q_LIVE = 1,
131 NVME_TCP_Q_POLLING = 2,
132 NVME_TCP_Q_IO_CPU_SET = 3,
133 };
134
135 enum nvme_tcp_recv_state {
136 NVME_TCP_RECV_PDU = 0,
137 NVME_TCP_RECV_DATA,
138 NVME_TCP_RECV_DDGST,
139 };
140
141 struct nvme_tcp_ctrl;
142 struct nvme_tcp_queue {
143 struct socket *sock;
144 struct work_struct io_work;
145 int io_cpu;
146
147 struct mutex queue_lock;
148 struct mutex send_mutex;
149 struct llist_head req_list;
150 struct list_head send_list;
151
152 /* recv state */
153 void *pdu;
154 int pdu_remaining;
155 int pdu_offset;
156 size_t data_remaining;
157 size_t ddgst_remaining;
158 unsigned int nr_cqe;
159
160 /* send state */
161 struct nvme_tcp_request *request;
162
163 u32 maxh2cdata;
164 size_t cmnd_capsule_len;
165 struct nvme_tcp_ctrl *ctrl;
166 unsigned long flags;
167 bool rd_enabled;
168
169 bool hdr_digest;
170 bool data_digest;
171 bool tls_enabled;
172 struct ahash_request *rcv_hash;
173 struct ahash_request *snd_hash;
174 __le32 exp_ddgst;
175 __le32 recv_ddgst;
176 struct completion tls_complete;
177 int tls_err;
178 struct page_frag_cache pf_cache;
179
180 void (*state_change)(struct sock *);
181 void (*data_ready)(struct sock *);
182 void (*write_space)(struct sock *);
183 };
184
185 struct nvme_tcp_ctrl {
186 /* read only in the hot path */
187 struct nvme_tcp_queue *queues;
188 struct blk_mq_tag_set tag_set;
189
190 /* other member variables */
191 struct list_head list;
192 struct blk_mq_tag_set admin_tag_set;
193 struct sockaddr_storage addr;
194 struct sockaddr_storage src_addr;
195 struct nvme_ctrl ctrl;
196
197 struct work_struct err_work;
198 struct delayed_work connect_work;
199 struct nvme_tcp_request async_req;
200 u32 io_queues[HCTX_MAX_TYPES];
201 };
202
203 static LIST_HEAD(nvme_tcp_ctrl_list);
204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
205 static struct workqueue_struct *nvme_tcp_wq;
206 static const struct blk_mq_ops nvme_tcp_mq_ops;
207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209
to_tcp_ctrl(struct nvme_ctrl * ctrl)210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 {
212 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
213 }
214
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 {
217 return queue - queue->ctrl->queues;
218 }
219
nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)220 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
221 {
222 switch (type) {
223 case nvme_tcp_c2h_term:
224 case nvme_tcp_c2h_data:
225 case nvme_tcp_r2t:
226 case nvme_tcp_rsp:
227 return true;
228 default:
229 return false;
230 }
231 }
232
233 /*
234 * Check if the queue is TLS encrypted
235 */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)236 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
237 {
238 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
239 return 0;
240
241 return queue->tls_enabled;
242 }
243
244 /*
245 * Check if TLS is configured for the controller.
246 */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)247 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
248 {
249 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
250 return 0;
251
252 return ctrl->opts->tls;
253 }
254
nvme_tcp_tagset(struct nvme_tcp_queue * queue)255 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
256 {
257 u32 queue_idx = nvme_tcp_queue_id(queue);
258
259 if (queue_idx == 0)
260 return queue->ctrl->admin_tag_set.tags[queue_idx];
261 return queue->ctrl->tag_set.tags[queue_idx - 1];
262 }
263
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)264 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
265 {
266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
267 }
268
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)269 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
270 {
271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
272 }
273
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)274 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
275 {
276 return req->pdu;
277 }
278
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)279 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
280 {
281 /* use the pdu space in the back for the data pdu */
282 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
283 sizeof(struct nvme_tcp_data_pdu);
284 }
285
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)286 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
287 {
288 if (nvme_is_fabrics(req->req.cmd))
289 return NVME_TCP_ADMIN_CCSZ;
290 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
291 }
292
nvme_tcp_async_req(struct nvme_tcp_request * req)293 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
294 {
295 return req == &req->queue->ctrl->async_req;
296 }
297
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)298 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
299 {
300 struct request *rq;
301
302 if (unlikely(nvme_tcp_async_req(req)))
303 return false; /* async events don't have a request */
304
305 rq = blk_mq_rq_from_pdu(req);
306
307 return rq_data_dir(rq) == WRITE && req->data_len &&
308 req->data_len <= nvme_tcp_inline_data_size(req);
309 }
310
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)311 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
312 {
313 return req->iter.bvec->bv_page;
314 }
315
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)316 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
317 {
318 return req->iter.bvec->bv_offset + req->iter.iov_offset;
319 }
320
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)321 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
322 {
323 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
324 req->pdu_len - req->pdu_sent);
325 }
326
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)327 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
328 {
329 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
330 req->pdu_len - req->pdu_sent : 0;
331 }
332
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)333 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
334 int len)
335 {
336 return nvme_tcp_pdu_data_left(req) <= len;
337 }
338
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)339 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
340 unsigned int dir)
341 {
342 struct request *rq = blk_mq_rq_from_pdu(req);
343 struct bio_vec *vec;
344 unsigned int size;
345 int nr_bvec;
346 size_t offset;
347
348 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
349 vec = &rq->special_vec;
350 nr_bvec = 1;
351 size = blk_rq_payload_bytes(rq);
352 offset = 0;
353 } else {
354 struct bio *bio = req->curr_bio;
355 struct bvec_iter bi;
356 struct bio_vec bv;
357
358 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
359 nr_bvec = 0;
360 bio_for_each_bvec(bv, bio, bi) {
361 nr_bvec++;
362 }
363 size = bio->bi_iter.bi_size;
364 offset = bio->bi_iter.bi_bvec_done;
365 }
366
367 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
368 req->iter.iov_offset = offset;
369 }
370
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)371 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
372 int len)
373 {
374 req->data_sent += len;
375 req->pdu_sent += len;
376 iov_iter_advance(&req->iter, len);
377 if (!iov_iter_count(&req->iter) &&
378 req->data_sent < req->data_len) {
379 req->curr_bio = req->curr_bio->bi_next;
380 nvme_tcp_init_iter(req, ITER_SOURCE);
381 }
382 }
383
nvme_tcp_send_all(struct nvme_tcp_queue * queue)384 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
385 {
386 int ret;
387
388 /* drain the send queue as much as we can... */
389 do {
390 ret = nvme_tcp_try_send(queue);
391 } while (ret > 0);
392 }
393
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)394 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
395 {
396 return !list_empty(&queue->send_list) ||
397 !llist_empty(&queue->req_list);
398 }
399
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)400 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
401 {
402 return !nvme_tcp_queue_tls(queue) &&
403 nvme_tcp_queue_has_pending(queue);
404 }
405
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)406 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
407 bool sync, bool last)
408 {
409 struct nvme_tcp_queue *queue = req->queue;
410 bool empty;
411
412 empty = llist_add(&req->lentry, &queue->req_list) &&
413 list_empty(&queue->send_list) && !queue->request;
414
415 /*
416 * if we're the first on the send_list and we can try to send
417 * directly, otherwise queue io_work. Also, only do that if we
418 * are on the same cpu, so we don't introduce contention.
419 */
420 if (queue->io_cpu == raw_smp_processor_id() &&
421 sync && empty && mutex_trylock(&queue->send_mutex)) {
422 nvme_tcp_send_all(queue);
423 mutex_unlock(&queue->send_mutex);
424 }
425
426 if (last && nvme_tcp_queue_has_pending(queue))
427 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
428 }
429
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)430 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
431 {
432 struct nvme_tcp_request *req;
433 struct llist_node *node;
434
435 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
436 req = llist_entry(node, struct nvme_tcp_request, lentry);
437 list_add(&req->entry, &queue->send_list);
438 }
439 }
440
441 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)442 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
443 {
444 struct nvme_tcp_request *req;
445
446 req = list_first_entry_or_null(&queue->send_list,
447 struct nvme_tcp_request, entry);
448 if (!req) {
449 nvme_tcp_process_req_list(queue);
450 req = list_first_entry_or_null(&queue->send_list,
451 struct nvme_tcp_request, entry);
452 if (unlikely(!req))
453 return NULL;
454 }
455
456 list_del(&req->entry);
457 return req;
458 }
459
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)460 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
461 __le32 *dgst)
462 {
463 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
464 crypto_ahash_final(hash);
465 }
466
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)467 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
468 struct page *page, off_t off, size_t len)
469 {
470 struct scatterlist sg;
471
472 sg_init_table(&sg, 1);
473 sg_set_page(&sg, page, len, off);
474 ahash_request_set_crypt(hash, &sg, NULL, len);
475 crypto_ahash_update(hash);
476 }
477
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)478 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
479 void *pdu, size_t len)
480 {
481 struct scatterlist sg;
482
483 sg_init_one(&sg, pdu, len);
484 ahash_request_set_crypt(hash, &sg, pdu + len, len);
485 crypto_ahash_digest(hash);
486 }
487
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)488 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
489 void *pdu, size_t pdu_len)
490 {
491 struct nvme_tcp_hdr *hdr = pdu;
492 __le32 recv_digest;
493 __le32 exp_digest;
494
495 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
496 dev_err(queue->ctrl->ctrl.device,
497 "queue %d: header digest flag is cleared\n",
498 nvme_tcp_queue_id(queue));
499 return -EPROTO;
500 }
501
502 recv_digest = *(__le32 *)(pdu + hdr->hlen);
503 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
504 exp_digest = *(__le32 *)(pdu + hdr->hlen);
505 if (recv_digest != exp_digest) {
506 dev_err(queue->ctrl->ctrl.device,
507 "header digest error: recv %#x expected %#x\n",
508 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
509 return -EIO;
510 }
511
512 return 0;
513 }
514
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)515 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
516 {
517 struct nvme_tcp_hdr *hdr = pdu;
518 u8 digest_len = nvme_tcp_hdgst_len(queue);
519 u32 len;
520
521 len = le32_to_cpu(hdr->plen) - hdr->hlen -
522 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
523
524 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
525 dev_err(queue->ctrl->ctrl.device,
526 "queue %d: data digest flag is cleared\n",
527 nvme_tcp_queue_id(queue));
528 return -EPROTO;
529 }
530 crypto_ahash_init(queue->rcv_hash);
531
532 return 0;
533 }
534
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)535 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
536 struct request *rq, unsigned int hctx_idx)
537 {
538 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
539
540 page_frag_free(req->pdu);
541 }
542
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)543 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
544 struct request *rq, unsigned int hctx_idx,
545 unsigned int numa_node)
546 {
547 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
548 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
549 struct nvme_tcp_cmd_pdu *pdu;
550 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
551 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
552 u8 hdgst = nvme_tcp_hdgst_len(queue);
553
554 req->pdu = page_frag_alloc(&queue->pf_cache,
555 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
556 GFP_KERNEL | __GFP_ZERO);
557 if (!req->pdu)
558 return -ENOMEM;
559
560 pdu = req->pdu;
561 req->queue = queue;
562 nvme_req(rq)->ctrl = &ctrl->ctrl;
563 nvme_req(rq)->cmd = &pdu->cmd;
564
565 return 0;
566 }
567
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)568 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
569 unsigned int hctx_idx)
570 {
571 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
572 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
573
574 hctx->driver_data = queue;
575 return 0;
576 }
577
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)578 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
579 unsigned int hctx_idx)
580 {
581 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
582 struct nvme_tcp_queue *queue = &ctrl->queues[0];
583
584 hctx->driver_data = queue;
585 return 0;
586 }
587
588 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)589 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
590 {
591 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
592 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
593 NVME_TCP_RECV_DATA;
594 }
595
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)596 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
597 {
598 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
599 nvme_tcp_hdgst_len(queue);
600 queue->pdu_offset = 0;
601 queue->data_remaining = -1;
602 queue->ddgst_remaining = 0;
603 }
604
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)605 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
606 {
607 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
608 return;
609
610 dev_warn(ctrl->device, "starting error recovery\n");
611 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
612 }
613
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)614 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
615 struct nvme_completion *cqe)
616 {
617 struct nvme_tcp_request *req;
618 struct request *rq;
619
620 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
621 if (!rq) {
622 dev_err(queue->ctrl->ctrl.device,
623 "got bad cqe.command_id %#x on queue %d\n",
624 cqe->command_id, nvme_tcp_queue_id(queue));
625 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
626 return -EINVAL;
627 }
628
629 req = blk_mq_rq_to_pdu(rq);
630 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
631 req->status = cqe->status;
632
633 if (!nvme_try_complete_req(rq, req->status, cqe->result))
634 nvme_complete_rq(rq);
635 queue->nr_cqe++;
636
637 return 0;
638 }
639
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)640 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
641 struct nvme_tcp_data_pdu *pdu)
642 {
643 struct request *rq;
644
645 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
646 if (!rq) {
647 dev_err(queue->ctrl->ctrl.device,
648 "got bad c2hdata.command_id %#x on queue %d\n",
649 pdu->command_id, nvme_tcp_queue_id(queue));
650 return -ENOENT;
651 }
652
653 if (!blk_rq_payload_bytes(rq)) {
654 dev_err(queue->ctrl->ctrl.device,
655 "queue %d tag %#x unexpected data\n",
656 nvme_tcp_queue_id(queue), rq->tag);
657 return -EIO;
658 }
659
660 queue->data_remaining = le32_to_cpu(pdu->data_length);
661
662 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
663 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
664 dev_err(queue->ctrl->ctrl.device,
665 "queue %d tag %#x SUCCESS set but not last PDU\n",
666 nvme_tcp_queue_id(queue), rq->tag);
667 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
668 return -EPROTO;
669 }
670
671 return 0;
672 }
673
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)674 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
675 struct nvme_tcp_rsp_pdu *pdu)
676 {
677 struct nvme_completion *cqe = &pdu->cqe;
678 int ret = 0;
679
680 /*
681 * AEN requests are special as they don't time out and can
682 * survive any kind of queue freeze and often don't respond to
683 * aborts. We don't even bother to allocate a struct request
684 * for them but rather special case them here.
685 */
686 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
687 cqe->command_id)))
688 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
689 &cqe->result);
690 else
691 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
692
693 return ret;
694 }
695
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)696 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
697 {
698 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
699 struct nvme_tcp_queue *queue = req->queue;
700 struct request *rq = blk_mq_rq_from_pdu(req);
701 u32 h2cdata_sent = req->pdu_len;
702 u8 hdgst = nvme_tcp_hdgst_len(queue);
703 u8 ddgst = nvme_tcp_ddgst_len(queue);
704
705 req->state = NVME_TCP_SEND_H2C_PDU;
706 req->offset = 0;
707 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
708 req->pdu_sent = 0;
709 req->h2cdata_left -= req->pdu_len;
710 req->h2cdata_offset += h2cdata_sent;
711
712 memset(data, 0, sizeof(*data));
713 data->hdr.type = nvme_tcp_h2c_data;
714 if (!req->h2cdata_left)
715 data->hdr.flags = NVME_TCP_F_DATA_LAST;
716 if (queue->hdr_digest)
717 data->hdr.flags |= NVME_TCP_F_HDGST;
718 if (queue->data_digest)
719 data->hdr.flags |= NVME_TCP_F_DDGST;
720 data->hdr.hlen = sizeof(*data);
721 data->hdr.pdo = data->hdr.hlen + hdgst;
722 data->hdr.plen =
723 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
724 data->ttag = req->ttag;
725 data->command_id = nvme_cid(rq);
726 data->data_offset = cpu_to_le32(req->h2cdata_offset);
727 data->data_length = cpu_to_le32(req->pdu_len);
728 }
729
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)730 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
731 struct nvme_tcp_r2t_pdu *pdu)
732 {
733 struct nvme_tcp_request *req;
734 struct request *rq;
735 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
736 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
737
738 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
739 if (!rq) {
740 dev_err(queue->ctrl->ctrl.device,
741 "got bad r2t.command_id %#x on queue %d\n",
742 pdu->command_id, nvme_tcp_queue_id(queue));
743 return -ENOENT;
744 }
745 req = blk_mq_rq_to_pdu(rq);
746
747 if (unlikely(!r2t_length)) {
748 dev_err(queue->ctrl->ctrl.device,
749 "req %d r2t len is %u, probably a bug...\n",
750 rq->tag, r2t_length);
751 return -EPROTO;
752 }
753
754 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
755 dev_err(queue->ctrl->ctrl.device,
756 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
757 rq->tag, r2t_length, req->data_len, req->data_sent);
758 return -EPROTO;
759 }
760
761 if (unlikely(r2t_offset < req->data_sent)) {
762 dev_err(queue->ctrl->ctrl.device,
763 "req %d unexpected r2t offset %u (expected %zu)\n",
764 rq->tag, r2t_offset, req->data_sent);
765 return -EPROTO;
766 }
767
768 req->pdu_len = 0;
769 req->h2cdata_left = r2t_length;
770 req->h2cdata_offset = r2t_offset;
771 req->ttag = pdu->ttag;
772
773 nvme_tcp_setup_h2c_data_pdu(req);
774 nvme_tcp_queue_request(req, false, true);
775
776 return 0;
777 }
778
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)779 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
780 struct nvme_tcp_term_pdu *pdu)
781 {
782 u16 fes;
783 const char *msg;
784 u32 plen = le32_to_cpu(pdu->hdr.plen);
785
786 static const char * const msg_table[] = {
787 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
788 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
789 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
790 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
791 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
792 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
793 };
794
795 if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
796 plen > NVME_TCP_MAX_C2HTERM_PLEN) {
797 dev_err(queue->ctrl->ctrl.device,
798 "Received a malformed C2HTermReq PDU (plen = %u)\n",
799 plen);
800 return;
801 }
802
803 fes = le16_to_cpu(pdu->fes);
804 if (fes && fes < ARRAY_SIZE(msg_table))
805 msg = msg_table[fes];
806 else
807 msg = "Unknown";
808
809 dev_err(queue->ctrl->ctrl.device,
810 "Received C2HTermReq (FES = %s)\n", msg);
811 }
812
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)813 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
814 unsigned int *offset, size_t *len)
815 {
816 struct nvme_tcp_hdr *hdr;
817 char *pdu = queue->pdu;
818 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
819 int ret;
820
821 ret = skb_copy_bits(skb, *offset,
822 &pdu[queue->pdu_offset], rcv_len);
823 if (unlikely(ret))
824 return ret;
825
826 queue->pdu_remaining -= rcv_len;
827 queue->pdu_offset += rcv_len;
828 *offset += rcv_len;
829 *len -= rcv_len;
830 if (queue->pdu_remaining)
831 return 0;
832
833 hdr = queue->pdu;
834 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
835 if (!nvme_tcp_recv_pdu_supported(hdr->type))
836 goto unsupported_pdu;
837
838 dev_err(queue->ctrl->ctrl.device,
839 "pdu type %d has unexpected header length (%d)\n",
840 hdr->type, hdr->hlen);
841 return -EPROTO;
842 }
843
844 if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
845 /*
846 * C2HTermReq never includes Header or Data digests.
847 * Skip the checks.
848 */
849 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
850 return -EINVAL;
851 }
852
853 if (queue->hdr_digest) {
854 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
855 if (unlikely(ret))
856 return ret;
857 }
858
859
860 if (queue->data_digest) {
861 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
862 if (unlikely(ret))
863 return ret;
864 }
865
866 switch (hdr->type) {
867 case nvme_tcp_c2h_data:
868 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
869 case nvme_tcp_rsp:
870 nvme_tcp_init_recv_ctx(queue);
871 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
872 case nvme_tcp_r2t:
873 nvme_tcp_init_recv_ctx(queue);
874 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
875 default:
876 goto unsupported_pdu;
877 }
878
879 unsupported_pdu:
880 dev_err(queue->ctrl->ctrl.device,
881 "unsupported pdu type (%d)\n", hdr->type);
882 return -EINVAL;
883 }
884
nvme_tcp_end_request(struct request * rq,u16 status)885 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
886 {
887 union nvme_result res = {};
888
889 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
890 nvme_complete_rq(rq);
891 }
892
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)893 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
894 unsigned int *offset, size_t *len)
895 {
896 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
897 struct request *rq =
898 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
899 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
900
901 while (true) {
902 int recv_len, ret;
903
904 recv_len = min_t(size_t, *len, queue->data_remaining);
905 if (!recv_len)
906 break;
907
908 if (!iov_iter_count(&req->iter)) {
909 req->curr_bio = req->curr_bio->bi_next;
910
911 /*
912 * If we don`t have any bios it means that controller
913 * sent more data than we requested, hence error
914 */
915 if (!req->curr_bio) {
916 dev_err(queue->ctrl->ctrl.device,
917 "queue %d no space in request %#x",
918 nvme_tcp_queue_id(queue), rq->tag);
919 nvme_tcp_init_recv_ctx(queue);
920 return -EIO;
921 }
922 nvme_tcp_init_iter(req, ITER_DEST);
923 }
924
925 /* we can read only from what is left in this bio */
926 recv_len = min_t(size_t, recv_len,
927 iov_iter_count(&req->iter));
928
929 if (queue->data_digest)
930 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
931 &req->iter, recv_len, queue->rcv_hash);
932 else
933 ret = skb_copy_datagram_iter(skb, *offset,
934 &req->iter, recv_len);
935 if (ret) {
936 dev_err(queue->ctrl->ctrl.device,
937 "queue %d failed to copy request %#x data",
938 nvme_tcp_queue_id(queue), rq->tag);
939 return ret;
940 }
941
942 *len -= recv_len;
943 *offset += recv_len;
944 queue->data_remaining -= recv_len;
945 }
946
947 if (!queue->data_remaining) {
948 if (queue->data_digest) {
949 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
950 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
951 } else {
952 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
953 nvme_tcp_end_request(rq,
954 le16_to_cpu(req->status));
955 queue->nr_cqe++;
956 }
957 nvme_tcp_init_recv_ctx(queue);
958 }
959 }
960
961 return 0;
962 }
963
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)964 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
965 struct sk_buff *skb, unsigned int *offset, size_t *len)
966 {
967 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
968 char *ddgst = (char *)&queue->recv_ddgst;
969 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
970 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
971 int ret;
972
973 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
974 if (unlikely(ret))
975 return ret;
976
977 queue->ddgst_remaining -= recv_len;
978 *offset += recv_len;
979 *len -= recv_len;
980 if (queue->ddgst_remaining)
981 return 0;
982
983 if (queue->recv_ddgst != queue->exp_ddgst) {
984 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
985 pdu->command_id);
986 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
987
988 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
989
990 dev_err(queue->ctrl->ctrl.device,
991 "data digest error: recv %#x expected %#x\n",
992 le32_to_cpu(queue->recv_ddgst),
993 le32_to_cpu(queue->exp_ddgst));
994 }
995
996 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
997 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
998 pdu->command_id);
999 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1000
1001 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1002 queue->nr_cqe++;
1003 }
1004
1005 nvme_tcp_init_recv_ctx(queue);
1006 return 0;
1007 }
1008
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)1009 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1010 unsigned int offset, size_t len)
1011 {
1012 struct nvme_tcp_queue *queue = desc->arg.data;
1013 size_t consumed = len;
1014 int result;
1015
1016 if (unlikely(!queue->rd_enabled))
1017 return -EFAULT;
1018
1019 while (len) {
1020 switch (nvme_tcp_recv_state(queue)) {
1021 case NVME_TCP_RECV_PDU:
1022 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1023 break;
1024 case NVME_TCP_RECV_DATA:
1025 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1026 break;
1027 case NVME_TCP_RECV_DDGST:
1028 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1029 break;
1030 default:
1031 result = -EFAULT;
1032 }
1033 if (result) {
1034 dev_err(queue->ctrl->ctrl.device,
1035 "receive failed: %d\n", result);
1036 queue->rd_enabled = false;
1037 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1038 return result;
1039 }
1040 }
1041
1042 return consumed;
1043 }
1044
nvme_tcp_data_ready(struct sock * sk)1045 static void nvme_tcp_data_ready(struct sock *sk)
1046 {
1047 struct nvme_tcp_queue *queue;
1048
1049 trace_sk_data_ready(sk);
1050
1051 read_lock_bh(&sk->sk_callback_lock);
1052 queue = sk->sk_user_data;
1053 if (likely(queue && queue->rd_enabled) &&
1054 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1055 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1056 read_unlock_bh(&sk->sk_callback_lock);
1057 }
1058
nvme_tcp_write_space(struct sock * sk)1059 static void nvme_tcp_write_space(struct sock *sk)
1060 {
1061 struct nvme_tcp_queue *queue;
1062
1063 read_lock_bh(&sk->sk_callback_lock);
1064 queue = sk->sk_user_data;
1065 if (likely(queue && sk_stream_is_writeable(sk))) {
1066 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1067 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1068 }
1069 read_unlock_bh(&sk->sk_callback_lock);
1070 }
1071
nvme_tcp_state_change(struct sock * sk)1072 static void nvme_tcp_state_change(struct sock *sk)
1073 {
1074 struct nvme_tcp_queue *queue;
1075
1076 read_lock_bh(&sk->sk_callback_lock);
1077 queue = sk->sk_user_data;
1078 if (!queue)
1079 goto done;
1080
1081 switch (sk->sk_state) {
1082 case TCP_CLOSE:
1083 case TCP_CLOSE_WAIT:
1084 case TCP_LAST_ACK:
1085 case TCP_FIN_WAIT1:
1086 case TCP_FIN_WAIT2:
1087 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1088 break;
1089 default:
1090 dev_info(queue->ctrl->ctrl.device,
1091 "queue %d socket state %d\n",
1092 nvme_tcp_queue_id(queue), sk->sk_state);
1093 }
1094
1095 queue->state_change(sk);
1096 done:
1097 read_unlock_bh(&sk->sk_callback_lock);
1098 }
1099
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1100 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1101 {
1102 queue->request = NULL;
1103 }
1104
nvme_tcp_fail_request(struct nvme_tcp_request * req)1105 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1106 {
1107 if (nvme_tcp_async_req(req)) {
1108 union nvme_result res = {};
1109
1110 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1111 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1112 } else {
1113 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1114 NVME_SC_HOST_PATH_ERROR);
1115 }
1116 }
1117
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1118 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1119 {
1120 struct nvme_tcp_queue *queue = req->queue;
1121 int req_data_len = req->data_len;
1122 u32 h2cdata_left = req->h2cdata_left;
1123
1124 while (true) {
1125 struct bio_vec bvec;
1126 struct msghdr msg = {
1127 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1128 };
1129 struct page *page = nvme_tcp_req_cur_page(req);
1130 size_t offset = nvme_tcp_req_cur_offset(req);
1131 size_t len = nvme_tcp_req_cur_length(req);
1132 bool last = nvme_tcp_pdu_last_send(req, len);
1133 int req_data_sent = req->data_sent;
1134 int ret;
1135
1136 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1137 msg.msg_flags |= MSG_EOR;
1138 else
1139 msg.msg_flags |= MSG_MORE;
1140
1141 if (!sendpages_ok(page, len, offset))
1142 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1143
1144 bvec_set_page(&bvec, page, len, offset);
1145 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1146 ret = sock_sendmsg(queue->sock, &msg);
1147 if (ret <= 0)
1148 return ret;
1149
1150 if (queue->data_digest)
1151 nvme_tcp_ddgst_update(queue->snd_hash, page,
1152 offset, ret);
1153
1154 /*
1155 * update the request iterator except for the last payload send
1156 * in the request where we don't want to modify it as we may
1157 * compete with the RX path completing the request.
1158 */
1159 if (req_data_sent + ret < req_data_len)
1160 nvme_tcp_advance_req(req, ret);
1161
1162 /* fully successful last send in current PDU */
1163 if (last && ret == len) {
1164 if (queue->data_digest) {
1165 nvme_tcp_ddgst_final(queue->snd_hash,
1166 &req->ddgst);
1167 req->state = NVME_TCP_SEND_DDGST;
1168 req->offset = 0;
1169 } else {
1170 if (h2cdata_left)
1171 nvme_tcp_setup_h2c_data_pdu(req);
1172 else
1173 nvme_tcp_done_send_req(queue);
1174 }
1175 return 1;
1176 }
1177 }
1178 return -EAGAIN;
1179 }
1180
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1181 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1182 {
1183 struct nvme_tcp_queue *queue = req->queue;
1184 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1185 struct bio_vec bvec;
1186 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1187 bool inline_data = nvme_tcp_has_inline_data(req);
1188 u8 hdgst = nvme_tcp_hdgst_len(queue);
1189 int len = sizeof(*pdu) + hdgst - req->offset;
1190 int ret;
1191
1192 if (inline_data || nvme_tcp_queue_more(queue))
1193 msg.msg_flags |= MSG_MORE;
1194 else
1195 msg.msg_flags |= MSG_EOR;
1196
1197 if (queue->hdr_digest && !req->offset)
1198 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1199
1200 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1201 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1202 ret = sock_sendmsg(queue->sock, &msg);
1203 if (unlikely(ret <= 0))
1204 return ret;
1205
1206 len -= ret;
1207 if (!len) {
1208 if (inline_data) {
1209 req->state = NVME_TCP_SEND_DATA;
1210 if (queue->data_digest)
1211 crypto_ahash_init(queue->snd_hash);
1212 } else {
1213 nvme_tcp_done_send_req(queue);
1214 }
1215 return 1;
1216 }
1217 req->offset += ret;
1218
1219 return -EAGAIN;
1220 }
1221
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1222 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1223 {
1224 struct nvme_tcp_queue *queue = req->queue;
1225 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1226 struct bio_vec bvec;
1227 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1228 u8 hdgst = nvme_tcp_hdgst_len(queue);
1229 int len = sizeof(*pdu) - req->offset + hdgst;
1230 int ret;
1231
1232 if (queue->hdr_digest && !req->offset)
1233 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1234
1235 if (!req->h2cdata_left)
1236 msg.msg_flags |= MSG_SPLICE_PAGES;
1237
1238 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1239 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1240 ret = sock_sendmsg(queue->sock, &msg);
1241 if (unlikely(ret <= 0))
1242 return ret;
1243
1244 len -= ret;
1245 if (!len) {
1246 req->state = NVME_TCP_SEND_DATA;
1247 if (queue->data_digest)
1248 crypto_ahash_init(queue->snd_hash);
1249 return 1;
1250 }
1251 req->offset += ret;
1252
1253 return -EAGAIN;
1254 }
1255
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1256 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1257 {
1258 struct nvme_tcp_queue *queue = req->queue;
1259 size_t offset = req->offset;
1260 u32 h2cdata_left = req->h2cdata_left;
1261 int ret;
1262 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1263 struct kvec iov = {
1264 .iov_base = (u8 *)&req->ddgst + req->offset,
1265 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1266 };
1267
1268 if (nvme_tcp_queue_more(queue))
1269 msg.msg_flags |= MSG_MORE;
1270 else
1271 msg.msg_flags |= MSG_EOR;
1272
1273 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1274 if (unlikely(ret <= 0))
1275 return ret;
1276
1277 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1278 if (h2cdata_left)
1279 nvme_tcp_setup_h2c_data_pdu(req);
1280 else
1281 nvme_tcp_done_send_req(queue);
1282 return 1;
1283 }
1284
1285 req->offset += ret;
1286 return -EAGAIN;
1287 }
1288
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1289 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1290 {
1291 struct nvme_tcp_request *req;
1292 unsigned int noreclaim_flag;
1293 int ret = 1;
1294
1295 if (!queue->request) {
1296 queue->request = nvme_tcp_fetch_request(queue);
1297 if (!queue->request)
1298 return 0;
1299 }
1300 req = queue->request;
1301
1302 noreclaim_flag = memalloc_noreclaim_save();
1303 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1304 ret = nvme_tcp_try_send_cmd_pdu(req);
1305 if (ret <= 0)
1306 goto done;
1307 if (!nvme_tcp_has_inline_data(req))
1308 goto out;
1309 }
1310
1311 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1312 ret = nvme_tcp_try_send_data_pdu(req);
1313 if (ret <= 0)
1314 goto done;
1315 }
1316
1317 if (req->state == NVME_TCP_SEND_DATA) {
1318 ret = nvme_tcp_try_send_data(req);
1319 if (ret <= 0)
1320 goto done;
1321 }
1322
1323 if (req->state == NVME_TCP_SEND_DDGST)
1324 ret = nvme_tcp_try_send_ddgst(req);
1325 done:
1326 if (ret == -EAGAIN) {
1327 ret = 0;
1328 } else if (ret < 0) {
1329 dev_err(queue->ctrl->ctrl.device,
1330 "failed to send request %d\n", ret);
1331 nvme_tcp_fail_request(queue->request);
1332 nvme_tcp_done_send_req(queue);
1333 }
1334 out:
1335 memalloc_noreclaim_restore(noreclaim_flag);
1336 return ret;
1337 }
1338
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1339 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1340 {
1341 struct socket *sock = queue->sock;
1342 struct sock *sk = sock->sk;
1343 read_descriptor_t rd_desc;
1344 int consumed;
1345
1346 rd_desc.arg.data = queue;
1347 rd_desc.count = 1;
1348 lock_sock(sk);
1349 queue->nr_cqe = 0;
1350 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1351 release_sock(sk);
1352 return consumed;
1353 }
1354
nvme_tcp_io_work(struct work_struct * w)1355 static void nvme_tcp_io_work(struct work_struct *w)
1356 {
1357 struct nvme_tcp_queue *queue =
1358 container_of(w, struct nvme_tcp_queue, io_work);
1359 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1360
1361 do {
1362 bool pending = false;
1363 int result;
1364
1365 if (mutex_trylock(&queue->send_mutex)) {
1366 result = nvme_tcp_try_send(queue);
1367 mutex_unlock(&queue->send_mutex);
1368 if (result > 0)
1369 pending = true;
1370 else if (unlikely(result < 0))
1371 break;
1372 }
1373
1374 result = nvme_tcp_try_recv(queue);
1375 if (result > 0)
1376 pending = true;
1377 else if (unlikely(result < 0))
1378 return;
1379
1380 if (!pending || !queue->rd_enabled)
1381 return;
1382
1383 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1384
1385 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1386 }
1387
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1388 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1389 {
1390 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1391
1392 ahash_request_free(queue->rcv_hash);
1393 ahash_request_free(queue->snd_hash);
1394 crypto_free_ahash(tfm);
1395 }
1396
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1397 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1398 {
1399 struct crypto_ahash *tfm;
1400
1401 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1402 if (IS_ERR(tfm))
1403 return PTR_ERR(tfm);
1404
1405 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1406 if (!queue->snd_hash)
1407 goto free_tfm;
1408 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1409
1410 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1411 if (!queue->rcv_hash)
1412 goto free_snd_hash;
1413 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1414
1415 return 0;
1416 free_snd_hash:
1417 ahash_request_free(queue->snd_hash);
1418 free_tfm:
1419 crypto_free_ahash(tfm);
1420 return -ENOMEM;
1421 }
1422
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1423 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1424 {
1425 struct nvme_tcp_request *async = &ctrl->async_req;
1426
1427 page_frag_free(async->pdu);
1428 }
1429
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1430 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1431 {
1432 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1433 struct nvme_tcp_request *async = &ctrl->async_req;
1434 u8 hdgst = nvme_tcp_hdgst_len(queue);
1435
1436 async->pdu = page_frag_alloc(&queue->pf_cache,
1437 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1438 GFP_KERNEL | __GFP_ZERO);
1439 if (!async->pdu)
1440 return -ENOMEM;
1441
1442 async->queue = &ctrl->queues[0];
1443 return 0;
1444 }
1445
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1446 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1447 {
1448 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1449 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1450 unsigned int noreclaim_flag;
1451
1452 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1453 return;
1454
1455 if (queue->hdr_digest || queue->data_digest)
1456 nvme_tcp_free_crypto(queue);
1457
1458 page_frag_cache_drain(&queue->pf_cache);
1459
1460 noreclaim_flag = memalloc_noreclaim_save();
1461 /* ->sock will be released by fput() */
1462 fput(queue->sock->file);
1463 queue->sock = NULL;
1464 memalloc_noreclaim_restore(noreclaim_flag);
1465
1466 kfree(queue->pdu);
1467 mutex_destroy(&queue->send_mutex);
1468 mutex_destroy(&queue->queue_lock);
1469 }
1470
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1471 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1472 {
1473 struct nvme_tcp_icreq_pdu *icreq;
1474 struct nvme_tcp_icresp_pdu *icresp;
1475 char cbuf[CMSG_LEN(sizeof(char))] = {};
1476 u8 ctype;
1477 struct msghdr msg = {};
1478 struct kvec iov;
1479 bool ctrl_hdgst, ctrl_ddgst;
1480 u32 maxh2cdata;
1481 int ret;
1482
1483 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1484 if (!icreq)
1485 return -ENOMEM;
1486
1487 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1488 if (!icresp) {
1489 ret = -ENOMEM;
1490 goto free_icreq;
1491 }
1492
1493 icreq->hdr.type = nvme_tcp_icreq;
1494 icreq->hdr.hlen = sizeof(*icreq);
1495 icreq->hdr.pdo = 0;
1496 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1497 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1498 icreq->maxr2t = 0; /* single inflight r2t supported */
1499 icreq->hpda = 0; /* no alignment constraint */
1500 if (queue->hdr_digest)
1501 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1502 if (queue->data_digest)
1503 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1504
1505 iov.iov_base = icreq;
1506 iov.iov_len = sizeof(*icreq);
1507 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1508 if (ret < 0) {
1509 pr_warn("queue %d: failed to send icreq, error %d\n",
1510 nvme_tcp_queue_id(queue), ret);
1511 goto free_icresp;
1512 }
1513
1514 memset(&msg, 0, sizeof(msg));
1515 iov.iov_base = icresp;
1516 iov.iov_len = sizeof(*icresp);
1517 if (nvme_tcp_queue_tls(queue)) {
1518 msg.msg_control = cbuf;
1519 msg.msg_controllen = sizeof(cbuf);
1520 }
1521 msg.msg_flags = MSG_WAITALL;
1522 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1523 iov.iov_len, msg.msg_flags);
1524 if (ret >= 0 && ret < sizeof(*icresp))
1525 ret = -ECONNRESET;
1526 if (ret < 0) {
1527 pr_warn("queue %d: failed to receive icresp, error %d\n",
1528 nvme_tcp_queue_id(queue), ret);
1529 goto free_icresp;
1530 }
1531 ret = -ENOTCONN;
1532 if (nvme_tcp_queue_tls(queue)) {
1533 ctype = tls_get_record_type(queue->sock->sk,
1534 (struct cmsghdr *)cbuf);
1535 if (ctype != TLS_RECORD_TYPE_DATA) {
1536 pr_err("queue %d: unhandled TLS record %d\n",
1537 nvme_tcp_queue_id(queue), ctype);
1538 goto free_icresp;
1539 }
1540 }
1541 ret = -EINVAL;
1542 if (icresp->hdr.type != nvme_tcp_icresp) {
1543 pr_err("queue %d: bad type returned %d\n",
1544 nvme_tcp_queue_id(queue), icresp->hdr.type);
1545 goto free_icresp;
1546 }
1547
1548 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1549 pr_err("queue %d: bad pdu length returned %d\n",
1550 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1551 goto free_icresp;
1552 }
1553
1554 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1555 pr_err("queue %d: bad pfv returned %d\n",
1556 nvme_tcp_queue_id(queue), icresp->pfv);
1557 goto free_icresp;
1558 }
1559
1560 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1561 if ((queue->data_digest && !ctrl_ddgst) ||
1562 (!queue->data_digest && ctrl_ddgst)) {
1563 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1564 nvme_tcp_queue_id(queue),
1565 queue->data_digest ? "enabled" : "disabled",
1566 ctrl_ddgst ? "enabled" : "disabled");
1567 goto free_icresp;
1568 }
1569
1570 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1571 if ((queue->hdr_digest && !ctrl_hdgst) ||
1572 (!queue->hdr_digest && ctrl_hdgst)) {
1573 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1574 nvme_tcp_queue_id(queue),
1575 queue->hdr_digest ? "enabled" : "disabled",
1576 ctrl_hdgst ? "enabled" : "disabled");
1577 goto free_icresp;
1578 }
1579
1580 if (icresp->cpda != 0) {
1581 pr_err("queue %d: unsupported cpda returned %d\n",
1582 nvme_tcp_queue_id(queue), icresp->cpda);
1583 goto free_icresp;
1584 }
1585
1586 maxh2cdata = le32_to_cpu(icresp->maxdata);
1587 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1588 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1589 nvme_tcp_queue_id(queue), maxh2cdata);
1590 goto free_icresp;
1591 }
1592 queue->maxh2cdata = maxh2cdata;
1593
1594 ret = 0;
1595 free_icresp:
1596 kfree(icresp);
1597 free_icreq:
1598 kfree(icreq);
1599 return ret;
1600 }
1601
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1602 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1603 {
1604 return nvme_tcp_queue_id(queue) == 0;
1605 }
1606
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1607 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1608 {
1609 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1610 int qid = nvme_tcp_queue_id(queue);
1611
1612 return !nvme_tcp_admin_queue(queue) &&
1613 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1614 }
1615
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1616 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1617 {
1618 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1619 int qid = nvme_tcp_queue_id(queue);
1620
1621 return !nvme_tcp_admin_queue(queue) &&
1622 !nvme_tcp_default_queue(queue) &&
1623 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1624 ctrl->io_queues[HCTX_TYPE_READ];
1625 }
1626
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1627 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1628 {
1629 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1630 int qid = nvme_tcp_queue_id(queue);
1631
1632 return !nvme_tcp_admin_queue(queue) &&
1633 !nvme_tcp_default_queue(queue) &&
1634 !nvme_tcp_read_queue(queue) &&
1635 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1636 ctrl->io_queues[HCTX_TYPE_READ] +
1637 ctrl->io_queues[HCTX_TYPE_POLL];
1638 }
1639
1640 /*
1641 * Track the number of queues assigned to each cpu using a global per-cpu
1642 * counter and select the least used cpu from the mq_map. Our goal is to spread
1643 * different controllers I/O threads across different cpu cores.
1644 *
1645 * Note that the accounting is not 100% perfect, but we don't need to be, we're
1646 * simply putting our best effort to select the best candidate cpu core that we
1647 * find at any given point.
1648 */
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1649 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1650 {
1651 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1652 struct blk_mq_tag_set *set = &ctrl->tag_set;
1653 int qid = nvme_tcp_queue_id(queue) - 1;
1654 unsigned int *mq_map = NULL;
1655 int cpu, min_queues = INT_MAX, io_cpu;
1656
1657 if (wq_unbound)
1658 goto out;
1659
1660 if (nvme_tcp_default_queue(queue))
1661 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1662 else if (nvme_tcp_read_queue(queue))
1663 mq_map = set->map[HCTX_TYPE_READ].mq_map;
1664 else if (nvme_tcp_poll_queue(queue))
1665 mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1666
1667 if (WARN_ON(!mq_map))
1668 goto out;
1669
1670 /* Search for the least used cpu from the mq_map */
1671 io_cpu = WORK_CPU_UNBOUND;
1672 for_each_online_cpu(cpu) {
1673 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1674
1675 if (mq_map[cpu] != qid)
1676 continue;
1677 if (num_queues < min_queues) {
1678 io_cpu = cpu;
1679 min_queues = num_queues;
1680 }
1681 }
1682 if (io_cpu != WORK_CPU_UNBOUND) {
1683 queue->io_cpu = io_cpu;
1684 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1685 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1686 }
1687 out:
1688 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1689 qid, queue->io_cpu);
1690 }
1691
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1692 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1693 {
1694 struct nvme_tcp_queue *queue = data;
1695 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1696 int qid = nvme_tcp_queue_id(queue);
1697 struct key *tls_key;
1698
1699 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1700 qid, pskid, status);
1701
1702 if (status) {
1703 queue->tls_err = -status;
1704 goto out_complete;
1705 }
1706
1707 tls_key = nvme_tls_key_lookup(pskid);
1708 if (IS_ERR(tls_key)) {
1709 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1710 qid, pskid);
1711 queue->tls_err = -ENOKEY;
1712 } else {
1713 queue->tls_enabled = true;
1714 if (qid == 0)
1715 ctrl->ctrl.tls_pskid = key_serial(tls_key);
1716 key_put(tls_key);
1717 queue->tls_err = 0;
1718 }
1719
1720 out_complete:
1721 complete(&queue->tls_complete);
1722 }
1723
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1724 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1725 struct nvme_tcp_queue *queue,
1726 key_serial_t pskid)
1727 {
1728 int qid = nvme_tcp_queue_id(queue);
1729 int ret;
1730 struct tls_handshake_args args;
1731 unsigned long tmo = tls_handshake_timeout * HZ;
1732 key_serial_t keyring = nvme_keyring_id();
1733
1734 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1735 qid, pskid);
1736 memset(&args, 0, sizeof(args));
1737 args.ta_sock = queue->sock;
1738 args.ta_done = nvme_tcp_tls_done;
1739 args.ta_data = queue;
1740 args.ta_my_peerids[0] = pskid;
1741 args.ta_num_peerids = 1;
1742 if (nctrl->opts->keyring)
1743 keyring = key_serial(nctrl->opts->keyring);
1744 args.ta_keyring = keyring;
1745 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1746 queue->tls_err = -EOPNOTSUPP;
1747 init_completion(&queue->tls_complete);
1748 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1749 if (ret) {
1750 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1751 qid, ret);
1752 return ret;
1753 }
1754 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1755 if (ret <= 0) {
1756 if (ret == 0)
1757 ret = -ETIMEDOUT;
1758
1759 dev_err(nctrl->device,
1760 "queue %d: TLS handshake failed, error %d\n",
1761 qid, ret);
1762 tls_handshake_cancel(queue->sock->sk);
1763 } else {
1764 dev_dbg(nctrl->device,
1765 "queue %d: TLS handshake complete, error %d\n",
1766 qid, queue->tls_err);
1767 ret = queue->tls_err;
1768 }
1769 return ret;
1770 }
1771
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1772 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1773 key_serial_t pskid)
1774 {
1775 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1776 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1777 int ret, rcv_pdu_size;
1778 struct file *sock_file;
1779
1780 mutex_init(&queue->queue_lock);
1781 queue->ctrl = ctrl;
1782 init_llist_head(&queue->req_list);
1783 INIT_LIST_HEAD(&queue->send_list);
1784 mutex_init(&queue->send_mutex);
1785 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1786
1787 if (qid > 0)
1788 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1789 else
1790 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1791 NVME_TCP_ADMIN_CCSZ;
1792
1793 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1794 IPPROTO_TCP, &queue->sock);
1795 if (ret) {
1796 dev_err(nctrl->device,
1797 "failed to create socket: %d\n", ret);
1798 goto err_destroy_mutex;
1799 }
1800
1801 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1802 if (IS_ERR(sock_file)) {
1803 ret = PTR_ERR(sock_file);
1804 goto err_destroy_mutex;
1805 }
1806 nvme_tcp_reclassify_socket(queue->sock);
1807
1808 /* Single syn retry */
1809 tcp_sock_set_syncnt(queue->sock->sk, 1);
1810
1811 /* Set TCP no delay */
1812 tcp_sock_set_nodelay(queue->sock->sk);
1813
1814 /*
1815 * Cleanup whatever is sitting in the TCP transmit queue on socket
1816 * close. This is done to prevent stale data from being sent should
1817 * the network connection be restored before TCP times out.
1818 */
1819 sock_no_linger(queue->sock->sk);
1820
1821 if (so_priority > 0)
1822 sock_set_priority(queue->sock->sk, so_priority);
1823
1824 /* Set socket type of service */
1825 if (nctrl->opts->tos >= 0)
1826 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1827
1828 /* Set 10 seconds timeout for icresp recvmsg */
1829 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1830
1831 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1832 queue->sock->sk->sk_use_task_frag = false;
1833 queue->io_cpu = WORK_CPU_UNBOUND;
1834 queue->request = NULL;
1835 queue->data_remaining = 0;
1836 queue->ddgst_remaining = 0;
1837 queue->pdu_remaining = 0;
1838 queue->pdu_offset = 0;
1839 sk_set_memalloc(queue->sock->sk);
1840
1841 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1842 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1843 sizeof(ctrl->src_addr));
1844 if (ret) {
1845 dev_err(nctrl->device,
1846 "failed to bind queue %d socket %d\n",
1847 qid, ret);
1848 goto err_sock;
1849 }
1850 }
1851
1852 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1853 char *iface = nctrl->opts->host_iface;
1854 sockptr_t optval = KERNEL_SOCKPTR(iface);
1855
1856 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1857 optval, strlen(iface));
1858 if (ret) {
1859 dev_err(nctrl->device,
1860 "failed to bind to interface %s queue %d err %d\n",
1861 iface, qid, ret);
1862 goto err_sock;
1863 }
1864 }
1865
1866 queue->hdr_digest = nctrl->opts->hdr_digest;
1867 queue->data_digest = nctrl->opts->data_digest;
1868 if (queue->hdr_digest || queue->data_digest) {
1869 ret = nvme_tcp_alloc_crypto(queue);
1870 if (ret) {
1871 dev_err(nctrl->device,
1872 "failed to allocate queue %d crypto\n", qid);
1873 goto err_sock;
1874 }
1875 }
1876
1877 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1878 nvme_tcp_hdgst_len(queue);
1879 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1880 if (!queue->pdu) {
1881 ret = -ENOMEM;
1882 goto err_crypto;
1883 }
1884
1885 dev_dbg(nctrl->device, "connecting queue %d\n",
1886 nvme_tcp_queue_id(queue));
1887
1888 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1889 sizeof(ctrl->addr), 0);
1890 if (ret) {
1891 dev_err(nctrl->device,
1892 "failed to connect socket: %d\n", ret);
1893 goto err_rcv_pdu;
1894 }
1895
1896 /* If PSKs are configured try to start TLS */
1897 if (nvme_tcp_tls_configured(nctrl) && pskid) {
1898 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1899 if (ret)
1900 goto err_init_connect;
1901 }
1902
1903 ret = nvme_tcp_init_connection(queue);
1904 if (ret)
1905 goto err_init_connect;
1906
1907 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1908
1909 return 0;
1910
1911 err_init_connect:
1912 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1913 err_rcv_pdu:
1914 kfree(queue->pdu);
1915 err_crypto:
1916 if (queue->hdr_digest || queue->data_digest)
1917 nvme_tcp_free_crypto(queue);
1918 err_sock:
1919 /* ->sock will be released by fput() */
1920 fput(queue->sock->file);
1921 queue->sock = NULL;
1922 err_destroy_mutex:
1923 mutex_destroy(&queue->send_mutex);
1924 mutex_destroy(&queue->queue_lock);
1925 return ret;
1926 }
1927
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1928 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1929 {
1930 struct socket *sock = queue->sock;
1931
1932 write_lock_bh(&sock->sk->sk_callback_lock);
1933 sock->sk->sk_user_data = NULL;
1934 sock->sk->sk_data_ready = queue->data_ready;
1935 sock->sk->sk_state_change = queue->state_change;
1936 sock->sk->sk_write_space = queue->write_space;
1937 write_unlock_bh(&sock->sk->sk_callback_lock);
1938 }
1939
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1940 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1941 {
1942 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1943 nvme_tcp_restore_sock_ops(queue);
1944 cancel_work_sync(&queue->io_work);
1945 }
1946
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1947 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1948 {
1949 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1950 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1951
1952 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1953 return;
1954
1955 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1956 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1957
1958 mutex_lock(&queue->queue_lock);
1959 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1960 __nvme_tcp_stop_queue(queue);
1961 /* Stopping the queue will disable TLS */
1962 queue->tls_enabled = false;
1963 mutex_unlock(&queue->queue_lock);
1964 }
1965
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1966 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1967 {
1968 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1969 queue->sock->sk->sk_user_data = queue;
1970 queue->state_change = queue->sock->sk->sk_state_change;
1971 queue->data_ready = queue->sock->sk->sk_data_ready;
1972 queue->write_space = queue->sock->sk->sk_write_space;
1973 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1974 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1975 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1976 #ifdef CONFIG_NET_RX_BUSY_POLL
1977 queue->sock->sk->sk_ll_usec = 1;
1978 #endif
1979 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1980 }
1981
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1982 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1983 {
1984 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1985 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1986 int ret;
1987
1988 queue->rd_enabled = true;
1989 nvme_tcp_init_recv_ctx(queue);
1990 nvme_tcp_setup_sock_ops(queue);
1991
1992 if (idx) {
1993 nvme_tcp_set_queue_io_cpu(queue);
1994 ret = nvmf_connect_io_queue(nctrl, idx);
1995 } else
1996 ret = nvmf_connect_admin_queue(nctrl);
1997
1998 if (!ret) {
1999 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2000 } else {
2001 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2002 __nvme_tcp_stop_queue(queue);
2003 dev_err(nctrl->device,
2004 "failed to connect queue: %d ret=%d\n", idx, ret);
2005 }
2006 return ret;
2007 }
2008
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)2009 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2010 {
2011 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2012 cancel_work_sync(&ctrl->async_event_work);
2013 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2014 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2015 }
2016
2017 nvme_tcp_free_queue(ctrl, 0);
2018 }
2019
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)2020 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2021 {
2022 int i;
2023
2024 for (i = 1; i < ctrl->queue_count; i++)
2025 nvme_tcp_free_queue(ctrl, i);
2026 }
2027
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)2028 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2029 {
2030 int i;
2031
2032 for (i = 1; i < ctrl->queue_count; i++)
2033 nvme_tcp_stop_queue(ctrl, i);
2034 }
2035
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)2036 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2037 int first, int last)
2038 {
2039 int i, ret;
2040
2041 for (i = first; i < last; i++) {
2042 ret = nvme_tcp_start_queue(ctrl, i);
2043 if (ret)
2044 goto out_stop_queues;
2045 }
2046
2047 return 0;
2048
2049 out_stop_queues:
2050 for (i--; i >= first; i--)
2051 nvme_tcp_stop_queue(ctrl, i);
2052 return ret;
2053 }
2054
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)2055 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2056 {
2057 int ret;
2058 key_serial_t pskid = 0;
2059
2060 if (nvme_tcp_tls_configured(ctrl)) {
2061 if (ctrl->opts->tls_key)
2062 pskid = key_serial(ctrl->opts->tls_key);
2063 else {
2064 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2065 ctrl->opts->host->nqn,
2066 ctrl->opts->subsysnqn);
2067 if (!pskid) {
2068 dev_err(ctrl->device, "no valid PSK found\n");
2069 return -ENOKEY;
2070 }
2071 }
2072 }
2073
2074 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2075 if (ret)
2076 return ret;
2077
2078 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2079 if (ret)
2080 goto out_free_queue;
2081
2082 return 0;
2083
2084 out_free_queue:
2085 nvme_tcp_free_queue(ctrl, 0);
2086 return ret;
2087 }
2088
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2089 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2090 {
2091 int i, ret;
2092
2093 if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
2094 dev_err(ctrl->device, "no PSK negotiated\n");
2095 return -ENOKEY;
2096 }
2097
2098 for (i = 1; i < ctrl->queue_count; i++) {
2099 ret = nvme_tcp_alloc_queue(ctrl, i,
2100 ctrl->tls_pskid);
2101 if (ret)
2102 goto out_free_queues;
2103 }
2104
2105 return 0;
2106
2107 out_free_queues:
2108 for (i--; i >= 1; i--)
2109 nvme_tcp_free_queue(ctrl, i);
2110
2111 return ret;
2112 }
2113
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2114 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2115 {
2116 unsigned int nr_io_queues;
2117 int ret;
2118
2119 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2120 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2121 if (ret)
2122 return ret;
2123
2124 if (nr_io_queues == 0) {
2125 dev_err(ctrl->device,
2126 "unable to set any I/O queues\n");
2127 return -ENOMEM;
2128 }
2129
2130 ctrl->queue_count = nr_io_queues + 1;
2131 dev_info(ctrl->device,
2132 "creating %d I/O queues.\n", nr_io_queues);
2133
2134 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2135 to_tcp_ctrl(ctrl)->io_queues);
2136 return __nvme_tcp_alloc_io_queues(ctrl);
2137 }
2138
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2139 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2140 {
2141 int ret, nr_queues;
2142
2143 ret = nvme_tcp_alloc_io_queues(ctrl);
2144 if (ret)
2145 return ret;
2146
2147 if (new) {
2148 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2149 &nvme_tcp_mq_ops,
2150 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2151 sizeof(struct nvme_tcp_request));
2152 if (ret)
2153 goto out_free_io_queues;
2154 }
2155
2156 /*
2157 * Only start IO queues for which we have allocated the tagset
2158 * and limitted it to the available queues. On reconnects, the
2159 * queue number might have changed.
2160 */
2161 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2162 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2163 if (ret)
2164 goto out_cleanup_connect_q;
2165
2166 if (!new) {
2167 nvme_start_freeze(ctrl);
2168 nvme_unquiesce_io_queues(ctrl);
2169 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2170 /*
2171 * If we timed out waiting for freeze we are likely to
2172 * be stuck. Fail the controller initialization just
2173 * to be safe.
2174 */
2175 ret = -ENODEV;
2176 nvme_unfreeze(ctrl);
2177 goto out_wait_freeze_timed_out;
2178 }
2179 blk_mq_update_nr_hw_queues(ctrl->tagset,
2180 ctrl->queue_count - 1);
2181 nvme_unfreeze(ctrl);
2182 }
2183
2184 /*
2185 * If the number of queues has increased (reconnect case)
2186 * start all new queues now.
2187 */
2188 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2189 ctrl->tagset->nr_hw_queues + 1);
2190 if (ret)
2191 goto out_wait_freeze_timed_out;
2192
2193 return 0;
2194
2195 out_wait_freeze_timed_out:
2196 nvme_quiesce_io_queues(ctrl);
2197 nvme_sync_io_queues(ctrl);
2198 nvme_tcp_stop_io_queues(ctrl);
2199 out_cleanup_connect_q:
2200 nvme_cancel_tagset(ctrl);
2201 if (new)
2202 nvme_remove_io_tag_set(ctrl);
2203 out_free_io_queues:
2204 nvme_tcp_free_io_queues(ctrl);
2205 return ret;
2206 }
2207
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2208 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2209 {
2210 int error;
2211
2212 error = nvme_tcp_alloc_admin_queue(ctrl);
2213 if (error)
2214 return error;
2215
2216 if (new) {
2217 error = nvme_alloc_admin_tag_set(ctrl,
2218 &to_tcp_ctrl(ctrl)->admin_tag_set,
2219 &nvme_tcp_admin_mq_ops,
2220 sizeof(struct nvme_tcp_request));
2221 if (error)
2222 goto out_free_queue;
2223 }
2224
2225 error = nvme_tcp_start_queue(ctrl, 0);
2226 if (error)
2227 goto out_cleanup_tagset;
2228
2229 error = nvme_enable_ctrl(ctrl);
2230 if (error)
2231 goto out_stop_queue;
2232
2233 nvme_unquiesce_admin_queue(ctrl);
2234
2235 error = nvme_init_ctrl_finish(ctrl, false);
2236 if (error)
2237 goto out_quiesce_queue;
2238
2239 return 0;
2240
2241 out_quiesce_queue:
2242 nvme_quiesce_admin_queue(ctrl);
2243 blk_sync_queue(ctrl->admin_q);
2244 out_stop_queue:
2245 nvme_tcp_stop_queue(ctrl, 0);
2246 nvme_cancel_admin_tagset(ctrl);
2247 out_cleanup_tagset:
2248 if (new)
2249 nvme_remove_admin_tag_set(ctrl);
2250 out_free_queue:
2251 nvme_tcp_free_admin_queue(ctrl);
2252 return error;
2253 }
2254
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2255 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2256 bool remove)
2257 {
2258 nvme_quiesce_admin_queue(ctrl);
2259 blk_sync_queue(ctrl->admin_q);
2260 nvme_tcp_stop_queue(ctrl, 0);
2261 nvme_cancel_admin_tagset(ctrl);
2262 if (remove) {
2263 nvme_unquiesce_admin_queue(ctrl);
2264 nvme_remove_admin_tag_set(ctrl);
2265 }
2266 nvme_tcp_free_admin_queue(ctrl);
2267 if (ctrl->tls_pskid) {
2268 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2269 ctrl->tls_pskid);
2270 ctrl->tls_pskid = 0;
2271 }
2272 }
2273
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2274 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2275 bool remove)
2276 {
2277 if (ctrl->queue_count <= 1)
2278 return;
2279 nvme_quiesce_io_queues(ctrl);
2280 nvme_sync_io_queues(ctrl);
2281 nvme_tcp_stop_io_queues(ctrl);
2282 nvme_cancel_tagset(ctrl);
2283 if (remove) {
2284 nvme_unquiesce_io_queues(ctrl);
2285 nvme_remove_io_tag_set(ctrl);
2286 }
2287 nvme_tcp_free_io_queues(ctrl);
2288 }
2289
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2290 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2291 int status)
2292 {
2293 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2294
2295 /* If we are resetting/deleting then do nothing */
2296 if (state != NVME_CTRL_CONNECTING) {
2297 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2298 return;
2299 }
2300
2301 if (nvmf_should_reconnect(ctrl, status)) {
2302 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2303 ctrl->opts->reconnect_delay);
2304 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2305 ctrl->opts->reconnect_delay * HZ);
2306 } else {
2307 dev_info(ctrl->device, "Removing controller (%d)...\n",
2308 status);
2309 nvme_delete_ctrl(ctrl);
2310 }
2311 }
2312
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2313 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2314 {
2315 struct nvmf_ctrl_options *opts = ctrl->opts;
2316 int ret;
2317
2318 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2319 if (ret)
2320 return ret;
2321
2322 if (ctrl->icdoff) {
2323 ret = -EOPNOTSUPP;
2324 dev_err(ctrl->device, "icdoff is not supported!\n");
2325 goto destroy_admin;
2326 }
2327
2328 if (!nvme_ctrl_sgl_supported(ctrl)) {
2329 ret = -EOPNOTSUPP;
2330 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2331 goto destroy_admin;
2332 }
2333
2334 if (opts->queue_size > ctrl->sqsize + 1)
2335 dev_warn(ctrl->device,
2336 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2337 opts->queue_size, ctrl->sqsize + 1);
2338
2339 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2340 dev_warn(ctrl->device,
2341 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2342 ctrl->sqsize + 1, ctrl->maxcmd);
2343 ctrl->sqsize = ctrl->maxcmd - 1;
2344 }
2345
2346 if (ctrl->queue_count > 1) {
2347 ret = nvme_tcp_configure_io_queues(ctrl, new);
2348 if (ret)
2349 goto destroy_admin;
2350 }
2351
2352 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2353 /*
2354 * state change failure is ok if we started ctrl delete,
2355 * unless we're during creation of a new controller to
2356 * avoid races with teardown flow.
2357 */
2358 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2359
2360 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2361 state != NVME_CTRL_DELETING_NOIO);
2362 WARN_ON_ONCE(new);
2363 ret = -EINVAL;
2364 goto destroy_io;
2365 }
2366
2367 nvme_start_ctrl(ctrl);
2368 return 0;
2369
2370 destroy_io:
2371 if (ctrl->queue_count > 1) {
2372 nvme_quiesce_io_queues(ctrl);
2373 nvme_sync_io_queues(ctrl);
2374 nvme_tcp_stop_io_queues(ctrl);
2375 nvme_cancel_tagset(ctrl);
2376 if (new)
2377 nvme_remove_io_tag_set(ctrl);
2378 nvme_tcp_free_io_queues(ctrl);
2379 }
2380 destroy_admin:
2381 nvme_stop_keep_alive(ctrl);
2382 nvme_tcp_teardown_admin_queue(ctrl, new);
2383 return ret;
2384 }
2385
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2386 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2387 {
2388 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2389 struct nvme_tcp_ctrl, connect_work);
2390 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2391 int ret;
2392
2393 ++ctrl->nr_reconnects;
2394
2395 ret = nvme_tcp_setup_ctrl(ctrl, false);
2396 if (ret)
2397 goto requeue;
2398
2399 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2400 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2401
2402 ctrl->nr_reconnects = 0;
2403
2404 return;
2405
2406 requeue:
2407 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2408 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2409 nvme_tcp_reconnect_or_remove(ctrl, ret);
2410 }
2411
nvme_tcp_error_recovery_work(struct work_struct * work)2412 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2413 {
2414 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2415 struct nvme_tcp_ctrl, err_work);
2416 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2417
2418 nvme_stop_keep_alive(ctrl);
2419 flush_work(&ctrl->async_event_work);
2420 nvme_tcp_teardown_io_queues(ctrl, false);
2421 /* unquiesce to fail fast pending requests */
2422 nvme_unquiesce_io_queues(ctrl);
2423 nvme_tcp_teardown_admin_queue(ctrl, false);
2424 nvme_unquiesce_admin_queue(ctrl);
2425 nvme_auth_stop(ctrl);
2426
2427 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2428 /* state change failure is ok if we started ctrl delete */
2429 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2430
2431 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2432 state != NVME_CTRL_DELETING_NOIO);
2433 return;
2434 }
2435
2436 nvme_tcp_reconnect_or_remove(ctrl, 0);
2437 }
2438
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2439 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2440 {
2441 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2442 nvme_quiesce_admin_queue(ctrl);
2443 nvme_disable_ctrl(ctrl, shutdown);
2444 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2445 }
2446
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2447 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2448 {
2449 nvme_tcp_teardown_ctrl(ctrl, true);
2450 }
2451
nvme_reset_ctrl_work(struct work_struct * work)2452 static void nvme_reset_ctrl_work(struct work_struct *work)
2453 {
2454 struct nvme_ctrl *ctrl =
2455 container_of(work, struct nvme_ctrl, reset_work);
2456 int ret;
2457
2458 nvme_stop_ctrl(ctrl);
2459 nvme_tcp_teardown_ctrl(ctrl, false);
2460
2461 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2462 /* state change failure is ok if we started ctrl delete */
2463 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2464
2465 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2466 state != NVME_CTRL_DELETING_NOIO);
2467 return;
2468 }
2469
2470 ret = nvme_tcp_setup_ctrl(ctrl, false);
2471 if (ret)
2472 goto out_fail;
2473
2474 return;
2475
2476 out_fail:
2477 ++ctrl->nr_reconnects;
2478 nvme_tcp_reconnect_or_remove(ctrl, ret);
2479 }
2480
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2481 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2482 {
2483 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2484 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2485 }
2486
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2487 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2488 {
2489 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2490
2491 if (list_empty(&ctrl->list))
2492 goto free_ctrl;
2493
2494 mutex_lock(&nvme_tcp_ctrl_mutex);
2495 list_del(&ctrl->list);
2496 mutex_unlock(&nvme_tcp_ctrl_mutex);
2497
2498 nvmf_free_options(nctrl->opts);
2499 free_ctrl:
2500 kfree(ctrl->queues);
2501 kfree(ctrl);
2502 }
2503
nvme_tcp_set_sg_null(struct nvme_command * c)2504 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2505 {
2506 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2507
2508 sg->addr = 0;
2509 sg->length = 0;
2510 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2511 NVME_SGL_FMT_TRANSPORT_A;
2512 }
2513
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2514 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2515 struct nvme_command *c, u32 data_len)
2516 {
2517 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2518
2519 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2520 sg->length = cpu_to_le32(data_len);
2521 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2522 }
2523
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2524 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2525 u32 data_len)
2526 {
2527 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2528
2529 sg->addr = 0;
2530 sg->length = cpu_to_le32(data_len);
2531 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2532 NVME_SGL_FMT_TRANSPORT_A;
2533 }
2534
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2535 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2536 {
2537 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2538 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2539 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2540 struct nvme_command *cmd = &pdu->cmd;
2541 u8 hdgst = nvme_tcp_hdgst_len(queue);
2542
2543 memset(pdu, 0, sizeof(*pdu));
2544 pdu->hdr.type = nvme_tcp_cmd;
2545 if (queue->hdr_digest)
2546 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2547 pdu->hdr.hlen = sizeof(*pdu);
2548 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2549
2550 cmd->common.opcode = nvme_admin_async_event;
2551 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2552 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2553 nvme_tcp_set_sg_null(cmd);
2554
2555 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2556 ctrl->async_req.offset = 0;
2557 ctrl->async_req.curr_bio = NULL;
2558 ctrl->async_req.data_len = 0;
2559
2560 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2561 }
2562
nvme_tcp_complete_timed_out(struct request * rq)2563 static void nvme_tcp_complete_timed_out(struct request *rq)
2564 {
2565 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2566 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2567
2568 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2569 nvmf_complete_timed_out_request(rq);
2570 }
2571
nvme_tcp_timeout(struct request * rq)2572 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2573 {
2574 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2575 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2576 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2577 struct nvme_command *cmd = &pdu->cmd;
2578 int qid = nvme_tcp_queue_id(req->queue);
2579
2580 dev_warn(ctrl->device,
2581 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2582 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2583 nvme_fabrics_opcode_str(qid, cmd), qid);
2584
2585 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2586 /*
2587 * If we are resetting, connecting or deleting we should
2588 * complete immediately because we may block controller
2589 * teardown or setup sequence
2590 * - ctrl disable/shutdown fabrics requests
2591 * - connect requests
2592 * - initialization admin requests
2593 * - I/O requests that entered after unquiescing and
2594 * the controller stopped responding
2595 *
2596 * All other requests should be cancelled by the error
2597 * recovery work, so it's fine that we fail it here.
2598 */
2599 nvme_tcp_complete_timed_out(rq);
2600 return BLK_EH_DONE;
2601 }
2602
2603 /*
2604 * LIVE state should trigger the normal error recovery which will
2605 * handle completing this request.
2606 */
2607 nvme_tcp_error_recovery(ctrl);
2608 return BLK_EH_RESET_TIMER;
2609 }
2610
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2611 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2612 struct request *rq)
2613 {
2614 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2615 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2616 struct nvme_command *c = &pdu->cmd;
2617
2618 c->common.flags |= NVME_CMD_SGL_METABUF;
2619
2620 if (!blk_rq_nr_phys_segments(rq))
2621 nvme_tcp_set_sg_null(c);
2622 else if (rq_data_dir(rq) == WRITE &&
2623 req->data_len <= nvme_tcp_inline_data_size(req))
2624 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2625 else
2626 nvme_tcp_set_sg_host_data(c, req->data_len);
2627
2628 return 0;
2629 }
2630
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2631 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2632 struct request *rq)
2633 {
2634 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2635 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2636 struct nvme_tcp_queue *queue = req->queue;
2637 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2638 blk_status_t ret;
2639
2640 ret = nvme_setup_cmd(ns, rq);
2641 if (ret)
2642 return ret;
2643
2644 req->state = NVME_TCP_SEND_CMD_PDU;
2645 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2646 req->offset = 0;
2647 req->data_sent = 0;
2648 req->pdu_len = 0;
2649 req->pdu_sent = 0;
2650 req->h2cdata_left = 0;
2651 req->data_len = blk_rq_nr_phys_segments(rq) ?
2652 blk_rq_payload_bytes(rq) : 0;
2653 req->curr_bio = rq->bio;
2654 if (req->curr_bio && req->data_len)
2655 nvme_tcp_init_iter(req, rq_data_dir(rq));
2656
2657 if (rq_data_dir(rq) == WRITE &&
2658 req->data_len <= nvme_tcp_inline_data_size(req))
2659 req->pdu_len = req->data_len;
2660
2661 pdu->hdr.type = nvme_tcp_cmd;
2662 pdu->hdr.flags = 0;
2663 if (queue->hdr_digest)
2664 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2665 if (queue->data_digest && req->pdu_len) {
2666 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2667 ddgst = nvme_tcp_ddgst_len(queue);
2668 }
2669 pdu->hdr.hlen = sizeof(*pdu);
2670 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2671 pdu->hdr.plen =
2672 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2673
2674 ret = nvme_tcp_map_data(queue, rq);
2675 if (unlikely(ret)) {
2676 nvme_cleanup_cmd(rq);
2677 dev_err(queue->ctrl->ctrl.device,
2678 "Failed to map data (%d)\n", ret);
2679 return ret;
2680 }
2681
2682 return 0;
2683 }
2684
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2685 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2686 {
2687 struct nvme_tcp_queue *queue = hctx->driver_data;
2688
2689 if (!llist_empty(&queue->req_list))
2690 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2691 }
2692
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2693 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2694 const struct blk_mq_queue_data *bd)
2695 {
2696 struct nvme_ns *ns = hctx->queue->queuedata;
2697 struct nvme_tcp_queue *queue = hctx->driver_data;
2698 struct request *rq = bd->rq;
2699 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2700 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2701 blk_status_t ret;
2702
2703 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2704 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2705
2706 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2707 if (unlikely(ret))
2708 return ret;
2709
2710 nvme_start_request(rq);
2711
2712 nvme_tcp_queue_request(req, true, bd->last);
2713
2714 return BLK_STS_OK;
2715 }
2716
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2717 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2718 {
2719 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2720
2721 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2722 }
2723
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2724 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2725 {
2726 struct nvme_tcp_queue *queue = hctx->driver_data;
2727 struct sock *sk = queue->sock->sk;
2728 int ret;
2729
2730 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2731 return 0;
2732
2733 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2734 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2735 sk_busy_loop(sk, true);
2736 ret = nvme_tcp_try_recv(queue);
2737 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2738 return ret < 0 ? ret : queue->nr_cqe;
2739 }
2740
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2741 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2742 {
2743 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2744 struct sockaddr_storage src_addr;
2745 int ret, len;
2746
2747 len = nvmf_get_address(ctrl, buf, size);
2748
2749 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2750 return len;
2751
2752 mutex_lock(&queue->queue_lock);
2753
2754 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2755 if (ret > 0) {
2756 if (len > 0)
2757 len--; /* strip trailing newline */
2758 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2759 (len) ? "," : "", &src_addr);
2760 }
2761
2762 mutex_unlock(&queue->queue_lock);
2763
2764 return len;
2765 }
2766
2767 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2768 .queue_rq = nvme_tcp_queue_rq,
2769 .commit_rqs = nvme_tcp_commit_rqs,
2770 .complete = nvme_complete_rq,
2771 .init_request = nvme_tcp_init_request,
2772 .exit_request = nvme_tcp_exit_request,
2773 .init_hctx = nvme_tcp_init_hctx,
2774 .timeout = nvme_tcp_timeout,
2775 .map_queues = nvme_tcp_map_queues,
2776 .poll = nvme_tcp_poll,
2777 };
2778
2779 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2780 .queue_rq = nvme_tcp_queue_rq,
2781 .complete = nvme_complete_rq,
2782 .init_request = nvme_tcp_init_request,
2783 .exit_request = nvme_tcp_exit_request,
2784 .init_hctx = nvme_tcp_init_admin_hctx,
2785 .timeout = nvme_tcp_timeout,
2786 };
2787
2788 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2789 .name = "tcp",
2790 .module = THIS_MODULE,
2791 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2792 .reg_read32 = nvmf_reg_read32,
2793 .reg_read64 = nvmf_reg_read64,
2794 .reg_write32 = nvmf_reg_write32,
2795 .subsystem_reset = nvmf_subsystem_reset,
2796 .free_ctrl = nvme_tcp_free_ctrl,
2797 .submit_async_event = nvme_tcp_submit_async_event,
2798 .delete_ctrl = nvme_tcp_delete_ctrl,
2799 .get_address = nvme_tcp_get_address,
2800 .stop_ctrl = nvme_tcp_stop_ctrl,
2801 };
2802
2803 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2804 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2805 {
2806 struct nvme_tcp_ctrl *ctrl;
2807 bool found = false;
2808
2809 mutex_lock(&nvme_tcp_ctrl_mutex);
2810 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2811 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2812 if (found)
2813 break;
2814 }
2815 mutex_unlock(&nvme_tcp_ctrl_mutex);
2816
2817 return found;
2818 }
2819
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2820 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2821 struct nvmf_ctrl_options *opts)
2822 {
2823 struct nvme_tcp_ctrl *ctrl;
2824 int ret;
2825
2826 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2827 if (!ctrl)
2828 return ERR_PTR(-ENOMEM);
2829
2830 INIT_LIST_HEAD(&ctrl->list);
2831 ctrl->ctrl.opts = opts;
2832 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2833 opts->nr_poll_queues + 1;
2834 ctrl->ctrl.sqsize = opts->queue_size - 1;
2835 ctrl->ctrl.kato = opts->kato;
2836
2837 INIT_DELAYED_WORK(&ctrl->connect_work,
2838 nvme_tcp_reconnect_ctrl_work);
2839 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2840 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2841
2842 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2843 opts->trsvcid =
2844 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2845 if (!opts->trsvcid) {
2846 ret = -ENOMEM;
2847 goto out_free_ctrl;
2848 }
2849 opts->mask |= NVMF_OPT_TRSVCID;
2850 }
2851
2852 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2853 opts->traddr, opts->trsvcid, &ctrl->addr);
2854 if (ret) {
2855 pr_err("malformed address passed: %s:%s\n",
2856 opts->traddr, opts->trsvcid);
2857 goto out_free_ctrl;
2858 }
2859
2860 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2861 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2862 opts->host_traddr, NULL, &ctrl->src_addr);
2863 if (ret) {
2864 pr_err("malformed src address passed: %s\n",
2865 opts->host_traddr);
2866 goto out_free_ctrl;
2867 }
2868 }
2869
2870 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2871 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2872 pr_err("invalid interface passed: %s\n",
2873 opts->host_iface);
2874 ret = -ENODEV;
2875 goto out_free_ctrl;
2876 }
2877 }
2878
2879 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2880 ret = -EALREADY;
2881 goto out_free_ctrl;
2882 }
2883
2884 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2885 GFP_KERNEL);
2886 if (!ctrl->queues) {
2887 ret = -ENOMEM;
2888 goto out_free_ctrl;
2889 }
2890
2891 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2892 if (ret)
2893 goto out_kfree_queues;
2894
2895 return ctrl;
2896 out_kfree_queues:
2897 kfree(ctrl->queues);
2898 out_free_ctrl:
2899 kfree(ctrl);
2900 return ERR_PTR(ret);
2901 }
2902
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2903 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2904 struct nvmf_ctrl_options *opts)
2905 {
2906 struct nvme_tcp_ctrl *ctrl;
2907 int ret;
2908
2909 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2910 if (IS_ERR(ctrl))
2911 return ERR_CAST(ctrl);
2912
2913 ret = nvme_add_ctrl(&ctrl->ctrl);
2914 if (ret)
2915 goto out_put_ctrl;
2916
2917 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2918 WARN_ON_ONCE(1);
2919 ret = -EINTR;
2920 goto out_uninit_ctrl;
2921 }
2922
2923 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2924 if (ret)
2925 goto out_uninit_ctrl;
2926
2927 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2928 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2929
2930 mutex_lock(&nvme_tcp_ctrl_mutex);
2931 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2932 mutex_unlock(&nvme_tcp_ctrl_mutex);
2933
2934 return &ctrl->ctrl;
2935
2936 out_uninit_ctrl:
2937 nvme_uninit_ctrl(&ctrl->ctrl);
2938 out_put_ctrl:
2939 nvme_put_ctrl(&ctrl->ctrl);
2940 if (ret > 0)
2941 ret = -EIO;
2942 return ERR_PTR(ret);
2943 }
2944
2945 static struct nvmf_transport_ops nvme_tcp_transport = {
2946 .name = "tcp",
2947 .module = THIS_MODULE,
2948 .required_opts = NVMF_OPT_TRADDR,
2949 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2950 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2951 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2952 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2953 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2954 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2955 .create_ctrl = nvme_tcp_create_ctrl,
2956 };
2957
nvme_tcp_init_module(void)2958 static int __init nvme_tcp_init_module(void)
2959 {
2960 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2961 int cpu;
2962
2963 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2964 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2965 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2966 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2967 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2968 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2969 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2970 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2971
2972 if (wq_unbound)
2973 wq_flags |= WQ_UNBOUND;
2974
2975 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2976 if (!nvme_tcp_wq)
2977 return -ENOMEM;
2978
2979 for_each_possible_cpu(cpu)
2980 atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
2981
2982 nvmf_register_transport(&nvme_tcp_transport);
2983 return 0;
2984 }
2985
nvme_tcp_cleanup_module(void)2986 static void __exit nvme_tcp_cleanup_module(void)
2987 {
2988 struct nvme_tcp_ctrl *ctrl;
2989
2990 nvmf_unregister_transport(&nvme_tcp_transport);
2991
2992 mutex_lock(&nvme_tcp_ctrl_mutex);
2993 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2994 nvme_delete_ctrl(&ctrl->ctrl);
2995 mutex_unlock(&nvme_tcp_ctrl_mutex);
2996 flush_workqueue(nvme_delete_wq);
2997
2998 destroy_workqueue(nvme_tcp_wq);
2999 }
3000
3001 module_init(nvme_tcp_init_module);
3002 module_exit(nvme_tcp_cleanup_module);
3003
3004 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3005 MODULE_LICENSE("GPL v2");
3006