xref: /illumos-gate/usr/src/lib/brand/solaris10/s10_brand/common/s10_brand.c (revision 4763305e3243687c189d755d737d52205b2614ed)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2016 Toomas Soome <tsoome@me.com>
24  * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved.
25  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright 2024 Oxide Computer Company
27  */
28 
29 #include <errno.h>
30 #include <fcntl.h>
31 #include <dirent.h>
32 #include <stddef.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <strings.h>
36 #include <unistd.h>
37 #include <thread.h>
38 #include <sys/auxv.h>
39 #include <sys/brand.h>
40 #include <sys/inttypes.h>
41 #include <sys/lwp.h>
42 #include <sys/syscall.h>
43 #include <sys/systm.h>
44 #include <sys/utsname.h>
45 #include <sys/sysconfig.h>
46 #include <sys/systeminfo.h>
47 #include <sys/zone.h>
48 #include <sys/stat.h>
49 #include <sys/mntent.h>
50 #include <sys/ctfs.h>
51 #include <sys/priv.h>
52 #include <sys/acctctl.h>
53 #include <libgen.h>
54 #include <bsm/audit.h>
55 #include <sys/crypto/ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/ucontext.h>
59 #include <sys/mntio.h>
60 #include <sys/mnttab.h>
61 #include <sys/attr.h>
62 #include <sys/lofi.h>
63 #include <atomic.h>
64 #include <sys/acl.h>
65 #include <sys/socket.h>
66 #include <sys/fdsync.h>
67 
68 #include <s10_brand.h>
69 #include <brand_misc.h>
70 #include <s10_misc.h>
71 #include <s10_signal.h>
72 
73 /*
74  * See usr/src/lib/brand/shared/brand/common/brand_util.c for general
75  * emulation notes.
76  */
77 
78 static zoneid_t zoneid;
79 static boolean_t emul_global_zone = B_FALSE;
80 static s10_emul_bitmap_t emul_bitmap;
81 pid_t zone_init_pid;
82 
83 /*
84  * S10_FEATURE_IS_PRESENT is a macro that helps facilitate conditional
85  * emulation.  For each constant N defined in the s10_emulated_features
86  * enumeration in usr/src/uts/common/brand/solaris10/s10_brand.h,
87  * S10_FEATURE_IS_PRESENT(N) is true iff the feature/backport represented by N
88  * is present in the Solaris 10 image hosted within the zone.  In other words,
89  * S10_FEATURE_IS_PRESENT(N) is true iff the file /usr/lib/brand/solaris10/M,
90  * where M is the enum value of N, was present in the zone when the zone booted.
91  *
92  *
93  * *** Sample Usage
94  *
95  * Suppose that you need to backport a fix to Solaris 10 and there is
96  * emulation in place for the fix.  Suppose further that the emulation won't be
97  * needed if the fix is backported (i.e., if the fix is present in the hosted
98  * Solaris 10 environment, then the brand won't need the emulation).  Then if
99  * you add a constant named "S10_FEATURE_X" to the end of the
100  * s10_emulated_features enumeration that represents the backported fix and
101  * S10_FEATURE_X evaluates to four, then you should create a file named
102  * /usr/lib/brand/solaris10/4 as part of your backport.  Additionally, you
103  * should retain the aforementioned emulation but modify it so that it's
104  * performed only when S10_FEATURE_IS_PRESENT(S10_FEATURE_X) is false.  Thus the
105  * emulation function should look something like the following:
106  *
107  *	static int
108  *	my_emul_function(sysret_t *rv, ...)
109  *	{
110  *		if (S10_FEATURE_IS_PRESENT(S10_FEATURE_X)) {
111  *			// Don't emulate
112  *			return (__systemcall(rv, ...));
113  *		} else {
114  *			// Emulate whatever needs to be emulated when the
115  *			// backport isn't present in the Solaris 10 image.
116  *		}
117  *	}
118  */
119 #define	S10_FEATURE_IS_PRESENT(s10_emulated_features_constant)	\
120 	((emul_bitmap[(s10_emulated_features_constant) >> 3] &	\
121 	(1 << ((s10_emulated_features_constant) & 0x7))) != 0)
122 
123 brand_sysent_table_t brand_sysent_table[];
124 
125 #define	S10_UTS_RELEASE	"5.10"
126 #define	S10_UTS_VERSION	"Generic_Virtual"
127 
128 /*
129  * If the ioctl fd's major doesn't match "major", then pass through the
130  * ioctl, since it is not the expected device.  major should be a
131  * pointer to a static dev_t initialized to -1, and devname should be
132  * the path of the device.
133  *
134  * Returns 1 if the ioctl was handled (in which case *err contains the
135  * error code), or 0 if it still needs handling.
136  */
137 static int
passthru_otherdev_ioctl(dev_t * majordev,const char * devname,int * err,sysret_t * rval,int fdes,int cmd,intptr_t arg)138 passthru_otherdev_ioctl(dev_t *majordev, const char *devname, int *err,
139     sysret_t *rval, int fdes, int cmd, intptr_t arg)
140 {
141 	struct stat sbuf;
142 
143 	if (*majordev == (dev_t)-1) {
144 		if ((*err = __systemcall(rval, SYS_fstatat + 1024,
145 		    AT_FDCWD, devname, &sbuf, 0) != 0) != 0)
146 			goto doioctl;
147 
148 		*majordev = major(sbuf.st_rdev);
149 	}
150 
151 	if ((*err = __systemcall(rval, SYS_fstatat + 1024, fdes,
152 	    NULL, &sbuf, 0)) != 0)
153 		goto doioctl;
154 
155 	if (major(sbuf.st_rdev) == *majordev)
156 		return (0);
157 
158 doioctl:
159 	*err = (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
160 	return (1);
161 }
162 
163 /*
164  * Figures out the PID of init for the zone.  Also returns a boolean
165  * indicating whether this process currently has that pid: if so,
166  * then at this moment, we are init.
167  */
168 static boolean_t
get_initpid_info(void)169 get_initpid_info(void)
170 {
171 	pid_t pid;
172 	sysret_t rval;
173 	int err;
174 
175 	/*
176 	 * Determine the current process PID and the PID of the zone's init.
177 	 * We use care not to call getpid() here, because we're not supposed
178 	 * to call getpid() until after the program is fully linked-- the
179 	 * first call to getpid() is a signal from the linker to debuggers
180 	 * that linking has been completed.
181 	 */
182 	if ((err = __systemcall(&rval, SYS_brand,
183 	    B_S10_PIDINFO, &pid, &zone_init_pid)) != 0) {
184 		brand_abort(err, "Failed to get init's pid");
185 	}
186 
187 	/*
188 	 * Note that we need to be cautious with the pid we get back--
189 	 * it should not be stashed and used in place of getpid(), since
190 	 * we might fork(2).  So we keep zone_init_pid and toss the pid
191 	 * we otherwise got.
192 	 */
193 	if (pid == zone_init_pid)
194 		return (B_TRUE);
195 
196 	return (B_FALSE);
197 }
198 
199 /* Free the thread-local storage provided by mntfs_get_mntentbuf(). */
200 static void
mntfs_free_mntentbuf(void * arg)201 mntfs_free_mntentbuf(void *arg)
202 {
203 	struct mntentbuf *embufp = arg;
204 
205 	if (embufp == NULL)
206 		return;
207 	if (embufp->mbuf_emp)
208 		free(embufp->mbuf_emp);
209 	if (embufp->mbuf_buf)
210 		free(embufp->mbuf_buf);
211 	bzero(embufp, sizeof (struct mntentbuf));
212 	free(embufp);
213 }
214 
215 /* Provide the thread-local storage required by mntfs_ioctl(). */
216 static struct mntentbuf *
mntfs_get_mntentbuf(size_t size)217 mntfs_get_mntentbuf(size_t size)
218 {
219 	static mutex_t keylock;
220 	static thread_key_t key;
221 	static int once_per_keyname = 0;
222 	void *tsd = NULL;
223 	struct mntentbuf *embufp;
224 
225 	/* Create the key. */
226 	if (!once_per_keyname) {
227 		(void) mutex_lock(&keylock);
228 		if (!once_per_keyname) {
229 			if (thr_keycreate(&key, mntfs_free_mntentbuf)) {
230 				(void) mutex_unlock(&keylock);
231 				return (NULL);
232 			} else {
233 				once_per_keyname++;
234 			}
235 		}
236 		(void) mutex_unlock(&keylock);
237 	}
238 
239 	/*
240 	 * The thread-specific datum for this key is the address of a struct
241 	 * mntentbuf. If this is the first time here then we allocate the struct
242 	 * and its contents, and associate its address with the thread; if there
243 	 * are any problems then we abort.
244 	 */
245 	if (thr_getspecific(key, &tsd))
246 		return (NULL);
247 	if (tsd == NULL) {
248 		if (!(embufp = calloc(1, sizeof (struct mntentbuf))) ||
249 		    !(embufp->mbuf_emp = malloc(sizeof (struct extmnttab))) ||
250 		    thr_setspecific(key, embufp)) {
251 			mntfs_free_mntentbuf(embufp);
252 			return (NULL);
253 		}
254 	} else {
255 		embufp = tsd;
256 	}
257 
258 	/* Return the buffer, resizing it if necessary. */
259 	if (size > embufp->mbuf_bufsize) {
260 		if (embufp->mbuf_buf)
261 			free(embufp->mbuf_buf);
262 		if ((embufp->mbuf_buf = malloc(size)) == NULL) {
263 			embufp->mbuf_bufsize = 0;
264 			return (NULL);
265 		} else {
266 			embufp->mbuf_bufsize = size;
267 		}
268 	}
269 	return (embufp);
270 }
271 
272 /*
273  * The MNTIOC_GETMNTENT command in this release differs from that in early
274  * versions of Solaris 10.
275  *
276  * Previously, the command would copy a pointer to a struct extmnttab to an
277  * address provided as an argument. The pointer would be somewhere within a
278  * mapping already present within the user's address space. In addition, the
279  * text to which the struct's members pointed would also be within a
280  * pre-existing mapping. Now, the user is required to allocate memory for both
281  * the struct and the text buffer, and to pass the address of each within a
282  * struct mntentbuf. In order to conceal these details from a Solaris 10 client
283  * we allocate some thread-local storage in which to create the necessary data
284  * structures; this is static, thread-safe memory that will be cleaned up
285  * without the caller's intervention.
286  *
287  * MNTIOC_GETEXTMNTENT and MNTIOC_GETMNTANY are new in this release; they should
288  * not work for older clients.
289  */
290 int
mntfs_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)291 mntfs_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
292 {
293 	int err;
294 	struct stat statbuf;
295 	struct mntentbuf *embufp;
296 	static size_t bufsize = MNT_LINE_MAX;
297 
298 	/* Do not emulate mntfs commands from up-to-date clients. */
299 	if (S10_FEATURE_IS_PRESENT(S10_FEATURE_ALTERED_MNTFS_IOCTL))
300 		return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
301 
302 	/* Do not emulate mntfs commands directed at other file systems. */
303 	if ((err = __systemcall(rval, SYS_fstatat + 1024,
304 	    fdes, NULL, &statbuf, 0)) != 0)
305 		return (err);
306 	if (strcmp(statbuf.st_fstype, MNTTYPE_MNTFS) != 0)
307 		return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
308 
309 	if (cmd == MNTIOC_GETEXTMNTENT || cmd == MNTIOC_GETMNTANY)
310 		return (EINVAL);
311 
312 	if ((embufp = mntfs_get_mntentbuf(bufsize)) == NULL)
313 		return (ENOMEM);
314 
315 	/*
316 	 * MNTIOC_GETEXTMNTENT advances the file pointer once it has
317 	 * successfully copied out the result to the address provided. We
318 	 * therefore need to check the user-supplied address now since the
319 	 * one we'll be providing is guaranteed to work.
320 	 */
321 	if (brand_uucopy(&embufp->mbuf_emp, (void *)arg, sizeof (void *)) != 0)
322 		return (EFAULT);
323 
324 	/*
325 	 * Keep retrying for as long as we fail for want of a large enough
326 	 * buffer.
327 	 */
328 	for (;;) {
329 		if ((err = __systemcall(rval, SYS_ioctl + 1024, fdes,
330 		    MNTIOC_GETEXTMNTENT, embufp)) != 0)
331 			return (err);
332 
333 		if (rval->sys_rval1 == MNTFS_TOOLONG) {
334 			/* The buffer wasn't large enough. */
335 			(void) atomic_swap_ulong((unsigned long *)&bufsize,
336 			    2 * embufp->mbuf_bufsize);
337 			if ((embufp = mntfs_get_mntentbuf(bufsize)) == NULL)
338 				return (ENOMEM);
339 		} else {
340 			break;
341 		}
342 	}
343 
344 	if (brand_uucopy(&embufp->mbuf_emp, (void *)arg, sizeof (void *)) != 0)
345 		return (EFAULT);
346 
347 	return (0);
348 }
349 
350 /*
351  * Assign the structure member value from the s (source) structure to the
352  * d (dest) structure.
353  */
354 #define	struct_assign(d, s, val)	(((d).val) = ((s).val))
355 
356 /*
357  * The CRYPTO_GET_FUNCTION_LIST parameter structure crypto_function_list_t
358  * changed between S10 and Nevada, so we have to emulate the old S10
359  * crypto_function_list_t structure when interposing on the ioctl syscall.
360  */
361 typedef struct s10_crypto_function_list {
362 	boolean_t fl_digest_init;
363 	boolean_t fl_digest;
364 	boolean_t fl_digest_update;
365 	boolean_t fl_digest_key;
366 	boolean_t fl_digest_final;
367 
368 	boolean_t fl_encrypt_init;
369 	boolean_t fl_encrypt;
370 	boolean_t fl_encrypt_update;
371 	boolean_t fl_encrypt_final;
372 
373 	boolean_t fl_decrypt_init;
374 	boolean_t fl_decrypt;
375 	boolean_t fl_decrypt_update;
376 	boolean_t fl_decrypt_final;
377 
378 	boolean_t fl_mac_init;
379 	boolean_t fl_mac;
380 	boolean_t fl_mac_update;
381 	boolean_t fl_mac_final;
382 
383 	boolean_t fl_sign_init;
384 	boolean_t fl_sign;
385 	boolean_t fl_sign_update;
386 	boolean_t fl_sign_final;
387 	boolean_t fl_sign_recover_init;
388 	boolean_t fl_sign_recover;
389 
390 	boolean_t fl_verify_init;
391 	boolean_t fl_verify;
392 	boolean_t fl_verify_update;
393 	boolean_t fl_verify_final;
394 	boolean_t fl_verify_recover_init;
395 	boolean_t fl_verify_recover;
396 
397 	boolean_t fl_digest_encrypt_update;
398 	boolean_t fl_decrypt_digest_update;
399 	boolean_t fl_sign_encrypt_update;
400 	boolean_t fl_decrypt_verify_update;
401 
402 	boolean_t fl_seed_random;
403 	boolean_t fl_generate_random;
404 
405 	boolean_t fl_session_open;
406 	boolean_t fl_session_close;
407 	boolean_t fl_session_login;
408 	boolean_t fl_session_logout;
409 
410 	boolean_t fl_object_create;
411 	boolean_t fl_object_copy;
412 	boolean_t fl_object_destroy;
413 	boolean_t fl_object_get_size;
414 	boolean_t fl_object_get_attribute_value;
415 	boolean_t fl_object_set_attribute_value;
416 	boolean_t fl_object_find_init;
417 	boolean_t fl_object_find;
418 	boolean_t fl_object_find_final;
419 
420 	boolean_t fl_key_generate;
421 	boolean_t fl_key_generate_pair;
422 	boolean_t fl_key_wrap;
423 	boolean_t fl_key_unwrap;
424 	boolean_t fl_key_derive;
425 
426 	boolean_t fl_init_token;
427 	boolean_t fl_init_pin;
428 	boolean_t fl_set_pin;
429 
430 	boolean_t prov_is_hash_limited;
431 	uint32_t prov_hash_threshold;
432 	uint32_t prov_hash_limit;
433 } s10_crypto_function_list_t;
434 
435 typedef struct s10_crypto_get_function_list {
436 	uint_t				fl_return_value;
437 	crypto_provider_id_t		fl_provider_id;
438 	s10_crypto_function_list_t	fl_list;
439 } s10_crypto_get_function_list_t;
440 
441 /*
442  * The structure returned by the CRYPTO_GET_FUNCTION_LIST ioctl on /dev/crypto
443  * increased in size due to:
444  *	6482533 Threshold for HW offload via PKCS11 interface
445  * between S10 and Nevada.  This is a relatively simple process of filling
446  * in the S10 structure fields with the Nevada data.
447  *
448  * We stat the device to make sure that the ioctl is meant for /dev/crypto.
449  *
450  */
451 static int
crypto_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)452 crypto_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
453 {
454 	int				err;
455 	s10_crypto_get_function_list_t	s10_param;
456 	crypto_get_function_list_t	native_param;
457 	static dev_t			crypto_dev = (dev_t)-1;
458 
459 	if (passthru_otherdev_ioctl(&crypto_dev, "/dev/crypto", &err,
460 	    rval, fdes, cmd, arg) == 1)
461 		return (err);
462 
463 	if (brand_uucopy((const void *)arg, &s10_param, sizeof (s10_param))
464 	    != 0)
465 		return (EFAULT);
466 	struct_assign(native_param, s10_param, fl_provider_id);
467 	if ((err = __systemcall(rval, SYS_ioctl + 1024, fdes, cmd,
468 	    &native_param)) != 0)
469 		return (err);
470 
471 	struct_assign(s10_param, native_param, fl_return_value);
472 	struct_assign(s10_param, native_param, fl_provider_id);
473 
474 	struct_assign(s10_param, native_param, fl_list.fl_digest_init);
475 	struct_assign(s10_param, native_param, fl_list.fl_digest);
476 	struct_assign(s10_param, native_param, fl_list.fl_digest_update);
477 	struct_assign(s10_param, native_param, fl_list.fl_digest_key);
478 	struct_assign(s10_param, native_param, fl_list.fl_digest_final);
479 
480 	struct_assign(s10_param, native_param, fl_list.fl_encrypt_init);
481 	struct_assign(s10_param, native_param, fl_list.fl_encrypt);
482 	struct_assign(s10_param, native_param, fl_list.fl_encrypt_update);
483 	struct_assign(s10_param, native_param, fl_list.fl_encrypt_final);
484 
485 	struct_assign(s10_param, native_param, fl_list.fl_decrypt_init);
486 	struct_assign(s10_param, native_param, fl_list.fl_decrypt);
487 	struct_assign(s10_param, native_param, fl_list.fl_decrypt_update);
488 	struct_assign(s10_param, native_param, fl_list.fl_decrypt_final);
489 
490 	struct_assign(s10_param, native_param, fl_list.fl_mac_init);
491 	struct_assign(s10_param, native_param, fl_list.fl_mac);
492 	struct_assign(s10_param, native_param, fl_list.fl_mac_update);
493 	struct_assign(s10_param, native_param, fl_list.fl_mac_final);
494 
495 	struct_assign(s10_param, native_param, fl_list.fl_sign_init);
496 	struct_assign(s10_param, native_param, fl_list.fl_sign);
497 	struct_assign(s10_param, native_param, fl_list.fl_sign_update);
498 	struct_assign(s10_param, native_param, fl_list.fl_sign_final);
499 	struct_assign(s10_param, native_param, fl_list.fl_sign_recover_init);
500 	struct_assign(s10_param, native_param, fl_list.fl_sign_recover);
501 
502 	struct_assign(s10_param, native_param, fl_list.fl_verify_init);
503 	struct_assign(s10_param, native_param, fl_list.fl_verify);
504 	struct_assign(s10_param, native_param, fl_list.fl_verify_update);
505 	struct_assign(s10_param, native_param, fl_list.fl_verify_final);
506 	struct_assign(s10_param, native_param, fl_list.fl_verify_recover_init);
507 	struct_assign(s10_param, native_param, fl_list.fl_verify_recover);
508 
509 	struct_assign(s10_param, native_param,
510 	    fl_list.fl_digest_encrypt_update);
511 	struct_assign(s10_param, native_param,
512 	    fl_list.fl_decrypt_digest_update);
513 	struct_assign(s10_param, native_param, fl_list.fl_sign_encrypt_update);
514 	struct_assign(s10_param, native_param,
515 	    fl_list.fl_decrypt_verify_update);
516 
517 	struct_assign(s10_param, native_param, fl_list.fl_seed_random);
518 	struct_assign(s10_param, native_param, fl_list.fl_generate_random);
519 
520 	struct_assign(s10_param, native_param, fl_list.fl_session_open);
521 	struct_assign(s10_param, native_param, fl_list.fl_session_close);
522 	struct_assign(s10_param, native_param, fl_list.fl_session_login);
523 	struct_assign(s10_param, native_param, fl_list.fl_session_logout);
524 
525 	struct_assign(s10_param, native_param, fl_list.fl_object_create);
526 	struct_assign(s10_param, native_param, fl_list.fl_object_copy);
527 	struct_assign(s10_param, native_param, fl_list.fl_object_destroy);
528 	struct_assign(s10_param, native_param, fl_list.fl_object_get_size);
529 	struct_assign(s10_param, native_param,
530 	    fl_list.fl_object_get_attribute_value);
531 	struct_assign(s10_param, native_param,
532 	    fl_list.fl_object_set_attribute_value);
533 	struct_assign(s10_param, native_param, fl_list.fl_object_find_init);
534 	struct_assign(s10_param, native_param, fl_list.fl_object_find);
535 	struct_assign(s10_param, native_param, fl_list.fl_object_find_final);
536 
537 	struct_assign(s10_param, native_param, fl_list.fl_key_generate);
538 	struct_assign(s10_param, native_param, fl_list.fl_key_generate_pair);
539 	struct_assign(s10_param, native_param, fl_list.fl_key_wrap);
540 	struct_assign(s10_param, native_param, fl_list.fl_key_unwrap);
541 	struct_assign(s10_param, native_param, fl_list.fl_key_derive);
542 
543 	struct_assign(s10_param, native_param, fl_list.fl_init_token);
544 	struct_assign(s10_param, native_param, fl_list.fl_init_pin);
545 	struct_assign(s10_param, native_param, fl_list.fl_set_pin);
546 
547 	struct_assign(s10_param, native_param, fl_list.prov_is_hash_limited);
548 	struct_assign(s10_param, native_param, fl_list.prov_hash_threshold);
549 	struct_assign(s10_param, native_param, fl_list.prov_hash_limit);
550 
551 	return (brand_uucopy(&s10_param, (void *)arg, sizeof (s10_param)));
552 }
553 
554 /*
555  * The process contract CT_TGET and CT_TSET parameter structure ct_param_t
556  * changed between S10 and Nevada, so we have to emulate the old S10
557  * ct_param_t structure when interposing on the ioctl syscall.
558  */
559 typedef struct s10_ct_param {
560 	uint32_t ctpm_id;
561 	uint32_t ctpm_pad;
562 	uint64_t ctpm_value;
563 } s10_ct_param_t;
564 
565 /*
566  * We have to emulate process contract ioctls for init(8) because the
567  * ioctl parameter structure changed between S10 and Nevada.  This is
568  * a relatively simple process of filling Nevada structure fields,
569  * shuffling values, and initiating a native system call.
570  *
571  * For now, we'll assume that all consumers of CT_TGET and CT_TSET will
572  * need emulation.  We'll issue a stat to make sure that the ioctl
573  * is meant for the contract file system.
574  *
575  */
576 static int
ctfs_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)577 ctfs_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
578 {
579 	int err;
580 	s10_ct_param_t s10param;
581 	ct_param_t param;
582 	struct stat statbuf;
583 
584 	if ((err = __systemcall(rval, SYS_fstatat + 1024,
585 	    fdes, NULL, &statbuf, 0)) != 0)
586 		return (err);
587 	if (strcmp(statbuf.st_fstype, MNTTYPE_CTFS) != 0)
588 		return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
589 
590 	if (brand_uucopy((const void *)arg, &s10param, sizeof (s10param)) != 0)
591 		return (EFAULT);
592 	param.ctpm_id = s10param.ctpm_id;
593 	param.ctpm_size = sizeof (uint64_t);
594 	param.ctpm_value = &s10param.ctpm_value;
595 	if ((err = __systemcall(rval, SYS_ioctl + 1024, fdes, cmd, &param))
596 	    != 0)
597 		return (err);
598 
599 	if (cmd == CT_TGET)
600 		return (brand_uucopy(&s10param, (void *)arg,
601 		    sizeof (s10param)));
602 
603 	return (0);
604 }
605 
606 /*
607  * ZFS ioctls have changed in each Solaris 10 (S10) release as well as in
608  * Solaris Next.  The brand wraps ZFS commands so that the native commands
609  * are used, but we want to be sure no command sneaks in that uses ZFS
610  * without our knowledge.  We'll abort the process if we see a ZFS ioctl.
611  */
612 static int
zfs_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)613 zfs_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
614 {
615 	static dev_t zfs_dev = (dev_t)-1;
616 	int err;
617 
618 	if (passthru_otherdev_ioctl(&zfs_dev, ZFS_DEV, &err,
619 	    rval, fdes, cmd, arg) == 1)
620 		return (err);
621 
622 	brand_abort(0, "ZFS ioctl!");
623 	/*NOTREACHED*/
624 	return (0);
625 }
626 
627 struct s10_lofi_ioctl {
628 	uint32_t li_id;
629 	boolean_t li_force;
630 	char li_filename[MAXPATHLEN + 1];
631 };
632 
633 static int
lofi_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)634 lofi_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
635 {
636 	static dev_t lofi_dev = (dev_t)-1;
637 	struct s10_lofi_ioctl s10_param;
638 	struct lofi_ioctl native_param;
639 	int err;
640 
641 	if (passthru_otherdev_ioctl(&lofi_dev, "/dev/lofictl", &err,
642 	    rval, fdes, cmd, arg) == 1)
643 		return (err);
644 
645 	if (brand_uucopy((const void *)arg, &s10_param,
646 	    sizeof (s10_param)) != 0)
647 		return (EFAULT);
648 
649 	/*
650 	 * Somewhat weirdly, EIO is what the S10 lofi driver would
651 	 * return for unrecognised cmds.
652 	 */
653 	if (cmd >= LOFI_CHECK_COMPRESSED)
654 		return (EIO);
655 
656 	bzero(&native_param, sizeof (native_param));
657 
658 	struct_assign(native_param, s10_param, li_id);
659 	struct_assign(native_param, s10_param, li_force);
660 
661 	/*
662 	 * Careful here, this has changed from [MAXPATHLEN + 1] to
663 	 * [MAXPATHLEN].
664 	 */
665 	bcopy(s10_param.li_filename, native_param.li_filename,
666 	    sizeof (native_param.li_filename));
667 	native_param.li_filename[MAXPATHLEN - 1] = '\0';
668 
669 	err = __systemcall(rval, SYS_ioctl + 1024, fdes, cmd, &native_param);
670 
671 	struct_assign(s10_param, native_param, li_id);
672 	/* li_force is input-only */
673 
674 	bcopy(native_param.li_filename, s10_param.li_filename,
675 	    sizeof (native_param.li_filename));
676 
677 	(void) brand_uucopy(&s10_param, (void *)arg, sizeof (s10_param));
678 	return (err);
679 }
680 
681 int
s10_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)682 s10_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
683 {
684 	switch (cmd) {
685 	case CRYPTO_GET_FUNCTION_LIST:
686 		return (crypto_ioctl(rval, fdes, cmd, arg));
687 	case CT_TGET:
688 		/*FALLTHRU*/
689 	case CT_TSET:
690 		return (ctfs_ioctl(rval, fdes, cmd, arg));
691 	case MNTIOC_GETMNTENT:
692 		/*FALLTHRU*/
693 	case MNTIOC_GETEXTMNTENT:
694 		/*FALLTHRU*/
695 	case MNTIOC_GETMNTANY:
696 		return (mntfs_ioctl(rval, fdes, cmd, arg));
697 	}
698 
699 	switch (cmd & ~0xff) {
700 	case ZFS_IOC:
701 		return (zfs_ioctl(rval, fdes, cmd, arg));
702 
703 	case LOFI_IOC_BASE:
704 		return (lofi_ioctl(rval, fdes, cmd, arg));
705 
706 	default:
707 		break;
708 	}
709 
710 	return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
711 }
712 
713 /*
714  * Unfortunately, pwrite()'s behavior differs between S10 and Nevada when
715  * applied to files opened with O_APPEND.  The offset argument is ignored and
716  * the buffer is appended to the target file in S10, whereas the current file
717  * position is ignored in Nevada (i.e., pwrite() acts as though the target file
718  * wasn't opened with O_APPEND).  This is a result of the fix for CR 6655660
719  * (pwrite() must ignore the O_APPEND/FAPPEND flag).
720  *
721  * We emulate the old S10 pwrite() behavior by checking whether the target file
722  * was opened with O_APPEND.  If it was, then invoke the write() system call
723  * instead of pwrite(); otherwise, invoke the pwrite() system call as usual.
724  */
725 static int
s10_pwrite(sysret_t * rval,int fd,const void * bufferp,size_t num_bytes,off_t offset)726 s10_pwrite(sysret_t *rval, int fd, const void *bufferp, size_t num_bytes,
727     off_t offset)
728 {
729 	int err;
730 
731 	if ((err = __systemcall(rval, SYS_fcntl + 1024, fd, F_GETFL, 0, 0)) !=
732 	    0) {
733 		return (err);
734 	}
735 	if (rval->sys_rval1 & O_APPEND)
736 		return (__systemcall(rval, SYS_write + 1024, fd, bufferp,
737 		    num_bytes));
738 	return (__systemcall(rval, SYS_pwrite + 1024, fd, bufferp, num_bytes,
739 	    offset));
740 }
741 
742 #if !defined(_LP64)
743 /*
744  * This is the large file version of the pwrite() system call for 32-bit
745  * processes.  This exists for the same reason that s10_pwrite() exists; see
746  * the comment above s10_pwrite().
747  */
748 static int
s10_pwrite64(sysret_t * rval,int fd,const void * bufferp,size32_t num_bytes,uint32_t offset_1,uint32_t offset_2)749 s10_pwrite64(sysret_t *rval, int fd, const void *bufferp, size32_t num_bytes,
750     uint32_t offset_1, uint32_t offset_2)
751 {
752 	int err;
753 
754 	if ((err = __systemcall(rval, SYS_fcntl + 1024, fd, F_GETFL, 0, 0)) !=
755 	    0) {
756 		return (err);
757 	}
758 	if (rval->sys_rval1 & O_APPEND)
759 		return (__systemcall(rval, SYS_write + 1024, fd, bufferp,
760 		    num_bytes));
761 	return (__systemcall(rval, SYS_pwrite64 + 1024, fd, bufferp,
762 	    num_bytes, offset_1, offset_2));
763 }
764 #endif	/* !_LP64 */
765 
766 /*
767  * These are convenience macros that s10_getdents_common() uses.  Both treat
768  * their arguments, which should be character pointers, as dirent pointers or
769  * dirent64 pointers and yield their d_name and d_reclen fields.  These
770  * macros shouldn't be used outside of s10_getdents_common().
771  */
772 #define	dirent_name(charptr)	((charptr) + name_offset)
773 #define	dirent_reclen(charptr)	\
774 	(*(unsigned short *)(uintptr_t)((charptr) + reclen_offset))
775 
776 /*
777  * This function contains code that is common to both s10_getdents() and
778  * s10_getdents64().  See the comment above s10_getdents() for details.
779  *
780  * rval, fd, buf, and nbyte should be passed unmodified from s10_getdents()
781  * and s10_getdents64().  getdents_syscall_id should be either SYS_getdents
782  * or SYS_getdents64.  name_offset should be the the byte offset of
783  * the d_name field in the dirent structures passed to the kernel via the
784  * syscall represented by getdents_syscall_id.  reclen_offset should be
785  * the byte offset of the d_reclen field in the aforementioned dirent
786  * structures.
787  */
788 static int
s10_getdents_common(sysret_t * rval,int fd,char * buf,size_t nbyte,int getdents_syscall_id,size_t name_offset,size_t reclen_offset)789 s10_getdents_common(sysret_t *rval, int fd, char *buf, size_t nbyte,
790     int getdents_syscall_id, size_t name_offset, size_t reclen_offset)
791 {
792 	int err;
793 	size_t buf_size;
794 	char *local_buf;
795 	char *buf_current;
796 
797 	/*
798 	 * Use a special brand operation, B_S10_ISFDXATTRDIR, to determine
799 	 * whether the specified file descriptor refers to an extended file
800 	 * attribute directory.  If it doesn't, then SYS_getdents won't
801 	 * reveal extended file attributes, in which case we can simply
802 	 * hand the syscall to the native kernel.
803 	 */
804 	if ((err = __systemcall(rval, SYS_brand + 1024, B_S10_ISFDXATTRDIR,
805 	    fd)) != 0)
806 		return (err);
807 	if (rval->sys_rval1 == 0)
808 		return (__systemcall(rval, getdents_syscall_id + 1024, fd, buf,
809 		    nbyte));
810 
811 	/*
812 	 * The file descriptor refers to an extended file attributes directory.
813 	 * We need to create a dirent buffer that's as large as buf into which
814 	 * the native SYS_getdents will store the special extended file
815 	 * attribute directory's entries.  We can't dereference buf because
816 	 * it might be an invalid pointer!
817 	 */
818 	if (nbyte > MAXGETDENTS_SIZE)
819 		nbyte = MAXGETDENTS_SIZE;
820 	local_buf = (char *)malloc(nbyte);
821 	if (local_buf == NULL) {
822 		/*
823 		 * getdents(2) doesn't return an error code indicating a memory
824 		 * allocation error and it doesn't make sense to return any of
825 		 * its documented error codes for a malloc(3C) failure.  We'll
826 		 * use ENOMEM even though getdents(2) doesn't use it because it
827 		 * best describes the failure.
828 		 */
829 		(void) B_TRUSS_POINT_3(rval, getdents_syscall_id, ENOMEM, fd,
830 		    buf, nbyte);
831 		rval->sys_rval1 = -1;
832 		rval->sys_rval2 = 0;
833 		return (EIO);
834 	}
835 
836 	/*
837 	 * Issue a native SYS_getdents syscall but use our local dirent buffer
838 	 * instead of buf.  This will allow us to examine the returned dirent
839 	 * structures immediately and copy them to buf later.  That way the
840 	 * calling process won't be able to see the dirent structures until
841 	 * we finish examining them.
842 	 */
843 	if ((err = __systemcall(rval, getdents_syscall_id + 1024, fd, local_buf,
844 	    nbyte)) != 0) {
845 		free(local_buf);
846 		return (err);
847 	}
848 	buf_size = rval->sys_rval1;
849 	if (buf_size == 0) {
850 		free(local_buf);
851 		return (0);
852 	}
853 
854 	/*
855 	 * Look for SUNWattr_ro (VIEW_READONLY) and SUNWattr_rw
856 	 * (VIEW_READWRITE) in the directory entries and remove them
857 	 * from the dirent buffer.
858 	 */
859 	for (buf_current = local_buf;
860 	    (size_t)(buf_current - local_buf) < buf_size; /* cstyle */) {
861 		if (strcmp(dirent_name(buf_current), VIEW_READONLY) != 0 &&
862 		    strcmp(dirent_name(buf_current), VIEW_READWRITE) != 0) {
863 			/*
864 			 * The dirent refers to an attribute that should
865 			 * be visible to Solaris 10 processes.  Keep it
866 			 * and examine the next entry in the buffer.
867 			 */
868 			buf_current += dirent_reclen(buf_current);
869 		} else {
870 			/*
871 			 * We found either SUNWattr_ro (VIEW_READONLY)
872 			 * or SUNWattr_rw (VIEW_READWRITE).  Remove it
873 			 * from the dirent buffer by decrementing
874 			 * buf_size by the size of the entry and
875 			 * overwriting the entry with the remaining
876 			 * entries.
877 			 */
878 			buf_size -= dirent_reclen(buf_current);
879 			(void) memmove(buf_current, buf_current +
880 			    dirent_reclen(buf_current), buf_size -
881 			    (size_t)(buf_current - local_buf));
882 		}
883 	}
884 
885 	/*
886 	 * Copy local_buf into buf so that the calling process can see
887 	 * the results.
888 	 */
889 	if ((err = brand_uucopy(local_buf, buf, buf_size)) != 0) {
890 		free(local_buf);
891 		rval->sys_rval1 = -1;
892 		rval->sys_rval2 = 0;
893 		return (err);
894 	}
895 	rval->sys_rval1 = buf_size;
896 	free(local_buf);
897 	return (0);
898 }
899 
900 /*
901  * Solaris Next added two special extended file attributes, SUNWattr_ro and
902  * SUNWattr_rw, which are called "extended system attributes".  They have
903  * special semantics (e.g., a process cannot unlink SUNWattr_ro) and should
904  * not appear in solaris10-branded zones because no Solaris 10 applications,
905  * including system commands such as tar(1), are coded to correctly handle these
906  * special attributes.
907  *
908  * This emulation function solves the aforementioned problem by emulating
909  * the getdents(2) syscall and filtering both system attributes out of resulting
910  * directory entry lists.  The emulation function only filters results when
911  * the given file descriptor refers to an extended file attribute directory.
912  * Filtering getdents(2) results is expensive because it requires dynamic
913  * memory allocation; however, the performance cost is tolerable because
914  * we don't expect Solaris 10 processes to frequently examine extended file
915  * attribute directories.
916  *
917  * The brand's emulation library needs two getdents(2) emulation functions
918  * because getdents(2) comes in two flavors: non-largefile-aware getdents(2)
919  * and largefile-aware getdents64(2).  s10_getdents() handles the non-largefile-
920  * aware case for 32-bit processes and all getdents(2) syscalls for 64-bit
921  * processes (64-bit processes use largefile-aware interfaces by default).
922  * See s10_getdents64() below for the largefile-aware getdents64(2) emulation
923  * function for 32-bit processes.
924  */
925 static int
s10_getdents(sysret_t * rval,int fd,struct dirent * buf,size_t nbyte)926 s10_getdents(sysret_t *rval, int fd, struct dirent *buf, size_t nbyte)
927 {
928 	return (s10_getdents_common(rval, fd, (char *)buf, nbyte, SYS_getdents,
929 	    offsetof(struct dirent, d_name),
930 	    offsetof(struct dirent, d_reclen)));
931 }
932 
933 #ifndef	_LP64
934 /*
935  * This is the largefile-aware version of getdents(2) for 32-bit processes.
936  * This exists for the same reason that s10_getdents() exists.  See the comment
937  * above s10_getdents().
938  */
939 static int
s10_getdents64(sysret_t * rval,int fd,struct dirent64 * buf,size_t nbyte)940 s10_getdents64(sysret_t *rval, int fd, struct dirent64 *buf, size_t nbyte)
941 {
942 	return (s10_getdents_common(rval, fd, (char *)buf, nbyte,
943 	    SYS_getdents64, offsetof(struct dirent64, d_name),
944 	    offsetof(struct dirent64, d_reclen)));
945 }
946 #endif	/* !_LP64 */
947 
948 #define	S10_TRIVIAL_ACL_CNT	6
949 #define	NATIVE_TRIVIAL_ACL_CNT	3
950 
951 /*
952  * Check if the ACL qualifies as a trivial ACL based on the native
953  * interpretation.
954  */
955 static boolean_t
has_trivial_native_acl(int cmd,int cnt,const char * fname,int fd)956 has_trivial_native_acl(int cmd, int cnt, const char *fname, int fd)
957 {
958 	int i, err;
959 	sysret_t rval;
960 	ace_t buf[NATIVE_TRIVIAL_ACL_CNT];
961 
962 	if (fname != NULL)
963 		err = __systemcall(&rval, SYS_pathconf + 1024, fname,
964 		    _PC_ACL_ENABLED);
965 	else
966 		err = __systemcall(&rval, SYS_fpathconf + 1024, fd,
967 		    _PC_ACL_ENABLED);
968 	if (err != 0 || rval.sys_rval1 != _ACL_ACE_ENABLED)
969 		return (B_FALSE);
970 
971 	/*
972 	 * If we just got the ACL cnt, we don't need to get it again, its
973 	 * passed in as the cnt arg.
974 	 */
975 	if (cmd != ACE_GETACLCNT) {
976 		if (fname != NULL) {
977 			if (__systemcall(&rval, SYS_acl + 1024, fname,
978 			    ACE_GETACLCNT, 0, NULL) != 0)
979 				return (B_FALSE);
980 		} else {
981 			if (__systemcall(&rval, SYS_facl + 1024, fd,
982 			    ACE_GETACLCNT, 0, NULL) != 0)
983 				return (B_FALSE);
984 		}
985 		cnt = rval.sys_rval1;
986 	}
987 
988 	if (cnt != NATIVE_TRIVIAL_ACL_CNT)
989 		return (B_FALSE);
990 
991 	if (fname != NULL) {
992 		if (__systemcall(&rval, SYS_acl + 1024, fname, ACE_GETACL, cnt,
993 		    buf) != 0)
994 			return (B_FALSE);
995 	} else {
996 		if (__systemcall(&rval, SYS_facl + 1024, fd, ACE_GETACL, cnt,
997 		    buf) != 0)
998 			return (B_FALSE);
999 	}
1000 
1001 	/*
1002 	 * The following is based on the logic from the native OS
1003 	 * ace_trivial_common() to determine if the native ACL is trivial.
1004 	 */
1005 	for (i = 0; i < cnt; i++) {
1006 		switch (buf[i].a_flags & ACE_TYPE_FLAGS) {
1007 		case ACE_OWNER:
1008 		case ACE_GROUP|ACE_IDENTIFIER_GROUP:
1009 		case ACE_EVERYONE:
1010 			break;
1011 		default:
1012 			return (B_FALSE);
1013 		}
1014 
1015 		if (buf[i].a_flags & (ACE_FILE_INHERIT_ACE|
1016 		    ACE_DIRECTORY_INHERIT_ACE|ACE_NO_PROPAGATE_INHERIT_ACE|
1017 		    ACE_INHERIT_ONLY_ACE))
1018 			return (B_FALSE);
1019 
1020 		/*
1021 		 * Special check for some special bits
1022 		 *
1023 		 * Don't allow anybody to deny reading basic
1024 		 * attributes or a files ACL.
1025 		 */
1026 		if (buf[i].a_access_mask & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
1027 		    buf[i].a_type == ACE_ACCESS_DENIED_ACE_TYPE)
1028 			return (B_FALSE);
1029 
1030 		/*
1031 		 * Delete permissions are never set by default
1032 		 */
1033 		if (buf[i].a_access_mask & (ACE_DELETE|ACE_DELETE_CHILD))
1034 			return (B_FALSE);
1035 		/*
1036 		 * only allow owner@ to have
1037 		 * write_acl/write_owner/write_attributes/write_xattr/
1038 		 */
1039 		if (buf[i].a_type == ACE_ACCESS_ALLOWED_ACE_TYPE &&
1040 		    (!(buf[i].a_flags & ACE_OWNER) && (buf[i].a_access_mask &
1041 		    (ACE_WRITE_OWNER|ACE_WRITE_ACL| ACE_WRITE_ATTRIBUTES|
1042 		    ACE_WRITE_NAMED_ATTRS))))
1043 			return (B_FALSE);
1044 
1045 	}
1046 
1047 	return (B_TRUE);
1048 }
1049 
1050 /*
1051  * The following logic is based on the S10 adjust_ace_pair_common() code.
1052  */
1053 static void
s10_adjust_ace_mask(void * pair,size_t access_off,size_t pairsize,mode_t mode)1054 s10_adjust_ace_mask(void *pair, size_t access_off, size_t pairsize, mode_t mode)
1055 {
1056 	char *datap = (char *)pair;
1057 	uint32_t *amask0 = (uint32_t *)(uintptr_t)(datap + access_off);
1058 	uint32_t *amask1 = (uint32_t *)(uintptr_t)(datap + pairsize +
1059 	    access_off);
1060 
1061 	if (mode & S_IROTH)
1062 		*amask1 |= ACE_READ_DATA;
1063 	else
1064 		*amask0 |= ACE_READ_DATA;
1065 	if (mode & S_IWOTH)
1066 		*amask1 |= ACE_WRITE_DATA|ACE_APPEND_DATA;
1067 	else
1068 		*amask0 |= ACE_WRITE_DATA|ACE_APPEND_DATA;
1069 	if (mode & S_IXOTH)
1070 		*amask1 |= ACE_EXECUTE;
1071 	else
1072 		*amask0 |= ACE_EXECUTE;
1073 }
1074 
1075 /*
1076  * Construct a trivial S10 style ACL.
1077  */
1078 static int
make_trivial_s10_acl(const char * fname,int fd,ace_t * bp)1079 make_trivial_s10_acl(const char *fname, int fd, ace_t *bp)
1080 {
1081 	int err;
1082 	sysret_t rval;
1083 	struct stat64 buf;
1084 	ace_t trivial_s10_acl[] = {
1085 		{(uint_t)-1, 0, ACE_OWNER, ACE_ACCESS_DENIED_ACE_TYPE},
1086 		{(uint_t)-1, ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES|
1087 		    ACE_WRITE_NAMED_ATTRS, ACE_OWNER,
1088 		    ACE_ACCESS_ALLOWED_ACE_TYPE},
1089 		{(uint_t)-1, 0, ACE_GROUP|ACE_IDENTIFIER_GROUP,
1090 		    ACE_ACCESS_DENIED_ACE_TYPE},
1091 		{(uint_t)-1, 0, ACE_GROUP|ACE_IDENTIFIER_GROUP,
1092 		    ACE_ACCESS_ALLOWED_ACE_TYPE},
1093 		{(uint_t)-1, ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES|
1094 		    ACE_WRITE_NAMED_ATTRS, ACE_EVERYONE,
1095 		    ACE_ACCESS_DENIED_ACE_TYPE},
1096 		{(uint_t)-1, ACE_READ_ACL|ACE_READ_ATTRIBUTES|
1097 		    ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE, ACE_EVERYONE,
1098 		    ACE_ACCESS_ALLOWED_ACE_TYPE}
1099 	};
1100 
1101 	if (fname != NULL) {
1102 		if ((err = __systemcall(&rval, SYS_fstatat64 + 1024, AT_FDCWD,
1103 		    fname, &buf, 0)) != 0)
1104 			return (err);
1105 	} else {
1106 		if ((err = __systemcall(&rval, SYS_fstatat64 + 1024, fd,
1107 		    NULL, &buf, 0)) != 0)
1108 			return (err);
1109 	}
1110 
1111 	s10_adjust_ace_mask(&trivial_s10_acl[0], offsetof(ace_t, a_access_mask),
1112 	    sizeof (ace_t), (buf.st_mode & 0700) >> 6);
1113 	s10_adjust_ace_mask(&trivial_s10_acl[2], offsetof(ace_t, a_access_mask),
1114 	    sizeof (ace_t), (buf.st_mode & 0070) >> 3);
1115 	s10_adjust_ace_mask(&trivial_s10_acl[4], offsetof(ace_t, a_access_mask),
1116 	    sizeof (ace_t), buf.st_mode & 0007);
1117 
1118 	if (brand_uucopy(&trivial_s10_acl, bp, sizeof (trivial_s10_acl)) != 0)
1119 		return (EFAULT);
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * The definition of a trivial ace-style ACL (used by ZFS and NFSv4) has been
1126  * simplified since S10.  Instead of 6 entries on a trivial S10 ACE ACL we now
1127  * have 3 streamlined entries.  The new, simpler trivial style confuses S10
1128  * commands such as 'ls -v' or 'cp -p' which don't see the expected S10 trivial
1129  * ACL entries and thus assume that there is a complex ACL on the file.
1130  *
1131  * See: PSARC/2010/029 Improved ACL interoperability
1132  *
1133  * Note that the trival ACL detection code is implemented in acl_trival() in
1134  * lib/libsec/common/aclutils.c.  It always uses the acl() syscall (not the
1135  * facl syscall) to determine if an ACL is trivial.  However, we emulate both
1136  * acl() and facl() so that the two provide consistent results.
1137  *
1138  * We don't currently try to emulate setting of ACLs since the primary
1139  * consumer of this feature is SMB or NFSv4 servers, neither of which are
1140  * supported in solaris10-branded zones.  If ACLs are used they must be set on
1141  * files using the native OS interpretation.
1142  */
1143 int
s10_acl(sysret_t * rval,const char * fname,int cmd,int nentries,void * aclbufp)1144 s10_acl(sysret_t *rval, const char *fname, int cmd, int nentries, void *aclbufp)
1145 {
1146 	int res;
1147 
1148 	res = __systemcall(rval, SYS_acl + 1024, fname, cmd, nentries, aclbufp);
1149 
1150 	switch (cmd) {
1151 	case ACE_GETACLCNT:
1152 		if (res == 0 && has_trivial_native_acl(ACE_GETACLCNT,
1153 		    rval->sys_rval1, fname, 0)) {
1154 			rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1155 		}
1156 		break;
1157 	case ACE_GETACL:
1158 		if (res == 0 &&
1159 		    has_trivial_native_acl(ACE_GETACL, 0, fname, 0) &&
1160 		    nentries >= S10_TRIVIAL_ACL_CNT) {
1161 			res = make_trivial_s10_acl(fname, 0, aclbufp);
1162 			rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1163 		}
1164 		break;
1165 	}
1166 
1167 	return (res);
1168 }
1169 
1170 int
s10_facl(sysret_t * rval,int fdes,int cmd,int nentries,void * aclbufp)1171 s10_facl(sysret_t *rval, int fdes, int cmd, int nentries, void *aclbufp)
1172 {
1173 	int res;
1174 
1175 	res = __systemcall(rval, SYS_facl + 1024, fdes, cmd, nentries, aclbufp);
1176 
1177 	switch (cmd) {
1178 	case ACE_GETACLCNT:
1179 		if (res == 0 && has_trivial_native_acl(ACE_GETACLCNT,
1180 		    rval->sys_rval1, NULL, fdes)) {
1181 			rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1182 		}
1183 		break;
1184 	case ACE_GETACL:
1185 		if (res == 0 &&
1186 		    has_trivial_native_acl(ACE_GETACL, 0, NULL, fdes) &&
1187 		    nentries >= S10_TRIVIAL_ACL_CNT) {
1188 			res = make_trivial_s10_acl(NULL, fdes, aclbufp);
1189 			rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1190 		}
1191 		break;
1192 	}
1193 
1194 	return (res);
1195 }
1196 
1197 #define	S10_AC_PROC		(0x1 << 28)
1198 #define	S10_AC_TASK		(0x2 << 28)
1199 #define	S10_AC_FLOW		(0x4 << 28)
1200 #define	S10_AC_MODE(x)		((x) & 0xf0000000)
1201 #define	S10_AC_OPTION(x)	((x) & 0x0fffffff)
1202 
1203 /*
1204  * The mode shift, mode mask and option mask for acctctl have changed.  The
1205  * mode is currently the top full byte and the option is the lower 3 full bytes.
1206  */
1207 int
s10_acctctl(sysret_t * rval,int cmd,void * buf,size_t bufsz)1208 s10_acctctl(sysret_t *rval, int cmd, void *buf, size_t bufsz)
1209 {
1210 	int mode = S10_AC_MODE(cmd);
1211 	int option = S10_AC_OPTION(cmd);
1212 
1213 	switch (mode) {
1214 	case S10_AC_PROC:
1215 		mode = AC_PROC;
1216 		break;
1217 	case S10_AC_TASK:
1218 		mode = AC_TASK;
1219 		break;
1220 	case S10_AC_FLOW:
1221 		mode = AC_FLOW;
1222 		break;
1223 	default:
1224 		return (B_TRUSS_POINT_3(rval, SYS_acctctl, EINVAL, cmd, buf,
1225 		    bufsz));
1226 	}
1227 
1228 	return (__systemcall(rval, SYS_acctctl + 1024, mode | option, buf,
1229 	    bufsz));
1230 }
1231 
1232 /*
1233  * The Audit Policy parameters have changed due to:
1234  *    6466722 audituser and AUDIT_USER are defined, unused, undocumented and
1235  *            should be removed.
1236  *
1237  * In S10 we had the following flag:
1238  *	#define AUDIT_USER 0x0040
1239  * which doesn't exist in Solaris Next where the subsequent flags are shifted
1240  * down.  For example, in S10 we had:
1241  *	#define AUDIT_GROUP     0x0080
1242  * but on Solaris Next we have:
1243  *	#define AUDIT_GROUP     0x0040
1244  * AUDIT_GROUP has the value AUDIT_USER had in S10 and all of the subsequent
1245  * bits are also shifted one place.
1246  *
1247  * When we're getting or setting the Audit Policy parameters we need to
1248  * shift the outgoing or incoming bits into their proper positions.  Since
1249  * S10_AUDIT_USER was always unused, we always clear that bit on A_GETPOLICY.
1250  *
1251  * The command we care about, BSM_AUDITCTL, passes the most parameters (3),
1252  * so declare this function to take up to 4 args and just pass them on.
1253  * The number of parameters for s10_auditsys needs to be equal to the BSM_*
1254  * subcommand that has the most parameters, since we want to pass all
1255  * parameters through, regardless of which subcommands we interpose on.
1256  *
1257  * Note that the auditsys system call uses the SYSENT_AP macro wrapper instead
1258  * of the more common SYSENT_CI macro.  This means the return value is a
1259  * SE_64RVAL so the syscall table uses RV_64RVAL.
1260  */
1261 
1262 #define	S10_AUDIT_HMASK	0xffffffc0
1263 #define	S10_AUDIT_LMASK	0x3f
1264 #define	S10_AUC_NOSPACE	0x3
1265 
1266 int
s10_auditsys(sysret_t * rval,int bsmcmd,intptr_t a0,intptr_t a1,intptr_t a2)1267 s10_auditsys(sysret_t *rval, int bsmcmd, intptr_t a0, intptr_t a1, intptr_t a2)
1268 {
1269 	int	    err;
1270 	uint32_t    m;
1271 
1272 	if (bsmcmd != BSM_AUDITCTL)
1273 		return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, a1,
1274 		    a2));
1275 
1276 	if ((int)a0 == A_GETPOLICY) {
1277 		if ((err = __systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0,
1278 		    &m, a2)) != 0)
1279 			return (err);
1280 		m = ((m & S10_AUDIT_HMASK) << 1) | (m & S10_AUDIT_LMASK);
1281 		if (brand_uucopy(&m, (void *)a1, sizeof (m)) != 0)
1282 			return (EFAULT);
1283 		return (0);
1284 
1285 	} else if ((int)a0 == A_SETPOLICY) {
1286 		if (brand_uucopy((const void *)a1, &m, sizeof (m)) != 0)
1287 			return (EFAULT);
1288 		m = ((m >> 1) & S10_AUDIT_HMASK) | (m & S10_AUDIT_LMASK);
1289 		return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, &m,
1290 		    a2));
1291 	} else if ((int)a0 == A_GETCOND) {
1292 		if ((err = __systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0,
1293 		    &m, a2)) != 0)
1294 			return (err);
1295 		if (m == AUC_NOSPACE)
1296 			m = S10_AUC_NOSPACE;
1297 		if (brand_uucopy(&m, (void *)a1, sizeof (m)) != 0)
1298 			return (EFAULT);
1299 		return (0);
1300 	} else if ((int)a0 == A_SETCOND) {
1301 		if (brand_uucopy((const void *)a1, &m, sizeof (m)) != 0)
1302 			return (EFAULT);
1303 		if (m == S10_AUC_NOSPACE)
1304 			m = AUC_NOSPACE;
1305 		return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, &m,
1306 		    a2));
1307 	}
1308 
1309 	return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, a1, a2));
1310 }
1311 
1312 /*
1313  * Determine whether the executable passed to SYS_exec or SYS_execve is a
1314  * native executable.  The s10_npreload.so invokes the B_S10_NATIVE brand
1315  * operation which patches up the processes exec info to eliminate any trace
1316  * of the wrapper.  That will make pgrep and other commands that examine
1317  * process' executable names and command-line parameters work properly.
1318  */
1319 static int
s10_exec_native(sysret_t * rval,const char * fname,const char ** argp,const char ** envp)1320 s10_exec_native(sysret_t *rval, const char *fname, const char **argp,
1321     const char **envp)
1322 {
1323 	const char *filename = fname;
1324 	char path[64];
1325 	int err;
1326 
1327 	/* Get a copy of the executable we're trying to run */
1328 	path[0] = '\0';
1329 	(void) brand_uucopystr(filename, path, sizeof (path));
1330 
1331 	/* Check if we're trying to run a native binary */
1332 	if (strncmp(path, "/.SUNWnative/usr/lib/brand/solaris10/s10_native",
1333 	    sizeof (path)) != 0)
1334 		return (0);
1335 
1336 	/* Skip the first element in the argv array */
1337 	argp++;
1338 
1339 	/*
1340 	 * The the path of the dynamic linker is the second parameter
1341 	 * of s10_native_exec().
1342 	 */
1343 	if (brand_uucopy(argp, &filename, sizeof (char *)) != 0)
1344 		return (EFAULT);
1345 
1346 	/* If an exec call succeeds, it never returns */
1347 	err = __systemcall(rval, SYS_brand + 1024, B_EXEC_NATIVE, filename,
1348 	    argp, envp, NULL, NULL, NULL);
1349 	brand_assert(err != 0);
1350 	return (err);
1351 }
1352 
1353 /*
1354  * Interpose on the SYS_exec syscall to detect native wrappers.
1355  */
1356 int
s10_exec(sysret_t * rval,const char * fname,const char ** argp)1357 s10_exec(sysret_t *rval, const char *fname, const char **argp)
1358 {
1359 	int err;
1360 
1361 	if ((err = s10_exec_native(rval, fname, argp, NULL)) != 0)
1362 		return (err);
1363 
1364 	/* If an exec call succeeds, it never returns */
1365 	err = __systemcall(rval, SYS_execve + 1024, fname, argp, NULL, 0);
1366 	brand_assert(err != 0);
1367 	return (err);
1368 }
1369 
1370 /*
1371  * Interpose on the SYS_execve syscall to detect native wrappers.
1372  */
1373 int
s10_execve(sysret_t * rval,const char * fname,const char ** argp,const char ** envp)1374 s10_execve(sysret_t *rval, const char *fname, const char **argp,
1375     const char **envp)
1376 {
1377 	int err;
1378 
1379 	if ((err = s10_exec_native(rval, fname, argp, envp)) != 0)
1380 		return (err);
1381 
1382 	/* If an exec call succeeds, it never returns */
1383 	err = __systemcall(rval, SYS_execve + 1024, fname, argp, envp, 0);
1384 	brand_assert(err != 0);
1385 	return (err);
1386 }
1387 
1388 /*
1389  * fcntl(2) added an additional argument which we need to pass as zero.
1390  */
1391 int
s10_fcntl(sysret_t * rval,int fd,int cmd,intptr_t arg)1392 s10_fcntl(sysret_t *rval, int fd, int cmd, intptr_t arg)
1393 {
1394 	return (__systemcall(rval, SYS_fcntl + 1024, fd, cmd, arg, 0));
1395 }
1396 
1397 /*
1398  * Interpose on the SYS_fdsync system call. The structure was chagned to use a
1399  * distinct enum rather than passing a combination of the <sys/file.h> flags
1400  * FSYNC and FDSYNC. The prior system call implementation only passed those two
1401  * flags on to the VFS operation. The system call did not check if the 'flag'
1402  * argument was zero or not; however, we know that in illumos it was always
1403  * called with either FSYNC or FDSYNC explicitly. To try and fail open in a
1404  * sense, we translate any call with no explicit level to a normal fsync(3C)
1405  * style operation.
1406  */
1407 static int
s10_fdsync(sysret_t * rval,int fd,int flag)1408 s10_fdsync(sysret_t *rval, int fd, int flag)
1409 {
1410 	uint32_t level;
1411 
1412 	if ((flag & FSYNC) != 0) {
1413 		level = FDSYNC_FILE;
1414 	} else if ((flag & FDSYNC) != 0) {
1415 		level = FDSYNC_DATA;
1416 	} else {
1417 		level = FDSYNC_FILE;
1418 	}
1419 
1420 	return (__systemcall(rval, SYS_fdsync + 1024, fd, level));
1421 }
1422 
1423 /*
1424  * S10's issetugid() syscall is now a subcode to privsys().
1425  */
1426 static int
s10_issetugid(sysret_t * rval)1427 s10_issetugid(sysret_t *rval)
1428 {
1429 	return (__systemcall(rval, SYS_privsys + 1024, PRIVSYS_ISSETUGID,
1430 	    0, 0, 0, 0, 0));
1431 }
1432 
1433 /*
1434  * S10's socket() syscall does not split type and flags
1435  */
1436 static int
s10_so_socket(sysret_t * rval,int domain,int type,int protocol,char * devpath,int version)1437 s10_so_socket(sysret_t *rval, int domain, int type, int protocol,
1438     char *devpath, int version)
1439 {
1440 	if ((type & ~SOCK_TYPE_MASK) != 0) {
1441 		errno = EINVAL;
1442 		return (-1);
1443 	}
1444 	return (__systemcall(rval, SYS_so_socket + 1024, domain, type,
1445 	    protocol, devpath, version));
1446 }
1447 
1448 /*
1449  * S10's pipe() syscall has a different calling convention
1450  */
1451 static int
s10_pipe(sysret_t * rval)1452 s10_pipe(sysret_t *rval)
1453 {
1454 	int fds[2], err;
1455 	if ((err = __systemcall(rval, SYS_pipe + 1024, fds, 0)) != 0)
1456 		return (err);
1457 
1458 	rval->sys_rval1 = fds[0];
1459 	rval->sys_rval2 = fds[1];
1460 	return (0);
1461 }
1462 
1463 /*
1464  * S10's accept() syscall takes three arguments
1465  */
1466 static int
s10_accept(sysret_t * rval,int sock,struct sockaddr * addr,uint_t * addrlen,int version)1467 s10_accept(sysret_t *rval, int sock, struct sockaddr *addr, uint_t *addrlen,
1468     int version)
1469 {
1470 	return (__systemcall(rval, SYS_accept + 1024, sock, addr, addrlen,
1471 	    version, 0));
1472 }
1473 
1474 static long
s10_uname(sysret_t * rv,uintptr_t p1)1475 s10_uname(sysret_t *rv, uintptr_t p1)
1476 {
1477 	struct utsname un, *unp = (struct utsname *)p1;
1478 	int rev, err;
1479 
1480 	if ((err = __systemcall(rv, SYS_uname + 1024, &un)) != 0)
1481 		return (err);
1482 
1483 	rev = atoi(&un.release[2]);
1484 	brand_assert(rev >= 11);
1485 	bzero(un.release, _SYS_NMLN);
1486 	(void) strlcpy(un.release, S10_UTS_RELEASE, _SYS_NMLN);
1487 	bzero(un.version, _SYS_NMLN);
1488 	(void) strlcpy(un.version, S10_UTS_VERSION, _SYS_NMLN);
1489 
1490 	/* copy out the modified uname info */
1491 	return (brand_uucopy(&un, unp, sizeof (un)));
1492 }
1493 
1494 int
s10_sysconfig(sysret_t * rv,int which)1495 s10_sysconfig(sysret_t *rv, int which)
1496 {
1497 	long value;
1498 
1499 	/*
1500 	 * We must interpose on the sysconfig(2) requests
1501 	 * that deal with the realtime signal number range.
1502 	 * All others get passed to the native sysconfig(2).
1503 	 */
1504 	switch (which) {
1505 	case _CONFIG_RTSIG_MAX:
1506 		value = S10_SIGRTMAX - S10_SIGRTMIN + 1;
1507 		break;
1508 	case _CONFIG_SIGRT_MIN:
1509 		value = S10_SIGRTMIN;
1510 		break;
1511 	case _CONFIG_SIGRT_MAX:
1512 		value = S10_SIGRTMAX;
1513 		break;
1514 	default:
1515 		return (__systemcall(rv, SYS_sysconfig + 1024, which));
1516 	}
1517 
1518 	(void) B_TRUSS_POINT_1(rv, SYS_sysconfig, 0, which);
1519 	rv->sys_rval1 = value;
1520 	rv->sys_rval2 = 0;
1521 
1522 	return (0);
1523 }
1524 
1525 int
s10_sysinfo(sysret_t * rv,int command,char * buf,long count)1526 s10_sysinfo(sysret_t *rv, int command, char *buf, long count)
1527 {
1528 	char *value;
1529 	int len;
1530 
1531 	/*
1532 	 * We must interpose on the sysinfo(2) commands SI_RELEASE and
1533 	 * SI_VERSION; all others get passed to the native sysinfo(2)
1534 	 * command.
1535 	 */
1536 	switch (command) {
1537 		case SI_RELEASE:
1538 			value = S10_UTS_RELEASE;
1539 			break;
1540 
1541 		case SI_VERSION:
1542 			value = S10_UTS_VERSION;
1543 			break;
1544 
1545 		default:
1546 			/*
1547 			 * The default action is to pass the command to the
1548 			 * native sysinfo(2) syscall.
1549 			 */
1550 			return (__systemcall(rv, SYS_systeminfo + 1024,
1551 			    command, buf, count));
1552 	}
1553 
1554 	len = strlen(value) + 1;
1555 	if (count > 0) {
1556 		if (brand_uucopystr(value, buf, count) != 0)
1557 			return (EFAULT);
1558 
1559 		/*
1560 		 * Assure NULL termination of buf as brand_uucopystr() doesn't.
1561 		 */
1562 		if (len > count && brand_uucopy("\0", buf + (count - 1), 1)
1563 		    != 0)
1564 			return (EFAULT);
1565 	}
1566 
1567 	/*
1568 	 * On success, sysinfo(2) returns the size of buffer required to hold
1569 	 * the complete value plus its terminating NULL byte.
1570 	 */
1571 	(void) B_TRUSS_POINT_3(rv, SYS_systeminfo, 0, command, buf, count);
1572 	rv->sys_rval1 = len;
1573 	rv->sys_rval2 = 0;
1574 	return (0);
1575 }
1576 
1577 #if defined(__x86)
1578 #if defined(__amd64)
1579 /*
1580  * 64-bit x86 LWPs created by SYS_lwp_create start here if they need to set
1581  * their %fs registers to the legacy Solaris 10 selector value.
1582  *
1583  * This function does three things:
1584  *
1585  *	1.  Trap to the kernel so that it can set %fs to the legacy Solaris 10
1586  *	    selector value.
1587  *	2.  Read the LWP's true entry point (the entry point supplied by libc
1588  *	    when SYS_lwp_create was invoked) from %r14.
1589  *	3.  Eliminate this function's stack frame and pass control to the LWP's
1590  *	    true entry point.
1591  *
1592  * See the comment above s10_lwp_create_correct_fs() (see below) for the reason
1593  * why this function exists.
1594  */
1595 /*ARGSUSED*/
1596 static void
s10_lwp_create_entry_point(void * ulwp_structp)1597 s10_lwp_create_entry_point(void *ulwp_structp)
1598 {
1599 	sysret_t rval;
1600 
1601 	/*
1602 	 * The new LWP's %fs register is initially zero, but libc won't
1603 	 * function correctly when %fs is zero.  Change the LWP's %fs register
1604 	 * via SYS_brand.
1605 	 */
1606 	(void) __systemcall(&rval, SYS_brand + 1024, B_S10_FSREGCORRECTION);
1607 
1608 	/*
1609 	 * Jump to the true entry point, which is stored in %r14.
1610 	 * Remove our stack frame before jumping so that
1611 	 * s10_lwp_create_entry_point() won't be seen in stack traces.
1612 	 *
1613 	 * NOTE: s10_lwp_create_entry_point() pushes %r12 onto its stack frame
1614 	 * so that it can use it as a temporary register.  We don't restore %r12
1615 	 * in this assembly block because we don't care about its value (and
1616 	 * neither does _lwp_start()).  Besides, the System V ABI AMD64
1617 	 * Actirecture Processor Supplement doesn't specify that %r12 should
1618 	 * have a special value when LWPs start, so we can ignore its value when
1619 	 * we jump to the true entry point.  Furthermore, %r12 is a callee-saved
1620 	 * register, so the true entry point should push %r12 onto its stack
1621 	 * before using the register.  We ignore %r14 after we read it for
1622 	 * similar reasons.
1623 	 *
1624 	 * NOTE: The compiler will generate a function epilogue for this
1625 	 * function despite the fact that the LWP will never execute it.
1626 	 * We could hand-code this entire function in assembly to eliminate
1627 	 * the epilogue, but the epilogue is only three or four instructions,
1628 	 * so we wouldn't save much space.  Besides, why would we want
1629 	 * to create yet another ugly, hard-to-maintain assembly function when
1630 	 * we could write most of it in C?
1631 	 */
1632 	__asm__ __volatile__(
1633 	    "movq %0, %%rdi\n\t"	/* pass ulwp_structp as arg1 */
1634 	    "movq %%rbp, %%rsp\n\t"	/* eliminate the stack frame */
1635 	    "popq %%rbp\n\t"
1636 	    "jmp *%%r14\n\t"		/* jump to the true entry point */
1637 	    : : "r" (ulwp_structp));
1638 	/*NOTREACHED*/
1639 }
1640 
1641 /*
1642  * The S10 libc expects that %fs will be nonzero for new 64-bit x86 LWPs but the
1643  * Nevada kernel clears %fs for such LWPs.  Unforunately, new LWPs do not issue
1644  * SYS_lwp_private (see s10_lwp_private() below) after they are created, so
1645  * we must ensure that new LWPs invoke a brand operation that sets %fs to a
1646  * nonzero value immediately after their creation.
1647  *
1648  * The easiest way to do this is to make new LWPs start at a special function,
1649  * s10_lwp_create_entry_point() (see its definition above), that invokes the
1650  * brand operation that corrects %fs.  We'll store the entry points of new LWPs
1651  * in their %r14 registers so that s10_lwp_create_entry_point() can find and
1652  * call them after invoking the special brand operation.  %r14 is a callee-saved
1653  * register; therefore, any functions invoked by s10_lwp_create_entry_point()
1654  * and all functions dealing with signals (e.g., sigacthandler()) will preserve
1655  * %r14 for s10_lwp_create_entry_point().
1656  *
1657  * The Nevada kernel can safely work with nonzero %fs values because the kernel
1658  * configures per-thread %fs segment descriptors so that the legacy %fs selector
1659  * value will still work.  See the comment in lwp_load() regarding %fs and
1660  * %fsbase in 64-bit x86 processes.
1661  *
1662  * This emulation exists thanks to CRs 6467491 and 6501650.
1663  */
1664 static int
s10_lwp_create_correct_fs(sysret_t * rval,ucontext_t * ucp,int flags,id_t * new_lwp)1665 s10_lwp_create_correct_fs(sysret_t *rval, ucontext_t *ucp, int flags,
1666     id_t *new_lwp)
1667 {
1668 	ucontext_t s10_uc;
1669 
1670 	/*
1671 	 * Copy the supplied ucontext_t structure to the local stack
1672 	 * frame and store the new LWP's entry point (the value of %rip
1673 	 * stored in the ucontext_t) in the new LWP's %r14 register.
1674 	 * Then make s10_lwp_create_entry_point() the new LWP's entry
1675 	 * point.
1676 	 */
1677 	if (brand_uucopy(ucp, &s10_uc, sizeof (s10_uc)) != 0)
1678 		return (EFAULT);
1679 
1680 	s10_uc.uc_mcontext.gregs[REG_R14] = s10_uc.uc_mcontext.gregs[REG_RIP];
1681 	s10_uc.uc_mcontext.gregs[REG_RIP] = (greg_t)s10_lwp_create_entry_point;
1682 
1683 	/*  fix up the signal mask */
1684 	if (s10_uc.uc_flags & UC_SIGMASK)
1685 		(void) s10sigset_to_native(&s10_uc.uc_sigmask,
1686 		    &s10_uc.uc_sigmask);
1687 
1688 	/*
1689 	 * Issue SYS_lwp_create to create the new LWP.  We pass the
1690 	 * modified ucontext_t to make sure that the new LWP starts at
1691 	 * s10_lwp_create_entry_point().
1692 	 */
1693 	return (__systemcall(rval, SYS_lwp_create + 1024, &s10_uc,
1694 	    flags, new_lwp));
1695 }
1696 #endif	/* __amd64 */
1697 
1698 /*
1699  * SYS_lwp_private is issued by libc_init() to set %fsbase in 64-bit x86
1700  * processes.  The Nevada kernel sets %fs to zero but the S10 libc expects
1701  * %fs to be nonzero.  We'll pass the issued system call to the kernel untouched
1702  * and invoke a brand operation to set %fs to the legacy S10 selector value.
1703  *
1704  * This emulation exists thanks to CRs 6467491 and 6501650.
1705  */
1706 static int
s10_lwp_private(sysret_t * rval,int cmd,int which,uintptr_t base)1707 s10_lwp_private(sysret_t *rval, int cmd, int which, uintptr_t base)
1708 {
1709 #if defined(__amd64)
1710 	int err;
1711 
1712 	/*
1713 	 * The current LWP's %fs register should be zero.  Determine whether the
1714 	 * Solaris 10 libc with which we're working functions correctly when %fs
1715 	 * is zero by calling thr_main() after issuing the SYS_lwp_private
1716 	 * syscall.  If thr_main() barfs (returns -1), then change the LWP's %fs
1717 	 * register via SYS_brand and patch brand_sysent_table so that issuing
1718 	 * SYS_lwp_create executes s10_lwp_create_correct_fs() rather than the
1719 	 * default s10_lwp_create().  s10_lwp_create_correct_fs() will
1720 	 * guarantee that new LWPs will have correct %fs values.
1721 	 */
1722 	if ((err = __systemcall(rval, SYS_lwp_private + 1024, cmd, which,
1723 	    base)) != 0)
1724 		return (err);
1725 	if (thr_main() == -1) {
1726 		/*
1727 		 * SYS_lwp_private is only issued by libc_init(), which is
1728 		 * executed when libc is first loaded by ld.so.1.  Thus we
1729 		 * are guaranteed to be single-threaded at this point.  Even
1730 		 * if we were multithreaded at this point, writing a 64-bit
1731 		 * value to the st_callc field of a brand_sysent_table
1732 		 * entry is guaranteed to be atomic on 64-bit x86 chips
1733 		 * as long as the field is not split across cache lines
1734 		 * (It shouldn't be.).  See chapter 8, section 1.1 of
1735 		 * "The Intel 64 and IA32 Architectures Software Developer's
1736 		 * Manual," Volume 3A for more details.
1737 		 */
1738 		brand_sysent_table[SYS_lwp_create].st_callc =
1739 		    (sysent_cb_t)(uintptr_t)s10_lwp_create_correct_fs;
1740 		return (__systemcall(rval, SYS_brand + 1024,
1741 		    B_S10_FSREGCORRECTION));
1742 	}
1743 	return (0);
1744 #else	/* !__amd64 */
1745 	return (__systemcall(rval, SYS_lwp_private + 1024, cmd, which, base));
1746 #endif	/* !__amd64 */
1747 }
1748 #endif	/* __x86 */
1749 
1750 /*
1751  * The Opensolaris versions of lwp_mutex_timedlock() and lwp_mutex_trylock()
1752  * add an extra argument to the interfaces, a uintptr_t value for the mutex's
1753  * mutex_owner field.  The Solaris 10 libc assigns the mutex_owner field at
1754  * user-level, so we just make the extra argument be zero in both syscalls.
1755  */
1756 
1757 static int
s10_lwp_mutex_timedlock(sysret_t * rval,lwp_mutex_t * lp,timespec_t * tsp)1758 s10_lwp_mutex_timedlock(sysret_t *rval, lwp_mutex_t *lp, timespec_t *tsp)
1759 {
1760 	return (__systemcall(rval, SYS_lwp_mutex_timedlock + 1024, lp, tsp, 0));
1761 }
1762 
1763 static int
s10_lwp_mutex_trylock(sysret_t * rval,lwp_mutex_t * lp)1764 s10_lwp_mutex_trylock(sysret_t *rval, lwp_mutex_t *lp)
1765 {
1766 	return (__systemcall(rval, SYS_lwp_mutex_trylock + 1024, lp, 0));
1767 }
1768 
1769 /*
1770  * If the emul_global_zone flag is set then emulate some aspects of the
1771  * zone system call.  In particular, emulate the global zone ID on the
1772  * ZONE_LOOKUP subcommand and emulate some of the global zone attributes
1773  * on the ZONE_GETATTR subcommand.  If the flag is not set or we're performing
1774  * some other operation, simply pass the calls through.
1775  */
1776 int
s10_zone(sysret_t * rval,int cmd,void * arg1,void * arg2,void * arg3,void * arg4)1777 s10_zone(sysret_t *rval, int cmd, void *arg1, void *arg2, void *arg3,
1778     void *arg4)
1779 {
1780 	char		*aval;
1781 	int		len;
1782 	zoneid_t	zid;
1783 	int		attr;
1784 	char		*buf;
1785 	size_t		bufsize;
1786 
1787 	/*
1788 	 * We only emulate the zone syscall for a subset of specific commands,
1789 	 * otherwise we just pass the call through.
1790 	 */
1791 	if (!emul_global_zone)
1792 		return (__systemcall(rval, SYS_zone + 1024, cmd, arg1, arg2,
1793 		    arg3, arg4));
1794 
1795 	switch (cmd) {
1796 	case ZONE_LOOKUP:
1797 		(void) B_TRUSS_POINT_1(rval, SYS_zone, 0, cmd);
1798 		rval->sys_rval1 = GLOBAL_ZONEID;
1799 		rval->sys_rval2 = 0;
1800 		return (0);
1801 
1802 	case ZONE_GETATTR:
1803 		zid = (zoneid_t)(uintptr_t)arg1;
1804 		attr = (int)(uintptr_t)arg2;
1805 		buf = (char *)arg3;
1806 		bufsize = (size_t)arg4;
1807 
1808 		/*
1809 		 * If the request is for the global zone then we're emulating
1810 		 * that, otherwise pass this thru.
1811 		 */
1812 		if (zid != GLOBAL_ZONEID)
1813 			goto passthru;
1814 
1815 		switch (attr) {
1816 		case ZONE_ATTR_NAME:
1817 			aval = GLOBAL_ZONENAME;
1818 			break;
1819 
1820 		case ZONE_ATTR_BRAND:
1821 			aval = NATIVE_BRAND_NAME;
1822 			break;
1823 		default:
1824 			/*
1825 			 * We only emulate a subset of the attrs, use the
1826 			 * real zone id to pass thru the rest.
1827 			 */
1828 			arg1 = (void *)(uintptr_t)zoneid;
1829 			goto passthru;
1830 		}
1831 
1832 		(void) B_TRUSS_POINT_5(rval, SYS_zone, 0, cmd, zid, attr,
1833 		    buf, bufsize);
1834 
1835 		len = strlen(aval) + 1;
1836 		if (len > bufsize)
1837 			return (ENAMETOOLONG);
1838 
1839 		if (buf != NULL) {
1840 			if (len == 1) {
1841 				if (brand_uucopy("\0", buf, 1) != 0)
1842 					return (EFAULT);
1843 			} else {
1844 				if (brand_uucopystr(aval, buf, len) != 0)
1845 					return (EFAULT);
1846 
1847 				/*
1848 				 * Assure NULL termination of "buf" as
1849 				 * brand_uucopystr() does NOT.
1850 				 */
1851 				if (brand_uucopy("\0", buf + (len - 1), 1) != 0)
1852 					return (EFAULT);
1853 			}
1854 		}
1855 
1856 		rval->sys_rval1 = len;
1857 		rval->sys_rval2 = 0;
1858 		return (0);
1859 
1860 	default:
1861 		break;
1862 	}
1863 
1864 passthru:
1865 	return (__systemcall(rval, SYS_zone + 1024, cmd, arg1, arg2, arg3,
1866 	    arg4));
1867 }
1868 
1869 /*ARGSUSED*/
1870 int
brand_init(int argc,char * argv[],char * envp[])1871 brand_init(int argc, char *argv[], char *envp[])
1872 {
1873 	sysret_t		rval;
1874 	ulong_t			ldentry;
1875 	int			err;
1876 	char			*bname;
1877 
1878 	brand_pre_init();
1879 
1880 	/*
1881 	 * Cache the pid of the zone's init process and determine if
1882 	 * we're init(8) for the zone.  Remember: we might be init
1883 	 * now, but as soon as we fork(2) we won't be.
1884 	 */
1885 	(void) get_initpid_info();
1886 
1887 	/* get the current zoneid */
1888 	err = __systemcall(&rval, SYS_zone, ZONE_LOOKUP, NULL);
1889 	brand_assert(err == 0);
1890 	zoneid = (zoneid_t)rval.sys_rval1;
1891 
1892 	/* Get the zone's emulation bitmap. */
1893 	if ((err = __systemcall(&rval, SYS_zone, ZONE_GETATTR, zoneid,
1894 	    S10_EMUL_BITMAP, emul_bitmap, sizeof (emul_bitmap))) != 0) {
1895 		brand_abort(err, "The zone's patch level is unsupported");
1896 		/*NOTREACHED*/
1897 	}
1898 
1899 	bname = basename(argv[0]);
1900 
1901 	/*
1902 	 * In general we want the S10 commands that are zone-aware to continue
1903 	 * to behave as they normally do within a zone.  Since these commands
1904 	 * are zone-aware, they should continue to "do the right thing".
1905 	 * However, some zone-aware commands aren't going to work the way
1906 	 * we expect them to inside the branded zone.  In particular, the pkg
1907 	 * and patch commands will not properly manage all pkgs/patches
1908 	 * unless the commands think they are running in the global zone.  For
1909 	 * these commands we want to emulate the global zone.
1910 	 *
1911 	 * We don't do any emulation for pkgcond since it is typically used
1912 	 * in pkg/patch postinstall scripts and we want those scripts to do
1913 	 * the right thing inside a zone.
1914 	 *
1915 	 * One issue is the handling of hollow pkgs.  Since the pkgs are
1916 	 * hollow, they won't use pkgcond in their postinstall scripts.  These
1917 	 * pkgs typically are installing drivers so we handle that by
1918 	 * replacing add_drv and rem_drv in the s10_boot script.
1919 	 */
1920 	if (strcmp("pkgadd", bname) == 0 || strcmp("pkgrm", bname) == 0 ||
1921 	    strcmp("patchadd", bname) == 0 || strcmp("patchrm", bname) == 0)
1922 		emul_global_zone = B_TRUE;
1923 
1924 	ldentry = brand_post_init(S10_VERSION, argc, argv, envp);
1925 
1926 	brand_runexe(argv, ldentry);
1927 	/*NOTREACHED*/
1928 	brand_abort(0, "brand_runexe() returned");
1929 	return (-1);
1930 }
1931 
1932 /*
1933  * This table must have at least NSYSCALL entries in it.
1934  *
1935  * The second parameter of each entry in the brand_sysent_table
1936  * contains the number of parameters and flags that describe the
1937  * syscall return value encoding.  See the block comments at the
1938  * top of this file for more information about the syscall return
1939  * value flags and when they should be used.
1940  */
1941 brand_sysent_table_t brand_sysent_table[] = {
1942 #if defined(__sparc) && !defined(__sparcv9)
1943 	EMULATE(brand_indir, 9 | RV_64RVAL),	/*  0 */
1944 #else
1945 	NOSYS,					/*  0 */
1946 #endif
1947 	NOSYS,					/*   1 */
1948 	EMULATE(s10_forkall, 0 | RV_32RVAL2),	/*   2 */
1949 	NOSYS,					/*   3 */
1950 	NOSYS,					/*   4 */
1951 	EMULATE(s10_open, 3 | RV_DEFAULT),	/*   5 */
1952 	NOSYS,					/*   6 */
1953 	EMULATE(s10_wait, 0 | RV_32RVAL2),	/*   7 */
1954 	EMULATE(s10_creat, 2 | RV_DEFAULT),	/*   8 */
1955 	EMULATE(s10_link, 2 | RV_DEFAULT),	/*   9 */
1956 	EMULATE(s10_unlink, 1 | RV_DEFAULT),	/*  10 */
1957 	EMULATE(s10_exec, 2 | RV_DEFAULT),	/*  11 */
1958 	NOSYS,					/*  12 */
1959 	NOSYS,					/*  13 */
1960 	EMULATE(s10_mknod, 3 | RV_DEFAULT),	/*  14 */
1961 	EMULATE(s10_chmod, 2 | RV_DEFAULT),	/*  15 */
1962 	EMULATE(s10_chown, 3 | RV_DEFAULT),	/*  16 */
1963 	NOSYS,					/*  17 */
1964 	EMULATE(s10_stat, 2 | RV_DEFAULT),	/*  18 */
1965 	NOSYS,					/*  19 */
1966 	NOSYS,					/*  20 */
1967 	NOSYS,					/*  21 */
1968 	EMULATE(s10_umount, 1 | RV_DEFAULT),	/*  22 */
1969 	NOSYS,					/*  23 */
1970 	NOSYS,					/*  24 */
1971 	NOSYS,					/*  25 */
1972 	NOSYS,					/*  26 */
1973 	NOSYS,					/*  27 */
1974 	EMULATE(s10_fstat, 2 | RV_DEFAULT),	/*  28 */
1975 	NOSYS,					/*  29 */
1976 	EMULATE(s10_utime, 2 | RV_DEFAULT),	/*  30 */
1977 	NOSYS,					/*  31 */
1978 	NOSYS,					/*  32 */
1979 	EMULATE(s10_access, 2 | RV_DEFAULT),	/*  33 */
1980 	NOSYS,					/*  34 */
1981 	NOSYS,					/*  35 */
1982 	NOSYS,					/*  36 */
1983 	EMULATE(s10_kill, 2 | RV_DEFAULT),	/*  37 */
1984 	NOSYS,					/*  38 */
1985 	NOSYS,					/*  39 */
1986 	NOSYS,					/*  40 */
1987 	EMULATE(s10_dup, 1 | RV_DEFAULT),	/*  41 */
1988 	EMULATE(s10_pipe, 0 | RV_32RVAL2),	/*  42 */
1989 	NOSYS,					/*  43 */
1990 	NOSYS,					/*  44 */
1991 	NOSYS,					/*  45 */
1992 	NOSYS,					/*  46 */
1993 	NOSYS,					/*  47 */
1994 	NOSYS,					/*  48 */
1995 	NOSYS,					/*  49 */
1996 	NOSYS,					/*  50 */
1997 	NOSYS,					/*  51 */
1998 	NOSYS,					/*  52 */
1999 	NOSYS,					/*  53 */
2000 	EMULATE(s10_ioctl, 3 | RV_DEFAULT),	/*  54 */
2001 	NOSYS,					/*  55 */
2002 	NOSYS,					/*  56 */
2003 	NOSYS,					/*  57 */
2004 	EMULATE(s10_fdsync, 2 | RV_DEFAULT),	/*  58 */
2005 	EMULATE(s10_execve, 3 | RV_DEFAULT),	/*  59 */
2006 	NOSYS,					/*  60 */
2007 	NOSYS,					/*  61 */
2008 	EMULATE(s10_fcntl, 3 | RV_DEFAULT),	/*  62 */
2009 	NOSYS,					/*  63 */
2010 	NOSYS,					/*  64 */
2011 	NOSYS,					/*  65 */
2012 	NOSYS,					/*  66 */
2013 	NOSYS,					/*  67 */
2014 	NOSYS,					/*  68 */
2015 	NOSYS,					/*  69 */
2016 	NOSYS,					/*  70 */
2017 	EMULATE(s10_acctctl, 3 | RV_DEFAULT),	/*  71 */
2018 	NOSYS,					/*  72 */
2019 	NOSYS,					/*  73 */
2020 	NOSYS,					/*  74 */
2021 	EMULATE(s10_issetugid, 0 | RV_DEFAULT),	/*  75 */
2022 	EMULATE(s10_fsat, 6 | RV_DEFAULT),	/*  76 */
2023 	NOSYS,					/*  77 */
2024 	NOSYS,					/*  78 */
2025 	EMULATE(s10_rmdir, 1 | RV_DEFAULT),	/*  79 */
2026 	EMULATE(s10_mkdir, 2 | RV_DEFAULT),	/*  80 */
2027 	EMULATE(s10_getdents, 3 | RV_DEFAULT),	/*  81 */
2028 	NOSYS,					/*  82 */
2029 	NOSYS,					/*  83 */
2030 	NOSYS,					/*  84 */
2031 	NOSYS,					/*  85 */
2032 	NOSYS,					/*  86 */
2033 	EMULATE(s10_poll, 3 | RV_DEFAULT),	/*  87 */
2034 	EMULATE(s10_lstat, 2 | RV_DEFAULT),	/*  88 */
2035 	EMULATE(s10_symlink, 2 | RV_DEFAULT),	/*  89 */
2036 	EMULATE(s10_readlink, 3 | RV_DEFAULT),	/*  90 */
2037 	NOSYS,					/*  91 */
2038 	NOSYS,					/*  92 */
2039 	EMULATE(s10_fchmod, 2 | RV_DEFAULT),	/*  93 */
2040 	EMULATE(s10_fchown, 3 | RV_DEFAULT),	/*  94 */
2041 	EMULATE(s10_sigprocmask, 3 | RV_DEFAULT), /*  95 */
2042 	EMULATE(s10_sigsuspend, 1 | RV_DEFAULT), /*  96 */
2043 	NOSYS,					/*  97 */
2044 	EMULATE(s10_sigaction, 3 | RV_DEFAULT),	/*  98 */
2045 	EMULATE(s10_sigpending, 2 | RV_DEFAULT), /*  99 */
2046 	NOSYS,					/* 100 */
2047 	NOSYS,					/* 101 */
2048 	NOSYS,					/* 102 */
2049 	NOSYS,					/* 103 */
2050 	NOSYS,					/* 104 */
2051 	NOSYS,					/* 105 */
2052 	NOSYS,					/* 106 */
2053 	EMULATE(s10_waitid, 4 | RV_DEFAULT),	/* 107 */
2054 	EMULATE(s10_sigsendsys, 2 | RV_DEFAULT), /* 108 */
2055 	NOSYS,					/* 109 */
2056 	NOSYS,					/* 110 */
2057 	NOSYS,					/* 111 */
2058 	NOSYS,					/* 112 */
2059 	NOSYS,					/* 113 */
2060 	NOSYS,					/* 114 */
2061 	NOSYS,					/* 115 */
2062 	NOSYS,					/* 116 */
2063 	NOSYS,					/* 117 */
2064 	NOSYS,					/* 118 */
2065 	NOSYS,					/* 119 */
2066 	NOSYS,					/* 120 */
2067 	NOSYS,					/* 121 */
2068 	NOSYS,					/* 122 */
2069 #if defined(__x86)
2070 	EMULATE(s10_xstat, 3 | RV_DEFAULT),	/* 123 */
2071 	EMULATE(s10_lxstat, 3 | RV_DEFAULT),	/* 124 */
2072 	EMULATE(s10_fxstat, 3 | RV_DEFAULT),	/* 125 */
2073 	EMULATE(s10_xmknod, 4 | RV_DEFAULT),	/* 126 */
2074 #else
2075 	NOSYS,					/* 123 */
2076 	NOSYS,					/* 124 */
2077 	NOSYS,					/* 125 */
2078 	NOSYS,					/* 126 */
2079 #endif
2080 	NOSYS,					/* 127 */
2081 	NOSYS,					/* 128 */
2082 	NOSYS,					/* 129 */
2083 	EMULATE(s10_lchown, 3 | RV_DEFAULT),	/* 130 */
2084 	NOSYS,					/* 131 */
2085 	NOSYS,					/* 132 */
2086 	NOSYS,					/* 133 */
2087 	EMULATE(s10_rename, 2 | RV_DEFAULT),	/* 134 */
2088 	EMULATE(s10_uname, 1 | RV_DEFAULT),	/* 135 */
2089 	NOSYS,					/* 136 */
2090 	EMULATE(s10_sysconfig, 1 | RV_DEFAULT),	/* 137 */
2091 	NOSYS,					/* 138 */
2092 	EMULATE(s10_sysinfo, 3 | RV_DEFAULT),	/* 139 */
2093 	NOSYS,					/* 140 */
2094 	NOSYS,					/* 141 */
2095 	NOSYS,					/* 142 */
2096 	EMULATE(s10_fork1, 0 | RV_32RVAL2),	/* 143 */
2097 	EMULATE(s10_sigtimedwait, 3 | RV_DEFAULT), /* 144 */
2098 	NOSYS,					/* 145 */
2099 	NOSYS,					/* 146 */
2100 	EMULATE(s10_lwp_sema_wait, 1 | RV_DEFAULT), /* 147 */
2101 	NOSYS,					/* 148 */
2102 	NOSYS,					/* 149 */
2103 	NOSYS,					/* 150 */
2104 	NOSYS,					/* 151 */
2105 	NOSYS,					/* 152 */
2106 	NOSYS,					/* 153 */
2107 	EMULATE(s10_utimes, 2 | RV_DEFAULT),	/* 154 */
2108 	NOSYS,					/* 155 */
2109 	NOSYS,					/* 156 */
2110 	NOSYS,					/* 157 */
2111 	NOSYS,					/* 158 */
2112 	EMULATE(s10_lwp_create, 3 | RV_DEFAULT), /* 159 */
2113 	NOSYS,					/* 160 */
2114 	NOSYS,					/* 161 */
2115 	NOSYS,					/* 162 */
2116 	EMULATE(s10_lwp_kill, 2 | RV_DEFAULT),	/* 163 */
2117 	NOSYS,					/* 164 */
2118 	EMULATE(s10_lwp_sigmask, 3 | RV_32RVAL2), /* 165 */
2119 #if defined(__x86)
2120 	EMULATE(s10_lwp_private, 3 | RV_DEFAULT), /* 166 */
2121 #else
2122 	NOSYS,					/* 166 */
2123 #endif
2124 	NOSYS,					/* 167 */
2125 	NOSYS,					/* 168 */
2126 	EMULATE(s10_lwp_mutex_lock, 1 | RV_DEFAULT), /* 169 */
2127 	NOSYS,					/* 170 */
2128 	NOSYS,					/* 171 */
2129 	NOSYS,					/* 172 */
2130 	NOSYS,					/* 173 */
2131 	EMULATE(s10_pwrite, 4 | RV_DEFAULT),	/* 174 */
2132 	NOSYS,					/* 175 */
2133 	NOSYS,					/* 176 */
2134 	NOSYS,					/* 177 */
2135 	NOSYS,					/* 178 */
2136 	NOSYS,					/* 179 */
2137 	NOSYS,					/* 180 */
2138 	NOSYS,					/* 181 */
2139 	NOSYS,					/* 182 */
2140 	NOSYS,					/* 183 */
2141 	NOSYS,					/* 184 */
2142 	EMULATE(s10_acl, 4 | RV_DEFAULT),	/* 185 */
2143 	EMULATE(s10_auditsys, 4 | RV_64RVAL),	/* 186 */
2144 	NOSYS,					/* 187 */
2145 	NOSYS,					/* 188 */
2146 	NOSYS,					/* 189 */
2147 	EMULATE(s10_sigqueue, 4 | RV_DEFAULT),	/* 190 */
2148 	NOSYS,					/* 191 */
2149 	NOSYS,					/* 192 */
2150 	NOSYS,					/* 193 */
2151 	NOSYS,					/* 194 */
2152 	NOSYS,					/* 195 */
2153 	NOSYS,					/* 196 */
2154 	NOSYS,					/* 197 */
2155 	NOSYS,					/* 198 */
2156 	NOSYS,					/* 199 */
2157 	EMULATE(s10_facl, 4 | RV_DEFAULT),	/* 200 */
2158 	NOSYS,					/* 201 */
2159 	NOSYS,					/* 202 */
2160 	NOSYS,					/* 203 */
2161 	NOSYS,					/* 204 */
2162 	EMULATE(s10_signotify, 3 | RV_DEFAULT),	/* 205 */
2163 	NOSYS,					/* 206 */
2164 	NOSYS,					/* 207 */
2165 	NOSYS,					/* 208 */
2166 	NOSYS,					/* 209 */
2167 	EMULATE(s10_lwp_mutex_timedlock, 2 | RV_DEFAULT), /* 210 */
2168 	NOSYS,					/* 211 */
2169 	NOSYS,					/* 212 */
2170 #if defined(_LP64)
2171 	NOSYS,					/* 213 */
2172 #else
2173 	EMULATE(s10_getdents64, 3 | RV_DEFAULT), /* 213 */
2174 #endif
2175 	NOSYS,					/* 214 */
2176 #if defined(_LP64)
2177 	NOSYS,					/* 215 */
2178 	NOSYS,					/* 216 */
2179 	NOSYS,					/* 217 */
2180 #else
2181 	EMULATE(s10_stat64, 2 | RV_DEFAULT),	/* 215 */
2182 	EMULATE(s10_lstat64, 2 | RV_DEFAULT),	/* 216 */
2183 	EMULATE(s10_fstat64, 2 | RV_DEFAULT),	/* 217 */
2184 #endif
2185 	NOSYS,					/* 218 */
2186 	NOSYS,					/* 219 */
2187 	NOSYS,					/* 220 */
2188 	NOSYS,					/* 221 */
2189 	NOSYS,					/* 222 */
2190 #if defined(_LP64)
2191 	NOSYS,					/* 223 */
2192 	NOSYS,					/* 224 */
2193 	NOSYS,					/* 225 */
2194 #else
2195 	EMULATE(s10_pwrite64, 5 | RV_DEFAULT),	/* 223 */
2196 	EMULATE(s10_creat64, 2 | RV_DEFAULT),	/* 224 */
2197 	EMULATE(s10_open64, 3 | RV_DEFAULT),	/* 225 */
2198 #endif
2199 	NOSYS,					/* 226 */
2200 	EMULATE(s10_zone, 5 | RV_DEFAULT),	/* 227 */
2201 	NOSYS,					/* 228 */
2202 	NOSYS,					/* 229 */
2203 	EMULATE(s10_so_socket, 5 | RV_DEFAULT),	/* 230 */
2204 	NOSYS,					/* 231 */
2205 	NOSYS,					/* 232 */
2206 	NOSYS,					/* 233 */
2207 	EMULATE(s10_accept, 4 | RV_DEFAULT),	/* 234 */
2208 	NOSYS,					/* 235 */
2209 	NOSYS,					/* 236 */
2210 	NOSYS,					/* 237 */
2211 	NOSYS,					/* 238 */
2212 	NOSYS,					/* 239 */
2213 	NOSYS,					/* 240 */
2214 	NOSYS,					/* 241 */
2215 	NOSYS,					/* 242 */
2216 	NOSYS,					/* 243 */
2217 	NOSYS,					/* 244 */
2218 	NOSYS,					/* 245 */
2219 	NOSYS,					/* 246 */
2220 	NOSYS,					/* 247 */
2221 	NOSYS,					/* 248 */
2222 	NOSYS,					/* 249 */
2223 	NOSYS,					/* 250 */
2224 	EMULATE(s10_lwp_mutex_trylock, 1 | RV_DEFAULT), /* 251 */
2225 	NOSYS,					/* 252 */
2226 	NOSYS,					/* 253 */
2227 	NOSYS,					/* 254 */
2228 	NOSYS					/* 255 */
2229 };
2230