1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 Jason King. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 /*
31 * Copyright 2020 Joyent, Inc.
32 * Copyright 2020 Robert Mustacchi
33 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
34 */
35
36 /*
37 * CTF DWARF conversion theory.
38 *
39 * DWARF data contains a series of compilation units. Each compilation unit
40 * generally refers to an object file or what once was, in the case of linked
41 * binaries and shared objects. Each compilation unit has a series of what DWARF
42 * calls a DIE (Debugging Information Entry). The set of entries that we care
43 * about have type information stored in a series of attributes. Each DIE also
44 * has a tag that identifies the kind of attributes that it has.
45 *
46 * A given DIE may itself have children. For example, a DIE that represents a
47 * structure has children which represent members. Whenever we encounter a DIE
48 * that has children or other values or types associated with it, we recursively
49 * process those children first so that way we can then refer to the generated
50 * CTF type id while processing its parent. This reduces the amount of unknowns
51 * and fixups that we need. It also ensures that we don't accidentally add types
52 * that an overzealous compiler might add to the DWARF data but aren't used by
53 * anything in the system.
54 *
55 * Once we do a conversion, we store a mapping in an AVL tree that goes from the
56 * DWARF's die offset, which is relative to the given compilation unit, to a
57 * ctf_id_t.
58 *
59 * Unfortunately, some compilers actually will emit duplicate entries for a
60 * given type that look similar, but aren't quite. To that end, we go through
61 * and do a variant on a merge once we're done processing a single compilation
62 * unit which deduplicates all of the types that are in the unit.
63 *
64 * Finally, if we encounter an object that has multiple compilation units, then
65 * we'll convert all of the compilation units separately and then do a merge, so
66 * that way we can result in one single ctf_file_t that represents everything
67 * for the object.
68 *
69 * Conversion Steps
70 * ----------------
71 *
72 * Because a given object we've been given to convert may have multiple
73 * compilation units, we break the work into two halves. The first half
74 * processes each compilation unit (potentially in parallel) and then the second
75 * half optionally merges all of the dies in the first half. First, we'll cover
76 * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
77 * the work done in ctf_dwarf_convert_one().
78 *
79 * An individual ctf_cu_t, which represents a compilation unit, is converted to
80 * CTF in a series of multiple passes.
81 *
82 * Pass 1: During the first pass we walk all of the top-level dies and if we
83 * find a function, variable, struct, union, enum or typedef, we recursively
84 * transform all of its types. We don't recurse or process everything, because
85 * we don't want to add some of the types that compilers may add which are
86 * effectively unused.
87 *
88 * During pass 1, if we encounter any structures or unions we mark them for
89 * fixing up later. This is necessary because we may not be able to determine
90 * the full size of a structure at the beginning of time. This will happen if
91 * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
92 * this possibility we defer adding members to structures or even converting
93 * them during pass 1 and save that for pass 2. Adding all of the base
94 * structures without any of their members helps deal with any circular
95 * dependencies that we might encounter.
96 *
97 * Pass 2: This pass is used to do the first half of fixing up structures and
98 * unions. Rather than walk the entire type space again, we actually walk the
99 * list of structures and unions that we marked for later fixing up. Here, we
100 * iterate over every structure and add members to the underlying ctf_file_t,
101 * but not to the structs themselves. One might wonder why we don't, and the
102 * main reason is that libctf requires a ctf_update() be done before adding the
103 * members to structures or unions.
104 *
105 * Pass 3: This pass is used to do the second half of fixing up structures and
106 * unions. During this part we always go through and add members to structures
107 * and unions that we added to the container in the previous pass. In addition,
108 * we set the structure and union's actual size, which may have additional
109 * padding added by the compiler, it isn't simply the last offset. DWARF always
110 * guarantees an attribute exists for this. Importantly no ctf_id_t's change
111 * during pass 2.
112 *
113 * Pass 4: The next phase is to add CTF entries for all of the symbols and
114 * variables that are present in this die. During pass 1 we added entries to a
115 * map for each variable and function. During this pass, we iterate over the
116 * symbol table and when we encounter a symbol that we have in our lists of
117 * translated information which matches, we then add it to the ctf_file_t.
118 *
119 * Pass 5: Here we go and look for any weak symbols and functions and see if
120 * they match anything that we recognize. If so, then we add type information
121 * for them at this point based on the matching type.
122 *
123 * Pass 6: This pass is actually a variant on a merge. The traditional merge
124 * process expects there to be no duplicate types. As such, at the end of
125 * conversion, we do a dedup on all of the types in the system. The
126 * deduplication process is described in lib/libctf/common/ctf_merge.c.
127 *
128 * Once pass 6 is done, we've finished processing the individual compilation
129 * unit.
130 *
131 * The following steps reflect the general process of doing a conversion.
132 *
133 * 1) Walk the dwarf section and determine the number of compilation units
134 * 2) Create a ctf_cu_t for each compilation unit
135 * 3) Add all ctf_cu_t's to a workq
136 * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
137 * is comprised of several steps, which were already enumerated.
138 * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
139 * of the merge are discussed in lib/libctf/common/ctf_merge.c.
140 * 6) Free everything up and return a ctf_file_t to the user. If we only had a
141 * single compilation unit, then we give that to the user. Otherwise, we
142 * return the merged ctf_file_t.
143 *
144 * Threading
145 * ---------
146 *
147 * The process has been designed to be amenable to threading. Each compilation
148 * unit has its own type stream, therefore the logical place to divide and
149 * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
150 * to be processed independently of the others. It has its own libdwarf handle,
151 * as a given libdwarf handle may only be used by a single thread at a time.
152 * This allows the various ctf_cu_t's to be processed in parallel by different
153 * threads.
154 *
155 * All of the ctf_cu_t's are loaded into a workq which allows for a number of
156 * threads to be specified and used as a thread pool to process all of the
157 * queued work. We set the number of threads to use in the workq equal to the
158 * number of threads that the user has specified.
159 *
160 * After all of the compilation units have been drained, we use the same number
161 * of threads when performing a merge of multiple compilation units, if they
162 * exist.
163 *
164 * While all of these different parts do support and allow for multiple threads,
165 * it's important that when only a single thread is specified, that it be the
166 * calling thread. This allows the conversion routines to be used in a context
167 * that doesn't allow additional threads, such as rtld.
168 *
169 * Common DWARF Mechanics and Notes
170 * --------------------------------
171 *
172 * At this time, we really only support DWARFv2, though support for DWARFv4 is
173 * mostly there. There is no intent to support DWARFv3.
174 *
175 * Generally types for something are stored in the DW_AT_type attribute. For
176 * example, a function's return type will be stored in the local DW_AT_type
177 * attribute while the arguments will be in child DIEs. There are also various
178 * times when we don't have any DW_AT_type. In that case, the lack of a type
179 * implies, at least for C, that its C type is void. Because DWARF doesn't emit
180 * one, we have a synthetic void type that we create and manipulate instead and
181 * pass it off to consumers on an as-needed basis. If nothing has a void type,
182 * it will not be emitted.
183 *
184 * Architecture Specific Parts
185 * ---------------------------
186 *
187 * The CTF tooling encodes various information about the various architectures
188 * in the system. Importantly, the tool assumes that every architecture has a
189 * data model where long and pointer are the same size. This is currently the
190 * case, as the two data models illumos supports are ILP32 and LP64.
191 *
192 * In addition, we encode the mapping of various floating point sizes to various
193 * types for each architecture. If a new architecture is being added, it should
194 * be added to the list. The general design of the ctf conversion tools is to be
195 * architecture independent. eg. any of the tools here should be able to convert
196 * any architecture's DWARF into ctf; however, this has not been rigorously
197 * tested and more importantly, the ctf routines don't currently write out the
198 * data in an endian-aware form, they only use that of the currently running
199 * library.
200 */
201
202 #include <libctf_impl.h>
203 #include <sys/avl.h>
204 #include <sys/debug.h>
205 #include <sys/list.h>
206 #include <gelf.h>
207 #include <libdwarf.h>
208 #include <dwarf.h>
209 #include <libgen.h>
210 #include <workq.h>
211 #include <thread.h>
212 #include <macros.h>
213 #include <errno.h>
214
215 #define DWARF_VERSION_TWO 2
216 #define DWARF_VERSION_FOUR 4
217 #define DWARF_VARARGS_NAME "..."
218
219 /*
220 * Dwarf may refer recursively to other types that we've already processed. To
221 * see if we've already converted them, we look them up in an AVL tree that's
222 * sorted by the DWARF id.
223 */
224 typedef struct ctf_dwmap {
225 avl_node_t cdm_avl;
226 Dwarf_Off cdm_off;
227 Dwarf_Die cdm_die;
228 ctf_id_t cdm_id;
229 boolean_t cdm_fix;
230 } ctf_dwmap_t;
231
232 typedef struct ctf_dwvar {
233 ctf_list_t cdv_list;
234 char *cdv_name;
235 ctf_id_t cdv_type;
236 boolean_t cdv_global;
237 } ctf_dwvar_t;
238
239 typedef struct ctf_dwfunc {
240 ctf_list_t cdf_list;
241 char *cdf_name;
242 ctf_funcinfo_t cdf_fip;
243 ctf_id_t *cdf_argv;
244 boolean_t cdf_global;
245 } ctf_dwfunc_t;
246
247 typedef struct ctf_dwbitf {
248 ctf_list_t cdb_list;
249 ctf_id_t cdb_base;
250 uint_t cdb_nbits;
251 ctf_id_t cdb_id;
252 } ctf_dwbitf_t;
253
254 /*
255 * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
256 * the typical object file has only a single die, if we're asked to convert
257 * something that's been linked from multiple sources, multiple dies will exist.
258 */
259 typedef struct ctf_die {
260 Elf *cu_elf; /* shared libelf handle */
261 int cu_fd; /* shared file descriptor */
262 char *cu_name; /* basename of the DIE */
263 ctf_merge_t *cu_cmh; /* merge handle */
264 ctf_list_t cu_vars; /* List of variables */
265 ctf_list_t cu_funcs; /* List of functions */
266 ctf_list_t cu_bitfields; /* Bit field members */
267 Dwarf_Debug cu_dwarf; /* libdwarf handle */
268 mutex_t *cu_dwlock; /* libdwarf lock */
269 Dwarf_Die cu_cu; /* libdwarf compilation unit */
270 Dwarf_Off cu_cuoff; /* cu's offset */
271 Dwarf_Off cu_maxoff; /* maximum offset */
272 Dwarf_Half cu_vers; /* Dwarf Version */
273 Dwarf_Half cu_addrsz; /* Dwarf Address Size */
274 ctf_file_t *cu_ctfp; /* output CTF file */
275 avl_tree_t cu_map; /* map die offsets to CTF types */
276 char *cu_errbuf; /* error message buffer */
277 size_t cu_errlen; /* error message buffer length */
278 ctf_convert_t *cu_handle; /* ctf convert handle */
279 size_t cu_ptrsz; /* object's pointer size */
280 boolean_t cu_bigend; /* is it big endian */
281 boolean_t cu_doweaks; /* should we convert weak symbols? */
282 uint_t cu_mach; /* machine type */
283 ctf_id_t cu_voidtid; /* void pointer */
284 ctf_id_t cu_longtid; /* id for a 'long' */
285 } ctf_cu_t;
286
287 static int ctf_dwarf_init_die(ctf_cu_t *);
288 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
289 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
290 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
291
292 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
293 boolean_t);
294 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
295 ctf_id_t *);
296
297 #define DWARF_LOCK(cup) \
298 if ((cup)->cu_dwlock != NULL) \
299 mutex_enter((cup)->cu_dwlock)
300 #define DWARF_UNLOCK(cup) \
301 if ((cup)->cu_dwlock != NULL) \
302 mutex_exit((cup)->cu_dwlock)
303
304 /*
305 * This is a generic way to set a CTF Conversion backend error depending on what
306 * we were doing. Unless it was one of a specific set of errors that don't
307 * indicate a programming / translation bug, eg. ENOMEM, then we transform it
308 * into a CTF backend error and fill in the error buffer.
309 */
310 static int
ctf_dwarf_error(ctf_cu_t * cup,ctf_file_t * cfp,int err,const char * fmt,...)311 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
312 {
313 va_list ap;
314 int ret;
315 size_t off = 0;
316 ssize_t rem = cup->cu_errlen;
317 if (cfp != NULL)
318 err = ctf_errno(cfp);
319
320 if (err == ENOMEM)
321 return (err);
322
323 ret = snprintf(cup->cu_errbuf, rem, "die %s: ",
324 cup->cu_name != NULL ? cup->cu_name : "NULL");
325 if (ret < 0)
326 goto err;
327 off += ret;
328 rem = MAX(rem - ret, 0);
329
330 va_start(ap, fmt);
331 ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
332 va_end(ap);
333 if (ret < 0)
334 goto err;
335
336 off += ret;
337 rem = MAX(rem - ret, 0);
338 if (fmt[strlen(fmt) - 1] != '\n') {
339 (void) snprintf(cup->cu_errbuf + off, rem,
340 ": %s\n", ctf_errmsg(err));
341 }
342 va_end(ap);
343 return (ECTF_CONVBKERR);
344
345 err:
346 cup->cu_errbuf[0] = '\0';
347 return (ECTF_CONVBKERR);
348 }
349
350 /*
351 * DWARF often opts to put no explicit type to describe a void type. eg. if we
352 * have a reference type whose DW_AT_type member doesn't exist, then we should
353 * instead assume it points to void. Because this isn't represented, we
354 * instead cause it to come into existence.
355 */
356 static ctf_id_t
ctf_dwarf_void(ctf_cu_t * cup)357 ctf_dwarf_void(ctf_cu_t *cup)
358 {
359 if (cup->cu_voidtid == CTF_ERR) {
360 ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
361 cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
362 "void", &enc);
363 if (cup->cu_voidtid == CTF_ERR) {
364 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
365 "failed to create void type: %s\n",
366 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
367 }
368 }
369
370 return (cup->cu_voidtid);
371 }
372
373 /*
374 * There are many different forms that an array index may take. However, we just
375 * always force it to be of a type long no matter what. Therefore we use this to
376 * have a single instance of long across everything.
377 */
378 static ctf_id_t
ctf_dwarf_long(ctf_cu_t * cup)379 ctf_dwarf_long(ctf_cu_t *cup)
380 {
381 if (cup->cu_longtid == CTF_ERR) {
382 ctf_encoding_t enc;
383
384 enc.cte_format = CTF_INT_SIGNED;
385 enc.cte_offset = 0;
386 /* All illumos systems are LP */
387 enc.cte_bits = cup->cu_ptrsz * 8;
388 cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
389 "long", &enc);
390 if (cup->cu_longtid == CTF_ERR) {
391 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
392 "failed to create long type: %s\n",
393 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
394 }
395
396 }
397
398 return (cup->cu_longtid);
399 }
400
401 static int
ctf_dwmap_comp(const void * a,const void * b)402 ctf_dwmap_comp(const void *a, const void *b)
403 {
404 const ctf_dwmap_t *ca = a;
405 const ctf_dwmap_t *cb = b;
406
407 if (ca->cdm_off > cb->cdm_off)
408 return (1);
409 if (ca->cdm_off < cb->cdm_off)
410 return (-1);
411 return (0);
412 }
413
414 static int
ctf_dwmap_add(ctf_cu_t * cup,ctf_id_t id,Dwarf_Die die,boolean_t fix)415 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
416 {
417 int ret;
418 avl_index_t index;
419 ctf_dwmap_t *dwmap;
420 Dwarf_Off off;
421
422 VERIFY(id > 0 && id < CTF_MAX_TYPE);
423
424 if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
425 return (ret);
426
427 if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
428 return (ENOMEM);
429
430 dwmap->cdm_die = die;
431 dwmap->cdm_off = off;
432 dwmap->cdm_id = id;
433 dwmap->cdm_fix = fix;
434
435 ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
436 VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
437 avl_insert(&cup->cu_map, dwmap, index);
438 return (0);
439 }
440
441 static int
ctf_dwarf_attribute(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,Dwarf_Attribute * attrp)442 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
443 Dwarf_Attribute *attrp)
444 {
445 int ret;
446 Dwarf_Error derr;
447
448 DWARF_LOCK(cup);
449 ret = dwarf_attr(die, name, attrp, &derr);
450 DWARF_UNLOCK(cup);
451 if (ret == DW_DLV_OK)
452 return (0);
453 if (ret == DW_DLV_NO_ENTRY) {
454 *attrp = NULL;
455 return (ENOENT);
456 }
457 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
458 "failed to get attribute for type: %s\n",
459 dwarf_errmsg(derr));
460 return (ECTF_CONVBKERR);
461 }
462
463 static void
ctf_dwarf_dealloc(ctf_cu_t * cup,Dwarf_Ptr ptr,Dwarf_Unsigned type)464 ctf_dwarf_dealloc(ctf_cu_t *cup, Dwarf_Ptr ptr, Dwarf_Unsigned type)
465 {
466 DWARF_LOCK(cup);
467 dwarf_dealloc(cup->cu_dwarf, ptr, type);
468 DWARF_UNLOCK(cup);
469 }
470
471 static int
ctf_dwarf_ref(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,Dwarf_Off * refp)472 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
473 {
474 int ret;
475 Dwarf_Attribute attr;
476 Dwarf_Error derr;
477
478 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
479 return (ret);
480
481 DWARF_LOCK(cup);
482 ret = dwarf_formref(attr, refp, &derr);
483 DWARF_UNLOCK(cup);
484 if (ret == DW_DLV_OK) {
485 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
486 return (0);
487 }
488
489 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
490 "failed to get attribute descriptor offset: %s\n",
491 dwarf_errmsg(derr));
492 return (ECTF_CONVBKERR);
493 }
494
495 static int
ctf_dwarf_refdie(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,Dwarf_Die * diep)496 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
497 Dwarf_Die *diep)
498 {
499 int ret;
500 Dwarf_Off off;
501 Dwarf_Error derr;
502
503 if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
504 return (ret);
505
506 off += cup->cu_cuoff;
507 DWARF_LOCK(cup);
508 ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr);
509 DWARF_UNLOCK(cup);
510 if (ret != DW_DLV_OK) {
511 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
512 "failed to get die from offset %" DW_PR_DUu ": %s\n",
513 off, dwarf_errmsg(derr));
514 return (ECTF_CONVBKERR);
515 }
516
517 return (0);
518 }
519
520 static int
ctf_dwarf_signed(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,Dwarf_Signed * valp)521 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
522 Dwarf_Signed *valp)
523 {
524 int ret;
525 Dwarf_Attribute attr;
526 Dwarf_Error derr;
527
528 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
529 return (ret);
530
531 DWARF_LOCK(cup);
532 ret = dwarf_formsdata(attr, valp, &derr);
533 DWARF_UNLOCK(cup);
534 if (ret == DW_DLV_OK) {
535 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
536 return (0);
537 }
538
539 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
540 "failed to get signed attribute for type: %s\n",
541 dwarf_errmsg(derr));
542 return (ECTF_CONVBKERR);
543 }
544
545 static int
ctf_dwarf_unsigned(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,Dwarf_Unsigned * valp)546 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
547 Dwarf_Unsigned *valp)
548 {
549 int ret;
550 Dwarf_Attribute attr;
551 Dwarf_Error derr;
552
553 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
554 return (ret);
555
556 DWARF_LOCK(cup);
557 ret = dwarf_formudata(attr, valp, &derr);
558 DWARF_UNLOCK(cup);
559 if (ret == DW_DLV_OK) {
560 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
561 return (0);
562 }
563
564 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
565 "failed to get unsigned attribute for type: %s\n",
566 dwarf_errmsg(derr));
567 return (ECTF_CONVBKERR);
568 }
569
570 static int
ctf_dwarf_boolean(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,Dwarf_Bool * val)571 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
572 Dwarf_Bool *val)
573 {
574 int ret;
575 Dwarf_Attribute attr;
576 Dwarf_Error derr;
577
578 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
579 return (ret);
580
581 DWARF_LOCK(cup);
582 ret = dwarf_formflag(attr, val, &derr);
583 DWARF_UNLOCK(cup);
584 if (ret == DW_DLV_OK) {
585 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
586 return (0);
587 }
588
589 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
590 "failed to get boolean attribute for type: %s\n",
591 dwarf_errmsg(derr));
592
593 return (ECTF_CONVBKERR);
594 }
595
596 static int
ctf_dwarf_string(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half name,char ** strp)597 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
598 {
599 int ret;
600 char *s;
601 Dwarf_Attribute attr;
602 Dwarf_Error derr;
603
604 *strp = NULL;
605 if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
606 return (ret);
607
608 DWARF_LOCK(cup);
609 ret = dwarf_formstring(attr, &s, &derr);
610 DWARF_UNLOCK(cup);
611 if (ret == DW_DLV_OK) {
612 if ((*strp = ctf_strdup(s)) == NULL)
613 ret = ENOMEM;
614 else
615 ret = 0;
616 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
617 return (ret);
618 }
619
620 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
621 "failed to get string attribute for type: %s\n",
622 dwarf_errmsg(derr));
623 return (ECTF_CONVBKERR);
624 }
625
626 /*
627 * The encoding of a DW_AT_data_member_location has changed between different
628 * revisions of the specification. It may be a general udata form or it may be
629 * location data information. In DWARF 2, it is only the latter. In later
630 * revisions of the spec, it may be either. To determine the form, we ask the
631 * class, which will be of type CONSTANT.
632 */
633 static int
ctf_dwarf_member_location(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Unsigned * valp)634 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
635 {
636 int ret;
637 Dwarf_Error derr;
638 Dwarf_Attribute attr;
639 Dwarf_Locdesc *loc;
640 Dwarf_Signed locnum;
641 Dwarf_Half form;
642 enum Dwarf_Form_Class class;
643
644 if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
645 &attr)) != 0) {
646 return (ret);
647 }
648
649 DWARF_LOCK(cup);
650 ret = dwarf_whatform(attr, &form, &derr);
651 DWARF_UNLOCK(cup);
652 if (ret != DW_DLV_OK) {
653 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
654 "failed to get dwarf attribute for for member "
655 "location: %s\n",
656 dwarf_errmsg(derr));
657 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
658 return (ECTF_CONVBKERR);
659 }
660
661 DWARF_LOCK(cup);
662 class = dwarf_get_form_class(cup->cu_vers, DW_AT_data_member_location,
663 cup->cu_addrsz, form);
664 if (class == DW_FORM_CLASS_CONSTANT) {
665 Dwarf_Signed sign;
666
667 /*
668 * We have a constant. We need to try to get both this as signed
669 * and unsigned data, as unfortunately, DWARF doesn't define the
670 * sign. Which is a joy. We try unsigned first. If neither
671 * match, fall through to the normal path.
672 */
673 if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
674 DWARF_UNLOCK(cup);
675 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
676 return (0);
677 }
678
679 if (dwarf_formsdata(attr, &sign, &derr) == DW_DLV_OK) {
680 DWARF_UNLOCK(cup);
681 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
682 if (sign < 0) {
683 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 "encountered negative member data "
685 "location: %lld\n", sign);
686 }
687 *valp = (Dwarf_Unsigned)sign;
688 return (0);
689 }
690 }
691
692 if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
693 DWARF_UNLOCK(cup);
694 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
695 "failed to obtain location list for member offset: %s\n",
696 dwarf_errmsg(derr));
697 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
698 return (ECTF_CONVBKERR);
699 }
700 DWARF_UNLOCK(cup);
701 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
702
703 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
704 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
705 "failed to parse location structure for member\n");
706 ctf_dwarf_dealloc(cup, loc->ld_s, DW_DLA_LOC_BLOCK);
707 ctf_dwarf_dealloc(cup, loc, DW_DLA_LOCDESC);
708 return (ECTF_CONVBKERR);
709 }
710
711 *valp = loc->ld_s->lr_number;
712
713 ctf_dwarf_dealloc(cup, loc->ld_s, DW_DLA_LOC_BLOCK);
714 ctf_dwarf_dealloc(cup, loc, DW_DLA_LOCDESC);
715 return (0);
716 }
717
718
719 static int
ctf_dwarf_offset(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Off * offsetp)720 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
721 {
722 Dwarf_Error derr;
723 int ret;
724
725 DWARF_LOCK(cup);
726 ret = dwarf_dieoffset(die, offsetp, &derr);
727 DWARF_UNLOCK(cup);
728 if (ret == DW_DLV_OK)
729 return (0);
730
731 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
732 "failed to get die offset: %s\n",
733 dwarf_errmsg(derr));
734 return (ECTF_CONVBKERR);
735 }
736
737 /* simpler variant for debugging output */
738 static Dwarf_Off
ctf_die_offset(ctf_cu_t * cup,Dwarf_Die die)739 ctf_die_offset(ctf_cu_t *cup, Dwarf_Die die)
740 {
741 Dwarf_Off off = -1;
742 Dwarf_Error derr;
743
744 DWARF_LOCK(cup);
745 (void) dwarf_dieoffset(die, &off, &derr);
746 DWARF_UNLOCK(cup);
747 return (off);
748 }
749
750 static int
ctf_dwarf_tag(ctf_cu_t * cup,Dwarf_Die die,Dwarf_Half * tagp)751 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
752 {
753 Dwarf_Error derr;
754 int ret;
755
756 DWARF_LOCK(cup);
757 ret = dwarf_tag(die, tagp, &derr);
758 DWARF_UNLOCK(cup);
759 if (ret == DW_DLV_OK)
760 return (0);
761
762 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
763 "failed to get tag type: %s\n",
764 dwarf_errmsg(derr));
765 return (ECTF_CONVBKERR);
766 }
767
768 static int
ctf_dwarf_sib(ctf_cu_t * cup,Dwarf_Die base,Dwarf_Die * sibp)769 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
770 {
771 Dwarf_Error derr;
772 int ret;
773
774 *sibp = NULL;
775 DWARF_LOCK(cup);
776 ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
777 DWARF_UNLOCK(cup);
778 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
779 return (0);
780
781 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
782 "failed to sibling from die: %s\n",
783 dwarf_errmsg(derr));
784 return (ECTF_CONVBKERR);
785 }
786
787 static int
ctf_dwarf_child(ctf_cu_t * cup,Dwarf_Die base,Dwarf_Die * childp)788 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
789 {
790 Dwarf_Error derr;
791 int ret;
792
793 *childp = NULL;
794 DWARF_LOCK(cup);
795 ret = dwarf_child(base, childp, &derr);
796 DWARF_UNLOCK(cup);
797 if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
798 return (0);
799
800 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
801 "failed to child from die: %s\n",
802 dwarf_errmsg(derr));
803 return (ECTF_CONVBKERR);
804 }
805
806 /*
807 * Compilers disagree on what to do to determine if something has global
808 * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
809 * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
810 * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
811 */
812 static int
ctf_dwarf_isglobal(ctf_cu_t * cup,Dwarf_Die die,boolean_t * igp)813 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
814 {
815 int ret;
816 Dwarf_Signed vis;
817 Dwarf_Bool ext;
818
819 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
820 *igp = vis == DW_VIS_exported;
821 return (0);
822 } else if (ret != ENOENT) {
823 return (ret);
824 }
825
826 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
827 if (ret == ENOENT) {
828 *igp = B_FALSE;
829 return (0);
830 }
831 return (ret);
832 }
833 *igp = ext != 0 ? B_TRUE : B_FALSE;
834 return (0);
835 }
836
837 static int
ctf_dwarf_die_elfenc(Elf * elf,ctf_cu_t * cup,char * errbuf,size_t errlen)838 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
839 {
840 GElf_Ehdr ehdr;
841
842 if (gelf_getehdr(elf, &ehdr) == NULL) {
843 (void) snprintf(errbuf, errlen,
844 "failed to get ELF header: %s\n",
845 elf_errmsg(elf_errno()));
846 return (ECTF_CONVBKERR);
847 }
848
849 cup->cu_mach = ehdr.e_machine;
850
851 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
852 cup->cu_ptrsz = 4;
853 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
854 } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
855 cup->cu_ptrsz = 8;
856 VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
857 } else {
858 (void) snprintf(errbuf, errlen,
859 "unknown ELF class %d\n", ehdr.e_ident[EI_CLASS]);
860 return (ECTF_CONVBKERR);
861 }
862
863 if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
864 cup->cu_bigend = B_FALSE;
865 } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
866 cup->cu_bigend = B_TRUE;
867 } else {
868 (void) snprintf(errbuf, errlen,
869 "unknown ELF data encoding: %hhu\n", ehdr.e_ident[EI_DATA]);
870 return (ECTF_CONVBKERR);
871 }
872
873 return (0);
874 }
875
876 typedef struct ctf_dwarf_fpent {
877 size_t cdfe_size;
878 uint_t cdfe_enc[3];
879 } ctf_dwarf_fpent_t;
880
881 typedef struct ctf_dwarf_fpmap {
882 uint_t cdf_mach;
883 ctf_dwarf_fpent_t cdf_ents[5];
884 } ctf_dwarf_fpmap_t;
885
886 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
887 { EM_SPARC, {
888 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
889 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
890 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
891 { 0, { 0 } }
892 } },
893 { EM_SPARC32PLUS, {
894 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
895 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
896 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
897 { 0, { 0 } }
898 } },
899 { EM_SPARCV9, {
900 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
901 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
902 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
903 { 0, { 0 } }
904 } },
905 { EM_386, {
906 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
907 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
908 { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
909 /*
910 * ISO/IEC TS-18661-3:2015 defines several types with analogues
911 * to existing C types. However, in the i386 ABI there is no
912 * corresponding type for a _Float128. While, ideally we would
913 * add this as a discrete type, when C2x formally standardizes
914 * this and a number of additional extensions, we'll want to
915 * change that around. In the interim, we'll encode it as a
916 * weirdly sized long-double, even though not all the tools
917 * will expect an off-abi encoding.
918 */
919 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
920 { 0, { 0 } }
921 } },
922 { EM_X86_64, {
923 { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
924 { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
925 { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
926 { 0, { 0 } }
927 } },
928 { EM_NONE }
929 };
930
931 /*
932 * We want to normalize the type names that are used between compilers in the
933 * case of complex. gcc prefixes things with types like 'long complex' where as
934 * clang only calls them 'complex' in the dwarf even if in the C they are long
935 * complex or similar.
936 */
937 static int
ctf_dwarf_fixup_complex(ctf_cu_t * cup,ctf_encoding_t * enc,char ** namep)938 ctf_dwarf_fixup_complex(ctf_cu_t *cup, ctf_encoding_t *enc, char **namep)
939 {
940 const char *name;
941 *namep = NULL;
942
943 switch (enc->cte_format) {
944 case CTF_FP_CPLX:
945 name = "complex float";
946 break;
947 case CTF_FP_DCPLX:
948 name = "complex double";
949 break;
950 case CTF_FP_LDCPLX:
951 name = "complex long double";
952 break;
953 default:
954 return (0);
955 }
956
957 *namep = ctf_strdup(name);
958 if (*namep == NULL) {
959 return (ENOMEM);
960 }
961
962 return (0);
963 }
964
965 static int
ctf_dwarf_float_base(ctf_cu_t * cup,Dwarf_Signed type,ctf_encoding_t * enc)966 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
967 {
968 const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
969 const ctf_dwarf_fpent_t *ent;
970 uint_t col = 0, mult = 1;
971
972 for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
973 if (map->cdf_mach == cup->cu_mach)
974 break;
975 }
976
977 if (map->cdf_mach == EM_NONE) {
978 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
979 "Unsupported machine type: %d\n", cup->cu_mach);
980 return (ENOTSUP);
981 }
982
983 if (type == DW_ATE_complex_float) {
984 mult = 2;
985 col = 1;
986 } else if (type == DW_ATE_imaginary_float ||
987 type == DW_ATE_SUN_imaginary_float) {
988 col = 2;
989 }
990
991 ent = &map->cdf_ents[0];
992 for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
993 if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
994 enc->cte_format = ent->cdfe_enc[col];
995 return (0);
996 }
997 }
998
999 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1000 "failed to find valid fp mapping for encoding %lld, size %d bits\n",
1001 type, enc->cte_bits);
1002 return (EINVAL);
1003 }
1004
1005 static int
ctf_dwarf_dwarf_base(ctf_cu_t * cup,Dwarf_Die die,int * kindp,ctf_encoding_t * enc)1006 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
1007 ctf_encoding_t *enc)
1008 {
1009 int ret;
1010 Dwarf_Signed type;
1011
1012 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
1013 return (ret);
1014
1015 switch (type) {
1016 case DW_ATE_unsigned:
1017 case DW_ATE_address:
1018 *kindp = CTF_K_INTEGER;
1019 enc->cte_format = 0;
1020 break;
1021 case DW_ATE_unsigned_char:
1022 *kindp = CTF_K_INTEGER;
1023 enc->cte_format = CTF_INT_CHAR;
1024 break;
1025 case DW_ATE_signed:
1026 *kindp = CTF_K_INTEGER;
1027 enc->cte_format = CTF_INT_SIGNED;
1028 break;
1029 case DW_ATE_signed_char:
1030 *kindp = CTF_K_INTEGER;
1031 enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
1032 break;
1033 case DW_ATE_boolean:
1034 *kindp = CTF_K_INTEGER;
1035 enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
1036 break;
1037 case DW_ATE_float:
1038 case DW_ATE_complex_float:
1039 case DW_ATE_imaginary_float:
1040 case DW_ATE_SUN_imaginary_float:
1041 case DW_ATE_SUN_interval_float:
1042 *kindp = CTF_K_FLOAT;
1043 if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
1044 return (ret);
1045 break;
1046 default:
1047 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1048 "encountered unknown DWARF encoding: %lld\n", type);
1049 return (ECTF_CONVBKERR);
1050 }
1051
1052 return (0);
1053 }
1054
1055 /*
1056 * Different compilers (at least GCC and Studio) use different names for types.
1057 * This parses the types and attempts to unify them. If this fails, we just fall
1058 * back to using the DWARF itself.
1059 */
1060 static int
ctf_dwarf_parse_int(const char * name,int * kindp,ctf_encoding_t * enc,char ** newnamep)1061 ctf_dwarf_parse_int(const char *name, int *kindp, ctf_encoding_t *enc,
1062 char **newnamep)
1063 {
1064 char buf[256];
1065 char *base, *c, *last;
1066 int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1067 int sign = 1;
1068
1069 if (strlen(name) + 1 > sizeof (buf))
1070 return (EINVAL);
1071
1072 (void) strlcpy(buf, name, sizeof (buf));
1073 for (c = strtok_r(buf, " ", &last); c != NULL;
1074 c = strtok_r(NULL, " ", &last)) {
1075 if (strcmp(c, "signed") == 0) {
1076 sign = 1;
1077 } else if (strcmp(c, "unsigned") == 0) {
1078 sign = 0;
1079 } else if (strcmp(c, "long") == 0) {
1080 nlong++;
1081 } else if (strcmp(c, "char") == 0) {
1082 nchar++;
1083 } else if (strcmp(c, "short") == 0) {
1084 nshort++;
1085 } else if (strcmp(c, "int") == 0) {
1086 nint++;
1087 } else {
1088 /*
1089 * If we don't recognize any of the tokens, we'll tell
1090 * the caller to fall back to the dwarf-provided
1091 * encoding information.
1092 */
1093 return (EINVAL);
1094 }
1095 }
1096
1097 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1098 return (EINVAL);
1099
1100 if (nchar > 0) {
1101 if (nlong > 0 || nshort > 0 || nint > 0)
1102 return (EINVAL);
1103 base = "char";
1104 } else if (nshort > 0) {
1105 if (nlong > 0)
1106 return (EINVAL);
1107 base = "short";
1108 } else if (nlong > 0) {
1109 base = "long";
1110 } else {
1111 base = "int";
1112 }
1113
1114 if (nchar > 0)
1115 enc->cte_format = CTF_INT_CHAR;
1116 else
1117 enc->cte_format = 0;
1118
1119 if (sign > 0)
1120 enc->cte_format |= CTF_INT_SIGNED;
1121
1122 (void) snprintf(buf, sizeof (buf), "%s%s%s",
1123 (sign ? "" : "unsigned "),
1124 (nlong > 1 ? "long " : ""),
1125 base);
1126
1127 *newnamep = ctf_strdup(buf);
1128 if (*newnamep == NULL)
1129 return (ENOMEM);
1130 *kindp = CTF_K_INTEGER;
1131 return (0);
1132 }
1133
1134 static int
ctf_dwarf_create_base(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int isroot,Dwarf_Off off)1135 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
1136 Dwarf_Off off)
1137 {
1138 int ret;
1139 char *name, *nname = NULL;
1140 Dwarf_Unsigned sz;
1141 int kind;
1142 ctf_encoding_t enc;
1143 ctf_id_t id;
1144
1145 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
1146 return (ret);
1147 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
1148 goto out;
1149 }
1150 ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
1151 off, sz);
1152
1153 bzero(&enc, sizeof (ctf_encoding_t));
1154 enc.cte_bits = sz * 8;
1155 if ((ret = ctf_dwarf_parse_int(name, &kind, &enc, &nname)) == 0) {
1156 ctf_strfree(name);
1157 name = nname;
1158 } else {
1159 if (ret != EINVAL) {
1160 goto out;
1161 }
1162 ctf_dprintf("falling back to dwarf for base type %s\n", name);
1163 if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0) {
1164 goto out;
1165 }
1166
1167 if (kind == CTF_K_FLOAT && (ret = ctf_dwarf_fixup_complex(cup,
1168 &enc, &nname)) != 0) {
1169 goto out;
1170 } else if (nname != NULL) {
1171 ctf_strfree(name);
1172 name = nname;
1173 }
1174 }
1175
1176 id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1177 if (id == CTF_ERR) {
1178 ret = ctf_errno(cup->cu_ctfp);
1179 } else {
1180 *idp = id;
1181 ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1182 }
1183 out:
1184 ctf_strfree(name);
1185 return (ret);
1186 }
1187
1188 /*
1189 * Getting a member's offset is a surprisingly intricate dance. It works as
1190 * follows:
1191 *
1192 * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1193 * have a DW_AT_data_member_location. We won't have both. Thus we check first
1194 * for DW_AT_data_bit_offset, and if it exists, we're set.
1195 *
1196 * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1197 * we have to grab the data location and use the following dance:
1198 *
1199 * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1200 * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1201 * When it's been omitted, we then have to say that the size is that of the
1202 * underlying type, which forces that to be after a ctf_update(). Here, we have
1203 * to do different things based on whether or not we're using big endian or
1204 * little endian to obtain the proper offset.
1205 */
1206 static int
ctf_dwarf_member_offset(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t mid,ulong_t * offp)1207 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1208 ulong_t *offp)
1209 {
1210 int ret;
1211 Dwarf_Unsigned loc, bitsz, bytesz;
1212 Dwarf_Signed bitoff;
1213 size_t off;
1214 ssize_t tsz;
1215
1216 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1217 &loc)) == 0) {
1218 *offp = loc;
1219 return (0);
1220 } else if (ret != ENOENT) {
1221 return (ret);
1222 }
1223
1224 if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1225 return (ret);
1226 off = loc * 8;
1227
1228 if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1229 &bitoff)) != 0) {
1230 if (ret != ENOENT)
1231 return (ret);
1232 *offp = off;
1233 return (0);
1234 }
1235
1236 /* At this point we have to have DW_AT_bit_size */
1237 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1238 return (ret);
1239
1240 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1241 &bytesz)) != 0) {
1242 if (ret != ENOENT)
1243 return (ret);
1244 if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1245 int e = ctf_errno(cup->cu_ctfp);
1246 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1247 "failed to get type size: %s\n", ctf_errmsg(e));
1248 return (ECTF_CONVBKERR);
1249 }
1250 } else {
1251 tsz = bytesz;
1252 }
1253 tsz *= 8;
1254 if (cup->cu_bigend == B_TRUE) {
1255 *offp = off + bitoff;
1256 } else {
1257 *offp = off + tsz - bitoff - bitsz;
1258 }
1259
1260 return (0);
1261 }
1262
1263 /*
1264 * We need to determine if the member in question is a bitfield. If it is, then
1265 * we need to go through and create a new type that's based on the actual base
1266 * type, but has a different size. We also rename the type as a result to help
1267 * deal with future collisions.
1268 *
1269 * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1270 * bit size member and it does not equal the byte size member, then we need to
1271 * create a bitfield type based on this.
1272 *
1273 * Note: When we support DWARFv4, there may be a chance that we need to also
1274 * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1275 */
1276 static int
ctf_dwarf_member_bitfield(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp)1277 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1278 {
1279 int ret;
1280 Dwarf_Unsigned bitsz;
1281 ctf_encoding_t e;
1282 ctf_dwbitf_t *cdb;
1283 ctf_dtdef_t *dtd;
1284 ctf_id_t base = *idp;
1285 int kind;
1286
1287 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1288 if (ret == ENOENT)
1289 return (0);
1290 return (ret);
1291 }
1292
1293 ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1294 /*
1295 * Given that we now have a bitsize, time to go do something about it.
1296 * We're going to create a new type based on the current one, but first
1297 * we need to find the base type. This means we need to traverse any
1298 * typedef's, consts, and volatiles until we get to what should be
1299 * something of type integer or enumeration.
1300 */
1301 VERIFY(bitsz < UINT32_MAX);
1302 dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1303 VERIFY(dtd != NULL);
1304 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1305 while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1306 kind == CTF_K_VOLATILE) {
1307 dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1308 VERIFY(dtd != NULL);
1309 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1310 }
1311 ctf_dprintf("got kind %d\n", kind);
1312 VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1313
1314 /*
1315 * As surprising as it may be, it is strictly possible to create a
1316 * bitfield that is based on an enum. Of course, the C standard leaves
1317 * enums sizing as an ABI concern more or less. To that effect, today on
1318 * all illumos platforms the size of an enum is generally that of an
1319 * int as our supported data models and ABIs all agree on that. So what
1320 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1321 * treat it as an unsigned value of whatever size the underlying enum
1322 * currently has (which is in the ctt_size member of its dynamic type
1323 * data).
1324 */
1325 if (kind == CTF_K_INTEGER) {
1326 e = dtd->dtd_u.dtu_enc;
1327 } else {
1328 bzero(&e, sizeof (ctf_encoding_t));
1329 e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1330 }
1331
1332 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1333 cdb = ctf_list_next(cdb)) {
1334 if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1335 break;
1336 }
1337
1338 /*
1339 * Create a new type if none exists. We name all types in a way that is
1340 * guaranteed not to conflict with the corresponding C type. We do this
1341 * by using the ':' operator.
1342 */
1343 if (cdb == NULL) {
1344 size_t namesz;
1345 char *name;
1346
1347 e.cte_bits = bitsz;
1348 namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1349 (uint32_t)bitsz);
1350 name = ctf_alloc(namesz + 1);
1351 if (name == NULL)
1352 return (ENOMEM);
1353 cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1354 if (cdb == NULL) {
1355 ctf_free(name, namesz + 1);
1356 return (ENOMEM);
1357 }
1358 (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1359 (uint32_t)bitsz);
1360
1361 cdb->cdb_base = base;
1362 cdb->cdb_nbits = bitsz;
1363 cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1364 name, &e);
1365 if (cdb->cdb_id == CTF_ERR) {
1366 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1367 "failed to get add bitfield type %s: %s\n", name,
1368 ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1369 ctf_free(name, namesz + 1);
1370 ctf_free(cdb, sizeof (ctf_dwbitf_t));
1371 return (ECTF_CONVBKERR);
1372 }
1373 ctf_free(name, namesz + 1);
1374 ctf_list_append(&cup->cu_bitfields, cdb);
1375 }
1376
1377 *idp = cdb->cdb_id;
1378
1379 return (0);
1380 }
1381
1382 static int
ctf_dwarf_fixup_sou(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t base,boolean_t add)1383 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1384 {
1385 int ret, kind;
1386 Dwarf_Die child, memb;
1387 Dwarf_Unsigned size;
1388
1389 kind = ctf_type_kind(cup->cu_ctfp, base);
1390 VERIFY(kind != CTF_ERR);
1391 VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1392
1393 /*
1394 * Members are in children. However, gcc also allows empty ones.
1395 */
1396 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1397 return (ret);
1398 if (child == NULL)
1399 return (0);
1400
1401 memb = child;
1402 while (memb != NULL) {
1403 Dwarf_Die sib, tdie;
1404 Dwarf_Half tag;
1405 ctf_id_t mid;
1406 char *mname;
1407 ulong_t memboff = 0;
1408
1409 if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1410 return (ret);
1411
1412 if (tag != DW_TAG_member)
1413 goto next;
1414
1415 if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1416 return (ret);
1417
1418 if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1419 CTF_ADD_NONROOT)) != 0)
1420 return (ret);
1421 ctf_dprintf("Got back type id: %d\n", mid);
1422
1423 /*
1424 * If we're not adding a member, just go ahead and return.
1425 */
1426 if (add == B_FALSE) {
1427 if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1428 &mid)) != 0)
1429 return (ret);
1430 goto next;
1431 }
1432
1433 if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1434 &mname)) != 0 && ret != ENOENT)
1435 return (ret);
1436 if (ret == ENOENT)
1437 mname = NULL;
1438
1439 if (kind == CTF_K_UNION) {
1440 memboff = 0;
1441 } else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1442 &memboff)) != 0) {
1443 if (mname != NULL)
1444 ctf_strfree(mname);
1445 return (ret);
1446 }
1447
1448 if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1449 return (ret);
1450
1451 ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1452 if (ret == CTF_ERR) {
1453 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1454 "failed to add member %s: %s\n",
1455 mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1456 if (mname != NULL)
1457 ctf_strfree(mname);
1458 return (ECTF_CONVBKERR);
1459 }
1460
1461 if (mname != NULL)
1462 ctf_strfree(mname);
1463
1464 next:
1465 if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1466 return (ret);
1467 memb = sib;
1468 }
1469
1470 /*
1471 * If we're not adding members, then we don't know the final size of the
1472 * structure, so end here.
1473 */
1474 if (add == B_FALSE)
1475 return (0);
1476
1477 /* Finally set the size of the structure to the actual byte size */
1478 if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1479 return (ret);
1480 if ((ctf_set_size(cup->cu_ctfp, base, size)) == CTF_ERR) {
1481 int e = ctf_errno(cup->cu_ctfp);
1482 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1483 "failed to set type size for %d to 0x%x: %s\n", base,
1484 (uint32_t)size, ctf_errmsg(e));
1485 return (ECTF_CONVBKERR);
1486 }
1487
1488 return (0);
1489 }
1490
1491 static int
ctf_dwarf_create_sou(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int kind,int isroot)1492 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1493 int kind, int isroot)
1494 {
1495 int ret;
1496 char *name;
1497 ctf_id_t base;
1498 Dwarf_Die child;
1499 Dwarf_Bool decl;
1500
1501 /*
1502 * Deal with the terribly annoying case of anonymous structs and unions.
1503 * If they don't have a name, set the name to the empty string.
1504 */
1505 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1506 ret != ENOENT)
1507 return (ret);
1508 if (ret == ENOENT)
1509 name = NULL;
1510
1511 /*
1512 * We need to check if we just have a declaration here. If we do, then
1513 * instead of creating an actual structure or union, we're just going to
1514 * go ahead and create a forward. During a dedup or merge, the forward
1515 * will be replaced with the real thing.
1516 */
1517 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1518 &decl)) != 0) {
1519 if (ret != ENOENT)
1520 return (ret);
1521 decl = 0;
1522 }
1523
1524 if (decl == B_TRUE) {
1525 base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1526 } else if (kind == CTF_K_STRUCT) {
1527 base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1528 } else {
1529 base = ctf_add_union(cup->cu_ctfp, isroot, name);
1530 }
1531 ctf_dprintf("added sou %s (%d) (%ld) forward=%d\n",
1532 name, kind, base, decl == B_TRUE);
1533 if (name != NULL)
1534 ctf_strfree(name);
1535 if (base == CTF_ERR)
1536 return (ctf_errno(cup->cu_ctfp));
1537 *idp = base;
1538
1539 /*
1540 * If it's just a declaration, we're not going to mark it for fix up or
1541 * do anything else.
1542 */
1543 if (decl == B_TRUE)
1544 return (ctf_dwmap_add(cup, base, die, B_FALSE));
1545 if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1546 return (ret);
1547
1548 /*
1549 * The children of a structure or union are generally members. However,
1550 * some compilers actually insert structs and unions there and not as a
1551 * top-level die. Therefore, to make sure we honor our pass 1 contract
1552 * of having all the base types, but not members, we need to walk this
1553 * for instances of a DW_TAG_union_type.
1554 */
1555 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1556 return (ret);
1557
1558 while (child != NULL) {
1559 Dwarf_Half tag;
1560 Dwarf_Die sib;
1561
1562 if ((ret = ctf_dwarf_tag(cup, child, &tag)) != 0)
1563 return (ret);
1564
1565 switch (tag) {
1566 case DW_TAG_union_type:
1567 case DW_TAG_structure_type:
1568 ret = ctf_dwarf_convert_type(cup, child, NULL,
1569 CTF_ADD_NONROOT);
1570 if (ret != 0) {
1571 return (ret);
1572 }
1573 break;
1574 default:
1575 break;
1576 }
1577
1578 if ((ret = ctf_dwarf_sib(cup, child, &sib)) != 0)
1579 return (ret);
1580 child = sib;
1581 }
1582
1583 return (0);
1584 }
1585
1586 static int
ctf_dwarf_array_upper_bound(ctf_cu_t * cup,Dwarf_Die range,ctf_arinfo_t * ar)1587 ctf_dwarf_array_upper_bound(ctf_cu_t *cup, Dwarf_Die range, ctf_arinfo_t *ar)
1588 {
1589 Dwarf_Attribute attr;
1590 Dwarf_Unsigned uval;
1591 Dwarf_Signed sval;
1592 Dwarf_Half attrnum, form;
1593 Dwarf_Error derr;
1594 enum Dwarf_Form_Class class;
1595 const char *formstr = NULL;
1596 uint_t adj = 0;
1597 int ret = 0;
1598
1599 ctf_dprintf("setting array upper bound\n");
1600
1601 ar->ctr_nelems = 0;
1602
1603 /*
1604 * Different compilers use different attributes to indicate the size of
1605 * an array. GCC has traditionally used DW_AT_upper_bound, while Clang
1606 * uses DW_AT_count. They have slightly different semantics. DW_AT_count
1607 * indicates the total number of elements that are present, while
1608 * DW_AT_upper_bound indicates the last index, hence we need to add one
1609 * to that index to get the count.
1610 *
1611 * We first search for DW_AT_count and then for DW_AT_upper_bound. If we
1612 * find neither, then we treat the lack of this as a zero element array.
1613 * Our value is initialized assuming we find a DW_AT_count value.
1614 */
1615 attrnum = DW_AT_count;
1616 ret = ctf_dwarf_attribute(cup, range, DW_AT_count, &attr);
1617 if (ret != 0 && ret != ENOENT) {
1618 return (ret);
1619 } else if (ret == ENOENT) {
1620 attrnum = DW_AT_upper_bound;
1621 ret = ctf_dwarf_attribute(cup, range, DW_AT_upper_bound, &attr);
1622 if (ret != 0 && ret != ENOENT) {
1623 return (ret);
1624 } else if (ret == ENOENT) {
1625 return (0);
1626 } else {
1627 adj = 1;
1628 }
1629 }
1630
1631 DWARF_LOCK(cup);
1632 ret = dwarf_whatform(attr, &form, &derr);
1633 if (ret != DW_DLV_OK) {
1634 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1635 "failed to get DW_AT_upper_bound attribute form: %s\n",
1636 dwarf_errmsg(derr));
1637 ret = ECTF_CONVBKERR;
1638 goto done;
1639 }
1640
1641 /*
1642 * Compilers can indicate array bounds using signed or unsigned values.
1643 * Additionally, some compilers may also store the array bounds
1644 * using as DW_FORM_data{1,2,4,8} (which DWARF treats as raw data and
1645 * expects the caller to understand how to interpret the value).
1646 *
1647 * GCC 4.4.4 appears to always use unsigned values to encode the
1648 * array size (using '(unsigned)-1' to represent a zero-length or
1649 * unknown length array). Later versions of GCC use a signed value of
1650 * -1 for zero/unknown length arrays, and unsigned values to encode
1651 * known array sizes.
1652 *
1653 * Both dwarf_formsdata() and dwarf_formudata() will retrieve values
1654 * as their respective signed/unsigned forms, but both will also
1655 * retreive DW_FORM_data{1,2,4,8} values and treat them as signed or
1656 * unsigned integers (i.e. dwarf_formsdata() treats DW_FORM_dataXX
1657 * as signed integers and dwarf_formudata() treats DW_FORM_dataXX as
1658 * unsigned integers). Both will return an error if the form is not
1659 * their respective signed/unsigned form, or DW_FORM_dataXX.
1660 *
1661 * To obtain the upper bound, we use the appropriate
1662 * dwarf_form[su]data() function based on the form of DW_AT_upper_bound.
1663 * Additionally, we let dwarf_formudata() handle the DW_FORM_dataXX
1664 * forms (via the default option in the switch). If the value is in an
1665 * unexpected form (i.e. not DW_FORM_udata or DW_FORM_dataXX),
1666 * dwarf_formudata() will return failure (i.e. not DW_DLV_OK) and set
1667 * derr with the specific error value.
1668 */
1669 switch (form) {
1670 case DW_FORM_sdata:
1671 if (dwarf_formsdata(attr, &sval, &derr) == DW_DLV_OK) {
1672 ar->ctr_nelems = sval + adj;
1673 goto done;
1674 }
1675 break;
1676 case DW_FORM_udata:
1677 default:
1678 if (dwarf_formudata(attr, &uval, &derr) == DW_DLV_OK) {
1679 ar->ctr_nelems = uval + adj;
1680 goto done;
1681 }
1682 break;
1683 }
1684
1685 /*
1686 * The value of attr is not always a constant value. For things
1687 * such as C99 variable length arrays, it can be a reference to another
1688 * entity or a DWARF expression. In either of these cases, we treat
1689 * this as a zero length array.
1690 */
1691 class = dwarf_get_form_class(cup->cu_vers, attrnum, cup->cu_addrsz,
1692 form);
1693
1694 if (class == DW_FORM_CLASS_REFERENCE || class == DW_FORM_CLASS_BLOCK)
1695 goto done;
1696
1697 if (dwarf_get_FORM_name(form, &formstr) != DW_DLV_OK)
1698 formstr = "unknown DWARF form";
1699
1700 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1701 "failed to get %s (%hu) value for DW_AT_upper_bound: %s\n",
1702 formstr, form, dwarf_errmsg(derr));
1703 ret = ECTF_CONVBKERR;
1704
1705 done:
1706 DWARF_UNLOCK(cup);
1707 ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
1708 return (ret);
1709 }
1710
1711 static int
ctf_dwarf_create_array_range(ctf_cu_t * cup,Dwarf_Die range,ctf_id_t * idp,ctf_id_t base,int isroot)1712 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1713 ctf_id_t base, int isroot)
1714 {
1715 int ret;
1716 Dwarf_Die sib;
1717 ctf_arinfo_t ar;
1718
1719 ctf_dprintf("creating array range\n");
1720
1721 if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1722 return (ret);
1723 if (sib != NULL) {
1724 ctf_id_t id;
1725 if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1726 base, CTF_ADD_NONROOT)) != 0)
1727 return (ret);
1728 ar.ctr_contents = id;
1729 } else {
1730 ar.ctr_contents = base;
1731 }
1732
1733 if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1734 return (ctf_errno(cup->cu_ctfp));
1735
1736 if ((ret = ctf_dwarf_array_upper_bound(cup, range, &ar)) != 0)
1737 return (ret);
1738
1739 if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1740 return (ctf_errno(cup->cu_ctfp));
1741
1742 return (0);
1743 }
1744
1745 /*
1746 * Try and create an array type. First, the kind of the array is specified in
1747 * the DW_AT_type entry. Next, the number of entries is stored in a more
1748 * complicated form, we should have a child that has the DW_TAG_subrange type.
1749 */
1750 static int
ctf_dwarf_create_array(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int isroot)1751 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1752 {
1753 int ret;
1754 Dwarf_Die tdie, rdie;
1755 ctf_id_t tid;
1756 Dwarf_Half rtag;
1757
1758 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1759 return (ret);
1760 if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1761 CTF_ADD_NONROOT)) != 0)
1762 return (ret);
1763
1764 if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1765 return (ret);
1766 if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1767 return (ret);
1768 if (rtag != DW_TAG_subrange_type) {
1769 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1770 "encountered array without DW_TAG_subrange_type child\n");
1771 return (ECTF_CONVBKERR);
1772 }
1773
1774 /*
1775 * The compiler may opt to describe a multi-dimensional array as one
1776 * giant array or it may opt to instead encode it as a series of
1777 * subranges. If it's the latter, then for each subrange we introduce a
1778 * type. We can always use the base type.
1779 */
1780 if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1781 isroot)) != 0)
1782 return (ret);
1783 ctf_dprintf("Got back id %d\n", *idp);
1784 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1785 }
1786
1787 /*
1788 * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of
1789 * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>.
1790 *
1791 * Given C's syntax, this renders out as "const const int const_array3[11]". To
1792 * get closer to round-tripping (and make the unit tests work), we'll peek for
1793 * this case, and avoid adding the extraneous qualifier if we see that the
1794 * underlying array referent already has the same qualifier.
1795 *
1796 * This is unfortunately less trivial than it could be: this issue applies to
1797 * qualifier sets like "const volatile", as well as multi-dimensional arrays, so
1798 * we need to descend down those.
1799 *
1800 * Returns CTF_ERR on error, or a boolean value otherwise.
1801 */
1802 static int
needed_array_qualifier(ctf_cu_t * cup,int kind,ctf_id_t ref_id)1803 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id)
1804 {
1805 const ctf_type_t *t;
1806 ctf_arinfo_t arinfo;
1807 int akind;
1808
1809 if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE &&
1810 kind != CTF_K_RESTRICT)
1811 return (1);
1812
1813 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL)
1814 return (CTF_ERR);
1815
1816 if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY)
1817 return (1);
1818
1819 if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0)
1820 return (CTF_ERR);
1821
1822 ctf_id_t id = arinfo.ctr_contents;
1823
1824 for (;;) {
1825 if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL)
1826 return (CTF_ERR);
1827
1828 akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info);
1829
1830 if (akind == kind)
1831 break;
1832
1833 if (akind == CTF_K_ARRAY) {
1834 if (ctf_dyn_array_info(cup->cu_ctfp,
1835 id, &arinfo) != 0)
1836 return (CTF_ERR);
1837 id = arinfo.ctr_contents;
1838 continue;
1839 }
1840
1841 if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE &&
1842 akind != CTF_K_RESTRICT)
1843 break;
1844
1845 id = t->ctt_type;
1846 }
1847
1848 if (kind == akind) {
1849 ctf_dprintf("ignoring extraneous %s qualifier for array %d\n",
1850 ctf_kind_name(cup->cu_ctfp, kind), ref_id);
1851 }
1852
1853 return (kind != akind);
1854 }
1855
1856 static int
ctf_dwarf_create_reference(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int kind,int isroot)1857 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1858 int kind, int isroot)
1859 {
1860 int ret;
1861 ctf_id_t id;
1862 Dwarf_Die tdie;
1863 char *name;
1864
1865 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1866 ret != ENOENT)
1867 return (ret);
1868 if (ret == ENOENT)
1869 name = NULL;
1870
1871 ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1872
1873 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1874 if (ret != ENOENT) {
1875 ctf_strfree(name);
1876 return (ret);
1877 }
1878 if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1879 ctf_strfree(name);
1880 return (ctf_errno(cup->cu_ctfp));
1881 }
1882 } else {
1883 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1884 CTF_ADD_NONROOT)) != 0) {
1885 ctf_strfree(name);
1886 return (ret);
1887 }
1888 }
1889
1890 if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) {
1891 if (ret != 0) {
1892 ret = (ctf_errno(cup->cu_ctfp));
1893 } else {
1894 *idp = id;
1895 }
1896
1897 ctf_strfree(name);
1898 return (ret);
1899 }
1900
1901 if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1902 CTF_ERR) {
1903 ctf_strfree(name);
1904 return (ctf_errno(cup->cu_ctfp));
1905 }
1906
1907 ctf_strfree(name);
1908 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1909 }
1910
1911 static int
ctf_dwarf_create_enum(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int isroot)1912 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1913 {
1914 size_t size = 0;
1915 Dwarf_Die child;
1916 Dwarf_Unsigned dw;
1917 ctf_id_t id;
1918 char *enumname;
1919 int ret;
1920
1921 ret = ctf_dwarf_string(cup, die, DW_AT_name, &enumname);
1922 if (ret != 0 && ret != ENOENT)
1923 return (ret);
1924 if (ret == ENOENT)
1925 enumname = NULL;
1926
1927 /*
1928 * Enumerations may have a size associated with them, particularly if
1929 * they're packed. Note, a Dwarf_Unsigned is larger than a size_t on an
1930 * ILP32 system.
1931 */
1932 if (ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &dw) == 0 &&
1933 dw < SIZE_MAX) {
1934 size = (size_t)dw;
1935 }
1936
1937 id = ctf_add_enum(cup->cu_ctfp, isroot, enumname, size);
1938 ctf_dprintf("added enum %s (%d)\n",
1939 enumname == NULL ? "<anon>" : enumname, id);
1940 if (id == CTF_ERR) {
1941 ret = ctf_errno(cup->cu_ctfp);
1942 goto out;
1943 }
1944 *idp = id;
1945 if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1946 goto out;
1947
1948 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1949 if (ret == ENOENT)
1950 ret = 0;
1951 goto out;
1952 }
1953
1954 while (child != NULL) {
1955 Dwarf_Half tag;
1956 Dwarf_Signed sval;
1957 Dwarf_Unsigned uval;
1958 Dwarf_Die arg = child;
1959 char *name;
1960 int eval;
1961
1962 if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1963 break;
1964
1965 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1966 break;
1967
1968 if (tag != DW_TAG_enumerator) {
1969 if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1970 CTF_ADD_NONROOT)) != 0) {
1971 break;
1972 }
1973 continue;
1974 }
1975
1976 /*
1977 * DWARF v4 section 5.7 tells us we'll always have names.
1978 */
1979 if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1980 break;
1981
1982 /*
1983 * We have to be careful here: newer GCCs generate DWARF where
1984 * an unsigned value will happily pass ctf_dwarf_signed().
1985 * Since negative values will fail ctf_dwarf_unsigned(), we try
1986 * that first to make sure we get the right value.
1987 */
1988 if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1989 &uval)) == 0) {
1990 eval = (int)uval;
1991 } else {
1992 /*
1993 * ctf_dwarf_unsigned will have left an error in the
1994 * buffer
1995 */
1996 *cup->cu_errbuf = '\0';
1997
1998 if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1999 &sval)) == 0) {
2000 eval = sval;
2001 }
2002 }
2003
2004 if (ret != 0) {
2005 if (ret == ENOENT) {
2006 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2007 "encountered enumeration without constant "
2008 "value\n");
2009 ret = ECTF_CONVBKERR;
2010 }
2011 ctf_strfree(name);
2012 break;
2013 }
2014
2015 ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
2016 if (ret == CTF_ERR) {
2017 ret = ctf_errno(cup->cu_ctfp);
2018
2019 if (ret == ECTF_DTFULL && (cup->cu_handle->cch_flags &
2020 CTF_ALLOW_TRUNCATION)) {
2021 if (cup->cu_handle->cch_warncb != NULL) {
2022 cup->cu_handle->cch_warncb(
2023 cup->cu_handle->cch_warncb_arg,
2024 "truncating enumeration %s at %s\n",
2025 name, enumname == NULL ? "<anon>" :
2026 enumname);
2027 }
2028 ret = 0;
2029 } else {
2030 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2031 "failed to add enumerator %s (%d) "
2032 "to %s (%d)\n", name, eval,
2033 enumname == NULL ? "<anon>" : enumname, id);
2034 }
2035 ctf_strfree(name);
2036 break;
2037 }
2038 ctf_strfree(name);
2039 }
2040
2041 out:
2042
2043 if (enumname != NULL)
2044 ctf_strfree(enumname);
2045
2046 return (ret);
2047 }
2048
2049 /*
2050 * For a function pointer, walk over and process all of its children, unless we
2051 * encounter one that's just a declaration. In which case, we error on it.
2052 */
2053 static int
ctf_dwarf_create_fptr(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int isroot)2054 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
2055 {
2056 int ret;
2057 Dwarf_Bool b;
2058 ctf_funcinfo_t fi;
2059 Dwarf_Die retdie;
2060 ctf_id_t *argv = NULL;
2061
2062 bzero(&fi, sizeof (ctf_funcinfo_t));
2063
2064 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2065 if (ret != ENOENT)
2066 return (ret);
2067 } else {
2068 if (b != 0)
2069 return (EPROTOTYPE);
2070 }
2071
2072 /*
2073 * Return type is in DW_AT_type, if none, it returns void.
2074 */
2075 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
2076 if (ret != ENOENT)
2077 return (ret);
2078 if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
2079 return (ctf_errno(cup->cu_ctfp));
2080 } else {
2081 if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
2082 CTF_ADD_NONROOT)) != 0)
2083 return (ret);
2084 }
2085
2086 if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
2087 return (ret);
2088 }
2089
2090 if (fi.ctc_argc != 0) {
2091 argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
2092 if (argv == NULL)
2093 return (ENOMEM);
2094
2095 if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
2096 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
2097 return (ret);
2098 }
2099 }
2100
2101 if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
2102 CTF_ERR) {
2103 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
2104 return (ctf_errno(cup->cu_ctfp));
2105 }
2106
2107 ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
2108 return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
2109 }
2110
2111 static int
ctf_dwarf_convert_type(ctf_cu_t * cup,Dwarf_Die die,ctf_id_t * idp,int isroot)2112 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
2113 int isroot)
2114 {
2115 int ret;
2116 Dwarf_Off offset;
2117 Dwarf_Half tag;
2118 ctf_dwmap_t lookup, *map;
2119 ctf_id_t id;
2120
2121 if (idp == NULL)
2122 idp = &id;
2123
2124 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2125 return (ret);
2126
2127 if (offset > cup->cu_maxoff) {
2128 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2129 "die offset %llu beyond maximum for header %llu\n",
2130 offset, cup->cu_maxoff);
2131 return (ECTF_CONVBKERR);
2132 }
2133
2134 /*
2135 * If we've already added an entry for this offset, then we're done.
2136 */
2137 lookup.cdm_off = offset;
2138 if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
2139 *idp = map->cdm_id;
2140 return (0);
2141 }
2142
2143 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2144 return (ret);
2145
2146 ret = ENOTSUP;
2147 switch (tag) {
2148 case DW_TAG_base_type:
2149 ctf_dprintf("base\n");
2150 ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
2151 break;
2152 case DW_TAG_array_type:
2153 ctf_dprintf("array\n");
2154 ret = ctf_dwarf_create_array(cup, die, idp, isroot);
2155 break;
2156 case DW_TAG_enumeration_type:
2157 ctf_dprintf("enum\n");
2158 ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
2159 break;
2160 case DW_TAG_pointer_type:
2161 ctf_dprintf("pointer\n");
2162 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
2163 isroot);
2164 break;
2165 case DW_TAG_structure_type:
2166 ctf_dprintf("struct\n");
2167 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
2168 isroot);
2169 break;
2170 case DW_TAG_subroutine_type:
2171 ctf_dprintf("fptr\n");
2172 ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
2173 break;
2174 case DW_TAG_typedef:
2175 ctf_dprintf("typedef\n");
2176 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
2177 isroot);
2178 break;
2179 case DW_TAG_union_type:
2180 ctf_dprintf("union\n");
2181 ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
2182 isroot);
2183 break;
2184 case DW_TAG_const_type:
2185 ctf_dprintf("const\n");
2186 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
2187 isroot);
2188 break;
2189 case DW_TAG_volatile_type:
2190 ctf_dprintf("volatile\n");
2191 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
2192 isroot);
2193 break;
2194 case DW_TAG_restrict_type:
2195 ctf_dprintf("restrict\n");
2196 ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
2197 isroot);
2198 break;
2199 default:
2200 ctf_dprintf("ignoring tag type %x\n", tag);
2201 *idp = CTF_ERR;
2202 ret = 0;
2203 break;
2204 }
2205 ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
2206 ret);
2207
2208 return (ret);
2209 }
2210
2211 static int
ctf_dwarf_walk_lexical(ctf_cu_t * cup,Dwarf_Die die)2212 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
2213 {
2214 int ret;
2215 Dwarf_Die child;
2216
2217 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
2218 return (ret);
2219
2220 if (child == NULL)
2221 return (0);
2222
2223 return (ctf_dwarf_convert_die(cup, die));
2224 }
2225
2226 static int
ctf_dwarf_function_count(ctf_cu_t * cup,Dwarf_Die die,ctf_funcinfo_t * fip,boolean_t fptr)2227 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
2228 boolean_t fptr)
2229 {
2230 int ret;
2231 Dwarf_Die child, sib, arg;
2232
2233 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
2234 return (ret);
2235
2236 arg = child;
2237 while (arg != NULL) {
2238 Dwarf_Half tag;
2239
2240 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
2241 return (ret);
2242
2243 /*
2244 * We have to check for a varargs type declaration. This will
2245 * happen in one of two ways. If we have a function pointer
2246 * type, then it'll be done with a tag of type
2247 * DW_TAG_unspecified_parameters. However, it only means we have
2248 * a variable number of arguments, if we have more than one
2249 * argument found so far. Otherwise, when we have a function
2250 * type, it instead uses a formal parameter whose name is '...'
2251 * to indicate a variable arguments member.
2252 *
2253 * Also, if we have a function pointer, then we have to expect
2254 * that we might not get a name at all.
2255 */
2256 if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
2257 char *name;
2258 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
2259 &name)) != 0)
2260 return (ret);
2261 if (strcmp(name, DWARF_VARARGS_NAME) == 0)
2262 fip->ctc_flags |= CTF_FUNC_VARARG;
2263 else
2264 fip->ctc_argc++;
2265 ctf_strfree(name);
2266 } else if (tag == DW_TAG_formal_parameter) {
2267 fip->ctc_argc++;
2268 } else if (tag == DW_TAG_unspecified_parameters &&
2269 fip->ctc_argc > 0) {
2270 fip->ctc_flags |= CTF_FUNC_VARARG;
2271 }
2272 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
2273 return (ret);
2274 arg = sib;
2275 }
2276
2277 return (0);
2278 }
2279
2280 static int
ctf_dwarf_convert_fargs(ctf_cu_t * cup,Dwarf_Die die,ctf_funcinfo_t * fip,ctf_id_t * argv)2281 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
2282 ctf_id_t *argv)
2283 {
2284 int ret;
2285 int i = 0;
2286 Dwarf_Die child, sib, arg;
2287
2288 if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
2289 return (ret);
2290
2291 arg = child;
2292 while (arg != NULL) {
2293 Dwarf_Half tag;
2294
2295 if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
2296 return (ret);
2297 if (tag == DW_TAG_formal_parameter) {
2298 Dwarf_Die tdie;
2299
2300 if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
2301 &tdie)) != 0)
2302 return (ret);
2303
2304 if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
2305 CTF_ADD_ROOT)) != 0)
2306 return (ret);
2307 i++;
2308
2309 /*
2310 * Once we hit argc entries, we're done. This ensures we
2311 * don't accidentally hit a varargs which should be the
2312 * last entry.
2313 */
2314 if (i == fip->ctc_argc)
2315 break;
2316 }
2317
2318 if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
2319 return (ret);
2320 arg = sib;
2321 }
2322
2323 return (0);
2324 }
2325
2326 static int
ctf_dwarf_convert_function(ctf_cu_t * cup,Dwarf_Die die)2327 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
2328 {
2329 ctf_dwfunc_t *cdf;
2330 Dwarf_Die tdie;
2331 Dwarf_Bool b;
2332 char *name;
2333 int ret;
2334
2335 /*
2336 * Functions that don't have a name are generally functions that have
2337 * been inlined and thus most information about them has been lost. If
2338 * we can't get a name, then instead of returning ENOENT, we silently
2339 * swallow the error.
2340 */
2341 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
2342 if (ret == ENOENT)
2343 return (0);
2344 return (ret);
2345 }
2346
2347 ctf_dprintf("beginning work on function %s (die %llx)\n",
2348 name, ctf_die_offset(cup, die));
2349
2350 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2351 if (ret != ENOENT) {
2352 ctf_strfree(name);
2353 return (ret);
2354 }
2355 } else if (b != 0) {
2356 /*
2357 * GCC7 at least creates empty DW_AT_declarations for functions
2358 * defined in headers. As they lack details on the function
2359 * prototype, we need to ignore them. If we later actually
2360 * see the relevant function's definition, we will see another
2361 * DW_TAG_subprogram that is more complete.
2362 */
2363 ctf_dprintf("ignoring declaration of function %s (die %llx)\n",
2364 name, ctf_die_offset(cup, die));
2365 ctf_strfree(name);
2366 return (0);
2367 }
2368
2369 if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
2370 ctf_strfree(name);
2371 return (ENOMEM);
2372 }
2373 bzero(cdf, sizeof (ctf_dwfunc_t));
2374 cdf->cdf_name = name;
2375
2376 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
2377 if ((ret = ctf_dwarf_convert_type(cup, tdie,
2378 &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
2379 ctf_strfree(name);
2380 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2381 return (ret);
2382 }
2383 } else if (ret != ENOENT) {
2384 ctf_strfree(name);
2385 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2386 return (ret);
2387 } else {
2388 if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
2389 CTF_ERR) {
2390 ctf_strfree(name);
2391 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2392 return (ctf_errno(cup->cu_ctfp));
2393 }
2394 }
2395
2396 /*
2397 * A function has a number of children, some of which may not be ones we
2398 * care about. Children that we care about have a type of
2399 * DW_TAG_formal_parameter. We're going to do two passes, the first to
2400 * count the arguments, the second to process them. Afterwards, we
2401 * should be good to go ahead and add this function.
2402 *
2403 * Note, we already got the return type by going in and grabbing it out
2404 * of the DW_AT_type.
2405 */
2406 if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
2407 B_FALSE)) != 0) {
2408 ctf_strfree(name);
2409 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2410 return (ret);
2411 }
2412
2413 ctf_dprintf("beginning to convert function arguments %s\n", name);
2414 if (cdf->cdf_fip.ctc_argc != 0) {
2415 uint_t argc = cdf->cdf_fip.ctc_argc;
2416 cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
2417 if (cdf->cdf_argv == NULL) {
2418 ctf_strfree(name);
2419 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2420 return (ENOMEM);
2421 }
2422 if ((ret = ctf_dwarf_convert_fargs(cup, die,
2423 &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
2424 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
2425 ctf_strfree(name);
2426 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2427 return (ret);
2428 }
2429 } else {
2430 cdf->cdf_argv = NULL;
2431 }
2432
2433 if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
2434 ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
2435 cdf->cdf_fip.ctc_argc);
2436 ctf_strfree(name);
2437 ctf_free(cdf, sizeof (ctf_dwfunc_t));
2438 return (ret);
2439 }
2440
2441 ctf_list_append(&cup->cu_funcs, cdf);
2442 return (ret);
2443 }
2444
2445 /*
2446 * Convert variables, but only if they're not prototypes and have names.
2447 */
2448 static int
ctf_dwarf_convert_variable(ctf_cu_t * cup,Dwarf_Die die)2449 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2450 {
2451 int ret;
2452 char *name;
2453 Dwarf_Bool b;
2454 Dwarf_Die tdie;
2455 ctf_id_t id;
2456 ctf_dwvar_t *cdv;
2457
2458 /* Skip "Non-Defining Declarations" */
2459 if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2460 if (b != 0)
2461 return (0);
2462 } else if (ret != ENOENT) {
2463 return (ret);
2464 }
2465
2466 /*
2467 * If we find a DIE of "Declarations Completing Non-Defining
2468 * Declarations", we will use the referenced type's DIE. This isn't
2469 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2470 * not this site. It's sufficient for what we need, however: in
2471 * particular, we should find DW_AT_external as needed there.
2472 */
2473 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2474 &tdie)) == 0) {
2475 Dwarf_Off offset;
2476 if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2477 return (ret);
2478 ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2479 ctf_die_offset(cup, die), ctf_die_offset(cup, tdie));
2480 die = tdie;
2481 } else if (ret != ENOENT) {
2482 return (ret);
2483 }
2484
2485 if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2486 ret != ENOENT)
2487 return (ret);
2488 if (ret == ENOENT)
2489 return (0);
2490
2491 if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2492 ctf_strfree(name);
2493 return (ret);
2494 }
2495
2496 if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2497 CTF_ADD_ROOT)) != 0)
2498 return (ret);
2499
2500 if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2501 ctf_strfree(name);
2502 return (ENOMEM);
2503 }
2504
2505 cdv->cdv_name = name;
2506 cdv->cdv_type = id;
2507
2508 if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2509 ctf_free(cdv, sizeof (ctf_dwvar_t));
2510 ctf_strfree(name);
2511 return (ret);
2512 }
2513
2514 ctf_list_append(&cup->cu_vars, cdv);
2515 return (0);
2516 }
2517
2518 /*
2519 * Walk through our set of top-level types and process them.
2520 */
2521 static int
ctf_dwarf_walk_toplevel(ctf_cu_t * cup,Dwarf_Die die)2522 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2523 {
2524 int ret;
2525 Dwarf_Off offset;
2526 Dwarf_Half tag;
2527
2528 if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2529 return (ret);
2530
2531 if (offset > cup->cu_maxoff) {
2532 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2533 "die offset %llu beyond maximum for header %llu\n",
2534 offset, cup->cu_maxoff);
2535 return (ECTF_CONVBKERR);
2536 }
2537
2538 if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2539 return (ret);
2540
2541 ret = 0;
2542 switch (tag) {
2543 case DW_TAG_subprogram:
2544 ctf_dprintf("top level func\n");
2545 ret = ctf_dwarf_convert_function(cup, die);
2546 break;
2547 case DW_TAG_variable:
2548 ctf_dprintf("top level var\n");
2549 ret = ctf_dwarf_convert_variable(cup, die);
2550 break;
2551 case DW_TAG_lexical_block:
2552 ctf_dprintf("top level block\n");
2553 ret = ctf_dwarf_walk_lexical(cup, die);
2554 break;
2555 case DW_TAG_enumeration_type:
2556 case DW_TAG_structure_type:
2557 case DW_TAG_typedef:
2558 case DW_TAG_union_type:
2559 ctf_dprintf("top level type\n");
2560 ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2561 break;
2562 default:
2563 break;
2564 }
2565
2566 return (ret);
2567 }
2568
2569
2570 /*
2571 * We're given a node. At this node we need to convert it and then proceed to
2572 * convert any siblings that are associaed with this die.
2573 */
2574 static int
ctf_dwarf_convert_die(ctf_cu_t * cup,Dwarf_Die die)2575 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2576 {
2577 while (die != NULL) {
2578 int ret;
2579 Dwarf_Die sib;
2580
2581 if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2582 return (ret);
2583
2584 if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2585 return (ret);
2586 die = sib;
2587 }
2588 return (0);
2589 }
2590
2591 static int
ctf_dwarf_fixup_die(ctf_cu_t * cup,boolean_t addpass)2592 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2593 {
2594 ctf_dwmap_t *map;
2595
2596 for (map = avl_first(&cup->cu_map); map != NULL;
2597 map = AVL_NEXT(&cup->cu_map, map)) {
2598 int ret;
2599 if (map->cdm_fix == B_FALSE)
2600 continue;
2601 if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2602 addpass)) != 0)
2603 return (ret);
2604 }
2605
2606 return (0);
2607 }
2608
2609 /*
2610 * The DWARF information about a symbol and the information in the symbol table
2611 * may not be the same due to symbol reduction that is performed by ld due to a
2612 * mapfile or other such directive. We process weak symbols at a later time.
2613 *
2614 * The following are the rules that we employ:
2615 *
2616 * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2617 * with the same name.
2618 *
2619 * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2620 * with the same name and the same file. This case may happen due to mapfile
2621 * reduction.
2622 *
2623 * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2624 * with the same name and the same file.
2625 *
2626 * 4. A DWARF function that has the same name as the symbol table entry, but the
2627 * files do not match. This is considered a 'fuzzy' match. This may also happen
2628 * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2629 * file in question refers to the primary object. This is because when a symbol
2630 * is reduced in a mapfile, it's always going to be tagged as a local value in
2631 * the generated output and it is considered as to belong to the primary file
2632 * which is the first STT_FILE symbol we see.
2633 */
2634 static boolean_t
ctf_dwarf_symbol_match(const char * symtab_file,const char * symtab_name,uint_t symtab_bind,const char * dwarf_file,const char * dwarf_name,boolean_t dwarf_global,boolean_t * is_fuzzy)2635 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2636 uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2637 boolean_t dwarf_global, boolean_t *is_fuzzy)
2638 {
2639 *is_fuzzy = B_FALSE;
2640
2641 if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2642 return (B_FALSE);
2643 }
2644
2645 if (strcmp(symtab_name, dwarf_name) != 0) {
2646 return (B_FALSE);
2647 }
2648
2649 if (symtab_bind == STB_GLOBAL) {
2650 return (dwarf_global);
2651 }
2652
2653 if (strcmp(symtab_file, dwarf_file) == 0) {
2654 return (B_TRUE);
2655 }
2656
2657 if (dwarf_global) {
2658 *is_fuzzy = B_TRUE;
2659 return (B_TRUE);
2660 }
2661
2662 return (B_FALSE);
2663 }
2664
2665 static ctf_dwfunc_t *
ctf_dwarf_match_func(ctf_cu_t * cup,const char * file,const char * name,uint_t bind,boolean_t primary)2666 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2667 uint_t bind, boolean_t primary)
2668 {
2669 ctf_dwfunc_t *cdf, *fuzzy = NULL;
2670
2671 if (bind == STB_WEAK)
2672 return (NULL);
2673
2674 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2675 return (NULL);
2676
2677 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2678 cdf = ctf_list_next(cdf)) {
2679 boolean_t is_fuzzy = B_FALSE;
2680
2681 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2682 cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2683 if (is_fuzzy) {
2684 if (primary) {
2685 fuzzy = cdf;
2686 }
2687 continue;
2688 } else {
2689 return (cdf);
2690 }
2691 }
2692 }
2693
2694 return (fuzzy);
2695 }
2696
2697 static ctf_dwvar_t *
ctf_dwarf_match_var(ctf_cu_t * cup,const char * file,const char * name,uint_t bind,boolean_t primary)2698 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2699 uint_t bind, boolean_t primary)
2700 {
2701 ctf_dwvar_t *cdv, *fuzzy = NULL;
2702
2703 if (bind == STB_WEAK)
2704 return (NULL);
2705
2706 if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2707 return (NULL);
2708
2709 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2710 cdv = ctf_list_next(cdv)) {
2711 boolean_t is_fuzzy = B_FALSE;
2712
2713 if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2714 cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2715 if (is_fuzzy) {
2716 if (primary) {
2717 fuzzy = cdv;
2718 }
2719 } else {
2720 return (cdv);
2721 }
2722 }
2723 }
2724
2725 return (fuzzy);
2726 }
2727
2728 static int
ctf_dwarf_conv_funcvars_cb(const Elf64_Sym * symp,ulong_t idx,const char * file,const char * name,boolean_t primary,void * arg)2729 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2730 const char *file, const char *name, boolean_t primary, void *arg)
2731 {
2732 int ret;
2733 uint_t bind, type;
2734 ctf_cu_t *cup = arg;
2735
2736 bind = GELF_ST_BIND(symp->st_info);
2737 type = GELF_ST_TYPE(symp->st_info);
2738
2739 /*
2740 * Come back to weak symbols in another pass
2741 */
2742 if (bind == STB_WEAK)
2743 return (0);
2744
2745 if (type == STT_OBJECT) {
2746 ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2747 bind, primary);
2748 if (cdv == NULL)
2749 return (0);
2750 ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2751 ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2752 } else {
2753 ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2754 bind, primary);
2755 if (cdf == NULL)
2756 return (0);
2757 ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2758 cdf->cdf_argv);
2759 ctf_dprintf("added function %s\n", name);
2760 }
2761
2762 if (ret == CTF_ERR) {
2763 return (ctf_errno(cup->cu_ctfp));
2764 }
2765
2766 return (0);
2767 }
2768
2769 static int
ctf_dwarf_conv_funcvars(ctf_cu_t * cup)2770 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2771 {
2772 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2773 }
2774
2775 /*
2776 * If we have a weak symbol, attempt to find the strong symbol it will resolve
2777 * to. Note: the code where this actually happens is in sym_process() in
2778 * cmd/sgs/libld/common/syms.c
2779 *
2780 * Finding the matching symbol is unfortunately not trivial. For a symbol to be
2781 * a candidate, it must:
2782 *
2783 * - have the same type (function, object)
2784 * - have the same value (address)
2785 * - have the same size
2786 * - not be another weak symbol
2787 * - belong to the same section (checked via section index)
2788 *
2789 * To perform this check, we first iterate over the symbol table. For each weak
2790 * symbol that we encounter, we then do a second walk over the symbol table,
2791 * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2792 * either a local or global symbol. If we find a global symbol then we go with
2793 * it and stop searching for additional matches.
2794 *
2795 * If instead, we find a local symbol, things are more complicated. The first
2796 * thing we do is to try and see if we have file information about both symbols
2797 * (STT_FILE). If they both have file information and it matches, then we treat
2798 * that as a good match and stop searching for additional matches.
2799 *
2800 * Otherwise, this means we have a non-matching file and a local symbol. We
2801 * treat this as a candidate and if we find a better match (one of the two cases
2802 * above), use that instead. There are two different ways this can happen.
2803 * Either this is a completely different symbol, or it's a once-global symbol
2804 * that was scoped to local via a mapfile. In the former case, curfile is
2805 * likely inaccurate since the linker does not preserve the needed curfile in
2806 * the order of the symbol table (see the comments about locally scoped symbols
2807 * in libld's update_osym()). As we can't tell this case from the former one,
2808 * we use this symbol iff no other matching symbol is found.
2809 *
2810 * What we really need here is a SUNW section containing weak<->strong mappings
2811 * that we can consume.
2812 */
2813 typedef struct ctf_dwarf_weak_arg {
2814 const Elf64_Sym *cweak_symp;
2815 const char *cweak_file;
2816 boolean_t cweak_candidate;
2817 ulong_t cweak_idx;
2818 } ctf_dwarf_weak_arg_t;
2819
2820 static int
ctf_dwarf_conv_check_weak(const Elf64_Sym * symp,ulong_t idx,const char * file,const char * name,boolean_t primary,void * arg)2821 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2822 const char *name, boolean_t primary, void *arg)
2823 {
2824 ctf_dwarf_weak_arg_t *cweak = arg;
2825
2826 const Elf64_Sym *wsymp = cweak->cweak_symp;
2827
2828 ctf_dprintf("comparing weak to %s\n", name);
2829
2830 if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2831 return (0);
2832 }
2833
2834 if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2835 return (0);
2836 }
2837
2838 if (wsymp->st_value != symp->st_value) {
2839 return (0);
2840 }
2841
2842 if (wsymp->st_size != symp->st_size) {
2843 return (0);
2844 }
2845
2846 if (wsymp->st_shndx != symp->st_shndx) {
2847 return (0);
2848 }
2849
2850 /*
2851 * Check if it's a weak candidate.
2852 */
2853 if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2854 (file == NULL || cweak->cweak_file == NULL ||
2855 strcmp(file, cweak->cweak_file) != 0)) {
2856 cweak->cweak_candidate = B_TRUE;
2857 cweak->cweak_idx = idx;
2858 return (0);
2859 }
2860
2861 /*
2862 * Found a match, break.
2863 */
2864 cweak->cweak_idx = idx;
2865 return (1);
2866 }
2867
2868 static int
ctf_dwarf_duplicate_sym(ctf_cu_t * cup,ulong_t idx,ulong_t matchidx)2869 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2870 {
2871 ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2872
2873 /*
2874 * If we matched something that for some reason didn't have type data,
2875 * we don't consider that a fatal error and silently swallow it.
2876 */
2877 if (id == CTF_ERR) {
2878 if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2879 return (0);
2880 else
2881 return (ctf_errno(cup->cu_ctfp));
2882 }
2883
2884 if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2885 return (ctf_errno(cup->cu_ctfp));
2886
2887 return (0);
2888 }
2889
2890 static int
ctf_dwarf_duplicate_func(ctf_cu_t * cup,ulong_t idx,ulong_t matchidx)2891 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2892 {
2893 int ret;
2894 ctf_funcinfo_t fip;
2895 ctf_id_t *args = NULL;
2896
2897 if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2898 if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2899 return (0);
2900 else
2901 return (ctf_errno(cup->cu_ctfp));
2902 }
2903
2904 if (fip.ctc_argc != 0) {
2905 args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2906 if (args == NULL)
2907 return (ENOMEM);
2908
2909 if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2910 CTF_ERR) {
2911 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2912 return (ctf_errno(cup->cu_ctfp));
2913 }
2914 }
2915
2916 ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2917 if (args != NULL)
2918 ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2919 if (ret == CTF_ERR)
2920 return (ctf_errno(cup->cu_ctfp));
2921
2922 return (0);
2923 }
2924
2925 static int
ctf_dwarf_conv_weaks_cb(const Elf64_Sym * symp,ulong_t idx,const char * file,const char * name,boolean_t primary,void * arg)2926 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2927 const char *name, boolean_t primary, void *arg)
2928 {
2929 int ret, type;
2930 ctf_dwarf_weak_arg_t cweak;
2931 ctf_cu_t *cup = arg;
2932
2933 /*
2934 * We only care about weak symbols.
2935 */
2936 if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2937 return (0);
2938
2939 type = GELF_ST_TYPE(symp->st_info);
2940 ASSERT(type == STT_OBJECT || type == STT_FUNC);
2941
2942 /*
2943 * For each weak symbol we encounter, we need to do a second iteration
2944 * to try and find a match. We should probably think about other
2945 * techniques to try and save us time in the future.
2946 */
2947 cweak.cweak_symp = symp;
2948 cweak.cweak_file = file;
2949 cweak.cweak_candidate = B_FALSE;
2950 cweak.cweak_idx = 0;
2951
2952 ctf_dprintf("Trying to find weak equiv for %s\n", name);
2953
2954 ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2955 VERIFY(ret == 0 || ret == 1);
2956
2957 /*
2958 * Nothing was ever found, we're not going to add anything for this
2959 * entry.
2960 */
2961 if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2962 ctf_dprintf("found no weak match for %s\n", name);
2963 return (0);
2964 }
2965
2966 /*
2967 * Now, finally go and add the type based on the match.
2968 */
2969 ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2970 if (type == STT_OBJECT) {
2971 ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2972 } else {
2973 ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2974 }
2975
2976 return (ret);
2977 }
2978
2979 static int
ctf_dwarf_conv_weaks(ctf_cu_t * cup)2980 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2981 {
2982 return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2983 }
2984
2985 static int
ctf_dwarf_convert_one(void * arg,void * unused)2986 ctf_dwarf_convert_one(void *arg, void *unused)
2987 {
2988 int ret;
2989 ctf_file_t *dedup;
2990 ctf_cu_t *cup = arg;
2991 const char *name = cup->cu_name != NULL ? cup->cu_name : "NULL";
2992
2993 VERIFY(cup != NULL);
2994
2995 if ((ret = ctf_dwarf_init_die(cup)) != 0)
2996 return (ret);
2997
2998 ctf_dprintf("converting die: %s - max offset: %x\n", name,
2999 cup->cu_maxoff);
3000
3001 ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
3002 ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", name,
3003 ret);
3004 if (ret != 0)
3005 return (ret);
3006
3007 if (ctf_update(cup->cu_ctfp) != 0) {
3008 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3009 "failed to update output ctf container"));
3010 }
3011
3012 ret = ctf_dwarf_fixup_die(cup, B_FALSE);
3013 ctf_dprintf("ctf_dwarf_fixup_die (%s, FALSE) returned %d\n", name,
3014 ret);
3015 if (ret != 0)
3016 return (ret);
3017
3018 if (ctf_update(cup->cu_ctfp) != 0) {
3019 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3020 "failed to update output ctf container"));
3021 }
3022
3023 ret = ctf_dwarf_fixup_die(cup, B_TRUE);
3024 ctf_dprintf("ctf_dwarf_fixup_die (%s, TRUE) returned %d\n", name,
3025 ret);
3026 if (ret != 0)
3027 return (ret);
3028
3029 if (ctf_update(cup->cu_ctfp) != 0) {
3030 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3031 "failed to update output ctf container"));
3032 }
3033
3034 if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
3035 ctf_dprintf("ctf_dwarf_conv_funcvars (%s) returned %d\n",
3036 name, ret);
3037 return (ctf_dwarf_error(cup, NULL, ret,
3038 "failed to convert strong functions and variables"));
3039 }
3040
3041 if (ctf_update(cup->cu_ctfp) != 0) {
3042 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3043 "failed to update output ctf container"));
3044 }
3045
3046 if (cup->cu_doweaks == B_TRUE) {
3047 if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
3048 ctf_dprintf("ctf_dwarf_conv_weaks (%s) returned %d\n",
3049 name, ret);
3050 return (ctf_dwarf_error(cup, NULL, ret,
3051 "failed to convert weak functions and variables"));
3052 }
3053
3054 if (ctf_update(cup->cu_ctfp) != 0) {
3055 return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3056 "failed to update output ctf container"));
3057 }
3058 }
3059
3060 ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", name);
3061 ctf_dprintf("adding inputs for dedup\n");
3062 if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
3063 return (ctf_dwarf_error(cup, NULL, ret,
3064 "failed to add inputs for merge"));
3065 }
3066
3067 ctf_dprintf("starting dedup of %s\n", name);
3068 if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
3069 return (ctf_dwarf_error(cup, NULL, ret,
3070 "failed to deduplicate die"));
3071 }
3072
3073 ctf_close(cup->cu_ctfp);
3074 cup->cu_ctfp = dedup;
3075 ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", name);
3076
3077 return (0);
3078 }
3079
3080 static void
ctf_dwarf_free_die(ctf_cu_t * cup)3081 ctf_dwarf_free_die(ctf_cu_t *cup)
3082 {
3083 ctf_dwfunc_t *cdf, *ndf;
3084 ctf_dwvar_t *cdv, *ndv;
3085 ctf_dwbitf_t *cdb, *ndb;
3086 ctf_dwmap_t *map;
3087 void *cookie;
3088
3089 ctf_dprintf("Beginning to free die: %p\n", cup);
3090
3091 VERIFY3P(cup->cu_elf, !=, NULL);
3092 cup->cu_elf = NULL;
3093
3094 ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
3095 if (cup->cu_name != NULL) {
3096 ctf_strfree(cup->cu_name);
3097 cup->cu_name = NULL;
3098 }
3099
3100 ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
3101 if (cup->cu_cmh != NULL) {
3102 ctf_merge_fini(cup->cu_cmh);
3103 cup->cu_cmh = NULL;
3104 }
3105
3106 ctf_dprintf("Trying to free functions\n");
3107 for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
3108 ndf = ctf_list_next(cdf);
3109 ctf_strfree(cdf->cdf_name);
3110 if (cdf->cdf_fip.ctc_argc != 0) {
3111 ctf_free(cdf->cdf_argv,
3112 sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
3113 }
3114 ctf_free(cdf, sizeof (ctf_dwfunc_t));
3115 }
3116
3117 ctf_dprintf("Trying to free variables\n");
3118 for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
3119 ndv = ctf_list_next(cdv);
3120 ctf_strfree(cdv->cdv_name);
3121 ctf_free(cdv, sizeof (ctf_dwvar_t));
3122 }
3123
3124 ctf_dprintf("Trying to free bitfields\n");
3125 for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
3126 ndb = ctf_list_next(cdb);
3127 ctf_free(cdb, sizeof (ctf_dwbitf_t));
3128 }
3129
3130 if (cup->cu_ctfp != NULL) {
3131 ctf_close(cup->cu_ctfp);
3132 cup->cu_ctfp = NULL;
3133 }
3134
3135 cookie = NULL;
3136 while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL)
3137 ctf_free(map, sizeof (ctf_dwmap_t));
3138 avl_destroy(&cup->cu_map);
3139 cup->cu_errbuf = NULL;
3140
3141 if (cup->cu_cu != NULL) {
3142 ctf_dwarf_dealloc(cup, cup->cu_cu, DW_DLA_DIE);
3143 cup->cu_cu = NULL;
3144 }
3145 }
3146
3147 static int
ctf_dwarf_count_dies(Dwarf_Debug dw,Dwarf_Error * derr,uint_t * ndies,char * errbuf,size_t errlen)3148 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, uint_t *ndies,
3149 char *errbuf, size_t errlen)
3150 {
3151 int ret;
3152 Dwarf_Half vers;
3153 Dwarf_Unsigned nexthdr;
3154
3155 while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
3156 &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
3157 if (ret != DW_DLV_OK) {
3158 (void) snprintf(errbuf, errlen,
3159 "file does not contain valid DWARF data: %s\n",
3160 dwarf_errmsg(*derr));
3161 return (ECTF_CONVBKERR);
3162 }
3163
3164 switch (vers) {
3165 case DWARF_VERSION_TWO:
3166 case DWARF_VERSION_FOUR:
3167 break;
3168 default:
3169 (void) snprintf(errbuf, errlen,
3170 "unsupported DWARF version: %d\n", vers);
3171 return (ECTF_CONVBKERR);
3172 }
3173 *ndies = *ndies + 1;
3174 }
3175
3176 return (0);
3177 }
3178
3179 /*
3180 * Fill out just enough of each ctf_cu_t for the conversion process to
3181 * be able to finish the rest in a (potentially) multithreaded context.
3182 */
3183 static int
ctf_dwarf_preinit_dies(ctf_convert_t * cch,int fd,Elf * elf,Dwarf_Debug dw,mutex_t * dwlock,Dwarf_Error * derr,uint_t ndies,ctf_cu_t * cdies,char * errbuf,size_t errlen)3184 ctf_dwarf_preinit_dies(ctf_convert_t *cch, int fd, Elf *elf, Dwarf_Debug dw,
3185 mutex_t *dwlock, Dwarf_Error *derr, uint_t ndies, ctf_cu_t *cdies,
3186 char *errbuf, size_t errlen)
3187 {
3188 Dwarf_Unsigned hdrlen, abboff, nexthdr;
3189 Dwarf_Half addrsz, vers;
3190 Dwarf_Unsigned offset = 0;
3191 uint_t added = 0;
3192 int ret, i = 0;
3193
3194 while ((ret = dwarf_next_cu_header(dw, &hdrlen, &vers, &abboff,
3195 &addrsz, &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
3196 Dwarf_Die cu;
3197 ctf_cu_t *cup;
3198 char *name;
3199
3200 VERIFY3U(i, <, ndies);
3201
3202 cup = &cdies[i++];
3203
3204 cup->cu_handle = cch;
3205 cup->cu_fd = fd;
3206 cup->cu_elf = elf;
3207 cup->cu_dwarf = dw;
3208 cup->cu_errbuf = errbuf;
3209 cup->cu_errlen = errlen;
3210 cup->cu_dwarf = dw;
3211 if (ndies > 1) {
3212 /*
3213 * Only need to lock calls into libdwarf if there are
3214 * multiple CUs.
3215 */
3216 cup->cu_dwlock = dwlock;
3217 cup->cu_doweaks = B_FALSE;
3218 } else {
3219 cup->cu_doweaks = B_TRUE;
3220 }
3221
3222 cup->cu_voidtid = CTF_ERR;
3223 cup->cu_longtid = CTF_ERR;
3224 cup->cu_cuoff = offset;
3225 cup->cu_maxoff = nexthdr - 1;
3226 cup->cu_vers = vers;
3227 cup->cu_addrsz = addrsz;
3228
3229 if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0) {
3230 ctf_dprintf("cu %d - no cu %d\n", i, ret);
3231 return (ret);
3232 }
3233
3234 if (cu == NULL) {
3235 ctf_dprintf("cu %d - no cu data\n", i);
3236 (void) snprintf(cup->cu_errbuf, cup->cu_errlen,
3237 "file does not contain DWARF data\n");
3238 return (ECTF_CONVNODEBUG);
3239 }
3240
3241 if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
3242 char *b = basename(name);
3243
3244 cup->cu_name = strdup(b);
3245 ctf_strfree(name);
3246 if (cup->cu_name == NULL)
3247 return (ENOMEM);
3248 }
3249
3250 ret = ctf_dwarf_child(cup, cu, &cup->cu_cu);
3251 dwarf_dealloc(cup->cu_dwarf, cu, DW_DLA_DIE);
3252 if (ret != 0) {
3253 ctf_dprintf("cu %d - no child '%s' %d\n",
3254 i, cup->cu_name != NULL ? cup->cu_name : "NULL",
3255 ret);
3256 return (ret);
3257 }
3258
3259 if (cup->cu_cu == NULL) {
3260 size_t len;
3261
3262 ctf_dprintf("cu %d - no child data '%s' %d\n",
3263 i, cup->cu_name != NULL ? cup->cu_name : "NULL",
3264 ret);
3265 if (cup->cu_name != NULL &&
3266 (len = strlen(cup->cu_name)) > 2 &&
3267 strncmp(".c", &cup->cu_name[len - 2], 2) == 0) {
3268 /*
3269 * Missing DEBUG data for a .c file, return an
3270 * error unless this is permitted.
3271 */
3272 if (!(cch->cch_flags &
3273 CTF_ALLOW_MISSING_DEBUG)) {
3274 (void) snprintf(
3275 cup->cu_errbuf, cup->cu_errlen,
3276 "missing debug information "
3277 "(first seen in %s)\n",
3278 cup->cu_name);
3279 return (ECTF_CONVNODEBUG);
3280 }
3281 if (cch->cch_warncb != NULL) {
3282 cch->cch_warncb(cch->cch_warncb_arg,
3283 "file %s is missing debug "
3284 "information\n", cup->cu_name);
3285 }
3286 }
3287 } else {
3288 added++;
3289 }
3290
3291 ctf_dprintf("Pre-initialised cu %d - '%s'\n", i,
3292 cup->cu_name != NULL ? cup->cu_name : "NULL");
3293
3294 offset = nexthdr;
3295 }
3296
3297 /*
3298 * If none of the CUs had debug data, return an error.
3299 */
3300 if (added == 0)
3301 return (ECTF_CONVNODEBUG);
3302
3303 return (0);
3304 }
3305
3306 static int
ctf_dwarf_init_die(ctf_cu_t * cup)3307 ctf_dwarf_init_die(ctf_cu_t *cup)
3308 {
3309 int ret;
3310
3311 cup->cu_ctfp = ctf_fdcreate(cup->cu_fd, &ret);
3312 if (cup->cu_ctfp == NULL)
3313 return (ret);
3314
3315 avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
3316 offsetof(ctf_dwmap_t, cdm_avl));
3317
3318 if ((ret = ctf_dwarf_die_elfenc(cup->cu_elf, cup,
3319 cup->cu_errbuf, cup->cu_errlen)) != 0) {
3320 return (ret);
3321 }
3322
3323 if ((cup->cu_cmh = ctf_merge_init(cup->cu_fd, &ret)) == NULL)
3324 return (ret);
3325
3326 return (0);
3327 }
3328
3329 /*
3330 * This is our only recourse to identify a C source file that is missing debug
3331 * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
3332 * (A traditional ctfmerge works on individual files, so can identify missing
3333 * DWARF more directly, via ctf_has_c_source() on the .o file.)
3334 *
3335 * As we operate on basenames, this can of course miss some cases, but it's
3336 * better than not checking at all.
3337 *
3338 * We explicitly whitelist some CRT components. Failing that, there's always
3339 * the -m option.
3340 */
3341 static boolean_t
c_source_has_debug(ctf_convert_t * cch,const char * file,ctf_cu_t * cus,size_t nr_cus)3342 c_source_has_debug(ctf_convert_t *cch, const char *file,
3343 ctf_cu_t *cus, size_t nr_cus)
3344 {
3345 const char *basename = strrchr(file, '/');
3346 ctf_convert_filelist_t *ccf;
3347
3348 if (basename == NULL)
3349 basename = file;
3350 else
3351 basename++;
3352
3353 if (strcmp(basename, "common-crt.c") == 0 ||
3354 strcmp(basename, "gmon.c") == 0 ||
3355 strcmp(basename, "dlink_init.c") == 0 ||
3356 strcmp(basename, "dlink_common.c") == 0 ||
3357 strcmp(basename, "ssp_ns.c") == 0 ||
3358 strncmp(basename, "crt", strlen("crt")) == 0 ||
3359 strncmp(basename, "values-", strlen("values-")) == 0)
3360 return (B_TRUE);
3361
3362 for (ccf = list_head(&cch->cch_nodebug); ccf != NULL;
3363 ccf = list_next(&cch->cch_nodebug, ccf)) {
3364 if (ccf->ccf_basename != NULL &&
3365 strcmp(basename, ccf->ccf_basename) == 0) {
3366 return (B_TRUE);
3367 }
3368 }
3369
3370 for (size_t i = 0; i < nr_cus; i++) {
3371 if (cus[i].cu_name != NULL &&
3372 strcmp(basename, cus[i].cu_name) == 0) {
3373 return (B_TRUE);
3374 }
3375 }
3376
3377 return (B_FALSE);
3378 }
3379
3380 static int
ctf_dwarf_check_missing(ctf_convert_t * cch,ctf_cu_t * cus,size_t nr_cus,Elf * elf,char * errmsg,size_t errlen)3381 ctf_dwarf_check_missing(ctf_convert_t *cch, ctf_cu_t *cus, size_t nr_cus,
3382 Elf *elf, char *errmsg, size_t errlen)
3383 {
3384 Elf_Scn *scn, *strscn;
3385 Elf_Data *data, *strdata;
3386 GElf_Shdr shdr;
3387 ulong_t i;
3388 int ret = 0;
3389
3390 scn = NULL;
3391 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3392 if (gelf_getshdr(scn, &shdr) == NULL) {
3393 (void) snprintf(errmsg, errlen,
3394 "failed to get section header: %s\n",
3395 elf_errmsg(elf_errno()));
3396 return (EINVAL);
3397 }
3398
3399 if (shdr.sh_type == SHT_SYMTAB)
3400 break;
3401 }
3402
3403 if (scn == NULL)
3404 return (0);
3405
3406 if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
3407 (void) snprintf(errmsg, errlen,
3408 "failed to get str section: %s\n",
3409 elf_errmsg(elf_errno()));
3410 return (EINVAL);
3411 }
3412
3413 if ((data = elf_getdata(scn, NULL)) == NULL) {
3414 (void) snprintf(errmsg, errlen, "failed to read section: %s\n",
3415 elf_errmsg(elf_errno()));
3416 return (EINVAL);
3417 }
3418
3419 if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
3420 (void) snprintf(errmsg, errlen,
3421 "failed to read string table: %s\n",
3422 elf_errmsg(elf_errno()));
3423 return (EINVAL);
3424 }
3425
3426 for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
3427 GElf_Sym sym;
3428 const char *file;
3429 size_t len;
3430
3431 if (gelf_getsym(data, i, &sym) == NULL) {
3432 (void) snprintf(errmsg, errlen,
3433 "failed to read sym %lu: %s\n",
3434 i, elf_errmsg(elf_errno()));
3435 return (EINVAL);
3436 }
3437
3438 if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
3439 continue;
3440
3441 file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
3442 len = strlen(file);
3443 if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
3444 continue;
3445
3446 if (!c_source_has_debug(cch, file, cus, nr_cus)) {
3447 if (cch->cch_warncb != NULL) {
3448 cch->cch_warncb(
3449 cch->cch_warncb_arg,
3450 "file %s is missing debug information\n",
3451 file);
3452 }
3453 if (ret != ECTF_CONVNODEBUG) {
3454 (void) snprintf(errmsg, errlen,
3455 "missing debug information "
3456 "(first seen in %s)\n", file);
3457 ret = ECTF_CONVNODEBUG;
3458 }
3459 }
3460 }
3461
3462 return (ret);
3463 }
3464
3465 static int
ctf_dwarf_convert_batch(uint_t start,uint_t end,int fd,uint_t nthrs,workq_t * wqp,ctf_cu_t * cdies,ctf_file_t ** fpp)3466 ctf_dwarf_convert_batch(uint_t start, uint_t end, int fd, uint_t nthrs,
3467 workq_t *wqp, ctf_cu_t *cdies, ctf_file_t **fpp)
3468 {
3469 ctf_file_t *fpprev = NULL;
3470 uint_t i, added;
3471 ctf_cu_t *cup;
3472 int ret, err;
3473
3474 ctf_dprintf("Processing CU batch %u - %u\n", start, end - 1);
3475
3476 added = 0;
3477 for (i = start; i < end; i++) {
3478 cup = &cdies[i];
3479 if (cup->cu_cu == NULL)
3480 continue;
3481 ctf_dprintf("adding cu %s: %p, %x %x\n",
3482 cup->cu_name != NULL ? cup->cu_name : "NULL",
3483 cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3484 if (workq_add(wqp, cup) == -1) {
3485 err = errno;
3486 goto out;
3487 }
3488 added++;
3489 }
3490
3491 /*
3492 * No debug data found in this batch, move on to the next.
3493 * NB: ctf_dwarf_preinit_dies() has already checked that there is at
3494 * least one CU with debug data present.
3495 */
3496 if (added == 0) {
3497 err = 0;
3498 goto out;
3499 }
3500
3501 ctf_dprintf("Running conversion phase\n");
3502
3503 /* Run the conversions */
3504 ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3505 if (ret == WORKQ_ERROR) {
3506 err = errno;
3507 goto out;
3508 } else if (ret == WORKQ_UERROR) {
3509 ctf_dprintf("internal convert failed: %s\n",
3510 ctf_errmsg(err));
3511 goto out;
3512 }
3513
3514 ctf_dprintf("starting merge phase\n");
3515
3516 ctf_merge_t *cmp = ctf_merge_init(fd, &err);
3517 if (cmp == NULL)
3518 goto out;
3519
3520 if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3521 ctf_merge_fini(cmp);
3522 goto out;
3523 }
3524
3525 /*
3526 * If we have the result of a previous merge then add it as an input to
3527 * the next one.
3528 */
3529 if (*fpp != NULL) {
3530 ctf_dprintf("adding previous merge CU\n");
3531 fpprev = *fpp;
3532 *fpp = NULL;
3533 if ((err = ctf_merge_add(cmp, fpprev)) != 0) {
3534 ctf_merge_fini(cmp);
3535 goto out;
3536 }
3537 }
3538
3539 ctf_dprintf("adding CUs to merge\n");
3540 for (i = start; i < end; i++) {
3541 cup = &cdies[i];
3542 if (cup->cu_cu == NULL)
3543 continue;
3544 if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3545 ctf_merge_fini(cmp);
3546 *fpp = NULL;
3547 goto out;
3548 }
3549 }
3550
3551 ctf_dprintf("performing merge\n");
3552 err = ctf_merge_merge(cmp, fpp);
3553 if (err != 0) {
3554 ctf_dprintf("failed merge!\n");
3555 *fpp = NULL;
3556 ctf_merge_fini(cmp);
3557 goto out;
3558 }
3559
3560 ctf_merge_fini(cmp);
3561
3562 ctf_dprintf("freeing CUs\n");
3563 for (i = start; i < end; i++) {
3564 cup = &cdies[i];
3565 ctf_dprintf("freeing cu %d\n", i);
3566 ctf_dwarf_free_die(cup);
3567 }
3568
3569 out:
3570 ctf_close(fpprev);
3571 return (err);
3572 }
3573
3574 int
ctf_dwarf_convert(ctf_convert_t * cch,int fd,Elf * elf,ctf_file_t ** fpp,char * errbuf,size_t errlen)3575 ctf_dwarf_convert(ctf_convert_t *cch, int fd, Elf *elf, ctf_file_t **fpp,
3576 char *errbuf, size_t errlen)
3577 {
3578 int err, ret;
3579 uint_t ndies, i, bsize, nthrs;
3580 Dwarf_Debug dw;
3581 Dwarf_Error derr;
3582 ctf_cu_t *cdies = NULL, *cup;
3583 workq_t *wqp = NULL;
3584 mutex_t dwlock = ERRORCHECKMUTEX;
3585
3586 *fpp = NULL;
3587
3588 ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
3589 if (ret != DW_DLV_OK) {
3590 if (ret == DW_DLV_NO_ENTRY ||
3591 dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
3592 (void) snprintf(errbuf, errlen,
3593 "file does not contain DWARF data\n");
3594 return (ECTF_CONVNODEBUG);
3595 }
3596
3597 (void) snprintf(errbuf, errlen,
3598 "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
3599 return (ECTF_CONVBKERR);
3600 }
3601
3602 /*
3603 * Iterate over all of the compilation units and create a ctf_cu_t for
3604 * each of them. This is used to determine if we have zero, one, or
3605 * multiple dies to convert. If we have zero, that's an error. If
3606 * there's only one die, that's the simple case. No merge needed and
3607 * only a single Dwarf_Debug as well.
3608 */
3609 ndies = 0;
3610 err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
3611
3612 ctf_dprintf("found %d DWARF CUs\n", ndies);
3613
3614 if (ndies == 0) {
3615 (void) snprintf(errbuf, errlen,
3616 "file does not contain DWARF data\n");
3617 (void) dwarf_finish(dw, &derr);
3618 return (ECTF_CONVNODEBUG);
3619 }
3620
3621 cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
3622 if (cdies == NULL) {
3623 (void) dwarf_finish(dw, &derr);
3624 return (ENOMEM);
3625 }
3626
3627 bzero(cdies, sizeof (ctf_cu_t) * ndies);
3628
3629 if ((err = ctf_dwarf_preinit_dies(cch, fd, elf, dw, &dwlock, &derr,
3630 ndies, cdies, errbuf, errlen)) != 0) {
3631 goto out;
3632 }
3633
3634 if ((err = ctf_dwarf_check_missing(cch, cdies, ndies, elf,
3635 errbuf, errlen)) != 0) {
3636 if (!(cch->cch_flags & CTF_ALLOW_MISSING_DEBUG)) {
3637 goto out;
3638 }
3639 if (err != ECTF_CONVNODEBUG && *errbuf != '\0' &&
3640 cch->cch_warncb != NULL) {
3641 cch->cch_warncb(cch->cch_warncb_arg, "%s", errbuf);
3642 *errbuf = '\0';
3643 }
3644 }
3645
3646 /* Only one cu, no merge required */
3647 if (ndies == 1) {
3648 cup = cdies;
3649
3650 if ((err = ctf_dwarf_convert_one(cup, NULL)) != 0)
3651 goto out;
3652
3653 *fpp = cup->cu_ctfp;
3654 cup->cu_ctfp = NULL;
3655 ctf_dwarf_free_die(cup);
3656 goto success;
3657 }
3658
3659 /*
3660 * There's no need to have either more threads or a batch size larger
3661 * than the total number of dies, even if the user requested them.
3662 */
3663 nthrs = min(ndies, cch->cch_nthreads);
3664 bsize = min(ndies, cch->cch_batchsize);
3665
3666 if (workq_init(&wqp, nthrs) == -1) {
3667 err = errno;
3668 goto out;
3669 }
3670
3671 /*
3672 * In order to avoid exhausting memory limits when converting files
3673 * with a large number of dies, we process them in batches.
3674 */
3675 for (i = 0; i < ndies; i += bsize) {
3676 err = ctf_dwarf_convert_batch(i, min(i + bsize, ndies),
3677 fd, nthrs, wqp, cdies, fpp);
3678 if (err != 0) {
3679 *fpp = NULL;
3680 goto out;
3681 }
3682 }
3683
3684 success:
3685 err = 0;
3686 ctf_dprintf("successfully converted!\n");
3687
3688 out:
3689 (void) dwarf_finish(dw, &derr);
3690 workq_fini(wqp);
3691 ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
3692 return (err);
3693 }
3694