1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */
27 /*
28 * Copyright (c) 2015, Joyent, Inc. All rights reserved.
29 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
30 */
31
32 #include <ctf_impl.h>
33 #include <sys/mman.h>
34 #include <sys/zmod.h>
35
36 static const ctf_dmodel_t _libctf_models[] = {
37 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
38 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
39 { NULL, 0, 0, 0, 0, 0, 0 }
40 };
41
42 const char _CTF_SECTION[] = ".SUNW_ctf";
43 const char _CTF_NULLSTR[] = "";
44
45 int _libctf_version = CTF_VERSION; /* library client version */
46 int _libctf_debug = 0; /* debugging messages enabled */
47
48 static ushort_t
get_kind_v1(ushort_t info)49 get_kind_v1(ushort_t info)
50 {
51 return (CTF_INFO_KIND_V1(info));
52 }
53
54 static ushort_t
get_kind_v2(ushort_t info)55 get_kind_v2(ushort_t info)
56 {
57 return (CTF_INFO_KIND(info));
58 }
59
60 static ushort_t
get_root_v1(ushort_t info)61 get_root_v1(ushort_t info)
62 {
63 return (CTF_INFO_ISROOT_V1(info));
64 }
65
66 static ushort_t
get_root_v2(ushort_t info)67 get_root_v2(ushort_t info)
68 {
69 return (CTF_INFO_ISROOT(info));
70 }
71
72 static ushort_t
get_vlen_v1(ushort_t info)73 get_vlen_v1(ushort_t info)
74 {
75 return (CTF_INFO_VLEN_V1(info));
76 }
77
78 static ushort_t
get_vlen_v2(ushort_t info)79 get_vlen_v2(ushort_t info)
80 {
81 return (CTF_INFO_VLEN(info));
82 }
83
84 static const ctf_fileops_t ctf_fileops[] = {
85 { NULL, NULL },
86 { get_kind_v1, get_root_v1, get_vlen_v1 },
87 { get_kind_v2, get_root_v2, get_vlen_v2 },
88 };
89
90 /*
91 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
92 */
93 static Elf64_Sym *
sym_to_gelf(const Elf32_Sym * src,Elf64_Sym * dst)94 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
95 {
96 dst->st_name = src->st_name;
97 dst->st_value = src->st_value;
98 dst->st_size = src->st_size;
99 dst->st_info = src->st_info;
100 dst->st_other = src->st_other;
101 dst->st_shndx = src->st_shndx;
102
103 return (dst);
104 }
105
106 /*
107 * Initialize the symtab translation table by filling each entry with the
108 * offset of the CTF type or function data corresponding to each STT_FUNC or
109 * STT_OBJECT entry in the symbol table.
110 */
111 static int
init_symtab(ctf_file_t * fp,const ctf_header_t * hp,const ctf_sect_t * sp,const ctf_sect_t * strp)112 init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
113 const ctf_sect_t *sp, const ctf_sect_t *strp)
114 {
115 const uchar_t *symp = sp->cts_data;
116 uint_t *xp = fp->ctf_sxlate;
117 uint_t *xend = xp + fp->ctf_nsyms;
118
119 uint_t objtoff = hp->cth_objtoff;
120 uint_t funcoff = hp->cth_funcoff;
121
122 ushort_t info, vlen;
123 Elf64_Sym sym, *gsp;
124 const char *name;
125
126 /*
127 * The CTF data object and function type sections are ordered to match
128 * the relative order of the respective symbol types in the symtab.
129 * If no type information is available for a symbol table entry, a
130 * pad is inserted in the CTF section. As a further optimization,
131 * anonymous or undefined symbols are omitted from the CTF data.
132 */
133 for (; xp < xend; xp++, symp += sp->cts_entsize) {
134 if (sp->cts_entsize == sizeof (Elf32_Sym))
135 gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
136 else
137 gsp = (Elf64_Sym *)(uintptr_t)symp;
138
139 if (gsp->st_name < strp->cts_size)
140 name = (const char *)strp->cts_data + gsp->st_name;
141 else
142 name = _CTF_NULLSTR;
143
144 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
145 strcmp(name, "_START_") == 0 ||
146 strcmp(name, "_END_") == 0) {
147 *xp = -1u;
148 continue;
149 }
150
151 switch (ELF64_ST_TYPE(gsp->st_info)) {
152 case STT_OBJECT:
153 if (objtoff >= hp->cth_funcoff ||
154 (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
155 *xp = -1u;
156 break;
157 }
158
159 *xp = objtoff;
160 objtoff += sizeof (ushort_t);
161 break;
162
163 case STT_FUNC:
164 if (funcoff >= hp->cth_typeoff) {
165 *xp = -1u;
166 break;
167 }
168
169 *xp = funcoff;
170
171 info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
172 vlen = LCTF_INFO_VLEN(fp, info);
173
174 /*
175 * If we encounter a zero pad at the end, just skip it.
176 * Otherwise skip over the function and its return type
177 * (+2) and the argument list (vlen).
178 */
179 if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
180 vlen == 0)
181 funcoff += sizeof (ushort_t); /* skip pad */
182 else
183 funcoff += sizeof (ushort_t) * (vlen + 2);
184 break;
185
186 default:
187 *xp = -1u;
188 break;
189 }
190 }
191
192 ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
193 return (0);
194 }
195
196 /*
197 * Initialize the type ID translation table with the byte offset of each type,
198 * and initialize the hash tables of each named type.
199 */
200 static int
init_types(ctf_file_t * fp,const ctf_header_t * cth)201 init_types(ctf_file_t *fp, const ctf_header_t *cth)
202 {
203 /* LINTED - pointer alignment */
204 const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
205 /* LINTED - pointer alignment */
206 const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
207
208 ulong_t pop[CTF_K_MAX + 1] = { 0 };
209 const ctf_type_t *tp;
210 ctf_hash_t *hp;
211 ushort_t id, dst;
212 uint_t *xp;
213
214 /*
215 * We initially determine whether the container is a child or a parent
216 * based on the value of cth_parname. To support containers that pre-
217 * date cth_parname, we also scan the types themselves for references
218 * to values in the range reserved for child types in our first pass.
219 */
220 int child = cth->cth_parname != 0;
221 int nlstructs = 0, nlunions = 0;
222 int err;
223
224 /*
225 * We make two passes through the entire type section. In this first
226 * pass, we count the number of each type and the total number of types.
227 */
228 for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
229 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
230 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
231 ssize_t size, increment;
232
233 size_t vbytes;
234 uint_t n;
235
236 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
237
238 switch (kind) {
239 case CTF_K_INTEGER:
240 case CTF_K_FLOAT:
241 vbytes = sizeof (uint_t);
242 break;
243 case CTF_K_ARRAY:
244 vbytes = sizeof (ctf_array_t);
245 break;
246 case CTF_K_FUNCTION:
247 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
248 break;
249 case CTF_K_STRUCT:
250 case CTF_K_UNION:
251 if (fp->ctf_version == CTF_VERSION_1 ||
252 size < CTF_LSTRUCT_THRESH) {
253 ctf_member_t *mp = (ctf_member_t *)
254 ((uintptr_t)tp + increment);
255
256 vbytes = sizeof (ctf_member_t) * vlen;
257 for (n = vlen; n != 0; n--, mp++)
258 child |= CTF_TYPE_ISCHILD(mp->ctm_type);
259 } else {
260 ctf_lmember_t *lmp = (ctf_lmember_t *)
261 ((uintptr_t)tp + increment);
262
263 vbytes = sizeof (ctf_lmember_t) * vlen;
264 for (n = vlen; n != 0; n--, lmp++)
265 child |=
266 CTF_TYPE_ISCHILD(lmp->ctlm_type);
267 }
268 break;
269 case CTF_K_ENUM:
270 vbytes = sizeof (ctf_enum_t) * vlen;
271 break;
272 case CTF_K_FORWARD:
273 /*
274 * For forward declarations, ctt_type is the CTF_K_*
275 * kind for the tag, so bump that population count too.
276 * If ctt_type is unknown, treat the tag as a struct.
277 */
278 if (tp->ctt_type == CTF_K_UNKNOWN ||
279 tp->ctt_type >= CTF_K_MAX)
280 pop[CTF_K_STRUCT]++;
281 else
282 pop[tp->ctt_type]++;
283 /*FALLTHRU*/
284 case CTF_K_UNKNOWN:
285 vbytes = 0;
286 break;
287 case CTF_K_POINTER:
288 case CTF_K_TYPEDEF:
289 case CTF_K_VOLATILE:
290 case CTF_K_CONST:
291 case CTF_K_RESTRICT:
292 child |= CTF_TYPE_ISCHILD(tp->ctt_type);
293 vbytes = 0;
294 break;
295 default:
296 ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
297 return (ECTF_CORRUPT);
298 }
299 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
300 pop[kind]++;
301 }
302
303 /*
304 * If we detected a reference to a child type ID, then we know this
305 * container is a child and may have a parent's types imported later.
306 */
307 if (child) {
308 ctf_dprintf("CTF container %p is a child\n", (void *)fp);
309 fp->ctf_flags |= LCTF_CHILD;
310 } else
311 ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
312
313 /*
314 * Now that we've counted up the number of each type, we can allocate
315 * the hash tables, type translation table, and pointer table.
316 */
317 if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
318 return (err);
319
320 if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
321 return (err);
322
323 if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
324 return (err);
325
326 if ((err = ctf_hash_create(&fp->ctf_names,
327 pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
328 pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
329 pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
330 return (err);
331
332 fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
333 fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
334
335 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
336 return (EAGAIN); /* memory allocation failed */
337
338 xp = fp->ctf_txlate;
339 *xp++ = 0; /* type id 0 is used as a sentinel value */
340
341 bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
342 bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
343
344 /*
345 * In the second pass through the types, we fill in each entry of the
346 * type and pointer tables and add names to the appropriate hashes.
347 */
348 for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
349 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
350 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
351 ssize_t size, increment;
352
353 const char *name;
354 size_t vbytes;
355 ctf_helem_t *hep;
356 ctf_encoding_t cte;
357
358 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
359 name = ctf_strptr(fp, tp->ctt_name);
360
361 switch (kind) {
362 case CTF_K_INTEGER:
363 case CTF_K_FLOAT:
364 /*
365 * Only insert a new integer base type definition if
366 * this type name has not been defined yet. We re-use
367 * the names with different encodings for bit-fields.
368 */
369 if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
370 name, strlen(name))) == NULL) {
371 err = ctf_hash_insert(&fp->ctf_names, fp,
372 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
373 if (err != 0 && err != ECTF_STRTAB)
374 return (err);
375 } else if (ctf_type_encoding(fp, hep->h_type,
376 &cte) == 0 && cte.cte_bits == 0) {
377 /*
378 * Work-around SOS8 stabs bug: replace existing
379 * intrinsic w/ same name if it was zero bits.
380 */
381 hep->h_type = CTF_INDEX_TO_TYPE(id, child);
382 }
383 vbytes = sizeof (uint_t);
384 break;
385
386 case CTF_K_ARRAY:
387 vbytes = sizeof (ctf_array_t);
388 break;
389
390 case CTF_K_FUNCTION:
391 err = ctf_hash_insert(&fp->ctf_names, fp,
392 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
393 if (err != 0 && err != ECTF_STRTAB)
394 return (err);
395 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
396 break;
397
398 case CTF_K_STRUCT:
399 err = ctf_hash_define(&fp->ctf_structs, fp,
400 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
401
402 if (err != 0 && err != ECTF_STRTAB)
403 return (err);
404
405 if (fp->ctf_version == CTF_VERSION_1 ||
406 size < CTF_LSTRUCT_THRESH)
407 vbytes = sizeof (ctf_member_t) * vlen;
408 else {
409 vbytes = sizeof (ctf_lmember_t) * vlen;
410 nlstructs++;
411 }
412 break;
413
414 case CTF_K_UNION:
415 err = ctf_hash_define(&fp->ctf_unions, fp,
416 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
417
418 if (err != 0 && err != ECTF_STRTAB)
419 return (err);
420
421 if (fp->ctf_version == CTF_VERSION_1 ||
422 size < CTF_LSTRUCT_THRESH)
423 vbytes = sizeof (ctf_member_t) * vlen;
424 else {
425 vbytes = sizeof (ctf_lmember_t) * vlen;
426 nlunions++;
427 }
428 break;
429
430 case CTF_K_ENUM:
431 err = ctf_hash_define(&fp->ctf_enums, fp,
432 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
433
434 if (err != 0 && err != ECTF_STRTAB)
435 return (err);
436
437 vbytes = sizeof (ctf_enum_t) * vlen;
438 break;
439
440 case CTF_K_TYPEDEF:
441 err = ctf_hash_insert(&fp->ctf_names, fp,
442 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
443 if (err != 0 && err != ECTF_STRTAB)
444 return (err);
445 vbytes = 0;
446 break;
447
448 case CTF_K_FORWARD:
449 /*
450 * Only insert forward tags into the given hash if the
451 * type or tag name is not already present.
452 */
453 switch (tp->ctt_type) {
454 case CTF_K_STRUCT:
455 hp = &fp->ctf_structs;
456 break;
457 case CTF_K_UNION:
458 hp = &fp->ctf_unions;
459 break;
460 case CTF_K_ENUM:
461 hp = &fp->ctf_enums;
462 break;
463 default:
464 hp = &fp->ctf_structs;
465 }
466
467 if (ctf_hash_lookup(hp, fp,
468 name, strlen(name)) == NULL) {
469 err = ctf_hash_insert(hp, fp,
470 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
471 if (err != 0 && err != ECTF_STRTAB)
472 return (err);
473 }
474 vbytes = 0;
475 break;
476
477 case CTF_K_POINTER:
478 /*
479 * If the type referenced by the pointer is in this CTF
480 * container, then store the index of the pointer type
481 * in fp->ctf_ptrtab[ index of referenced type ].
482 */
483 if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
484 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
485 fp->ctf_ptrtab[
486 CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
487 /*FALLTHRU*/
488
489 case CTF_K_VOLATILE:
490 case CTF_K_CONST:
491 case CTF_K_RESTRICT:
492 err = ctf_hash_insert(&fp->ctf_names, fp,
493 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
494 if (err != 0 && err != ECTF_STRTAB)
495 return (err);
496 /*FALLTHRU*/
497
498 default:
499 vbytes = 0;
500 break;
501 }
502
503 *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
504 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
505 }
506
507 ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
508 ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
509 ctf_dprintf("%u struct names hashed (%d long)\n",
510 ctf_hash_size(&fp->ctf_structs), nlstructs);
511 ctf_dprintf("%u union names hashed (%d long)\n",
512 ctf_hash_size(&fp->ctf_unions), nlunions);
513 ctf_dprintf("%u base type names hashed\n",
514 ctf_hash_size(&fp->ctf_names));
515
516 /*
517 * Make an additional pass through the pointer table to find pointers
518 * that point to anonymous typedef nodes. If we find one, modify the
519 * pointer table so that the pointer is also known to point to the
520 * node that is referenced by the anonymous typedef node.
521 */
522 for (id = 1; id <= fp->ctf_typemax; id++) {
523 if ((dst = fp->ctf_ptrtab[id]) != 0) {
524 tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
525
526 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
527 strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
528 CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
529 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
530 fp->ctf_ptrtab[
531 CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
532 }
533 }
534
535 return (0);
536 }
537
538 /*
539 * Decode the specified CTF buffer and optional symbol table and create a new
540 * CTF container representing the symbolic debugging information. This code
541 * can be used directly by the debugger, or it can be used as the engine for
542 * ctf_fdopen() or ctf_open(), below.
543 */
544 ctf_file_t *
ctf_bufopen(const ctf_sect_t * ctfsect,const ctf_sect_t * symsect,const ctf_sect_t * strsect,int * errp)545 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
546 const ctf_sect_t *strsect, int *errp)
547 {
548 const ctf_preamble_t *pp;
549 ctf_header_t hp;
550 ctf_file_t *fp;
551 void *buf, *base;
552 size_t size, hdrsz;
553 int err;
554 uint_t hflags;
555
556 if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
557 return (ctf_set_open_errno(errp, EINVAL));
558
559 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
560 symsect->cts_entsize != sizeof (Elf64_Sym))
561 return (ctf_set_open_errno(errp, ECTF_SYMTAB));
562
563 if (symsect != NULL && symsect->cts_data == NULL)
564 return (ctf_set_open_errno(errp, ECTF_SYMBAD));
565
566 if (strsect != NULL && strsect->cts_data == NULL)
567 return (ctf_set_open_errno(errp, ECTF_STRBAD));
568
569 if (ctfsect->cts_size < sizeof (ctf_preamble_t))
570 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
571
572 pp = (const ctf_preamble_t *)ctfsect->cts_data;
573
574 ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
575 pp->ctp_magic, pp->ctp_version);
576
577 /*
578 * Validate each part of the CTF header (either V1 or V2).
579 * First, we validate the preamble (common to all versions). At that
580 * point, we know specific header version, and can validate the
581 * version-specific parts including section offsets and alignments.
582 */
583 if (pp->ctp_magic != CTF_MAGIC)
584 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
585
586 if (pp->ctp_version == CTF_VERSION_2) {
587 if (ctfsect->cts_size < sizeof (ctf_header_t))
588 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
589
590 bcopy(ctfsect->cts_data, &hp, sizeof (hp));
591 hdrsz = sizeof (ctf_header_t);
592
593 } else if (pp->ctp_version == CTF_VERSION_1) {
594 const ctf_header_v1_t *h1p =
595 (const ctf_header_v1_t *)ctfsect->cts_data;
596
597 if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
598 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
599
600 bzero(&hp, sizeof (hp));
601 hp.cth_preamble = h1p->cth_preamble;
602 hp.cth_objtoff = h1p->cth_objtoff;
603 hp.cth_funcoff = h1p->cth_funcoff;
604 hp.cth_typeoff = h1p->cth_typeoff;
605 hp.cth_stroff = h1p->cth_stroff;
606 hp.cth_strlen = h1p->cth_strlen;
607
608 hdrsz = sizeof (ctf_header_v1_t);
609 } else
610 return (ctf_set_open_errno(errp, ECTF_CTFVERS));
611
612 size = hp.cth_stroff + hp.cth_strlen;
613
614 ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
615
616 if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
617 hp.cth_funcoff > size || hp.cth_typeoff > size ||
618 hp.cth_stroff > size)
619 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
620
621 if (hp.cth_lbloff > hp.cth_objtoff ||
622 hp.cth_objtoff > hp.cth_funcoff ||
623 hp.cth_funcoff > hp.cth_typeoff ||
624 hp.cth_typeoff > hp.cth_stroff)
625 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
626
627 if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
628 (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
629 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
630
631 /*
632 * Once everything is determined to be valid, attempt to decompress
633 * the CTF data buffer if it is compressed. Otherwise we just put
634 * the data section's buffer pointer into ctf_buf, below.
635 */
636 hflags = hp.cth_flags;
637 if (hp.cth_flags & CTF_F_COMPRESS) {
638 size_t srclen, dstlen;
639 const void *src;
640 int rc = Z_OK;
641
642 if (ctf_zopen(errp) == NULL)
643 return (NULL); /* errp is set for us */
644
645 if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
646 return (ctf_set_open_errno(errp, ECTF_ZALLOC));
647
648 bcopy(ctfsect->cts_data, base, hdrsz);
649 ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
650 buf = (uchar_t *)base + hdrsz;
651
652 src = (uchar_t *)ctfsect->cts_data + hdrsz;
653 srclen = ctfsect->cts_size - hdrsz;
654 dstlen = size;
655
656 if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
657 ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
658 ctf_data_free(base, size + hdrsz);
659 return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
660 }
661
662 if (dstlen != size) {
663 ctf_dprintf("zlib inflate short -- got %lu of %lu "
664 "bytes\n", (ulong_t)dstlen, (ulong_t)size);
665 ctf_data_free(base, size + hdrsz);
666 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
667 }
668
669 ctf_data_protect(base, size + hdrsz);
670
671 } else {
672 base = (void *)ctfsect->cts_data;
673 buf = (uchar_t *)base + hdrsz;
674 }
675
676 /*
677 * Once we have uncompressed and validated the CTF data buffer, we can
678 * proceed with allocating a ctf_file_t and initializing it.
679 */
680 if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
681 return (ctf_set_open_errno(errp, EAGAIN));
682
683 bzero(fp, sizeof (ctf_file_t));
684 fp->ctf_version = hp.cth_version;
685 fp->ctf_fileops = &ctf_fileops[hp.cth_version];
686 fp->ctf_hflags = hflags;
687 bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
688
689 if (symsect != NULL) {
690 bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
691 bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
692 }
693
694 if (fp->ctf_data.cts_name != NULL)
695 fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
696 if (fp->ctf_symtab.cts_name != NULL)
697 fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
698 if (fp->ctf_strtab.cts_name != NULL)
699 fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
700
701 if (fp->ctf_data.cts_name == NULL)
702 fp->ctf_data.cts_name = _CTF_NULLSTR;
703 if (fp->ctf_symtab.cts_name == NULL)
704 fp->ctf_symtab.cts_name = _CTF_NULLSTR;
705 if (fp->ctf_strtab.cts_name == NULL)
706 fp->ctf_strtab.cts_name = _CTF_NULLSTR;
707
708 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
709 fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
710
711 if (strsect != NULL) {
712 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
713 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
714 }
715
716 fp->ctf_base = base;
717 fp->ctf_buf = buf;
718 fp->ctf_size = size + hdrsz;
719
720 /*
721 * If we have a parent container name and label, store the relocated
722 * string pointers in the CTF container for easy access later.
723 */
724 if (hp.cth_parlabel != 0)
725 fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
726 if (hp.cth_parname != 0)
727 fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
728
729 ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
730 fp->ctf_parname ? fp->ctf_parname : "<NULL>",
731 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
732
733 /*
734 * If we have a symbol table section, allocate and initialize
735 * the symtab translation table, pointed to by ctf_sxlate.
736 */
737 if (symsect != NULL) {
738 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
739 fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
740
741 if (fp->ctf_sxlate == NULL) {
742 (void) ctf_set_open_errno(errp, EAGAIN);
743 goto bad;
744 }
745
746 if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
747 (void) ctf_set_open_errno(errp, err);
748 goto bad;
749 }
750 }
751
752 if ((err = init_types(fp, &hp)) != 0) {
753 (void) ctf_set_open_errno(errp, err);
754 goto bad;
755 }
756
757 /*
758 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an
759 * array of type name prefixes and the corresponding ctf_hash to use.
760 * NOTE: This code must be kept in sync with the code in ctf_update().
761 */
762 fp->ctf_lookups[0].ctl_prefix = "struct";
763 fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
764 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
765 fp->ctf_lookups[1].ctl_prefix = "union";
766 fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
767 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
768 fp->ctf_lookups[2].ctl_prefix = "enum";
769 fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
770 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
771 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
772 fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
773 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
774 fp->ctf_lookups[4].ctl_prefix = NULL;
775 fp->ctf_lookups[4].ctl_len = 0;
776 fp->ctf_lookups[4].ctl_hash = NULL;
777
778 if (symsect != NULL) {
779 if (symsect->cts_entsize == sizeof (Elf64_Sym))
780 (void) ctf_setmodel(fp, CTF_MODEL_LP64);
781 else
782 (void) ctf_setmodel(fp, CTF_MODEL_ILP32);
783 } else
784 (void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
785
786 fp->ctf_refcnt = 1;
787 return (fp);
788
789 bad:
790 ctf_close(fp);
791 return (NULL);
792 }
793
794 /*
795 * Dupliate a ctf_file_t and its underlying section information into a new
796 * container. This works by copying the three ctf_sect_t's of the original
797 * container if they exist and passing those into ctf_bufopen. To copy those, we
798 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
799 * the cheapest thing, but it's what we've got.
800 */
801 ctf_file_t *
ctf_dup(ctf_file_t * ofp)802 ctf_dup(ctf_file_t *ofp)
803 {
804 ctf_file_t *fp;
805 ctf_sect_t ctfsect, symsect, strsect;
806 ctf_sect_t *ctp, *symp, *strp;
807 void *cbuf, *symbuf, *strbuf;
808 int err;
809
810 cbuf = symbuf = strbuf = NULL;
811 /*
812 * The ctfsect isn't allowed to not exist, but the symbol and string
813 * section might not. We only need to copy the data of the section, not
814 * the name, as ctf_bufopen will take care of that.
815 */
816 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
817 cbuf = ctf_data_alloc(ctfsect.cts_size);
818 if (cbuf == NULL) {
819 (void) ctf_set_errno(ofp, ECTF_MMAP);
820 return (NULL);
821 }
822
823 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
824 ctf_data_protect(cbuf, ctfsect.cts_size);
825 ctfsect.cts_data = cbuf;
826 ctfsect.cts_offset = 0;
827 ctp = &ctfsect;
828
829 if (ofp->ctf_symtab.cts_data != NULL) {
830 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
831 symbuf = ctf_data_alloc(symsect.cts_size);
832 if (symbuf == NULL) {
833 (void) ctf_set_errno(ofp, ECTF_MMAP);
834 goto err;
835 }
836 bcopy(symsect.cts_data, symbuf, symsect.cts_size);
837 ctf_data_protect(symbuf, symsect.cts_size);
838 symsect.cts_data = symbuf;
839 symsect.cts_offset = 0;
840 symp = &symsect;
841 } else {
842 symp = NULL;
843 }
844
845 if (ofp->ctf_strtab.cts_data != NULL) {
846 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
847 strbuf = ctf_data_alloc(strsect.cts_size);
848 if (strbuf == NULL) {
849 (void) ctf_set_errno(ofp, ECTF_MMAP);
850 goto err;
851 }
852 bcopy(strsect.cts_data, strbuf, strsect.cts_size);
853 ctf_data_protect(strbuf, strsect.cts_size);
854 strsect.cts_data = strbuf;
855 strsect.cts_offset = 0;
856 strp = &strsect;
857 } else {
858 strp = NULL;
859 }
860
861 fp = ctf_bufopen(ctp, symp, strp, &err);
862 if (fp == NULL) {
863 (void) ctf_set_errno(ofp, err);
864 goto err;
865 }
866
867 fp->ctf_flags |= LCTF_MMAP;
868
869 return (fp);
870
871 err:
872 ctf_data_free(cbuf, ctfsect.cts_size);
873 if (symbuf != NULL)
874 ctf_data_free(symbuf, symsect.cts_size);
875 if (strbuf != NULL)
876 ctf_data_free(strbuf, strsect.cts_size);
877 return (NULL);
878 }
879
880 /*
881 * Close the specified CTF container and free associated data structures. Note
882 * that ctf_close() is a reference counted operation: if the specified file is
883 * the parent of other active containers, its reference count will be greater
884 * than one and it will be freed later when no active children exist.
885 */
886 void
ctf_close(ctf_file_t * fp)887 ctf_close(ctf_file_t *fp)
888 {
889 ctf_dtdef_t *dtd, *ntd;
890 ctf_dsdef_t *dsd, *nsd;
891 ctf_dldef_t *dld, *nld;
892
893 if (fp == NULL)
894 return; /* allow ctf_close(NULL) to simplify caller code */
895
896 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
897
898 if (fp->ctf_refcnt > 1) {
899 fp->ctf_refcnt--;
900 return;
901 }
902
903 if (fp->ctf_parent != NULL)
904 ctf_close(fp->ctf_parent);
905
906 /*
907 * Note, to work properly with reference counting on the dynamic
908 * section, we must delete the list in reverse.
909 */
910 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
911 ntd = ctf_list_prev(dtd);
912 ctf_dtd_delete(fp, dtd);
913 }
914
915 for (dsd = ctf_list_prev(&fp->ctf_dsdefs); dsd != NULL; dsd = nsd) {
916 nsd = ctf_list_prev(dsd);
917 ctf_dsd_delete(fp, dsd);
918 }
919
920 for (dld = ctf_list_prev(&fp->ctf_dldefs); dld != NULL; dld = nld) {
921 nld = ctf_list_prev(dld);
922 ctf_dld_delete(fp, dld);
923 }
924
925 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
926
927 if (fp->ctf_flags & LCTF_MMAP) {
928 /*
929 * Writeable containers shouldn't necessairily have the CTF
930 * section freed.
931 */
932 if (fp->ctf_data.cts_data != NULL &&
933 !(fp->ctf_flags & LCTF_RDWR))
934 ctf_sect_munmap(&fp->ctf_data);
935 if (fp->ctf_symtab.cts_data != NULL)
936 ctf_sect_munmap(&fp->ctf_symtab);
937 if (fp->ctf_strtab.cts_data != NULL)
938 ctf_sect_munmap(&fp->ctf_strtab);
939 }
940 if (fp->ctf_flags & LCTF_FREE) {
941 ctf_data_free((void *)fp->ctf_data.cts_data,
942 fp->ctf_data.cts_size);
943 }
944
945 if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
946 fp->ctf_data.cts_name != NULL) {
947 ctf_free((char *)fp->ctf_data.cts_name,
948 strlen(fp->ctf_data.cts_name) + 1);
949 }
950
951 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
952 fp->ctf_symtab.cts_name != NULL) {
953 ctf_free((char *)fp->ctf_symtab.cts_name,
954 strlen(fp->ctf_symtab.cts_name) + 1);
955 }
956
957 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
958 fp->ctf_strtab.cts_name != NULL) {
959 ctf_free((char *)fp->ctf_strtab.cts_name,
960 strlen(fp->ctf_strtab.cts_name) + 1);
961 }
962
963 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
964 ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
965
966 if (fp->ctf_sxlate != NULL)
967 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
968
969 if (fp->ctf_txlate != NULL) {
970 ctf_free(fp->ctf_txlate,
971 sizeof (uint_t) * (fp->ctf_typemax + 1));
972 }
973
974 if (fp->ctf_ptrtab != NULL) {
975 ctf_free(fp->ctf_ptrtab,
976 sizeof (ushort_t) * (fp->ctf_typemax + 1));
977 }
978
979 ctf_hash_destroy(&fp->ctf_structs);
980 ctf_hash_destroy(&fp->ctf_unions);
981 ctf_hash_destroy(&fp->ctf_enums);
982 ctf_hash_destroy(&fp->ctf_names);
983
984 ctf_free(fp, sizeof (ctf_file_t));
985 }
986
987 /*
988 * Return the CTF handle for the parent CTF container, if one exists.
989 * Otherwise return NULL to indicate this container has no imported parent.
990 */
991 ctf_file_t *
ctf_parent_file(ctf_file_t * fp)992 ctf_parent_file(ctf_file_t *fp)
993 {
994 return (fp->ctf_parent);
995 }
996
997 /*
998 * Return the name of the parent CTF container, if one exists. Otherwise
999 * return NULL to indicate this container is a root container.
1000 */
1001 const char *
ctf_parent_name(ctf_file_t * fp)1002 ctf_parent_name(ctf_file_t *fp)
1003 {
1004 return (fp->ctf_parname);
1005 }
1006
1007 /*
1008 * Return the label of the parent CTF container, if one exists. Otherwise return
1009 * NULL.
1010 */
1011 const char *
ctf_parent_label(ctf_file_t * fp)1012 ctf_parent_label(ctf_file_t *fp)
1013 {
1014 return (fp->ctf_parlabel);
1015 }
1016
1017 /*
1018 * Import the types from the specified parent container by storing a pointer
1019 * to it in ctf_parent and incrementing its reference count. Only one parent
1020 * is allowed: if a parent already exists, it is replaced by the new parent.
1021 */
1022 int
ctf_import(ctf_file_t * fp,ctf_file_t * pfp)1023 ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
1024 {
1025 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1026 return (ctf_set_errno(fp, EINVAL));
1027
1028 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1029 return (ctf_set_errno(fp, ECTF_DMODEL));
1030
1031 if (fp->ctf_parent != NULL)
1032 ctf_close(fp->ctf_parent);
1033
1034 if (pfp != NULL) {
1035 fp->ctf_flags |= LCTF_CHILD;
1036 pfp->ctf_refcnt++;
1037 }
1038
1039 fp->ctf_parent = pfp;
1040 return (0);
1041 }
1042
1043 /*
1044 * Set the data model constant for the CTF container.
1045 */
1046 int
ctf_setmodel(ctf_file_t * fp,int model)1047 ctf_setmodel(ctf_file_t *fp, int model)
1048 {
1049 const ctf_dmodel_t *dp;
1050
1051 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1052 if (dp->ctd_code == model) {
1053 fp->ctf_dmodel = dp;
1054 return (0);
1055 }
1056 }
1057
1058 return (ctf_set_errno(fp, EINVAL));
1059 }
1060
1061 /*
1062 * Return the data model constant for the CTF container.
1063 */
1064 int
ctf_getmodel(ctf_file_t * fp)1065 ctf_getmodel(ctf_file_t *fp)
1066 {
1067 return (fp->ctf_dmodel->ctd_code);
1068 }
1069
1070 void
ctf_setspecific(ctf_file_t * fp,void * data)1071 ctf_setspecific(ctf_file_t *fp, void *data)
1072 {
1073 fp->ctf_specific = data;
1074 }
1075
1076 void *
ctf_getspecific(ctf_file_t * fp)1077 ctf_getspecific(ctf_file_t *fp)
1078 {
1079 return (fp->ctf_specific);
1080 }
1081
1082 uint_t
ctf_flags(ctf_file_t * fp)1083 ctf_flags(ctf_file_t *fp)
1084 {
1085 return (fp->ctf_hflags);
1086 }
1087