xref: /titanic_51/usr/src/lib/libctf/common/ctf_dwarf.c (revision 7fd791373689a6af05e27efec3b1ab556e02aa23)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License (the "License").
6   * You may not use this file except in compliance with the License.
7   *
8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9   * or http://www.opensolaris.org/os/licensing.
10   * See the License for the specific language governing permissions
11   * and limitations under the License.
12   *
13   * When distributing Covered Code, include this CDDL HEADER in each
14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15   * If applicable, add the following below this CDDL HEADER, with the
16   * fields enclosed by brackets "[]" replaced with your own identifying
17   * information: Portions Copyright [yyyy] [name of copyright owner]
18   *
19   * CDDL HEADER END
20   */
21  /*
22   * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23   * Use is subject to license terms.
24   */
25  /*
26   * Copyright 2012 Jason King.  All rights reserved.
27   * Use is subject to license terms.
28   */
29  
30  /*
31   * Copyright 2018 Joyent, Inc.
32   */
33  
34  /*
35   * CTF DWARF conversion theory.
36   *
37   * DWARF data contains a series of compilation units. Each compilation unit
38   * generally refers to an object file or what once was, in the case of linked
39   * binaries and shared objects. Each compilation unit has a series of what DWARF
40   * calls a DIE (Debugging Information Entry). The set of entries that we care
41   * about have type information stored in a series of attributes. Each DIE also
42   * has a tag that identifies the kind of attributes that it has.
43   *
44   * A given DIE may itself have children. For example, a DIE that represents a
45   * structure has children which represent members. Whenever we encounter a DIE
46   * that has children or other values or types associated with it, we recursively
47   * process those children first so that way we can then refer to the generated
48   * CTF type id while processing its parent. This reduces the amount of unknowns
49   * and fixups that we need. It also ensures that we don't accidentally add types
50   * that an overzealous compiler might add to the DWARF data but aren't used by
51   * anything in the system.
52   *
53   * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54   * DWARF's die offset, which is relative to the given compilation unit, to a
55   * ctf_id_t.
56   *
57   * Unfortunately, some compilers actually will emit duplicate entries for a
58   * given type that look similar, but aren't quite. To that end, we go through
59   * and do a variant on a merge once we're done processing a single compilation
60   * unit which deduplicates all of the types that are in the unit.
61   *
62   * Finally, if we encounter an object that has multiple compilation units, then
63   * we'll convert all of the compilation units separately and then do a merge, so
64   * that way we can result in one single ctf_file_t that represents everything
65   * for the object.
66   *
67   * Conversion Steps
68   * ----------------
69   *
70   * Because a given object we've been given to convert may have multiple
71   * compilation units, we break the work into two halves. The first half
72   * processes each compilation unit (potentially in parallel) and then the second
73   * half optionally merges all of the dies in the first half. First, we'll cover
74   * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75   * the work done in ctf_dwarf_convert_one().
76   *
77   * An individual ctf_cu_t, which represents a compilation unit, is converted to
78   * CTF in a series of multiple passes.
79   *
80   * Pass 1: During the first pass we walk all of the top-level dies and if we
81   * find a function, variable, struct, union, enum or typedef, we recursively
82   * transform all of its types. We don't recurse or process everything, because
83   * we don't want to add some of the types that compilers may add which are
84   * effectively unused.
85   *
86   * During pass 1, if we encounter any structures or unions we mark them for
87   * fixing up later. This is necessary because we may not be able to determine
88   * the full size of a structure at the beginning of time. This will happen if
89   * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90   * this possibility we defer adding members to structures or even converting
91   * them during pass 1 and save that for pass 2. Adding all of the base
92   * structures without any of their members helps deal with any circular
93   * dependencies that we might encounter.
94   *
95   * Pass 2: This pass is used to do the first half of fixing up structures and
96   * unions. Rather than walk the entire type space again, we actually walk the
97   * list of structures and unions that we marked for later fixing up. Here, we
98   * iterate over every structure and add members to the underlying ctf_file_t,
99   * but not to the structs themselves. One might wonder why we don't, and the
100   * main reason is that libctf requires a ctf_update() be done before adding the
101   * members to structures or unions.
102   *
103   * Pass 3: This pass is used to do the second half of fixing up structures and
104   * unions. During this part we always go through and add members to structures
105   * and unions that we added to the container in the previous pass. In addition,
106   * we set the structure and union's actual size, which may have additional
107   * padding added by the compiler, it isn't simply the last offset. DWARF always
108   * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109   * during pass 2.
110   *
111   * Pass 4: The next phase is to add CTF entries for all of the symbols and
112   * variables that are present in this die. During pass 1 we added entries to a
113   * map for each variable and function. During this pass, we iterate over the
114   * symbol table and when we encounter a symbol that we have in our lists of
115   * translated information which matches, we then add it to the ctf_file_t.
116   *
117   * Pass 5: Here we go and look for any weak symbols and functions and see if
118   * they match anything that we recognize. If so, then we add type information
119   * for them at this point based on the matching type.
120   *
121   * Pass 6: This pass is actually a variant on a merge. The traditional merge
122   * process expects there to be no duplicate types. As such, at the end of
123   * conversion, we do a dedup on all of the types in the system. The
124   * deduplication process is described in lib/libctf/common/ctf_merge.c.
125   *
126   * Once pass 6 is done, we've finished processing the individual compilation
127   * unit.
128   *
129   * The following steps reflect the general process of doing a conversion.
130   *
131   * 1) Walk the dwarf section and determine the number of compilation units
132   * 2) Create a ctf_cu_t for each compilation unit
133   * 3) Add all ctf_cu_t's to a workq
134   * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135   *    is comprised of several steps, which were already enumerated.
136   * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137   *    of the merge are discussed in lib/libctf/common/ctf_merge.c.
138   * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139   *    single compilation unit, then we give that to the user. Otherwise, we
140   *    return the merged ctf_file_t.
141   *
142   * Threading
143   * ---------
144   *
145   * The process has been designed to be amenable to threading. Each compilation
146   * unit has its own type stream, therefore the logical place to divide and
147   * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148   * to be processed independently of the others. It has its own libdwarf handle,
149   * as a given libdwarf handle may only be used by a single thread at a time.
150   * This allows the various ctf_cu_t's to be processed in parallel by different
151   * threads.
152   *
153   * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154   * threads to be specified and used as a thread pool to process all of the
155   * queued work. We set the number of threads to use in the workq equal to the
156   * number of threads that the user has specified.
157   *
158   * After all of the compilation units have been drained, we use the same number
159   * of threads when performing a merge of multiple compilation units, if they
160   * exist.
161   *
162   * While all of these different parts do support and allow for multiple threads,
163   * it's important that when only a single thread is specified, that it be the
164   * calling thread. This allows the conversion routines to be used in a context
165   * that doesn't allow additional threads, such as rtld.
166   *
167   * Common DWARF Mechanics and Notes
168   * --------------------------------
169   *
170   * At this time, we really only support DWARFv2, though support for DWARFv4 is
171   * mostly there. There is no intent to support DWARFv3.
172   *
173   * Generally types for something are stored in the DW_AT_type attribute. For
174   * example, a function's return type will be stored in the local DW_AT_type
175   * attribute while the arguments will be in child DIEs. There are also various
176   * times when we don't have any DW_AT_type. In that case, the lack of a type
177   * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178   * one, we have a synthetic void type that we create and manipulate instead and
179   * pass it off to consumers on an as-needed basis. If nothing has a void type,
180   * it will not be emitted.
181   *
182   * Architecture Specific Parts
183   * ---------------------------
184   *
185   * The CTF tooling encodes various information about the various architectures
186   * in the system. Importantly, the tool assumes that every architecture has a
187   * data model where long and pointer are the same size. This is currently the
188   * case, as the two data models illumos supports are ILP32 and LP64.
189   *
190   * In addition, we encode the mapping of various floating point sizes to various
191   * types for each architecture. If a new architecture is being added, it should
192   * be added to the list. The general design of the ctf conversion tools is to be
193   * architecture independent. eg. any of the tools here should be able to convert
194   * any architecture's DWARF into ctf; however, this has not been rigorously
195   * tested and more importantly, the ctf routines don't currently write out the
196   * data in an endian-aware form, they only use that of the currently running
197   * library.
198   */
199  
200  #include <libctf_impl.h>
201  #include <sys/avl.h>
202  #include <sys/debug.h>
203  #include <gelf.h>
204  #include <libdwarf.h>
205  #include <dwarf.h>
206  #include <libgen.h>
207  #include <workq.h>
208  #include <errno.h>
209  
210  #define	DWARF_VERSION_TWO	2
211  #define	DWARF_VARARGS_NAME	"..."
212  
213  /*
214   * Dwarf may refer recursively to other types that we've already processed. To
215   * see if we've already converted them, we look them up in an AVL tree that's
216   * sorted by the DWARF id.
217   */
218  typedef struct ctf_dwmap {
219  	avl_node_t	cdm_avl;
220  	Dwarf_Off	cdm_off;
221  	Dwarf_Die	cdm_die;
222  	ctf_id_t	cdm_id;
223  	boolean_t	cdm_fix;
224  } ctf_dwmap_t;
225  
226  typedef struct ctf_dwvar {
227  	ctf_list_t	cdv_list;
228  	char		*cdv_name;
229  	ctf_id_t	cdv_type;
230  	boolean_t	cdv_global;
231  } ctf_dwvar_t;
232  
233  typedef struct ctf_dwfunc {
234  	ctf_list_t	cdf_list;
235  	char		*cdf_name;
236  	ctf_funcinfo_t	cdf_fip;
237  	ctf_id_t	*cdf_argv;
238  	boolean_t	cdf_global;
239  } ctf_dwfunc_t;
240  
241  typedef struct ctf_dwbitf {
242  	ctf_list_t	cdb_list;
243  	ctf_id_t	cdb_base;
244  	uint_t		cdb_nbits;
245  	ctf_id_t	cdb_id;
246  } ctf_dwbitf_t;
247  
248  /*
249   * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250   * the typical object file has only a single die, if we're asked to convert
251   * something that's been linked from multiple sources, multiple dies will exist.
252   */
253  typedef struct ctf_die {
254  	Elf		*cu_elf;	/* shared libelf handle */
255  	char		*cu_name;	/* basename of the DIE */
256  	ctf_merge_t	*cu_cmh;	/* merge handle */
257  	ctf_list_t	cu_vars;	/* List of variables */
258  	ctf_list_t	cu_funcs;	/* List of functions */
259  	ctf_list_t	cu_bitfields;	/* Bit field members */
260  	Dwarf_Debug	cu_dwarf;	/* libdwarf handle */
261  	Dwarf_Die	cu_cu;		/* libdwarf compilation unit */
262  	Dwarf_Off	cu_cuoff;	/* cu's offset */
263  	Dwarf_Off	cu_maxoff;	/* maximum offset */
264  	ctf_file_t	*cu_ctfp;	/* output CTF file */
265  	avl_tree_t	cu_map;		/* map die offsets to CTF types */
266  	char		*cu_errbuf;	/* error message buffer */
267  	size_t		cu_errlen;	/* error message buffer length */
268  	size_t		cu_ptrsz;	/* object's pointer size */
269  	boolean_t	cu_bigend;	/* is it big endian */
270  	boolean_t	cu_doweaks;	/* should we convert weak symbols? */
271  	uint_t		cu_mach;	/* machine type */
272  	ctf_id_t	cu_voidtid;	/* void pointer */
273  	ctf_id_t	cu_longtid;	/* id for a 'long' */
274  } ctf_cu_t;
275  
276  static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277  static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278  static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279  
280  static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281      boolean_t);
282  static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283      ctf_id_t *);
284  
285  typedef int (ctf_dwarf_symtab_f)(ctf_cu_t *, const GElf_Sym *, ulong_t,
286      const char *, const char *, void *);
287  
288  /*
289   * This is a generic way to set a CTF Conversion backend error depending on what
290   * we were doing. Unless it was one of a specific set of errors that don't
291   * indicate a programming / translation bug, eg. ENOMEM, then we transform it
292   * into a CTF backend error and fill in the error buffer.
293   */
294  static int
295  ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
296  {
297  	va_list ap;
298  	int ret;
299  	size_t off = 0;
300  	ssize_t rem = cup->cu_errlen;
301  	if (cfp != NULL)
302  		err = ctf_errno(cfp);
303  
304  	if (err == ENOMEM)
305  		return (err);
306  
307  	ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
308  	if (ret < 0)
309  		goto err;
310  	off += ret;
311  	rem = MAX(rem - ret, 0);
312  
313  	va_start(ap, fmt);
314  	ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
315  	va_end(ap);
316  	if (ret < 0)
317  		goto err;
318  
319  	off += ret;
320  	rem = MAX(rem - ret, 0);
321  	if (fmt[strlen(fmt) - 1] != '\n') {
322  		(void) snprintf(cup->cu_errbuf + off, rem,
323  		    ": %s\n", ctf_errmsg(err));
324  	}
325  	va_end(ap);
326  	return (ECTF_CONVBKERR);
327  
328  err:
329  	cup->cu_errbuf[0] = '\0';
330  	return (ECTF_CONVBKERR);
331  }
332  
333  /*
334   * DWARF often opts to put no explicit type to describe a void type. eg. if we
335   * have a reference type whose DW_AT_type member doesn't exist, then we should
336   * instead assume it points to void. Because this isn't represented, we
337   * instead cause it to come into existence.
338   */
339  static ctf_id_t
340  ctf_dwarf_void(ctf_cu_t *cup)
341  {
342  	if (cup->cu_voidtid == CTF_ERR) {
343  		ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
344  		cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
345  		    "void", &enc);
346  		if (cup->cu_voidtid == CTF_ERR) {
347  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
348  			    "failed to create void type: %s\n",
349  			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
350  		}
351  	}
352  
353  	return (cup->cu_voidtid);
354  }
355  
356  /*
357   * There are many different forms that an array index may take. However, we just
358   * always force it to be of a type long no matter what. Therefore we use this to
359   * have a single instance of long across everything.
360   */
361  static ctf_id_t
362  ctf_dwarf_long(ctf_cu_t *cup)
363  {
364  	if (cup->cu_longtid == CTF_ERR) {
365  		ctf_encoding_t enc;
366  
367  		enc.cte_format = CTF_INT_SIGNED;
368  		enc.cte_offset = 0;
369  		/* All illumos systems are LP */
370  		enc.cte_bits = cup->cu_ptrsz * 8;
371  		cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
372  		    "long", &enc);
373  		if (cup->cu_longtid == CTF_ERR) {
374  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
375  			    "failed to create long type: %s\n",
376  			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
377  		}
378  
379  	}
380  
381  	return (cup->cu_longtid);
382  }
383  
384  static int
385  ctf_dwmap_comp(const void *a, const void *b)
386  {
387  	const ctf_dwmap_t *ca = a;
388  	const ctf_dwmap_t *cb = b;
389  
390  	if (ca->cdm_off > cb->cdm_off)
391  		return (1);
392  	if (ca->cdm_off < cb->cdm_off)
393  		return (-1);
394  	return (0);
395  }
396  
397  static int
398  ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
399  {
400  	int ret;
401  	avl_index_t index;
402  	ctf_dwmap_t *dwmap;
403  	Dwarf_Off off;
404  
405  	VERIFY(id > 0 && id < CTF_MAX_TYPE);
406  
407  	if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
408  		return (ret);
409  
410  	if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
411  		return (ENOMEM);
412  
413  	dwmap->cdm_die = die;
414  	dwmap->cdm_off = off;
415  	dwmap->cdm_id = id;
416  	dwmap->cdm_fix = fix;
417  
418  	ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
419  	VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
420  	avl_insert(&cup->cu_map, dwmap, index);
421  	return (0);
422  }
423  
424  static int
425  ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
426      Dwarf_Attribute *attrp)
427  {
428  	int ret;
429  	Dwarf_Error derr;
430  
431  	if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
432  		return (0);
433  	if (ret == DW_DLV_NO_ENTRY) {
434  		*attrp = NULL;
435  		return (ENOENT);
436  	}
437  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
438  	    "failed to get attribute for type: %s\n",
439  	    dwarf_errmsg(derr));
440  	return (ECTF_CONVBKERR);
441  }
442  
443  static int
444  ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
445  {
446  	int ret;
447  	Dwarf_Attribute attr;
448  	Dwarf_Error derr;
449  
450  	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
451  		return (ret);
452  
453  	if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
454  		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
455  		return (0);
456  	}
457  
458  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
459  	    "failed to get unsigned attribute for type: %s\n",
460  	    dwarf_errmsg(derr));
461  	return (ECTF_CONVBKERR);
462  }
463  
464  static int
465  ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
466      Dwarf_Die *diep)
467  {
468  	int ret;
469  	Dwarf_Off off;
470  	Dwarf_Error derr;
471  
472  	if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
473  		return (ret);
474  
475  	off += cup->cu_cuoff;
476  	if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
477  	    DW_DLV_OK) {
478  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
479  		    "failed to get die from offset %" DW_PR_DUu ": %s\n",
480  		    off, dwarf_errmsg(derr));
481  		return (ECTF_CONVBKERR);
482  	}
483  
484  	return (0);
485  }
486  
487  static int
488  ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
489      Dwarf_Signed *valp)
490  {
491  	int ret;
492  	Dwarf_Attribute attr;
493  	Dwarf_Error derr;
494  
495  	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
496  		return (ret);
497  
498  	if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
499  		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
500  		return (0);
501  	}
502  
503  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
504  	    "failed to get unsigned attribute for type: %s\n",
505  	    dwarf_errmsg(derr));
506  	return (ECTF_CONVBKERR);
507  }
508  
509  static int
510  ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
511      Dwarf_Unsigned *valp)
512  {
513  	int ret;
514  	Dwarf_Attribute attr;
515  	Dwarf_Error derr;
516  
517  	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
518  		return (ret);
519  
520  	if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
521  		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
522  		return (0);
523  	}
524  
525  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
526  	    "failed to get unsigned attribute for type: %s\n",
527  	    dwarf_errmsg(derr));
528  	return (ECTF_CONVBKERR);
529  }
530  
531  static int
532  ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
533      Dwarf_Bool *val)
534  {
535  	int ret;
536  	Dwarf_Attribute attr;
537  	Dwarf_Error derr;
538  
539  	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
540  		return (ret);
541  
542  	if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
543  		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
544  		return (0);
545  	}
546  
547  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
548  	    "failed to get boolean attribute for type: %s\n",
549  	    dwarf_errmsg(derr));
550  
551  	return (ECTF_CONVBKERR);
552  }
553  
554  static int
555  ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
556  {
557  	int ret;
558  	char *s;
559  	Dwarf_Attribute attr;
560  	Dwarf_Error derr;
561  
562  	*strp = NULL;
563  	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
564  		return (ret);
565  
566  	if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
567  		if ((*strp = ctf_strdup(s)) == NULL)
568  			ret = ENOMEM;
569  		else
570  			ret = 0;
571  		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
572  		return (ret);
573  	}
574  
575  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
576  	    "failed to get string attribute for type: %s\n",
577  	    dwarf_errmsg(derr));
578  	return (ECTF_CONVBKERR);
579  }
580  
581  static int
582  ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
583  {
584  	int ret;
585  	Dwarf_Error derr;
586  	Dwarf_Attribute attr;
587  	Dwarf_Locdesc *loc;
588  	Dwarf_Signed locnum;
589  
590  	if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
591  	    &attr)) != 0)
592  		return (ret);
593  
594  	if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
595  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
596  		    "failed to obtain location list for member offset: %s",
597  		    dwarf_errmsg(derr));
598  		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599  		return (ECTF_CONVBKERR);
600  	}
601  	dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
602  
603  	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
604  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
605  		    "failed to parse location structure for member");
606  		dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
607  		dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
608  		return (ECTF_CONVBKERR);
609  	}
610  
611  	*valp = loc->ld_s->lr_number;
612  
613  	dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
614  	dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
615  	return (0);
616  }
617  
618  
619  static int
620  ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
621  {
622  	Dwarf_Error derr;
623  
624  	if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
625  		return (0);
626  
627  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
628  	    "failed to get die offset: %s\n",
629  	    dwarf_errmsg(derr));
630  	return (ECTF_CONVBKERR);
631  }
632  
633  /* simpler variant for debugging output */
634  static Dwarf_Off
635  ctf_die_offset(Dwarf_Die die)
636  {
637  	Dwarf_Off off = -1;
638  	Dwarf_Error derr;
639  
640  	(void) dwarf_dieoffset(die, &off, &derr);
641  	return (off);
642  }
643  
644  static int
645  ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
646  {
647  	Dwarf_Error derr;
648  
649  	if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
650  		return (0);
651  
652  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
653  	    "failed to get tag type: %s\n",
654  	    dwarf_errmsg(derr));
655  	return (ECTF_CONVBKERR);
656  }
657  
658  static int
659  ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
660  {
661  	Dwarf_Error derr;
662  	int ret;
663  
664  	*sibp = NULL;
665  	ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
666  	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
667  		return (0);
668  
669  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
670  	    "failed to sibling from die: %s\n",
671  	    dwarf_errmsg(derr));
672  	return (ECTF_CONVBKERR);
673  }
674  
675  static int
676  ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
677  {
678  	Dwarf_Error derr;
679  	int ret;
680  
681  	*childp = NULL;
682  	ret = dwarf_child(base, childp, &derr);
683  	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
684  		return (0);
685  
686  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
687  	    "failed to child from die: %s\n",
688  	    dwarf_errmsg(derr));
689  	return (ECTF_CONVBKERR);
690  }
691  
692  /*
693   * Compilers disagree on what to do to determine if something has global
694   * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
695   * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
696   * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
697   */
698  static int
699  ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
700  {
701  	int ret;
702  	Dwarf_Signed vis;
703  	Dwarf_Bool ext;
704  
705  	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
706  		*igp = vis == DW_VIS_exported;
707  		return (0);
708  	} else if (ret != ENOENT) {
709  		return (ret);
710  	}
711  
712  	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
713  		if (ret == ENOENT) {
714  			*igp = B_FALSE;
715  			return (0);
716  		}
717  		return (ret);
718  	}
719  	*igp = ext != 0 ? B_TRUE : B_FALSE;
720  	return (0);
721  }
722  
723  static int
724  ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
725  {
726  	GElf_Ehdr ehdr;
727  
728  	if (gelf_getehdr(elf, &ehdr) == NULL) {
729  		(void) snprintf(errbuf, errlen,
730  		    "failed to get ELF header: %s\n",
731  		    elf_errmsg(elf_errno()));
732  		return (ECTF_CONVBKERR);
733  	}
734  
735  	cup->cu_mach = ehdr.e_machine;
736  
737  	if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
738  		cup->cu_ptrsz = 4;
739  		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
740  	} else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
741  		cup->cu_ptrsz = 8;
742  		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
743  	} else {
744  		(void) snprintf(errbuf, errlen,
745  		    "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
746  		return (ECTF_CONVBKERR);
747  	}
748  
749  	if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
750  		cup->cu_bigend = B_FALSE;
751  	} else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
752  		cup->cu_bigend = B_TRUE;
753  	} else {
754  		(void) snprintf(errbuf, errlen,
755  		    "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
756  		return (ECTF_CONVBKERR);
757  	}
758  
759  	return (0);
760  }
761  
762  typedef struct ctf_dwarf_fpent {
763  	size_t	cdfe_size;
764  	uint_t	cdfe_enc[3];
765  } ctf_dwarf_fpent_t;
766  
767  typedef struct ctf_dwarf_fpmap {
768  	uint_t			cdf_mach;
769  	ctf_dwarf_fpent_t	cdf_ents[4];
770  } ctf_dwarf_fpmap_t;
771  
772  static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
773  	{ EM_SPARC, {
774  		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
775  		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
776  		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
777  		{ 0, { 0 } }
778  	} },
779  	{ EM_SPARC32PLUS, {
780  		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
781  		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
782  		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
783  		{ 0, { 0 } }
784  	} },
785  	{ EM_SPARCV9, {
786  		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
787  		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
788  		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
789  		{ 0, { 0 } }
790  	} },
791  	{ EM_386, {
792  		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
793  		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
794  		{ 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
795  		{ 0, { 0 } }
796  	} },
797  	{ EM_X86_64, {
798  		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
799  		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
800  		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
801  		{ 0, { 0 } }
802  	} },
803  	{ EM_NONE }
804  };
805  
806  static int
807  ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
808  {
809  	const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
810  	const ctf_dwarf_fpent_t *ent;
811  	uint_t col = 0, mult = 1;
812  
813  	for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
814  		if (map->cdf_mach == cup->cu_mach)
815  			break;
816  	}
817  
818  	if (map->cdf_mach == EM_NONE) {
819  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
820  		    "Unsupported machine type: %d\n", cup->cu_mach);
821  		return (ENOTSUP);
822  	}
823  
824  	if (type == DW_ATE_complex_float) {
825  		mult = 2;
826  		col = 1;
827  	} else if (type == DW_ATE_imaginary_float ||
828  	    type == DW_ATE_SUN_imaginary_float) {
829  		col = 2;
830  	}
831  
832  	ent = &map->cdf_ents[0];
833  	for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
834  		if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
835  			enc->cte_format = ent->cdfe_enc[col];
836  			return (0);
837  		}
838  	}
839  
840  	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
841  	    "failed to find valid fp mapping for encoding %d, size %d bits\n",
842  	    type, enc->cte_bits);
843  	return (EINVAL);
844  }
845  
846  static int
847  ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
848      ctf_encoding_t *enc)
849  {
850  	int ret;
851  	Dwarf_Signed type;
852  
853  	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
854  		return (ret);
855  
856  	switch (type) {
857  	case DW_ATE_unsigned:
858  	case DW_ATE_address:
859  		*kindp = CTF_K_INTEGER;
860  		enc->cte_format = 0;
861  		break;
862  	case DW_ATE_unsigned_char:
863  		*kindp = CTF_K_INTEGER;
864  		enc->cte_format = CTF_INT_CHAR;
865  		break;
866  	case DW_ATE_signed:
867  		*kindp = CTF_K_INTEGER;
868  		enc->cte_format = CTF_INT_SIGNED;
869  		break;
870  	case DW_ATE_signed_char:
871  		*kindp = CTF_K_INTEGER;
872  		enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
873  		break;
874  	case DW_ATE_boolean:
875  		*kindp = CTF_K_INTEGER;
876  		enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
877  		break;
878  	case DW_ATE_float:
879  	case DW_ATE_complex_float:
880  	case DW_ATE_imaginary_float:
881  	case DW_ATE_SUN_imaginary_float:
882  	case DW_ATE_SUN_interval_float:
883  		*kindp = CTF_K_FLOAT;
884  		if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
885  			return (ret);
886  		break;
887  	default:
888  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
889  		    "encountered unkown DWARF encoding: %d", type);
890  		return (ECTF_CONVBKERR);
891  	}
892  
893  	return (0);
894  }
895  
896  /*
897   * Different compilers (at least GCC and Studio) use different names for types.
898   * This parses the types and attempts to unify them. If this fails, we just fall
899   * back to using the DWARF itself.
900   */
901  static int
902  ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
903      char **newnamep)
904  {
905  	char buf[256];
906  	char *base, *c, *last;
907  	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
908  	int sign = 1;
909  
910  	if (strlen(name) + 1 > sizeof (buf))
911  		return (EINVAL);
912  
913  	(void) strlcpy(buf, name, sizeof (buf));
914  	for (c = strtok_r(buf, " ", &last); c != NULL;
915  	    c = strtok_r(NULL, " ", &last)) {
916  		if (strcmp(c, "signed") == 0) {
917  			sign = 1;
918  		} else if (strcmp(c, "unsigned") == 0) {
919  			sign = 0;
920  		} else if (strcmp(c, "long") == 0) {
921  			nlong++;
922  		} else if (strcmp(c, "char") == 0) {
923  			nchar++;
924  		} else if (strcmp(c, "short") == 0) {
925  			nshort++;
926  		} else if (strcmp(c, "int") == 0) {
927  			nint++;
928  		} else {
929  			/*
930  			 * If we don't recognize any of the tokens, we'll tell
931  			 * the caller to fall back to the dwarf-provided
932  			 * encoding information.
933  			 */
934  			return (EINVAL);
935  		}
936  	}
937  
938  	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
939  		return (EINVAL);
940  
941  	if (nchar > 0) {
942  		if (nlong > 0 || nshort > 0 || nint > 0)
943  			return (EINVAL);
944  		base = "char";
945  	} else if (nshort > 0) {
946  		if (nlong > 0)
947  			return (EINVAL);
948  		base = "short";
949  	} else if (nlong > 0) {
950  		base = "long";
951  	} else {
952  		base = "int";
953  	}
954  
955  	if (nchar > 0)
956  		enc->cte_format = CTF_INT_CHAR;
957  	else
958  		enc->cte_format = 0;
959  
960  	if (sign > 0)
961  		enc->cte_format |= CTF_INT_SIGNED;
962  
963  	(void) snprintf(buf, sizeof (buf), "%s%s%s",
964  	    (sign ? "" : "unsigned "),
965  	    (nlong > 1 ? "long " : ""),
966  	    base);
967  
968  	*newnamep = ctf_strdup(buf);
969  	if (*newnamep == NULL)
970  		return (ENOMEM);
971  	*kindp = CTF_K_INTEGER;
972  	return (0);
973  }
974  
975  static int
976  ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
977      Dwarf_Off off)
978  {
979  	int ret;
980  	char *name, *nname;
981  	Dwarf_Unsigned sz;
982  	int kind;
983  	ctf_encoding_t enc;
984  	ctf_id_t id;
985  
986  	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
987  		return (ret);
988  	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
989  		goto out;
990  	}
991  	ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
992  	    off, sz);
993  
994  	bzero(&enc, sizeof (ctf_encoding_t));
995  	enc.cte_bits = sz * 8;
996  	if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
997  		ctf_free(name, strlen(name) + 1);
998  		name = nname;
999  	} else {
1000  		if (ret != EINVAL)
1001  			return (ret);
1002  		ctf_dprintf("falling back to dwarf for base type %s\n", name);
1003  		if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1004  			return (ret);
1005  	}
1006  
1007  	id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1008  	if (id == CTF_ERR) {
1009  		ret = ctf_errno(cup->cu_ctfp);
1010  	} else {
1011  		*idp = id;
1012  		ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1013  	}
1014  out:
1015  	ctf_free(name, strlen(name) + 1);
1016  	return (ret);
1017  }
1018  
1019  /*
1020   * Getting a member's offset is a surprisingly intricate dance. It works as
1021   * follows:
1022   *
1023   * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1024   * have a DW_AT_data_member_location. We won't have both. Thus we check first
1025   * for DW_AT_data_bit_offset, and if it exists, we're set.
1026   *
1027   * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1028   * we have to grab the data location and use the following dance:
1029   *
1030   * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1031   * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1032   * When it's been omitted, we then have to say that the size is that of the
1033   * underlying type, which forces that to be after a ctf_update(). Here, we have
1034   * to do different things based on whether or not we're using big endian or
1035   * little endian to obtain the proper offset.
1036   */
1037  static int
1038  ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1039      ulong_t *offp)
1040  {
1041  	int ret;
1042  	Dwarf_Unsigned loc, bitsz, bytesz;
1043  	Dwarf_Signed bitoff;
1044  	size_t off;
1045  	ssize_t tsz;
1046  
1047  	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1048  	    &loc)) == 0) {
1049  		*offp = loc;
1050  		return (0);
1051  	} else if (ret != ENOENT) {
1052  		return (ret);
1053  	}
1054  
1055  	if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1056  		return (ret);
1057  	off = loc * 8;
1058  
1059  	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1060  	    &bitoff)) != 0) {
1061  		if (ret != ENOENT)
1062  			return (ret);
1063  		*offp = off;
1064  		return (0);
1065  	}
1066  
1067  	/* At this point we have to have DW_AT_bit_size */
1068  	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1069  		return (ret);
1070  
1071  	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1072  	    &bytesz)) != 0) {
1073  		if (ret != ENOENT)
1074  			return (ret);
1075  		if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1076  			int e = ctf_errno(cup->cu_ctfp);
1077  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1078  			    "failed to get type size: %s", ctf_errmsg(e));
1079  			return (ECTF_CONVBKERR);
1080  		}
1081  	} else {
1082  		tsz = bytesz;
1083  	}
1084  	tsz *= 8;
1085  	if (cup->cu_bigend == B_TRUE) {
1086  		*offp = off + bitoff;
1087  	} else {
1088  		*offp = off + tsz - bitoff - bitsz;
1089  	}
1090  
1091  	return (0);
1092  }
1093  
1094  /*
1095   * We need to determine if the member in question is a bitfield. If it is, then
1096   * we need to go through and create a new type that's based on the actual base
1097   * type, but has a different size. We also rename the type as a result to help
1098   * deal with future collisions.
1099   *
1100   * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1101   * bit size member and it does not equal the byte size member, then we need to
1102   * create a bitfield type based on this.
1103   *
1104   * Note: When we support DWARFv4, there may be a chance that we need to also
1105   * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1106   */
1107  static int
1108  ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1109  {
1110  	int ret;
1111  	Dwarf_Unsigned bitsz;
1112  	ctf_encoding_t e;
1113  	ctf_dwbitf_t *cdb;
1114  	ctf_dtdef_t *dtd;
1115  	ctf_id_t base = *idp;
1116  	int kind;
1117  
1118  	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1119  		if (ret == ENOENT)
1120  			return (0);
1121  		return (ret);
1122  	}
1123  
1124  	ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1125  	/*
1126  	 * Given that we now have a bitsize, time to go do something about it.
1127  	 * We're going to create a new type based on the current one, but first
1128  	 * we need to find the base type. This means we need to traverse any
1129  	 * typedef's, consts, and volatiles until we get to what should be
1130  	 * something of type integer or enumeration.
1131  	 */
1132  	VERIFY(bitsz < UINT32_MAX);
1133  	dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1134  	VERIFY(dtd != NULL);
1135  	kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1136  	while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1137  	    kind == CTF_K_VOLATILE) {
1138  		dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1139  		VERIFY(dtd != NULL);
1140  		kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1141  	}
1142  	ctf_dprintf("got kind %d\n", kind);
1143  	VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1144  
1145  	/*
1146  	 * As surprising as it may be, it is strictly possible to create a
1147  	 * bitfield that is based on an enum. Of course, the C standard leaves
1148  	 * enums sizing as an ABI concern more or less. To that effect, today on
1149  	 * all illumos platforms the size of an enum is generally that of an
1150  	 * int as our supported data models and ABIs all agree on that. So what
1151  	 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1152  	 * treat it as an unsigned value of whatever size the underlying enum
1153  	 * currently has (which is in the ctt_size member of its dynamic type
1154  	 * data).
1155  	 */
1156  	if (kind == CTF_K_INTEGER) {
1157  		e = dtd->dtd_u.dtu_enc;
1158  	} else {
1159  		bzero(&e, sizeof (ctf_encoding_t));
1160  		e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1161  	}
1162  
1163  	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1164  	    cdb = ctf_list_next(cdb)) {
1165  		if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1166  			break;
1167  	}
1168  
1169  	/*
1170  	 * Create a new type if none exists. We name all types in a way that is
1171  	 * guaranteed not to conflict with the corresponding C type. We do this
1172  	 * by using the ':' operator.
1173  	 */
1174  	if (cdb == NULL) {
1175  		size_t namesz;
1176  		char *name;
1177  
1178  		e.cte_bits = bitsz;
1179  		namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1180  		    (uint32_t)bitsz);
1181  		name = ctf_alloc(namesz + 1);
1182  		if (name == NULL)
1183  			return (ENOMEM);
1184  		cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1185  		if (cdb == NULL) {
1186  			ctf_free(name, namesz + 1);
1187  			return (ENOMEM);
1188  		}
1189  		(void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1190  		    (uint32_t)bitsz);
1191  
1192  		cdb->cdb_base = base;
1193  		cdb->cdb_nbits = bitsz;
1194  		cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1195  		    name, &e);
1196  		if (cdb->cdb_id == CTF_ERR) {
1197  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1198  			    "failed to get add bitfield type %s: %s", name,
1199  			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1200  			ctf_free(name, namesz + 1);
1201  			ctf_free(cdb, sizeof (ctf_dwbitf_t));
1202  			return (ECTF_CONVBKERR);
1203  		}
1204  		ctf_free(name, namesz + 1);
1205  		ctf_list_append(&cup->cu_bitfields, cdb);
1206  	}
1207  
1208  	*idp = cdb->cdb_id;
1209  
1210  	return (0);
1211  }
1212  
1213  static int
1214  ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1215  {
1216  	int ret, kind;
1217  	Dwarf_Die child, memb;
1218  	Dwarf_Unsigned size;
1219  	ulong_t nsz;
1220  
1221  	kind = ctf_type_kind(cup->cu_ctfp, base);
1222  	VERIFY(kind != CTF_ERR);
1223  	VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1224  
1225  	/*
1226  	 * Members are in children. However, gcc also allows empty ones.
1227  	 */
1228  	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1229  		return (ret);
1230  	if (child == NULL)
1231  		return (0);
1232  
1233  	memb = child;
1234  	while (memb != NULL) {
1235  		Dwarf_Die sib, tdie;
1236  		Dwarf_Half tag;
1237  		ctf_id_t mid;
1238  		char *mname;
1239  		ulong_t memboff = 0;
1240  
1241  		if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1242  			return (ret);
1243  
1244  		if (tag != DW_TAG_member)
1245  			continue;
1246  
1247  		if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1248  			return (ret);
1249  
1250  		if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1251  		    CTF_ADD_NONROOT)) != 0)
1252  			return (ret);
1253  		ctf_dprintf("Got back type id: %d\n", mid);
1254  
1255  		/*
1256  		 * If we're not adding a member, just go ahead and return.
1257  		 */
1258  		if (add == B_FALSE) {
1259  			if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1260  			    &mid)) != 0)
1261  				return (ret);
1262  			goto next;
1263  		}
1264  
1265  		if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1266  		    &mname)) != 0 && ret != ENOENT)
1267  			return (ret);
1268  		if (ret == ENOENT)
1269  			mname = NULL;
1270  
1271  		if (kind == CTF_K_UNION) {
1272  			memboff = 0;
1273  		} else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1274  		    &memboff)) != 0) {
1275  			if (mname != NULL)
1276  				ctf_free(mname, strlen(mname) + 1);
1277  			return (ret);
1278  		}
1279  
1280  		if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1281  			return (ret);
1282  
1283  		ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1284  		if (ret == CTF_ERR) {
1285  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1286  			    "failed to add member %s: %s",
1287  			    mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1288  			if (mname != NULL)
1289  				ctf_free(mname, strlen(mname) + 1);
1290  			return (ECTF_CONVBKERR);
1291  		}
1292  
1293  		if (mname != NULL)
1294  			ctf_free(mname, strlen(mname) + 1);
1295  
1296  next:
1297  		if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1298  			return (ret);
1299  		memb = sib;
1300  	}
1301  
1302  	/*
1303  	 * If we're not adding members, then we don't know the final size of the
1304  	 * structure, so end here.
1305  	 */
1306  	if (add == B_FALSE)
1307  		return (0);
1308  
1309  	/* Finally set the size of the structure to the actual byte size */
1310  	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1311  		return (ret);
1312  	nsz = size;
1313  	if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) {
1314  		int e = ctf_errno(cup->cu_ctfp);
1315  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1316  		    "failed to set type size for %d to 0x%x: %s", base,
1317  		    (uint32_t)size, ctf_errmsg(e));
1318  		return (ECTF_CONVBKERR);
1319  	}
1320  
1321  	return (0);
1322  }
1323  
1324  static int
1325  ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1326      int kind, int isroot)
1327  {
1328  	int ret;
1329  	char *name;
1330  	ctf_id_t base;
1331  	Dwarf_Die child;
1332  	Dwarf_Bool decl;
1333  
1334  	/*
1335  	 * Deal with the terribly annoying case of anonymous structs and unions.
1336  	 * If they don't have a name, set the name to the empty string.
1337  	 */
1338  	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1339  	    ret != ENOENT)
1340  		return (ret);
1341  	if (ret == ENOENT)
1342  		name = NULL;
1343  
1344  	/*
1345  	 * We need to check if we just have a declaration here. If we do, then
1346  	 * instead of creating an actual structure or union, we're just going to
1347  	 * go ahead and create a forward. During a dedup or merge, the forward
1348  	 * will be replaced with the real thing.
1349  	 */
1350  	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1351  	    &decl)) != 0) {
1352  		if (ret != ENOENT)
1353  			return (ret);
1354  		decl = 0;
1355  	}
1356  
1357  	if (decl != 0) {
1358  		base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1359  	} else if (kind == CTF_K_STRUCT) {
1360  		base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1361  	} else {
1362  		base = ctf_add_union(cup->cu_ctfp, isroot, name);
1363  	}
1364  	ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1365  	if (name != NULL)
1366  		ctf_free(name, strlen(name) + 1);
1367  	if (base == CTF_ERR)
1368  		return (ctf_errno(cup->cu_ctfp));
1369  	*idp = base;
1370  
1371  	/*
1372  	 * If it's just a declaration, we're not going to mark it for fix up or
1373  	 * do anything else.
1374  	 */
1375  	if (decl == B_TRUE)
1376  		return (ctf_dwmap_add(cup, base, die, B_FALSE));
1377  	if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1378  		return (ret);
1379  
1380  	/*
1381  	 * Members are in children. However, gcc also allows empty ones.
1382  	 */
1383  	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1384  		return (ret);
1385  	if (child == NULL)
1386  		return (0);
1387  
1388  	return (0);
1389  }
1390  
1391  static int
1392  ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1393      ctf_id_t base, int isroot)
1394  {
1395  	int ret;
1396  	Dwarf_Die sib;
1397  	Dwarf_Unsigned val;
1398  	Dwarf_Signed sval;
1399  	ctf_arinfo_t ar;
1400  
1401  	ctf_dprintf("creating array range\n");
1402  
1403  	if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1404  		return (ret);
1405  	if (sib != NULL) {
1406  		ctf_id_t id;
1407  		if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1408  		    base, CTF_ADD_NONROOT)) != 0)
1409  			return (ret);
1410  		ar.ctr_contents = id;
1411  	} else {
1412  		ar.ctr_contents = base;
1413  	}
1414  
1415  	if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1416  		return (ctf_errno(cup->cu_ctfp));
1417  
1418  	/*
1419  	 * Array bounds can be signed or unsigned, but there are several kinds
1420  	 * of signless forms (data1, data2, etc) that take their sign from the
1421  	 * routine that is trying to interpret them.  That is, data1 can be
1422  	 * either signed or unsigned, depending on whether you use the signed or
1423  	 * unsigned accessor function.  GCC will use the signless forms to store
1424  	 * unsigned values which have their high bit set, so we need to try to
1425  	 * read them first as unsigned to get positive values.  We could also
1426  	 * try signed first, falling back to unsigned if we got a negative
1427  	 * value.
1428  	 */
1429  	if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1430  	    &val)) == 0) {
1431  		ar.ctr_nelems = val + 1;
1432  	} else if (ret != ENOENT) {
1433  		return (ret);
1434  	} else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1435  	    &sval)) == 0) {
1436  		ar.ctr_nelems = sval + 1;
1437  	} else if (ret != ENOENT) {
1438  		return (ret);
1439  	} else {
1440  		ar.ctr_nelems = 0;
1441  	}
1442  
1443  	if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1444  		return (ctf_errno(cup->cu_ctfp));
1445  
1446  	return (0);
1447  }
1448  
1449  /*
1450   * Try and create an array type. First, the kind of the array is specified in
1451   * the DW_AT_type entry. Next, the number of entries is stored in a more
1452   * complicated form, we should have a child that has the DW_TAG_subrange type.
1453   */
1454  static int
1455  ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1456  {
1457  	int ret;
1458  	Dwarf_Die tdie, rdie;
1459  	ctf_id_t tid;
1460  	Dwarf_Half rtag;
1461  
1462  	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1463  		return (ret);
1464  	if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1465  	    CTF_ADD_NONROOT)) != 0)
1466  		return (ret);
1467  
1468  	if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1469  		return (ret);
1470  	if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1471  		return (ret);
1472  	if (rtag != DW_TAG_subrange_type) {
1473  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1474  		    "encountered array without DW_TAG_subrange_type child\n");
1475  		return (ECTF_CONVBKERR);
1476  	}
1477  
1478  	/*
1479  	 * The compiler may opt to describe a multi-dimensional array as one
1480  	 * giant array or it may opt to instead encode it as a series of
1481  	 * subranges. If it's the latter, then for each subrange we introduce a
1482  	 * type. We can always use the base type.
1483  	 */
1484  	if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1485  	    isroot)) != 0)
1486  		return (ret);
1487  	ctf_dprintf("Got back id %d\n", *idp);
1488  	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1489  }
1490  
1491  static int
1492  ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1493      int kind, int isroot)
1494  {
1495  	int ret;
1496  	ctf_id_t id;
1497  	Dwarf_Die tdie;
1498  	char *name;
1499  	size_t namelen;
1500  
1501  	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1502  	    ret != ENOENT)
1503  		return (ret);
1504  	if (ret == ENOENT) {
1505  		name = NULL;
1506  		namelen = 0;
1507  	} else {
1508  		namelen = strlen(name);
1509  	}
1510  
1511  	ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1512  
1513  	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1514  		if (ret != ENOENT) {
1515  			ctf_free(name, namelen);
1516  			return (ret);
1517  		}
1518  		if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1519  			ctf_free(name, namelen);
1520  			return (ctf_errno(cup->cu_ctfp));
1521  		}
1522  	} else {
1523  		if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1524  		    CTF_ADD_NONROOT)) != 0) {
1525  			ctf_free(name, namelen);
1526  			return (ret);
1527  		}
1528  	}
1529  
1530  	if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1531  	    CTF_ERR) {
1532  		ctf_free(name, namelen);
1533  		return (ctf_errno(cup->cu_ctfp));
1534  	}
1535  
1536  	ctf_free(name, namelen);
1537  	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1538  }
1539  
1540  static int
1541  ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1542  {
1543  	int ret;
1544  	ctf_id_t id;
1545  	Dwarf_Die child;
1546  	char *name;
1547  
1548  	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1549  	    ret != ENOENT)
1550  		return (ret);
1551  	if (ret == ENOENT)
1552  		name = NULL;
1553  	id = ctf_add_enum(cup->cu_ctfp, isroot, name);
1554  	ctf_dprintf("added enum %s (%d)\n", name, id);
1555  	if (name != NULL)
1556  		ctf_free(name, strlen(name) + 1);
1557  	if (id == CTF_ERR)
1558  		return (ctf_errno(cup->cu_ctfp));
1559  	*idp = id;
1560  	if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1561  		return (ret);
1562  
1563  	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1564  		if (ret == ENOENT)
1565  			ret = 0;
1566  		return (ret);
1567  	}
1568  
1569  	while (child != NULL) {
1570  		Dwarf_Half tag;
1571  		Dwarf_Signed sval;
1572  		Dwarf_Unsigned uval;
1573  		Dwarf_Die arg = child;
1574  		int eval;
1575  
1576  		if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1577  			return (ret);
1578  
1579  		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1580  			return (ret);
1581  
1582  		if (tag != DW_TAG_enumerator) {
1583  			if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1584  			    CTF_ADD_NONROOT)) != 0)
1585  				return (ret);
1586  			continue;
1587  		}
1588  
1589  		/*
1590  		 * DWARF v4 section 5.7 tells us we'll always have names.
1591  		 */
1592  		if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1593  			return (ret);
1594  
1595  		/*
1596  		 * We have to be careful here: newer GCCs generate DWARF where
1597  		 * an unsigned value will happily pass ctf_dwarf_signed().
1598  		 * Since negative values will fail ctf_dwarf_unsigned(), we try
1599  		 * that first to make sure we get the right value.
1600  		 */
1601  		if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1602  		    &uval)) == 0) {
1603  			eval = (int)uval;
1604  		} else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1605  		    &sval)) == 0) {
1606  			eval = sval;
1607  		}
1608  
1609  		if (ret != 0) {
1610  			if (ret != ENOENT)
1611  				return (ret);
1612  
1613  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1614  			    "encountered enumeration without constant value\n");
1615  			return (ECTF_CONVBKERR);
1616  		}
1617  
1618  		ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1619  		if (ret == CTF_ERR) {
1620  			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1621  			    "failed to add enumarator %s (%d) to %d\n",
1622  			    name, eval, id);
1623  			ctf_free(name, strlen(name) + 1);
1624  			return (ctf_errno(cup->cu_ctfp));
1625  		}
1626  		ctf_free(name, strlen(name) + 1);
1627  	}
1628  
1629  	return (0);
1630  }
1631  
1632  /*
1633   * For a function pointer, walk over and process all of its children, unless we
1634   * encounter one that's just a declaration. In which case, we error on it.
1635   */
1636  static int
1637  ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1638  {
1639  	int ret;
1640  	Dwarf_Bool b;
1641  	ctf_funcinfo_t fi;
1642  	Dwarf_Die retdie;
1643  	ctf_id_t *argv = NULL;
1644  
1645  	bzero(&fi, sizeof (ctf_funcinfo_t));
1646  
1647  	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1648  		if (ret != ENOENT)
1649  			return (ret);
1650  	} else {
1651  		if (b != 0)
1652  			return (EPROTOTYPE);
1653  	}
1654  
1655  	/*
1656  	 * Return type is in DW_AT_type, if none, it returns void.
1657  	 */
1658  	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1659  		if (ret != ENOENT)
1660  			return (ret);
1661  		if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1662  			return (ctf_errno(cup->cu_ctfp));
1663  	} else {
1664  		if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1665  		    CTF_ADD_NONROOT)) != 0)
1666  			return (ret);
1667  	}
1668  
1669  	if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1670  		return (ret);
1671  	}
1672  
1673  	if (fi.ctc_argc != 0) {
1674  		argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1675  		if (argv == NULL)
1676  			return (ENOMEM);
1677  
1678  		if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1679  			ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1680  			return (ret);
1681  		}
1682  	}
1683  
1684  	if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1685  	    CTF_ERR) {
1686  		ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1687  		return (ctf_errno(cup->cu_ctfp));
1688  	}
1689  
1690  	ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1691  	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1692  }
1693  
1694  static int
1695  ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1696      int isroot)
1697  {
1698  	int ret;
1699  	Dwarf_Off offset;
1700  	Dwarf_Half tag;
1701  	ctf_dwmap_t lookup, *map;
1702  	ctf_id_t id;
1703  
1704  	if (idp == NULL)
1705  		idp = &id;
1706  
1707  	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1708  		return (ret);
1709  
1710  	if (offset > cup->cu_maxoff) {
1711  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1712  		    "die offset %llu beyond maximum for header %llu\n",
1713  		    offset, cup->cu_maxoff);
1714  		return (ECTF_CONVBKERR);
1715  	}
1716  
1717  	/*
1718  	 * If we've already added an entry for this offset, then we're done.
1719  	 */
1720  	lookup.cdm_off = offset;
1721  	if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1722  		*idp = map->cdm_id;
1723  		return (0);
1724  	}
1725  
1726  	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1727  		return (ret);
1728  
1729  	ret = ENOTSUP;
1730  	switch (tag) {
1731  	case DW_TAG_base_type:
1732  		ctf_dprintf("base\n");
1733  		ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1734  		break;
1735  	case DW_TAG_array_type:
1736  		ctf_dprintf("array\n");
1737  		ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1738  		break;
1739  	case DW_TAG_enumeration_type:
1740  		ctf_dprintf("enum\n");
1741  		ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1742  		break;
1743  	case DW_TAG_pointer_type:
1744  		ctf_dprintf("pointer\n");
1745  		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1746  		    isroot);
1747  		break;
1748  	case DW_TAG_structure_type:
1749  		ctf_dprintf("struct\n");
1750  		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1751  		    isroot);
1752  		break;
1753  	case DW_TAG_subroutine_type:
1754  		ctf_dprintf("fptr\n");
1755  		ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1756  		break;
1757  	case DW_TAG_typedef:
1758  		ctf_dprintf("typedef\n");
1759  		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1760  		    isroot);
1761  		break;
1762  	case DW_TAG_union_type:
1763  		ctf_dprintf("union\n");
1764  		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1765  		    isroot);
1766  		break;
1767  	case DW_TAG_const_type:
1768  		ctf_dprintf("const\n");
1769  		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1770  		    isroot);
1771  		break;
1772  	case DW_TAG_volatile_type:
1773  		ctf_dprintf("volatile\n");
1774  		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1775  		    isroot);
1776  		break;
1777  	case DW_TAG_restrict_type:
1778  		ctf_dprintf("restrict\n");
1779  		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1780  		    isroot);
1781  		break;
1782  	default:
1783  		ctf_dprintf("ignoring tag type %x\n", tag);
1784  		ret = 0;
1785  		break;
1786  	}
1787  	ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1788  	    ret);
1789  
1790  	return (ret);
1791  }
1792  
1793  static int
1794  ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1795  {
1796  	int ret;
1797  	Dwarf_Die child;
1798  
1799  	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1800  		return (ret);
1801  
1802  	if (child == NULL)
1803  		return (0);
1804  
1805  	return (ctf_dwarf_convert_die(cup, die));
1806  }
1807  
1808  static int
1809  ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1810      boolean_t fptr)
1811  {
1812  	int ret;
1813  	Dwarf_Die child, sib, arg;
1814  
1815  	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1816  		return (ret);
1817  
1818  	arg = child;
1819  	while (arg != NULL) {
1820  		Dwarf_Half tag;
1821  
1822  		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1823  			return (ret);
1824  
1825  		/*
1826  		 * We have to check for a varargs type decleration. This will
1827  		 * happen in one of two ways. If we have a function pointer
1828  		 * type, then it'll be done with a tag of type
1829  		 * DW_TAG_unspecified_parameters. However, it only means we have
1830  		 * a variable number of arguments, if we have more than one
1831  		 * argument found so far. Otherwise, when we have a function
1832  		 * type, it instead uses a formal parameter whose name is '...'
1833  		 * to indicate a variable arguments member.
1834  		 *
1835  		 * Also, if we have a function pointer, then we have to expect
1836  		 * that we might not get a name at all.
1837  		 */
1838  		if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1839  			char *name;
1840  			if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1841  			    &name)) != 0)
1842  				return (ret);
1843  			if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1844  				fip->ctc_flags |= CTF_FUNC_VARARG;
1845  			else
1846  				fip->ctc_argc++;
1847  			ctf_free(name, strlen(name) + 1);
1848  		} else if (tag == DW_TAG_formal_parameter) {
1849  			fip->ctc_argc++;
1850  		} else if (tag == DW_TAG_unspecified_parameters &&
1851  		    fip->ctc_argc > 0) {
1852  			fip->ctc_flags |= CTF_FUNC_VARARG;
1853  		}
1854  		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1855  			return (ret);
1856  		arg = sib;
1857  	}
1858  
1859  	return (0);
1860  }
1861  
1862  static int
1863  ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1864      ctf_id_t *argv)
1865  {
1866  	int ret;
1867  	int i = 0;
1868  	Dwarf_Die child, sib, arg;
1869  
1870  	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1871  		return (ret);
1872  
1873  	arg = child;
1874  	while (arg != NULL) {
1875  		Dwarf_Half tag;
1876  
1877  		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1878  			return (ret);
1879  		if (tag == DW_TAG_formal_parameter) {
1880  			Dwarf_Die tdie;
1881  
1882  			if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1883  			    &tdie)) != 0)
1884  				return (ret);
1885  
1886  			if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1887  			    CTF_ADD_ROOT)) != 0)
1888  				return (ret);
1889  			i++;
1890  
1891  			/*
1892  			 * Once we hit argc entries, we're done. This ensures we
1893  			 * don't accidentally hit a varargs which should be the
1894  			 * last entry.
1895  			 */
1896  			if (i == fip->ctc_argc)
1897  				break;
1898  		}
1899  
1900  		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1901  			return (ret);
1902  		arg = sib;
1903  	}
1904  
1905  	return (0);
1906  }
1907  
1908  static int
1909  ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
1910  {
1911  	int ret;
1912  	char *name;
1913  	ctf_dwfunc_t *cdf;
1914  	Dwarf_Die tdie;
1915  
1916  	/*
1917  	 * Functions that don't have a name are generally functions that have
1918  	 * been inlined and thus most information about them has been lost. If
1919  	 * we can't get a name, then instead of returning ENOENT, we silently
1920  	 * swallow the error.
1921  	 */
1922  	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
1923  		if (ret == ENOENT)
1924  			return (0);
1925  		return (ret);
1926  	}
1927  
1928  	ctf_dprintf("beginning work on function %s\n", name);
1929  	if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
1930  		ctf_free(name, strlen(name) + 1);
1931  		return (ENOMEM);
1932  	}
1933  	bzero(cdf, sizeof (ctf_dwfunc_t));
1934  	cdf->cdf_name = name;
1935  
1936  	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
1937  		if ((ret = ctf_dwarf_convert_type(cup, tdie,
1938  		    &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
1939  			ctf_free(name, strlen(name) + 1);
1940  			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1941  			return (ret);
1942  		}
1943  	} else if (ret != ENOENT) {
1944  		ctf_free(name, strlen(name) + 1);
1945  		ctf_free(cdf, sizeof (ctf_dwfunc_t));
1946  		return (ret);
1947  	} else {
1948  		if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
1949  		    CTF_ERR) {
1950  			ctf_free(name, strlen(name) + 1);
1951  			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1952  			return (ctf_errno(cup->cu_ctfp));
1953  		}
1954  	}
1955  
1956  	/*
1957  	 * A function has a number of children, some of which may not be ones we
1958  	 * care about. Children that we care about have a type of
1959  	 * DW_TAG_formal_parameter. We're going to do two passes, the first to
1960  	 * count the arguments, the second to process them. Afterwards, we
1961  	 * should be good to go ahead and add this function.
1962  	 *
1963  	 * Note, we already got the return type by going in and grabbing it out
1964  	 * of the DW_AT_type.
1965  	 */
1966  	if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
1967  	    B_FALSE)) != 0) {
1968  		ctf_free(name, strlen(name) + 1);
1969  		ctf_free(cdf, sizeof (ctf_dwfunc_t));
1970  		return (ret);
1971  	}
1972  
1973  	ctf_dprintf("beginning to convert function arguments %s\n", name);
1974  	if (cdf->cdf_fip.ctc_argc != 0) {
1975  		uint_t argc = cdf->cdf_fip.ctc_argc;
1976  		cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
1977  		if (cdf->cdf_argv == NULL) {
1978  			ctf_free(name, strlen(name) + 1);
1979  			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1980  			return (ENOMEM);
1981  		}
1982  		if ((ret = ctf_dwarf_convert_fargs(cup, die,
1983  		    &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
1984  			ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
1985  			ctf_free(name, strlen(name) + 1);
1986  			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1987  			return (ret);
1988  		}
1989  	} else {
1990  		cdf->cdf_argv = NULL;
1991  	}
1992  
1993  	if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
1994  		ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
1995  		    cdf->cdf_fip.ctc_argc);
1996  		ctf_free(name, strlen(name) + 1);
1997  		ctf_free(cdf, sizeof (ctf_dwfunc_t));
1998  		return (ret);
1999  	}
2000  
2001  	ctf_list_append(&cup->cu_funcs, cdf);
2002  	return (ret);
2003  }
2004  
2005  /*
2006   * Convert variables, but only if they're not prototypes and have names.
2007   */
2008  static int
2009  ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2010  {
2011  	int ret;
2012  	char *name;
2013  	Dwarf_Bool b;
2014  	Dwarf_Die tdie;
2015  	ctf_id_t id;
2016  	ctf_dwvar_t *cdv;
2017  
2018  	/* Skip "Non-Defining Declarations" */
2019  	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2020  		if (b != 0)
2021  			return (0);
2022  	} else if (ret != ENOENT) {
2023  		return (ret);
2024  	}
2025  
2026  	/*
2027  	 * If we find a DIE of "Declarations Completing Non-Defining
2028  	 * Declarations", we will use the referenced type's DIE.  This isn't
2029  	 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2030  	 * not this site.  It's sufficient for what we need, however: in
2031  	 * particular, we should find DW_AT_external as needed there.
2032  	 */
2033  	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2034  	    &tdie)) == 0) {
2035  		Dwarf_Off offset;
2036  		if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2037  			return (ret);
2038  		ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2039  		    ctf_die_offset(die), ctf_die_offset(tdie));
2040  		die = tdie;
2041  	} else if (ret != ENOENT) {
2042  		return (ret);
2043  	}
2044  
2045  	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2046  	    ret != ENOENT)
2047  		return (ret);
2048  	if (ret == ENOENT)
2049  		return (0);
2050  
2051  	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2052  		ctf_free(name, strlen(name) + 1);
2053  		return (ret);
2054  	}
2055  
2056  	if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2057  	    CTF_ADD_ROOT)) != 0)
2058  		return (ret);
2059  
2060  	if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2061  		ctf_free(name, strlen(name) + 1);
2062  		return (ENOMEM);
2063  	}
2064  
2065  	cdv->cdv_name = name;
2066  	cdv->cdv_type = id;
2067  
2068  	if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2069  		ctf_free(cdv, sizeof (ctf_dwvar_t));
2070  		ctf_free(name, strlen(name) + 1);
2071  		return (ret);
2072  	}
2073  
2074  	ctf_list_append(&cup->cu_vars, cdv);
2075  	return (0);
2076  }
2077  
2078  /*
2079   * Walk through our set of top-level types and process them.
2080   */
2081  static int
2082  ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2083  {
2084  	int ret;
2085  	Dwarf_Off offset;
2086  	Dwarf_Half tag;
2087  
2088  	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2089  		return (ret);
2090  
2091  	if (offset > cup->cu_maxoff) {
2092  		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2093  		    "die offset %llu beyond maximum for header %llu\n",
2094  		    offset, cup->cu_maxoff);
2095  		return (ECTF_CONVBKERR);
2096  	}
2097  
2098  	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2099  		return (ret);
2100  
2101  	ret = 0;
2102  	switch (tag) {
2103  	case DW_TAG_subprogram:
2104  		ctf_dprintf("top level func\n");
2105  		ret = ctf_dwarf_convert_function(cup, die);
2106  		break;
2107  	case DW_TAG_variable:
2108  		ctf_dprintf("top level var\n");
2109  		ret = ctf_dwarf_convert_variable(cup, die);
2110  		break;
2111  	case DW_TAG_lexical_block:
2112  		ctf_dprintf("top level block\n");
2113  		ret = ctf_dwarf_walk_lexical(cup, die);
2114  		break;
2115  	case DW_TAG_enumeration_type:
2116  	case DW_TAG_structure_type:
2117  	case DW_TAG_typedef:
2118  	case DW_TAG_union_type:
2119  		ctf_dprintf("top level type\n");
2120  		ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2121  		break;
2122  	default:
2123  		break;
2124  	}
2125  
2126  	return (ret);
2127  }
2128  
2129  
2130  /*
2131   * We're given a node. At this node we need to convert it and then proceed to
2132   * convert any siblings that are associaed with this die.
2133   */
2134  static int
2135  ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2136  {
2137  	while (die != NULL) {
2138  		int ret;
2139  		Dwarf_Die sib;
2140  
2141  		if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2142  			return (ret);
2143  
2144  		if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2145  			return (ret);
2146  		die = sib;
2147  	}
2148  	return (0);
2149  }
2150  
2151  static int
2152  ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2153  {
2154  	ctf_dwmap_t *map;
2155  
2156  	for (map = avl_first(&cup->cu_map); map != NULL;
2157  	    map = AVL_NEXT(&cup->cu_map, map)) {
2158  		int ret;
2159  		if (map->cdm_fix == B_FALSE)
2160  			continue;
2161  		if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2162  		    addpass)) != 0)
2163  			return (ret);
2164  	}
2165  
2166  	return (0);
2167  }
2168  
2169  static ctf_dwfunc_t *
2170  ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2171      int bind)
2172  {
2173  	ctf_dwfunc_t *cdf;
2174  
2175  	if (bind == STB_WEAK)
2176  		return (NULL);
2177  
2178  	/* Nothing we can do if we can't find a name to compare it to. */
2179  	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2180  		return (NULL);
2181  
2182  	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2183  	    cdf = ctf_list_next(cdf)) {
2184  		if (bind == STB_GLOBAL && cdf->cdf_global == B_FALSE)
2185  			continue;
2186  		if (bind == STB_LOCAL && cdf->cdf_global == B_TRUE)
2187  			continue;
2188  		if (strcmp(name, cdf->cdf_name) != 0)
2189  			continue;
2190  		if (bind == STB_LOCAL && strcmp(file, cup->cu_name) != 0)
2191  			continue;
2192  		return (cdf);
2193  	}
2194  
2195  	return (NULL);
2196  }
2197  static ctf_dwvar_t *
2198  ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2199      int bind)
2200  {
2201  	ctf_dwvar_t *cdv;
2202  
2203  	/* Nothing we can do if we can't find a name to compare it to. */
2204  	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2205  		return (NULL);
2206  	ctf_dprintf("Still considering %s\n", name);
2207  
2208  	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2209  	    cdv = ctf_list_next(cdv)) {
2210  		if (bind == STB_GLOBAL && cdv->cdv_global == B_FALSE)
2211  			continue;
2212  		if (bind == STB_LOCAL && cdv->cdv_global == B_TRUE)
2213  			continue;
2214  		if (strcmp(name, cdv->cdv_name) != 0)
2215  			continue;
2216  		if (bind == STB_LOCAL && strcmp(file, cup->cu_name) != 0)
2217  			continue;
2218  		return (cdv);
2219  	}
2220  
2221  	return (NULL);
2222  }
2223  
2224  static int
2225  ctf_dwarf_symtab_iter(ctf_cu_t *cup, ctf_dwarf_symtab_f *func, void *arg)
2226  {
2227  	int ret;
2228  	ulong_t i;
2229  	ctf_file_t *fp = cup->cu_ctfp;
2230  	const char *file = NULL;
2231  	uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data;
2232  	uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data;
2233  
2234  	for (i = 0; i < fp->ctf_nsyms; i++) {
2235  		const char *name;
2236  		int type;
2237  		GElf_Sym gsym;
2238  		const GElf_Sym *gsymp;
2239  
2240  		if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) {
2241  			const Elf32_Sym *symp = (Elf32_Sym *)symbase + i;
2242  			type = ELF32_ST_TYPE(symp->st_info);
2243  			if (type == STT_FILE) {
2244  				file = (char *)(strbase + symp->st_name);
2245  				continue;
2246  			}
2247  			if (type != STT_OBJECT && type != STT_FUNC)
2248  				continue;
2249  			if (ctf_sym_valid(strbase, type, symp->st_shndx,
2250  			    symp->st_value, symp->st_name) == B_FALSE)
2251  				continue;
2252  			name = (char *)(strbase + symp->st_name);
2253  			gsym.st_name = symp->st_name;
2254  			gsym.st_value = symp->st_value;
2255  			gsym.st_size = symp->st_size;
2256  			gsym.st_info = symp->st_info;
2257  			gsym.st_other = symp->st_other;
2258  			gsym.st_shndx = symp->st_shndx;
2259  			gsymp = &gsym;
2260  		} else {
2261  			const Elf64_Sym *symp = (Elf64_Sym *)symbase + i;
2262  			type = ELF64_ST_TYPE(symp->st_info);
2263  			if (type == STT_FILE) {
2264  				file = (char *)(strbase + symp->st_name);
2265  				continue;
2266  			}
2267  			if (type != STT_OBJECT && type != STT_FUNC)
2268  				continue;
2269  			if (ctf_sym_valid(strbase, type, symp->st_shndx,
2270  			    symp->st_value, symp->st_name) == B_FALSE)
2271  				continue;
2272  			name = (char *)(strbase + symp->st_name);
2273  			gsymp = symp;
2274  		}
2275  
2276  		ret = func(cup, gsymp, i, file, name, arg);
2277  		if (ret != 0)
2278  			return (ret);
2279  	}
2280  
2281  	return (0);
2282  }
2283  
2284  static int
2285  ctf_dwarf_conv_funcvars_cb(ctf_cu_t *cup, const GElf_Sym *symp, ulong_t idx,
2286      const char *file, const char *name, void *arg)
2287  {
2288  	int ret, bind, type;
2289  
2290  	bind = GELF_ST_BIND(symp->st_info);
2291  	type = GELF_ST_TYPE(symp->st_info);
2292  
2293  	/*
2294  	 * Come back to weak symbols in another pass
2295  	 */
2296  	if (bind == STB_WEAK)
2297  		return (0);
2298  
2299  	if (type == STT_OBJECT) {
2300  		ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2301  		    bind);
2302  		ctf_dprintf("match for %s (%d): %p\n", name, idx, cdv);
2303  		if (cdv == NULL)
2304  			return (0);
2305  		ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2306  		ctf_dprintf("added object %s\n", name);
2307  	} else {
2308  		ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2309  		    bind);
2310  		if (cdf == NULL)
2311  			return (0);
2312  		ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2313  		    cdf->cdf_argv);
2314  	}
2315  
2316  	if (ret == CTF_ERR) {
2317  		return (ctf_errno(cup->cu_ctfp));
2318  	}
2319  
2320  	return (0);
2321  }
2322  
2323  static int
2324  ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2325  {
2326  	return (ctf_dwarf_symtab_iter(cup, ctf_dwarf_conv_funcvars_cb, NULL));
2327  }
2328  
2329  /*
2330   * If we have a weak symbol, attempt to find the strong symbol it will resolve
2331   * to.  Note: the code where this actually happens is in sym_process() in
2332   * cmd/sgs/libld/common/syms.c
2333   *
2334   * Finding the matching symbol is unfortunately not trivial.  For a symbol to be
2335   * a candidate, it must:
2336   *
2337   * - have the same type (function, object)
2338   * - have the same value (address)
2339   * - have the same size
2340   * - not be another weak symbol
2341   * - belong to the same section (checked via section index)
2342   *
2343   * To perform this check, we first iterate over the symbol table. For each weak
2344   * symbol that we encounter, we then do a second walk over the symbol table,
2345   * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2346   * either a local or global symbol. If we find a global symbol then we go with
2347   * it and stop searching for additional matches.
2348   *
2349   * If instead, we find a local symbol, things are more complicated. The first
2350   * thing we do is to try and see if we have file information about both symbols
2351   * (STT_FILE). If they both have file information and it matches, then we treat
2352   * that as a good match and stop searching for additional matches.
2353   *
2354   * Otherwise, this means we have a non-matching file and a local symbol. We
2355   * treat this as a candidate and if we find a better match (one of the two cases
2356   * above), use that instead. There are two different ways this can happen.
2357   * Either this is a completely different symbol, or it's a once-global symbol
2358   * that was scoped to local via a mapfile.  In the former case, curfile is
2359   * likely inaccurate since the linker does not preserve the needed curfile in
2360   * the order of the symbol table (see the comments about locally scoped symbols
2361   * in libld's update_osym()).  As we can't tell this case from the former one,
2362   * we use this symbol iff no other matching symbol is found.
2363   *
2364   * What we really need here is a SUNW section containing weak<->strong mappings
2365   * that we can consume.
2366   */
2367  typedef struct ctf_dwarf_weak_arg {
2368  	const GElf_Sym *cweak_symp;
2369  	const char *cweak_file;
2370  	boolean_t cweak_candidate;
2371  	ulong_t cweak_idx;
2372  } ctf_dwarf_weak_arg_t;
2373  
2374  static int
2375  ctf_dwarf_conv_check_weak(ctf_cu_t *cup, const GElf_Sym *symp,
2376      ulong_t idx, const char *file, const char *name, void *arg)
2377  {
2378  	ctf_dwarf_weak_arg_t *cweak = arg;
2379  	const GElf_Sym *wsymp = cweak->cweak_symp;
2380  
2381  	ctf_dprintf("comparing weak to %s\n", name);
2382  
2383  	if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2384  		return (0);
2385  	}
2386  
2387  	if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2388  		return (0);
2389  	}
2390  
2391  	if (wsymp->st_value != symp->st_value) {
2392  		return (0);
2393  	}
2394  
2395  	if (wsymp->st_size != symp->st_size) {
2396  		return (0);
2397  	}
2398  
2399  	if (wsymp->st_shndx != symp->st_shndx) {
2400  		return (0);
2401  	}
2402  
2403  	/*
2404  	 * Check if it's a weak candidate.
2405  	 */
2406  	if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2407  	    (file == NULL || cweak->cweak_file == NULL ||
2408  	    strcmp(file, cweak->cweak_file) != 0)) {
2409  		cweak->cweak_candidate = B_TRUE;
2410  		cweak->cweak_idx = idx;
2411  		return (0);
2412  	}
2413  
2414  	/*
2415  	 * Found a match, break.
2416  	 */
2417  	cweak->cweak_idx = idx;
2418  	return (1);
2419  }
2420  
2421  static int
2422  ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2423  {
2424  	ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2425  
2426  	/*
2427  	 * If we matched something that for some reason didn't have type data,
2428  	 * we don't consider that a fatal error and silently swallow it.
2429  	 */
2430  	if (id == CTF_ERR) {
2431  		if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2432  			return (0);
2433  		else
2434  			return (ctf_errno(cup->cu_ctfp));
2435  	}
2436  
2437  	if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2438  		return (ctf_errno(cup->cu_ctfp));
2439  
2440  	return (0);
2441  }
2442  
2443  static int
2444  ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2445  {
2446  	int ret;
2447  	ctf_funcinfo_t fip;
2448  	ctf_id_t *args = NULL;
2449  
2450  	if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2451  		if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2452  			return (0);
2453  		else
2454  			return (ctf_errno(cup->cu_ctfp));
2455  	}
2456  
2457  	if (fip.ctc_argc != 0) {
2458  		args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2459  		if (args == NULL)
2460  			return (ENOMEM);
2461  
2462  		if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2463  		    CTF_ERR) {
2464  			ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2465  			return (ctf_errno(cup->cu_ctfp));
2466  		}
2467  	}
2468  
2469  	ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2470  	if (args != NULL)
2471  		ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2472  	if (ret == CTF_ERR)
2473  		return (ctf_errno(cup->cu_ctfp));
2474  
2475  	return (0);
2476  }
2477  
2478  static int
2479  ctf_dwarf_conv_weaks_cb(ctf_cu_t *cup, const GElf_Sym *symp,
2480      ulong_t idx, const char *file, const char *name, void *arg)
2481  {
2482  	int ret, type;
2483  	ctf_dwarf_weak_arg_t cweak;
2484  
2485  	/*
2486  	 * We only care about weak symbols.
2487  	 */
2488  	if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2489  		return (0);
2490  
2491  	type = GELF_ST_TYPE(symp->st_info);
2492  	ASSERT(type == STT_OBJECT || type == STT_FUNC);
2493  
2494  	/*
2495  	 * For each weak symbol we encounter, we need to do a second iteration
2496  	 * to try and find a match. We should probably think about other
2497  	 * techniques to try and save us time in the future.
2498  	 */
2499  	cweak.cweak_symp = symp;
2500  	cweak.cweak_file = file;
2501  	cweak.cweak_candidate = B_FALSE;
2502  	cweak.cweak_idx = 0;
2503  
2504  	ctf_dprintf("Trying to find weak equiv for %s\n", name);
2505  
2506  	ret = ctf_dwarf_symtab_iter(cup, ctf_dwarf_conv_check_weak, &cweak);
2507  	VERIFY(ret == 0 || ret == 1);
2508  
2509  	/*
2510  	 * Nothing was ever found, we're not going to add anything for this
2511  	 * entry.
2512  	 */
2513  	if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2514  		ctf_dprintf("found no weak match for %s\n", name);
2515  		return (0);
2516  	}
2517  
2518  	/*
2519  	 * Now, finally go and add the type based on the match.
2520  	 */
2521  	if (type == STT_OBJECT) {
2522  		ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2523  	} else {
2524  		ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2525  	}
2526  
2527  	return (ret);
2528  }
2529  
2530  static int
2531  ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2532  {
2533  	return (ctf_dwarf_symtab_iter(cup, ctf_dwarf_conv_weaks_cb, NULL));
2534  }
2535  
2536  /* ARGSUSED */
2537  static int
2538  ctf_dwarf_convert_one(void *arg, void *unused)
2539  {
2540  	int ret;
2541  	ctf_file_t *dedup;
2542  	ctf_cu_t *cup = arg;
2543  
2544  	ctf_dprintf("converting die: %s\n", cup->cu_name);
2545  	ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2546  	VERIFY(cup != NULL);
2547  
2548  	ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2549  	ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2550  	    ret);
2551  	if (ret != 0) {
2552  		return (ret);
2553  	}
2554  	if (ctf_update(cup->cu_ctfp) != 0) {
2555  		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2556  		    "failed to update output ctf container"));
2557  	}
2558  
2559  	ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2560  	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2561  	    ret);
2562  	if (ret != 0) {
2563  		return (ret);
2564  	}
2565  	if (ctf_update(cup->cu_ctfp) != 0) {
2566  		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2567  		    "failed to update output ctf container"));
2568  	}
2569  
2570  	ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2571  	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2572  	    ret);
2573  	if (ret != 0) {
2574  		return (ret);
2575  	}
2576  	if (ctf_update(cup->cu_ctfp) != 0) {
2577  		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2578  		    "failed to update output ctf container"));
2579  	}
2580  
2581  
2582  	if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2583  		return (ctf_dwarf_error(cup, NULL, ret,
2584  		    "failed to convert strong functions and variables"));
2585  	}
2586  
2587  	if (ctf_update(cup->cu_ctfp) != 0) {
2588  		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2589  		    "failed to update output ctf container"));
2590  	}
2591  
2592  	if (cup->cu_doweaks == B_TRUE) {
2593  		if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2594  			return (ctf_dwarf_error(cup, NULL, ret,
2595  			    "failed to convert weak functions and variables"));
2596  		}
2597  
2598  		if (ctf_update(cup->cu_ctfp) != 0) {
2599  			return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2600  			    "failed to update output ctf container"));
2601  		}
2602  	}
2603  
2604  	ctf_phase_dump(cup->cu_ctfp, "pre-dedup");
2605  	ctf_dprintf("adding inputs for dedup\n");
2606  	if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2607  		return (ctf_dwarf_error(cup, NULL, ret,
2608  		    "failed to add inputs for merge"));
2609  	}
2610  
2611  	ctf_dprintf("starting merge\n");
2612  	if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2613  		return (ctf_dwarf_error(cup, NULL, ret,
2614  		    "failed to deduplicate die"));
2615  	}
2616  	ctf_close(cup->cu_ctfp);
2617  	cup->cu_ctfp = dedup;
2618  
2619  	return (0);
2620  }
2621  
2622  /*
2623   * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2624   * say in the single node case, it's been saved and the entry here has been set
2625   * to NULL, which ctf_close happily ignores.
2626   */
2627  static void
2628  ctf_dwarf_free_die(ctf_cu_t *cup)
2629  {
2630  	ctf_dwfunc_t *cdf, *ndf;
2631  	ctf_dwvar_t *cdv, *ndv;
2632  	ctf_dwbitf_t *cdb, *ndb;
2633  	ctf_dwmap_t *map;
2634  	void *cookie;
2635  	Dwarf_Error derr;
2636  
2637  	ctf_dprintf("Beginning to free die: %p\n", cup);
2638  	cup->cu_elf = NULL;
2639  	ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2640  	if (cup->cu_name != NULL)
2641  		ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2642  	ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2643  	if (cup->cu_cmh != NULL) {
2644  		ctf_merge_fini(cup->cu_cmh);
2645  		cup->cu_cmh = NULL;
2646  	}
2647  
2648  	ctf_dprintf("Trying to free functions\n");
2649  	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2650  		ndf = ctf_list_next(cdf);
2651  		ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2652  		if (cdf->cdf_fip.ctc_argc != 0) {
2653  			ctf_free(cdf->cdf_argv,
2654  			    sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2655  		}
2656  		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2657  	}
2658  
2659  	ctf_dprintf("Trying to free variables\n");
2660  	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2661  		ndv = ctf_list_next(cdv);
2662  		ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
2663  		ctf_free(cdv, sizeof (ctf_dwvar_t));
2664  	}
2665  
2666  	ctf_dprintf("Trying to free bitfields\n");
2667  	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2668  		ndb = ctf_list_next(cdb);
2669  		ctf_free(cdb, sizeof (ctf_dwbitf_t));
2670  	}
2671  
2672  	ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2673  	(void) dwarf_finish(cup->cu_dwarf, &derr);
2674  	cup->cu_dwarf = NULL;
2675  	ctf_close(cup->cu_ctfp);
2676  
2677  	cookie = NULL;
2678  	while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2679  		ctf_free(map, sizeof (ctf_dwmap_t));
2680  	}
2681  	avl_destroy(&cup->cu_map);
2682  	cup->cu_errbuf = NULL;
2683  }
2684  
2685  static void
2686  ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2687  {
2688  	int i;
2689  
2690  	ctf_dprintf("Beginning to free dies\n");
2691  	for (i = 0; i < ndies; i++) {
2692  		ctf_dwarf_free_die(&cdies[i]);
2693  	}
2694  
2695  	ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2696  }
2697  
2698  static int
2699  ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2700      char *errbuf, size_t errlen)
2701  {
2702  	int ret;
2703  	Dwarf_Half vers;
2704  	Dwarf_Unsigned nexthdr;
2705  
2706  	while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2707  	    &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2708  		if (ret != DW_DLV_OK) {
2709  			(void) snprintf(errbuf, errlen,
2710  			    "file does not contain valid DWARF data: %s\n",
2711  			    dwarf_errmsg(*derr));
2712  			return (ECTF_CONVBKERR);
2713  		}
2714  
2715  		if (vers != DWARF_VERSION_TWO) {
2716  			(void) snprintf(errbuf, errlen,
2717  			    "unsupported DWARF version: %d\n", vers);
2718  			return (ECTF_CONVBKERR);
2719  		}
2720  		*ndies = *ndies + 1;
2721  	}
2722  
2723  	if (*ndies == 0) {
2724  		(void) snprintf(errbuf, errlen,
2725  		    "file does not contain valid DWARF data: %s\n",
2726  		    dwarf_errmsg(*derr));
2727  		return (ECTF_CONVBKERR);
2728  	}
2729  
2730  	return (0);
2731  }
2732  
2733  static int
2734  ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2735      size_t errlen)
2736  {
2737  	int ret;
2738  	Dwarf_Unsigned hdrlen, abboff, nexthdr;
2739  	Dwarf_Half addrsz;
2740  	Dwarf_Unsigned offset = 0;
2741  	Dwarf_Error derr;
2742  
2743  	while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2744  	    &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2745  		char *name;
2746  		Dwarf_Die cu, child;
2747  
2748  		/* Based on the counting above, we should be good to go */
2749  		VERIFY(ret == DW_DLV_OK);
2750  		if (ndie > 0) {
2751  			ndie--;
2752  			offset = nexthdr;
2753  			continue;
2754  		}
2755  
2756  		/*
2757  		 * Compilers are apparently inconsistent. Some emit no DWARF for
2758  		 * empty files and others emit empty compilation unit.
2759  		 */
2760  		cup->cu_voidtid = CTF_ERR;
2761  		cup->cu_longtid = CTF_ERR;
2762  		cup->cu_elf = elf;
2763  		cup->cu_maxoff = nexthdr - 1;
2764  		cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2765  		if (cup->cu_ctfp == NULL) {
2766  			ctf_free(cup, sizeof (ctf_cu_t));
2767  			return (ret);
2768  		}
2769  		avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2770  		    offsetof(ctf_dwmap_t, cdm_avl));
2771  		cup->cu_errbuf = errbuf;
2772  		cup->cu_errlen = errlen;
2773  		bzero(&cup->cu_vars, sizeof (ctf_list_t));
2774  		bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2775  		bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2776  
2777  		if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2778  		    errlen)) != 0) {
2779  			avl_destroy(&cup->cu_map);
2780  			ctf_free(cup, sizeof (ctf_cu_t));
2781  			return (ret);
2782  		}
2783  
2784  		if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0) {
2785  			avl_destroy(&cup->cu_map);
2786  			ctf_free(cup, sizeof (ctf_cu_t));
2787  			return (ret);
2788  		}
2789  		if (cu == NULL) {
2790  			(void) snprintf(errbuf, errlen,
2791  			    "file does not contain DWARF data\n");
2792  			avl_destroy(&cup->cu_map);
2793  			ctf_free(cup, sizeof (ctf_cu_t));
2794  			return (ECTF_CONVBKERR);
2795  		}
2796  
2797  		if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0) {
2798  			avl_destroy(&cup->cu_map);
2799  			ctf_free(cup, sizeof (ctf_cu_t));
2800  			return (ret);
2801  		}
2802  		if (child == NULL) {
2803  			(void) snprintf(errbuf, errlen,
2804  			    "file does not contain DWARF data\n");
2805  			avl_destroy(&cup->cu_map);
2806  			ctf_free(cup, sizeof (ctf_cu_t));
2807  			return (ECTF_CONVBKERR);
2808  		}
2809  
2810  		cup->cu_cuoff = offset;
2811  		cup->cu_cu = child;
2812  
2813  		if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL) {
2814  			avl_destroy(&cup->cu_map);
2815  			ctf_free(cup, sizeof (ctf_cu_t));
2816  			return (ret);
2817  		}
2818  
2819  		if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2820  			size_t len = strlen(name) + 1;
2821  			char *b = basename(name);
2822  			cup->cu_name = strdup(b);
2823  			ctf_free(name, len);
2824  		}
2825  		break;
2826  	}
2827  
2828  	return (0);
2829  }
2830  
2831  
2832  ctf_conv_status_t
2833  ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, int *errp, ctf_file_t **fpp,
2834      char *errmsg, size_t errlen)
2835  {
2836  	int err, ret, ndies, i;
2837  	Dwarf_Debug dw;
2838  	Dwarf_Error derr;
2839  	ctf_cu_t *cdies = NULL, *cup;
2840  	workq_t *wqp = NULL;
2841  
2842  	if (errp == NULL)
2843  		errp = &err;
2844  	*errp = 0;
2845  	*fpp = NULL;
2846  
2847  	ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
2848  	if (ret != DW_DLV_OK) {
2849  		/*
2850  		 * We may want to expect DWARF data here and fail conversion if
2851  		 * it's missing. In this case, if we actually have some amount
2852  		 * of DWARF, but no section, for now, just go ahead and create
2853  		 * an empty CTF file.
2854  		 */
2855  		if (ret == DW_DLV_NO_ENTRY ||
2856  		    dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
2857  			*fpp = ctf_create(errp);
2858  			return (*fpp != NULL ? CTF_CONV_SUCCESS :
2859  			    CTF_CONV_ERROR);
2860  		}
2861  		(void) snprintf(errmsg, errlen,
2862  		    "failed to initialize DWARF: %s\n",
2863  		    dwarf_errmsg(derr));
2864  		*errp = ECTF_CONVBKERR;
2865  		return (CTF_CONV_ERROR);
2866  	}
2867  
2868  	/*
2869  	 * Iterate over all of the compilation units and create a ctf_cu_t for
2870  	 * each of them.  This is used to determine if we have zero, one, or
2871  	 * multiple dies to convert. If we have zero, that's an error. If
2872  	 * there's only one die, that's the simple case.  No merge needed and
2873  	 * only a single Dwarf_Debug as well.
2874  	 */
2875  	ndies = 0;
2876  	ret = ctf_dwarf_count_dies(dw, &derr, &ndies, errmsg, errlen);
2877  	if (ret != 0) {
2878  		*errp = ret;
2879  		goto out;
2880  	}
2881  
2882  	(void) dwarf_finish(dw, &derr);
2883  	cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
2884  	if (cdies == NULL) {
2885  		*errp = ENOMEM;
2886  		return (CTF_CONV_ERROR);
2887  	}
2888  
2889  	for (i = 0; i < ndies; i++) {
2890  		cup = &cdies[i];
2891  		ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
2892  		    &cup->cu_dwarf, &derr);
2893  		if (ret != 0) {
2894  			ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2895  			(void) snprintf(errmsg, errlen,
2896  			    "failed to initialize DWARF: %s\n",
2897  			    dwarf_errmsg(derr));
2898  			*errp = ECTF_CONVBKERR;
2899  			return (CTF_CONV_ERROR);
2900  		}
2901  
2902  		ret = ctf_dwarf_init_die(fd, elf, &cdies[i], i, errmsg, errlen);
2903  		if (ret != 0) {
2904  			*errp = ret;
2905  			goto out;
2906  		}
2907  		cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
2908  	}
2909  
2910  	ctf_dprintf("found %d DWARF die(s)\n", ndies);
2911  
2912  	/*
2913  	 * If we only have one compilation unit, there's no reason to use
2914  	 * multiple threads, even if the user requested them. After all, they
2915  	 * just gave us an upper bound.
2916  	 */
2917  	if (ndies == 1)
2918  		nthrs = 1;
2919  
2920  	if (workq_init(&wqp, nthrs) == -1) {
2921  		*errp = errno;
2922  		goto out;
2923  	}
2924  
2925  	for (i = 0; i < ndies; i++) {
2926  		cup = &cdies[i];
2927  		ctf_dprintf("adding die %s: %p, %x %x\n", cup->cu_name,
2928  		    cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
2929  		if (workq_add(wqp, cup) == -1) {
2930  			*errp = errno;
2931  			goto out;
2932  		}
2933  	}
2934  
2935  	ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, errp);
2936  	if (ret == WORKQ_ERROR) {
2937  		*errp = errno;
2938  		goto out;
2939  	} else if (ret == WORKQ_UERROR) {
2940  		ctf_dprintf("internal convert failed: %s\n",
2941  		    ctf_errmsg(*errp));
2942  		goto out;
2943  	}
2944  
2945  	ctf_dprintf("Determining next phase: have %d dies\n", ndies);
2946  	if (ndies != 1) {
2947  		ctf_merge_t *cmp;
2948  
2949  		cmp = ctf_merge_init(fd, &ret);
2950  		if (cmp == NULL) {
2951  			*errp = ret;
2952  			goto out;
2953  		}
2954  
2955  		ctf_dprintf("setting threads\n");
2956  		if ((ret = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
2957  			ctf_merge_fini(cmp);
2958  			*errp = ret;
2959  			goto out;
2960  		}
2961  
2962  		ctf_dprintf("adding dies\n");
2963  		for (i = 0; i < ndies; i++) {
2964  			cup = &cdies[i];
2965  			if ((ret = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
2966  				ctf_merge_fini(cmp);
2967  				*errp = ret;
2968  				goto out;
2969  			}
2970  		}
2971  
2972  		ctf_dprintf("performing merge\n");
2973  		ret = ctf_merge_merge(cmp, fpp);
2974  		if (ret != 0) {
2975  			ctf_dprintf("failed merge!\n");
2976  			*fpp = NULL;
2977  			ctf_merge_fini(cmp);
2978  			*errp = ret;
2979  			goto out;
2980  		}
2981  		ctf_merge_fini(cmp);
2982  		*errp = 0;
2983  		ctf_dprintf("successfully converted!\n");
2984  	} else {
2985  		*errp = 0;
2986  		*fpp = cdies->cu_ctfp;
2987  		cdies->cu_ctfp = NULL;
2988  		ctf_dprintf("successfully converted!\n");
2989  	}
2990  
2991  out:
2992  	workq_fini(wqp);
2993  	ctf_dwarf_free_dies(cdies, ndies);
2994  	return (*fpp != NULL ? CTF_CONV_SUCCESS : CTF_CONV_ERROR);
2995  }
2996