1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */
27 /*
28 * Copyright 2020 Joyent, Inc.
29 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
30 */
31
32 #include <sys/sysmacros.h>
33 #include <sys/param.h>
34 #include <sys/mman.h>
35 #include <ctf_impl.h>
36 #include <sys/debug.h>
37
38 /*
39 * SSIZE_MAX is not available in the kernel, so we define it here rather than
40 * accidentally inject into headers where it's not wanted.
41 */
42 #ifndef SSIZE_MAX
43 #define SSIZE_MAX (LONG_MAX)
44 #endif
45
46 /*
47 * This static string is used as the template for initially populating a
48 * dynamic container's string table. We always store \0 in the first byte,
49 * and we use the generic string "PARENT" to mark this container's parent
50 * if one is associated with the container using ctf_import().
51 */
52 static const char _CTF_STRTAB_TEMPLATE[] = "\0PARENT";
53
54 /*
55 * To create an empty CTF container, we just declare a zeroed header and call
56 * ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new container r/w
57 * and initialize the dynamic members. We set dtstrlen to 1 to reserve the
58 * first byte of the string table for a \0 byte, and we start assigning type
59 * IDs at 1 because type ID 0 is used as a sentinel.
60 */
61 ctf_file_t *
ctf_create(int * errp)62 ctf_create(int *errp)
63 {
64 static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } };
65
66 const ulong_t hashlen = 128;
67 ctf_dtdef_t **hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *));
68 ctf_sect_t cts;
69 ctf_file_t *fp;
70
71 if (hash == NULL)
72 return (ctf_set_open_errno(errp, EAGAIN));
73
74 cts.cts_name = _CTF_SECTION;
75 cts.cts_type = SHT_PROGBITS;
76 cts.cts_flags = 0;
77 cts.cts_data = &hdr;
78 cts.cts_size = sizeof (hdr);
79 cts.cts_entsize = 1;
80 cts.cts_offset = 0;
81
82 if ((fp = ctf_bufopen(&cts, NULL, NULL, errp)) == NULL) {
83 ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *));
84 return (NULL);
85 }
86
87 fp->ctf_flags |= LCTF_RDWR;
88 fp->ctf_dthashlen = hashlen;
89 bzero(hash, hashlen * sizeof (ctf_dtdef_t *));
90 fp->ctf_dthash = hash;
91 fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE);
92 fp->ctf_dtnextid = 1;
93 fp->ctf_dtoldid = 0;
94
95 return (fp);
96 }
97
98 ctf_file_t *
ctf_fdcreate(int fd,int * errp)99 ctf_fdcreate(int fd, int *errp)
100 {
101 ctf_file_t *fp;
102 static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } };
103
104 const ulong_t hashlen = 128;
105 ctf_dtdef_t **hash;
106 ctf_sect_t cts;
107
108 if (fd == -1)
109 return (ctf_create(errp));
110
111 hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *));
112
113 if (hash == NULL)
114 return (ctf_set_open_errno(errp, EAGAIN));
115
116 cts.cts_name = _CTF_SECTION;
117 cts.cts_type = SHT_PROGBITS;
118 cts.cts_flags = 0;
119 cts.cts_data = &hdr;
120 cts.cts_size = sizeof (hdr);
121 cts.cts_entsize = 1;
122 cts.cts_offset = 0;
123
124 if ((fp = ctf_fdcreate_int(fd, errp, &cts)) == NULL) {
125 ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *));
126 return (NULL);
127 }
128
129 fp->ctf_flags |= LCTF_RDWR;
130 fp->ctf_dthashlen = hashlen;
131 bzero(hash, hashlen * sizeof (ctf_dtdef_t *));
132 fp->ctf_dthash = hash;
133 fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE);
134 fp->ctf_dtnextid = 1;
135 fp->ctf_dtoldid = 0;
136
137 return (fp);
138 }
139
140 static uchar_t *
ctf_copy_smembers(ctf_dtdef_t * dtd,uint_t soff,uchar_t * t)141 ctf_copy_smembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t)
142 {
143 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
144 ctf_member_t ctm;
145
146 for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
147 if (dmd->dmd_name) {
148 ctm.ctm_name = soff;
149 soff += strlen(dmd->dmd_name) + 1;
150 } else
151 ctm.ctm_name = 0;
152
153 ctm.ctm_type = (ushort_t)dmd->dmd_type;
154 ctm.ctm_offset = (ushort_t)dmd->dmd_offset;
155
156 bcopy(&ctm, t, sizeof (ctm));
157 t += sizeof (ctm);
158 }
159
160 return (t);
161 }
162
163 static uchar_t *
ctf_copy_lmembers(ctf_dtdef_t * dtd,uint_t soff,uchar_t * t)164 ctf_copy_lmembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t)
165 {
166 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
167 ctf_lmember_t ctlm;
168
169 for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
170 if (dmd->dmd_name) {
171 ctlm.ctlm_name = soff;
172 soff += strlen(dmd->dmd_name) + 1;
173 } else
174 ctlm.ctlm_name = 0;
175
176 ctlm.ctlm_type = (ushort_t)dmd->dmd_type;
177 ctlm.ctlm_pad = 0;
178 ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(dmd->dmd_offset);
179 ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(dmd->dmd_offset);
180
181 bcopy(&ctlm, t, sizeof (ctlm));
182 t += sizeof (ctlm);
183 }
184
185 return (t);
186 }
187
188 static uchar_t *
ctf_copy_emembers(ctf_dtdef_t * dtd,uint_t soff,uchar_t * t)189 ctf_copy_emembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t)
190 {
191 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
192 ctf_enum_t cte;
193
194 for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
195 cte.cte_name = soff;
196 cte.cte_value = dmd->dmd_value;
197 soff += strlen(dmd->dmd_name) + 1;
198 bcopy(&cte, t, sizeof (cte));
199 t += sizeof (cte);
200 }
201
202 return (t);
203 }
204
205 static uchar_t *
ctf_copy_membnames(ctf_dtdef_t * dtd,uchar_t * s)206 ctf_copy_membnames(ctf_dtdef_t *dtd, uchar_t *s)
207 {
208 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
209 size_t len;
210
211 for (; dmd != NULL; dmd = ctf_list_next(dmd)) {
212 if (dmd->dmd_name == NULL)
213 continue; /* skip anonymous members */
214 len = strlen(dmd->dmd_name) + 1;
215 bcopy(dmd->dmd_name, s, len);
216 s += len;
217 }
218
219 return (s);
220 }
221
222 /*
223 * Only types of dyanmic CTF containers contain reference counts. These
224 * containers are marked RD/WR. Because of that we basically make this a no-op
225 * for compatability with non-dynamic CTF sections. This is also a no-op for
226 * types which are not dynamic types. It is the responsibility of the caller to
227 * make sure it is a valid type. We help that caller out on debug builds.
228 *
229 * Note that the reference counts are not maintained for types that are not
230 * within this container. In other words if we have a type in a parent, that
231 * will not have its reference count increased. On the flip side, the parent
232 * will not be allowed to remove dynamic types if it has children.
233 */
234 static void
ctf_ref_inc(ctf_file_t * fp,ctf_id_t tid)235 ctf_ref_inc(ctf_file_t *fp, ctf_id_t tid)
236 {
237 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid);
238
239 if (dtd == NULL)
240 return;
241
242 if (!(fp->ctf_flags & LCTF_RDWR))
243 return;
244
245 dtd->dtd_ref++;
246 }
247
248 /*
249 * Just as with ctf_ref_inc, this is a no-op on non-writeable containers and the
250 * caller should ensure that this is already a valid type.
251 */
252 static void
ctf_ref_dec(ctf_file_t * fp,ctf_id_t tid)253 ctf_ref_dec(ctf_file_t *fp, ctf_id_t tid)
254 {
255 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid);
256
257 if (dtd == NULL)
258 return;
259
260 if (!(fp->ctf_flags & LCTF_RDWR))
261 return;
262
263 ASSERT(dtd->dtd_ref >= 1);
264 dtd->dtd_ref--;
265 }
266
267 /*
268 * If the specified CTF container is writable and has been modified, reload
269 * this container with the updated type definitions. In order to make this
270 * code and the rest of libctf as simple as possible, we perform updates by
271 * taking the dynamic type definitions and creating an in-memory CTF file
272 * containing the definitions, and then call ctf_bufopen() on it. This not
273 * only leverages ctf_bufopen(), but also avoids having to bifurcate the rest
274 * of the library code with different lookup paths for static and dynamic
275 * type definitions. We are therefore optimizing greatly for lookup over
276 * update, which we assume will be an uncommon operation. We perform one
277 * extra trick here for the benefit of callers and to keep our code simple:
278 * ctf_bufopen() will return a new ctf_file_t, but we want to keep the fp
279 * constant for the caller, so after ctf_bufopen() returns, we use bcopy to
280 * swap the interior of the old and new ctf_file_t's, and then free the old.
281 *
282 * Note that the lists of dynamic types stays around and the resulting container
283 * is still writeable. Furthermore, the reference counts that are on the dtd's
284 * are still valid.
285 */
286 int
ctf_update(ctf_file_t * fp)287 ctf_update(ctf_file_t *fp)
288 {
289 ctf_file_t ofp, *nfp;
290 ctf_header_t hdr, *bhdr;
291 ctf_dtdef_t *dtd;
292 ctf_dsdef_t *dsd;
293 ctf_dldef_t *dld;
294 ctf_sect_t cts, *symp, *strp;
295
296 uchar_t *s, *s0, *t;
297 ctf_lblent_t *label;
298 uint16_t *obj, *func;
299 size_t size, objsize, funcsize, labelsize, plen;
300 void *buf;
301 int err;
302 ulong_t i;
303 const char *plabel;
304 const char *sname;
305
306 uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data;
307 uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data;
308
309 if (!(fp->ctf_flags & LCTF_RDWR))
310 return (ctf_set_errno(fp, ECTF_RDONLY));
311
312 if (!(fp->ctf_flags & LCTF_DIRTY))
313 return (0); /* no update required */
314
315 /*
316 * Fill in an initial CTF header. We will leave the label, object,
317 * and function sections empty and only output a header, type section,
318 * and string table. The type section begins at a 4-byte aligned
319 * boundary past the CTF header itself (at relative offset zero).
320 */
321 bzero(&hdr, sizeof (hdr));
322 hdr.cth_magic = CTF_MAGIC;
323 hdr.cth_version = CTF_VERSION;
324
325 if (fp->ctf_flags & LCTF_CHILD) {
326 if (fp->ctf_parname == NULL) {
327 plen = 0;
328 hdr.cth_parname = 1; /* i.e. _CTF_STRTAB_TEMPLATE[1] */
329 plabel = NULL;
330 } else {
331 plen = strlen(fp->ctf_parname) + 1;
332 plabel = ctf_label_topmost(fp->ctf_parent);
333 }
334 } else {
335 plabel = NULL;
336 plen = 0;
337 }
338
339 /*
340 * Iterate over the labels that we have.
341 */
342 for (labelsize = 0, dld = ctf_list_next(&fp->ctf_dldefs);
343 dld != NULL; dld = ctf_list_next(dld))
344 labelsize += sizeof (ctf_lblent_t);
345
346 /*
347 * Iterate through the dynamic type definition list and compute the
348 * size of the CTF type section we will need to generate.
349 */
350 for (size = 0, dtd = ctf_list_next(&fp->ctf_dtdefs);
351 dtd != NULL; dtd = ctf_list_next(dtd)) {
352
353 uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
354 uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
355
356 if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
357 size += sizeof (ctf_stype_t);
358 else
359 size += sizeof (ctf_type_t);
360
361 switch (kind) {
362 case CTF_K_INTEGER:
363 case CTF_K_FLOAT:
364 size += sizeof (uint_t);
365 break;
366 case CTF_K_ARRAY:
367 size += sizeof (ctf_array_t);
368 break;
369 case CTF_K_FUNCTION:
370 size += sizeof (ushort_t) * (vlen + (vlen & 1));
371 break;
372 case CTF_K_STRUCT:
373 case CTF_K_UNION:
374 if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
375 size += sizeof (ctf_member_t) * vlen;
376 else
377 size += sizeof (ctf_lmember_t) * vlen;
378 break;
379 case CTF_K_ENUM:
380 size += sizeof (ctf_enum_t) * vlen;
381 break;
382 }
383 }
384
385 /*
386 * An entry for each object must exist in the data section. However, if
387 * the symbol is SHN_UNDEF, then it is skipped. For objects, the storage
388 * is just the size of the 2-byte id. For functions it's always 2 bytes,
389 * plus 2 bytes per argument and the return type.
390 */
391 dsd = ctf_list_next(&fp->ctf_dsdefs);
392 for (objsize = 0, funcsize = 0, i = 0; i < fp->ctf_nsyms; i++) {
393 int type;
394
395 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) {
396 const Elf32_Sym *symp = (Elf32_Sym *)symbase + i;
397
398 type = ELF32_ST_TYPE(symp->st_info);
399 if (ctf_sym_valid(strbase, type, symp->st_shndx,
400 symp->st_value, symp->st_name) == B_FALSE)
401 continue;
402 } else {
403 const Elf64_Sym *symp = (Elf64_Sym *)symbase + i;
404
405 type = ELF64_ST_TYPE(symp->st_info);
406 if (ctf_sym_valid(strbase, type, symp->st_shndx,
407 symp->st_value, symp->st_name) == B_FALSE)
408 continue;
409 }
410
411 while (dsd != NULL && i > dsd->dsd_symidx)
412 dsd = ctf_list_next(dsd);
413 if (type == STT_OBJECT) {
414 objsize += sizeof (uint16_t);
415 } else {
416 /* Every function has a uint16_t info no matter what */
417 if (dsd == NULL || i < dsd->dsd_symidx) {
418 funcsize += sizeof (uint16_t);
419 } else {
420 funcsize += sizeof (uint16_t) *
421 (dsd->dsd_nargs + 2);
422 }
423 }
424 }
425
426 /*
427 * The objtoff and funcoffset must be 2-byte aligned. We're guaranteed
428 * that this is always true for the objtoff because labels are always 8
429 * bytes large. Similarly, because objects are always two bytes of data,
430 * this will always be true for funcoff.
431 */
432 hdr.cth_objtoff = hdr.cth_lbloff + labelsize;
433 hdr.cth_funcoff = hdr.cth_objtoff + objsize;
434
435 /*
436 * The type offset must be 4 byte aligned.
437 */
438 hdr.cth_typeoff = hdr.cth_funcoff + funcsize;
439 if (hdr.cth_typeoff & 3)
440 hdr.cth_typeoff += 4 - (hdr.cth_typeoff & 3);
441 ASSERT((hdr.cth_typeoff & 3) == 0);
442
443 /*
444 * Fill in the string table offset and size, compute the size of the
445 * entire CTF buffer we need, and then allocate a new buffer and
446 * bcopy the finished header to the start of the buffer.
447 */
448 hdr.cth_stroff = hdr.cth_typeoff + size;
449 hdr.cth_strlen = fp->ctf_dtstrlen + plen;
450 size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;
451 ctf_dprintf("lbloff: %u\nobjtoff: %u\nfuncoff: %u\n"
452 "typeoff: %u\nstroff: %u\nstrlen: %u\n",
453 hdr.cth_lbloff, hdr.cth_objtoff, hdr.cth_funcoff,
454 hdr.cth_typeoff, hdr.cth_stroff, hdr.cth_strlen);
455
456 if ((buf = ctf_data_alloc(size)) == MAP_FAILED)
457 return (ctf_set_errno(fp, EAGAIN));
458
459 bcopy(&hdr, buf, sizeof (ctf_header_t));
460 bhdr = buf;
461 label = (ctf_lblent_t *)((uintptr_t)buf + sizeof (ctf_header_t));
462 t = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_typeoff;
463 s = s0 = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_stroff;
464 obj = (uint16_t *)((uintptr_t)buf + sizeof (ctf_header_t) +
465 hdr.cth_objtoff);
466 func = (uint16_t *)((uintptr_t)buf + sizeof (ctf_header_t) +
467 hdr.cth_funcoff);
468
469 bcopy(_CTF_STRTAB_TEMPLATE, s, sizeof (_CTF_STRTAB_TEMPLATE));
470 s += sizeof (_CTF_STRTAB_TEMPLATE);
471
472 /*
473 * We have an actual parent name and we're a child container, therefore
474 * we should make sure to note our parent's name here.
475 */
476 if (plen != 0) {
477 VERIFY(s + plen - s0 <= hdr.cth_strlen);
478 bcopy(fp->ctf_parname, s, plen);
479 bhdr->cth_parname = s - s0;
480 s += plen;
481 }
482
483 /*
484 * First pass over the labels and copy them out.
485 */
486 for (dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL;
487 dld = ctf_list_next(dld), label++) {
488 size_t len = strlen(dld->dld_name) + 1;
489
490 VERIFY(s + len - s0 <= hdr.cth_strlen);
491 bcopy(dld->dld_name, s, len);
492 label->ctl_typeidx = dld->dld_type;
493 label->ctl_label = s - s0;
494 s += len;
495
496 if (plabel != NULL && strcmp(plabel, dld->dld_name) == 0)
497 bhdr->cth_parlabel = label->ctl_label;
498 }
499
500 /*
501 * We now take a final lap through the dynamic type definition list and
502 * copy the appropriate type records and strings to the output buffer.
503 */
504 for (dtd = ctf_list_next(&fp->ctf_dtdefs);
505 dtd != NULL; dtd = ctf_list_next(dtd)) {
506
507 uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
508 uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
509
510 ctf_array_t cta;
511 uint_t encoding;
512 size_t len;
513
514 if (dtd->dtd_name != NULL) {
515 dtd->dtd_data.ctt_name = (uint_t)(s - s0);
516 len = strlen(dtd->dtd_name) + 1;
517 VERIFY(s + len - s0 <= hdr.cth_strlen);
518 bcopy(dtd->dtd_name, s, len);
519 s += len;
520 } else
521 dtd->dtd_data.ctt_name = 0;
522
523 if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
524 len = sizeof (ctf_stype_t);
525 else
526 len = sizeof (ctf_type_t);
527
528 bcopy(&dtd->dtd_data, t, len);
529 t += len;
530
531 switch (kind) {
532 case CTF_K_INTEGER:
533 case CTF_K_FLOAT:
534 if (kind == CTF_K_INTEGER) {
535 encoding = CTF_INT_DATA(
536 dtd->dtd_u.dtu_enc.cte_format,
537 dtd->dtd_u.dtu_enc.cte_offset,
538 dtd->dtd_u.dtu_enc.cte_bits);
539 } else {
540 encoding = CTF_FP_DATA(
541 dtd->dtd_u.dtu_enc.cte_format,
542 dtd->dtd_u.dtu_enc.cte_offset,
543 dtd->dtd_u.dtu_enc.cte_bits);
544 }
545 bcopy(&encoding, t, sizeof (encoding));
546 t += sizeof (encoding);
547 break;
548
549 case CTF_K_ARRAY:
550 cta.cta_contents = (ushort_t)
551 dtd->dtd_u.dtu_arr.ctr_contents;
552 cta.cta_index = (ushort_t)
553 dtd->dtd_u.dtu_arr.ctr_index;
554 cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems;
555 bcopy(&cta, t, sizeof (cta));
556 t += sizeof (cta);
557 break;
558
559 case CTF_K_FUNCTION: {
560 ushort_t *argv = (ushort_t *)(uintptr_t)t;
561 uint_t argc;
562
563 for (argc = 0; argc < vlen; argc++)
564 *argv++ = (ushort_t)dtd->dtd_u.dtu_argv[argc];
565
566 if (vlen & 1)
567 *argv++ = 0; /* pad to 4-byte boundary */
568
569 t = (uchar_t *)argv;
570 break;
571 }
572
573 case CTF_K_STRUCT:
574 case CTF_K_UNION:
575 if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
576 t = ctf_copy_smembers(dtd, (uint_t)(s - s0), t);
577 else
578 t = ctf_copy_lmembers(dtd, (uint_t)(s - s0), t);
579 s = ctf_copy_membnames(dtd, s);
580 break;
581
582 case CTF_K_ENUM:
583 t = ctf_copy_emembers(dtd, (uint_t)(s - s0), t);
584 s = ctf_copy_membnames(dtd, s);
585 break;
586 }
587 }
588
589 /*
590 * Now we fill in our dynamic data and function sections. We use the
591 * same criteria as above, but also consult the dsd list.
592 */
593 dsd = ctf_list_next(&fp->ctf_dsdefs);
594 for (i = 0; i < fp->ctf_nsyms; i++) {
595 int type;
596 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) {
597 const Elf32_Sym *symp = (Elf32_Sym *)symbase + i;
598 type = ELF32_ST_TYPE(symp->st_info);
599
600 if (ctf_sym_valid(strbase, type, symp->st_shndx,
601 symp->st_value, symp->st_name) == B_FALSE)
602 continue;
603 } else {
604 const Elf64_Sym *symp = (Elf64_Sym *)symbase + i;
605 type = ELF64_ST_TYPE(symp->st_info);
606 if (ctf_sym_valid(strbase, type, symp->st_shndx,
607 symp->st_value, symp->st_name) == B_FALSE)
608 continue;
609 }
610
611 while (dsd != NULL && i > dsd->dsd_symidx) {
612 dsd = ctf_list_next(dsd);
613 }
614 if (type == STT_OBJECT) {
615 if (dsd == NULL || i < dsd->dsd_symidx) {
616 *obj = 0;
617 } else {
618 *obj = dsd->dsd_tid;
619 }
620 obj++;
621 VERIFY((uintptr_t)obj <= (uintptr_t)func);
622 } else {
623 if (dsd == NULL || i < dsd->dsd_symidx) {
624 ushort_t data = CTF_TYPE_INFO(CTF_K_UNKNOWN,
625 0, 0);
626 *func = data;
627 func++;
628 } else {
629 int j;
630 ushort_t data = CTF_TYPE_INFO(CTF_K_FUNCTION, 0,
631 dsd->dsd_nargs);
632
633 *func = data;
634 func++;
635 *func = dsd->dsd_tid;
636 func++;
637 for (j = 0; j < dsd->dsd_nargs; j++)
638 func[j] = dsd->dsd_argc[j];
639 func += dsd->dsd_nargs;
640 }
641 }
642 }
643
644 /*
645 * Finally, we are ready to ctf_bufopen() the new container. If this
646 * is successful, we then switch nfp and fp and free the old container.
647 */
648 ctf_data_protect(buf, size);
649 cts.cts_name = _CTF_SECTION;
650 cts.cts_type = SHT_PROGBITS;
651 cts.cts_flags = 0;
652 cts.cts_data = buf;
653 cts.cts_size = size;
654 cts.cts_entsize = 1;
655 cts.cts_offset = 0;
656
657 if (fp->ctf_nsyms == 0) {
658 symp = NULL;
659 strp = NULL;
660 } else {
661 symp = &fp->ctf_symtab;
662 strp = &fp->ctf_strtab;
663 }
664
665 if ((nfp = ctf_bufopen(&cts, symp, strp, &err)) == NULL) {
666 ctf_data_free(buf, size);
667 return (ctf_set_errno(fp, err));
668 }
669
670 (void) ctf_setmodel(nfp, ctf_getmodel(fp));
671 (void) ctf_import(nfp, fp->ctf_parent);
672
673 nfp->ctf_refcnt = fp->ctf_refcnt;
674 nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY;
675 nfp->ctf_flags |= LCTF_FREE;
676 nfp->ctf_dthash = fp->ctf_dthash;
677 nfp->ctf_dthashlen = fp->ctf_dthashlen;
678 nfp->ctf_dtdefs = fp->ctf_dtdefs;
679 nfp->ctf_dsdefs = fp->ctf_dsdefs;
680 nfp->ctf_dldefs = fp->ctf_dldefs;
681 nfp->ctf_dtstrlen = fp->ctf_dtstrlen;
682 nfp->ctf_dtnextid = fp->ctf_dtnextid;
683 nfp->ctf_dtoldid = fp->ctf_dtnextid - 1;
684 nfp->ctf_specific = fp->ctf_specific;
685
686 fp->ctf_dthash = NULL;
687 fp->ctf_dthashlen = 0;
688 bzero(&fp->ctf_dtdefs, sizeof (ctf_list_t));
689 bzero(&fp->ctf_dsdefs, sizeof (ctf_list_t));
690 bzero(&fp->ctf_dldefs, sizeof (ctf_list_t));
691
692 /*
693 * Because the various containers share the data sections, we don't want
694 * to have ctf_close free it all. However, the name of the section is in
695 * fact unique to the ctf_sect_t. Thus we save the names of the symbol
696 * and string sections around the bzero() and restore them afterwards,
697 * ensuring that we don't result in a memory leak.
698 */
699 sname = fp->ctf_symtab.cts_name;
700 bzero(&fp->ctf_symtab, sizeof (ctf_sect_t));
701 fp->ctf_symtab.cts_name = sname;
702
703 sname = fp->ctf_strtab.cts_name;
704 bzero(&fp->ctf_strtab, sizeof (ctf_sect_t));
705 fp->ctf_strtab.cts_name = sname;
706
707 bcopy(fp, &ofp, sizeof (ctf_file_t));
708 bcopy(nfp, fp, sizeof (ctf_file_t));
709 bcopy(&ofp, nfp, sizeof (ctf_file_t));
710
711 /*
712 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an
713 * array of type name prefixes and the corresponding ctf_hash to use.
714 * NOTE: This code must be kept in sync with the code in ctf_bufopen().
715 */
716 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
717 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
718 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
719 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
720
721 nfp->ctf_refcnt = 1; /* force nfp to be freed */
722 ctf_close(nfp);
723
724 return (0);
725 }
726
727 void
ctf_dtd_insert(ctf_file_t * fp,ctf_dtdef_t * dtd)728 ctf_dtd_insert(ctf_file_t *fp, ctf_dtdef_t *dtd)
729 {
730 ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1);
731
732 dtd->dtd_hash = fp->ctf_dthash[h];
733 fp->ctf_dthash[h] = dtd;
734 ctf_list_append(&fp->ctf_dtdefs, dtd);
735 }
736
737 void
ctf_dtd_delete(ctf_file_t * fp,ctf_dtdef_t * dtd)738 ctf_dtd_delete(ctf_file_t *fp, ctf_dtdef_t *dtd)
739 {
740 ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1);
741 ctf_dtdef_t *p, **q = &fp->ctf_dthash[h];
742 ctf_dmdef_t *dmd, *nmd;
743 size_t len;
744 int kind, i;
745
746 for (p = *q; p != NULL; p = p->dtd_hash) {
747 if (p != dtd)
748 q = &p->dtd_hash;
749 else
750 break;
751 }
752
753 if (p != NULL)
754 *q = p->dtd_hash;
755
756 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
757 switch (kind) {
758 case CTF_K_STRUCT:
759 case CTF_K_UNION:
760 case CTF_K_ENUM:
761 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
762 dmd != NULL; dmd = nmd) {
763 if (dmd->dmd_name != NULL) {
764 len = strlen(dmd->dmd_name) + 1;
765 ctf_free(dmd->dmd_name, len);
766 fp->ctf_dtstrlen -= len;
767 }
768 if (kind != CTF_K_ENUM)
769 ctf_ref_dec(fp, dmd->dmd_type);
770 nmd = ctf_list_next(dmd);
771 ctf_free(dmd, sizeof (ctf_dmdef_t));
772 }
773 break;
774 case CTF_K_FUNCTION:
775 ctf_ref_dec(fp, dtd->dtd_data.ctt_type);
776 for (i = 0; i < CTF_INFO_VLEN(dtd->dtd_data.ctt_info); i++)
777 if (dtd->dtd_u.dtu_argv[i] != 0)
778 ctf_ref_dec(fp, dtd->dtd_u.dtu_argv[i]);
779 ctf_free(dtd->dtd_u.dtu_argv, sizeof (ctf_id_t) *
780 CTF_INFO_VLEN(dtd->dtd_data.ctt_info));
781 break;
782 case CTF_K_ARRAY:
783 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents);
784 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index);
785 break;
786 case CTF_K_TYPEDEF:
787 ctf_ref_dec(fp, dtd->dtd_data.ctt_type);
788 break;
789 case CTF_K_POINTER:
790 case CTF_K_VOLATILE:
791 case CTF_K_CONST:
792 case CTF_K_RESTRICT:
793 ctf_ref_dec(fp, dtd->dtd_data.ctt_type);
794 break;
795 }
796
797 if (dtd->dtd_name) {
798 len = strlen(dtd->dtd_name) + 1;
799 ctf_free(dtd->dtd_name, len);
800 fp->ctf_dtstrlen -= len;
801 }
802
803 ctf_list_delete(&fp->ctf_dtdefs, dtd);
804 ctf_free(dtd, sizeof (ctf_dtdef_t));
805 }
806
807 ctf_dtdef_t *
ctf_dtd_lookup(ctf_file_t * fp,ctf_id_t type)808 ctf_dtd_lookup(ctf_file_t *fp, ctf_id_t type)
809 {
810 ulong_t h = type & (fp->ctf_dthashlen - 1);
811 ctf_dtdef_t *dtd;
812
813 if (fp->ctf_dthash == NULL)
814 return (NULL);
815
816 for (dtd = fp->ctf_dthash[h]; dtd != NULL; dtd = dtd->dtd_hash) {
817 if (dtd->dtd_type == type)
818 break;
819 }
820
821 return (dtd);
822 }
823
824 ctf_dsdef_t *
ctf_dsd_lookup(ctf_file_t * fp,ulong_t idx)825 ctf_dsd_lookup(ctf_file_t *fp, ulong_t idx)
826 {
827 ctf_dsdef_t *dsd;
828
829 for (dsd = ctf_list_next(&fp->ctf_dsdefs); dsd != NULL;
830 dsd = ctf_list_next(dsd)) {
831 if (dsd->dsd_symidx == idx)
832 return (dsd);
833 }
834
835 return (NULL);
836 }
837
838 /*
839 * We order the ctf_dsdef_t by symbol index to make things better for updates.
840 */
841 void
ctf_dsd_insert(ctf_file_t * fp,ctf_dsdef_t * dsd)842 ctf_dsd_insert(ctf_file_t *fp, ctf_dsdef_t *dsd)
843 {
844 ctf_dsdef_t *i;
845
846 for (i = ctf_list_next(&fp->ctf_dsdefs); i != NULL;
847 i = ctf_list_next(i)) {
848 if (i->dsd_symidx > dsd->dsd_symidx)
849 break;
850 }
851
852 if (i == NULL) {
853 ctf_list_append(&fp->ctf_dsdefs, dsd);
854 return;
855 }
856
857 ctf_list_insert_before(&fp->ctf_dsdefs, i, dsd);
858 }
859
860 /* ARGSUSED */
861 void
ctf_dsd_delete(ctf_file_t * fp,ctf_dsdef_t * dsd)862 ctf_dsd_delete(ctf_file_t *fp, ctf_dsdef_t *dsd)
863 {
864 if (dsd->dsd_nargs > 0)
865 ctf_free(dsd->dsd_argc,
866 sizeof (ctf_id_t) * dsd->dsd_nargs);
867 ctf_list_delete(&fp->ctf_dsdefs, dsd);
868 ctf_free(dsd, sizeof (ctf_dsdef_t));
869 }
870
871 ctf_dldef_t *
ctf_dld_lookup(ctf_file_t * fp,const char * name)872 ctf_dld_lookup(ctf_file_t *fp, const char *name)
873 {
874 ctf_dldef_t *dld;
875
876 for (dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL;
877 dld = ctf_list_next(dld)) {
878 if (strcmp(name, dld->dld_name) == 0)
879 return (dld);
880 }
881
882 return (NULL);
883 }
884
885 void
ctf_dld_insert(ctf_file_t * fp,ctf_dldef_t * dld,uint_t pos)886 ctf_dld_insert(ctf_file_t *fp, ctf_dldef_t *dld, uint_t pos)
887 {
888 ctf_dldef_t *l;
889
890 if (pos == 0) {
891 ctf_list_prepend(&fp->ctf_dldefs, dld);
892 return;
893 }
894
895 for (l = ctf_list_next(&fp->ctf_dldefs); pos != 0 && dld != NULL;
896 l = ctf_list_next(l), pos--)
897 ;
898
899 if (l == NULL)
900 ctf_list_append(&fp->ctf_dldefs, dld);
901 else
902 ctf_list_insert_before(&fp->ctf_dsdefs, l, dld);
903 }
904
905 void
ctf_dld_delete(ctf_file_t * fp,ctf_dldef_t * dld)906 ctf_dld_delete(ctf_file_t *fp, ctf_dldef_t *dld)
907 {
908 ctf_list_delete(&fp->ctf_dldefs, dld);
909
910 if (dld->dld_name != NULL) {
911 size_t len = strlen(dld->dld_name) + 1;
912 ctf_free(dld->dld_name, len);
913 fp->ctf_dtstrlen -= len;
914 }
915
916 ctf_free(dld, sizeof (ctf_dldef_t));
917 }
918
919 /*
920 * Discard all of the dynamic type definitions that have been added to the
921 * container since the last call to ctf_update(). We locate such types by
922 * scanning the list and deleting elements that have type IDs greater than
923 * ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly
924 * with our reference counting schemes, we must delete the dynamic list in
925 * reverse.
926 */
927 int
ctf_discard(ctf_file_t * fp)928 ctf_discard(ctf_file_t *fp)
929 {
930 ctf_dtdef_t *dtd, *ntd;
931
932 if (!(fp->ctf_flags & LCTF_RDWR))
933 return (ctf_set_errno(fp, ECTF_RDONLY));
934
935 if (!(fp->ctf_flags & LCTF_DIRTY))
936 return (0); /* no update required */
937
938 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
939 ntd = ctf_list_prev(dtd);
940 if (dtd->dtd_type <= fp->ctf_dtoldid)
941 continue; /* skip types that have been committed */
942
943 ctf_dtd_delete(fp, dtd);
944 }
945
946 fp->ctf_dtnextid = fp->ctf_dtoldid + 1;
947 fp->ctf_flags &= ~LCTF_DIRTY;
948
949 return (0);
950 }
951
952 static ctf_id_t
ctf_add_generic(ctf_file_t * fp,uint_t flag,const char * name,ctf_dtdef_t ** rp)953 ctf_add_generic(ctf_file_t *fp, uint_t flag, const char *name, ctf_dtdef_t **rp)
954 {
955 ctf_dtdef_t *dtd;
956 ctf_id_t type;
957 char *s = NULL;
958
959 if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
960 return (ctf_set_errno(fp, EINVAL));
961
962 if (!(fp->ctf_flags & LCTF_RDWR))
963 return (ctf_set_errno(fp, ECTF_RDONLY));
964
965 if (CTF_INDEX_TO_TYPE(fp->ctf_dtnextid, 1) > CTF_MAX_TYPE)
966 return (ctf_set_errno(fp, ECTF_FULL));
967
968 if ((dtd = ctf_alloc(sizeof (ctf_dtdef_t))) == NULL)
969 return (ctf_set_errno(fp, EAGAIN));
970
971 if (name != NULL && (s = ctf_strdup(name)) == NULL) {
972 ctf_free(dtd, sizeof (ctf_dtdef_t));
973 return (ctf_set_errno(fp, EAGAIN));
974 }
975
976 type = fp->ctf_dtnextid++;
977 type = CTF_INDEX_TO_TYPE(type, (fp->ctf_flags & LCTF_CHILD));
978
979 bzero(dtd, sizeof (ctf_dtdef_t));
980 dtd->dtd_name = s;
981 dtd->dtd_type = type;
982
983 if (s != NULL)
984 fp->ctf_dtstrlen += strlen(s) + 1;
985
986 ctf_dtd_insert(fp, dtd);
987 fp->ctf_flags |= LCTF_DIRTY;
988
989 *rp = dtd;
990 return (type);
991 }
992
993 ctf_id_t
ctf_add_encoded(ctf_file_t * fp,uint_t flag,const char * name,const ctf_encoding_t * ep,uint_t kind)994 ctf_add_encoded(ctf_file_t *fp, uint_t flag,
995 const char *name, const ctf_encoding_t *ep, uint_t kind)
996 {
997 ctf_dtdef_t *dtd;
998 ctf_id_t type;
999
1000 if (ep == NULL)
1001 return (ctf_set_errno(fp, EINVAL));
1002
1003 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
1004 return (CTF_ERR); /* errno is set for us */
1005
1006 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0);
1007
1008 /*
1009 * If the type's size is not an even number of bytes, then we should
1010 * round up the type size to the nearest byte.
1011 */
1012 dtd->dtd_data.ctt_size = ep->cte_bits / NBBY;
1013 if ((ep->cte_bits % NBBY) != 0)
1014 dtd->dtd_data.ctt_size++;
1015 dtd->dtd_u.dtu_enc = *ep;
1016
1017 return (type);
1018 }
1019
1020 ctf_id_t
ctf_add_reftype(ctf_file_t * fp,uint_t flag,const char * name,ctf_id_t ref,uint_t kind)1021 ctf_add_reftype(ctf_file_t *fp, uint_t flag,
1022 const char *name, ctf_id_t ref, uint_t kind)
1023 {
1024 ctf_dtdef_t *dtd;
1025 ctf_id_t type;
1026
1027 if (ref == CTF_ERR || ref < 0 || ref > CTF_MAX_TYPE)
1028 return (ctf_set_errno(fp, EINVAL));
1029
1030 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
1031 return (CTF_ERR); /* errno is set for us */
1032
1033 ctf_ref_inc(fp, ref);
1034
1035 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0);
1036 dtd->dtd_data.ctt_type = (ushort_t)ref;
1037
1038 return (type);
1039 }
1040
1041 ctf_id_t
ctf_add_integer(ctf_file_t * fp,uint_t flag,const char * name,const ctf_encoding_t * ep)1042 ctf_add_integer(ctf_file_t *fp, uint_t flag,
1043 const char *name, const ctf_encoding_t *ep)
1044 {
1045 return (ctf_add_encoded(fp, flag, name, ep, CTF_K_INTEGER));
1046 }
1047
1048 ctf_id_t
ctf_add_float(ctf_file_t * fp,uint_t flag,const char * name,const ctf_encoding_t * ep)1049 ctf_add_float(ctf_file_t *fp, uint_t flag,
1050 const char *name, const ctf_encoding_t *ep)
1051 {
1052 return (ctf_add_encoded(fp, flag, name, ep, CTF_K_FLOAT));
1053 }
1054
1055 ctf_id_t
ctf_add_pointer(ctf_file_t * fp,uint_t flag,const char * name,ctf_id_t ref)1056 ctf_add_pointer(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref)
1057 {
1058 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_POINTER));
1059 }
1060
1061 ctf_id_t
ctf_add_array(ctf_file_t * fp,uint_t flag,const ctf_arinfo_t * arp)1062 ctf_add_array(ctf_file_t *fp, uint_t flag, const ctf_arinfo_t *arp)
1063 {
1064 ctf_dtdef_t *dtd;
1065 ctf_id_t type;
1066 ctf_file_t *fpd;
1067
1068 if (arp == NULL)
1069 return (ctf_set_errno(fp, EINVAL));
1070
1071 fpd = fp;
1072 if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL &&
1073 ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) {
1074 ctf_dprintf("bad contents for array: %ld\n",
1075 arp->ctr_contents);
1076 return (ctf_set_errno(fp, ECTF_BADID));
1077 }
1078
1079 fpd = fp;
1080 if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL &&
1081 ctf_dtd_lookup(fp, arp->ctr_index) == NULL) {
1082 ctf_dprintf("bad index for array: %ld\n", arp->ctr_index);
1083 return (ctf_set_errno(fp, ECTF_BADID));
1084 }
1085
1086 if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR)
1087 return (CTF_ERR); /* errno is set for us */
1088
1089 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, flag, 0);
1090 dtd->dtd_data.ctt_size = 0;
1091 dtd->dtd_u.dtu_arr = *arp;
1092 ctf_ref_inc(fp, arp->ctr_contents);
1093 ctf_ref_inc(fp, arp->ctr_index);
1094
1095 return (type);
1096 }
1097
1098 int
ctf_set_array(ctf_file_t * fp,ctf_id_t type,const ctf_arinfo_t * arp)1099 ctf_set_array(ctf_file_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
1100 {
1101 ctf_file_t *fpd;
1102 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type);
1103
1104 if (!(fp->ctf_flags & LCTF_RDWR))
1105 return (ctf_set_errno(fp, ECTF_RDONLY));
1106
1107 if (dtd == NULL || CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
1108 return (ctf_set_errno(fp, ECTF_BADID));
1109
1110 fpd = fp;
1111 if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL &&
1112 ctf_dtd_lookup(fp, arp->ctr_contents) == NULL)
1113 return (ctf_set_errno(fp, ECTF_BADID));
1114
1115 fpd = fp;
1116 if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL &&
1117 ctf_dtd_lookup(fp, arp->ctr_index) == NULL)
1118 return (ctf_set_errno(fp, ECTF_BADID));
1119
1120 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents);
1121 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index);
1122 fp->ctf_flags |= LCTF_DIRTY;
1123 dtd->dtd_u.dtu_arr = *arp;
1124 ctf_ref_inc(fp, arp->ctr_contents);
1125 ctf_ref_inc(fp, arp->ctr_index);
1126
1127 return (0);
1128 }
1129
1130 ctf_id_t
ctf_add_funcptr(ctf_file_t * fp,uint_t flag,const ctf_funcinfo_t * ctc,const ctf_id_t * argv)1131 ctf_add_funcptr(ctf_file_t *fp, uint_t flag,
1132 const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
1133 {
1134 ctf_dtdef_t *dtd;
1135 ctf_id_t type;
1136 uint_t vlen;
1137 int i;
1138 ctf_id_t *vdat = NULL;
1139 ctf_file_t *fpd;
1140
1141 if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 ||
1142 (ctc->ctc_argc != 0 && argv == NULL))
1143 return (ctf_set_errno(fp, EINVAL));
1144
1145 vlen = ctc->ctc_argc;
1146 if (ctc->ctc_flags & CTF_FUNC_VARARG)
1147 vlen++; /* add trailing zero to indicate varargs (see below) */
1148
1149 if (vlen > CTF_MAX_VLEN)
1150 return (ctf_set_errno(fp, EOVERFLOW));
1151
1152 fpd = fp;
1153 if (ctf_lookup_by_id(&fpd, ctc->ctc_return) == NULL &&
1154 ctf_dtd_lookup(fp, ctc->ctc_return) == NULL)
1155 return (ctf_set_errno(fp, ECTF_BADID));
1156
1157 for (i = 0; i < ctc->ctc_argc; i++) {
1158 fpd = fp;
1159 if (ctf_lookup_by_id(&fpd, argv[i]) == NULL &&
1160 ctf_dtd_lookup(fp, argv[i]) == NULL)
1161 return (ctf_set_errno(fp, ECTF_BADID));
1162 }
1163
1164 if (vlen != 0 && (vdat = ctf_alloc(sizeof (ctf_id_t) * vlen)) == NULL)
1165 return (ctf_set_errno(fp, EAGAIN));
1166
1167 if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) {
1168 ctf_free(vdat, sizeof (ctf_id_t) * vlen);
1169 return (CTF_ERR); /* errno is set for us */
1170 }
1171
1172 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, flag, vlen);
1173 dtd->dtd_data.ctt_type = (ushort_t)ctc->ctc_return;
1174
1175 ctf_ref_inc(fp, ctc->ctc_return);
1176 for (i = 0; i < ctc->ctc_argc; i++)
1177 ctf_ref_inc(fp, argv[i]);
1178
1179 bcopy(argv, vdat, sizeof (ctf_id_t) * ctc->ctc_argc);
1180 if (ctc->ctc_flags & CTF_FUNC_VARARG)
1181 vdat[vlen - 1] = 0; /* add trailing zero to indicate varargs */
1182 dtd->dtd_u.dtu_argv = vdat;
1183
1184 return (type);
1185 }
1186
1187 ctf_id_t
ctf_add_struct(ctf_file_t * fp,uint_t flag,const char * name)1188 ctf_add_struct(ctf_file_t *fp, uint_t flag, const char *name)
1189 {
1190 ctf_hash_t *hp = &fp->ctf_structs;
1191 ctf_helem_t *hep = NULL;
1192 ctf_dtdef_t *dtd = NULL;
1193 ctf_id_t type = CTF_ERR;
1194
1195 if (name != NULL)
1196 hep = ctf_hash_lookup(hp, fp, name, strlen(name));
1197
1198 if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) {
1199 type = hep->h_type;
1200 dtd = ctf_dtd_lookup(fp, type);
1201 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD)
1202 dtd = NULL;
1203 }
1204
1205 if (dtd == NULL) {
1206 type = ctf_add_generic(fp, flag, name, &dtd);
1207 if (type == CTF_ERR)
1208 return (CTF_ERR); /* errno is set for us */
1209 }
1210
1211 VERIFY(type != CTF_ERR);
1212 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, flag, 0);
1213 dtd->dtd_data.ctt_size = 0;
1214
1215 /*
1216 * Always dirty in case we modified a forward.
1217 */
1218 fp->ctf_flags |= LCTF_DIRTY;
1219
1220 return (type);
1221 }
1222
1223 ctf_id_t
ctf_add_union(ctf_file_t * fp,uint_t flag,const char * name)1224 ctf_add_union(ctf_file_t *fp, uint_t flag, const char *name)
1225 {
1226 ctf_hash_t *hp = &fp->ctf_unions;
1227 ctf_helem_t *hep = NULL;
1228 ctf_dtdef_t *dtd = NULL;
1229 ctf_id_t type = CTF_ERR;
1230
1231 if (name != NULL)
1232 hep = ctf_hash_lookup(hp, fp, name, strlen(name));
1233
1234 if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) {
1235 type = hep->h_type;
1236 dtd = ctf_dtd_lookup(fp, type);
1237 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD)
1238 dtd = NULL;
1239 }
1240
1241 if (dtd == NULL) {
1242 type = ctf_add_generic(fp, flag, name, &dtd);
1243 if (type == CTF_ERR)
1244 return (CTF_ERR); /* errno is set for us */
1245 }
1246
1247 VERIFY(type != CTF_ERR);
1248 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, flag, 0);
1249 dtd->dtd_data.ctt_size = 0;
1250
1251 /*
1252 * Always dirty in case we modified a forward.
1253 */
1254 fp->ctf_flags |= LCTF_DIRTY;
1255
1256 return (type);
1257 }
1258
1259 /*
1260 * If size is 0, we use the standard integer size. This is almost always the
1261 * case, except for packed enums.
1262 */
1263 ctf_id_t
ctf_add_enum(ctf_file_t * fp,uint_t flag,const char * name,size_t size)1264 ctf_add_enum(ctf_file_t *fp, uint_t flag, const char *name, size_t size)
1265 {
1266 ctf_hash_t *hp = &fp->ctf_enums;
1267 ctf_helem_t *hep = NULL;
1268 ctf_dtdef_t *dtd = NULL;
1269 ctf_id_t type = CTF_ERR;
1270
1271 /* Check we could return something valid in ctf_type_size. */
1272 if (size > SSIZE_MAX)
1273 return (ctf_set_errno(fp, EINVAL));
1274
1275 if (name != NULL)
1276 hep = ctf_hash_lookup(hp, fp, name, strlen(name));
1277
1278 if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) {
1279 type = hep->h_type;
1280 dtd = ctf_dtd_lookup(fp, type);
1281 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD)
1282 dtd = NULL;
1283 }
1284
1285 if (dtd == NULL) {
1286 type = ctf_add_generic(fp, flag, name, &dtd);
1287 if (type == CTF_ERR)
1288 return (CTF_ERR); /* errno is set for us */
1289 }
1290
1291 VERIFY(type != CTF_ERR);
1292 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, flag, 0);
1293
1294 ctf_set_ctt_size(&dtd->dtd_data, size == 0 ?
1295 fp->ctf_dmodel->ctd_int : size);
1296
1297 /*
1298 * Always dirty in case we modified a forward.
1299 */
1300 fp->ctf_flags |= LCTF_DIRTY;
1301
1302 return (type);
1303 }
1304
1305 ctf_id_t
ctf_add_forward(ctf_file_t * fp,uint_t flag,const char * name,uint_t kind)1306 ctf_add_forward(ctf_file_t *fp, uint_t flag, const char *name, uint_t kind)
1307 {
1308 ctf_hash_t *hp;
1309 ctf_helem_t *hep;
1310 ctf_dtdef_t *dtd;
1311 ctf_id_t type;
1312
1313 switch (kind) {
1314 case CTF_K_STRUCT:
1315 hp = &fp->ctf_structs;
1316 break;
1317 case CTF_K_UNION:
1318 hp = &fp->ctf_unions;
1319 break;
1320 case CTF_K_ENUM:
1321 hp = &fp->ctf_enums;
1322 break;
1323 default:
1324 return (ctf_set_errno(fp, ECTF_NOTSUE));
1325 }
1326
1327 /*
1328 * If the type is already defined or exists as a forward tag, just
1329 * return the ctf_id_t of the existing definition.
1330 */
1331 if (name != NULL && (hep = ctf_hash_lookup(hp,
1332 fp, name, strlen(name))) != NULL)
1333 return (hep->h_type);
1334
1335 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
1336 return (CTF_ERR); /* errno is set for us */
1337
1338 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, flag, 0);
1339 dtd->dtd_data.ctt_type = kind;
1340
1341 return (type);
1342 }
1343
1344 ctf_id_t
ctf_add_typedef(ctf_file_t * fp,uint_t flag,const char * name,ctf_id_t ref)1345 ctf_add_typedef(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref)
1346 {
1347 ctf_dtdef_t *dtd;
1348 ctf_id_t type;
1349 ctf_file_t *fpd;
1350
1351 fpd = fp;
1352 if (ref == CTF_ERR || (ctf_lookup_by_id(&fpd, ref) == NULL &&
1353 ctf_dtd_lookup(fp, ref) == NULL))
1354 return (ctf_set_errno(fp, EINVAL));
1355
1356 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR)
1357 return (CTF_ERR); /* errno is set for us */
1358
1359 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, flag, 0);
1360 dtd->dtd_data.ctt_type = (ushort_t)ref;
1361 ctf_ref_inc(fp, ref);
1362
1363 return (type);
1364 }
1365
1366 ctf_id_t
ctf_add_volatile(ctf_file_t * fp,uint_t flag,const char * name,ctf_id_t ref)1367 ctf_add_volatile(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref)
1368 {
1369 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_VOLATILE));
1370 }
1371
1372 ctf_id_t
ctf_add_const(ctf_file_t * fp,uint_t flag,const char * name,ctf_id_t ref)1373 ctf_add_const(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref)
1374 {
1375 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_CONST));
1376 }
1377
1378 ctf_id_t
ctf_add_restrict(ctf_file_t * fp,uint_t flag,const char * name,ctf_id_t ref)1379 ctf_add_restrict(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref)
1380 {
1381 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_RESTRICT));
1382 }
1383
1384 int
ctf_add_enumerator(ctf_file_t * fp,ctf_id_t enid,const char * name,int value)1385 ctf_add_enumerator(ctf_file_t *fp, ctf_id_t enid, const char *name, int value)
1386 {
1387 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, enid);
1388 ctf_dmdef_t *dmd;
1389
1390 uint_t kind, vlen, root;
1391 char *s;
1392
1393 if (name == NULL)
1394 return (ctf_set_errno(fp, EINVAL));
1395
1396 if (!(fp->ctf_flags & LCTF_RDWR))
1397 return (ctf_set_errno(fp, ECTF_RDONLY));
1398
1399 if (dtd == NULL)
1400 return (ctf_set_errno(fp, ECTF_BADID));
1401
1402 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1403 root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info);
1404 vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
1405
1406 if (kind != CTF_K_ENUM)
1407 return (ctf_set_errno(fp, ECTF_NOTENUM));
1408
1409 if (vlen == CTF_MAX_VLEN)
1410 return (ctf_set_errno(fp, ECTF_DTFULL));
1411
1412 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
1413 dmd != NULL; dmd = ctf_list_next(dmd)) {
1414 if (strcmp(dmd->dmd_name, name) == 0) {
1415 ctf_dprintf("encountered duplicate member %s\n", name);
1416 return (ctf_set_errno(fp, ECTF_DUPMEMBER));
1417 }
1418 }
1419
1420 if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL)
1421 return (ctf_set_errno(fp, EAGAIN));
1422
1423 if ((s = ctf_strdup(name)) == NULL) {
1424 ctf_free(dmd, sizeof (ctf_dmdef_t));
1425 return (ctf_set_errno(fp, EAGAIN));
1426 }
1427
1428 dmd->dmd_name = s;
1429 dmd->dmd_type = CTF_ERR;
1430 dmd->dmd_offset = 0;
1431 dmd->dmd_value = value;
1432
1433 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1);
1434 ctf_list_append(&dtd->dtd_u.dtu_members, dmd);
1435
1436 fp->ctf_dtstrlen += strlen(s) + 1;
1437 fp->ctf_flags |= LCTF_DIRTY;
1438
1439 return (0);
1440 }
1441
1442 int
ctf_add_member(ctf_file_t * fp,ctf_id_t souid,const char * name,ctf_id_t type,ulong_t offset)1443 ctf_add_member(ctf_file_t *fp, ctf_id_t souid, const char *name, ctf_id_t type,
1444 ulong_t offset)
1445 {
1446 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, souid);
1447 ctf_dmdef_t *dmd;
1448
1449 ulong_t mbitsz;
1450 ssize_t msize, malign, ssize;
1451 uint_t kind, vlen, root;
1452 int mkind;
1453 char *s = NULL;
1454
1455 if (!(fp->ctf_flags & LCTF_RDWR))
1456 return (ctf_set_errno(fp, ECTF_RDONLY));
1457
1458 if (dtd == NULL)
1459 return (ctf_set_errno(fp, ECTF_BADID));
1460
1461 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1462 root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info);
1463 vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
1464
1465 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
1466 return (ctf_set_errno(fp, ECTF_NOTSOU));
1467
1468 if (vlen == CTF_MAX_VLEN)
1469 return (ctf_set_errno(fp, ECTF_DTFULL));
1470
1471 /*
1472 * Structures may have members which are anonymous. If they have two of
1473 * these, then the duplicate member detection would find it due to the
1474 * string of "", so we skip it.
1475 */
1476 if (name != NULL && *name != '\0') {
1477 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
1478 dmd != NULL; dmd = ctf_list_next(dmd)) {
1479 if (dmd->dmd_name != NULL &&
1480 strcmp(dmd->dmd_name, name) == 0) {
1481 return (ctf_set_errno(fp, ECTF_DUPMEMBER));
1482 }
1483 }
1484 }
1485
1486 if ((msize = ctf_type_size(fp, type)) == CTF_ERR ||
1487 (malign = ctf_type_align(fp, type)) == CTF_ERR ||
1488 (mkind = ctf_type_kind(fp, type)) == CTF_ERR)
1489 return (CTF_ERR); /* errno is set for us */
1490
1491 /*
1492 * ctf_type_size returns sizes in bytes. However, for bitfields, that
1493 * means that it may misrepresent and actually rounds it up to a power
1494 * of two and store that in bytes. So instead we have to get the
1495 * Integers encoding and rely on that.
1496 */
1497 if (mkind == CTF_K_INTEGER) {
1498 ctf_encoding_t e;
1499
1500 if (ctf_type_encoding(fp, type, &e) == CTF_ERR)
1501 return (CTF_ERR); /* errno is set for us */
1502 mbitsz = e.cte_bits;
1503 } else if (mkind == CTF_K_FORWARD) {
1504 /*
1505 * This is a rather rare case. In general one cannot add a
1506 * forward to a structure. However, the CTF tools traditionally
1507 * tried to add a forward to the struct cpu as the last member.
1508 * Therefore, if we find one here, we're going to verify the
1509 * size and make sure it's zero. It's certainly odd, but that's
1510 * life.
1511 *
1512 * Further, if it's not an absolute position being specified,
1513 * then we refuse to add it.
1514 */
1515 if (offset == ULONG_MAX)
1516 return (ctf_set_errno(fp, EINVAL));
1517 VERIFY(msize == 0);
1518 mbitsz = msize;
1519 } else {
1520 mbitsz = msize * 8;
1521 }
1522
1523 if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL)
1524 return (ctf_set_errno(fp, EAGAIN));
1525
1526 if (name != NULL && (s = ctf_strdup(name)) == NULL) {
1527 ctf_free(dmd, sizeof (ctf_dmdef_t));
1528 return (ctf_set_errno(fp, EAGAIN));
1529 }
1530
1531 dmd->dmd_name = s;
1532 dmd->dmd_type = type;
1533 dmd->dmd_value = -1;
1534
1535 if (kind == CTF_K_STRUCT && vlen != 0) {
1536 ctf_dmdef_t *lmd = ctf_list_prev(&dtd->dtd_u.dtu_members);
1537 ctf_id_t ltype = ctf_type_resolve(fp, lmd->dmd_type);
1538 size_t off;
1539
1540 if (offset == ULONG_MAX) {
1541 ctf_encoding_t linfo;
1542 ssize_t lsize;
1543
1544 off = lmd->dmd_offset;
1545 if (ctf_type_encoding(fp, ltype, &linfo) != CTF_ERR)
1546 off += linfo.cte_bits;
1547 else if ((lsize = ctf_type_size(fp, ltype)) != CTF_ERR)
1548 off += lsize * NBBY;
1549
1550 /*
1551 * Round up the offset of the end of the last member to
1552 * the next byte boundary, convert 'off' to bytes, and
1553 * then round it up again to the next multiple of the
1554 * alignment required by the new member. Finally,
1555 * convert back to bits and store the result in
1556 * dmd_offset. Technically we could do more efficient
1557 * packing if the new member is a bit-field, but we're
1558 * the "compiler" and ANSI says we can do as we choose.
1559 */
1560 off = roundup(off, NBBY) / NBBY;
1561 off = roundup(off, MAX(malign, 1));
1562 dmd->dmd_offset = off * NBBY;
1563 ssize = off + msize;
1564 } else {
1565 dmd->dmd_offset = offset;
1566 ssize = (offset + mbitsz) / NBBY;
1567 }
1568 } else {
1569 dmd->dmd_offset = 0;
1570 ssize = ctf_get_ctt_size(fp, &dtd->dtd_data, NULL, NULL);
1571 ssize = MAX(ssize, msize);
1572 }
1573
1574 ctf_set_ctt_size(&dtd->dtd_data, ssize);
1575
1576 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1);
1577 ctf_list_append(&dtd->dtd_u.dtu_members, dmd);
1578
1579 if (s != NULL)
1580 fp->ctf_dtstrlen += strlen(s) + 1;
1581
1582 ctf_ref_inc(fp, type);
1583 fp->ctf_flags |= LCTF_DIRTY;
1584 return (0);
1585 }
1586
1587 /*
1588 * This removes a type from the dynamic section. This will fail if the type is
1589 * referenced by another type. Note that the CTF ID is never reused currently by
1590 * CTF. Note that if this container is a parent container then we just outright
1591 * refuse to remove the type. There currently is no notion of searching for the
1592 * ctf_dtdef_t in parent containers. If there is, then this constraint could
1593 * become finer grained.
1594 */
1595 int
ctf_delete_type(ctf_file_t * fp,ctf_id_t type)1596 ctf_delete_type(ctf_file_t *fp, ctf_id_t type)
1597 {
1598 ctf_file_t *fpd;
1599 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type);
1600
1601 if (!(fp->ctf_flags & LCTF_RDWR))
1602 return (ctf_set_errno(fp, ECTF_RDONLY));
1603
1604 /*
1605 * We want to give as useful an errno as possible. That means that we
1606 * want to distinguish between a type which does not exist and one for
1607 * which the type is not dynamic.
1608 */
1609 fpd = fp;
1610 if (ctf_lookup_by_id(&fpd, type) == NULL &&
1611 ctf_dtd_lookup(fp, type) == NULL)
1612 return (CTF_ERR); /* errno is set for us */
1613
1614 if (dtd == NULL)
1615 return (ctf_set_errno(fp, ECTF_NOTDYN));
1616
1617 if (dtd->dtd_ref != 0 || fp->ctf_refcnt > 1)
1618 return (ctf_set_errno(fp, ECTF_REFERENCED));
1619
1620 ctf_dtd_delete(fp, dtd);
1621 fp->ctf_flags |= LCTF_DIRTY;
1622 return (0);
1623 }
1624
1625 static int
enumcmp(const char * name,int value,void * arg)1626 enumcmp(const char *name, int value, void *arg)
1627 {
1628 ctf_bundle_t *ctb = arg;
1629 int bvalue;
1630
1631 return (ctf_enum_value(ctb->ctb_file, ctb->ctb_type,
1632 name, &bvalue) == CTF_ERR || value != bvalue);
1633 }
1634
1635 static int
enumadd(const char * name,int value,void * arg)1636 enumadd(const char *name, int value, void *arg)
1637 {
1638 ctf_bundle_t *ctb = arg;
1639
1640 return (ctf_add_enumerator(ctb->ctb_file, ctb->ctb_type,
1641 name, value) == CTF_ERR);
1642 }
1643
1644 /*ARGSUSED*/
1645 static int
membcmp(const char * name,ctf_id_t type,ulong_t offset,void * arg)1646 membcmp(const char *name, ctf_id_t type, ulong_t offset, void *arg)
1647 {
1648 ctf_bundle_t *ctb = arg;
1649 ctf_membinfo_t ctm;
1650
1651 return (ctf_member_info(ctb->ctb_file, ctb->ctb_type,
1652 name, &ctm) == CTF_ERR || ctm.ctm_offset != offset);
1653 }
1654
1655 static int
membadd(const char * name,ctf_id_t type,ulong_t offset,void * arg)1656 membadd(const char *name, ctf_id_t type, ulong_t offset, void *arg)
1657 {
1658 ctf_bundle_t *ctb = arg;
1659 ctf_dmdef_t *dmd;
1660 char *s = NULL;
1661
1662 if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL)
1663 return (ctf_set_errno(ctb->ctb_file, EAGAIN));
1664
1665 if (name != NULL && (s = ctf_strdup(name)) == NULL) {
1666 ctf_free(dmd, sizeof (ctf_dmdef_t));
1667 return (ctf_set_errno(ctb->ctb_file, EAGAIN));
1668 }
1669
1670 /*
1671 * For now, dmd_type is copied as the src_fp's type; it is reset to an
1672 * equivalent dst_fp type by a final loop in ctf_add_type(), below.
1673 */
1674 dmd->dmd_name = s;
1675 dmd->dmd_type = type;
1676 dmd->dmd_offset = offset;
1677 dmd->dmd_value = -1;
1678
1679 ctf_list_append(&ctb->ctb_dtd->dtd_u.dtu_members, dmd);
1680
1681 if (s != NULL)
1682 ctb->ctb_file->ctf_dtstrlen += strlen(s) + 1;
1683
1684 ctb->ctb_file->ctf_flags |= LCTF_DIRTY;
1685 return (0);
1686 }
1687
1688 /*
1689 * The ctf_add_type routine is used to copy a type from a source CTF container
1690 * to a dynamic destination container. This routine operates recursively by
1691 * following the source type's links and embedded member types. If the
1692 * destination container already contains a named type which has the same
1693 * attributes, then we succeed and return this type but no changes occur.
1694 */
1695 ctf_id_t
ctf_add_type(ctf_file_t * dst_fp,ctf_file_t * src_fp,ctf_id_t src_type)1696 ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type)
1697 {
1698 ctf_id_t dst_type = CTF_ERR;
1699 uint_t dst_kind = CTF_K_UNKNOWN;
1700
1701 const ctf_type_t *tp;
1702 const char *name;
1703 uint_t kind, flag, vlen;
1704
1705 ctf_bundle_t src, dst;
1706 ctf_encoding_t src_en, dst_en;
1707 ctf_arinfo_t src_ar, dst_ar;
1708
1709 ctf_dtdef_t *dtd;
1710 ctf_funcinfo_t ctc;
1711
1712 ctf_hash_t *hp;
1713 ctf_helem_t *hep;
1714
1715 if (dst_fp == src_fp)
1716 return (src_type);
1717
1718 if (!(dst_fp->ctf_flags & LCTF_RDWR))
1719 return (ctf_set_errno(dst_fp, ECTF_RDONLY));
1720
1721 if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL)
1722 return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));
1723
1724 name = ctf_strptr(src_fp, tp->ctt_name);
1725 kind = LCTF_INFO_KIND(src_fp, tp->ctt_info);
1726 flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info);
1727 vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info);
1728
1729 switch (kind) {
1730 case CTF_K_STRUCT:
1731 hp = &dst_fp->ctf_structs;
1732 break;
1733 case CTF_K_UNION:
1734 hp = &dst_fp->ctf_unions;
1735 break;
1736 case CTF_K_ENUM:
1737 hp = &dst_fp->ctf_enums;
1738 break;
1739 default:
1740 hp = &dst_fp->ctf_names;
1741 break;
1742 }
1743
1744 /*
1745 * If the source type has a name and is a root type (visible at the
1746 * top-level scope), lookup the name in the destination container and
1747 * verify that it is of the same kind before we do anything else.
1748 */
1749 if ((flag & CTF_ADD_ROOT) && name[0] != '\0' &&
1750 (hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) {
1751 dst_type = (ctf_id_t)hep->h_type;
1752 dst_kind = ctf_type_kind(dst_fp, dst_type);
1753 }
1754
1755 /*
1756 * If an identically named dst_type exists, fail with ECTF_CONFLICT
1757 * unless dst_type is a forward declaration and src_type is a struct,
1758 * union, or enum (i.e. the definition of the previous forward decl).
1759 */
1760 if (dst_type != CTF_ERR && dst_kind != kind && (
1761 dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM &&
1762 kind != CTF_K_STRUCT && kind != CTF_K_UNION)))
1763 return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
1764
1765 /*
1766 * If the non-empty name was not found in the appropriate hash, search
1767 * the list of pending dynamic definitions that are not yet committed.
1768 * If a matching name and kind are found, assume this is the type that
1769 * we are looking for. This is necessary to permit ctf_add_type() to
1770 * operate recursively on entities such as a struct that contains a
1771 * pointer member that refers to the same struct type.
1772 */
1773 if (dst_type == CTF_ERR && name[0] != '\0') {
1774 for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL &&
1775 dtd->dtd_type > dst_fp->ctf_dtoldid;
1776 dtd = ctf_list_prev(dtd)) {
1777 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) == kind &&
1778 dtd->dtd_name != NULL &&
1779 strcmp(dtd->dtd_name, name) == 0)
1780 return (dtd->dtd_type);
1781 }
1782 }
1783
1784 src.ctb_file = src_fp;
1785 src.ctb_type = src_type;
1786 src.ctb_dtd = NULL;
1787
1788 dst.ctb_file = dst_fp;
1789 dst.ctb_type = dst_type;
1790 dst.ctb_dtd = NULL;
1791
1792 /*
1793 * Now perform kind-specific processing. If dst_type is CTF_ERR, then
1794 * we add a new type with the same properties as src_type to dst_fp.
1795 * If dst_type is not CTF_ERR, then we verify that dst_type has the
1796 * same attributes as src_type. We recurse for embedded references.
1797 */
1798 switch (kind) {
1799 case CTF_K_INTEGER:
1800 case CTF_K_FLOAT:
1801 if (ctf_type_encoding(src_fp, src_type, &src_en) != 0)
1802 return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));
1803
1804 if (dst_type != CTF_ERR) {
1805 if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0)
1806 return (CTF_ERR); /* errno is set for us */
1807
1808 if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t)))
1809 return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
1810
1811 } else if (kind == CTF_K_INTEGER) {
1812 dst_type = ctf_add_integer(dst_fp, flag, name, &src_en);
1813 } else
1814 dst_type = ctf_add_float(dst_fp, flag, name, &src_en);
1815 break;
1816
1817 case CTF_K_POINTER:
1818 case CTF_K_VOLATILE:
1819 case CTF_K_CONST:
1820 case CTF_K_RESTRICT:
1821 src_type = ctf_type_reference(src_fp, src_type);
1822 src_type = ctf_add_type(dst_fp, src_fp, src_type);
1823
1824 if (src_type == CTF_ERR)
1825 return (CTF_ERR); /* errno is set for us */
1826
1827 dst_type = ctf_add_reftype(dst_fp, flag, NULL, src_type, kind);
1828 break;
1829
1830 case CTF_K_ARRAY:
1831 if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR)
1832 return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));
1833
1834 src_ar.ctr_contents =
1835 ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents);
1836 src_ar.ctr_index =
1837 ctf_add_type(dst_fp, src_fp, src_ar.ctr_index);
1838 src_ar.ctr_nelems = src_ar.ctr_nelems;
1839
1840 if (src_ar.ctr_contents == CTF_ERR ||
1841 src_ar.ctr_index == CTF_ERR)
1842 return (CTF_ERR); /* errno is set for us */
1843
1844 if (dst_type != CTF_ERR) {
1845 if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0)
1846 return (CTF_ERR); /* errno is set for us */
1847
1848 if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
1849 return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
1850 } else
1851 dst_type = ctf_add_array(dst_fp, flag, &src_ar);
1852 break;
1853
1854 case CTF_K_FUNCTION:
1855 ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type);
1856 ctc.ctc_argc = 0;
1857 ctc.ctc_flags = 0;
1858
1859 if (ctc.ctc_return == CTF_ERR)
1860 return (CTF_ERR); /* errno is set for us */
1861
1862 dst_type = ctf_add_funcptr(dst_fp, flag, &ctc, NULL);
1863 break;
1864
1865 case CTF_K_STRUCT:
1866 case CTF_K_UNION: {
1867 ctf_dmdef_t *dmd;
1868 int errs = 0;
1869
1870 /*
1871 * Technically to match a struct or union we need to check both
1872 * ways (src members vs. dst, dst members vs. src) but we make
1873 * this more optimal by only checking src vs. dst and comparing
1874 * the total size of the structure (which we must do anyway)
1875 * which covers the possibility of dst members not in src.
1876 * This optimization can be defeated for unions, but is so
1877 * pathological as to render it irrelevant for our purposes.
1878 */
1879 if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) {
1880 if (ctf_type_size(src_fp, src_type) !=
1881 ctf_type_size(dst_fp, dst_type))
1882 return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
1883
1884 if (ctf_member_iter(src_fp, src_type, membcmp, &dst))
1885 return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
1886
1887 break;
1888 }
1889
1890 /*
1891 * Unlike the other cases, copying structs and unions is done
1892 * manually so as to avoid repeated lookups in ctf_add_member
1893 * and to ensure the exact same member offsets as in src_type.
1894 */
1895 dst_type = ctf_add_generic(dst_fp, flag, name, &dtd);
1896 if (dst_type == CTF_ERR)
1897 return (CTF_ERR); /* errno is set for us */
1898
1899 dst.ctb_type = dst_type;
1900 dst.ctb_dtd = dtd;
1901
1902 if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0)
1903 errs++; /* increment errs and fail at bottom of case */
1904
1905 ctf_set_ctt_size(&dtd->dtd_data,
1906 ctf_type_size(src_fp, src_type));
1907
1908 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen);
1909
1910 /*
1911 * Make a final pass through the members changing each dmd_type
1912 * (a src_fp type) to an equivalent type in dst_fp. We pass
1913 * through all members, leaving any that fail set to CTF_ERR.
1914 */
1915 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
1916 dmd != NULL; dmd = ctf_list_next(dmd)) {
1917 if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp,
1918 dmd->dmd_type)) == CTF_ERR)
1919 errs++;
1920 }
1921
1922 if (errs)
1923 return (CTF_ERR); /* errno is set for us */
1924
1925 /*
1926 * Now that we know that we can't fail, we go through and bump
1927 * all the reference counts on the member types.
1928 */
1929 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
1930 dmd != NULL; dmd = ctf_list_next(dmd))
1931 ctf_ref_inc(dst_fp, dmd->dmd_type);
1932 break;
1933 }
1934
1935 case CTF_K_ENUM:
1936 if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) {
1937 if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) ||
1938 ctf_enum_iter(dst_fp, dst_type, enumcmp, &src))
1939 return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
1940 } else {
1941 ssize_t size = ctf_type_size(src_fp, src_type);
1942
1943 if (size == CTF_ERR)
1944 return (CTF_ERR); /* errno is set for us */
1945
1946 dst_type = ctf_add_enum(dst_fp, flag, name, size);
1947 if ((dst.ctb_type = dst_type) == CTF_ERR ||
1948 ctf_enum_iter(src_fp, src_type, enumadd, &dst))
1949 return (CTF_ERR); /* errno is set for us */
1950 }
1951 break;
1952
1953 case CTF_K_FORWARD:
1954 if (dst_type == CTF_ERR) {
1955 dst_type = ctf_add_forward(dst_fp,
1956 flag, name, CTF_K_STRUCT); /* assume STRUCT */
1957 }
1958 break;
1959
1960 case CTF_K_TYPEDEF:
1961 src_type = ctf_type_reference(src_fp, src_type);
1962 src_type = ctf_add_type(dst_fp, src_fp, src_type);
1963
1964 if (src_type == CTF_ERR)
1965 return (CTF_ERR); /* errno is set for us */
1966
1967 /*
1968 * If dst_type is not CTF_ERR at this point, we should check if
1969 * ctf_type_reference(dst_fp, dst_type) != src_type and if so
1970 * fail with ECTF_CONFLICT. However, this causes problems with
1971 * <sys/types.h> typedefs that vary based on things like if
1972 * _ILP32x then pid_t is int otherwise long. We therefore omit
1973 * this check and assume that if the identically named typedef
1974 * already exists in dst_fp, it is correct or equivalent.
1975 */
1976 if (dst_type == CTF_ERR) {
1977 dst_type = ctf_add_typedef(dst_fp, flag,
1978 name, src_type);
1979 }
1980 break;
1981
1982 default:
1983 return (ctf_set_errno(dst_fp, ECTF_CORRUPT));
1984 }
1985
1986 return (dst_type);
1987 }
1988
1989 int
ctf_add_function(ctf_file_t * fp,ulong_t idx,const ctf_funcinfo_t * fip,const ctf_id_t * argc)1990 ctf_add_function(ctf_file_t *fp, ulong_t idx, const ctf_funcinfo_t *fip,
1991 const ctf_id_t *argc)
1992 {
1993 int i;
1994 ctf_dsdef_t *dsd;
1995 ctf_file_t *afp;
1996 uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data;
1997
1998 if (!(fp->ctf_flags & LCTF_RDWR))
1999 return (ctf_set_errno(fp, ECTF_RDONLY));
2000
2001 if (ctf_dsd_lookup(fp, idx) != NULL)
2002 return (ctf_set_errno(fp, ECTF_CONFLICT));
2003
2004 if (symbase == (uintptr_t)NULL)
2005 return (ctf_set_errno(fp, ECTF_STRTAB));
2006
2007 if (idx > fp->ctf_nsyms)
2008 return (ctf_set_errno(fp, ECTF_NOTDATA));
2009
2010 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) {
2011 const Elf32_Sym *symp = (Elf32_Sym *)symbase + idx;
2012 if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC)
2013 return (ctf_set_errno(fp, ECTF_NOTFUNC));
2014 } else {
2015 const Elf64_Sym *symp = (Elf64_Sym *)symbase + idx;
2016 if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC)
2017 return (ctf_set_errno(fp, ECTF_NOTFUNC));
2018 }
2019
2020 afp = fp;
2021 if (ctf_lookup_by_id(&afp, fip->ctc_return) == NULL)
2022 return (CTF_ERR); /* errno is set for us */
2023
2024 for (i = 0; i < fip->ctc_argc; i++) {
2025 afp = fp;
2026 if (ctf_lookup_by_id(&afp, argc[i]) == NULL)
2027 return (CTF_ERR); /* errno is set for us */
2028 }
2029
2030 dsd = ctf_alloc(sizeof (ctf_dsdef_t));
2031 if (dsd == NULL)
2032 return (ctf_set_errno(fp, ENOMEM));
2033 dsd->dsd_nargs = fip->ctc_argc;
2034 if (fip->ctc_flags & CTF_FUNC_VARARG)
2035 dsd->dsd_nargs++;
2036 if (dsd->dsd_nargs != 0) {
2037 dsd->dsd_argc = ctf_alloc(sizeof (ctf_id_t) * dsd->dsd_nargs);
2038 if (dsd->dsd_argc == NULL) {
2039 ctf_free(dsd, sizeof (ctf_dsdef_t));
2040 return (ctf_set_errno(fp, ENOMEM));
2041 }
2042 bcopy(argc, dsd->dsd_argc, sizeof (ctf_id_t) * fip->ctc_argc);
2043 if (fip->ctc_flags & CTF_FUNC_VARARG)
2044 dsd->dsd_argc[fip->ctc_argc] = 0;
2045 }
2046 dsd->dsd_symidx = idx;
2047 dsd->dsd_tid = fip->ctc_return;
2048
2049 ctf_dsd_insert(fp, dsd);
2050 fp->ctf_flags |= LCTF_DIRTY;
2051
2052 return (0);
2053 }
2054
2055 int
ctf_add_object(ctf_file_t * fp,ulong_t idx,ctf_id_t type)2056 ctf_add_object(ctf_file_t *fp, ulong_t idx, ctf_id_t type)
2057 {
2058 ctf_dsdef_t *dsd;
2059 ctf_file_t *afp;
2060 uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data;
2061
2062 if (!(fp->ctf_flags & LCTF_RDWR))
2063 return (ctf_set_errno(fp, ECTF_RDONLY));
2064
2065 if (!(fp->ctf_flags & LCTF_RDWR))
2066 return (ctf_set_errno(fp, ECTF_RDONLY));
2067
2068 if (ctf_dsd_lookup(fp, idx) != NULL)
2069 return (ctf_set_errno(fp, ECTF_CONFLICT));
2070
2071 if (symbase == (uintptr_t)NULL)
2072 return (ctf_set_errno(fp, ECTF_STRTAB));
2073
2074 if (idx > fp->ctf_nsyms)
2075 return (ctf_set_errno(fp, ECTF_NOTDATA));
2076
2077 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) {
2078 const Elf32_Sym *symp = (Elf32_Sym *)symbase + idx;
2079 if (ELF32_ST_TYPE(symp->st_info) != STT_OBJECT)
2080 return (ctf_set_errno(fp, ECTF_NOTDATA));
2081 } else {
2082 const Elf64_Sym *symp = (Elf64_Sym *)symbase + idx;
2083 if (ELF64_ST_TYPE(symp->st_info) != STT_OBJECT)
2084 return (ctf_set_errno(fp, ECTF_NOTDATA));
2085 }
2086
2087 afp = fp;
2088 if (ctf_lookup_by_id(&afp, type) == NULL)
2089 return (CTF_ERR); /* errno is set for us */
2090
2091 dsd = ctf_alloc(sizeof (ctf_dsdef_t));
2092 if (dsd == NULL)
2093 return (ctf_set_errno(fp, ENOMEM));
2094 dsd->dsd_symidx = idx;
2095 dsd->dsd_tid = type;
2096 dsd->dsd_argc = NULL;
2097
2098 ctf_dsd_insert(fp, dsd);
2099 fp->ctf_flags |= LCTF_DIRTY;
2100
2101 return (0);
2102 }
2103
2104 void
ctf_dataptr(ctf_file_t * fp,const void ** addrp,size_t * sizep)2105 ctf_dataptr(ctf_file_t *fp, const void **addrp, size_t *sizep)
2106 {
2107 if (addrp != NULL)
2108 *addrp = fp->ctf_base;
2109 if (sizep != NULL)
2110 *sizep = fp->ctf_size;
2111 }
2112
2113 int
ctf_add_label(ctf_file_t * fp,const char * name,ctf_id_t type,uint_t position)2114 ctf_add_label(ctf_file_t *fp, const char *name, ctf_id_t type, uint_t position)
2115 {
2116 ctf_file_t *fpd;
2117 ctf_dldef_t *dld;
2118
2119 if (name == NULL)
2120 return (ctf_set_errno(fp, EINVAL));
2121
2122 if (!(fp->ctf_flags & LCTF_RDWR))
2123 return (ctf_set_errno(fp, ECTF_RDONLY));
2124
2125 fpd = fp;
2126 if (type != 0 && ctf_lookup_by_id(&fpd, type) == NULL)
2127 return (CTF_ERR); /* errno is set for us */
2128
2129 if (type != 0 && (fp->ctf_flags & LCTF_CHILD) &&
2130 CTF_TYPE_ISPARENT(type))
2131 return (ctf_set_errno(fp, ECTF_NOPARENT));
2132
2133 if (ctf_dld_lookup(fp, name) != NULL)
2134 return (ctf_set_errno(fp, ECTF_LABELEXISTS));
2135
2136 if ((dld = ctf_alloc(sizeof (ctf_dldef_t))) == NULL)
2137 return (ctf_set_errno(fp, EAGAIN));
2138
2139 if ((dld->dld_name = ctf_strdup(name)) == NULL) {
2140 ctf_free(dld, sizeof (ctf_dldef_t));
2141 return (ctf_set_errno(fp, EAGAIN));
2142 }
2143
2144 ctf_dprintf("adding label %s, %ld\n", name, type);
2145 dld->dld_type = type;
2146 fp->ctf_dtstrlen += strlen(name) + 1;
2147 ctf_dld_insert(fp, dld, position);
2148 fp->ctf_flags |= LCTF_DIRTY;
2149
2150 return (0);
2151 }
2152
2153 /*
2154 * Update the size of a structure or union. Note that we don't allow this to
2155 * shrink the size of a struct or union, only to increase it. This is useful for
2156 * cases when you have a structure whose actual size is larger than the sum of
2157 * its members due to padding for natural alignment.
2158 */
2159 int
ctf_set_size(ctf_file_t * fp,ctf_id_t id,const ulong_t newsz)2160 ctf_set_size(ctf_file_t *fp, ctf_id_t id, const ulong_t newsz)
2161 {
2162 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, id);
2163 uint_t kind;
2164 size_t oldsz;
2165
2166 if (!(fp->ctf_flags & LCTF_RDWR))
2167 return (ctf_set_errno(fp, ECTF_RDONLY));
2168
2169 if (dtd == NULL)
2170 return (ctf_set_errno(fp, ECTF_BADID));
2171
2172 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
2173
2174 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
2175 return (ctf_set_errno(fp, ECTF_NOTSOU));
2176
2177 if ((oldsz = dtd->dtd_data.ctt_size) == CTF_LSIZE_SENT)
2178 oldsz = CTF_TYPE_LSIZE(&dtd->dtd_data);
2179
2180 if (newsz < oldsz)
2181 return (ctf_set_errno(fp, EINVAL));
2182
2183 ctf_set_ctt_size(&dtd->dtd_data, newsz);
2184
2185 fp->ctf_flags |= LCTF_DIRTY;
2186 return (0);
2187 }
2188
2189 int
ctf_set_root(ctf_file_t * fp,ctf_id_t id,const boolean_t vis)2190 ctf_set_root(ctf_file_t *fp, ctf_id_t id, const boolean_t vis)
2191 {
2192 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, id);
2193 uint_t kind, vlen;
2194
2195 if (!(fp->ctf_flags & LCTF_RDWR))
2196 return (ctf_set_errno(fp, ECTF_RDONLY));
2197
2198 if (dtd == NULL)
2199 return (ctf_set_errno(fp, ECTF_BADID));
2200
2201 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
2202 vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info);
2203
2204 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, vis, vlen);
2205 return (0);
2206 }
2207